src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.cpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2243
a7214d79fcf1
child 2336
6cd6d394f280
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "code/codeCache.hpp"
    29 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
    30 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
    31 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
    32 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
    33 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
    34 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
    35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    36 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
    37 #include "gc_implementation/parNew/parNewGeneration.hpp"
    38 #include "gc_implementation/shared/collectorCounters.hpp"
    39 #include "gc_implementation/shared/isGCActiveMark.hpp"
    40 #include "gc_interface/collectedHeap.inline.hpp"
    41 #include "memory/cardTableRS.hpp"
    42 #include "memory/collectorPolicy.hpp"
    43 #include "memory/gcLocker.inline.hpp"
    44 #include "memory/genCollectedHeap.hpp"
    45 #include "memory/genMarkSweep.hpp"
    46 #include "memory/genOopClosures.inline.hpp"
    47 #include "memory/iterator.hpp"
    48 #include "memory/referencePolicy.hpp"
    49 #include "memory/resourceArea.hpp"
    50 #include "oops/oop.inline.hpp"
    51 #include "prims/jvmtiExport.hpp"
    52 #include "runtime/globals_extension.hpp"
    53 #include "runtime/handles.inline.hpp"
    54 #include "runtime/java.hpp"
    55 #include "runtime/vmThread.hpp"
    56 #include "services/memoryService.hpp"
    57 #include "services/runtimeService.hpp"
    59 // statics
    60 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
    61 bool          CMSCollector::_full_gc_requested          = false;
    63 //////////////////////////////////////////////////////////////////
    64 // In support of CMS/VM thread synchronization
    65 //////////////////////////////////////////////////////////////////
    66 // We split use of the CGC_lock into 2 "levels".
    67 // The low-level locking is of the usual CGC_lock monitor. We introduce
    68 // a higher level "token" (hereafter "CMS token") built on top of the
    69 // low level monitor (hereafter "CGC lock").
    70 // The token-passing protocol gives priority to the VM thread. The
    71 // CMS-lock doesn't provide any fairness guarantees, but clients
    72 // should ensure that it is only held for very short, bounded
    73 // durations.
    74 //
    75 // When either of the CMS thread or the VM thread is involved in
    76 // collection operations during which it does not want the other
    77 // thread to interfere, it obtains the CMS token.
    78 //
    79 // If either thread tries to get the token while the other has
    80 // it, that thread waits. However, if the VM thread and CMS thread
    81 // both want the token, then the VM thread gets priority while the
    82 // CMS thread waits. This ensures, for instance, that the "concurrent"
    83 // phases of the CMS thread's work do not block out the VM thread
    84 // for long periods of time as the CMS thread continues to hog
    85 // the token. (See bug 4616232).
    86 //
    87 // The baton-passing functions are, however, controlled by the
    88 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
    89 // and here the low-level CMS lock, not the high level token,
    90 // ensures mutual exclusion.
    91 //
    92 // Two important conditions that we have to satisfy:
    93 // 1. if a thread does a low-level wait on the CMS lock, then it
    94 //    relinquishes the CMS token if it were holding that token
    95 //    when it acquired the low-level CMS lock.
    96 // 2. any low-level notifications on the low-level lock
    97 //    should only be sent when a thread has relinquished the token.
    98 //
    99 // In the absence of either property, we'd have potential deadlock.
   100 //
   101 // We protect each of the CMS (concurrent and sequential) phases
   102 // with the CMS _token_, not the CMS _lock_.
   103 //
   104 // The only code protected by CMS lock is the token acquisition code
   105 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
   106 // baton-passing code.
   107 //
   108 // Unfortunately, i couldn't come up with a good abstraction to factor and
   109 // hide the naked CGC_lock manipulation in the baton-passing code
   110 // further below. That's something we should try to do. Also, the proof
   111 // of correctness of this 2-level locking scheme is far from obvious,
   112 // and potentially quite slippery. We have an uneasy supsicion, for instance,
   113 // that there may be a theoretical possibility of delay/starvation in the
   114 // low-level lock/wait/notify scheme used for the baton-passing because of
   115 // potential intereference with the priority scheme embodied in the
   116 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
   117 // invocation further below and marked with "XXX 20011219YSR".
   118 // Indeed, as we note elsewhere, this may become yet more slippery
   119 // in the presence of multiple CMS and/or multiple VM threads. XXX
   121 class CMSTokenSync: public StackObj {
   122  private:
   123   bool _is_cms_thread;
   124  public:
   125   CMSTokenSync(bool is_cms_thread):
   126     _is_cms_thread(is_cms_thread) {
   127     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
   128            "Incorrect argument to constructor");
   129     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
   130   }
   132   ~CMSTokenSync() {
   133     assert(_is_cms_thread ?
   134              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
   135              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
   136           "Incorrect state");
   137     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
   138   }
   139 };
   141 // Convenience class that does a CMSTokenSync, and then acquires
   142 // upto three locks.
   143 class CMSTokenSyncWithLocks: public CMSTokenSync {
   144  private:
   145   // Note: locks are acquired in textual declaration order
   146   // and released in the opposite order
   147   MutexLockerEx _locker1, _locker2, _locker3;
   148  public:
   149   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
   150                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
   151     CMSTokenSync(is_cms_thread),
   152     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
   153     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
   154     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
   155   { }
   156 };
   159 // Wrapper class to temporarily disable icms during a foreground cms collection.
   160 class ICMSDisabler: public StackObj {
   161  public:
   162   // The ctor disables icms and wakes up the thread so it notices the change;
   163   // the dtor re-enables icms.  Note that the CMSCollector methods will check
   164   // CMSIncrementalMode.
   165   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
   166   ~ICMSDisabler() { CMSCollector::enable_icms(); }
   167 };
   169 //////////////////////////////////////////////////////////////////
   170 //  Concurrent Mark-Sweep Generation /////////////////////////////
   171 //////////////////////////////////////////////////////////////////
   173 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
   175 // This struct contains per-thread things necessary to support parallel
   176 // young-gen collection.
   177 class CMSParGCThreadState: public CHeapObj {
   178  public:
   179   CFLS_LAB lab;
   180   PromotionInfo promo;
   182   // Constructor.
   183   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
   184     promo.setSpace(cfls);
   185   }
   186 };
   188 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
   189      ReservedSpace rs, size_t initial_byte_size, int level,
   190      CardTableRS* ct, bool use_adaptive_freelists,
   191      FreeBlockDictionary::DictionaryChoice dictionaryChoice) :
   192   CardGeneration(rs, initial_byte_size, level, ct),
   193   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
   194   _debug_collection_type(Concurrent_collection_type)
   195 {
   196   HeapWord* bottom = (HeapWord*) _virtual_space.low();
   197   HeapWord* end    = (HeapWord*) _virtual_space.high();
   199   _direct_allocated_words = 0;
   200   NOT_PRODUCT(
   201     _numObjectsPromoted = 0;
   202     _numWordsPromoted = 0;
   203     _numObjectsAllocated = 0;
   204     _numWordsAllocated = 0;
   205   )
   207   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
   208                                            use_adaptive_freelists,
   209                                            dictionaryChoice);
   210   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
   211   if (_cmsSpace == NULL) {
   212     vm_exit_during_initialization(
   213       "CompactibleFreeListSpace allocation failure");
   214   }
   215   _cmsSpace->_gen = this;
   217   _gc_stats = new CMSGCStats();
   219   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
   220   // offsets match. The ability to tell free chunks from objects
   221   // depends on this property.
   222   debug_only(
   223     FreeChunk* junk = NULL;
   224     assert(UseCompressedOops ||
   225            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
   226            "Offset of FreeChunk::_prev within FreeChunk must match"
   227            "  that of OopDesc::_klass within OopDesc");
   228   )
   229   if (CollectedHeap::use_parallel_gc_threads()) {
   230     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
   231     _par_gc_thread_states =
   232       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads);
   233     if (_par_gc_thread_states == NULL) {
   234       vm_exit_during_initialization("Could not allocate par gc structs");
   235     }
   236     for (uint i = 0; i < ParallelGCThreads; i++) {
   237       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
   238       if (_par_gc_thread_states[i] == NULL) {
   239         vm_exit_during_initialization("Could not allocate par gc structs");
   240       }
   241     }
   242   } else {
   243     _par_gc_thread_states = NULL;
   244   }
   245   _incremental_collection_failed = false;
   246   // The "dilatation_factor" is the expansion that can occur on
   247   // account of the fact that the minimum object size in the CMS
   248   // generation may be larger than that in, say, a contiguous young
   249   //  generation.
   250   // Ideally, in the calculation below, we'd compute the dilatation
   251   // factor as: MinChunkSize/(promoting_gen's min object size)
   252   // Since we do not have such a general query interface for the
   253   // promoting generation, we'll instead just use the mimimum
   254   // object size (which today is a header's worth of space);
   255   // note that all arithmetic is in units of HeapWords.
   256   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
   257   assert(_dilatation_factor >= 1.0, "from previous assert");
   258 }
   261 // The field "_initiating_occupancy" represents the occupancy percentage
   262 // at which we trigger a new collection cycle.  Unless explicitly specified
   263 // via CMSInitiating[Perm]OccupancyFraction (argument "io" below), it
   264 // is calculated by:
   265 //
   266 //   Let "f" be MinHeapFreeRatio in
   267 //
   268 //    _intiating_occupancy = 100-f +
   269 //                           f * (CMSTrigger[Perm]Ratio/100)
   270 //   where CMSTrigger[Perm]Ratio is the argument "tr" below.
   271 //
   272 // That is, if we assume the heap is at its desired maximum occupancy at the
   273 // end of a collection, we let CMSTrigger[Perm]Ratio of the (purported) free
   274 // space be allocated before initiating a new collection cycle.
   275 //
   276 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, intx tr) {
   277   assert(io <= 100 && tr >= 0 && tr <= 100, "Check the arguments");
   278   if (io >= 0) {
   279     _initiating_occupancy = (double)io / 100.0;
   280   } else {
   281     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
   282                              (double)(tr * MinHeapFreeRatio) / 100.0)
   283                             / 100.0;
   284   }
   285 }
   287 void ConcurrentMarkSweepGeneration::ref_processor_init() {
   288   assert(collector() != NULL, "no collector");
   289   collector()->ref_processor_init();
   290 }
   292 void CMSCollector::ref_processor_init() {
   293   if (_ref_processor == NULL) {
   294     // Allocate and initialize a reference processor
   295     _ref_processor = ReferenceProcessor::create_ref_processor(
   296         _span,                               // span
   297         _cmsGen->refs_discovery_is_atomic(), // atomic_discovery
   298         _cmsGen->refs_discovery_is_mt(),     // mt_discovery
   299         &_is_alive_closure,
   300         ParallelGCThreads,
   301         ParallelRefProcEnabled);
   302     // Initialize the _ref_processor field of CMSGen
   303     _cmsGen->set_ref_processor(_ref_processor);
   305     // Allocate a dummy ref processor for perm gen.
   306     ReferenceProcessor* rp2 = new ReferenceProcessor();
   307     if (rp2 == NULL) {
   308       vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
   309     }
   310     _permGen->set_ref_processor(rp2);
   311   }
   312 }
   314 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
   315   GenCollectedHeap* gch = GenCollectedHeap::heap();
   316   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
   317     "Wrong type of heap");
   318   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
   319     gch->gen_policy()->size_policy();
   320   assert(sp->is_gc_cms_adaptive_size_policy(),
   321     "Wrong type of size policy");
   322   return sp;
   323 }
   325 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
   326   CMSGCAdaptivePolicyCounters* results =
   327     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
   328   assert(
   329     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
   330     "Wrong gc policy counter kind");
   331   return results;
   332 }
   335 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
   337   const char* gen_name = "old";
   339   // Generation Counters - generation 1, 1 subspace
   340   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
   342   _space_counters = new GSpaceCounters(gen_name, 0,
   343                                        _virtual_space.reserved_size(),
   344                                        this, _gen_counters);
   345 }
   347 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
   348   _cms_gen(cms_gen)
   349 {
   350   assert(alpha <= 100, "bad value");
   351   _saved_alpha = alpha;
   353   // Initialize the alphas to the bootstrap value of 100.
   354   _gc0_alpha = _cms_alpha = 100;
   356   _cms_begin_time.update();
   357   _cms_end_time.update();
   359   _gc0_duration = 0.0;
   360   _gc0_period = 0.0;
   361   _gc0_promoted = 0;
   363   _cms_duration = 0.0;
   364   _cms_period = 0.0;
   365   _cms_allocated = 0;
   367   _cms_used_at_gc0_begin = 0;
   368   _cms_used_at_gc0_end = 0;
   369   _allow_duty_cycle_reduction = false;
   370   _valid_bits = 0;
   371   _icms_duty_cycle = CMSIncrementalDutyCycle;
   372 }
   374 double CMSStats::cms_free_adjustment_factor(size_t free) const {
   375   // TBD: CR 6909490
   376   return 1.0;
   377 }
   379 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
   380 }
   382 // If promotion failure handling is on use
   383 // the padded average size of the promotion for each
   384 // young generation collection.
   385 double CMSStats::time_until_cms_gen_full() const {
   386   size_t cms_free = _cms_gen->cmsSpace()->free();
   387   GenCollectedHeap* gch = GenCollectedHeap::heap();
   388   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
   389                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
   390   if (cms_free > expected_promotion) {
   391     // Start a cms collection if there isn't enough space to promote
   392     // for the next minor collection.  Use the padded average as
   393     // a safety factor.
   394     cms_free -= expected_promotion;
   396     // Adjust by the safety factor.
   397     double cms_free_dbl = (double)cms_free;
   398     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
   399     // Apply a further correction factor which tries to adjust
   400     // for recent occurance of concurrent mode failures.
   401     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
   402     cms_free_dbl = cms_free_dbl * cms_adjustment;
   404     if (PrintGCDetails && Verbose) {
   405       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
   406         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
   407         cms_free, expected_promotion);
   408       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
   409         cms_free_dbl, cms_consumption_rate() + 1.0);
   410     }
   411     // Add 1 in case the consumption rate goes to zero.
   412     return cms_free_dbl / (cms_consumption_rate() + 1.0);
   413   }
   414   return 0.0;
   415 }
   417 // Compare the duration of the cms collection to the
   418 // time remaining before the cms generation is empty.
   419 // Note that the time from the start of the cms collection
   420 // to the start of the cms sweep (less than the total
   421 // duration of the cms collection) can be used.  This
   422 // has been tried and some applications experienced
   423 // promotion failures early in execution.  This was
   424 // possibly because the averages were not accurate
   425 // enough at the beginning.
   426 double CMSStats::time_until_cms_start() const {
   427   // We add "gc0_period" to the "work" calculation
   428   // below because this query is done (mostly) at the
   429   // end of a scavenge, so we need to conservatively
   430   // account for that much possible delay
   431   // in the query so as to avoid concurrent mode failures
   432   // due to starting the collection just a wee bit too
   433   // late.
   434   double work = cms_duration() + gc0_period();
   435   double deadline = time_until_cms_gen_full();
   436   // If a concurrent mode failure occurred recently, we want to be
   437   // more conservative and halve our expected time_until_cms_gen_full()
   438   if (work > deadline) {
   439     if (Verbose && PrintGCDetails) {
   440       gclog_or_tty->print(
   441         " CMSCollector: collect because of anticipated promotion "
   442         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
   443         gc0_period(), time_until_cms_gen_full());
   444     }
   445     return 0.0;
   446   }
   447   return work - deadline;
   448 }
   450 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
   451 // amount of change to prevent wild oscillation.
   452 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
   453                                               unsigned int new_duty_cycle) {
   454   assert(old_duty_cycle <= 100, "bad input value");
   455   assert(new_duty_cycle <= 100, "bad input value");
   457   // Note:  use subtraction with caution since it may underflow (values are
   458   // unsigned).  Addition is safe since we're in the range 0-100.
   459   unsigned int damped_duty_cycle = new_duty_cycle;
   460   if (new_duty_cycle < old_duty_cycle) {
   461     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
   462     if (new_duty_cycle + largest_delta < old_duty_cycle) {
   463       damped_duty_cycle = old_duty_cycle - largest_delta;
   464     }
   465   } else if (new_duty_cycle > old_duty_cycle) {
   466     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
   467     if (new_duty_cycle > old_duty_cycle + largest_delta) {
   468       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
   469     }
   470   }
   471   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
   473   if (CMSTraceIncrementalPacing) {
   474     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
   475                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
   476   }
   477   return damped_duty_cycle;
   478 }
   480 unsigned int CMSStats::icms_update_duty_cycle_impl() {
   481   assert(CMSIncrementalPacing && valid(),
   482          "should be handled in icms_update_duty_cycle()");
   484   double cms_time_so_far = cms_timer().seconds();
   485   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
   486   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
   488   // Avoid division by 0.
   489   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
   490   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
   492   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
   493   if (new_duty_cycle > _icms_duty_cycle) {
   494     // Avoid very small duty cycles (1 or 2); 0 is allowed.
   495     if (new_duty_cycle > 2) {
   496       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
   497                                                 new_duty_cycle);
   498     }
   499   } else if (_allow_duty_cycle_reduction) {
   500     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
   501     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
   502     // Respect the minimum duty cycle.
   503     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
   504     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
   505   }
   507   if (PrintGCDetails || CMSTraceIncrementalPacing) {
   508     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
   509   }
   511   _allow_duty_cycle_reduction = false;
   512   return _icms_duty_cycle;
   513 }
   515 #ifndef PRODUCT
   516 void CMSStats::print_on(outputStream *st) const {
   517   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
   518   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
   519                gc0_duration(), gc0_period(), gc0_promoted());
   520   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
   521             cms_duration(), cms_duration_per_mb(),
   522             cms_period(), cms_allocated());
   523   st->print(",cms_since_beg=%g,cms_since_end=%g",
   524             cms_time_since_begin(), cms_time_since_end());
   525   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
   526             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
   527   if (CMSIncrementalMode) {
   528     st->print(",dc=%d", icms_duty_cycle());
   529   }
   531   if (valid()) {
   532     st->print(",promo_rate=%g,cms_alloc_rate=%g",
   533               promotion_rate(), cms_allocation_rate());
   534     st->print(",cms_consumption_rate=%g,time_until_full=%g",
   535               cms_consumption_rate(), time_until_cms_gen_full());
   536   }
   537   st->print(" ");
   538 }
   539 #endif // #ifndef PRODUCT
   541 CMSCollector::CollectorState CMSCollector::_collectorState =
   542                              CMSCollector::Idling;
   543 bool CMSCollector::_foregroundGCIsActive = false;
   544 bool CMSCollector::_foregroundGCShouldWait = false;
   546 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
   547                            ConcurrentMarkSweepGeneration* permGen,
   548                            CardTableRS*                   ct,
   549                            ConcurrentMarkSweepPolicy*     cp):
   550   _cmsGen(cmsGen),
   551   _permGen(permGen),
   552   _ct(ct),
   553   _ref_processor(NULL),    // will be set later
   554   _conc_workers(NULL),     // may be set later
   555   _abort_preclean(false),
   556   _start_sampling(false),
   557   _between_prologue_and_epilogue(false),
   558   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
   559   _perm_gen_verify_bit_map(0, -1 /* no mutex */, "No_lock"),
   560   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
   561                  -1 /* lock-free */, "No_lock" /* dummy */),
   562   _modUnionClosure(&_modUnionTable),
   563   _modUnionClosurePar(&_modUnionTable),
   564   // Adjust my span to cover old (cms) gen and perm gen
   565   _span(cmsGen->reserved()._union(permGen->reserved())),
   566   // Construct the is_alive_closure with _span & markBitMap
   567   _is_alive_closure(_span, &_markBitMap),
   568   _restart_addr(NULL),
   569   _overflow_list(NULL),
   570   _stats(cmsGen),
   571   _eden_chunk_array(NULL),     // may be set in ctor body
   572   _eden_chunk_capacity(0),     // -- ditto --
   573   _eden_chunk_index(0),        // -- ditto --
   574   _survivor_plab_array(NULL),  // -- ditto --
   575   _survivor_chunk_array(NULL), // -- ditto --
   576   _survivor_chunk_capacity(0), // -- ditto --
   577   _survivor_chunk_index(0),    // -- ditto --
   578   _ser_pmc_preclean_ovflw(0),
   579   _ser_kac_preclean_ovflw(0),
   580   _ser_pmc_remark_ovflw(0),
   581   _par_pmc_remark_ovflw(0),
   582   _ser_kac_ovflw(0),
   583   _par_kac_ovflw(0),
   584 #ifndef PRODUCT
   585   _num_par_pushes(0),
   586 #endif
   587   _collection_count_start(0),
   588   _verifying(false),
   589   _icms_start_limit(NULL),
   590   _icms_stop_limit(NULL),
   591   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
   592   _completed_initialization(false),
   593   _collector_policy(cp),
   594   _should_unload_classes(false),
   595   _concurrent_cycles_since_last_unload(0),
   596   _roots_scanning_options(0),
   597   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
   598   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding)
   599 {
   600   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
   601     ExplicitGCInvokesConcurrent = true;
   602   }
   603   // Now expand the span and allocate the collection support structures
   604   // (MUT, marking bit map etc.) to cover both generations subject to
   605   // collection.
   607   // First check that _permGen is adjacent to _cmsGen and above it.
   608   assert(   _cmsGen->reserved().word_size()  > 0
   609          && _permGen->reserved().word_size() > 0,
   610          "generations should not be of zero size");
   611   assert(_cmsGen->reserved().intersection(_permGen->reserved()).is_empty(),
   612          "_cmsGen and _permGen should not overlap");
   613   assert(_cmsGen->reserved().end() == _permGen->reserved().start(),
   614          "_cmsGen->end() different from _permGen->start()");
   616   // For use by dirty card to oop closures.
   617   _cmsGen->cmsSpace()->set_collector(this);
   618   _permGen->cmsSpace()->set_collector(this);
   620   // Allocate MUT and marking bit map
   621   {
   622     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
   623     if (!_markBitMap.allocate(_span)) {
   624       warning("Failed to allocate CMS Bit Map");
   625       return;
   626     }
   627     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
   628   }
   629   {
   630     _modUnionTable.allocate(_span);
   631     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
   632   }
   634   if (!_markStack.allocate(MarkStackSize)) {
   635     warning("Failed to allocate CMS Marking Stack");
   636     return;
   637   }
   638   if (!_revisitStack.allocate(CMSRevisitStackSize)) {
   639     warning("Failed to allocate CMS Revisit Stack");
   640     return;
   641   }
   643   // Support for multi-threaded concurrent phases
   644   if (CollectedHeap::use_parallel_gc_threads() && CMSConcurrentMTEnabled) {
   645     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
   646       // just for now
   647       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
   648     }
   649     if (ConcGCThreads > 1) {
   650       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
   651                                  ConcGCThreads, true);
   652       if (_conc_workers == NULL) {
   653         warning("GC/CMS: _conc_workers allocation failure: "
   654               "forcing -CMSConcurrentMTEnabled");
   655         CMSConcurrentMTEnabled = false;
   656       } else {
   657         _conc_workers->initialize_workers();
   658       }
   659     } else {
   660       CMSConcurrentMTEnabled = false;
   661     }
   662   }
   663   if (!CMSConcurrentMTEnabled) {
   664     ConcGCThreads = 0;
   665   } else {
   666     // Turn off CMSCleanOnEnter optimization temporarily for
   667     // the MT case where it's not fixed yet; see 6178663.
   668     CMSCleanOnEnter = false;
   669   }
   670   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
   671          "Inconsistency");
   673   // Parallel task queues; these are shared for the
   674   // concurrent and stop-world phases of CMS, but
   675   // are not shared with parallel scavenge (ParNew).
   676   {
   677     uint i;
   678     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
   680     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
   681          || ParallelRefProcEnabled)
   682         && num_queues > 0) {
   683       _task_queues = new OopTaskQueueSet(num_queues);
   684       if (_task_queues == NULL) {
   685         warning("task_queues allocation failure.");
   686         return;
   687       }
   688       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues);
   689       if (_hash_seed == NULL) {
   690         warning("_hash_seed array allocation failure");
   691         return;
   692       }
   694       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
   695       for (i = 0; i < num_queues; i++) {
   696         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
   697         if (q == NULL) {
   698           warning("work_queue allocation failure.");
   699           return;
   700         }
   701         _task_queues->register_queue(i, q);
   702       }
   703       for (i = 0; i < num_queues; i++) {
   704         _task_queues->queue(i)->initialize();
   705         _hash_seed[i] = 17;  // copied from ParNew
   706       }
   707     }
   708   }
   710   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
   711   _permGen->init_initiating_occupancy(CMSInitiatingPermOccupancyFraction, CMSTriggerPermRatio);
   713   // Clip CMSBootstrapOccupancy between 0 and 100.
