src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2243
a7214d79fcf1
child 2452
4947ee68d19c
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
    28 #include "gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp"
    29 #include "gc_implementation/shared/gSpaceCounters.hpp"
    30 #include "gc_implementation/shared/gcStats.hpp"
    31 #include "gc_implementation/shared/generationCounters.hpp"
    32 #include "memory/generation.hpp"
    33 #include "runtime/mutexLocker.hpp"
    34 #include "runtime/virtualspace.hpp"
    35 #include "services/memoryService.hpp"
    36 #include "utilities/bitMap.inline.hpp"
    37 #include "utilities/stack.inline.hpp"
    38 #include "utilities/taskqueue.hpp"
    39 #include "utilities/yieldingWorkgroup.hpp"
    41 // ConcurrentMarkSweepGeneration is in support of a concurrent
    42 // mark-sweep old generation in the Detlefs-Printezis--Boehm-Demers-Schenker
    43 // style. We assume, for now, that this generation is always the
    44 // seniormost generation (modulo the PermGeneration), and for simplicity
    45 // in the first implementation, that this generation is a single compactible
    46 // space. Neither of these restrictions appears essential, and will be
    47 // relaxed in the future when more time is available to implement the
    48 // greater generality (and there's a need for it).
    49 //
    50 // Concurrent mode failures are currently handled by
    51 // means of a sliding mark-compact.
    53 class CMSAdaptiveSizePolicy;
    54 class CMSConcMarkingTask;
    55 class CMSGCAdaptivePolicyCounters;
    56 class ConcurrentMarkSweepGeneration;
    57 class ConcurrentMarkSweepPolicy;
    58 class ConcurrentMarkSweepThread;
    59 class CompactibleFreeListSpace;
    60 class FreeChunk;
    61 class PromotionInfo;
    62 class ScanMarkedObjectsAgainCarefullyClosure;
    64 // A generic CMS bit map. It's the basis for both the CMS marking bit map
    65 // as well as for the mod union table (in each case only a subset of the
    66 // methods are used). This is essentially a wrapper around the BitMap class,
    67 // with one bit per (1<<_shifter) HeapWords. (i.e. for the marking bit map,
    68 // we have _shifter == 0. and for the mod union table we have
    69 // shifter == CardTableModRefBS::card_shift - LogHeapWordSize.)
    70 // XXX 64-bit issues in BitMap?
    71 class CMSBitMap VALUE_OBJ_CLASS_SPEC {
    72   friend class VMStructs;
    74   HeapWord* _bmStartWord;   // base address of range covered by map
    75   size_t    _bmWordSize;    // map size (in #HeapWords covered)
    76   const int _shifter;       // shifts to convert HeapWord to bit position
    77   VirtualSpace _virtual_space; // underlying the bit map
    78   BitMap    _bm;            // the bit map itself
    79  public:
    80   Mutex* const _lock;       // mutex protecting _bm;
    82  public:
    83   // constructor
    84   CMSBitMap(int shifter, int mutex_rank, const char* mutex_name);
    86   // allocates the actual storage for the map
    87   bool allocate(MemRegion mr);
    88   // field getter
    89   Mutex* lock() const { return _lock; }
    90   // locking verifier convenience function
    91   void assert_locked() const PRODUCT_RETURN;
    93   // inquiries
    94   HeapWord* startWord()   const { return _bmStartWord; }
    95   size_t    sizeInWords() const { return _bmWordSize;  }
    96   size_t    sizeInBits()  const { return _bm.size();   }
    97   // the following is one past the last word in space
    98   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
   100   // reading marks
   101   bool isMarked(HeapWord* addr) const;
   102   bool par_isMarked(HeapWord* addr) const; // do not lock checks
   103   bool isUnmarked(HeapWord* addr) const;
   104   bool isAllClear() const;
   106   // writing marks
   107   void mark(HeapWord* addr);
   108   // For marking by parallel GC threads;
   109   // returns true if we did, false if another thread did
   110   bool par_mark(HeapWord* addr);
   112   void mark_range(MemRegion mr);
   113   void par_mark_range(MemRegion mr);
   114   void mark_large_range(MemRegion mr);
   115   void par_mark_large_range(MemRegion mr);
   116   void par_clear(HeapWord* addr); // For unmarking by parallel GC threads.
   117   void clear_range(MemRegion mr);
   118   void par_clear_range(MemRegion mr);
   119   void clear_large_range(MemRegion mr);
   120   void par_clear_large_range(MemRegion mr);
   121   void clear_all();
   122   void clear_all_incrementally();  // Not yet implemented!!
   124   NOT_PRODUCT(
   125     // checks the memory region for validity
   126     void region_invariant(MemRegion mr);
   127   )
   129   // iteration
   130   void iterate(BitMapClosure* cl) {
   131     _bm.iterate(cl);
   132   }
   133   void iterate(BitMapClosure* cl, HeapWord* left, HeapWord* right);
   134   void dirty_range_iterate_clear(MemRegionClosure* cl);
   135   void dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl);
   137   // auxiliary support for iteration
   138   HeapWord* getNextMarkedWordAddress(HeapWord* addr) const;
   139   HeapWord* getNextMarkedWordAddress(HeapWord* start_addr,
   140                                             HeapWord* end_addr) const;
   141   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr) const;
   142   HeapWord* getNextUnmarkedWordAddress(HeapWord* start_addr,
   143                                               HeapWord* end_addr) const;
   144   MemRegion getAndClearMarkedRegion(HeapWord* addr);
   145   MemRegion getAndClearMarkedRegion(HeapWord* start_addr,
   146                                            HeapWord* end_addr);
   148   // conversion utilities
   149   HeapWord* offsetToHeapWord(size_t offset) const;
   150   size_t    heapWordToOffset(HeapWord* addr) const;
   151   size_t    heapWordDiffToOffsetDiff(size_t diff) const;
   153   // debugging
   154   // is this address range covered by the bit-map?
   155   NOT_PRODUCT(
   156     bool covers(MemRegion mr) const;
   157     bool covers(HeapWord* start, size_t size = 0) const;
   158   )
   159   void verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) PRODUCT_RETURN;
   160 };
   162 // Represents a marking stack used by the CMS collector.
   163 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
   164 class CMSMarkStack: public CHeapObj  {
   165   //
   166   friend class CMSCollector;   // to get at expasion stats further below
   167   //
   169   VirtualSpace _virtual_space;  // space for the stack
   170   oop*   _base;      // bottom of stack
   171   size_t _index;     // one more than last occupied index
   172   size_t _capacity;  // max #elements
   173   Mutex  _par_lock;  // an advisory lock used in case of parallel access
   174   NOT_PRODUCT(size_t _max_depth;)  // max depth plumbed during run
   176  protected:
   177   size_t _hit_limit;      // we hit max stack size limit
   178   size_t _failed_double;  // we failed expansion before hitting limit
   180  public:
   181   CMSMarkStack():
   182     _par_lock(Mutex::event, "CMSMarkStack._par_lock", true),
   183     _hit_limit(0),
   184     _failed_double(0) {}
   186   bool allocate(size_t size);
   188   size_t capacity() const { return _capacity; }
   190   oop pop() {
   191     if (!isEmpty()) {
   192       return _base[--_index] ;
   193     }
   194     return NULL;
   195   }
   197   bool push(oop ptr) {
   198     if (isFull()) {
   199       return false;
   200     } else {
   201       _base[_index++] = ptr;
   202       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   203       return true;
   204     }
   205   }
   207   bool isEmpty() const { return _index == 0; }
   208   bool isFull()  const {
   209     assert(_index <= _capacity, "buffer overflow");
   210     return _index == _capacity;
   211   }
   213   size_t length() { return _index; }
   215   // "Parallel versions" of some of the above
   216   oop par_pop() {
   217     // lock and pop
   218     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
   219     return pop();
   220   }
   222   bool par_push(oop ptr) {
   223     // lock and push
   224     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
   225     return push(ptr);
   226   }
   228   // Forcibly reset the stack, losing all of its contents.
   229   void reset() {
   230     _index = 0;
   231   }
   233   // Expand the stack, typically in response to an overflow condition
   234   void expand();
   236   // Compute the least valued stack element.
   237   oop least_value(HeapWord* low) {
   238      oop least = (oop)low;
   239      for (size_t i = 0; i < _index; i++) {
   240        least = MIN2(least, _base[i]);
   241      }
   242      return least;
   243   }
   245   // Exposed here to allow stack expansion in || case
   246   Mutex* par_lock() { return &_par_lock; }
   247 };
   249 class CardTableRS;
   250 class CMSParGCThreadState;
   252 class ModUnionClosure: public MemRegionClosure {
   253  protected:
   254   CMSBitMap* _t;
   255  public:
   256   ModUnionClosure(CMSBitMap* t): _t(t) { }
   257   void do_MemRegion(MemRegion mr);
   258 };
   260 class ModUnionClosurePar: public ModUnionClosure {
   261  public:
   262   ModUnionClosurePar(CMSBitMap* t): ModUnionClosure(t) { }
   263   void do_MemRegion(MemRegion mr);
   264 };
   266 // Survivor Chunk Array in support of parallelization of
   267 // Survivor Space rescan.
   268 class ChunkArray: public CHeapObj {
   269   size_t _index;
   270   size_t _capacity;
   271   size_t _overflows;
   272   HeapWord** _array;   // storage for array
   274  public:
   275   ChunkArray() : _index(0), _capacity(0), _overflows(0), _array(NULL) {}
   276   ChunkArray(HeapWord** a, size_t c):
   277     _index(0), _capacity(c), _overflows(0), _array(a) {}
   279   HeapWord** array() { return _array; }
   280   void set_array(HeapWord** a) { _array = a; }
   282   size_t capacity() { return _capacity; }
   283   void set_capacity(size_t c) { _capacity = c; }
   285   size_t end() {
   286     assert(_index <= capacity(),
   287            err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT "): out of bounds",
   288                    _index, _capacity));
   289     return _index;
   290   }  // exclusive
   292   HeapWord* nth(size_t n) {
   293     assert(n < end(), "Out of bounds access");
   294     return _array[n];
   295   }
   297   void reset() {
   298     _index = 0;
   299     if (_overflows > 0 && PrintCMSStatistics > 1) {
   300       warning("CMS: ChunkArray[" SIZE_FORMAT "] overflowed " SIZE_FORMAT " times",
   301               _capacity, _overflows);
   302     }
   303     _overflows = 0;
   304   }
   306   void record_sample(HeapWord* p, size_t sz) {
   307     // For now we do not do anything with the size
   308     if (_index < _capacity) {
   309       _array[_index++] = p;
   310     } else {
   311       ++_overflows;
   312       assert(_index == _capacity,
   313              err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT
   314                      "): out of bounds at overflow#" SIZE_FORMAT,
   315                      _index, _capacity, _overflows));
   316     }
   317   }
   318 };
   320 //
   321 // Timing, allocation and promotion statistics for gc scheduling and incremental
   322 // mode pacing.  Most statistics are exponential averages.
   323 //
   324 class CMSStats VALUE_OBJ_CLASS_SPEC {
   325  private:
   326   ConcurrentMarkSweepGeneration* const _cms_gen;   // The cms (old) gen.
   328   // The following are exponential averages with factor alpha:
   329   //   avg = (100 - alpha) * avg + alpha * cur_sample
   330   //
   331   //   The durations measure:  end_time[n] - start_time[n]
   332   //   The periods measure:    start_time[n] - start_time[n-1]
   333   //
   334   // The cms period and duration include only concurrent collections; time spent
   335   // in foreground cms collections due to System.gc() or because of a failure to
   336   // keep up are not included.
   337   //
   338   // There are 3 alphas to "bootstrap" the statistics.  The _saved_alpha is the
   339   // real value, but is used only after the first period.  A value of 100 is
   340   // used for the first sample so it gets the entire weight.
   341   unsigned int _saved_alpha; // 0-100
   342   unsigned int _gc0_alpha;
   343   unsigned int _cms_alpha;
   345   double _gc0_duration;
   346   double _gc0_period;
   347   size_t _gc0_promoted;         // bytes promoted per gc0
   348   double _cms_duration;
   349   double _cms_duration_pre_sweep; // time from initiation to start of sweep
   350   double _cms_duration_per_mb;
   351   double _cms_period;
   352   size_t _cms_allocated;        // bytes of direct allocation per gc0 period
   354   // Timers.
   355   elapsedTimer _cms_timer;
   356   TimeStamp    _gc0_begin_time;
   357   TimeStamp    _cms_begin_time;
   358   TimeStamp    _cms_end_time;
   360   // Snapshots of the amount used in the CMS generation.
   361   size_t _cms_used_at_gc0_begin;
   362   size_t _cms_used_at_gc0_end;
   363   size_t _cms_used_at_cms_begin;
   365   // Used to prevent the duty cycle from being reduced in the middle of a cms
   366   // cycle.
   367   bool _allow_duty_cycle_reduction;
   369   enum {
   370     _GC0_VALID = 0x1,
   371     _CMS_VALID = 0x2,
   372     _ALL_VALID = _GC0_VALID | _CMS_VALID
   373   };
   375   unsigned int _valid_bits;
   377   unsigned int _icms_duty_cycle;        // icms duty cycle (0-100).
   379  protected:
   381   // Return a duty cycle that avoids wild oscillations, by limiting the amount
   382   // of change between old_duty_cycle and new_duty_cycle (the latter is treated
   383   // as a recommended value).
   384   static unsigned int icms_damped_duty_cycle(unsigned int old_duty_cycle,
   385                                              unsigned int new_duty_cycle);
   386   unsigned int icms_update_duty_cycle_impl();
   388   // In support of adjusting of cms trigger ratios based on history
   389   // of concurrent mode failure.
   390   double cms_free_adjustment_factor(size_t free) const;
   391   void   adjust_cms_free_adjustment_factor(bool fail, size_t free);
   393  public:
   394   CMSStats(ConcurrentMarkSweepGeneration* cms_gen,
   395            unsigned int alpha = CMSExpAvgFactor);
   397   // Whether or not the statistics contain valid data; higher level statistics
   398   // cannot be called until this returns true (they require at least one young
   399   // gen and one cms cycle to have completed).
   400   bool valid() const;
   402   // Record statistics.
   403   void record_gc0_begin();
   404   void record_gc0_end(size_t cms_gen_bytes_used);
   405   void record_cms_begin();
   406   void record_cms_end();
   408   // Allow management of the cms timer, which must be stopped/started around
   409   // yield points.
   410   elapsedTimer& cms_timer()     { return _cms_timer; }
   411   void start_cms_timer()        { _cms_timer.start(); }
   412   void stop_cms_timer()         { _cms_timer.stop(); }
   414   // Basic statistics; units are seconds or bytes.
   415   double gc0_period() const     { return _gc0_period; }
   416   double gc0_duration() const   { return _gc0_duration; }
   417   size_t gc0_promoted() const   { return _gc0_promoted; }
   418   double cms_period() const          { return _cms_period; }
   419   double cms_duration() const        { return _cms_duration; }
   420   double cms_duration_per_mb() const { return _cms_duration_per_mb; }
   421   size_t cms_allocated() const       { return _cms_allocated; }
   423   size_t cms_used_at_gc0_end() const { return _cms_used_at_gc0_end;}
   425   // Seconds since the last background cms cycle began or ended.
   426   double cms_time_since_begin() const;
   427   double cms_time_since_end() const;
   429   // Higher level statistics--caller must check that valid() returns true before
   430   // calling.
   432   // Returns bytes promoted per second of wall clock time.
   433   double promotion_rate() const;
   435   // Returns bytes directly allocated per second of wall clock time.
   436   double cms_allocation_rate() const;
   438   // Rate at which space in the cms generation is being consumed (sum of the
   439   // above two).
   440   double cms_consumption_rate() const;
   442   // Returns an estimate of the number of seconds until the cms generation will
   443   // fill up, assuming no collection work is done.
   444   double time_until_cms_gen_full() const;
   446   // Returns an estimate of the number of seconds remaining until
   447   // the cms generation collection should start.
   448   double time_until_cms_start() const;
   450   // End of higher level statistics.
   452   // Returns the cms incremental mode duty cycle, as a percentage (0-100).
   453   unsigned int icms_duty_cycle() const { return _icms_duty_cycle; }
   455   // Update the duty cycle and return the new value.
   456   unsigned int icms_update_duty_cycle();
   458   // Debugging.
   459   void print_on(outputStream* st) const PRODUCT_RETURN;
   460   void print() const { print_on(gclog_or_tty); }
   461 };
   463 // A closure related to weak references processing which
   464 // we embed in the CMSCollector, since we need to pass
   465 // it to the reference processor for secondary filtering
   466 // of references based on reachability of referent;
   467 // see role of _is_alive_non_header closure in the
   468 // ReferenceProcessor class.
   469 // For objects in the CMS generation, this closure checks
   470 // if the object is "live" (reachable). Used in weak
   471 // reference processing.
   472 class CMSIsAliveClosure: public BoolObjectClosure {
   473   const MemRegion  _span;
   474   const CMSBitMap* _bit_map;
   476   friend class CMSCollector;
   477  public:
   478   CMSIsAliveClosure(MemRegion span,
   479                     CMSBitMap* bit_map):
   480     _span(span),
   481     _bit_map(bit_map) {
   482     assert(!span.is_empty(), "Empty span could spell trouble");
   483   }
   485   void do_object(oop obj) {
   486     assert(false, "not to be invoked");
   487   }
   489   bool do_object_b(oop obj);
   490 };
   493 // Implements AbstractRefProcTaskExecutor for CMS.
   494 class CMSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
   495 public:
   497   CMSRefProcTaskExecutor(CMSCollector& collector)
   498     : _collector(collector)
   499   { }
   501   // Executes a task using worker threads.
   502   virtual void execute(ProcessTask& task);
   503   virtual void execute(EnqueueTask& task);
   504 private:
   505   CMSCollector& _collector;
   506 };
   509 class CMSCollector: public CHeapObj {
   510   friend class VMStructs;
   511   friend class ConcurrentMarkSweepThread;
   512   friend class ConcurrentMarkSweepGeneration;
   513   friend class CompactibleFreeListSpace;
   514   friend class CMSParRemarkTask;
   515   friend class CMSConcMarkingTask;
   516   friend class CMSRefProcTaskProxy;
   517   friend class CMSRefProcTaskExecutor;
   518   friend class ScanMarkedObjectsAgainCarefullyClosure;  // for sampling eden
   519   friend class SurvivorSpacePrecleanClosure;            // --- ditto -------
   520   friend class PushOrMarkClosure;             // to access _restart_addr
   521   friend class Par_PushOrMarkClosure;             // to access _restart_addr
   522   friend class MarkFromRootsClosure;          //  -- ditto --
   523                                               // ... and for clearing cards
   524   friend class Par_MarkFromRootsClosure;      //  to access _restart_addr
   525                                               // ... and for clearing cards
   526   friend class Par_ConcMarkingClosure;        //  to access _restart_addr etc.