   714   _bootstrap_occupancy = ((double)MIN2((uintx)100, MAX2((uintx)0, CMSBootstrapOccupancy)))
   715                          /(double)100;
   717   _full_gcs_since_conc_gc = 0;
   719   // Now tell CMS generations the identity of their collector
   720   ConcurrentMarkSweepGeneration::set_collector(this);
   722   // Create & start a CMS thread for this CMS collector
   723   _cmsThread = ConcurrentMarkSweepThread::start(this);
   724   assert(cmsThread() != NULL, "CMS Thread should have been created");
   725   assert(cmsThread()->collector() == this,
   726          "CMS Thread should refer to this gen");
   727   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   729   // Support for parallelizing young gen rescan
   730   GenCollectedHeap* gch = GenCollectedHeap::heap();
   731   _young_gen = gch->prev_gen(_cmsGen);
   732   if (gch->supports_inline_contig_alloc()) {
   733     _top_addr = gch->top_addr();
   734     _end_addr = gch->end_addr();
   735     assert(_young_gen != NULL, "no _young_gen");
   736     _eden_chunk_index = 0;
   737     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
   738     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity);
   739     if (_eden_chunk_array == NULL) {
   740       _eden_chunk_capacity = 0;
   741       warning("GC/CMS: _eden_chunk_array allocation failure");
   742     }
   743   }
   744   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
   746   // Support for parallelizing survivor space rescan
   747   if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) {
   748     const size_t max_plab_samples =
   749       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
   751     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads);
   752     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples);
   753     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads);
   754     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
   755         || _cursor == NULL) {
   756       warning("Failed to allocate survivor plab/chunk array");
   757       if (_survivor_plab_array  != NULL) {
   758         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
   759         _survivor_plab_array = NULL;
   760       }
   761       if (_survivor_chunk_array != NULL) {
   762         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
   763         _survivor_chunk_array = NULL;
   764       }
   765       if (_cursor != NULL) {
   766         FREE_C_HEAP_ARRAY(size_t, _cursor);
   767         _cursor = NULL;
   768       }
   769     } else {
   770       _survivor_chunk_capacity = 2*max_plab_samples;
   771       for (uint i = 0; i < ParallelGCThreads; i++) {
   772         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples);
   773         if (vec == NULL) {
   774           warning("Failed to allocate survivor plab array");
   775           for (int j = i; j > 0; j--) {
   776             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array());
   777           }
   778           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
   779           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
   780           _survivor_plab_array = NULL;
   781           _survivor_chunk_array = NULL;
   782           _survivor_chunk_capacity = 0;
   783           break;
   784         } else {
   785           ChunkArray* cur =
   786             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
   787                                                         max_plab_samples);
   788           assert(cur->end() == 0, "Should be 0");
   789           assert(cur->array() == vec, "Should be vec");
   790           assert(cur->capacity() == max_plab_samples, "Error");
   791         }
   792       }
   793     }
   794   }
   795   assert(   (   _survivor_plab_array  != NULL
   796              && _survivor_chunk_array != NULL)
   797          || (   _survivor_chunk_capacity == 0
   798              && _survivor_chunk_index == 0),
   799          "Error");
   801   // Choose what strong roots should be scanned depending on verification options
   802   // and perm gen collection mode.
   803   if (!CMSClassUnloadingEnabled) {
   804     // If class unloading is disabled we want to include all classes into the root set.
   805     add_root_scanning_option(SharedHeap::SO_AllClasses);
   806   } else {
   807     add_root_scanning_option(SharedHeap::SO_SystemClasses);
   808   }
   810   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
   811   _gc_counters = new CollectorCounters("CMS", 1);
   812   _completed_initialization = true;
   813   _inter_sweep_timer.start();  // start of time
   814 #ifdef SPARC
   815   // Issue a stern warning, but allow use for experimentation and debugging.
   816   if (VM_Version::is_sun4v() && UseMemSetInBOT) {
   817     assert(!FLAG_IS_DEFAULT(UseMemSetInBOT), "Error");
   818     warning("Experimental flag -XX:+UseMemSetInBOT is known to cause instability"
   819             " on sun4v; please understand that you are using at your own risk!");
   820   }
   821 #endif
   822 }
   824 const char* ConcurrentMarkSweepGeneration::name() const {
   825   return "concurrent mark-sweep generation";
   826 }
   827 void ConcurrentMarkSweepGeneration::update_counters() {
   828   if (UsePerfData) {
   829     _space_counters->update_all();
   830     _gen_counters->update_all();
   831   }
   832 }
   834 // this is an optimized version of update_counters(). it takes the
   835 // used value as a parameter rather than computing it.
   836 //
   837 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
   838   if (UsePerfData) {
   839     _space_counters->update_used(used);
   840     _space_counters->update_capacity();
   841     _gen_counters->update_all();
   842   }
   843 }
   845 void ConcurrentMarkSweepGeneration::print() const {
   846   Generation::print();
   847   cmsSpace()->print();
   848 }
   850 #ifndef PRODUCT
   851 void ConcurrentMarkSweepGeneration::print_statistics() {
   852   cmsSpace()->printFLCensus(0);
   853 }
   854 #endif
   856 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
   857   GenCollectedHeap* gch = GenCollectedHeap::heap();
   858   if (PrintGCDetails) {
   859     if (Verbose) {
   860       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
   861         level(), short_name(), s, used(), capacity());
   862     } else {
   863       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
   864         level(), short_name(), s, used() / K, capacity() / K);
   865     }
   866   }
   867   if (Verbose) {
   868     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
   869               gch->used(), gch->capacity());
   870   } else {
   871     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
   872               gch->used() / K, gch->capacity() / K);
   873   }
   874 }
   876 size_t
   877 ConcurrentMarkSweepGeneration::contiguous_available() const {
   878   // dld proposes an improvement in precision here. If the committed
   879   // part of the space ends in a free block we should add that to
   880   // uncommitted size in the calculation below. Will make this
   881   // change later, staying with the approximation below for the
   882   // time being. -- ysr.
   883   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
   884 }
   886 size_t
   887 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
   888   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
   889 }
   891 size_t ConcurrentMarkSweepGeneration::max_available() const {
   892   return free() + _virtual_space.uncommitted_size();
   893 }
   895 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
   896   size_t available = max_available();
   897   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
   898   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
   899   if (PrintGC && Verbose) {
   900     gclog_or_tty->print_cr(
   901       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
   902       "max_promo("SIZE_FORMAT")",
   903       res? "":" not", available, res? ">=":"<",
   904       av_promo, max_promotion_in_bytes);
   905   }
   906   return res;
   907 }
   909 // At a promotion failure dump information on block layout in heap
   910 // (cms old generation).
   911 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
   912   if (CMSDumpAtPromotionFailure) {
   913     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
   914   }
   915 }
   917 CompactibleSpace*
   918 ConcurrentMarkSweepGeneration::first_compaction_space() const {
   919   return _cmsSpace;
   920 }
   922 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
   923   // Clear the promotion information.  These pointers can be adjusted
   924   // along with all the other pointers into the heap but
   925   // compaction is expected to be a rare event with
   926   // a heap using cms so don't do it without seeing the need.
   927   if (CollectedHeap::use_parallel_gc_threads()) {
   928     for (uint i = 0; i < ParallelGCThreads; i++) {
   929       _par_gc_thread_states[i]->promo.reset();
   930     }
   931   }
   932 }
   934 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
   935   blk->do_space(_cmsSpace);
   936 }
   938 void ConcurrentMarkSweepGeneration::compute_new_size() {
   939   assert_locked_or_safepoint(Heap_lock);
   941   // If incremental collection failed, we just want to expand
   942   // to the limit.
   943   if (incremental_collection_failed()) {
   944     clear_incremental_collection_failed();
   945     grow_to_reserved();
   946     return;
   947   }
   949   size_t expand_bytes = 0;
   950   double free_percentage = ((double) free()) / capacity();
   951   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
   952   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
   954   // compute expansion delta needed for reaching desired free percentage
   955   if (free_percentage < desired_free_percentage) {
   956     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   957     assert(desired_capacity >= capacity(), "invalid expansion size");
   958     expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
   959   }
   960   if (expand_bytes > 0) {
   961     if (PrintGCDetails && Verbose) {
   962       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   963       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
   964       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
   965       gclog_or_tty->print_cr("  Desired free fraction %f",
   966         desired_free_percentage);
   967       gclog_or_tty->print_cr("  Maximum free fraction %f",
   968         maximum_free_percentage);
   969       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
   970       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
   971         desired_capacity/1000);
   972       int prev_level = level() - 1;
   973       if (prev_level >= 0) {
   974         size_t prev_size = 0;
   975         GenCollectedHeap* gch = GenCollectedHeap::heap();
   976         Generation* prev_gen = gch->_gens[prev_level];
   977         prev_size = prev_gen->capacity();
   978           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
   979                                  prev_size/1000);
   980       }
   981       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
   982         unsafe_max_alloc_nogc()/1000);
   983       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
   984         contiguous_available()/1000);
   985       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
   986         expand_bytes);
   987     }
   988     // safe if expansion fails
   989     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
   990     if (PrintGCDetails && Verbose) {
   991       gclog_or_tty->print_cr("  Expanded free fraction %f",
   992         ((double) free()) / capacity());
   993     }
   994   }
   995 }
   997 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
   998   return cmsSpace()->freelistLock();
   999 }
  1001 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
  1002                                                   bool   tlab) {
  1003   CMSSynchronousYieldRequest yr;
  1004   MutexLockerEx x(freelistLock(),
  1005                   Mutex::_no_safepoint_check_flag);
  1006   return have_lock_and_allocate(size, tlab);
  1009 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
  1010                                                   bool   tlab /* ignored */) {
  1011   assert_lock_strong(freelistLock());
  1012   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
  1013   HeapWord* res = cmsSpace()->allocate(adjustedSize);
  1014   // Allocate the object live (grey) if the background collector has
  1015   // started marking. This is necessary because the marker may
  1016   // have passed this address and consequently this object will
  1017   // not otherwise be greyed and would be incorrectly swept up.
  1018   // Note that if this object contains references, the writing
  1019   // of those references will dirty the card containing this object
  1020   // allowing the object to be blackened (and its references scanned)
  1021   // either during a preclean phase or at the final checkpoint.
  1022   if (res != NULL) {
  1023     // We may block here with an uninitialized object with
  1024     // its mark-bit or P-bits not yet set. Such objects need
  1025     // to be safely navigable by block_start().
  1026     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
  1027     assert(!((FreeChunk*)res)->isFree(), "Error, block will look free but show wrong size");
  1028     collector()->direct_allocated(res, adjustedSize);
  1029     _direct_allocated_words += adjustedSize;
  1030     // allocation counters
  1031     NOT_PRODUCT(
  1032       _numObjectsAllocated++;
  1033       _numWordsAllocated += (int)adjustedSize;
  1036   return res;
  1039 // In the case of direct allocation by mutators in a generation that
  1040 // is being concurrently collected, the object must be allocated
  1041 // live (grey) if the background collector has started marking.
  1042 // This is necessary because the marker may
  1043 // have passed this address and consequently this object will
  1044 // not otherwise be greyed and would be incorrectly swept up.
  1045 // Note that if this object contains references, the writing
  1046 // of those references will dirty the card containing this object
  1047 // allowing the object to be blackened (and its references scanned)
  1048 // either during a preclean phase or at the final checkpoint.
  1049 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
  1050   assert(_markBitMap.covers(start, size), "Out of bounds");
  1051   if (_collectorState >= Marking) {
  1052     MutexLockerEx y(_markBitMap.lock(),
  1053                     Mutex::_no_safepoint_check_flag);
  1054     // [see comments preceding SweepClosure::do_blk() below for details]
  1055     // 1. need to mark the object as live so it isn't collected
  1056     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
  1057     // 3. need to mark the end of the object so marking, precleaning or sweeping
  1058     //    can skip over uninitialized or unparsable objects. An allocated
  1059     //    object is considered uninitialized for our purposes as long as
  1060     //    its klass word is NULL. (Unparsable objects are those which are
  1061     //    initialized in the sense just described, but whose sizes can still
  1062     //    not be correctly determined. Note that the class of unparsable objects
  1063     //    can only occur in the perm gen. All old gen objects are parsable
  1064     //    as soon as they are initialized.)
  1065     _markBitMap.mark(start);          // object is live
  1066     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
  1067     _markBitMap.mark(start + size - 1);
  1068                                       // mark end of object
  1070   // check that oop looks uninitialized
  1071   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
  1074 void CMSCollector::promoted(bool par, HeapWord* start,
  1075                             bool is_obj_array, size_t obj_size) {
  1076   assert(_markBitMap.covers(start), "Out of bounds");
  1077   // See comment in direct_allocated() about when objects should
  1078   // be allocated live.
  1079   if (_collectorState >= Marking) {
  1080     // we already hold the marking bit map lock, taken in
  1081     // the prologue
  1082     if (par) {
  1083       _markBitMap.par_mark(start);
  1084     } else {
  1085       _markBitMap.mark(start);
  1087     // We don't need to mark the object as uninitialized (as
  1088     // in direct_allocated above) because this is being done with the
  1089     // world stopped and the object will be initialized by the
  1090     // time the marking, precleaning or sweeping get to look at it.
  1091     // But see the code for copying objects into the CMS generation,
  1092     // where we need to ensure that concurrent readers of the
  1093     // block offset table are able to safely navigate a block that
  1094     // is in flux from being free to being allocated (and in
  1095     // transition while being copied into) and subsequently
  1096     // becoming a bona-fide object when the copy/promotion is complete.
  1097     assert(SafepointSynchronize::is_at_safepoint(),
  1098            "expect promotion only at safepoints");
  1100     if (_collectorState < Sweeping) {
  1101       // Mark the appropriate cards in the modUnionTable, so that
  1102       // this object gets scanned before the sweep. If this is
  1103       // not done, CMS generation references in the object might
  1104       // not get marked.
  1105       // For the case of arrays, which are otherwise precisely
  1106       // marked, we need to dirty the entire array, not just its head.
  1107       if (is_obj_array) {
  1108         // The [par_]mark_range() method expects mr.end() below to
  1109         // be aligned to the granularity of a bit's representation
  1110         // in the heap. In the case of the MUT below, that's a
  1111         // card size.
  1112         MemRegion mr(start,
  1113                      (HeapWord*)round_to((intptr_t)(start + obj_size),
  1114                         CardTableModRefBS::card_size /* bytes */));
  1115         if (par) {
  1116           _modUnionTable.par_mark_range(mr);
  1117         } else {
  1118           _modUnionTable.mark_range(mr);
  1120       } else {  // not an obj array; we can just mark the head
  1121         if (par) {
  1122           _modUnionTable.par_mark(start);
  1123         } else {
  1124           _modUnionTable.mark(start);
  1131 static inline size_t percent_of_space(Space* space, HeapWord* addr)
  1133   size_t delta = pointer_delta(addr, space->bottom());
  1134   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
  1137 void CMSCollector::icms_update_allocation_limits()
  1139   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
  1140   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
  1142   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
  1143   if (CMSTraceIncrementalPacing) {
  1144     stats().print();
  1147   assert(duty_cycle <= 100, "invalid duty cycle");
  1148   if (duty_cycle != 0) {
  1149     // The duty_cycle is a percentage between 0 and 100; convert to words and
  1150     // then compute the offset from the endpoints of the space.
  1151     size_t free_words = eden->free() / HeapWordSize;
  1152     double free_words_dbl = (double)free_words;
  1153     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
  1154     size_t offset_words = (free_words - duty_cycle_words) / 2;
  1156     _icms_start_limit = eden->top() + offset_words;
  1157     _icms_stop_limit = eden->end() - offset_words;
  1159     // The limits may be adjusted (shifted to the right) by
  1160     // CMSIncrementalOffset, to allow the application more mutator time after a
  1161     // young gen gc (when all mutators were stopped) and before CMS starts and
  1162     // takes away one or more cpus.
  1163     if (CMSIncrementalOffset != 0) {
  1164       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
  1165       size_t adjustment = (size_t)adjustment_dbl;
  1166       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
  1167       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
  1168         _icms_start_limit += adjustment;
  1169         _icms_stop_limit = tmp_stop;
  1173   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
  1174     _icms_start_limit = _icms_stop_limit = eden->end();
  1177   // Install the new start limit.
  1178   eden->set_soft_end(_icms_start_limit);
  1180   if (CMSTraceIncrementalMode) {
  1181     gclog_or_tty->print(" icms alloc limits:  "
  1182                            PTR_FORMAT "," PTR_FORMAT
  1183                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
  1184                            _icms_start_limit, _icms_stop_limit,
  1185                            percent_of_space(eden, _icms_start_limit),
  1186                            percent_of_space(eden, _icms_stop_limit));
  1187     if (Verbose) {
  1188       gclog_or_tty->print("eden:  ");
  1189       eden->print_on(gclog_or_tty);
  1194 // Any changes here should try to maintain the invariant
  1195 // that if this method is called with _icms_start_limit
  1196 // and _icms_stop_limit both NULL, then it should return NULL
  1197 // and not notify the icms thread.
  1198 HeapWord*
  1199 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
  1200                                        size_t word_size)
  1202   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
  1203   // nop.
  1204   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
  1205     if (top <= _icms_start_limit) {
  1206       if (CMSTraceIncrementalMode) {
  1207         space->print_on(gclog_or_tty);
  1208         gclog_or_tty->stamp();
  1209         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
  1210                                ", new limit=" PTR_FORMAT
  1211                                " (" SIZE_FORMAT "%%)",
  1212                                top, _icms_stop_limit,
  1213                                percent_of_space(space, _icms_stop_limit));
  1215       ConcurrentMarkSweepThread::start_icms();
  1216       assert(top < _icms_stop_limit, "Tautology");
  1217       if (word_size < pointer_delta(_icms_stop_limit, top)) {
  1218         return _icms_stop_limit;
  1221       // The allocation will cross both the _start and _stop limits, so do the
  1222       // stop notification also and return end().
  1223       if (CMSTraceIncrementalMode) {
  1224         space->print_on(gclog_or_tty);
  1225         gclog_or_tty->stamp();
  1226         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
  1227                                ", new limit=" PTR_FORMAT
  1228                                " (" SIZE_FORMAT "%%)",
  1229                                top, space->end(),
  1230                                percent_of_space(space, space->end()));
  1232       ConcurrentMarkSweepThread::stop_icms();
  1233       return space->end();
  1236     if (top <= _icms_stop_limit) {
  1237       if (CMSTraceIncrementalMode) {
  1238         space->print_on(gclog_or_tty);
  1239         gclog_or_tty->stamp();
  1240         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
  1241                                ", new limit=" PTR_FORMAT
  1242                                " (" SIZE_FORMAT "%%)",
  1243                                top, space->end(),
  1244                                percent_of_space(space, space->end()));
  1246       ConcurrentMarkSweepThread::stop_icms();
  1247       return space->end();
  1250     if (CMSTraceIncrementalMode) {
  1251       space->print_on(gclog_or_tty);
  1252       gclog_or_tty->stamp();
  1253       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
  1254                              ", new limit=" PTR_FORMAT,
  1255                              top, NULL);
  1259   return NULL;
  1262 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
  1263   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1264   // allocate, copy and if necessary update promoinfo --
  1265   // delegate to underlying space.
  1266   assert_lock_strong(freelistLock());
  1268 #ifndef PRODUCT
  1269   if (Universe::heap()->promotion_should_fail()) {
  1270     return NULL;
  1272 #endif  // #ifndef PRODUCT
  1274   oop res = _cmsSpace->promote(obj, obj_size);
  1275   if (res == NULL) {
  1276     // expand and retry
  1277     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
  1278     expand(s*HeapWordSize, MinHeapDeltaBytes,
  1279       CMSExpansionCause::_satisfy_promotion);
  1280     // Since there's currently no next generation, we don't try to promote
  1281     // into a more senior generation.
  1282     assert(next_gen() == NULL, "assumption, based upon which no attempt "
  1283                                "is made to pass on a possibly failing "
  1284                                "promotion to next generation");
  1285     res = _cmsSpace->promote(obj, obj_size);
  1287   if (res != NULL) {
  1288     // See comment in allocate() about when objects should
  1289     // be allocated live.
  1290     assert(obj->is_oop(), "Will dereference klass pointer below");
  1291     collector()->promoted(false,           // Not parallel
  1292                           (HeapWord*)res, obj->is_objArray(), obj_size);
  1293     // promotion counters
  1294     NOT_PRODUCT(
  1295       _numObjectsPromoted++;
  1296       _numWordsPromoted +=
  1297         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
  1300   return res;
  1304 HeapWord*
  1305 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
  1306                                              HeapWord* top,
  1307                                              size_t word_sz)
  1309   return collector()->allocation_limit_reached(space, top, word_sz);
  1312 // IMPORTANT: Notes on object size recognition in CMS.
  1313 // ---------------------------------------------------
  1314 // A block of storage in the CMS generation is always in
  1315 // one of three states. A free block (FREE), an allocated
  1316 // object (OBJECT) whose size() method reports the correct size,
  1317 // and an intermediate state (TRANSIENT) in which its size cannot
  1318 // be accurately determined.
  1319 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
  1320 // -----------------------------------------------------
  1321 // FREE:      klass_word & 1 == 1; mark_word holds block size
  1322 //
  1323 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
  1324 //            obj->size() computes correct size
  1325 //            [Perm Gen objects needs to be "parsable" before they can be navigated]
  1326 //
  1327 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
  1328 //
  1329 // STATE IDENTIFICATION: (64 bit+COOPS)
  1330 // ------------------------------------
  1331 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
  1332 //
  1333 // OBJECT:    klass_word installed; klass_word != 0;
  1334 //            obj->size() computes correct size
  1335 //            [Perm Gen comment above continues to hold]
  1336 //
  1337 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
  1338 //
  1339 //
  1340 // STATE TRANSITION DIAGRAM
  1341 //
  1342 //        mut / parnew                     mut  /  parnew
  1343 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
  1344 //  ^                                                                   |
  1345 //  |------------------------ DEAD <------------------------------------|
  1346 //         sweep                            mut
  1347 //
  1348 // While a block is in TRANSIENT state its size cannot be determined
  1349 // so readers will either need to come back later or stall until
  1350 // the size can be determined. Note that for the case of direct
  1351 // allocation, P-bits, when available, may be used to determine the
  1352 // size of an object that may not yet have been initialized.
  1354 // Things to support parallel young-gen collection.
  1355 oop
  1356 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
  1357                                            oop old, markOop m,
  1358                                            size_t word_sz) {
  1359 #ifndef PRODUCT
  1360   if (Universe::heap()->promotion_should_fail()) {
  1361     return NULL;
  1363 #endif  // #ifndef PRODUCT
  1365   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1366   PromotionInfo* promoInfo = &ps->promo;
  1367   // if we are tracking promotions, then first ensure space for
  1368   // promotion (including spooling space for saving header if necessary).
  1369   // then allocate and copy, then track promoted info if needed.
  1370   // When tracking (see PromotionInfo::track()), the mark word may
  1371   // be displaced and in this case restoration of the mark word
  1372   // occurs in the (oop_since_save_marks_)iterate phase.
  1373   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
  1374     // Out of space for allocating spooling buffers;
  1375     // try expanding and allocating spooling buffers.
  1376     if (!expand_and_ensure_spooling_space(promoInfo)) {
  1377       return NULL;
  1380   assert(promoInfo->has_spooling_space(), "Control point invariant");
  1381   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
  1382   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
  1383   if (obj_ptr == NULL) {
  1384      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
  1385      if (obj_ptr == NULL) {
  1386        return NULL;
  1389   oop obj = oop(obj_ptr);
  1390   OrderAccess::storestore();
  1391   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
  1392   assert(!((FreeChunk*)obj_ptr)->isFree(), "Error, block will look free but show wrong size");
  1393   // IMPORTANT: See note on object initialization for CMS above.
  1394   // Otherwise, copy the object.  Here we must be careful to insert the
  1395   // klass pointer last, since this marks the block as an allocated object.
  1396   // Except with compressed oops it's the mark word.
  1397   HeapWord* old_ptr = (HeapWord*)old;
  1398   // Restore the mark word copied above.
  1399   obj->set_mark(m);
  1400   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
  1401   assert(!((FreeChunk*)obj_ptr)->isFree(), "Error, block will look free but show wrong size");
  1402   OrderAccess::storestore();
  1404   if (UseCompressedOops) {
  1405     // Copy gap missed by (aligned) header size calculation below
  1406     obj->set_klass_gap(old->klass_gap());
  1408   if (word_sz > (size_t)oopDesc::header_size()) {
  1409     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
  1410                                  obj_ptr + oopDesc::header_size(),
  1411                                  word_sz - oopDesc::header_size());
  1414   // Now we can track the promoted object, if necessary.  We take care
  1415   // to delay the transition from uninitialized to full object
  1416   // (i.e., insertion of klass pointer) until after, so that it
  1417   // atomically becomes a promoted object.
  1418   if (promoInfo->tracking()) {
  1419     promoInfo->track((PromotedObject*)obj, old->klass());
  1421   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
  1422   assert(!((FreeChunk*)obj_ptr)->isFree(), "Error, block will look free but show wrong size");
  1423   assert(old->is_oop(), "Will use and dereference old klass ptr below");
  1425   // Finally, install the klass pointer (this should be volatile).
  1426   OrderAccess::storestore();
  1427   obj->set_klass(old->klass());
  1428   // We should now be able to calculate the right size for this object
  1429   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
  1431   collector()->promoted(true,          // parallel
  1432                         obj_ptr, old->is_objArray(), word_sz);
  1434   NOT_PRODUCT(
  1435     Atomic::inc_ptr(&_numObjectsPromoted);
  1436     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
  1439   return obj;
  1442 void
  1443 ConcurrentMarkSweepGeneration::
  1444 par_promote_alloc_undo(int thread_num,
  1445                        HeapWord* obj, size_t word_sz) {
  1446   // CMS does not support promotion undo.
  1447   ShouldNotReachHere();
  1450 void
  1451 ConcurrentMarkSweepGeneration::
  1452 par_promote_alloc_done(int thread_num) {
  1453   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1454   ps->lab.retire(thread_num);
  1457 void
  1458 ConcurrentMarkSweepGeneration::
  1459 par_oop_since_save_marks_iterate_done(int thread_num) {
  1460   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1461   ParScanWithoutBarrierClosure* dummy_cl = NULL;
  1462   ps->promo.promoted_oops_iterate_nv(dummy_cl);
  1465 // XXXPERM
  1466 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
  1467                                                    size_t size,
  1468                                                    bool   tlab)
  1470   // We allow a STW collection only if a full
  1471   // collection was requested.
  1472   return full || should_allocate(size, tlab); // FIX ME !!!
  1473   // This and promotion failure handling are connected at the
  1474   // hip and should be fixed by untying them.
  1477 bool CMSCollector::shouldConcurrentCollect() {
  1478   if (_full_gc_requested) {
  1479     if (Verbose && PrintGCDetails) {
  1480       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
  1481                              " gc request (or gc_locker)");
  1483     return true;
  1486   // For debugging purposes, change the type of collection.
  1487   // If the rotation is not on the concurrent collection
  1488   // type, don't start a concurrent collection.
  1489   NOT_PRODUCT(
  1490     if (RotateCMSCollectionTypes &&
  1491         (_cmsGen->debug_collection_type() !=
  1492           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
  1493       assert(_cmsGen->debug_collection_type() !=
  1494         ConcurrentMarkSweepGeneration::Unknown_collection_type,
  1495         "Bad cms collection type");
  1496       return false;
  1500   FreelistLocker x(this);
  1501   // ------------------------------------------------------------------
  1502   // Print out lots of information which affects the initiation of
  1503   // a collection.