   527   friend class MarkFromRootsVerifyClosure;    // to access _restart_addr
   528   friend class PushAndMarkVerifyClosure;      //  -- ditto --
   529   friend class MarkRefsIntoAndScanClosure;    // to access _overflow_list
   530   friend class PushAndMarkClosure;            //  -- ditto --
   531   friend class Par_PushAndMarkClosure;        //  -- ditto --
   532   friend class CMSKeepAliveClosure;           //  -- ditto --
   533   friend class CMSDrainMarkingStackClosure;   //  -- ditto --
   534   friend class CMSInnerParMarkAndPushClosure; //  -- ditto --
   535   NOT_PRODUCT(friend class ScanMarkedObjectsAgainClosure;) //  assertion on _overflow_list
   536   friend class ReleaseForegroundGC;  // to access _foregroundGCShouldWait
   537   friend class VM_CMS_Operation;
   538   friend class VM_CMS_Initial_Mark;
   539   friend class VM_CMS_Final_Remark;
   540   friend class TraceCMSMemoryManagerStats;
   542  private:
   543   jlong _time_of_last_gc;
   544   void update_time_of_last_gc(jlong now) {
   545     _time_of_last_gc = now;
   546   }
   548   OopTaskQueueSet* _task_queues;
   550   // Overflow list of grey objects, threaded through mark-word
   551   // Manipulated with CAS in the parallel/multi-threaded case.
   552   oop _overflow_list;
   553   // The following array-pair keeps track of mark words
   554   // displaced for accomodating overflow list above.
   555   // This code will likely be revisited under RFE#4922830.
   556   Stack<oop>     _preserved_oop_stack;
   557   Stack<markOop> _preserved_mark_stack;
   559   int*             _hash_seed;
   561   // In support of multi-threaded concurrent phases
   562   YieldingFlexibleWorkGang* _conc_workers;
   564   // Performance Counters
   565   CollectorCounters* _gc_counters;
   567   // Initialization Errors
   568   bool _completed_initialization;
   570   // In support of ExplicitGCInvokesConcurrent
   571   static   bool _full_gc_requested;
   572   unsigned int  _collection_count_start;
   574   // Should we unload classes this concurrent cycle?
   575   bool _should_unload_classes;
   576   unsigned int  _concurrent_cycles_since_last_unload;
   577   unsigned int concurrent_cycles_since_last_unload() const {
   578     return _concurrent_cycles_since_last_unload;
   579   }
   580   // Did we (allow) unload classes in the previous concurrent cycle?
   581   bool unloaded_classes_last_cycle() const {
   582     return concurrent_cycles_since_last_unload() == 0;
   583   }
   584   // Root scanning options for perm gen
   585   int _roots_scanning_options;
   586   int roots_scanning_options() const      { return _roots_scanning_options; }
   587   void add_root_scanning_option(int o)    { _roots_scanning_options |= o;   }
   588   void remove_root_scanning_option(int o) { _roots_scanning_options &= ~o;  }
   590   // Verification support
   591   CMSBitMap     _verification_mark_bm;
   592   void verify_after_remark_work_1();
   593   void verify_after_remark_work_2();
   595   // true if any verification flag is on.
   596   bool _verifying;
   597   bool verifying() const { return _verifying; }
   598   void set_verifying(bool v) { _verifying = v; }
   600   // Collector policy
   601   ConcurrentMarkSweepPolicy* _collector_policy;
   602   ConcurrentMarkSweepPolicy* collector_policy() { return _collector_policy; }
   604   // XXX Move these to CMSStats ??? FIX ME !!!
   605   elapsedTimer _inter_sweep_timer;   // time between sweeps
   606   elapsedTimer _intra_sweep_timer;   // time _in_ sweeps
   607   // padded decaying average estimates of the above
   608   AdaptivePaddedAverage _inter_sweep_estimate;
   609   AdaptivePaddedAverage _intra_sweep_estimate;
   611  protected:
   612   ConcurrentMarkSweepGeneration* _cmsGen;  // old gen (CMS)
   613   ConcurrentMarkSweepGeneration* _permGen; // perm gen
   614   MemRegion                      _span;    // span covering above two
   615   CardTableRS*                   _ct;      // card table
   617   // CMS marking support structures
   618   CMSBitMap     _markBitMap;
   619   CMSBitMap     _modUnionTable;
   620   CMSMarkStack  _markStack;
   621   CMSMarkStack  _revisitStack;            // used to keep track of klassKlass objects
   622                                           // to revisit
   623   CMSBitMap     _perm_gen_verify_bit_map; // Mark bit map for perm gen verification support.
   625   HeapWord*     _restart_addr; // in support of marking stack overflow
   626   void          lower_restart_addr(HeapWord* low);
   628   // Counters in support of marking stack / work queue overflow handling:
   629   // a non-zero value indicates certain types of overflow events during
   630   // the current CMS cycle and could lead to stack resizing efforts at
   631   // an opportune future time.
   632   size_t        _ser_pmc_preclean_ovflw;
   633   size_t        _ser_pmc_remark_ovflw;
   634   size_t        _par_pmc_remark_ovflw;
   635   size_t        _ser_kac_preclean_ovflw;
   636   size_t        _ser_kac_ovflw;
   637   size_t        _par_kac_ovflw;
   638   NOT_PRODUCT(ssize_t _num_par_pushes;)
   640   // ("Weak") Reference processing support
   641   ReferenceProcessor*            _ref_processor;
   642   CMSIsAliveClosure              _is_alive_closure;
   643       // keep this textually after _markBitMap and _span; c'tor dependency
   645   ConcurrentMarkSweepThread*     _cmsThread;   // the thread doing the work
   646   ModUnionClosure    _modUnionClosure;
   647   ModUnionClosurePar _modUnionClosurePar;
   649   // CMS abstract state machine
   650   // initial_state: Idling
   651   // next_state(Idling)            = {Marking}
   652   // next_state(Marking)           = {Precleaning, Sweeping}
   653   // next_state(Precleaning)       = {AbortablePreclean, FinalMarking}
   654   // next_state(AbortablePreclean) = {FinalMarking}
   655   // next_state(FinalMarking)      = {Sweeping}
   656   // next_state(Sweeping)          = {Resizing}
   657   // next_state(Resizing)          = {Resetting}
   658   // next_state(Resetting)         = {Idling}
   659   // The numeric values below are chosen so that:
   660   // . _collectorState <= Idling ==  post-sweep && pre-mark
   661   // . _collectorState in (Idling, Sweeping) == {initial,final}marking ||
   662   //                                            precleaning || abortablePrecleanb
   663  public:
   664   enum CollectorState {
   665     Resizing            = 0,
   666     Resetting           = 1,
   667     Idling              = 2,
   668     InitialMarking      = 3,
   669     Marking             = 4,
   670     Precleaning         = 5,
   671     AbortablePreclean   = 6,
   672     FinalMarking        = 7,
   673     Sweeping            = 8
   674   };
   675  protected:
   676   static CollectorState _collectorState;
   678   // State related to prologue/epilogue invocation for my generations
   679   bool _between_prologue_and_epilogue;
   681   // Signalling/State related to coordination between fore- and backgroud GC
   682   // Note: When the baton has been passed from background GC to foreground GC,
   683   // _foregroundGCIsActive is true and _foregroundGCShouldWait is false.
   684   static bool _foregroundGCIsActive;    // true iff foreground collector is active or
   685                                  // wants to go active
   686   static bool _foregroundGCShouldWait;  // true iff background GC is active and has not
   687                                  // yet passed the baton to the foreground GC
   689   // Support for CMSScheduleRemark (abortable preclean)
   690   bool _abort_preclean;
   691   bool _start_sampling;
   693   int    _numYields;
   694   size_t _numDirtyCards;
   695   size_t _sweep_count;
   696   // number of full gc's since the last concurrent gc.
   697   uint   _full_gcs_since_conc_gc;
   699   // occupancy used for bootstrapping stats
   700   double _bootstrap_occupancy;
   702   // timer
   703   elapsedTimer _timer;
   705   // Timing, allocation and promotion statistics, used for scheduling.
   706   CMSStats      _stats;
   708   // Allocation limits installed in the young gen, used only in
   709   // CMSIncrementalMode.  When an allocation in the young gen would cross one of
   710   // these limits, the cms generation is notified and the cms thread is started
   711   // or stopped, respectively.