  1504   if (PrintCMSInitiationStatistics && stats().valid()) {
  1505     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
  1506     gclog_or_tty->stamp();
  1507     gclog_or_tty->print_cr("");
  1508     stats().print_on(gclog_or_tty);
  1509     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
  1510       stats().time_until_cms_gen_full());
  1511     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
  1512     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
  1513                            _cmsGen->contiguous_available());
  1514     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
  1515     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
  1516     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
  1517     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
  1518     gclog_or_tty->print_cr("initiatingPermOccupancy=%3.7f", _permGen->initiating_occupancy());
  1520   // ------------------------------------------------------------------
  1522   // If the estimated time to complete a cms collection (cms_duration())
  1523   // is less than the estimated time remaining until the cms generation
  1524   // is full, start a collection.
  1525   if (!UseCMSInitiatingOccupancyOnly) {
  1526     if (stats().valid()) {
  1527       if (stats().time_until_cms_start() == 0.0) {
  1528         return true;
  1530     } else {
  1531       // We want to conservatively collect somewhat early in order
  1532       // to try and "bootstrap" our CMS/promotion statistics;
  1533       // this branch will not fire after the first successful CMS
  1534       // collection because the stats should then be valid.
  1535       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
  1536         if (Verbose && PrintGCDetails) {
  1537           gclog_or_tty->print_cr(
  1538             " CMSCollector: collect for bootstrapping statistics:"
  1539             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
  1540             _bootstrap_occupancy);
  1542         return true;
  1547   // Otherwise, we start a collection cycle if either the perm gen or
  1548   // old gen want a collection cycle started. Each may use
  1549   // an appropriate criterion for making this decision.
  1550   // XXX We need to make sure that the gen expansion
  1551   // criterion dovetails well with this. XXX NEED TO FIX THIS
  1552   if (_cmsGen->should_concurrent_collect()) {
  1553     if (Verbose && PrintGCDetails) {
  1554       gclog_or_tty->print_cr("CMS old gen initiated");
  1556     return true;
  1559   // We start a collection if we believe an incremental collection may fail;
  1560   // this is not likely to be productive in practice because it's probably too
  1561   // late anyway.
  1562   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1563   assert(gch->collector_policy()->is_two_generation_policy(),
  1564          "You may want to check the correctness of the following");
  1565   if (gch->incremental_collection_will_fail()) {
  1566     if (PrintGCDetails && Verbose) {
  1567       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
  1569     return true;
  1572   if (CMSClassUnloadingEnabled && _permGen->should_concurrent_collect()) {
  1573     bool res = update_should_unload_classes();
  1574     if (res) {
  1575       if (Verbose && PrintGCDetails) {
  1576         gclog_or_tty->print_cr("CMS perm gen initiated");
  1578       return true;
  1581   return false;
  1584 // Clear _expansion_cause fields of constituent generations
  1585 void CMSCollector::clear_expansion_cause() {
  1586   _cmsGen->clear_expansion_cause();
  1587   _permGen->clear_expansion_cause();
  1590 // We should be conservative in starting a collection cycle.  To
  1591 // start too eagerly runs the risk of collecting too often in the
  1592 // extreme.  To collect too rarely falls back on full collections,
  1593 // which works, even if not optimum in terms of concurrent work.
  1594 // As a work around for too eagerly collecting, use the flag
  1595 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
  1596 // giving the user an easily understandable way of controlling the
  1597 // collections.
  1598 // We want to start a new collection cycle if any of the following
  1599 // conditions hold:
  1600 // . our current occupancy exceeds the configured initiating occupancy
  1601 //   for this generation, or
  1602 // . we recently needed to expand this space and have not, since that
  1603 //   expansion, done a collection of this generation, or
  1604 // . the underlying space believes that it may be a good idea to initiate
  1605 //   a concurrent collection (this may be based on criteria such as the
  1606 //   following: the space uses linear allocation and linear allocation is
  1607 //   going to fail, or there is believed to be excessive fragmentation in
  1608 //   the generation, etc... or ...
  1609 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
  1610 //   the case of the old generation, not the perm generation; see CR 6543076):
  1611 //   we may be approaching a point at which allocation requests may fail because
  1612 //   we will be out of sufficient free space given allocation rate estimates.]
  1613 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
  1615   assert_lock_strong(freelistLock());
  1616   if (occupancy() > initiating_occupancy()) {
  1617     if (PrintGCDetails && Verbose) {
  1618       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
  1619         short_name(), occupancy(), initiating_occupancy());
  1621     return true;
  1623   if (UseCMSInitiatingOccupancyOnly) {
  1624     return false;
  1626   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
  1627     if (PrintGCDetails && Verbose) {
  1628       gclog_or_tty->print(" %s: collect because expanded for allocation ",
  1629         short_name());
  1631     return true;
  1633   if (_cmsSpace->should_concurrent_collect()) {
  1634     if (PrintGCDetails && Verbose) {
  1635       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
  1636         short_name());
  1638     return true;
  1640   return false;
  1643 void ConcurrentMarkSweepGeneration::collect(bool   full,
  1644                                             bool   clear_all_soft_refs,
  1645                                             size_t size,
  1646                                             bool   tlab)
  1648   collector()->collect(full, clear_all_soft_refs, size, tlab);
  1651 void CMSCollector::collect(bool   full,
  1652                            bool   clear_all_soft_refs,
  1653                            size_t size,
  1654                            bool   tlab)
  1656   if (!UseCMSCollectionPassing && _collectorState > Idling) {
  1657     // For debugging purposes skip the collection if the state
  1658     // is not currently idle
  1659     if (TraceCMSState) {
  1660       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
  1661         Thread::current(), full, _collectorState);
  1663     return;
  1666   // The following "if" branch is present for defensive reasons.
  1667   // In the current uses of this interface, it can be replaced with:
  1668   // assert(!GC_locker.is_active(), "Can't be called otherwise");
  1669   // But I am not placing that assert here to allow future
  1670   // generality in invoking this interface.
  1671   if (GC_locker::is_active()) {
  1672     // A consistency test for GC_locker
  1673     assert(GC_locker::needs_gc(), "Should have been set already");
  1674     // Skip this foreground collection, instead
  1675     // expanding the heap if necessary.
  1676     // Need the free list locks for the call to free() in compute_new_size()
  1677     compute_new_size();
  1678     return;
  1680   acquire_control_and_collect(full, clear_all_soft_refs);
  1681   _full_gcs_since_conc_gc++;
  1685 void CMSCollector::request_full_gc(unsigned int full_gc_count) {
  1686   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1687   unsigned int gc_count = gch->total_full_collections();
  1688   if (gc_count == full_gc_count) {
  1689     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
  1690     _full_gc_requested = true;
  1691     CGC_lock->notify();   // nudge CMS thread
  1696 // The foreground and background collectors need to coordinate in order
  1697 // to make sure that they do not mutually interfere with CMS collections.
  1698 // When a background collection is active,
  1699 // the foreground collector may need to take over (preempt) and
  1700 // synchronously complete an ongoing collection. Depending on the
  1701 // frequency of the background collections and the heap usage
  1702 // of the application, this preemption can be seldom or frequent.
  1703 // There are only certain
  1704 // points in the background collection that the "collection-baton"
  1705 // can be passed to the foreground collector.
  1706 //
  1707 // The foreground collector will wait for the baton before
  1708 // starting any part of the collection.  The foreground collector
  1709 // will only wait at one location.
  1710 //
  1711 // The background collector will yield the baton before starting a new
  1712 // phase of the collection (e.g., before initial marking, marking from roots,
  1713 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
  1714 // of the loop which switches the phases. The background collector does some
  1715 // of the phases (initial mark, final re-mark) with the world stopped.
  1716 // Because of locking involved in stopping the world,
  1717 // the foreground collector should not block waiting for the background
  1718 // collector when it is doing a stop-the-world phase.  The background
  1719 // collector will yield the baton at an additional point just before
  1720 // it enters a stop-the-world phase.  Once the world is stopped, the
  1721 // background collector checks the phase of the collection.  If the
  1722 // phase has not changed, it proceeds with the collection.  If the
  1723 // phase has changed, it skips that phase of the collection.  See
  1724 // the comments on the use of the Heap_lock in collect_in_background().
  1725 //
  1726 // Variable used in baton passing.
  1727 //   _foregroundGCIsActive - Set to true by the foreground collector when
  1728 //      it wants the baton.  The foreground clears it when it has finished
  1729 //      the collection.
  1730 //   _foregroundGCShouldWait - Set to true by the background collector
  1731 //        when it is running.  The foreground collector waits while
  1732 //      _foregroundGCShouldWait is true.
  1733 //  CGC_lock - monitor used to protect access to the above variables
  1734 //      and to notify the foreground and background collectors.
  1735 //  _collectorState - current state of the CMS collection.
  1736 //
  1737 // The foreground collector
  1738 //   acquires the CGC_lock
  1739 //   sets _foregroundGCIsActive
  1740 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
  1741 //     various locks acquired in preparation for the collection
  1742 //     are released so as not to block the background collector
  1743 //     that is in the midst of a collection
  1744 //   proceeds with the collection
  1745 //   clears _foregroundGCIsActive
  1746 //   returns
  1747 //
  1748 // The background collector in a loop iterating on the phases of the
  1749 //      collection
  1750 //   acquires the CGC_lock
  1751 //   sets _foregroundGCShouldWait
  1752 //   if _foregroundGCIsActive is set
  1753 //     clears _foregroundGCShouldWait, notifies _CGC_lock
  1754 //     waits on _CGC_lock for _foregroundGCIsActive to become false
  1755 //     and exits the loop.
  1756 //   otherwise
  1757 //     proceed with that phase of the collection
  1758 //     if the phase is a stop-the-world phase,
  1759 //       yield the baton once more just before enqueueing
  1760 //       the stop-world CMS operation (executed by the VM thread).
  1761 //   returns after all phases of the collection are done
  1762 //
  1764 void CMSCollector::acquire_control_and_collect(bool full,
  1765         bool clear_all_soft_refs) {
  1766   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1767   assert(!Thread::current()->is_ConcurrentGC_thread(),
  1768          "shouldn't try to acquire control from self!");
  1770   // Start the protocol for acquiring control of the
  1771   // collection from the background collector (aka CMS thread).
  1772   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1773          "VM thread should have CMS token");
  1774   // Remember the possibly interrupted state of an ongoing
  1775   // concurrent collection
  1776   CollectorState first_state = _collectorState;
  1778   // Signal to a possibly ongoing concurrent collection that
  1779   // we want to do a foreground collection.
  1780   _foregroundGCIsActive = true;
  1782   // Disable incremental mode during a foreground collection.
  1783   ICMSDisabler icms_disabler;
  1785   // release locks and wait for a notify from the background collector
  1786   // releasing the locks in only necessary for phases which
  1787   // do yields to improve the granularity of the collection.
  1788   assert_lock_strong(bitMapLock());
  1789   // We need to lock the Free list lock for the space that we are
  1790   // currently collecting.
  1791   assert(haveFreelistLocks(), "Must be holding free list locks");
  1792   bitMapLock()->unlock();
  1793   releaseFreelistLocks();
  1795     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  1796     if (_foregroundGCShouldWait) {
  1797       // We are going to be waiting for action for the CMS thread;
  1798       // it had better not be gone (for instance at shutdown)!
  1799       assert(ConcurrentMarkSweepThread::cmst() != NULL,
  1800              "CMS thread must be running");
  1801       // Wait here until the background collector gives us the go-ahead
  1802       ConcurrentMarkSweepThread::clear_CMS_flag(
  1803         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
  1804       // Get a possibly blocked CMS thread going:
  1805       //   Note that we set _foregroundGCIsActive true above,
  1806       //   without protection of the CGC_lock.
  1807       CGC_lock->notify();
  1808       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
  1809              "Possible deadlock");
  1810       while (_foregroundGCShouldWait) {
  1811         // wait for notification
  1812         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  1813         // Possibility of delay/starvation here, since CMS token does
  1814         // not know to give priority to VM thread? Actually, i think
  1815         // there wouldn't be any delay/starvation, but the proof of
  1816         // that "fact" (?) appears non-trivial. XXX 20011219YSR
  1818       ConcurrentMarkSweepThread::set_CMS_flag(
  1819         ConcurrentMarkSweepThread::CMS_vm_has_token);
  1822   // The CMS_token is already held.  Get back the other locks.
  1823   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1824          "VM thread should have CMS token");
  1825   getFreelistLocks();
  1826   bitMapLock()->lock_without_safepoint_check();
  1827   if (TraceCMSState) {
  1828     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
  1829       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
  1830     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
  1833   // Check if we need to do a compaction, or if not, whether
  1834   // we need to start the mark-sweep from scratch.
  1835   bool should_compact    = false;
  1836   bool should_start_over = false;
  1837   decide_foreground_collection_type(clear_all_soft_refs,
  1838     &should_compact, &should_start_over);
  1840 NOT_PRODUCT(
  1841   if (RotateCMSCollectionTypes) {
  1842     if (_cmsGen->debug_collection_type() ==
  1843         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
  1844       should_compact = true;
  1845     } else if (_cmsGen->debug_collection_type() ==
  1846                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
  1847       should_compact = false;
  1852   if (PrintGCDetails && first_state > Idling) {
  1853     GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
  1854     if (GCCause::is_user_requested_gc(cause) ||
  1855         GCCause::is_serviceability_requested_gc(cause)) {
  1856       gclog_or_tty->print(" (concurrent mode interrupted)");
  1857     } else {
  1858       gclog_or_tty->print(" (concurrent mode failure)");
  1862   if (should_compact) {
  1863     // If the collection is being acquired from the background
  1864     // collector, there may be references on the discovered
  1865     // references lists that have NULL referents (being those
  1866     // that were concurrently cleared by a mutator) or
  1867     // that are no longer active (having been enqueued concurrently
  1868     // by the mutator).
  1869     // Scrub the list of those references because Mark-Sweep-Compact
  1870     // code assumes referents are not NULL and that all discovered
  1871     // Reference objects are active.
  1872     ref_processor()->clean_up_discovered_references();
  1874     do_compaction_work(clear_all_soft_refs);
  1876     // Has the GC time limit been exceeded?
  1877     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
  1878     size_t max_eden_size = young_gen->max_capacity() -
  1879                            young_gen->to()->capacity() -
  1880                            young_gen->from()->capacity();
  1881     GenCollectedHeap* gch = GenCollectedHeap::heap();
  1882     GCCause::Cause gc_cause = gch->gc_cause();
  1883     size_policy()->check_gc_overhead_limit(_young_gen->used(),
  1884                                            young_gen->eden()->used(),
  1885                                            _cmsGen->max_capacity(),
  1886                                            max_eden_size,
  1887                                            full,
  1888                                            gc_cause,
  1889                                            gch->collector_policy());
  1890   } else {
  1891     do_mark_sweep_work(clear_all_soft_refs, first_state,
  1892       should_start_over);
  1894   // Reset the expansion cause, now that we just completed
  1895   // a collection cycle.
  1896   clear_expansion_cause();
  1897   _foregroundGCIsActive = false;
  1898   return;
  1901 // Resize the perm generation and the tenured generation
  1902 // after obtaining the free list locks for the
  1903 // two generations.
  1904 void CMSCollector::compute_new_size() {
  1905   assert_locked_or_safepoint(Heap_lock);
  1906   FreelistLocker z(this);
  1907   _permGen->compute_new_size();
  1908   _cmsGen->compute_new_size();
  1911 // A work method used by foreground collection to determine
  1912 // what type of collection (compacting or not, continuing or fresh)
  1913 // it should do.
  1914 // NOTE: the intent is to make UseCMSCompactAtFullCollection
  1915 // and CMSCompactWhenClearAllSoftRefs the default in the future
  1916 // and do away with the flags after a suitable period.
  1917 void CMSCollector::decide_foreground_collection_type(
  1918   bool clear_all_soft_refs, bool* should_compact,
  1919   bool* should_start_over) {
  1920   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
  1921   // flag is set, and we have either requested a System.gc() or
  1922   // the number of full gc's since the last concurrent cycle
  1923   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
  1924   // or if an incremental collection has failed
  1925   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1926   assert(gch->collector_policy()->is_two_generation_policy(),
  1927          "You may want to check the correctness of the following");
  1928   // Inform cms gen if this was due to partial collection failing.
  1929   // The CMS gen may use this fact to determine its expansion policy.
  1930   if (gch->incremental_collection_will_fail()) {
  1931     assert(!_cmsGen->incremental_collection_failed(),
  1932            "Should have been noticed, reacted to and cleared");
  1933     _cmsGen->set_incremental_collection_failed();
  1935   *should_compact =
  1936     UseCMSCompactAtFullCollection &&
  1937     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
  1938      GCCause::is_user_requested_gc(gch->gc_cause()) ||
  1939      gch->incremental_collection_will_fail());
  1940   *should_start_over = false;
  1941   if (clear_all_soft_refs && !*should_compact) {
  1942     // We are about to do a last ditch collection attempt
  1943     // so it would normally make sense to do a compaction
  1944     // to reclaim as much space as possible.
  1945     if (CMSCompactWhenClearAllSoftRefs) {
  1946       // Default: The rationale is that in this case either
  1947       // we are past the final marking phase, in which case
  1948       // we'd have to start over, or so little has been done
  1949       // that there's little point in saving that work. Compaction
  1950       // appears to be the sensible choice in either case.
  1951       *should_compact = true;
  1952     } else {
  1953       // We have been asked to clear all soft refs, but not to
  1954       // compact. Make sure that we aren't past the final checkpoint
  1955       // phase, for that is where we process soft refs. If we are already
  1956       // past that phase, we'll need to redo the refs discovery phase and
  1957       // if necessary clear soft refs that weren't previously
  1958       // cleared. We do so by remembering the phase in which
  1959       // we came in, and if we are past the refs processing
  1960       // phase, we'll choose to just redo the mark-sweep
  1961       // collection from scratch.
  1962       if (_collectorState > FinalMarking) {
  1963         // We are past the refs processing phase;
  1964         // start over and do a fresh synchronous CMS cycle
  1965         _collectorState = Resetting; // skip to reset to start new cycle
  1966         reset(false /* == !asynch */);
  1967         *should_start_over = true;
  1968       } // else we can continue a possibly ongoing current cycle
  1973 // A work method used by the foreground collector to do
  1974 // a mark-sweep-compact.
  1975 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
  1976   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1977   TraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, gclog_or_tty);
  1978   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
  1979     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
  1980       "collections passed to foreground collector", _full_gcs_since_conc_gc);
  1983   // Sample collection interval time and reset for collection pause.
  1984   if (UseAdaptiveSizePolicy) {
  1985     size_policy()->msc_collection_begin();
  1988   // Temporarily widen the span of the weak reference processing to
  1989   // the entire heap.
  1990   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
  1991   ReferenceProcessorSpanMutator x(ref_processor(), new_span);
  1993   // Temporarily, clear the "is_alive_non_header" field of the
  1994   // reference processor.
  1995   ReferenceProcessorIsAliveMutator y(ref_processor(), NULL);
  1997   // Temporarily make reference _processing_ single threaded (non-MT).
  1998   ReferenceProcessorMTProcMutator z(ref_processor(), false);
  2000   // Temporarily make refs discovery atomic
  2001   ReferenceProcessorAtomicMutator w(ref_processor(), true);
  2003   ref_processor()->set_enqueuing_is_done(false);
  2004   ref_processor()->enable_discovery();
  2005   ref_processor()->setup_policy(clear_all_soft_refs);
  2006   // If an asynchronous collection finishes, the _modUnionTable is
  2007   // all clear.  If we are assuming the collection from an asynchronous
  2008   // collection, clear the _modUnionTable.
  2009   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
  2010     "_modUnionTable should be clear if the baton was not passed");
  2011   _modUnionTable.clear_all();
  2013   // We must adjust the allocation statistics being maintained
  2014   // in the free list space. We do so by reading and clearing
  2015   // the sweep timer and updating the block flux rate estimates below.
  2016   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
  2017   if (_inter_sweep_timer.is_active()) {
  2018     _inter_sweep_timer.stop();
  2019     // Note that we do not use this sample to update the _inter_sweep_estimate.
  2020     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
  2021                                             _inter_sweep_estimate.padded_average(),
  2022                                             _intra_sweep_estimate.padded_average());
  2026     TraceCMSMemoryManagerStats();
  2028   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
  2029     ref_processor(), clear_all_soft_refs);
  2030   #ifdef ASSERT
  2031     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
  2032     size_t free_size = cms_space->free();
  2033     assert(free_size ==
  2034            pointer_delta(cms_space->end(), cms_space->compaction_top())
  2035            * HeapWordSize,
  2036       "All the free space should be compacted into one chunk at top");
  2037     assert(cms_space->dictionary()->totalChunkSize(
  2038                                       debug_only(cms_space->freelistLock())) == 0 ||
  2039            cms_space->totalSizeInIndexedFreeLists() == 0,
  2040       "All the free space should be in a single chunk");
  2041     size_t num = cms_space->totalCount();
  2042     assert((free_size == 0 && num == 0) ||
  2043            (free_size > 0  && (num == 1 || num == 2)),
  2044          "There should be at most 2 free chunks after compaction");
  2045   #endif // ASSERT
  2046   _collectorState = Resetting;
  2047   assert(_restart_addr == NULL,
  2048          "Should have been NULL'd before baton was passed");
  2049   reset(false /* == !asynch */);
  2050   _cmsGen->reset_after_compaction();
  2051   _concurrent_cycles_since_last_unload = 0;
  2053   if (verifying() && !should_unload_classes()) {
  2054     perm_gen_verify_bit_map()->clear_all();
  2057   // Clear any data recorded in the PLAB chunk arrays.
  2058   if (_survivor_plab_array != NULL) {
  2059     reset_survivor_plab_arrays();
  2062   // Adjust the per-size allocation stats for the next epoch.
  2063   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
  2064   // Restart the "inter sweep timer" for the next epoch.
  2065   _inter_sweep_timer.reset();
  2066   _inter_sweep_timer.start();
  2068   // Sample collection pause time and reset for collection interval.
  2069   if (UseAdaptiveSizePolicy) {
  2070     size_policy()->msc_collection_end(gch->gc_cause());
  2073   // For a mark-sweep-compact, compute_new_size() will be called
  2074   // in the heap's do_collection() method.
  2077 // A work method used by the foreground collector to do
  2078 // a mark-sweep, after taking over from a possibly on-going
  2079 // concurrent mark-sweep collection.
  2080 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
  2081   CollectorState first_state, bool should_start_over) {
  2082   if (PrintGC && Verbose) {
  2083     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
  2084       "collector with count %d",
  2085       _full_gcs_since_conc_gc);
  2087   switch (_collectorState) {
  2088     case Idling:
  2089       if (first_state == Idling || should_start_over) {
  2090         // The background GC was not active, or should
  2091         // restarted from scratch;  start the cycle.
  2092         _collectorState = InitialMarking;
  2094       // If first_state was not Idling, then a background GC
  2095       // was in progress and has now finished.  No need to do it
  2096       // again.  Leave the state as Idling.
  2097       break;
  2098     case Precleaning:
  2099       // In the foreground case don't do the precleaning since
  2100       // it is not done concurrently and there is extra work
  2101       // required.
  2102       _collectorState = FinalMarking;
  2104   if (PrintGCDetails &&
  2105       (_collectorState > Idling ||
  2106        !GCCause::is_user_requested_gc(GenCollectedHeap::heap()->gc_cause()))) {
  2107     gclog_or_tty->print(" (concurrent mode failure)");
  2109   collect_in_foreground(clear_all_soft_refs);
  2111   // For a mark-sweep, compute_new_size() will be called
  2112   // in the heap's do_collection() method.
  2116 void CMSCollector::getFreelistLocks() const {
  2117   // Get locks for all free lists in all generations that this
  2118   // collector is responsible for
  2119   _cmsGen->freelistLock()->lock_without_safepoint_check();
  2120   _permGen->freelistLock()->lock_without_safepoint_check();
  2123 void CMSCollector::releaseFreelistLocks() const {
  2124   // Release locks for all free lists in all generations that this
  2125   // collector is responsible for
  2126   _cmsGen->freelistLock()->unlock();
  2127   _permGen->freelistLock()->unlock();
  2130 bool CMSCollector::haveFreelistLocks() const {
  2131   // Check locks for all free lists in all generations that this
  2132   // collector is responsible for
  2133   assert_lock_strong(_cmsGen->freelistLock());
  2134   assert_lock_strong(_permGen->freelistLock());
  2135   PRODUCT_ONLY(ShouldNotReachHere());
  2136   return true;
  2139 // A utility class that is used by the CMS collector to
  2140 // temporarily "release" the foreground collector from its
  2141 // usual obligation to wait for the background collector to
  2142 // complete an ongoing phase before proceeding.
  2143 class ReleaseForegroundGC: public StackObj {
  2144  private:
  2145   CMSCollector* _c;
  2146  public:
  2147   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
  2148     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
  2149     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2150     // allow a potentially blocked foreground collector to proceed
  2151     _c->_foregroundGCShouldWait = false;
  2152     if (_c->_foregroundGCIsActive) {
  2153       CGC_lock->notify();
  2155     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2156            "Possible deadlock");
  2159   ~ReleaseForegroundGC() {
  2160     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
  2161     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2162     _c->_foregroundGCShouldWait = true;
  2164 };
  2166 // There are separate collect_in_background and collect_in_foreground because of
  2167 // the different locking requirements of the background collector and the
  2168 // foreground collector.  There was originally an attempt to share
  2169 // one "collect" method between the background collector and the foreground
  2170 // collector but the if-then-else required made it cleaner to have
  2171 // separate methods.
  2172 void CMSCollector::collect_in_background(bool clear_all_soft_refs) {
  2173   assert(Thread::current()->is_ConcurrentGC_thread(),
  2174     "A CMS asynchronous collection is only allowed on a CMS thread.");
  2176   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2178     bool safepoint_check = Mutex::_no_safepoint_check_flag;
  2179     MutexLockerEx hl(Heap_lock, safepoint_check);
  2180     FreelistLocker fll(this);
  2181     MutexLockerEx x(CGC_lock, safepoint_check);
  2182     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
  2183       // The foreground collector is active or we're
  2184       // not using asynchronous collections.  Skip this
  2185       // background collection.