   712   HeapWord*     _icms_start_limit;
   713   HeapWord*     _icms_stop_limit;
   715   enum CMS_op_type {
   716     CMS_op_checkpointRootsInitial,
   717     CMS_op_checkpointRootsFinal
   718   };
   720   void do_CMS_operation(CMS_op_type op);
   721   bool stop_world_and_do(CMS_op_type op);
   723   OopTaskQueueSet* task_queues() { return _task_queues; }
   724   int*             hash_seed(int i) { return &_hash_seed[i]; }
   725   YieldingFlexibleWorkGang* conc_workers() { return _conc_workers; }
   727   // Support for parallelizing Eden rescan in CMS remark phase
   728   void sample_eden(); // ... sample Eden space top
   730  private:
   731   // Support for parallelizing young gen rescan in CMS remark phase
   732   Generation* _young_gen;  // the younger gen
   733   HeapWord** _top_addr;    // ... Top of Eden
   734   HeapWord** _end_addr;    // ... End of Eden
   735   HeapWord** _eden_chunk_array; // ... Eden partitioning array
   736   size_t     _eden_chunk_index; // ... top (exclusive) of array
   737   size_t     _eden_chunk_capacity;  // ... max entries in array
   739   // Support for parallelizing survivor space rescan
   740   HeapWord** _survivor_chunk_array;
   741   size_t     _survivor_chunk_index;
   742   size_t     _survivor_chunk_capacity;
   743   size_t*    _cursor;
   744   ChunkArray* _survivor_plab_array;
   746   // Support for marking stack overflow handling
   747   bool take_from_overflow_list(size_t num, CMSMarkStack* to_stack);
   748   bool par_take_from_overflow_list(size_t num,
   749                                    OopTaskQueue* to_work_q,
   750                                    int no_of_gc_threads);
   751   void push_on_overflow_list(oop p);
   752   void par_push_on_overflow_list(oop p);
   753   // the following is, obviously, not, in general, "MT-stable"
   754   bool overflow_list_is_empty() const;
   756   void preserve_mark_if_necessary(oop p);
   757   void par_preserve_mark_if_necessary(oop p);
   758   void preserve_mark_work(oop p, markOop m);
   759   void restore_preserved_marks_if_any();
   760   NOT_PRODUCT(bool no_preserved_marks() const;)
   761   // in support of testing overflow code
   762   NOT_PRODUCT(int _overflow_counter;)
   763   NOT_PRODUCT(bool simulate_overflow();)       // sequential
   764   NOT_PRODUCT(bool par_simulate_overflow();)   // MT version
   766   // CMS work methods
   767   void checkpointRootsInitialWork(bool asynch); // initial checkpoint work
   769   // a return value of false indicates failure due to stack overflow
   770   bool markFromRootsWork(bool asynch);  // concurrent marking work
   772  public:   // FIX ME!!! only for testing
   773   bool do_marking_st(bool asynch);      // single-threaded marking
   774   bool do_marking_mt(bool asynch);      // multi-threaded  marking
   776  private:
   778   // concurrent precleaning work
   779   size_t preclean_mod_union_table(ConcurrentMarkSweepGeneration* gen,
   780                                   ScanMarkedObjectsAgainCarefullyClosure* cl);
   781   size_t preclean_card_table(ConcurrentMarkSweepGeneration* gen,
   782                              ScanMarkedObjectsAgainCarefullyClosure* cl);
   783   // Does precleaning work, returning a quantity indicative of
   784   // the amount of "useful work" done.
   785   size_t preclean_work(bool clean_refs, bool clean_survivors);
   786   void abortable_preclean(); // Preclean while looking for possible abort
   787   void initialize_sequential_subtasks_for_young_gen_rescan(int i);
   788   // Helper function for above; merge-sorts the per-thread plab samples
   789   void merge_survivor_plab_arrays(ContiguousSpace* surv, int no_of_gc_threads);
   790   // Resets (i.e. clears) the per-thread plab sample vectors
   791   void reset_survivor_plab_arrays();
   793   // final (second) checkpoint work
   794   void checkpointRootsFinalWork(bool asynch, bool clear_all_soft_refs,
   795                                 bool init_mark_was_synchronous);
   796   // work routine for parallel version of remark
   797   void do_remark_parallel();
   798   // work routine for non-parallel version of remark
   799   void do_remark_non_parallel();
   800   // reference processing work routine (during second checkpoint)
   801   void refProcessingWork(bool asynch, bool clear_all_soft_refs);
   803   // concurrent sweeping work
   804   void sweepWork(ConcurrentMarkSweepGeneration* gen, bool asynch);
   806   // (concurrent) resetting of support data structures
   807   void reset(bool asynch);
   809   // Clear _expansion_cause fields of constituent generations
   810   void clear_expansion_cause();
   812   // An auxilliary method used to record the ends of
   813   // used regions of each generation to limit the extent of sweep
   814   void save_sweep_limits();
   816   // Resize the generations included in the collector.
   817   void compute_new_size();
   819   // A work method used by foreground collection to determine
   820   // what type of collection (compacting or not, continuing or fresh)
   821   // it should do.
   822   void decide_foreground_collection_type(bool clear_all_soft_refs,
   823     bool* should_compact, bool* should_start_over);
   825   // A work method used by the foreground collector to do
   826   // a mark-sweep-compact.
   827   void do_compaction_work(bool clear_all_soft_refs);
   829   // A work method used by the foreground collector to do
   830   // a mark-sweep, after taking over from a possibly on-going
   831   // concurrent mark-sweep collection.
   832   void do_mark_sweep_work(bool clear_all_soft_refs,
   833     CollectorState first_state, bool should_start_over);
   835   // If the backgrould GC is active, acquire control from the background
   836   // GC and do the collection.
   837   void acquire_control_and_collect(bool   full, bool clear_all_soft_refs);
   839   // For synchronizing passing of control from background to foreground
   840   // GC.  waitForForegroundGC() is called by the background
   841   // collector.  It if had to wait for a foreground collection,
   842   // it returns true and the background collection should assume
   843   // that the collection was finished by the foreground
   844   // collector.
   845   bool waitForForegroundGC();
   847   // Incremental mode triggering:  recompute the icms duty cycle and set the
   848   // allocation limits in the young gen.
   849   void icms_update_allocation_limits();
   851   size_t block_size_using_printezis_bits(HeapWord* addr) const;
   852   size_t block_size_if_printezis_bits(HeapWord* addr) const;
   853   HeapWord* next_card_start_after_block(HeapWord* addr) const;
   855   void setup_cms_unloading_and_verification_state();
   856  public:
   857   CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
   858                ConcurrentMarkSweepGeneration* permGen,
   859                CardTableRS*                   ct,
   860                ConcurrentMarkSweepPolicy*     cp);
   861   ConcurrentMarkSweepThread* cmsThread() { return _cmsThread; }
   863   ReferenceProcessor* ref_processor() { return _ref_processor; }
   864   void ref_processor_init();
   866   Mutex* bitMapLock()        const { return _markBitMap.lock();    }
   867   static CollectorState abstract_state() { return _collectorState;  }
   869   bool should_abort_preclean() const; // Whether preclean should be aborted.
   870   size_t get_eden_used() const;
   871   size_t get_eden_capacity() const;
   873   ConcurrentMarkSweepGeneration* cmsGen() { return _cmsGen; }
   875   // locking checks
   876   NOT_PRODUCT(static bool have_cms_token();)
   878   // XXXPERM bool should_collect(bool full, size_t size, bool tlab);
   879   bool shouldConcurrentCollect();
   881   void collect(bool   full,
   882                bool   clear_all_soft_refs,
   883                size_t size,
   884                bool   tlab);
   885   void collect_in_background(bool clear_all_soft_refs);
   886   void collect_in_foreground(bool clear_all_soft_refs);
   888   // In support of ExplicitGCInvokesConcurrent
   889   static void request_full_gc(unsigned int full_gc_count);
   890   // Should we unload classes in a particular concurrent cycle?
   891   bool should_unload_classes() const {
   892     return _should_unload_classes;
   893   }
   894   bool update_should_unload_classes();
   896   void direct_allocated(HeapWord* start, size_t size);
   898   // Object is dead if not marked and current phase is sweeping.
   899   bool is_dead_obj(oop obj) const;
   901   // After a promotion (of "start"), do any necessary marking.
   902   // If "par", then it's being done by a parallel GC thread.
   903   // The last two args indicate if we need precise marking
   904   // and if so the size of the object so it can be dirtied
   905   // in its entirety.
   906   void promoted(bool par, HeapWord* start,
   907                 bool is_obj_array, size_t obj_size);
   909   HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
   910                                      size_t word_size);
   912   void getFreelistLocks() const;
   913   void releaseFreelistLocks() const;
   914   bool haveFreelistLocks() const;
   916   // GC prologue and epilogue
   917   void gc_prologue(bool full);
   918   void gc_epilogue(bool full);
   920   jlong time_of_last_gc(jlong now) {
   921     if (_collectorState <= Idling) {
   922       // gc not in progress
   923       return _time_of_last_gc;
   924     } else {
   925       // collection in progress
   926       return now;
   927     }
   928   }
   930   // Support for parallel remark of survivor space
   931   void* get_data_recorder(int thr_num);
   933   CMSBitMap* markBitMap()  { return &_markBitMap; }
   934   void directAllocated(HeapWord* start, size_t size);
   936   // main CMS steps and related support
   937   void checkpointRootsInitial(bool asynch);
   938   bool markFromRoots(bool asynch);  // a return value of false indicates failure
   939                                     // due to stack overflow
   940   void preclean();
   941   void checkpointRootsFinal(bool asynch, bool clear_all_soft_refs,
   942                             bool init_mark_was_synchronous);
   943   void sweep(bool asynch);
   945   // Check that the currently executing thread is the expected
   946   // one (foreground collector or background collector).
   947   static void check_correct_thread_executing() PRODUCT_RETURN;
   948   // XXXPERM void print_statistics()           PRODUCT_RETURN;
   950   bool is_cms_reachable(HeapWord* addr);
   952   // Performance Counter Support
   953   CollectorCounters* counters()    { return _gc_counters; }
   955   // timer stuff
   956   void    startTimer() { assert(!_timer.is_active(), "Error"); _timer.start();   }
   957   void    stopTimer()  { assert( _timer.is_active(), "Error"); _timer.stop();    }
   958   void    resetTimer() { assert(!_timer.is_active(), "Error"); _timer.reset();   }
   959   double  timerValue() { assert(!_timer.is_active(), "Error"); return _timer.seconds(); }
   961   int  yields()          { return _numYields; }
   962   void resetYields()     { _numYields = 0;    }
   963   void incrementYields() { _numYields++;      }
   964   void resetNumDirtyCards()               { _numDirtyCards = 0; }
   965   void incrementNumDirtyCards(size_t num) { _numDirtyCards += num; }
   966   size_t  numDirtyCards()                 { return _numDirtyCards; }
   968   static bool foregroundGCShouldWait() { return _foregroundGCShouldWait; }
   969   static void set_foregroundGCShouldWait(bool v) { _foregroundGCShouldWait = v; }
   970   static bool foregroundGCIsActive() { return _foregroundGCIsActive; }
   971   static void set_foregroundGCIsActive(bool v) { _foregroundGCIsActive = v; }
   972   size_t sweep_count() const             { return _sweep_count; }
   973   void   increment_sweep_count()         { _sweep_count++; }
   975   // Timers/stats for gc scheduling and incremental mode pacing.