  2186       assert(!_foregroundGCShouldWait, "Should be clear");
  2187       return;
  2188     } else {
  2189       assert(_collectorState == Idling, "Should be idling before start.");
  2190       _collectorState = InitialMarking;
  2191       // Reset the expansion cause, now that we are about to begin
  2192       // a new cycle.
  2193       clear_expansion_cause();
  2195     // Decide if we want to enable class unloading as part of the
  2196     // ensuing concurrent GC cycle.
  2197     update_should_unload_classes();
  2198     _full_gc_requested = false;           // acks all outstanding full gc requests
  2199     // Signal that we are about to start a collection
  2200     gch->increment_total_full_collections();  // ... starting a collection cycle
  2201     _collection_count_start = gch->total_full_collections();
  2204   // Used for PrintGC
  2205   size_t prev_used;
  2206   if (PrintGC && Verbose) {
  2207     prev_used = _cmsGen->used(); // XXXPERM
  2210   // The change of the collection state is normally done at this level;
  2211   // the exceptions are phases that are executed while the world is
  2212   // stopped.  For those phases the change of state is done while the
  2213   // world is stopped.  For baton passing purposes this allows the
  2214   // background collector to finish the phase and change state atomically.
  2215   // The foreground collector cannot wait on a phase that is done
  2216   // while the world is stopped because the foreground collector already
  2217   // has the world stopped and would deadlock.
  2218   while (_collectorState != Idling) {
  2219     if (TraceCMSState) {
  2220       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2221         Thread::current(), _collectorState);
  2223     // The foreground collector
  2224     //   holds the Heap_lock throughout its collection.
  2225     //   holds the CMS token (but not the lock)
  2226     //     except while it is waiting for the background collector to yield.
  2227     //
  2228     // The foreground collector should be blocked (not for long)
  2229     //   if the background collector is about to start a phase
  2230     //   executed with world stopped.  If the background
  2231     //   collector has already started such a phase, the
  2232     //   foreground collector is blocked waiting for the
  2233     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
  2234     //   are executed in the VM thread.
  2235     //
  2236     // The locking order is
  2237     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
  2238     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
  2239     //   CMS token  (claimed in
  2240     //                stop_world_and_do() -->
  2241     //                  safepoint_synchronize() -->
  2242     //                    CMSThread::synchronize())
  2245       // Check if the FG collector wants us to yield.
  2246       CMSTokenSync x(true); // is cms thread
  2247       if (waitForForegroundGC()) {
  2248         // We yielded to a foreground GC, nothing more to be
  2249         // done this round.
  2250         assert(_foregroundGCShouldWait == false, "We set it to false in "
  2251                "waitForForegroundGC()");
  2252         if (TraceCMSState) {
  2253           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2254             " exiting collection CMS state %d",
  2255             Thread::current(), _collectorState);
  2257         return;
  2258       } else {
  2259         // The background collector can run but check to see if the
  2260         // foreground collector has done a collection while the
  2261         // background collector was waiting to get the CGC_lock
  2262         // above.  If yes, break so that _foregroundGCShouldWait
  2263         // is cleared before returning.
  2264         if (_collectorState == Idling) {
  2265           break;
  2270     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
  2271       "should be waiting");
  2273     switch (_collectorState) {
  2274       case InitialMarking:
  2276           ReleaseForegroundGC x(this);
  2277           stats().record_cms_begin();
  2279           VM_CMS_Initial_Mark initial_mark_op(this);
  2280           VMThread::execute(&initial_mark_op);
  2282         // The collector state may be any legal state at this point
  2283         // since the background collector may have yielded to the
  2284         // foreground collector.
  2285         break;
  2286       case Marking:
  2287         // initial marking in checkpointRootsInitialWork has been completed
  2288         if (markFromRoots(true)) { // we were successful
  2289           assert(_collectorState == Precleaning, "Collector state should "
  2290             "have changed");
  2291         } else {
  2292           assert(_foregroundGCIsActive, "Internal state inconsistency");
  2294         break;
  2295       case Precleaning:
  2296         if (UseAdaptiveSizePolicy) {
  2297           size_policy()->concurrent_precleaning_begin();
  2299         // marking from roots in markFromRoots has been completed
  2300         preclean();
  2301         if (UseAdaptiveSizePolicy) {
  2302           size_policy()->concurrent_precleaning_end();
  2304         assert(_collectorState == AbortablePreclean ||
  2305                _collectorState == FinalMarking,
  2306                "Collector state should have changed");
  2307         break;
  2308       case AbortablePreclean:
  2309         if (UseAdaptiveSizePolicy) {
  2310         size_policy()->concurrent_phases_resume();
  2312         abortable_preclean();
  2313         if (UseAdaptiveSizePolicy) {
  2314           size_policy()->concurrent_precleaning_end();
  2316         assert(_collectorState == FinalMarking, "Collector state should "
  2317           "have changed");
  2318         break;
  2319       case FinalMarking:
  2321           ReleaseForegroundGC x(this);
  2323           VM_CMS_Final_Remark final_remark_op(this);
  2324           VMThread::execute(&final_remark_op);
  2326         assert(_foregroundGCShouldWait, "block post-condition");
  2327         break;
  2328       case Sweeping:
  2329         if (UseAdaptiveSizePolicy) {
  2330           size_policy()->concurrent_sweeping_begin();
  2332         // final marking in checkpointRootsFinal has been completed
  2333         sweep(true);
  2334         assert(_collectorState == Resizing, "Collector state change "
  2335           "to Resizing must be done under the free_list_lock");
  2336         _full_gcs_since_conc_gc = 0;
  2338         // Stop the timers for adaptive size policy for the concurrent phases
  2339         if (UseAdaptiveSizePolicy) {
  2340           size_policy()->concurrent_sweeping_end();
  2341           size_policy()->concurrent_phases_end(gch->gc_cause(),
  2342                                              gch->prev_gen(_cmsGen)->capacity(),
  2343                                              _cmsGen->free());
  2346       case Resizing: {
  2347         // Sweeping has been completed...
  2348         // At this point the background collection has completed.
  2349         // Don't move the call to compute_new_size() down
  2350         // into code that might be executed if the background
  2351         // collection was preempted.
  2353           ReleaseForegroundGC x(this);   // unblock FG collection
  2354           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
  2355           CMSTokenSync        z(true);   // not strictly needed.
  2356           if (_collectorState == Resizing) {
  2357             compute_new_size();
  2358             _collectorState = Resetting;
  2359           } else {
  2360             assert(_collectorState == Idling, "The state should only change"
  2361                    " because the foreground collector has finished the collection");
  2364         break;
  2366       case Resetting:
  2367         // CMS heap resizing has been completed
  2368         reset(true);
  2369         assert(_collectorState == Idling, "Collector state should "
  2370           "have changed");
  2371         stats().record_cms_end();
  2372         // Don't move the concurrent_phases_end() and compute_new_size()
  2373         // calls to here because a preempted background collection
  2374         // has it's state set to "Resetting".
  2375         break;
  2376       case Idling:
  2377       default:
  2378         ShouldNotReachHere();
  2379         break;
  2381     if (TraceCMSState) {
  2382       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2383         Thread::current(), _collectorState);
  2385     assert(_foregroundGCShouldWait, "block post-condition");
  2388   // Should this be in gc_epilogue?
  2389   collector_policy()->counters()->update_counters();
  2392     // Clear _foregroundGCShouldWait and, in the event that the
  2393     // foreground collector is waiting, notify it, before
  2394     // returning.
  2395     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2396     _foregroundGCShouldWait = false;
  2397     if (_foregroundGCIsActive) {
  2398       CGC_lock->notify();
  2400     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2401            "Possible deadlock");
  2403   if (TraceCMSState) {
  2404     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2405       " exiting collection CMS state %d",
  2406       Thread::current(), _collectorState);
  2408   if (PrintGC && Verbose) {
  2409     _cmsGen->print_heap_change(prev_used);
  2413 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs) {
  2414   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
  2415          "Foreground collector should be waiting, not executing");
  2416   assert(Thread::current()->is_VM_thread(), "A foreground collection"
  2417     "may only be done by the VM Thread with the world stopped");
  2418   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  2419          "VM thread should have CMS token");
  2421   NOT_PRODUCT(TraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
  2422     true, gclog_or_tty);)
  2423   if (UseAdaptiveSizePolicy) {
  2424     size_policy()->ms_collection_begin();
  2426   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
  2428   HandleMark hm;  // Discard invalid handles created during verification
  2430   if (VerifyBeforeGC &&
  2431       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2432     Universe::verify(true);
  2435   // Snapshot the soft reference policy to be used in this collection cycle.
  2436   ref_processor()->setup_policy(clear_all_soft_refs);
  2438   bool init_mark_was_synchronous = false; // until proven otherwise
  2439   while (_collectorState != Idling) {
  2440     if (TraceCMSState) {
  2441       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2442         Thread::current(), _collectorState);
  2444     switch (_collectorState) {
  2445       case InitialMarking:
  2446         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
  2447         checkpointRootsInitial(false);
  2448         assert(_collectorState == Marking, "Collector state should have changed"
  2449           " within checkpointRootsInitial()");
  2450         break;
  2451       case Marking:
  2452         // initial marking in checkpointRootsInitialWork has been completed
  2453         if (VerifyDuringGC &&
  2454             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2455           gclog_or_tty->print("Verify before initial mark: ");
  2456           Universe::verify(true);
  2459           bool res = markFromRoots(false);
  2460           assert(res && _collectorState == FinalMarking, "Collector state should "
  2461             "have changed");
  2462           break;
  2464       case FinalMarking:
  2465         if (VerifyDuringGC &&
  2466             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2467           gclog_or_tty->print("Verify before re-mark: ");
  2468           Universe::verify(true);
  2470         checkpointRootsFinal(false, clear_all_soft_refs,
  2471                              init_mark_was_synchronous);
  2472         assert(_collectorState == Sweeping, "Collector state should not "
  2473           "have changed within checkpointRootsFinal()");
  2474         break;
  2475       case Sweeping:
  2476         // final marking in checkpointRootsFinal has been completed
  2477         if (VerifyDuringGC &&
  2478             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2479           gclog_or_tty->print("Verify before sweep: ");
  2480           Universe::verify(true);
  2482         sweep(false);
  2483         assert(_collectorState == Resizing, "Incorrect state");
  2484         break;
  2485       case Resizing: {
  2486         // Sweeping has been completed; the actual resize in this case
  2487         // is done separately; nothing to be done in this state.
  2488         _collectorState = Resetting;
  2489         break;
  2491       case Resetting:
  2492         // The heap has been resized.
  2493         if (VerifyDuringGC &&
  2494             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2495           gclog_or_tty->print("Verify before reset: ");
  2496           Universe::verify(true);
  2498         reset(false);
  2499         assert(_collectorState == Idling, "Collector state should "
  2500           "have changed");
  2501         break;
  2502       case Precleaning:
  2503       case AbortablePreclean:
  2504         // Elide the preclean phase
  2505         _collectorState = FinalMarking;
  2506         break;
  2507       default:
  2508         ShouldNotReachHere();
  2510     if (TraceCMSState) {
  2511       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2512         Thread::current(), _collectorState);
  2516   if (UseAdaptiveSizePolicy) {
  2517     GenCollectedHeap* gch = GenCollectedHeap::heap();
  2518     size_policy()->ms_collection_end(gch->gc_cause());
  2521   if (VerifyAfterGC &&
  2522       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2523     Universe::verify(true);
  2525   if (TraceCMSState) {
  2526     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2527       " exiting collection CMS state %d",
  2528       Thread::current(), _collectorState);
  2532 bool CMSCollector::waitForForegroundGC() {
  2533   bool res = false;
  2534   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2535          "CMS thread should have CMS token");
  2536   // Block the foreground collector until the
  2537   // background collectors decides whether to
  2538   // yield.
  2539   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2540   _foregroundGCShouldWait = true;
  2541   if (_foregroundGCIsActive) {
  2542     // The background collector yields to the
  2543     // foreground collector and returns a value
  2544     // indicating that it has yielded.  The foreground
  2545     // collector can proceed.
  2546     res = true;
  2547     _foregroundGCShouldWait = false;
  2548     ConcurrentMarkSweepThread::clear_CMS_flag(
  2549       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2550     ConcurrentMarkSweepThread::set_CMS_flag(
  2551       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2552     // Get a possibly blocked foreground thread going
  2553     CGC_lock->notify();
  2554     if (TraceCMSState) {
  2555       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
  2556         Thread::current(), _collectorState);
  2558     while (_foregroundGCIsActive) {
  2559       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  2561     ConcurrentMarkSweepThread::set_CMS_flag(
  2562       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2563     ConcurrentMarkSweepThread::clear_CMS_flag(
  2564       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2566   if (TraceCMSState) {
  2567     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
  2568       Thread::current(), _collectorState);
  2570   return res;
  2573 // Because of the need to lock the free lists and other structures in
  2574 // the collector, common to all the generations that the collector is
  2575 // collecting, we need the gc_prologues of individual CMS generations
  2576 // delegate to their collector. It may have been simpler had the
  2577 // current infrastructure allowed one to call a prologue on a
  2578 // collector. In the absence of that we have the generation's
  2579 // prologue delegate to the collector, which delegates back
  2580 // some "local" work to a worker method in the individual generations
  2581 // that it's responsible for collecting, while itself doing any
  2582 // work common to all generations it's responsible for. A similar
  2583 // comment applies to the  gc_epilogue()'s.
  2584 // The role of the varaible _between_prologue_and_epilogue is to
  2585 // enforce the invocation protocol.
  2586 void CMSCollector::gc_prologue(bool full) {
  2587   // Call gc_prologue_work() for each CMSGen and PermGen that
  2588   // we are responsible for.
  2590   // The following locking discipline assumes that we are only called
  2591   // when the world is stopped.
  2592   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
  2594   // The CMSCollector prologue must call the gc_prologues for the
  2595   // "generations" (including PermGen if any) that it's responsible
  2596   // for.
  2598   assert(   Thread::current()->is_VM_thread()
  2599          || (   CMSScavengeBeforeRemark
  2600              && Thread::current()->is_ConcurrentGC_thread()),
  2601          "Incorrect thread type for prologue execution");
  2603   if (_between_prologue_and_epilogue) {
  2604     // We have already been invoked; this is a gc_prologue delegation
  2605     // from yet another CMS generation that we are responsible for, just
  2606     // ignore it since all relevant work has already been done.
  2607     return;
  2610   // set a bit saying prologue has been called; cleared in epilogue
  2611   _between_prologue_and_epilogue = true;
  2612   // Claim locks for common data structures, then call gc_prologue_work()
  2613   // for each CMSGen and PermGen that we are responsible for.
  2615   getFreelistLocks();   // gets free list locks on constituent spaces
  2616   bitMapLock()->lock_without_safepoint_check();
  2618   // Should call gc_prologue_work() for all cms gens we are responsible for
  2619   bool registerClosure =    _collectorState >= Marking
  2620                          && _collectorState < Sweeping;
  2621   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
  2622                                                &_modUnionClosurePar
  2623                                                : &_modUnionClosure;
  2624   _cmsGen->gc_prologue_work(full, registerClosure, muc);
  2625   _permGen->gc_prologue_work(full, registerClosure, muc);
  2627   if (!full) {
  2628     stats().record_gc0_begin();
  2632 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
  2633   // Delegate to CMScollector which knows how to coordinate between
  2634   // this and any other CMS generations that it is responsible for
  2635   // collecting.
  2636   collector()->gc_prologue(full);
  2639 // This is a "private" interface for use by this generation's CMSCollector.
  2640 // Not to be called directly by any other entity (for instance,
  2641 // GenCollectedHeap, which calls the "public" gc_prologue method above).
  2642 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
  2643   bool registerClosure, ModUnionClosure* modUnionClosure) {
  2644   assert(!incremental_collection_failed(), "Shouldn't be set yet");
  2645   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
  2646     "Should be NULL");
  2647   if (registerClosure) {
  2648     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
  2650   cmsSpace()->gc_prologue();
  2651   // Clear stat counters
  2652   NOT_PRODUCT(
  2653     assert(_numObjectsPromoted == 0, "check");
  2654     assert(_numWordsPromoted   == 0, "check");
  2655     if (Verbose && PrintGC) {
  2656       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
  2657                           SIZE_FORMAT" bytes concurrently",
  2658       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
  2660     _numObjectsAllocated = 0;
  2661     _numWordsAllocated   = 0;
  2665 void CMSCollector::gc_epilogue(bool full) {
  2666   // The following locking discipline assumes that we are only called
  2667   // when the world is stopped.
  2668   assert(SafepointSynchronize::is_at_safepoint(),
  2669          "world is stopped assumption");
  2671   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
  2672   // if linear allocation blocks need to be appropriately marked to allow the
  2673   // the blocks to be parsable. We also check here whether we need to nudge the
  2674   // CMS collector thread to start a new cycle (if it's not already active).
  2675   assert(   Thread::current()->is_VM_thread()
  2676          || (   CMSScavengeBeforeRemark
  2677              && Thread::current()->is_ConcurrentGC_thread()),
  2678          "Incorrect thread type for epilogue execution");
  2680   if (!_between_prologue_and_epilogue) {
  2681     // We have already been invoked; this is a gc_epilogue delegation
  2682     // from yet another CMS generation that we are responsible for, just
  2683     // ignore it since all relevant work has already been done.
  2684     return;
  2686   assert(haveFreelistLocks(), "must have freelist locks");
  2687   assert_lock_strong(bitMapLock());
  2689   _cmsGen->gc_epilogue_work(full);
  2690   _permGen->gc_epilogue_work(full);
  2692   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
  2693     // in case sampling was not already enabled, enable it
  2694     _start_sampling = true;
  2696   // reset _eden_chunk_array so sampling starts afresh
  2697   _eden_chunk_index = 0;
  2699   size_t cms_used   = _cmsGen->cmsSpace()->used();
  2700   size_t perm_used  = _permGen->cmsSpace()->used();
  2702   // update performance counters - this uses a special version of
  2703   // update_counters() that allows the utilization to be passed as a
  2704   // parameter, avoiding multiple calls to used().
  2705   //
  2706   _cmsGen->update_counters(cms_used);
  2707   _permGen->update_counters(perm_used);
  2709   if (CMSIncrementalMode) {
  2710     icms_update_allocation_limits();
  2713   bitMapLock()->unlock();
  2714   releaseFreelistLocks();
  2716   _between_prologue_and_epilogue = false;  // ready for next cycle
  2719 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
  2720   collector()->gc_epilogue(full);
  2722   // Also reset promotion tracking in par gc thread states.
  2723   if (CollectedHeap::use_parallel_gc_threads()) {
  2724     for (uint i = 0; i < ParallelGCThreads; i++) {
  2725       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
  2730 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
  2731   assert(!incremental_collection_failed(), "Should have been cleared");
  2732   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
  2733   cmsSpace()->gc_epilogue();
  2734     // Print stat counters
  2735   NOT_PRODUCT(
  2736     assert(_numObjectsAllocated == 0, "check");
  2737     assert(_numWordsAllocated == 0, "check");
  2738     if (Verbose && PrintGC) {
  2739       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
  2740                           SIZE_FORMAT" bytes",
  2741                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
  2743     _numObjectsPromoted = 0;
  2744     _numWordsPromoted   = 0;
  2747   if (PrintGC && Verbose) {
  2748     // Call down the chain in contiguous_available needs the freelistLock
  2749     // so print this out before releasing the freeListLock.
  2750     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
  2751                         contiguous_available());
  2755 #ifndef PRODUCT
  2756 bool CMSCollector::have_cms_token() {
  2757   Thread* thr = Thread::current();
  2758   if (thr->is_VM_thread()) {
  2759     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
  2760   } else if (thr->is_ConcurrentGC_thread()) {
  2761     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
  2762   } else if (thr->is_GC_task_thread()) {
  2763     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
  2764            ParGCRareEvent_lock->owned_by_self();
  2766   return false;
  2768 #endif
  2770 // Check reachability of the given heap address in CMS generation,
  2771 // treating all other generations as roots.
  2772 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
  2773   // We could "guarantee" below, rather than assert, but i'll
  2774   // leave these as "asserts" so that an adventurous debugger
  2775   // could try this in the product build provided some subset of
  2776   // the conditions were met, provided they were intersted in the
  2777   // results and knew that the computation below wouldn't interfere
  2778   // with other concurrent computations mutating the structures
  2779   // being read or written.
  2780   assert(SafepointSynchronize::is_at_safepoint(),
  2781          "Else mutations in object graph will make answer suspect");
  2782   assert(have_cms_token(), "Should hold cms token");
  2783   assert(haveFreelistLocks(), "must hold free list locks");
  2784   assert_lock_strong(bitMapLock());
  2786   // Clear the marking bit map array before starting, but, just
  2787   // for kicks, first report if the given address is already marked
  2788   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
  2789                 _markBitMap.isMarked(addr) ? "" : " not");
  2791   if (verify_after_remark()) {
  2792     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2793     bool result = verification_mark_bm()->isMarked(addr);
  2794     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
  2795                            result ? "IS" : "is NOT");
  2796     return result;
  2797   } else {
  2798     gclog_or_tty->print_cr("Could not compute result");
  2799     return false;
  2803 ////////////////////////////////////////////////////////
  2804 // CMS Verification Support
  2805 ////////////////////////////////////////////////////////
  2806 // Following the remark phase, the following invariant
  2807 // should hold -- each object in the CMS heap which is
  2808 // marked in markBitMap() should be marked in the verification_mark_bm().
  2810 class VerifyMarkedClosure: public BitMapClosure {
  2811   CMSBitMap* _marks;
  2812   bool       _failed;
  2814  public:
  2815   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
  2817   bool do_bit(size_t offset) {
  2818     HeapWord* addr = _marks->offsetToHeapWord(offset);
  2819     if (!_marks->isMarked(addr)) {
  2820       oop(addr)->print_on(gclog_or_tty);
  2821       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
  2822       _failed = true;
  2824     return true;
  2827   bool failed() { return _failed; }
  2828 };
  2830 bool CMSCollector::verify_after_remark() {
  2831   gclog_or_tty->print(" [Verifying CMS Marking... ");
  2832   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2833   static bool init = false;
  2835   assert(SafepointSynchronize::is_at_safepoint(),
  2836          "Else mutations in object graph will make answer suspect");
  2837   assert(have_cms_token(),
  2838          "Else there may be mutual interference in use of "
  2839          " verification data structures");
  2840   assert(_collectorState > Marking && _collectorState <= Sweeping,
  2841          "Else marking info checked here may be obsolete");
  2842   assert(haveFreelistLocks(), "must hold free list locks");
  2843   assert_lock_strong(bitMapLock());
  2846   // Allocate marking bit map if not already allocated
  2847   if (!init) { // first time
  2848     if (!verification_mark_bm()->allocate(_span)) {
  2849       return false;
  2851     init = true;
  2854   assert(verification_mark_stack()->isEmpty(), "Should be empty");
  2856   // Turn off refs discovery -- so we will be tracing through refs.
  2857   // This is as intended, because by this time
  2858   // GC must already have cleared any refs that need to be cleared,
  2859   // and traced those that need to be marked; moreover,
  2860   // the marking done here is not going to intefere in any
  2861   // way with the marking information used by GC.
  2862   NoRefDiscovery no_discovery(ref_processor());
  2864   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  2866   // Clear any marks from a previous round
  2867   verification_mark_bm()->clear_all();
  2868   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
  2869   verify_work_stacks_empty();
  2871   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2872   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  2873   // Update the saved marks which may affect the root scans.
  2874   gch->save_marks();
  2876   if (CMSRemarkVerifyVariant == 1) {
  2877     // In this first variant of verification, we complete
  2878     // all marking, then check if the new marks-verctor is
  2879     // a subset of the CMS marks-vector.
  2880     verify_after_remark_work_1();
  2881   } else if (CMSRemarkVerifyVariant == 2) {
  2882     // In this second variant of verification, we flag an error
  2883     // (i.e. an object reachable in the new marks-vector not reachable
  2884     // in the CMS marks-vector) immediately, also indicating the
  2885     // identify of an object (A) that references the unmarked object (B) --
  2886     // presumably, a mutation to A failed to be picked up by preclean/remark?
  2887     verify_after_remark_work_2();
  2888   } else {
  2889     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
  2890             CMSRemarkVerifyVariant);
  2892   gclog_or_tty->print(" done] ");
  2893   return true;
  2896 void CMSCollector::verify_after_remark_work_1() {
  2897   ResourceMark rm;
  2898   HandleMark  hm;
  2899   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2901   // Mark from roots one level into CMS
  2902   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
  2903   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  2905   gch->gen_process_strong_roots(_cmsGen->level(),
  2906                                 true,   // younger gens are roots
  2907                                 true,   // activate StrongRootsScope
  2908                                 true,   // collecting perm gen
  2909                                 SharedHeap::ScanningOption(roots_scanning_options()),
  2910                                 &notOlder,
  2911                                 true,   // walk code active on stacks
  2912                                 NULL);
  2914   // Now mark from the roots
  2915   assert(_revisitStack.isEmpty(), "Should be empty");
  2916   MarkFromRootsClosure markFromRootsClosure(this, _span,
  2917     verification_mark_bm(), verification_mark_stack(), &_revisitStack,
  2918     false /* don't yield */, true /* verifying */);
  2919   assert(_restart_addr == NULL, "Expected pre-condition");
  2920   verification_mark_bm()->iterate(&markFromRootsClosure);
  2921   while (_restart_addr != NULL) {
  2922     // Deal with stack overflow: by restarting at the indicated
  2923     // address.
  2924     HeapWord* ra = _restart_addr;
  2925     markFromRootsClosure.reset(ra);
  2926     _restart_addr = NULL;
  2927     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  2929   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  2930   verify_work_stacks_empty();
  2931   // Should reset the revisit stack above, since no class tree
  2932   // surgery is forthcoming.
  2933   _revisitStack.reset(); // throwing away all contents
  2935   // Marking completed -- now verify that each bit marked in
  2936   // verification_mark_bm() is also marked in markBitMap(); flag all
  2937   // errors by printing corresponding objects.
  2938   VerifyMarkedClosure vcl(markBitMap());
  2939   verification_mark_bm()->iterate(&vcl);
  2940   if (vcl.failed()) {
  2941     gclog_or_tty->print("Verification failed");
  2942     Universe::heap()->print_on(gclog_or_tty);
  2943     fatal("CMS: failed marking verification after remark");
  2947 void CMSCollector::verify_after_remark_work_2() {
  2948   ResourceMark rm;
  2949   HandleMark  hm;
  2950   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2952   // Mark from roots one level into CMS
  2953   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
  2954                                      markBitMap());
  2955   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  2956   gch->gen_process_strong_roots(_cmsGen->level(),
  2957                                 true,   // younger gens are roots
  2958                                 true,   // activate StrongRootsScope
  2959                                 true,   // collecting perm gen
  2960                                 SharedHeap::ScanningOption(roots_scanning_options()),
  2961                                 &notOlder,
  2962                                 true,   // walk code active on stacks
  2963                                 NULL);
  2965   // Now mark from the roots
  2966   assert(_revisitStack.isEmpty(), "Should be empty");
  2967   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
  2968     verification_mark_bm(), markBitMap(), verification_mark_stack());
  2969   assert(_restart_addr == NULL, "Expected pre-condition");
  2970   verification_mark_bm()->iterate(&markFromRootsClosure);
  2971   while (_restart_addr != NULL) {
  2972     // Deal with stack overflow: by restarting at the indicated
  2973     // address.
  2974     HeapWord* ra = _restart_addr;
  2975     markFromRootsClosure.reset(ra);
  2976     _restart_addr = NULL;
  2977     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  2979   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  2980   verify_work_stacks_empty();
  2981   // Should reset the revisit stack above, since no class tree
  2982   // surgery is forthcoming.
  2983   _revisitStack.reset(); // throwing away all contents
  2985   // Marking completed -- now verify that each bit marked in
  2986   // verification_mark_bm() is also marked in markBitMap(); flag all
  2987   // errors by printing corresponding objects.
  2988   VerifyMarkedClosure vcl(markBitMap());
  2989   verification_mark_bm()->iterate(&vcl);
  2990   assert(!vcl.failed(), "Else verification above should not have succeeded");
  2993 void ConcurrentMarkSweepGeneration::save_marks() {
  2994   // delegate to CMS space
  2995   cmsSpace()->save_marks();
  2996   for (uint i = 0; i < ParallelGCThreads; i++) {
  2997     _par_gc_thread_states[i]->promo.startTrackingPromotions();
  3001 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
  3002   return cmsSpace()->no_allocs_since_save_marks();
  3005 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
  3007 void ConcurrentMarkSweepGeneration::                            \
  3008 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
  3009   cl->set_generation(this);                                     \
  3010   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
  3011   cl->reset_generation();                                       \
  3012   save_marks();                                                 \
  3015 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
  3017 void
  3018 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk)
  3020   // Not currently implemented; need to do the following. -- ysr.
  3021   // dld -- I think that is used for some sort of allocation profiler.  So it
  3022   // really means the objects allocated by the mutator since the last
  3023   // GC.  We could potentially implement this cheaply by recording only
  3024   // the direct allocations in a side data structure.
  3025   //
  3026   // I think we probably ought not to be required to support these
  3027   // iterations at any arbitrary point; I think there ought to be some
  3028   // call to enable/disable allocation profiling in a generation/space,
  3029   // and the iterator ought to return the objects allocated in the
  3030   // gen/space since the enable call, or the last iterator call (which
  3031   // will probably be at a GC.)  That way, for gens like CM&S that would
  3032   // require some extra data structure to support this, we only pay the
  3033   // cost when it's in use...
  3034   cmsSpace()->object_iterate_since_last_GC(blk);
  3037 void
  3038 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
  3039   cl->set_generation(this);
  3040   younger_refs_in_space_iterate(_cmsSpace, cl);
  3041   cl->reset_generation();
  3044 void
  3045 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, OopClosure* cl) {
  3046   if (freelistLock()->owned_by_self()) {
  3047     Generation::oop_iterate(mr, cl);
  3048   } else {
  3049     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3050     Generation::oop_iterate(mr, cl);
  3054 void
  3055 ConcurrentMarkSweepGeneration::oop_iterate(OopClosure* cl) {
  3056   if (freelistLock()->owned_by_self()) {
  3057     Generation::oop_iterate(cl);
  3058   } else {
  3059     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3060     Generation::oop_iterate(cl);
  3064 void
  3065 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
  3066   if (freelistLock()->owned_by_self()) {
  3067     Generation::object_iterate(cl);
  3068   } else {
  3069     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3070     Generation::object_iterate(cl);
  3074 void
  3075 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
  3076   if (freelistLock()->owned_by_self()) {
  3077     Generation::safe_object_iterate(cl);
  3078   } else {
  3079     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3080     Generation::safe_object_iterate(cl);
  3084 void
  3085 ConcurrentMarkSweepGeneration::pre_adjust_pointers() {
  3088 void
  3089 ConcurrentMarkSweepGeneration::post_compact() {
  3092 void
  3093 ConcurrentMarkSweepGeneration::prepare_for_verify() {
  3094   // Fix the linear allocation blocks to look like free blocks.
  3096   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3097   // are not called when the heap is verified during universe initialization and
  3098   // at vm shutdown.
  3099   if (freelistLock()->owned_by_self()) {
  3100     cmsSpace()->prepare_for_verify();
  3101   } else {
  3102     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3103     cmsSpace()->prepare_for_verify();
  3107 void
  3108 ConcurrentMarkSweepGeneration::verify(bool allow_dirty /* ignored */) {
  3109   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3110   // are not called when the heap is verified during universe initialization and
  3111   // at vm shutdown.
  3112   if (freelistLock()->owned_by_self()) {
  3113     cmsSpace()->verify(false /* ignored */);
  3114   } else {
  3115     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3116     cmsSpace()->verify(false /* ignored */);
  3120 void CMSCollector::verify(bool allow_dirty /* ignored */) {
  3121   _cmsGen->verify(allow_dirty);
  3122   _permGen->verify(allow_dirty);
  3125 #ifndef PRODUCT
  3126 bool CMSCollector::overflow_list_is_empty() const {
  3127   assert(_num_par_pushes >= 0, "Inconsistency");
  3128   if (_overflow_list == NULL) {
  3129     assert(_num_par_pushes == 0, "Inconsistency");
  3131   return _overflow_list == NULL;
  3134 // The methods verify_work_stacks_empty() and verify_overflow_empty()
  3135 // merely consolidate assertion checks that appear to occur together frequently.
  3136 void CMSCollector::verify_work_stacks_empty() const {
  3137   assert(_markStack.isEmpty(), "Marking stack should be empty");
  3138   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3141 void CMSCollector::verify_overflow_empty() const {
  3142   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3143   assert(no_preserved_marks(), "No preserved marks");
  3145 #endif // PRODUCT
  3147 // Decide if we want to enable class unloading as part of the
  3148 // ensuing concurrent GC cycle. We will collect the perm gen and
  3149 // unload classes if it's the case that:
  3150 // (1) an explicit gc request has been made and the flag
  3151 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
  3152 // (2) (a) class unloading is enabled at the command line, and
  3153 //     (b) (i)   perm gen threshold has been crossed, or
  3154 //         (ii)  old gen is getting really full, or
  3155 //         (iii) the previous N CMS collections did not collect the
  3156 //               perm gen
  3157 // NOTE: Provided there is no change in the state of the heap between
  3158 // calls to this method, it should have idempotent results. Moreover,
  3159 // its results should be monotonically increasing (i.e. going from 0 to 1,
  3160 // but not 1 to 0) between successive calls between which the heap was
  3161 // not collected. For the implementation below, it must thus rely on
  3162 // the property that concurrent_cycles_since_last_unload()
  3163 // will not decrease unless a collection cycle happened and that
  3164 // _permGen->should_concurrent_collect() and _cmsGen->is_too_full() are
  3165 // themselves also monotonic in that sense. See check_monotonicity()
  3166 // below.
  3167 bool CMSCollector::update_should_unload_classes() {
  3168   _should_unload_classes = false;
  3169   // Condition 1 above
  3170   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
  3171     _should_unload_classes = true;
  3172   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
  3173     // Disjuncts 2.b.(i,ii,iii) above
  3174     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
  3175                               CMSClassUnloadingMaxInterval)
  3176                            || _permGen->should_concurrent_collect()
  3177                            || _cmsGen->is_too_full();
  3179   return _should_unload_classes;
  3182 bool ConcurrentMarkSweepGeneration::is_too_full() const {
  3183   bool res = should_concurrent_collect();
  3184   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
  3185   return res;
  3188 void CMSCollector::setup_cms_unloading_and_verification_state() {
  3189   const  bool should_verify =    VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
  3190                              || VerifyBeforeExit;
  3191   const  int  rso           =    SharedHeap::SO_Symbols | SharedHeap::SO_Strings
  3192                              |   SharedHeap::SO_CodeCache;
  3194   if (should_unload_classes()) {   // Should unload classes this cycle
  3195     remove_root_scanning_option(rso);  // Shrink the root set appropriately
  3196     set_verifying(should_verify);    // Set verification state for this cycle
  3197     return;                            // Nothing else needs to be done at this time
  3200   // Not unloading classes this cycle
  3201   assert(!should_unload_classes(), "Inconsitency!");
  3202   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
  3203     // We were not verifying, or we _were_ unloading classes in the last cycle,
  3204     // AND some verification options are enabled this cycle; in this case,
  3205     // we must make sure that the deadness map is allocated if not already so,
  3206     // and cleared (if already allocated previously --
  3207     // CMSBitMap::sizeInBits() is used to determine if it's allocated).
  3208     if (perm_gen_verify_bit_map()->sizeInBits() == 0) {
  3209       if (!perm_gen_verify_bit_map()->allocate(_permGen->reserved())) {
  3210         warning("Failed to allocate permanent generation verification CMS Bit Map;\n"
  3211                 "permanent generation verification disabled");
  3212         return;  // Note that we leave verification disabled, so we'll retry this
  3213                  // allocation next cycle. We _could_ remember this failure
  3214                  // and skip further attempts and permanently disable verification
  3215                  // attempts if that is considered more desirable.
  3217       assert(perm_gen_verify_bit_map()->covers(_permGen->reserved()),
  3218               "_perm_gen_ver_bit_map inconsistency?");
  3219     } else {
  3220       perm_gen_verify_bit_map()->clear_all();
  3222     // Include symbols, strings and code cache elements to prevent their resurrection.
  3223     add_root_scanning_option(rso);
  3224     set_verifying(true);
  3225   } else if (verifying() && !should_verify) {
  3226     // We were verifying, but some verification flags got disabled.
  3227     set_verifying(false);
  3228     // Exclude symbols, strings and code cache elements from root scanning to
  3229     // reduce IM and RM pauses.
  3230     remove_root_scanning_option(rso);
  3235 #ifndef PRODUCT
  3236 HeapWord* CMSCollector::block_start(const void* p) const {
  3237   const HeapWord* addr = (HeapWord*)p;
  3238   if (_span.contains(p)) {
  3239     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
  3240       return _cmsGen->cmsSpace()->block_start(p);
  3241     } else {
  3242       assert(_permGen->cmsSpace()->is_in_reserved(addr),
  3243              "Inconsistent _span?");
  3244       return _permGen->cmsSpace()->block_start(p);
  3247   return NULL;
  3249 #endif
  3251 HeapWord*
  3252 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
  3253                                                    bool   tlab,
  3254                                                    bool   parallel) {
  3255   CMSSynchronousYieldRequest yr;
  3256   assert(!tlab, "Can't deal with TLAB allocation");
  3257   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3258   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
  3259     CMSExpansionCause::_satisfy_allocation);
  3260   if (GCExpandToAllocateDelayMillis > 0) {
  3261     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3263   return have_lock_and_allocate(word_size, tlab);
  3266 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
  3267 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
  3268 // to CardGeneration and share it...
  3269 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
  3270   return CardGeneration::expand(bytes, expand_bytes);
  3273 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
  3274   CMSExpansionCause::Cause cause)
  3277   bool success = expand(bytes, expand_bytes);
  3279   // remember why we expanded; this information is used
  3280   // by shouldConcurrentCollect() when making decisions on whether to start
  3281   // a new CMS cycle.
  3282   if (success) {
  3283     set_expansion_cause(cause);
  3284     if (PrintGCDetails && Verbose) {
  3285       gclog_or_tty->print_cr("Expanded CMS gen for %s",
  3286         CMSExpansionCause::to_string(cause));
  3291 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
  3292   HeapWord* res = NULL;
  3293   MutexLocker x(ParGCRareEvent_lock);
  3294   while (true) {
  3295     // Expansion by some other thread might make alloc OK now:
  3296     res = ps->lab.alloc(word_sz);
  3297     if (res != NULL) return res;
  3298     // If there's not enough expansion space available, give up.
  3299     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
  3300       return NULL;
  3302     // Otherwise, we try expansion.
  3303     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
  3304       CMSExpansionCause::_allocate_par_lab);
  3305     // Now go around the loop and try alloc again;
  3306     // A competing par_promote might beat us to the expansion space,
  3307     // so we may go around the loop again if promotion fails agaion.
  3308     if (GCExpandToAllocateDelayMillis > 0) {
  3309       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3315 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
  3316   PromotionInfo* promo) {
  3317   MutexLocker x(ParGCRareEvent_lock);
  3318   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
  3319   while (true) {
  3320     // Expansion by some other thread might make alloc OK now:
  3321     if (promo->ensure_spooling_space()) {
  3322       assert(promo->has_spooling_space(),
  3323              "Post-condition of successful ensure_spooling_space()");
  3324       return true;
  3326     // If there's not enough expansion space available, give up.
  3327     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
  3328       return false;
  3330     // Otherwise, we try expansion.
  3331     expand(refill_size_bytes, MinHeapDeltaBytes,
  3332       CMSExpansionCause::_allocate_par_spooling_space);
  3333     // Now go around the loop and try alloc again;
  3334     // A competing allocation might beat us to the expansion space,
  3335     // so we may go around the loop again if allocation fails again.
  3336     if (GCExpandToAllocateDelayMillis > 0) {
  3337       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3344 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
  3345   assert_locked_or_safepoint(Heap_lock);
  3346   size_t size = ReservedSpace::page_align_size_down(bytes);
  3347   if (size > 0) {
  3348     shrink_by(size);
  3352 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
  3353   assert_locked_or_safepoint(Heap_lock);
  3354   bool result = _virtual_space.expand_by(bytes);
  3355   if (result) {
  3356     HeapWord* old_end = _cmsSpace->end();
  3357     size_t new_word_size =
  3358       heap_word_size(_virtual_space.committed_size());
  3359     MemRegion mr(_cmsSpace->bottom(), new_word_size);
  3360     _bts->resize(new_word_size);  // resize the block offset shared array
  3361     Universe::heap()->barrier_set()->resize_covered_region(mr);
  3362     // Hmmmm... why doesn't CFLS::set_end verify locking?
  3363     // This is quite ugly; FIX ME XXX
  3364     _cmsSpace->assert_locked(freelistLock());
  3365     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  3367     // update the space and generation capacity counters
  3368     if (UsePerfData) {
  3369       _space_counters->update_capacity();
  3370       _gen_counters->update_all();
  3373     if (Verbose && PrintGC) {
  3374       size_t new_mem_size = _virtual_space.committed_size();
  3375       size_t old_mem_size = new_mem_size - bytes;
  3376       gclog_or_tty->print_cr("Expanding %s from %ldK by %ldK to %ldK",
  3377                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
  3380   return result;
  3383 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
  3384   assert_locked_or_safepoint(Heap_lock);
  3385   bool success = true;
  3386   const size_t remaining_bytes = _virtual_space.uncommitted_size();
  3387   if (remaining_bytes > 0) {
  3388     success = grow_by(remaining_bytes);
  3389     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
  3391   return success;
  3394 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
  3395   assert_locked_or_safepoint(Heap_lock);
  3396   assert_lock_strong(freelistLock());
  3397   // XXX Fix when compaction is implemented.
  3398   warning("Shrinking of CMS not yet implemented");
  3399   return;
  3403 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
  3404 // phases.
  3405 class CMSPhaseAccounting: public StackObj {
  3406  public:
  3407   CMSPhaseAccounting(CMSCollector *collector,
  3408                      const char *phase,
  3409                      bool print_cr = true);
  3410   ~CMSPhaseAccounting();
  3412  private:
  3413   CMSCollector *_collector;
  3414   const char *_phase;
  3415   elapsedTimer _wallclock;
  3416   bool _print_cr;
  3418  public:
  3419   // Not MT-safe; so do not pass around these StackObj's
  3420   // where they may be accessed by other threads.
  3421   jlong wallclock_millis() {
  3422     assert(_wallclock.is_active(), "Wall clock should not stop");
  3423     _wallclock.stop();  // to record time
  3424     jlong ret = _wallclock.milliseconds();
  3425     _wallclock.start(); // restart
  3426     return ret;
  3428 };
  3430 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
  3431                                        const char *phase,
  3432                                        bool print_cr) :
  3433   _collector(collector), _phase(phase), _print_cr(print_cr) {
  3435   if (PrintCMSStatistics != 0) {
  3436     _collector->resetYields();
  3438   if (PrintGCDetails && PrintGCTimeStamps) {
  3439     gclog_or_tty->date_stamp(PrintGCDateStamps);
  3440     gclog_or_tty->stamp();
  3441     gclog_or_tty->print_cr(": [%s-concurrent-%s-start]",
  3442       _collector->cmsGen()->short_name(), _phase);
  3444   _collector->resetTimer();
  3445   _wallclock.start();
  3446   _collector->startTimer();
  3449 CMSPhaseAccounting::~CMSPhaseAccounting() {
  3450   assert(_wallclock.is_active(), "Wall clock should not have stopped");
  3451   _collector->stopTimer();
  3452   _wallclock.stop();
  3453   if (PrintGCDetails) {
  3454     gclog_or_tty->date_stamp(PrintGCDateStamps);
  3455     if (PrintGCTimeStamps) {
  3456       gclog_or_tty->stamp();
  3457       gclog_or_tty->print(": ");
  3459     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
  3460                  _collector->cmsGen()->short_name(),
  3461                  _phase, _collector->timerValue(), _wallclock.seconds());
  3462     if (_print_cr) {
  3463       gclog_or_tty->print_cr("");
  3465     if (PrintCMSStatistics != 0) {
  3466       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
  3467                     _collector->yields());
  3472 // CMS work
  3474 // Checkpoint the roots into this generation from outside
  3475 // this generation. [Note this initial checkpoint need only
  3476 // be approximate -- we'll do a catch up phase subsequently.]
  3477 void CMSCollector::checkpointRootsInitial(bool asynch) {
  3478   assert(_collectorState == InitialMarking, "Wrong collector state");
  3479   check_correct_thread_executing();
  3480   TraceCMSMemoryManagerStats tms(_collectorState);
  3481   ReferenceProcessor* rp = ref_processor();
  3482   SpecializationStats::clear();
  3483   assert(_restart_addr == NULL, "Control point invariant");
  3484   if (asynch) {
  3485     // acquire locks for subsequent manipulations
  3486     MutexLockerEx x(bitMapLock(),
  3487                     Mutex::_no_safepoint_check_flag);
  3488     checkpointRootsInitialWork(asynch);
  3489     rp->verify_no_references_recorded();
  3490     rp->enable_discovery(); // enable ("weak") refs discovery
  3491     _collectorState = Marking;
  3492   } else {
  3493     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
  3494     // which recognizes if we are a CMS generation, and doesn't try to turn on
  3495     // discovery; verify that they aren't meddling.
  3496     assert(!rp->discovery_is_atomic(),
  3497            "incorrect setting of discovery predicate");
  3498     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
  3499            "ref discovery for this generation kind");
  3500     // already have locks
  3501     checkpointRootsInitialWork(asynch);
  3502     rp->enable_discovery(); // now enable ("weak") refs discovery
  3503     _collectorState = Marking;
  3505   SpecializationStats::print();
  3508 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
  3509   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
  3510   assert(_collectorState == InitialMarking, "just checking");
  3512   // If there has not been a GC[n-1] since last GC[n] cycle completed,
  3513   // precede our marking with a collection of all
  3514   // younger generations to keep floating garbage to a minimum.
  3515   // XXX: we won't do this for now -- it's an optimization to be done later.
  3517   // already have locks
  3518   assert_lock_strong(bitMapLock());
  3519   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
  3521   // Setup the verification and class unloading state for this
  3522   // CMS collection cycle.
  3523   setup_cms_unloading_and_verification_state();
  3525   NOT_PRODUCT(TraceTime t("\ncheckpointRootsInitialWork",
  3526     PrintGCDetails && Verbose, true, gclog_or_tty);)
  3527   if (UseAdaptiveSizePolicy) {
  3528     size_policy()->checkpoint_roots_initial_begin();
  3531   // Reset all the PLAB chunk arrays if necessary.
  3532   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
  3533     reset_survivor_plab_arrays();
  3536   ResourceMark rm;
  3537   HandleMark  hm;
  3539   FalseClosure falseClosure;
  3540   // In the case of a synchronous collection, we will elide the
  3541   // remark step, so it's important to catch all the nmethod oops
  3542   // in this step.
  3543   // The final 'true' flag to gen_process_strong_roots will ensure this.
  3544   // If 'async' is true, we can relax the nmethod tracing.
  3545   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
  3546   GenCollectedHeap* gch = GenCollectedHeap::heap();
  3548   verify_work_stacks_empty();
  3549   verify_overflow_empty();
  3551   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  3552   // Update the saved marks which may affect the root scans.
  3553   gch->save_marks();
  3555   // weak reference processing has not started yet.
  3556   ref_processor()->set_enqueuing_is_done(false);
  3559     // This is not needed. DEBUG_ONLY(RememberKlassesChecker imx(true);)
  3560     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  3561     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  3562     gch->gen_process_strong_roots(_cmsGen->level(),
  3563                                   true,   // younger gens are roots
  3564                                   true,   // activate StrongRootsScope
  3565                                   true,   // collecting perm gen
  3566                                   SharedHeap::ScanningOption(roots_scanning_options()),
  3567                                   &notOlder,
  3568                                   true,   // walk all of code cache if (so & SO_CodeCache)
  3569                                   NULL);
  3572   // Clear mod-union table; it will be dirtied in the prologue of
  3573   // CMS generation per each younger generation collection.
  3575   assert(_modUnionTable.isAllClear(),
  3576        "Was cleared in most recent final checkpoint phase"
  3577        " or no bits are set in the gc_prologue before the start of the next "
  3578        "subsequent marking phase.");
  3580   // Temporarily disabled, since pre/post-consumption closures don't
  3581   // care about precleaned cards
  3582   #if 0
  3584     MemRegion mr = MemRegion((HeapWord*)_virtual_space.low(),
  3585                              (HeapWord*)_virtual_space.high());
  3586     _ct->ct_bs()->preclean_dirty_cards(mr);
  3588   #endif
  3590   // Save the end of the used_region of the constituent generations
  3591   // to be used to limit the extent of sweep in each generation.
  3592   save_sweep_limits();
  3593   if (UseAdaptiveSizePolicy) {
  3594     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
  3596   verify_overflow_empty();
  3599 bool CMSCollector::markFromRoots(bool asynch) {
  3600   // we might be tempted to assert that:
  3601   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  3602   //        "inconsistent argument?");
  3603   // However that wouldn't be right, because it's possible that
  3604   // a safepoint is indeed in progress as a younger generation
  3605   // stop-the-world GC happens even as we mark in this generation.
  3606   assert(_collectorState == Marking, "inconsistent state?");
  3607   check_correct_thread_executing();
  3608   verify_overflow_empty();
  3610   bool res;
  3611   if (asynch) {
  3613     // Start the timers for adaptive size policy for the concurrent phases
  3614     // Do it here so that the foreground MS can use the concurrent
  3615     // timer since a foreground MS might has the sweep done concurrently
  3616     // or STW.
  3617     if (UseAdaptiveSizePolicy) {
  3618       size_policy()->concurrent_marking_begin();
  3621     // Weak ref discovery note: We may be discovering weak
  3622     // refs in this generation concurrent (but interleaved) with
  3623     // weak ref discovery by a younger generation collector.
  3625     CMSTokenSyncWithLocks ts(true, bitMapLock());
  3626     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  3627     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
  3628     res = markFromRootsWork(asynch);
  3629     if (res) {
  3630       _collectorState = Precleaning;
  3631     } else { // We failed and a foreground collection wants to take over
  3632       assert(_foregroundGCIsActive, "internal state inconsistency");
  3633       assert(_restart_addr == NULL,  "foreground will restart from scratch");
  3634       if (PrintGCDetails) {
  3635         gclog_or_tty->print_cr("bailing out to foreground collection");
  3638     if (UseAdaptiveSizePolicy) {
  3639       size_policy()->concurrent_marking_end();
  3641   } else {
  3642     assert(SafepointSynchronize::is_at_safepoint(),
  3643            "inconsistent with asynch == false");
  3644     if (UseAdaptiveSizePolicy) {
  3645       size_policy()->ms_collection_marking_begin();
  3647     // already have locks
  3648     res = markFromRootsWork(asynch);
  3649     _collectorState = FinalMarking;
  3650     if (UseAdaptiveSizePolicy) {
  3651       GenCollectedHeap* gch = GenCollectedHeap::heap();
  3652       size_policy()->ms_collection_marking_end(gch->gc_cause());
  3655   verify_overflow_empty();
  3656   return res;
  3659 bool CMSCollector::markFromRootsWork(bool asynch) {
  3660   // iterate over marked bits in bit map, doing a full scan and mark
  3661   // from these roots using the following algorithm:
  3662   // . if oop is to the right of the current scan pointer,
  3663   //   mark corresponding bit (we'll process it later)
  3664   // . else (oop is to left of current scan pointer)
  3665   //   push oop on marking stack
  3666   // . drain the marking stack
  3668   // Note that when we do a marking step we need to hold the
  3669   // bit map lock -- recall that direct allocation (by mutators)
  3670   // and promotion (by younger generation collectors) is also
  3671   // marking the bit map. [the so-called allocate live policy.]
  3672   // Because the implementation of bit map marking is not
  3673   // robust wrt simultaneous marking of bits in the same word,
  3674   // we need to make sure that there is no such interference
  3675   // between concurrent such updates.