   976   CMSStats& stats() { return _stats; }
   978   // Convenience methods that check whether CMSIncrementalMode is enabled and
   979   // forward to the corresponding methods in ConcurrentMarkSweepThread.
   980   static void start_icms();
   981   static void stop_icms();    // Called at the end of the cms cycle.
   982   static void disable_icms(); // Called before a foreground collection.
   983   static void enable_icms();  // Called after a foreground collection.
   984   void icms_wait();          // Called at yield points.
   986   // Adaptive size policy
   987   CMSAdaptiveSizePolicy* size_policy();
   988   CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
   990   // debugging
   991   void verify(bool);
   992   bool verify_after_remark();
   993   void verify_ok_to_terminate() const PRODUCT_RETURN;
   994   void verify_work_stacks_empty() const PRODUCT_RETURN;
   995   void verify_overflow_empty() const PRODUCT_RETURN;
   997   // convenience methods in support of debugging
   998   static const size_t skip_header_HeapWords() PRODUCT_RETURN0;
   999   HeapWord* block_start(const void* p) const PRODUCT_RETURN0;
  1001   // accessors
  1002   CMSMarkStack* verification_mark_stack() { return &_markStack; }
  1003   CMSBitMap*    verification_mark_bm()    { return &_verification_mark_bm; }
  1005   // Get the bit map with a perm gen "deadness" information.
  1006   CMSBitMap* perm_gen_verify_bit_map()       { return &_perm_gen_verify_bit_map; }
  1008   // Initialization errors
  1009   bool completed_initialization() { return _completed_initialization; }
  1010 };
  1012 class CMSExpansionCause : public AllStatic  {
  1013  public:
  1014   enum Cause {
  1015     _no_expansion,
  1016     _satisfy_free_ratio,
  1017     _satisfy_promotion,
  1018     _satisfy_allocation,
  1019     _allocate_par_lab,
  1020     _allocate_par_spooling_space,
  1021     _adaptive_size_policy
  1022   };
  1023   // Return a string describing the cause of the expansion.
  1024   static const char* to_string(CMSExpansionCause::Cause cause);
  1025 };
  1027 class ConcurrentMarkSweepGeneration: public CardGeneration {
  1028   friend class VMStructs;
  1029   friend class ConcurrentMarkSweepThread;
  1030   friend class ConcurrentMarkSweep;
  1031   friend class CMSCollector;
  1032  protected:
  1033   static CMSCollector*       _collector; // the collector that collects us
  1034   CompactibleFreeListSpace*  _cmsSpace;  // underlying space (only one for now)
  1036   // Performance Counters
  1037   GenerationCounters*      _gen_counters;
  1038   GSpaceCounters*          _space_counters;
  1040   // Words directly allocated, used by CMSStats.
  1041   size_t _direct_allocated_words;
  1043   // Non-product stat counters
  1044   NOT_PRODUCT(
  1045     size_t _numObjectsPromoted;
  1046     size_t _numWordsPromoted;
  1047     size_t _numObjectsAllocated;
  1048     size_t _numWordsAllocated;
  1051   // Used for sizing decisions
  1052   bool _incremental_collection_failed;
  1053   bool incremental_collection_failed() {
  1054     return _incremental_collection_failed;
  1056   void set_incremental_collection_failed() {
  1057     _incremental_collection_failed = true;
  1059   void clear_incremental_collection_failed() {
  1060     _incremental_collection_failed = false;
  1063   // accessors
  1064   void set_expansion_cause(CMSExpansionCause::Cause v) { _expansion_cause = v;}
  1065   CMSExpansionCause::Cause expansion_cause() const { return _expansion_cause; }
  1067  private:
  1068   // For parallel young-gen GC support.
  1069   CMSParGCThreadState** _par_gc_thread_states;
  1071   // Reason generation was expanded
  1072   CMSExpansionCause::Cause _expansion_cause;
  1074   // In support of MinChunkSize being larger than min object size
  1075   const double _dilatation_factor;
  1077   enum CollectionTypes {
  1078     Concurrent_collection_type          = 0,
  1079     MS_foreground_collection_type       = 1,
  1080     MSC_foreground_collection_type      = 2,
  1081     Unknown_collection_type             = 3
  1082   };
  1084   CollectionTypes _debug_collection_type;
  1086   // Fraction of current occupancy at which to start a CMS collection which
  1087   // will collect this generation (at least).
  1088   double _initiating_occupancy;
  1090  protected:
  1091   // Shrink generation by specified size (returns false if unable to shrink)
  1092   virtual void shrink_by(size_t bytes);
  1094   // Update statistics for GC
  1095   virtual void update_gc_stats(int level, bool full);
  1097   // Maximum available space in the generation (including uncommitted)
  1098   // space.
  1099   size_t max_available() const;
  1101   // getter and initializer for _initiating_occupancy field.
  1102   double initiating_occupancy() const { return _initiating_occupancy; }
  1103   void   init_initiating_occupancy(intx io, intx tr);
  1105  public:
  1106   ConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
  1107                                 int level, CardTableRS* ct,
  1108                                 bool use_adaptive_freelists,
  1109                                 FreeBlockDictionary::DictionaryChoice);
  1111   // Accessors
  1112   CMSCollector* collector() const { return _collector; }
  1113   static void set_collector(CMSCollector* collector) {
  1114     assert(_collector == NULL, "already set");
  1115     _collector = collector;
  1117   CompactibleFreeListSpace*  cmsSpace() const { return _cmsSpace;  }
  1119   Mutex* freelistLock() const;
  1121   virtual Generation::Name kind() { return Generation::ConcurrentMarkSweep; }
  1123   // Adaptive size policy
  1124   CMSAdaptiveSizePolicy* size_policy();
  1126   bool refs_discovery_is_atomic() const { return false; }
  1127   bool refs_discovery_is_mt()     const {
  1128     // Note: CMS does MT-discovery during the parallel-remark
  1129     // phases. Use ReferenceProcessorMTMutator to make refs
  1130     // discovery MT-safe during such phases or other parallel
  1131     // discovery phases in the future. This may all go away
  1132     // if/when we decide that refs discovery is sufficiently
  1133     // rare that the cost of the CAS's involved is in the
  1134     // noise. That's a measurement that should be done, and
  1135     // the code simplified if that turns out to be the case.
  1136     return false;
  1139   // Override
  1140   virtual void ref_processor_init();
  1142   // Grow generation by specified size (returns false if unable to grow)
  1143   bool grow_by(size_t bytes);
  1144   // Grow generation to reserved size.
  1145   bool grow_to_reserved();
  1147   void clear_expansion_cause() { _expansion_cause = CMSExpansionCause::_no_expansion; }
  1149   // Space enquiries
  1150   size_t capacity() const;
  1151   size_t used() const;
  1152   size_t free() const;
  1153   double occupancy() const { return ((double)used())/((double)capacity()); }
  1154   size_t contiguous_available() const;
  1155   size_t unsafe_max_alloc_nogc() const;
  1157   // over-rides
  1158   MemRegion used_region() const;
  1159   MemRegion used_region_at_save_marks() const;
  1161   // Does a "full" (forced) collection invoked on this generation collect
  1162   // all younger generations as well? Note that the second conjunct is a
  1163   // hack to allow the collection of the younger gen first if the flag is
  1164   // set. This is better than using th policy's should_collect_gen0_first()
  1165   // since that causes us to do an extra unnecessary pair of restart-&-stop-world.
  1166   virtual bool full_collects_younger_generations() const {
  1167     return UseCMSCompactAtFullCollection && !CollectGen0First;
  1170   void space_iterate(SpaceClosure* blk, bool usedOnly = false);
  1172   // Support for compaction
  1173   CompactibleSpace* first_compaction_space() const;
  1174   // Adjust quantites in the generation affected by
  1175   // the compaction.
  1176   void reset_after_compaction();
  1178   // Allocation support
  1179   HeapWord* allocate(size_t size, bool tlab);
  1180   HeapWord* have_lock_and_allocate(size_t size, bool tlab);
  1181   oop       promote(oop obj, size_t obj_size);
  1182   HeapWord* par_allocate(size_t size, bool tlab) {
  1183     return allocate(size, tlab);
  1186   // Incremental mode triggering.
  1187   HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
  1188                                      size_t word_size);
  1190   // Used by CMSStats to track direct allocation.  The value is sampled and
  1191   // reset after each young gen collection.
  1192   size_t direct_allocated_words() const { return _direct_allocated_words; }
  1193   void reset_direct_allocated_words()   { _direct_allocated_words = 0; }
  1195   // Overrides for parallel promotion.
  1196   virtual oop par_promote(int thread_num,
  1197                           oop obj, markOop m, size_t word_sz);
  1198   // This one should not be called for CMS.