  3677   // already have locks
  3678   assert_lock_strong(bitMapLock());
  3680   // Clear the revisit stack, just in case there are any
  3681   // obsolete contents from a short-circuited previous CMS cycle.
  3682   _revisitStack.reset();
  3683   verify_work_stacks_empty();
  3684   verify_overflow_empty();
  3685   assert(_revisitStack.isEmpty(), "tabula rasa");
  3686   DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());)
  3687   bool result = false;
  3688   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
  3689     result = do_marking_mt(asynch);
  3690   } else {
  3691     result = do_marking_st(asynch);
  3693   return result;
  3696 // Forward decl
  3697 class CMSConcMarkingTask;
  3699 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
  3700   CMSCollector*       _collector;
  3701   CMSConcMarkingTask* _task;
  3702  public:
  3703   virtual void yield();
  3705   // "n_threads" is the number of threads to be terminated.
  3706   // "queue_set" is a set of work queues of other threads.
  3707   // "collector" is the CMS collector associated with this task terminator.
  3708   // "yield" indicates whether we need the gang as a whole to yield.
  3709   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
  3710     ParallelTaskTerminator(n_threads, queue_set),
  3711     _collector(collector) { }
  3713   void set_task(CMSConcMarkingTask* task) {
  3714     _task = task;
  3716 };
  3718 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
  3719   CMSConcMarkingTask* _task;
  3720  public:
  3721   bool should_exit_termination();
  3722   void set_task(CMSConcMarkingTask* task) {
  3723     _task = task;
  3725 };
  3727 // MT Concurrent Marking Task
  3728 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
  3729   CMSCollector* _collector;
  3730   int           _n_workers;                  // requested/desired # workers
  3731   bool          _asynch;
  3732   bool          _result;
  3733   CompactibleFreeListSpace*  _cms_space;
  3734   CompactibleFreeListSpace* _perm_space;
  3735   char          _pad_front[64];   // padding to ...
  3736   HeapWord*     _global_finger;   // ... avoid sharing cache line
  3737   char          _pad_back[64];
  3738   HeapWord*     _restart_addr;
  3740   //  Exposed here for yielding support
  3741   Mutex* const _bit_map_lock;
  3743   // The per thread work queues, available here for stealing
  3744   OopTaskQueueSet*  _task_queues;
  3746   // Termination (and yielding) support
  3747   CMSConcMarkingTerminator _term;
  3748   CMSConcMarkingTerminatorTerminator _term_term;
  3750  public:
  3751   CMSConcMarkingTask(CMSCollector* collector,
  3752                  CompactibleFreeListSpace* cms_space,
  3753                  CompactibleFreeListSpace* perm_space,
  3754                  bool asynch,
  3755                  YieldingFlexibleWorkGang* workers,
  3756                  OopTaskQueueSet* task_queues):
  3757     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
  3758     _collector(collector),
  3759     _cms_space(cms_space),
  3760     _perm_space(perm_space),
  3761     _asynch(asynch), _n_workers(0), _result(true),
  3762     _task_queues(task_queues),
  3763     _term(_n_workers, task_queues, _collector),
  3764     _bit_map_lock(collector->bitMapLock())
  3766     _requested_size = _n_workers;
  3767     _term.set_task(this);
  3768     _term_term.set_task(this);
  3769     assert(_cms_space->bottom() < _perm_space->bottom(),
  3770            "Finger incorrectly initialized below");
  3771     _restart_addr = _global_finger = _cms_space->bottom();
  3775   OopTaskQueueSet* task_queues()  { return _task_queues; }
  3777   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  3779   HeapWord** global_finger_addr() { return &_global_finger; }
  3781   CMSConcMarkingTerminator* terminator() { return &_term; }
  3783   virtual void set_for_termination(int active_workers) {
  3784     terminator()->reset_for_reuse(active_workers);
  3787   void work(int i);
  3788   bool should_yield() {
  3789     return    ConcurrentMarkSweepThread::should_yield()
  3790            && !_collector->foregroundGCIsActive()
  3791            && _asynch;
  3794   virtual void coordinator_yield();  // stuff done by coordinator
  3795   bool result() { return _result; }
  3797   void reset(HeapWord* ra) {
  3798     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
  3799     assert(_global_finger >= _perm_space->end(), "Postcondition of ::work(i)");
  3800     assert(ra             <  _perm_space->end(), "ra too large");
  3801     _restart_addr = _global_finger = ra;
  3802     _term.reset_for_reuse();
  3805   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  3806                                            OopTaskQueue* work_q);
  3808  private:
  3809   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
  3810   void do_work_steal(int i);
  3811   void bump_global_finger(HeapWord* f);
  3812 };
  3814 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
  3815   assert(_task != NULL, "Error");
  3816   return _task->yielding();
  3817   // Note that we do not need the disjunct || _task->should_yield() above
  3818   // because we want terminating threads to yield only if the task
  3819   // is already in the midst of yielding, which happens only after at least one
  3820   // thread has yielded.
  3823 void CMSConcMarkingTerminator::yield() {
  3824   if (_task->should_yield()) {
  3825     _task->yield();
  3826   } else {
  3827     ParallelTaskTerminator::yield();
  3831 ////////////////////////////////////////////////////////////////
  3832 // Concurrent Marking Algorithm Sketch
  3833 ////////////////////////////////////////////////////////////////
  3834 // Until all tasks exhausted (both spaces):
  3835 // -- claim next available chunk
  3836 // -- bump global finger via CAS
  3837 // -- find first object that starts in this chunk
  3838 //    and start scanning bitmap from that position
  3839 // -- scan marked objects for oops
  3840 // -- CAS-mark target, and if successful:
  3841 //    . if target oop is above global finger (volatile read)
  3842 //      nothing to do
  3843 //    . if target oop is in chunk and above local finger
  3844 //        then nothing to do
  3845 //    . else push on work-queue
  3846 // -- Deal with possible overflow issues:
  3847 //    . local work-queue overflow causes stuff to be pushed on
  3848 //      global (common) overflow queue
  3849 //    . always first empty local work queue
  3850 //    . then get a batch of oops from global work queue if any
  3851 //    . then do work stealing
  3852 // -- When all tasks claimed (both spaces)
  3853 //    and local work queue empty,
  3854 //    then in a loop do:
  3855 //    . check global overflow stack; steal a batch of oops and trace
  3856 //    . try to steal from other threads oif GOS is empty
  3857 //    . if neither is available, offer termination
  3858 // -- Terminate and return result
  3859 //
  3860 void CMSConcMarkingTask::work(int i) {
  3861   elapsedTimer _timer;
  3862   ResourceMark rm;
  3863   HandleMark hm;
  3865   DEBUG_ONLY(_collector->verify_overflow_empty();)
  3867   // Before we begin work, our work queue should be empty
  3868   assert(work_queue(i)->size() == 0, "Expected to be empty");
  3869   // Scan the bitmap covering _cms_space, tracing through grey objects.
  3870   _timer.start();
  3871   do_scan_and_mark(i, _cms_space);
  3872   _timer.stop();
  3873   if (PrintCMSStatistics != 0) {
  3874     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
  3875       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3878   // ... do the same for the _perm_space
  3879   _timer.reset();
  3880   _timer.start();
  3881   do_scan_and_mark(i, _perm_space);
  3882   _timer.stop();
  3883   if (PrintCMSStatistics != 0) {
  3884     gclog_or_tty->print_cr("Finished perm space scanning in %dth thread: %3.3f sec",
  3885       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3888   // ... do work stealing
  3889   _timer.reset();
  3890   _timer.start();
  3891   do_work_steal(i);
  3892   _timer.stop();
  3893   if (PrintCMSStatistics != 0) {
  3894     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
  3895       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3897   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
  3898   assert(work_queue(i)->size() == 0, "Should have been emptied");
  3899   // Note that under the current task protocol, the
  3900   // following assertion is true even of the spaces
  3901   // expanded since the completion of the concurrent
  3902   // marking. XXX This will likely change under a strict
  3903   // ABORT semantics.
  3904   assert(_global_finger >  _cms_space->end() &&
  3905          _global_finger >= _perm_space->end(),
  3906          "All tasks have been completed");
  3907   DEBUG_ONLY(_collector->verify_overflow_empty();)
  3910 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
  3911   HeapWord* read = _global_finger;
  3912   HeapWord* cur  = read;
  3913   while (f > read) {
  3914     cur = read;
  3915     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
  3916     if (cur == read) {
  3917       // our cas succeeded
  3918       assert(_global_finger >= f, "protocol consistency");
  3919       break;
  3924 // This is really inefficient, and should be redone by
  3925 // using (not yet available) block-read and -write interfaces to the
  3926 // stack and the work_queue. XXX FIX ME !!!
  3927 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  3928                                                       OopTaskQueue* work_q) {
  3929   // Fast lock-free check
  3930   if (ovflw_stk->length() == 0) {
  3931     return false;
  3933   assert(work_q->size() == 0, "Shouldn't steal");
  3934   MutexLockerEx ml(ovflw_stk->par_lock(),
  3935                    Mutex::_no_safepoint_check_flag);
  3936   // Grab up to 1/4 the size of the work queue
  3937   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
  3938                     (size_t)ParGCDesiredObjsFromOverflowList);
  3939   num = MIN2(num, ovflw_stk->length());
  3940   for (int i = (int) num; i > 0; i--) {
  3941     oop cur = ovflw_stk->pop();
  3942     assert(cur != NULL, "Counted wrong?");
  3943     work_q->push(cur);
  3945   return num > 0;
  3948 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
  3949   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  3950   int n_tasks = pst->n_tasks();
  3951   // We allow that there may be no tasks to do here because
  3952   // we are restarting after a stack overflow.
  3953   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
  3954   int nth_task = 0;
  3956   HeapWord* aligned_start = sp->bottom();
  3957   if (sp->used_region().contains(_restart_addr)) {
  3958     // Align down to a card boundary for the start of 0th task
  3959     // for this space.
  3960     aligned_start =
  3961       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
  3962                                  CardTableModRefBS::card_size);
  3965   size_t chunk_size = sp->marking_task_size();
  3966   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  3967     // Having claimed the nth task in this space,
  3968     // compute the chunk that it corresponds to:
  3969     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
  3970                                aligned_start + (nth_task+1)*chunk_size);
  3971     // Try and bump the global finger via a CAS;
  3972     // note that we need to do the global finger bump
  3973     // _before_ taking the intersection below, because
  3974     // the task corresponding to that region will be
  3975     // deemed done even if the used_region() expands
  3976     // because of allocation -- as it almost certainly will
  3977     // during start-up while the threads yield in the
  3978     // closure below.
  3979     HeapWord* finger = span.end();
  3980     bump_global_finger(finger);   // atomically
  3981     // There are null tasks here corresponding to chunks
  3982     // beyond the "top" address of the space.
  3983     span = span.intersection(sp->used_region());
  3984     if (!span.is_empty()) {  // Non-null task
  3985       HeapWord* prev_obj;
  3986       assert(!span.contains(_restart_addr) || nth_task == 0,
  3987              "Inconsistency");
  3988       if (nth_task == 0) {
  3989         // For the 0th task, we'll not need to compute a block_start.
  3990         if (span.contains(_restart_addr)) {
  3991           // In the case of a restart because of stack overflow,
  3992           // we might additionally skip a chunk prefix.
  3993           prev_obj = _restart_addr;
  3994         } else {
  3995           prev_obj = span.start();
  3997       } else {
  3998         // We want to skip the first object because
  3999         // the protocol is to scan any object in its entirety
  4000         // that _starts_ in this span; a fortiori, any
  4001         // object starting in an earlier span is scanned
  4002         // as part of an earlier claimed task.
  4003         // Below we use the "careful" version of block_start
  4004         // so we do not try to navigate uninitialized objects.
  4005         prev_obj = sp->block_start_careful(span.start());
  4006         // Below we use a variant of block_size that uses the
  4007         // Printezis bits to avoid waiting for allocated
  4008         // objects to become initialized/parsable.
  4009         while (prev_obj < span.start()) {
  4010           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
  4011           if (sz > 0) {
  4012             prev_obj += sz;
  4013           } else {
  4014             // In this case we may end up doing a bit of redundant
  4015             // scanning, but that appears unavoidable, short of
  4016             // locking the free list locks; see bug 6324141.
  4017             break;
  4021       if (prev_obj < span.end()) {
  4022         MemRegion my_span = MemRegion(prev_obj, span.end());
  4023         // Do the marking work within a non-empty span --
  4024         // the last argument to the constructor indicates whether the
  4025         // iteration should be incremental with periodic yields.
  4026         Par_MarkFromRootsClosure cl(this, _collector, my_span,
  4027                                     &_collector->_markBitMap,
  4028                                     work_queue(i),
  4029                                     &_collector->_markStack,
  4030                                     &_collector->_revisitStack,
  4031                                     _asynch);
  4032         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
  4033       } // else nothing to do for this task
  4034     }   // else nothing to do for this task
  4036   // We'd be tempted to assert here that since there are no
  4037   // more tasks left to claim in this space, the global_finger
  4038   // must exceed space->top() and a fortiori space->end(). However,
  4039   // that would not quite be correct because the bumping of
  4040   // global_finger occurs strictly after the claiming of a task,
  4041   // so by the time we reach here the global finger may not yet
  4042   // have been bumped up by the thread that claimed the last
  4043   // task.
  4044   pst->all_tasks_completed();
  4047 class Par_ConcMarkingClosure: public Par_KlassRememberingOopClosure {
  4048  private:
  4049   CMSConcMarkingTask* _task;
  4050   MemRegion     _span;
  4051   CMSBitMap*    _bit_map;
  4052   CMSMarkStack* _overflow_stack;
  4053   OopTaskQueue* _work_queue;
  4054  protected:
  4055   DO_OOP_WORK_DEFN
  4056  public:
  4057   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
  4058                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack,
  4059                          CMSMarkStack* revisit_stack):
  4060     Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
  4061     _task(task),
  4062     _span(collector->_span),
  4063     _work_queue(work_queue),
  4064     _bit_map(bit_map),
  4065     _overflow_stack(overflow_stack)
  4066   { }
  4067   virtual void do_oop(oop* p);
  4068   virtual void do_oop(narrowOop* p);
  4069   void trim_queue(size_t max);
  4070   void handle_stack_overflow(HeapWord* lost);
  4071   void do_yield_check() {
  4072     if (_task->should_yield()) {
  4073       _task->yield();
  4076 };
  4078 // Grey object scanning during work stealing phase --
  4079 // the salient assumption here is that any references
  4080 // that are in these stolen objects being scanned must
  4081 // already have been initialized (else they would not have
  4082 // been published), so we do not need to check for
  4083 // uninitialized objects before pushing here.
  4084 void Par_ConcMarkingClosure::do_oop(oop obj) {
  4085   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  4086   HeapWord* addr = (HeapWord*)obj;
  4087   // Check if oop points into the CMS generation
  4088   // and is not marked
  4089   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  4090     // a white object ...
  4091     // If we manage to "claim" the object, by being the
  4092     // first thread to mark it, then we push it on our
  4093     // marking stack
  4094     if (_bit_map->par_mark(addr)) {     // ... now grey
  4095       // push on work queue (grey set)
  4096       bool simulate_overflow = false;
  4097       NOT_PRODUCT(
  4098         if (CMSMarkStackOverflowALot &&
  4099             _collector->simulate_overflow()) {
  4100           // simulate a stack overflow
  4101           simulate_overflow = true;
  4104       if (simulate_overflow ||
  4105           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
  4106         // stack overflow
  4107         if (PrintCMSStatistics != 0) {
  4108           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  4109                                  SIZE_FORMAT, _overflow_stack->capacity());
  4111         // We cannot assert that the overflow stack is full because
  4112         // it may have been emptied since.
  4113         assert(simulate_overflow ||
  4114                _work_queue->size() == _work_queue->max_elems(),
  4115               "Else push should have succeeded");
  4116         handle_stack_overflow(addr);
  4118     } // Else, some other thread got there first
  4119     do_yield_check();
  4123 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
  4124 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
  4126 void Par_ConcMarkingClosure::trim_queue(size_t max) {
  4127   while (_work_queue->size() > max) {
  4128     oop new_oop;
  4129     if (_work_queue->pop_local(new_oop)) {
  4130       assert(new_oop->is_oop(), "Should be an oop");
  4131       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
  4132       assert(_span.contains((HeapWord*)new_oop), "Not in span");
  4133       assert(new_oop->is_parsable(), "Should be parsable");
  4134       new_oop->oop_iterate(this);  // do_oop() above
  4135       do_yield_check();
  4140 // Upon stack overflow, we discard (part of) the stack,
  4141 // remembering the least address amongst those discarded
  4142 // in CMSCollector's _restart_address.
  4143 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
  4144   // We need to do this under a mutex to prevent other
  4145   // workers from interfering with the work done below.
  4146   MutexLockerEx ml(_overflow_stack->par_lock(),
  4147                    Mutex::_no_safepoint_check_flag);
  4148   // Remember the least grey address discarded
  4149   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  4150   _collector->lower_restart_addr(ra);
  4151   _overflow_stack->reset();  // discard stack contents
  4152   _overflow_stack->expand(); // expand the stack if possible
  4156 void CMSConcMarkingTask::do_work_steal(int i) {
  4157   OopTaskQueue* work_q = work_queue(i);
  4158   oop obj_to_scan;
  4159   CMSBitMap* bm = &(_collector->_markBitMap);
  4160   CMSMarkStack* ovflw = &(_collector->_markStack);
  4161   CMSMarkStack* revisit = &(_collector->_revisitStack);
  4162   int* seed = _collector->hash_seed(i);
  4163   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw, revisit);
  4164   while (true) {
  4165     cl.trim_queue(0);
  4166     assert(work_q->size() == 0, "Should have been emptied above");
  4167     if (get_work_from_overflow_stack(ovflw, work_q)) {
  4168       // Can't assert below because the work obtained from the
  4169       // overflow stack may already have been stolen from us.
  4170       // assert(work_q->size() > 0, "Work from overflow stack");
  4171       continue;
  4172     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  4173       assert(obj_to_scan->is_oop(), "Should be an oop");
  4174       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
  4175       obj_to_scan->oop_iterate(&cl);
  4176     } else if (terminator()->offer_termination(&_term_term)) {
  4177       assert(work_q->size() == 0, "Impossible!");
  4178       break;
  4179     } else if (yielding() || should_yield()) {
  4180       yield();
  4185 // This is run by the CMS (coordinator) thread.
  4186 void CMSConcMarkingTask::coordinator_yield() {
  4187   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4188          "CMS thread should hold CMS token");
  4189   DEBUG_ONLY(RememberKlassesChecker mux(false);)
  4190   // First give up the locks, then yield, then re-lock
  4191   // We should probably use a constructor/destructor idiom to
  4192   // do this unlock/lock or modify the MutexUnlocker class to
  4193   // serve our purpose. XXX
  4194   assert_lock_strong(_bit_map_lock);
  4195   _bit_map_lock->unlock();
  4196   ConcurrentMarkSweepThread::desynchronize(true);
  4197   ConcurrentMarkSweepThread::acknowledge_yield_request();
  4198   _collector->stopTimer();
  4199   if (PrintCMSStatistics != 0) {
  4200     _collector->incrementYields();
  4202   _collector->icms_wait();
  4204   // It is possible for whichever thread initiated the yield request
  4205   // not to get a chance to wake up and take the bitmap lock between
  4206   // this thread releasing it and reacquiring it. So, while the
  4207   // should_yield() flag is on, let's sleep for a bit to give the
  4208   // other thread a chance to wake up. The limit imposed on the number
  4209   // of iterations is defensive, to avoid any unforseen circumstances
  4210   // putting us into an infinite loop. Since it's always been this
  4211   // (coordinator_yield()) method that was observed to cause the
  4212   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
  4213   // which is by default non-zero. For the other seven methods that
  4214   // also perform the yield operation, as are using a different
  4215   // parameter (CMSYieldSleepCount) which is by default zero. This way we
  4216   // can enable the sleeping for those methods too, if necessary.
  4217   // See 6442774.
  4218   //
  4219   // We really need to reconsider the synchronization between the GC
  4220   // thread and the yield-requesting threads in the future and we
  4221   // should really use wait/notify, which is the recommended
  4222   // way of doing this type of interaction. Additionally, we should
  4223   // consolidate the eight methods that do the yield operation and they
  4224   // are almost identical into one for better maintenability and
  4225   // readability. See 6445193.
  4226   //
  4227   // Tony 2006.06.29
  4228   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
  4229                    ConcurrentMarkSweepThread::should_yield() &&
  4230                    !CMSCollector::foregroundGCIsActive(); ++i) {
  4231     os::sleep(Thread::current(), 1, false);
  4232     ConcurrentMarkSweepThread::acknowledge_yield_request();
  4235   ConcurrentMarkSweepThread::synchronize(true);
  4236   _bit_map_lock->lock_without_safepoint_check();
  4237   _collector->startTimer();
  4240 bool CMSCollector::do_marking_mt(bool asynch) {
  4241   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
  4242   // In the future this would be determined ergonomically, based
  4243   // on #cpu's, # active mutator threads (and load), and mutation rate.
  4244   int num_workers = ConcGCThreads;
  4246   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  4247   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
  4249   CMSConcMarkingTask tsk(this,
  4250                          cms_space,
  4251                          perm_space,
  4252                          asynch,
  4253                          conc_workers(),
  4254                          task_queues());
  4256   // Since the actual number of workers we get may be different
  4257   // from the number we requested above, do we need to do anything different
  4258   // below? In particular, may be we need to subclass the SequantialSubTasksDone
  4259   // class?? XXX
  4260   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
  4261   perm_space->initialize_sequential_subtasks_for_marking(num_workers);
  4263   // Refs discovery is already non-atomic.
  4264   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
  4265   // Mutate the Refs discovery so it is MT during the
  4266   // multi-threaded marking phase.
  4267   ReferenceProcessorMTMutator mt(ref_processor(), num_workers > 1);
  4268   DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());)
  4269   conc_workers()->start_task(&tsk);
  4270   while (tsk.yielded()) {
  4271     tsk.coordinator_yield();
  4272     conc_workers()->continue_task(&tsk);
  4274   // If the task was aborted, _restart_addr will be non-NULL
  4275   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
  4276   while (_restart_addr != NULL) {
  4277     // XXX For now we do not make use of ABORTED state and have not
  4278     // yet implemented the right abort semantics (even in the original
  4279     // single-threaded CMS case). That needs some more investigation
  4280     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
  4281     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
  4282     // If _restart_addr is non-NULL, a marking stack overflow
  4283     // occurred; we need to do a fresh marking iteration from the
  4284     // indicated restart address.
  4285     if (_foregroundGCIsActive && asynch) {
  4286       // We may be running into repeated stack overflows, having
  4287       // reached the limit of the stack size, while making very
  4288       // slow forward progress. It may be best to bail out and
  4289       // let the foreground collector do its job.
  4290       // Clear _restart_addr, so that foreground GC
  4291       // works from scratch. This avoids the headache of
  4292       // a "rescan" which would otherwise be needed because
  4293       // of the dirty mod union table & card table.
  4294       _restart_addr = NULL;
  4295       return false;
  4297     // Adjust the task to restart from _restart_addr
  4298     tsk.reset(_restart_addr);
  4299     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
  4300                   _restart_addr);
  4301     perm_space->initialize_sequential_subtasks_for_marking(num_workers,
  4302                   _restart_addr);
  4303     _restart_addr = NULL;
  4304     // Get the workers going again
  4305     conc_workers()->start_task(&tsk);
  4306     while (tsk.yielded()) {
  4307       tsk.coordinator_yield();
  4308       conc_workers()->continue_task(&tsk);
  4311   assert(tsk.completed(), "Inconsistency");
  4312   assert(tsk.result() == true, "Inconsistency");
  4313   return true;
  4316 bool CMSCollector::do_marking_st(bool asynch) {
  4317   ResourceMark rm;
  4318   HandleMark   hm;
  4320   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
  4321     &_markStack, &_revisitStack, CMSYield && asynch);
  4322   // the last argument to iterate indicates whether the iteration
  4323   // should be incremental with periodic yields.
  4324   _markBitMap.iterate(&markFromRootsClosure);
  4325   // If _restart_addr is non-NULL, a marking stack overflow
  4326   // occurred; we need to do a fresh iteration from the
  4327   // indicated restart address.
  4328   while (_restart_addr != NULL) {
  4329     if (_foregroundGCIsActive && asynch) {
  4330       // We may be running into repeated stack overflows, having
  4331       // reached the limit of the stack size, while making very
  4332       // slow forward progress. It may be best to bail out and
  4333       // let the foreground collector do its job.
  4334       // Clear _restart_addr, so that foreground GC
  4335       // works from scratch. This avoids the headache of
  4336       // a "rescan" which would otherwise be needed because
  4337       // of the dirty mod union table & card table.
  4338       _restart_addr = NULL;
  4339       return false;  // indicating failure to complete marking
  4341     // Deal with stack overflow:
  4342     // we restart marking from _restart_addr
  4343     HeapWord* ra = _restart_addr;
  4344     markFromRootsClosure.reset(ra);
  4345     _restart_addr = NULL;
  4346     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
  4348   return true;
  4351 void CMSCollector::preclean() {
  4352   check_correct_thread_executing();
  4353   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
  4354   verify_work_stacks_empty();
  4355   verify_overflow_empty();
  4356   _abort_preclean = false;
  4357   if (CMSPrecleaningEnabled) {
  4358     // Precleaning is currently not MT but the reference processor
  4359     // may be set for MT.  Disable it temporarily here.
  4360     ReferenceProcessor* rp = ref_processor();
  4361     ReferenceProcessorMTProcMutator z(rp, false);
  4362     _eden_chunk_index = 0;
  4363     size_t used = get_eden_used();
  4364     size_t capacity = get_eden_capacity();
  4365     // Don't start sampling unless we will get sufficiently
  4366     // many samples.
  4367     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
  4368                 * CMSScheduleRemarkEdenPenetration)) {
  4369       _start_sampling = true;
  4370     } else {
  4371       _start_sampling = false;
  4373     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4374     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
  4375     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
  4377   CMSTokenSync x(true); // is cms thread
  4378   if (CMSPrecleaningEnabled) {
  4379     sample_eden();
  4380     _collectorState = AbortablePreclean;
  4381   } else {
  4382     _collectorState = FinalMarking;
  4384   verify_work_stacks_empty();
  4385   verify_overflow_empty();
  4388 // Try and schedule the remark such that young gen
  4389 // occupancy is CMSScheduleRemarkEdenPenetration %.
  4390 void CMSCollector::abortable_preclean() {
  4391   check_correct_thread_executing();
  4392   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
  4393   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
  4395   // If Eden's current occupancy is below this threshold,
  4396   // immediately schedule the remark; else preclean
  4397   // past the next scavenge in an effort to
  4398   // schedule the pause as described avove. By choosing
  4399   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
  4400   // we will never do an actual abortable preclean cycle.
  4401   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
  4402     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4403     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
  4404     // We need more smarts in the abortable preclean
  4405     // loop below to deal with cases where allocation
  4406     // in young gen is very very slow, and our precleaning
  4407     // is running a losing race against a horde of
  4408     // mutators intent on flooding us with CMS updates
  4409     // (dirty cards).
  4410     // One, admittedly dumb, strategy is to give up
  4411     // after a certain number of abortable precleaning loops
  4412     // or after a certain maximum time. We want to make
  4413     // this smarter in the next iteration.
  4414     // XXX FIX ME!!! YSR
  4415     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
  4416     while (!(should_abort_preclean() ||
  4417              ConcurrentMarkSweepThread::should_terminate())) {
  4418       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
  4419       cumworkdone += workdone;
  4420       loops++;
  4421       // Voluntarily terminate abortable preclean phase if we have
  4422       // been at it for too long.
  4423       if ((CMSMaxAbortablePrecleanLoops != 0) &&
  4424           loops >= CMSMaxAbortablePrecleanLoops) {
  4425         if (PrintGCDetails) {
  4426           gclog_or_tty->print(" CMS: abort preclean due to loops ");
  4428         break;
  4430       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
  4431         if (PrintGCDetails) {
  4432           gclog_or_tty->print(" CMS: abort preclean due to time ");
  4434         break;
  4436       // If we are doing little work each iteration, we should
  4437       // take a short break.
  4438       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
  4439         // Sleep for some time, waiting for work to accumulate
  4440         stopTimer();
  4441         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
  4442         startTimer();
  4443         waited++;
  4446     if (PrintCMSStatistics > 0) {
  4447       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
  4448                           loops, waited, cumworkdone);
  4451   CMSTokenSync x(true); // is cms thread
  4452   if (_collectorState != Idling) {
  4453     assert(_collectorState == AbortablePreclean,
  4454            "Spontaneous state transition?");
  4455     _collectorState = FinalMarking;
  4456   } // Else, a foreground collection completed this CMS cycle.
  4457   return;
  4460 // Respond to an Eden sampling opportunity
  4461 void CMSCollector::sample_eden() {
  4462   // Make sure a young gc cannot sneak in between our
  4463   // reading and recording of a sample.
  4464   assert(Thread::current()->is_ConcurrentGC_thread(),
  4465          "Only the cms thread may collect Eden samples");
  4466   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4467          "Should collect samples while holding CMS token");
  4468   if (!_start_sampling) {
  4469     return;
  4471   if (_eden_chunk_array) {
  4472     if (_eden_chunk_index < _eden_chunk_capacity) {
  4473       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
  4474       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
  4475              "Unexpected state of Eden");
  4476       // We'd like to check that what we just sampled is an oop-start address;
  4477       // however, we cannot do that here since the object may not yet have been
  4478       // initialized. So we'll instead do the check when we _use_ this sample
  4479       // later.
  4480       if (_eden_chunk_index == 0 ||
  4481           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
  4482                          _eden_chunk_array[_eden_chunk_index-1])
  4483            >= CMSSamplingGrain)) {
  4484         _eden_chunk_index++;  // commit sample
  4488   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
  4489     size_t used = get_eden_used();
  4490     size_t capacity = get_eden_capacity();
  4491     assert(used <= capacity, "Unexpected state of Eden");
  4492     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
  4493       _abort_preclean = true;
  4499 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
  4500   assert(_collectorState == Precleaning ||
  4501          _collectorState == AbortablePreclean, "incorrect state");
  4502   ResourceMark rm;
  4503   HandleMark   hm;
  4504   // Do one pass of scrubbing the discovered reference lists
  4505   // to remove any reference objects with strongly-reachable
  4506   // referents.
  4507   if (clean_refs) {
  4508     ReferenceProcessor* rp = ref_processor();
  4509     CMSPrecleanRefsYieldClosure yield_cl(this);
  4510     assert(rp->span().equals(_span), "Spans should be equal");
  4511     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
  4512                                    &_markStack, &_revisitStack,
  4513                                    true /* preclean */);
  4514     CMSDrainMarkingStackClosure complete_trace(this,
  4515                                    _span, &_markBitMap, &_markStack,
  4516                                    &keep_alive, true /* preclean */);
  4518     // We don't want this step to interfere with a young
  4519     // collection because we don't want to take CPU
  4520     // or memory bandwidth away from the young GC threads
  4521     // (which may be as many as there are CPUs).
  4522     // Note that we don't need to protect ourselves from
  4523     // interference with mutators because they can't
  4524     // manipulate the discovered reference lists nor affect
  4525     // the computed reachability of the referents, the
  4526     // only properties manipulated by the precleaning
  4527     // of these reference lists.
  4528     stopTimer();
  4529     CMSTokenSyncWithLocks x(true /* is cms thread */,
  4530                             bitMapLock());
  4531     startTimer();
  4532     sample_eden();
  4534     // The following will yield to allow foreground
  4535     // collection to proceed promptly. XXX YSR:
  4536     // The code in this method may need further
  4537     // tweaking for better performance and some restructuring
  4538     // for cleaner interfaces.
  4539     rp->preclean_discovered_references(
  4540           rp->is_alive_non_header(), &keep_alive, &complete_trace,
  4541           &yield_cl, should_unload_classes());
  4544   if (clean_survivor) {  // preclean the active survivor space(s)
  4545     assert(_young_gen->kind() == Generation::DefNew ||
  4546            _young_gen->kind() == Generation::ParNew ||
  4547            _young_gen->kind() == Generation::ASParNew,
  4548          "incorrect type for cast");
  4549     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  4550     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
  4551                              &_markBitMap, &_modUnionTable,
  4552                              &_markStack, &_revisitStack,
  4553                              true /* precleaning phase */);
  4554     stopTimer();
  4555     CMSTokenSyncWithLocks ts(true /* is cms thread */,
  4556                              bitMapLock());
  4557     startTimer();
  4558     unsigned int before_count =
  4559       GenCollectedHeap::heap()->total_collections();
  4560     SurvivorSpacePrecleanClosure
  4561       sss_cl(this, _span, &_markBitMap, &_markStack,
  4562              &pam_cl, before_count, CMSYield);
  4563     DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
  4564     dng->from()->object_iterate_careful(&sss_cl);
  4565     dng->to()->object_iterate_careful(&sss_cl);
  4567   MarkRefsIntoAndScanClosure
  4568     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  4569              &_markStack, &_revisitStack, this, CMSYield,
  4570              true /* precleaning phase */);
  4571   // CAUTION: The following closure has persistent state that may need to
  4572   // be reset upon a decrease in the sequence of addresses it
  4573   // processes.
  4574   ScanMarkedObjectsAgainCarefullyClosure
  4575     smoac_cl(this, _span,
  4576       &_markBitMap, &_markStack, &_revisitStack, &mrias_cl, CMSYield);
  4578   // Preclean dirty cards in ModUnionTable and CardTable using
  4579   // appropriate convergence criterion;
  4580   // repeat CMSPrecleanIter times unless we find that
  4581   // we are losing.
  4582   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
  4583   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
  4584          "Bad convergence multiplier");
  4585   assert(CMSPrecleanThreshold >= 100,
  4586          "Unreasonably low CMSPrecleanThreshold");
  4588   size_t numIter, cumNumCards, lastNumCards, curNumCards;
  4589   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
  4590        numIter < CMSPrecleanIter;
  4591        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
  4592     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
  4593     if (CMSPermGenPrecleaningEnabled) {
  4594       curNumCards  += preclean_mod_union_table(_permGen, &smoac_cl);
  4596     if (Verbose && PrintGCDetails) {
  4597       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
  4599     // Either there are very few dirty cards, so re-mark
  4600     // pause will be small anyway, or our pre-cleaning isn't
  4601     // that much faster than the rate at which cards are being
  4602     // dirtied, so we might as well stop and re-mark since
  4603     // precleaning won't improve our re-mark time by much.
  4604     if (curNumCards <= CMSPrecleanThreshold ||
  4605         (numIter > 0 &&
  4606          (curNumCards * CMSPrecleanDenominator >
  4607          lastNumCards * CMSPrecleanNumerator))) {
  4608       numIter++;
  4609       cumNumCards += curNumCards;
  4610       break;
  4613   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
  4614   if (CMSPermGenPrecleaningEnabled) {
  4615     curNumCards += preclean_card_table(_permGen, &smoac_cl);
  4617   cumNumCards += curNumCards;
  4618   if (PrintGCDetails && PrintCMSStatistics != 0) {
  4619     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
  4620                   curNumCards, cumNumCards, numIter);
  4622   return cumNumCards;   // as a measure of useful work done
  4625 // PRECLEANING NOTES:
  4626 // Precleaning involves:
  4627 // . reading the bits of the modUnionTable and clearing the set bits.
  4628 // . For the cards corresponding to the set bits, we scan the
  4629 //   objects on those cards. This means we need the free_list_lock
  4630 //   so that we can safely iterate over the CMS space when scanning
  4631 //   for oops.
  4632 // . When we scan the objects, we'll be both reading and setting
  4633 //   marks in the marking bit map, so we'll need the marking bit map.
  4634 // . For protecting _collector_state transitions, we take the CGC_lock.
  4635 //   Note that any races in the reading of of card table entries by the
  4636 //   CMS thread on the one hand and the clearing of those entries by the
  4637 //   VM thread or the setting of those entries by the mutator threads on the
  4638 //   other are quite benign. However, for efficiency it makes sense to keep
  4639 //   the VM thread from racing with the CMS thread while the latter is
  4640 //   dirty card info to the modUnionTable. We therefore also use the
  4641 //   CGC_lock to protect the reading of the card table and the mod union
  4642 //   table by the CM thread.
  4643 // . We run concurrently with mutator updates, so scanning
  4644 //   needs to be done carefully  -- we should not try to scan
  4645 //   potentially uninitialized objects.
  4646 //
  4647 // Locking strategy: While holding the CGC_lock, we scan over and
  4648 // reset a maximal dirty range of the mod union / card tables, then lock
  4649 // the free_list_lock and bitmap lock to do a full marking, then
  4650 // release these locks; and repeat the cycle. This allows for a
  4651 // certain amount of fairness in the sharing of these locks between
  4652 // the CMS collector on the one hand, and the VM thread and the
  4653 // mutators on the other.
  4655 // NOTE: preclean_mod_union_table() and preclean_card_table()
  4656 // further below are largely identical; if you need to modify
  4657 // one of these methods, please check the other method too.
  4659 size_t CMSCollector::preclean_mod_union_table(
  4660   ConcurrentMarkSweepGeneration* gen,
  4661   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4662   verify_work_stacks_empty();
  4663   verify_overflow_empty();
  4665   // Turn off checking for this method but turn it back on
  4666   // selectively.  There are yield points in this method
  4667   // but it is difficult to turn the checking off just around
  4668   // the yield points.  It is simpler to selectively turn
  4669   // it on.
  4670   DEBUG_ONLY(RememberKlassesChecker mux(false);)
  4672   // strategy: starting with the first card, accumulate contiguous
  4673   // ranges of dirty cards; clear these cards, then scan the region
  4674   // covered by these cards.
  4676   // Since all of the MUT is committed ahead, we can just use
  4677   // that, in case the generations expand while we are precleaning.
  4678   // It might also be fine to just use the committed part of the
  4679   // generation, but we might potentially miss cards when the
  4680   // generation is rapidly expanding while we are in the midst
  4681   // of precleaning.
  4682   HeapWord* startAddr = gen->reserved().start();
  4683   HeapWord* endAddr   = gen->reserved().end();
  4685   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4687   size_t numDirtyCards, cumNumDirtyCards;
  4688   HeapWord *nextAddr, *lastAddr;
  4689   for (cumNumDirtyCards = numDirtyCards = 0,
  4690        nextAddr = lastAddr = startAddr;
  4691        nextAddr < endAddr;
  4692        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4694     ResourceMark rm;
  4695     HandleMark   hm;
  4697     MemRegion dirtyRegion;
  4699       stopTimer();
  4700       // Potential yield point
  4701       CMSTokenSync ts(true);
  4702       startTimer();
  4703       sample_eden();
  4704       // Get dirty region starting at nextOffset (inclusive),
  4705       // simultaneously clearing it.
  4706       dirtyRegion =
  4707         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
  4708       assert(dirtyRegion.start() >= nextAddr,
  4709              "returned region inconsistent?");
  4711     // Remember where the next search should begin.
  4712     // The returned region (if non-empty) is a right open interval,
  4713     // so lastOffset is obtained from the right end of that
  4714     // interval.
  4715     lastAddr = dirtyRegion.end();
  4716     // Should do something more transparent and less hacky XXX
  4717     numDirtyCards =
  4718       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
  4720     // We'll scan the cards in the dirty region (with periodic
  4721     // yields for foreground GC as needed).
  4722     if (!dirtyRegion.is_empty()) {
  4723       assert(numDirtyCards > 0, "consistency check");
  4724       HeapWord* stop_point = NULL;
  4725       stopTimer();
  4726       // Potential yield point
  4727       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
  4728                                bitMapLock());
  4729       startTimer();
  4731         verify_work_stacks_empty();
  4732         verify_overflow_empty();
  4733         sample_eden();
  4734         DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
  4735         stop_point =
  4736           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4738       if (stop_point != NULL) {
  4739         // The careful iteration stopped early either because it found an
  4740         // uninitialized object, or because we were in the midst of an
  4741         // "abortable preclean", which should now be aborted. Redirty
  4742         // the bits corresponding to the partially-scanned or unscanned
  4743         // cards. We'll either restart at the next block boundary or
  4744         // abort the preclean.
  4745         assert((CMSPermGenPrecleaningEnabled && (gen == _permGen)) ||
  4746                (_collectorState == AbortablePreclean && should_abort_preclean()),
  4747                "Unparsable objects should only be in perm gen.");
  4748         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
  4749         if (should_abort_preclean()) {
  4750           break; // out of preclean loop
  4751         } else {
  4752           // Compute the next address at which preclean should pick up;
  4753           // might need bitMapLock in order to read P-bits.
  4754           lastAddr = next_card_start_after_block(stop_point);
  4757     } else {
  4758       assert(lastAddr == endAddr, "consistency check");
  4759       assert(numDirtyCards == 0, "consistency check");
  4760       break;
  4763   verify_work_stacks_empty();
  4764   verify_overflow_empty();
  4765   return cumNumDirtyCards;
  4768 // NOTE: preclean_mod_union_table() above and preclean_card_table()
  4769 // below are largely identical; if you need to modify
  4770 // one of these methods, please check the other method too.
  4772 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
  4773   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4774   // strategy: it's similar to precleamModUnionTable above, in that
  4775   // we accumulate contiguous ranges of dirty cards, mark these cards
  4776   // precleaned, then scan the region covered by these cards.
  4777   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
  4778   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
  4780   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4782   size_t numDirtyCards, cumNumDirtyCards;
  4783   HeapWord *lastAddr, *nextAddr;
  4785   for (cumNumDirtyCards = numDirtyCards = 0,
  4786        nextAddr = lastAddr = startAddr;
  4787        nextAddr < endAddr;
  4788        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4790     ResourceMark rm;
  4791     HandleMark   hm;
  4793     MemRegion dirtyRegion;
  4795       // See comments in "Precleaning notes" above on why we
  4796       // do this locking. XXX Could the locking overheads be
  4797       // too high when dirty cards are sparse? [I don't think so.]
  4798       stopTimer();
  4799       CMSTokenSync x(true); // is cms thread
  4800       startTimer();
  4801       sample_eden();
  4802       // Get and clear dirty region from card table
  4803       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
  4804                                     MemRegion(nextAddr, endAddr),
  4805                                     true,
  4806                                     CardTableModRefBS::precleaned_card_val());
  4808       assert(dirtyRegion.start() >= nextAddr,
  4809              "returned region inconsistent?");
  4811     lastAddr = dirtyRegion.end();
  4812     numDirtyCards =
  4813       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
  4815     if (!dirtyRegion.is_empty()) {
  4816       stopTimer();
  4817       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
  4818       startTimer();
  4819       sample_eden();
  4820       verify_work_stacks_empty();
  4821       verify_overflow_empty();
  4822       DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
  4823       HeapWord* stop_point =
  4824         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4825       if (stop_point != NULL) {
  4826         // The careful iteration stopped early because it found an
  4827         // uninitialized object.  Redirty the bits corresponding to the
  4828         // partially-scanned or unscanned cards, and start again at the
  4829         // next block boundary.
  4830         assert(CMSPermGenPrecleaningEnabled ||
  4831                (_collectorState == AbortablePreclean && should_abort_preclean()),
  4832                "Unparsable objects should only be in perm gen.");
  4833         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
  4834         if (should_abort_preclean()) {
  4835           break; // out of preclean loop
  4836         } else {
  4837           // Compute the next address at which preclean should pick up.
  4838           lastAddr = next_card_start_after_block(stop_point);
  4841     } else {
  4842       break;
  4845   verify_work_stacks_empty();
  4846   verify_overflow_empty();
  4847   return cumNumDirtyCards;
  4850 void CMSCollector::checkpointRootsFinal(bool asynch,
  4851   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  4852   assert(_collectorState == FinalMarking, "incorrect state transition?");
  4853   check_correct_thread_executing();
  4854   // world is stopped at this checkpoint
  4855   assert(SafepointSynchronize::is_at_safepoint(),
  4856          "world should be stopped");
  4857   TraceCMSMemoryManagerStats tms(_collectorState);
  4858   verify_work_stacks_empty();
  4859   verify_overflow_empty();
  4861   SpecializationStats::clear();
  4862   if (PrintGCDetails) {
  4863     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
  4864                         _young_gen->used() / K,
  4865                         _young_gen->capacity() / K);
  4867   if (asynch) {
  4868     if (CMSScavengeBeforeRemark) {
  4869       GenCollectedHeap* gch = GenCollectedHeap::heap();
  4870       // Temporarily set flag to false, GCH->do_collection will
  4871       // expect it to be false and set to true
  4872       FlagSetting fl(gch->_is_gc_active, false);
  4873       NOT_PRODUCT(TraceTime t("Scavenge-Before-Remark",
  4874         PrintGCDetails && Verbose, true, gclog_or_tty);)
  4875       int level = _cmsGen->level() - 1;
  4876       if (level >= 0) {
  4877         gch->do_collection(true,        // full (i.e. force, see below)
  4878                            false,       // !clear_all_soft_refs
  4879                            0,           // size
  4880                            false,       // is_tlab
  4881                            level        // max_level
  4882                           );
  4885     FreelistLocker x(this);
  4886     MutexLockerEx y(bitMapLock(),
  4887                     Mutex::_no_safepoint_check_flag);
  4888     assert(!init_mark_was_synchronous, "but that's impossible!");
  4889     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
  4890   } else {
  4891     // already have all the locks
  4892     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
  4893                              init_mark_was_synchronous);
  4895   verify_work_stacks_empty();
  4896   verify_overflow_empty();
  4897   SpecializationStats::print();
  4900 void CMSCollector::checkpointRootsFinalWork(bool asynch,
  4901   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  4903   NOT_PRODUCT(TraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, gclog_or_tty);)
  4905   assert(haveFreelistLocks(), "must have free list locks");
  4906   assert_lock_strong(bitMapLock());
  4908   if (UseAdaptiveSizePolicy) {
  4909     size_policy()->checkpoint_roots_final_begin();
  4912   ResourceMark rm;
  4913   HandleMark   hm;
  4915   GenCollectedHeap* gch = GenCollectedHeap::heap();
  4917   if (should_unload_classes()) {
  4918     CodeCache::gc_prologue();
  4920   assert(haveFreelistLocks(), "must have free list locks");
  4921   assert_lock_strong(bitMapLock());
  4923   DEBUG_ONLY(RememberKlassesChecker fmx(should_unload_classes());)
  4924   if (!init_mark_was_synchronous) {
  4925     // We might assume that we need not fill TLAB's when
  4926     // CMSScavengeBeforeRemark is set, because we may have just done
  4927     // a scavenge which would have filled all TLAB's -- and besides
  4928     // Eden would be empty. This however may not always be the case --
  4929     // for instance although we asked for a scavenge, it may not have
  4930     // happened because of a JNI critical section. We probably need
  4931     // a policy for deciding whether we can in that case wait until
  4932     // the critical section releases and then do the remark following
  4933     // the scavenge, and skip it here. In the absence of that policy,
  4934     // or of an indication of whether the scavenge did indeed occur,
  4935     // we cannot rely on TLAB's having been filled and must do
  4936     // so here just in case a scavenge did not happen.
  4937     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
  4938     // Update the saved marks which may affect the root scans.
  4939     gch->save_marks();
  4942       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  4944       // Note on the role of the mod union table:
  4945       // Since the marker in "markFromRoots" marks concurrently with
  4946       // mutators, it is possible for some reachable objects not to have been
  4947       // scanned. For instance, an only reference to an object A was
  4948       // placed in object B after the marker scanned B. Unless B is rescanned,
  4949       // A would be collected. Such updates to references in marked objects
  4950       // are detected via the mod union table which is the set of all cards
  4951       // dirtied since the first checkpoint in this GC cycle and prior to
  4952       // the most recent young generation GC, minus those cleaned up by the
  4953       // concurrent precleaning.
  4954       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
  4955         TraceTime t("Rescan (parallel) ", PrintGCDetails, false, gclog_or_tty);
  4956         do_remark_parallel();
  4957       } else {
  4958         TraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
  4959                     gclog_or_tty);
  4960         do_remark_non_parallel();
  4963   } else {
  4964     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
  4965     // The initial mark was stop-world, so there's no rescanning to
  4966     // do; go straight on to the next step below.
  4968   verify_work_stacks_empty();
  4969   verify_overflow_empty();
  4972     NOT_PRODUCT(TraceTime ts("refProcessingWork", PrintGCDetails, false, gclog_or_tty);)
  4973     refProcessingWork(asynch, clear_all_soft_refs);
  4975   verify_work_stacks_empty();
  4976   verify_overflow_empty();
  4978   if (should_unload_classes()) {
  4979     CodeCache::gc_epilogue();
  4982   // If we encountered any (marking stack / work queue) overflow
  4983   // events during the current CMS cycle, take appropriate
  4984   // remedial measures, where possible, so as to try and avoid
  4985   // recurrence of that condition.
  4986   assert(_markStack.isEmpty(), "No grey objects");
  4987   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
  4988                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
  4989   if (ser_ovflw > 0) {
  4990     if (PrintCMSStatistics != 0) {
  4991       gclog_or_tty->print_cr("Marking stack overflow (benign) "
  4992         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
  4993         ", kac_preclean="SIZE_FORMAT")",
  4994         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
  4995         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
  4997     _markStack.expand();
  4998     _ser_pmc_remark_ovflw = 0;
  4999     _ser_pmc_preclean_ovflw = 0;
  5000     _ser_kac_preclean_ovflw = 0;
  5001     _ser_kac_ovflw = 0;
  5003   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
  5004     if (PrintCMSStatistics != 0) {
  5005       gclog_or_tty->print_cr("Work queue overflow (benign) "
  5006         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
  5007         _par_pmc_remark_ovflw, _par_kac_ovflw);
  5009     _par_pmc_remark_ovflw = 0;
  5010     _par_kac_ovflw = 0;
  5012   if (PrintCMSStatistics != 0) {
  5013      if (_markStack._hit_limit > 0) {
  5014        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
  5015                               _markStack._hit_limit);
  5017      if (_markStack._failed_double > 0) {
  5018        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
  5019                               " current capacity "SIZE_FORMAT,
  5020                               _markStack._failed_double,
  5021                               _markStack.capacity());
  5024   _markStack._hit_limit = 0;
  5025   _markStack._failed_double = 0;
  5027   // Check that all the klasses have been checked
  5028   assert(_revisitStack.isEmpty(), "Not all klasses revisited");
  5030   if ((VerifyAfterGC || VerifyDuringGC) &&
  5031       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  5032     verify_after_remark();
  5035   // Change under the freelistLocks.
  5036   _collectorState = Sweeping;
  5037   // Call isAllClear() under bitMapLock
  5038   assert(_modUnionTable.isAllClear(), "Should be clear by end of the"
  5039     " final marking");
  5040   if (UseAdaptiveSizePolicy) {
  5041     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
  5045 // Parallel remark task
  5046 class CMSParRemarkTask: public AbstractGangTask {
  5047   CMSCollector* _collector;
  5048   int           _n_workers;
  5049   CompactibleFreeListSpace* _cms_space;
  5050   CompactibleFreeListSpace* _perm_space;
  5052   // The per-thread work queues, available here for stealing.
  5053   OopTaskQueueSet*       _task_queues;
  5054   ParallelTaskTerminator _term;
  5056  public:
  5057   CMSParRemarkTask(CMSCollector* collector,
  5058                    CompactibleFreeListSpace* cms_space,
  5059                    CompactibleFreeListSpace* perm_space,
  5060                    int n_workers, FlexibleWorkGang* workers,
  5061                    OopTaskQueueSet* task_queues):
  5062     AbstractGangTask("Rescan roots and grey objects in parallel"),
  5063     _collector(collector),
  5064     _cms_space(cms_space), _perm_space(perm_space),
  5065     _n_workers(n_workers),
  5066     _task_queues(task_queues),
  5067     _term(n_workers, task_queues) { }
  5069   OopTaskQueueSet* task_queues() { return _task_queues; }
  5071   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  5073   ParallelTaskTerminator* terminator() { return &_term; }
  5074   int n_workers() { return _n_workers; }
  5076   void work(int i);
  5078  private:
  5079   // Work method in support of parallel rescan ... of young gen spaces
  5080   void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl,
  5081                              ContiguousSpace* space,
  5082                              HeapWord** chunk_array, size_t chunk_top);
  5084   // ... of  dirty cards in old space
  5085   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
  5086                                   Par_MarkRefsIntoAndScanClosure* cl);
  5088   // ... work stealing for the above
  5089   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
  5090 };
  5092 // work_queue(i) is passed to the closure
  5093 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
  5094 // also is passed to do_dirty_card_rescan_tasks() and to
  5095 // do_work_steal() to select the i-th task_queue.