  1199   virtual void par_promote_alloc_undo(int thread_num,
  1200                                       HeapWord* obj, size_t word_sz);
  1201   virtual void par_promote_alloc_done(int thread_num);
  1202   virtual void par_oop_since_save_marks_iterate_done(int thread_num);
  1204   virtual bool promotion_attempt_is_safe(size_t promotion_in_bytes) const;
  1206   // Inform this (non-young) generation that a promotion failure was
  1207   // encountered during a collection of a younger generation that
  1208   // promotes into this generation.
  1209   virtual void promotion_failure_occurred();
  1211   bool should_collect(bool full, size_t size, bool tlab);
  1212   virtual bool should_concurrent_collect() const;
  1213   virtual bool is_too_full() const;
  1214   void collect(bool   full,
  1215                bool   clear_all_soft_refs,
  1216                size_t size,
  1217                bool   tlab);
  1219   HeapWord* expand_and_allocate(size_t word_size,
  1220                                 bool tlab,
  1221                                 bool parallel = false);
  1223   // GC prologue and epilogue
  1224   void gc_prologue(bool full);
  1225   void gc_prologue_work(bool full, bool registerClosure,
  1226                         ModUnionClosure* modUnionClosure);
  1227   void gc_epilogue(bool full);
  1228   void gc_epilogue_work(bool full);
  1230   // Time since last GC of this generation
  1231   jlong time_of_last_gc(jlong now) {
  1232     return collector()->time_of_last_gc(now);
  1234   void update_time_of_last_gc(jlong now) {
  1235     collector()-> update_time_of_last_gc(now);
  1238   // Allocation failure
  1239   void expand(size_t bytes, size_t expand_bytes,
  1240     CMSExpansionCause::Cause cause);
  1241   virtual bool expand(size_t bytes, size_t expand_bytes);
  1242   void shrink(size_t bytes);
  1243   HeapWord* expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz);
  1244   bool expand_and_ensure_spooling_space(PromotionInfo* promo);
  1246   // Iteration support and related enquiries
  1247   void save_marks();
  1248   bool no_allocs_since_save_marks();
  1249   void object_iterate_since_last_GC(ObjectClosure* cl);
  1250   void younger_refs_iterate(OopsInGenClosure* cl);
  1252   // Iteration support specific to CMS generations
  1253   void save_sweep_limit();
  1255   // More iteration support
  1256   virtual void oop_iterate(MemRegion mr, OopClosure* cl);
  1257   virtual void oop_iterate(OopClosure* cl);
  1258   virtual void safe_object_iterate(ObjectClosure* cl);
  1259   virtual void object_iterate(ObjectClosure* cl);
  1261   // Need to declare the full complement of closures, whether we'll
  1262   // override them or not, or get message from the compiler:
  1263   //   oop_since_save_marks_iterate_nv hides virtual function...
  1264   #define CMS_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
  1265     void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
  1266   ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DECL)
  1268   // Smart allocation  XXX -- move to CFLSpace?
  1269   void setNearLargestChunk();
  1270   bool isNearLargestChunk(HeapWord* addr);
  1272   // Get the chunk at the end of the space.  Delagates to
  1273   // the space.
  1274   FreeChunk* find_chunk_at_end();
  1276   // Overriding of unused functionality (sharing not yet supported with CMS)
  1277   void pre_adjust_pointers();
  1278   void post_compact();
  1280   // Debugging
  1281   void prepare_for_verify();
  1282   void verify(bool allow_dirty);
  1283   void print_statistics()               PRODUCT_RETURN;
  1285   // Performance Counters support
  1286   virtual void update_counters();
  1287   virtual void update_counters(size_t used);
  1288   void initialize_performance_counters();
  1289   CollectorCounters* counters()  { return collector()->counters(); }
  1291   // Support for parallel remark of survivor space
  1292   void* get_data_recorder(int thr_num) {
  1293     //Delegate to collector
  1294     return collector()->get_data_recorder(thr_num);
  1297   // Printing
  1298   const char* name() const;
  1299   virtual const char* short_name() const { return "CMS"; }
  1300   void        print() const;
  1301   void printOccupancy(const char* s);
  1302   bool must_be_youngest() const { return false; }
  1303   bool must_be_oldest()   const { return true; }
  1305   void compute_new_size();
  1307   CollectionTypes debug_collection_type() { return _debug_collection_type; }
  1308   void rotate_debug_collection_type();
  1309 };
  1311 class ASConcurrentMarkSweepGeneration : public ConcurrentMarkSweepGeneration {
  1313   // Return the size policy from the heap's collector
  1314   // policy casted to CMSAdaptiveSizePolicy*.
  1315   CMSAdaptiveSizePolicy* cms_size_policy() const;
  1317   // Resize the generation based on the adaptive size
  1318   // policy.
  1319   void resize(size_t cur_promo, size_t desired_promo);
  1321   // Return the GC counters from the collector policy
  1322   CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
  1324   virtual void shrink_by(size_t bytes);
  1326  public:
  1327   virtual void compute_new_size();
  1328   ASConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
  1329                                   int level, CardTableRS* ct,
  1330                                   bool use_adaptive_freelists,
  1331                                   FreeBlockDictionary::DictionaryChoice
  1332                                     dictionaryChoice) :
  1333     ConcurrentMarkSweepGeneration(rs, initial_byte_size, level, ct,
  1334       use_adaptive_freelists, dictionaryChoice) {}
  1336   virtual const char* short_name() const { return "ASCMS"; }
  1337   virtual Generation::Name kind() { return Generation::ASConcurrentMarkSweep; }
  1339   virtual void update_counters();
  1340   virtual void update_counters(size_t used);
  1341 };
  1343 //
  1344 // Closures of various sorts used by CMS to accomplish its work
  1345 //
  1347 // This closure is used to check that a certain set of oops is empty.
  1348 class FalseClosure: public OopClosure {
  1349  public:
  1350   void do_oop(oop* p)       { guarantee(false, "Should be an empty set"); }
  1351   void do_oop(narrowOop* p) { guarantee(false, "Should be an empty set"); }
  1352 };
  1354 // This closure is used to do concurrent marking from the roots
  1355 // following the first checkpoint.
  1356 class MarkFromRootsClosure: public BitMapClosure {
  1357   CMSCollector*  _collector;
  1358   MemRegion      _span;
  1359   CMSBitMap*     _bitMap;
  1360   CMSBitMap*     _mut;
  1361   CMSMarkStack*  _markStack;
  1362   CMSMarkStack*  _revisitStack;
  1363   bool           _yield;
  1364   int            _skipBits;
  1365   HeapWord*      _finger;
  1366   HeapWord*      _threshold;
  1367   DEBUG_ONLY(bool _verifying;)
  1369  public:
  1370   MarkFromRootsClosure(CMSCollector* collector, MemRegion span,
  1371                        CMSBitMap* bitMap,
  1372                        CMSMarkStack*  markStack,
  1373                        CMSMarkStack*  revisitStack,
  1374                        bool should_yield, bool verifying = false);
  1375   bool do_bit(size_t offset);
  1376   void reset(HeapWord* addr);
  1377   inline void do_yield_check();
  1379  private:
  1380   void scanOopsInOop(HeapWord* ptr);
  1381   void do_yield_work();
  1382 };
  1384 // This closure is used to do concurrent multi-threaded
  1385 // marking from the roots following the first checkpoint.
  1386 // XXX This should really be a subclass of The serial version
  1387 // above, but i have not had the time to refactor things cleanly.
  1388 // That willbe done for Dolphin.
  1389 class Par_MarkFromRootsClosure: public BitMapClosure {
  1390   CMSCollector*  _collector;
  1391   MemRegion      _whole_span;
  1392   MemRegion      _span;
  1393   CMSBitMap*     _bit_map;
  1394   CMSBitMap*     _mut;
  1395   OopTaskQueue*  _work_queue;
  1396   CMSMarkStack*  _overflow_stack;
  1397   CMSMarkStack*  _revisit_stack;
  1398   bool           _yield;
  1399   int            _skip_bits;
  1400   HeapWord*      _finger;
  1401   HeapWord*      _threshold;
  1402   CMSConcMarkingTask* _task;
  1403  public:
  1404   Par_MarkFromRootsClosure(CMSConcMarkingTask* task, CMSCollector* collector,
  1405                        MemRegion span,
  1406                        CMSBitMap* bit_map,
  1407                        OopTaskQueue* work_queue,
  1408                        CMSMarkStack*  overflow_stack,
  1409                        CMSMarkStack*  revisit_stack,
  1410                        bool should_yield);
  1411   bool do_bit(size_t offset);
  1412   inline void do_yield_check();
  1414  private:
  1415   void scan_oops_in_oop(HeapWord* ptr);
  1416   void do_yield_work();
  1417   bool get_work_from_overflow_stack();
  1418 };
  1420 // The following closures are used to do certain kinds of verification of
  1421 // CMS marking.
  1422 class PushAndMarkVerifyClosure: public OopClosure {
  1423   CMSCollector*    _collector;
  1424   MemRegion        _span;
  1425   CMSBitMap*       _verification_bm;
  1426   CMSBitMap*       _cms_bm;
  1427   CMSMarkStack*    _mark_stack;
  1428  protected:
  1429   void do_oop(oop p);
  1430   template <class T> inline void do_oop_work(T *p) {
  1431     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
  1432     do_oop(obj);
  1434  public:
  1435   PushAndMarkVerifyClosure(CMSCollector* cms_collector,
  1436                            MemRegion span,
  1437                            CMSBitMap* verification_bm,
  1438                            CMSBitMap* cms_bm,
  1439                            CMSMarkStack*  mark_stack);
  1440   void do_oop(oop* p);
  1441   void do_oop(narrowOop* p);
  1442   // Deal with a stack overflow condition
  1443   void handle_stack_overflow(HeapWord* lost);
  1444 };
  1446 class MarkFromRootsVerifyClosure: public BitMapClosure {
  1447   CMSCollector*  _collector;
  1448   MemRegion      _span;
  1449   CMSBitMap*     _verification_bm;
  1450   CMSBitMap*     _cms_bm;
  1451   CMSMarkStack*  _mark_stack;
  1452   HeapWord*      _finger;
  1453   PushAndMarkVerifyClosure _pam_verify_closure;
  1454  public:
  1455   MarkFromRootsVerifyClosure(CMSCollector* collector, MemRegion span,
  1456                              CMSBitMap* verification_bm,
  1457                              CMSBitMap* cms_bm,
  1458                              CMSMarkStack*  mark_stack);
  1459   bool do_bit(size_t offset);
  1460   void reset(HeapWord* addr);
  1461 };
  1464 // This closure is used to check that a certain set of bits is
  1465 // "empty" (i.e. the bit vector doesn't have any 1-bits).
  1466 class FalseBitMapClosure: public BitMapClosure {
  1467  public:
  1468   bool do_bit(size_t offset) {
  1469     guarantee(false, "Should not have a 1 bit");
  1470     return true;
  1472 };
  1474 // This closure is used during the second checkpointing phase
  1475 // to rescan the marked objects on the dirty cards in the mod
  1476 // union table and the card table proper. It's invoked via
  1477 // MarkFromDirtyCardsClosure below. It uses either
  1478 // [Par_]MarkRefsIntoAndScanClosure (Par_ in the parallel case)
  1479 // declared in genOopClosures.hpp to accomplish some of its work.
  1480 // In the parallel case the bitMap is shared, so access to
  1481 // it needs to be suitably synchronized for updates by embedded
  1482 // closures that update it; however, this closure itself only
  1483 // reads the bit_map and because it is idempotent, is immune to
  1484 // reading stale values.
  1485 class ScanMarkedObjectsAgainClosure: public UpwardsObjectClosure {
  1486   #ifdef ASSERT
  1487     CMSCollector*          _collector;
  1488     MemRegion              _span;
  1489     union {
  1490       CMSMarkStack*        _mark_stack;
  1491       OopTaskQueue*        _work_queue;
  1492     };
  1493   #endif // ASSERT
  1494   bool                       _parallel;
  1495   CMSBitMap*                 _bit_map;
  1496   union {
  1497     MarkRefsIntoAndScanClosure*     _scan_closure;
  1498     Par_MarkRefsIntoAndScanClosure* _par_scan_closure;
  1499   };
  1501  public:
  1502   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
  1503                                 MemRegion span,
  1504                                 ReferenceProcessor* rp,
  1505                                 CMSBitMap* bit_map,
  1506                                 CMSMarkStack*  mark_stack,
  1507                                 CMSMarkStack*  revisit_stack,
  1508                                 MarkRefsIntoAndScanClosure* cl):
  1509     #ifdef ASSERT
  1510       _collector(collector),
  1511       _span(span),
  1512       _mark_stack(mark_stack),
  1513     #endif // ASSERT
  1514     _parallel(false),
  1515     _bit_map(bit_map),
  1516     _scan_closure(cl) { }
  1518   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
  1519                                 MemRegion span,
  1520                                 ReferenceProcessor* rp,
  1521                                 CMSBitMap* bit_map,
  1522                                 OopTaskQueue* work_queue,
  1523                                 CMSMarkStack* revisit_stack,
  1524                                 Par_MarkRefsIntoAndScanClosure* cl):
  1525     #ifdef ASSERT
  1526       _collector(collector),
  1527       _span(span),
  1528       _work_queue(work_queue),
  1529     #endif // ASSERT
  1530     _parallel(true),
  1531     _bit_map(bit_map),
  1532     _par_scan_closure(cl) { }
  1534   void do_object(oop obj) {
  1535     guarantee(false, "Call do_object_b(oop, MemRegion) instead");
  1537   bool do_object_b(oop obj) {
  1538     guarantee(false, "Call do_object_b(oop, MemRegion) form instead");
  1539     return false;
  1541   bool do_object_bm(oop p, MemRegion mr);
  1542 };
  1544 // This closure is used during the second checkpointing phase
  1545 // to rescan the marked objects on the dirty cards in the mod
  1546 // union table and the card table proper. It invokes
  1547 // ScanMarkedObjectsAgainClosure above to accomplish much of its work.
  1548 // In the parallel case, the bit map is shared and requires
  1549 // synchronized access.
  1550 class MarkFromDirtyCardsClosure: public MemRegionClosure {
  1551   CompactibleFreeListSpace*      _space;
  1552   ScanMarkedObjectsAgainClosure  _scan_cl;
  1553   size_t                         _num_dirty_cards;
  1555  public:
  1556   MarkFromDirtyCardsClosure(CMSCollector* collector,
  1557                             MemRegion span,
  1558                             CompactibleFreeListSpace* space,
  1559                             CMSBitMap* bit_map,
  1560                             CMSMarkStack* mark_stack,
  1561                             CMSMarkStack* revisit_stack,
  1562                             MarkRefsIntoAndScanClosure* cl):
  1563     _space(space),
  1564     _num_dirty_cards(0),
  1565     _scan_cl(collector, span, collector->ref_processor(), bit_map,
  1566                  mark_stack, revisit_stack, cl) { }
  1568   MarkFromDirtyCardsClosure(CMSCollector* collector,
  1569                             MemRegion span,
  1570                             CompactibleFreeListSpace* space,
  1571                             CMSBitMap* bit_map,
  1572                             OopTaskQueue* work_queue,
  1573                             CMSMarkStack* revisit_stack,
  1574                             Par_MarkRefsIntoAndScanClosure* cl):
  1575     _space(space),
  1576     _num_dirty_cards(0),
  1577     _scan_cl(collector, span, collector->ref_processor(), bit_map,
  1578              work_queue, revisit_stack, cl) { }
  1580   void do_MemRegion(MemRegion mr);
  1581   void set_space(CompactibleFreeListSpace* space) { _space = space; }
  1582   size_t num_dirty_cards() { return _num_dirty_cards; }
  1583 };
  1585 // This closure is used in the non-product build to check
  1586 // that there are no MemRegions with a certain property.
  1587 class FalseMemRegionClosure: public MemRegionClosure {
  1588   void do_MemRegion(MemRegion mr) {
  1589     guarantee(!mr.is_empty(), "Shouldn't be empty");
  1590     guarantee(false, "Should never be here");
  1592 };
  1594 // This closure is used during the precleaning phase
  1595 // to "carefully" rescan marked objects on dirty cards.
  1596 // It uses MarkRefsIntoAndScanClosure declared in genOopClosures.hpp
  1597 // to accomplish some of its work.
  1598 class ScanMarkedObjectsAgainCarefullyClosure: public ObjectClosureCareful {
  1599   CMSCollector*                  _collector;
  1600   MemRegion                      _span;
  1601   bool                           _yield;
  1602   Mutex*                         _freelistLock;
  1603   CMSBitMap*                     _bitMap;
  1604   CMSMarkStack*                  _markStack;
  1605   MarkRefsIntoAndScanClosure*    _scanningClosure;
  1607  public:
  1608   ScanMarkedObjectsAgainCarefullyClosure(CMSCollector* collector,
  1609                                          MemRegion     span,
  1610                                          CMSBitMap* bitMap,
  1611                                          CMSMarkStack*  markStack,
  1612                                          CMSMarkStack*  revisitStack,
  1613                                          MarkRefsIntoAndScanClosure* cl,
  1614                                          bool should_yield):
  1615     _collector(collector),
  1616     _span(span),
  1617     _yield(should_yield),
  1618     _bitMap(bitMap),
  1619     _markStack(markStack),
  1620     _scanningClosure(cl) {
  1623   void do_object(oop p) {
  1624     guarantee(false, "call do_object_careful instead");
  1627   size_t      do_object_careful(oop p) {
  1628     guarantee(false, "Unexpected caller");
  1629     return 0;
  1632   size_t      do_object_careful_m(oop p, MemRegion mr);
  1634   void setFreelistLock(Mutex* m) {
  1635     _freelistLock = m;
  1636     _scanningClosure->set_freelistLock(m);
  1639  private:
  1640   inline bool do_yield_check();
  1642   void do_yield_work();
  1643 };
  1645 class SurvivorSpacePrecleanClosure: public ObjectClosureCareful {
  1646   CMSCollector*                  _collector;
  1647   MemRegion                      _span;
  1648   bool                           _yield;
  1649   CMSBitMap*                     _bit_map;
  1650   CMSMarkStack*                  _mark_stack;
  1651   PushAndMarkClosure*            _scanning_closure;
  1652   unsigned int                   _before_count;
  1654  public:
  1655   SurvivorSpacePrecleanClosure(CMSCollector* collector,
  1656                                MemRegion     span,
  1657                                CMSBitMap*    bit_map,
  1658                                CMSMarkStack* mark_stack,
  1659                                PushAndMarkClosure* cl,
  1660                                unsigned int  before_count,
  1661                                bool          should_yield):
  1662     _collector(collector),
  1663     _span(span),
  1664     _yield(should_yield),
  1665     _bit_map(bit_map),
  1666     _mark_stack(mark_stack),
  1667     _scanning_closure(cl),
  1668     _before_count(before_count)
  1669   { }
  1671   void do_object(oop p) {
  1672     guarantee(false, "call do_object_careful instead");
  1675   size_t      do_object_careful(oop p);
  1677   size_t      do_object_careful_m(oop p, MemRegion mr) {
  1678     guarantee(false, "Unexpected caller");
  1679     return 0;
  1682  private:
  1683   inline void do_yield_check();
  1684   void do_yield_work();
  1685 };
  1687 // This closure is used to accomplish the sweeping work
  1688 // after the second checkpoint but before the concurrent reset
  1689 // phase.
  1690 //
  1691 // Terminology
  1692 //   left hand chunk (LHC) - block of one or more chunks currently being
  1693 //     coalesced.  The LHC is available for coalescing with a new chunk.
  1694 //   right hand chunk (RHC) - block that is currently being swept that is
  1695 //     free or garbage that can be coalesced with the LHC.
  1696 // _inFreeRange is true if there is currently a LHC
  1697 // _lastFreeRangeCoalesced is true if the LHC consists of more than one chunk.
  1698 // _freeRangeInFreeLists is true if the LHC is in the free lists.
  1699 // _freeFinger is the address of the current LHC
  1700 class SweepClosure: public BlkClosureCareful {
  1701   CMSCollector*                  _collector;  // collector doing the work
  1702   ConcurrentMarkSweepGeneration* _g;    // Generation being swept
  1703   CompactibleFreeListSpace*      _sp;   // Space being swept
  1704   HeapWord*                      _limit;
  1705   Mutex*                         _freelistLock; // Free list lock (in space)
  1706   CMSBitMap*                     _bitMap;       // Marking bit map (in
  1707                                                 // generation)
  1708   bool                           _inFreeRange;  // Indicates if we are in the
  1709                                                 // midst of a free run
  1710   bool                           _freeRangeInFreeLists;
  1711                                         // Often, we have just found
  1712                                         // a free chunk and started
  1713                                         // a new free range; we do not
  1714                                         // eagerly remove this chunk from
  1715                                         // the free lists unless there is
  1716                                         // a possibility of coalescing.
  1717                                         // When true, this flag indicates
  1718                                         // that the _freeFinger below
  1719                                         // points to a potentially free chunk
  1720                                         // that may still be in the free lists
  1721   bool                           _lastFreeRangeCoalesced;
  1722                                         // free range contains chunks
  1723                                         // coalesced
  1724   bool                           _yield;
  1725                                         // Whether sweeping should be
  1726                                         // done with yields. For instance
  1727                                         // when done by the foreground
  1728                                         // collector we shouldn't yield.
  1729   HeapWord*                      _freeFinger;   // When _inFreeRange is set, the
  1730                                                 // pointer to the "left hand
  1731                                                 // chunk"
  1732   size_t                         _freeRangeSize;
  1733                                         // When _inFreeRange is set, this
  1734                                         // indicates the accumulated size
  1735                                         // of the "left hand chunk"
  1736   NOT_PRODUCT(
  1737     size_t                       _numObjectsFreed;
  1738     size_t                       _numWordsFreed;
  1739     size_t                       _numObjectsLive;
  1740     size_t                       _numWordsLive;
  1741     size_t                       _numObjectsAlreadyFree;
  1742     size_t                       _numWordsAlreadyFree;
  1743     FreeChunk*                   _last_fc;
  1745  private:
  1746   // Code that is common to a free chunk or garbage when
  1747   // encountered during sweeping.
  1748   void doPostIsFreeOrGarbageChunk(FreeChunk *fc,
  1749                                   size_t chunkSize);
  1750   // Process a free chunk during sweeping.
  1751   void doAlreadyFreeChunk(FreeChunk *fc);
  1752   // Process a garbage chunk during sweeping.
  1753   size_t doGarbageChunk(FreeChunk *fc);
  1754   // Process a live chunk during sweeping.
  1755   size_t doLiveChunk(FreeChunk* fc);
  1757   // Accessors.
  1758   HeapWord* freeFinger() const          { return _freeFinger; }
  1759   void set_freeFinger(HeapWord* v)      { _freeFinger = v; }
  1760   size_t freeRangeSize() const          { return _freeRangeSize; }
  1761   void set_freeRangeSize(size_t v)      { _freeRangeSize = v; }
  1762   bool inFreeRange()    const           { return _inFreeRange; }
  1763   void set_inFreeRange(bool v)          { _inFreeRange = v; }
  1764   bool lastFreeRangeCoalesced() const    { return _lastFreeRangeCoalesced; }
  1765   void set_lastFreeRangeCoalesced(bool v) { _lastFreeRangeCoalesced = v; }
  1766   bool freeRangeInFreeLists() const     { return _freeRangeInFreeLists; }
  1767   void set_freeRangeInFreeLists(bool v) { _freeRangeInFreeLists = v; }
  1769   // Initialize a free range.
  1770   void initialize_free_range(HeapWord* freeFinger, bool freeRangeInFreeLists);
  1771   // Return this chunk to the free lists.
  1772   void flushCurFreeChunk(HeapWord* chunk, size_t size);
  1774   // Check if we should yield and do so when necessary.
  1775   inline void do_yield_check(HeapWord* addr);
  1777   // Yield
  1778   void do_yield_work(HeapWord* addr);
  1780   // Debugging/Printing
  1781   void record_free_block_coalesced(FreeChunk* fc) const PRODUCT_RETURN;
  1783  public:
  1784   SweepClosure(CMSCollector* collector, ConcurrentMarkSweepGeneration* g,
  1785                CMSBitMap* bitMap, bool should_yield);
  1786   ~SweepClosure();
  1788   size_t       do_blk_careful(HeapWord* addr);
  1789 };
  1791 // Closures related to weak references processing
  1793 // During CMS' weak reference processing, this is a
  1794 // work-routine/closure used to complete transitive
  1795 // marking of objects as live after a certain point
  1796 // in which an initial set has been completely accumulated.
  1797 // This closure is currently used both during the final
  1798 // remark stop-world phase, as well as during the concurrent
  1799 // precleaning of the discovered reference lists.
  1800 class CMSDrainMarkingStackClosure: public VoidClosure {
  1801   CMSCollector*        _collector;
  1802   MemRegion            _span;
  1803   CMSMarkStack*        _mark_stack;
  1804   CMSBitMap*           _bit_map;
  1805   CMSKeepAliveClosure* _keep_alive;
  1806   bool                 _concurrent_precleaning;
  1807  public:
  1808   CMSDrainMarkingStackClosure(CMSCollector* collector, MemRegion span,
  1809                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
  1810                       CMSKeepAliveClosure* keep_alive,
  1811                       bool cpc):
  1812     _collector(collector),
  1813     _span(span),
  1814     _bit_map(bit_map),
  1815     _mark_stack(mark_stack),
  1816     _keep_alive(keep_alive),
  1817     _concurrent_precleaning(cpc) {
  1818     assert(_concurrent_precleaning == _keep_alive->concurrent_precleaning(),
  1819            "Mismatch");
  1822   void do_void();
  1823 };
  1825 // A parallel version of CMSDrainMarkingStackClosure above.
  1826 class CMSParDrainMarkingStackClosure: public VoidClosure {
  1827   CMSCollector*           _collector;
  1828   MemRegion               _span;
  1829   OopTaskQueue*           _work_queue;
  1830   CMSBitMap*              _bit_map;
  1831   CMSInnerParMarkAndPushClosure _mark_and_push;
  1833  public:
  1834   CMSParDrainMarkingStackClosure(CMSCollector* collector,
  1835                                  MemRegion span, CMSBitMap* bit_map,
  1836                                  CMSMarkStack* revisit_stack,
  1837                                  OopTaskQueue* work_queue):
  1838     _collector(collector),
  1839     _span(span),
  1840     _bit_map(bit_map),
  1841     _work_queue(work_queue),
  1842     _mark_and_push(collector, span, bit_map, revisit_stack, work_queue) { }
  1844  public:
  1845   void trim_queue(uint max);
  1846   void do_void();
  1847 };
  1849 // Allow yielding or short-circuiting of reference list
  1850 // prelceaning work.
  1851 class CMSPrecleanRefsYieldClosure: public YieldClosure {
  1852   CMSCollector* _collector;
  1853   void do_yield_work();
  1854  public:
  1855   CMSPrecleanRefsYieldClosure(CMSCollector* collector):
  1856     _collector(collector) {}
  1857   virtual bool should_return();
  1858 };
  1861 // Convenience class that locks free list locks for given CMS collector
  1862 class FreelistLocker: public StackObj {
  1863  private:
  1864   CMSCollector* _collector;
  1865  public:
  1866   FreelistLocker(CMSCollector* collector):
  1867     _collector(collector) {
  1868     _collector->getFreelistLocks();
  1871   ~FreelistLocker() {
  1872     _collector->releaseFreelistLocks();
  1874 };
  1876 // Mark all dead objects in a given space.
  1877 class MarkDeadObjectsClosure: public BlkClosure {
  1878   const CMSCollector*             _collector;
  1879   const CompactibleFreeListSpace* _sp;
  1880   CMSBitMap*                      _live_bit_map;
  1881   CMSBitMap*                      _dead_bit_map;
  1882 public:
  1883   MarkDeadObjectsClosure(const CMSCollector* collector,
  1884                          const CompactibleFreeListSpace* sp,
  1885                          CMSBitMap *live_bit_map,
  1886                          CMSBitMap *dead_bit_map) :
  1887     _collector(collector),
  1888     _sp(sp),
  1889     _live_bit_map(live_bit_map),
  1890     _dead_bit_map(dead_bit_map) {}
  1891   size_t do_blk(HeapWord* addr);
  1892 };
  1894 class TraceCMSMemoryManagerStats : public TraceMemoryManagerStats {
  1896  public:
  1897   TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase);
  1898   TraceCMSMemoryManagerStats();
  1899 };
  1902 #endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP

mercurial