  5097 void CMSParRemarkTask::work(int i) {
  5098   elapsedTimer _timer;
  5099   ResourceMark rm;
  5100   HandleMark   hm;
  5102   // ---------- rescan from roots --------------
  5103   _timer.start();
  5104   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5105   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
  5106     _collector->_span, _collector->ref_processor(),
  5107     &(_collector->_markBitMap),
  5108     work_queue(i), &(_collector->_revisitStack));
  5110   // Rescan young gen roots first since these are likely
  5111   // coarsely partitioned and may, on that account, constitute
  5112   // the critical path; thus, it's best to start off that
  5113   // work first.
  5114   // ---------- young gen roots --------------
  5116     DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
  5117     EdenSpace* eden_space = dng->eden();
  5118     ContiguousSpace* from_space = dng->from();
  5119     ContiguousSpace* to_space   = dng->to();
  5121     HeapWord** eca = _collector->_eden_chunk_array;
  5122     size_t     ect = _collector->_eden_chunk_index;
  5123     HeapWord** sca = _collector->_survivor_chunk_array;
  5124     size_t     sct = _collector->_survivor_chunk_index;
  5126     assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
  5127     assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
  5129     do_young_space_rescan(i, &par_mrias_cl, to_space, NULL, 0);
  5130     do_young_space_rescan(i, &par_mrias_cl, from_space, sca, sct);
  5131     do_young_space_rescan(i, &par_mrias_cl, eden_space, eca, ect);
  5133     _timer.stop();
  5134     if (PrintCMSStatistics != 0) {
  5135       gclog_or_tty->print_cr(
  5136         "Finished young gen rescan work in %dth thread: %3.3f sec",
  5137         i, _timer.seconds());
  5141   // ---------- remaining roots --------------
  5142   _timer.reset();
  5143   _timer.start();
  5144   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
  5145                                 false,     // yg was scanned above
  5146                                 false,     // this is parallel code
  5147                                 true,      // collecting perm gen
  5148                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
  5149                                 &par_mrias_cl,
  5150                                 true,   // walk all of code cache if (so & SO_CodeCache)
  5151                                 NULL);
  5152   assert(_collector->should_unload_classes()
  5153          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache),
  5154          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
  5155   _timer.stop();
  5156   if (PrintCMSStatistics != 0) {
  5157     gclog_or_tty->print_cr(
  5158       "Finished remaining root rescan work in %dth thread: %3.3f sec",
  5159       i, _timer.seconds());
  5162   // ---------- rescan dirty cards ------------
  5163   _timer.reset();
  5164   _timer.start();
  5166   // Do the rescan tasks for each of the two spaces
  5167   // (cms_space and perm_space) in turn.
  5168   // "i" is passed to select the "i-th" task_queue
  5169   do_dirty_card_rescan_tasks(_cms_space, i, &par_mrias_cl);
  5170   do_dirty_card_rescan_tasks(_perm_space, i, &par_mrias_cl);
  5171   _timer.stop();
  5172   if (PrintCMSStatistics != 0) {
  5173     gclog_or_tty->print_cr(
  5174       "Finished dirty card rescan work in %dth thread: %3.3f sec",
  5175       i, _timer.seconds());
  5178   // ---------- steal work from other threads ...
  5179   // ---------- ... and drain overflow list.
  5180   _timer.reset();
  5181   _timer.start();
  5182   do_work_steal(i, &par_mrias_cl, _collector->hash_seed(i));
  5183   _timer.stop();
  5184   if (PrintCMSStatistics != 0) {
  5185     gclog_or_tty->print_cr(
  5186       "Finished work stealing in %dth thread: %3.3f sec",
  5187       i, _timer.seconds());
  5191 // Note that parameter "i" is not used.
  5192 void
  5193 CMSParRemarkTask::do_young_space_rescan(int i,
  5194   Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space,
  5195   HeapWord** chunk_array, size_t chunk_top) {
  5196   // Until all tasks completed:
  5197   // . claim an unclaimed task
  5198   // . compute region boundaries corresponding to task claimed
  5199   //   using chunk_array
  5200   // . par_oop_iterate(cl) over that region
  5202   ResourceMark rm;
  5203   HandleMark   hm;
  5205   SequentialSubTasksDone* pst = space->par_seq_tasks();
  5206   assert(pst->valid(), "Uninitialized use?");
  5208   int nth_task = 0;
  5209   int n_tasks  = pst->n_tasks();
  5211   HeapWord *start, *end;
  5212   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5213     // We claimed task # nth_task; compute its boundaries.
  5214     if (chunk_top == 0) {  // no samples were taken
  5215       assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
  5216       start = space->bottom();
  5217       end   = space->top();
  5218     } else if (nth_task == 0) {
  5219       start = space->bottom();
  5220       end   = chunk_array[nth_task];
  5221     } else if (nth_task < (jint)chunk_top) {
  5222       assert(nth_task >= 1, "Control point invariant");
  5223       start = chunk_array[nth_task - 1];
  5224       end   = chunk_array[nth_task];
  5225     } else {
  5226       assert(nth_task == (jint)chunk_top, "Control point invariant");
  5227       start = chunk_array[chunk_top - 1];
  5228       end   = space->top();
  5230     MemRegion mr(start, end);
  5231     // Verify that mr is in space
  5232     assert(mr.is_empty() || space->used_region().contains(mr),
  5233            "Should be in space");
  5234     // Verify that "start" is an object boundary
  5235     assert(mr.is_empty() || oop(mr.start())->is_oop(),
  5236            "Should be an oop");
  5237     space->par_oop_iterate(mr, cl);
  5239   pst->all_tasks_completed();
  5242 void
  5243 CMSParRemarkTask::do_dirty_card_rescan_tasks(
  5244   CompactibleFreeListSpace* sp, int i,
  5245   Par_MarkRefsIntoAndScanClosure* cl) {
  5246   // Until all tasks completed:
  5247   // . claim an unclaimed task
  5248   // . compute region boundaries corresponding to task claimed
  5249   // . transfer dirty bits ct->mut for that region
  5250   // . apply rescanclosure to dirty mut bits for that region
  5252   ResourceMark rm;
  5253   HandleMark   hm;
  5255   OopTaskQueue* work_q = work_queue(i);
  5256   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
  5257   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
  5258   // CAUTION: This closure has state that persists across calls to
  5259   // the work method dirty_range_iterate_clear() in that it has
  5260   // imbedded in it a (subtype of) UpwardsObjectClosure. The
  5261   // use of that state in the imbedded UpwardsObjectClosure instance
  5262   // assumes that the cards are always iterated (even if in parallel
  5263   // by several threads) in monotonically increasing order per each
  5264   // thread. This is true of the implementation below which picks
  5265   // card ranges (chunks) in monotonically increasing order globally
  5266   // and, a-fortiori, in monotonically increasing order per thread
  5267   // (the latter order being a subsequence of the former).
  5268   // If the work code below is ever reorganized into a more chaotic
  5269   // work-partitioning form than the current "sequential tasks"
  5270   // paradigm, the use of that persistent state will have to be
  5271   // revisited and modified appropriately. See also related
  5272   // bug 4756801 work on which should examine this code to make
  5273   // sure that the changes there do not run counter to the
  5274   // assumptions made here and necessary for correctness and
  5275   // efficiency. Note also that this code might yield inefficient
  5276   // behaviour in the case of very large objects that span one or
  5277   // more work chunks. Such objects would potentially be scanned
  5278   // several times redundantly. Work on 4756801 should try and
  5279   // address that performance anomaly if at all possible. XXX
  5280   MemRegion  full_span  = _collector->_span;
  5281   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
  5282   CMSMarkStack* rs = &(_collector->_revisitStack);   // shared
  5283   MarkFromDirtyCardsClosure
  5284     greyRescanClosure(_collector, full_span, // entire span of interest
  5285                       sp, bm, work_q, rs, cl);
  5287   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  5288   assert(pst->valid(), "Uninitialized use?");
  5289   int nth_task = 0;
  5290   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
  5291   MemRegion span = sp->used_region();
  5292   HeapWord* start_addr = span.start();
  5293   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
  5294                                            alignment);
  5295   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
  5296   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
  5297          start_addr, "Check alignment");
  5298   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
  5299          chunk_size, "Check alignment");
  5301   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5302     // Having claimed the nth_task, compute corresponding mem-region,
  5303     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
  5304     // The alignment restriction ensures that we do not need any
  5305     // synchronization with other gang-workers while setting or
  5306     // clearing bits in thus chunk of the MUT.
  5307     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
  5308                                     start_addr + (nth_task+1)*chunk_size);
  5309     // The last chunk's end might be way beyond end of the
  5310     // used region. In that case pull back appropriately.
  5311     if (this_span.end() > end_addr) {
  5312       this_span.set_end(end_addr);
  5313       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
  5315     // Iterate over the dirty cards covering this chunk, marking them
  5316     // precleaned, and setting the corresponding bits in the mod union
  5317     // table. Since we have been careful to partition at Card and MUT-word
  5318     // boundaries no synchronization is needed between parallel threads.
  5319     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
  5320                                                  &modUnionClosure);
  5322     // Having transferred these marks into the modUnionTable,
  5323     // rescan the marked objects on the dirty cards in the modUnionTable.
  5324     // Even if this is at a synchronous collection, the initial marking
  5325     // may have been done during an asynchronous collection so there
  5326     // may be dirty bits in the mod-union table.
  5327     _collector->_modUnionTable.dirty_range_iterate_clear(
  5328                   this_span, &greyRescanClosure);
  5329     _collector->_modUnionTable.verifyNoOneBitsInRange(
  5330                                  this_span.start(),
  5331                                  this_span.end());
  5333   pst->all_tasks_completed();  // declare that i am done
  5336 // . see if we can share work_queues with ParNew? XXX
  5337 void
  5338 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
  5339                                 int* seed) {
  5340   OopTaskQueue* work_q = work_queue(i);
  5341   NOT_PRODUCT(int num_steals = 0;)
  5342   oop obj_to_scan;
  5343   CMSBitMap* bm = &(_collector->_markBitMap);
  5345   while (true) {
  5346     // Completely finish any left over work from (an) earlier round(s)
  5347     cl->trim_queue(0);
  5348     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
  5349                                          (size_t)ParGCDesiredObjsFromOverflowList);
  5350     // Now check if there's any work in the overflow list
  5351     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
  5352     // only affects the number of attempts made to get work from the
  5353     // overflow list and does not affect the number of workers.  Just
  5354     // pass ParallelGCThreads so this behavior is unchanged.
  5355     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  5356                                                 work_q,
  5357                                                 ParallelGCThreads)) {
  5358       // found something in global overflow list;
  5359       // not yet ready to go stealing work from others.
  5360       // We'd like to assert(work_q->size() != 0, ...)
  5361       // because we just took work from the overflow list,
  5362       // but of course we can't since all of that could have
  5363       // been already stolen from us.
  5364       // "He giveth and He taketh away."
  5365       continue;
  5367     // Verify that we have no work before we resort to stealing
  5368     assert(work_q->size() == 0, "Have work, shouldn't steal");
  5369     // Try to steal from other queues that have work
  5370     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  5371       NOT_PRODUCT(num_steals++;)
  5372       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  5373       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  5374       // Do scanning work
  5375       obj_to_scan->oop_iterate(cl);
  5376       // Loop around, finish this work, and try to steal some more
  5377     } else if (terminator()->offer_termination()) {
  5378         break;  // nirvana from the infinite cycle
  5381   NOT_PRODUCT(
  5382     if (PrintCMSStatistics != 0) {
  5383       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  5386   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
  5387          "Else our work is not yet done");
  5390 // Return a thread-local PLAB recording array, as appropriate.
  5391 void* CMSCollector::get_data_recorder(int thr_num) {
  5392   if (_survivor_plab_array != NULL &&
  5393       (CMSPLABRecordAlways ||
  5394        (_collectorState > Marking && _collectorState < FinalMarking))) {
  5395     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
  5396     ChunkArray* ca = &_survivor_plab_array[thr_num];
  5397     ca->reset();   // clear it so that fresh data is recorded
  5398     return (void*) ca;
  5399   } else {
  5400     return NULL;
  5404 // Reset all the thread-local PLAB recording arrays
  5405 void CMSCollector::reset_survivor_plab_arrays() {
  5406   for (uint i = 0; i < ParallelGCThreads; i++) {
  5407     _survivor_plab_array[i].reset();
  5411 // Merge the per-thread plab arrays into the global survivor chunk
  5412 // array which will provide the partitioning of the survivor space
  5413 // for CMS rescan.
  5414 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
  5415                                               int no_of_gc_threads) {
  5416   assert(_survivor_plab_array  != NULL, "Error");
  5417   assert(_survivor_chunk_array != NULL, "Error");
  5418   assert(_collectorState == FinalMarking, "Error");
  5419   for (int j = 0; j < no_of_gc_threads; j++) {
  5420     _cursor[j] = 0;
  5422   HeapWord* top = surv->top();
  5423   size_t i;
  5424   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
  5425     HeapWord* min_val = top;          // Higher than any PLAB address
  5426     uint      min_tid = 0;            // position of min_val this round
  5427     for (int j = 0; j < no_of_gc_threads; j++) {
  5428       ChunkArray* cur_sca = &_survivor_plab_array[j];
  5429       if (_cursor[j] == cur_sca->end()) {
  5430         continue;
  5432       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
  5433       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
  5434       assert(surv->used_region().contains(cur_val), "Out of bounds value");
  5435       if (cur_val < min_val) {
  5436         min_tid = j;
  5437         min_val = cur_val;
  5438       } else {
  5439         assert(cur_val < top, "All recorded addresses should be less");
  5442     // At this point min_val and min_tid are respectively
  5443     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
  5444     // and the thread (j) that witnesses that address.
  5445     // We record this address in the _survivor_chunk_array[i]
  5446     // and increment _cursor[min_tid] prior to the next round i.
  5447     if (min_val == top) {
  5448       break;
  5450     _survivor_chunk_array[i] = min_val;
  5451     _cursor[min_tid]++;
  5453   // We are all done; record the size of the _survivor_chunk_array
  5454   _survivor_chunk_index = i; // exclusive: [0, i)
  5455   if (PrintCMSStatistics > 0) {
  5456     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
  5458   // Verify that we used up all the recorded entries
  5459   #ifdef ASSERT
  5460     size_t total = 0;
  5461     for (int j = 0; j < no_of_gc_threads; j++) {
  5462       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
  5463       total += _cursor[j];
  5465     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
  5466     // Check that the merged array is in sorted order
  5467     if (total > 0) {
  5468       for (size_t i = 0; i < total - 1; i++) {
  5469         if (PrintCMSStatistics > 0) {
  5470           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
  5471                               i, _survivor_chunk_array[i]);
  5473         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
  5474                "Not sorted");
  5477   #endif // ASSERT
  5480 // Set up the space's par_seq_tasks structure for work claiming
  5481 // for parallel rescan of young gen.
  5482 // See ParRescanTask where this is currently used.
  5483 void
  5484 CMSCollector::
  5485 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
  5486   assert(n_threads > 0, "Unexpected n_threads argument");
  5487   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  5489   // Eden space
  5491     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
  5492     assert(!pst->valid(), "Clobbering existing data?");
  5493     // Each valid entry in [0, _eden_chunk_index) represents a task.
  5494     size_t n_tasks = _eden_chunk_index + 1;
  5495     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
  5496     // Sets the condition for completion of the subtask (how many threads
  5497     // need to finish in order to be done).
  5498     pst->set_n_threads(n_threads);
  5499     pst->set_n_tasks((int)n_tasks);
  5502   // Merge the survivor plab arrays into _survivor_chunk_array
  5503   if (_survivor_plab_array != NULL) {
  5504     merge_survivor_plab_arrays(dng->from(), n_threads);
  5505   } else {
  5506     assert(_survivor_chunk_index == 0, "Error");
  5509   // To space
  5511     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
  5512     assert(!pst->valid(), "Clobbering existing data?");
  5513     // Sets the condition for completion of the subtask (how many threads
  5514     // need to finish in order to be done).
  5515     pst->set_n_threads(n_threads);
  5516     pst->set_n_tasks(1);
  5517     assert(pst->valid(), "Error");
  5520   // From space
  5522     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
  5523     assert(!pst->valid(), "Clobbering existing data?");
  5524     size_t n_tasks = _survivor_chunk_index + 1;
  5525     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
  5526     // Sets the condition for completion of the subtask (how many threads
  5527     // need to finish in order to be done).
  5528     pst->set_n_threads(n_threads);
  5529     pst->set_n_tasks((int)n_tasks);
  5530     assert(pst->valid(), "Error");
  5534 // Parallel version of remark
  5535 void CMSCollector::do_remark_parallel() {
  5536   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5537   FlexibleWorkGang* workers = gch->workers();
  5538   assert(workers != NULL, "Need parallel worker threads.");
  5539   int n_workers = workers->total_workers();
  5540   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  5541   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
  5543   CMSParRemarkTask tsk(this,
  5544     cms_space, perm_space,
  5545     n_workers, workers, task_queues());
  5547   // Set up for parallel process_strong_roots work.
  5548   gch->set_par_threads(n_workers);
  5549   // We won't be iterating over the cards in the card table updating
  5550   // the younger_gen cards, so we shouldn't call the following else
  5551   // the verification code as well as subsequent younger_refs_iterate
  5552   // code would get confused. XXX
  5553   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
  5555   // The young gen rescan work will not be done as part of
  5556   // process_strong_roots (which currently doesn't knw how to
  5557   // parallelize such a scan), but rather will be broken up into
  5558   // a set of parallel tasks (via the sampling that the [abortable]
  5559   // preclean phase did of EdenSpace, plus the [two] tasks of
  5560   // scanning the [two] survivor spaces. Further fine-grain
  5561   // parallelization of the scanning of the survivor spaces
  5562   // themselves, and of precleaning of the younger gen itself
  5563   // is deferred to the future.
  5564   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
  5566   // The dirty card rescan work is broken up into a "sequence"
  5567   // of parallel tasks (per constituent space) that are dynamically
  5568   // claimed by the parallel threads.
  5569   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
  5570   perm_space->initialize_sequential_subtasks_for_rescan(n_workers);
  5572   // It turns out that even when we're using 1 thread, doing the work in a
  5573   // separate thread causes wide variance in run times.  We can't help this
  5574   // in the multi-threaded case, but we special-case n=1 here to get
  5575   // repeatable measurements of the 1-thread overhead of the parallel code.
  5576   if (n_workers > 1) {
  5577     // Make refs discovery MT-safe
  5578     ReferenceProcessorMTMutator mt(ref_processor(), true);
  5579     GenCollectedHeap::StrongRootsScope srs(gch);
  5580     workers->run_task(&tsk);
  5581   } else {
  5582     GenCollectedHeap::StrongRootsScope srs(gch);
  5583     tsk.work(0);
  5585   gch->set_par_threads(0);  // 0 ==> non-parallel.
  5586   // restore, single-threaded for now, any preserved marks
  5587   // as a result of work_q overflow
  5588   restore_preserved_marks_if_any();
  5591 // Non-parallel version of remark
  5592 void CMSCollector::do_remark_non_parallel() {
  5593   ResourceMark rm;
  5594   HandleMark   hm;
  5595   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5596   MarkRefsIntoAndScanClosure
  5597     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  5598              &_markStack, &_revisitStack, this,
  5599              false /* should_yield */, false /* not precleaning */);
  5600   MarkFromDirtyCardsClosure
  5601     markFromDirtyCardsClosure(this, _span,
  5602                               NULL,  // space is set further below
  5603                               &_markBitMap, &_markStack, &_revisitStack,
  5604                               &mrias_cl);
  5606     TraceTime t("grey object rescan", PrintGCDetails, false, gclog_or_tty);
  5607     // Iterate over the dirty cards, setting the corresponding bits in the
  5608     // mod union table.
  5610       ModUnionClosure modUnionClosure(&_modUnionTable);
  5611       _ct->ct_bs()->dirty_card_iterate(
  5612                       _cmsGen->used_region(),
  5613                       &modUnionClosure);
  5614       _ct->ct_bs()->dirty_card_iterate(
  5615                       _permGen->used_region(),
  5616                       &modUnionClosure);
  5618     // Having transferred these marks into the modUnionTable, we just need
  5619     // to rescan the marked objects on the dirty cards in the modUnionTable.
  5620     // The initial marking may have been done during an asynchronous
  5621     // collection so there may be dirty bits in the mod-union table.
  5622     const int alignment =
  5623       CardTableModRefBS::card_size * BitsPerWord;
  5625       // ... First handle dirty cards in CMS gen
  5626       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
  5627       MemRegion ur = _cmsGen->used_region();
  5628       HeapWord* lb = ur.start();
  5629       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  5630       MemRegion cms_span(lb, ub);
  5631       _modUnionTable.dirty_range_iterate_clear(cms_span,
  5632                                                &markFromDirtyCardsClosure);
  5633       verify_work_stacks_empty();
  5634       if (PrintCMSStatistics != 0) {
  5635         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
  5636           markFromDirtyCardsClosure.num_dirty_cards());
  5640       // .. and then repeat for dirty cards in perm gen
  5641       markFromDirtyCardsClosure.set_space(_permGen->cmsSpace());
  5642       MemRegion ur = _permGen->used_region();
  5643       HeapWord* lb = ur.start();
  5644       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  5645       MemRegion perm_span(lb, ub);
  5646       _modUnionTable.dirty_range_iterate_clear(perm_span,
  5647                                                &markFromDirtyCardsClosure);
  5648       verify_work_stacks_empty();
  5649       if (PrintCMSStatistics != 0) {
  5650         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in perm gen) ",
  5651           markFromDirtyCardsClosure.num_dirty_cards());
  5655   if (VerifyDuringGC &&
  5656       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  5657     HandleMark hm;  // Discard invalid handles created during verification
  5658     Universe::verify(true);
  5661     TraceTime t("root rescan", PrintGCDetails, false, gclog_or_tty);
  5663     verify_work_stacks_empty();
  5665     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  5666     GenCollectedHeap::StrongRootsScope srs(gch);
  5667     gch->gen_process_strong_roots(_cmsGen->level(),
  5668                                   true,  // younger gens as roots
  5669                                   false, // use the local StrongRootsScope
  5670                                   true,  // collecting perm gen
  5671                                   SharedHeap::ScanningOption(roots_scanning_options()),
  5672                                   &mrias_cl,
  5673                                   true,   // walk code active on stacks
  5674                                   NULL);
  5675     assert(should_unload_classes()
  5676            || (roots_scanning_options() & SharedHeap::SO_CodeCache),
  5677            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
  5679   verify_work_stacks_empty();
  5680   // Restore evacuated mark words, if any, used for overflow list links
  5681   if (!CMSOverflowEarlyRestoration) {
  5682     restore_preserved_marks_if_any();
  5684   verify_overflow_empty();
  5687 ////////////////////////////////////////////////////////
  5688 // Parallel Reference Processing Task Proxy Class
  5689 ////////////////////////////////////////////////////////
  5690 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
  5691   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5692   CMSCollector*          _collector;
  5693   CMSBitMap*             _mark_bit_map;
  5694   const MemRegion        _span;
  5695   ProcessTask&           _task;
  5697 public:
  5698   CMSRefProcTaskProxy(ProcessTask&     task,
  5699                       CMSCollector*    collector,
  5700                       const MemRegion& span,
  5701                       CMSBitMap*       mark_bit_map,
  5702                       AbstractWorkGang* workers,
  5703                       OopTaskQueueSet* task_queues):
  5704     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
  5705       task_queues),
  5706     _task(task),
  5707     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
  5709       assert(_collector->_span.equals(_span) && !_span.is_empty(),
  5710              "Inconsistency in _span");
  5713   OopTaskQueueSet* task_queues() { return queues(); }
  5715   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  5717   void do_work_steal(int i,
  5718                      CMSParDrainMarkingStackClosure* drain,
  5719                      CMSParKeepAliveClosure* keep_alive,
  5720                      int* seed);
  5722   virtual void work(int i);
  5723 };
  5725 void CMSRefProcTaskProxy::work(int i) {
  5726   assert(_collector->_span.equals(_span), "Inconsistency in _span");
  5727   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
  5728                                         _mark_bit_map,
  5729                                         &_collector->_revisitStack,
  5730                                         work_queue(i));
  5731   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
  5732                                                  _mark_bit_map,
  5733                                                  &_collector->_revisitStack,
  5734                                                  work_queue(i));
  5735   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
  5736   _task.work(i, is_alive_closure, par_keep_alive, par_drain_stack);
  5737   if (_task.marks_oops_alive()) {
  5738     do_work_steal(i, &par_drain_stack, &par_keep_alive,
  5739                   _collector->hash_seed(i));
  5741   assert(work_queue(i)->size() == 0, "work_queue should be empty");
  5742   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
  5745 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
  5746   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5747   EnqueueTask& _task;
  5749 public:
  5750   CMSRefEnqueueTaskProxy(EnqueueTask& task)
  5751     : AbstractGangTask("Enqueue reference objects in parallel"),
  5752       _task(task)
  5753   { }
  5755   virtual void work(int i)
  5757     _task.work(i);
  5759 };
  5761 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
  5762   MemRegion span, CMSBitMap* bit_map, CMSMarkStack* revisit_stack,
  5763   OopTaskQueue* work_queue):
  5764    Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
  5765    _span(span),
  5766    _bit_map(bit_map),
  5767    _work_queue(work_queue),
  5768    _mark_and_push(collector, span, bit_map, revisit_stack, work_queue),
  5769    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  5770                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
  5771 { }
  5773 // . see if we can share work_queues with ParNew? XXX
  5774 void CMSRefProcTaskProxy::do_work_steal(int i,
  5775   CMSParDrainMarkingStackClosure* drain,
  5776   CMSParKeepAliveClosure* keep_alive,
  5777   int* seed) {
  5778   OopTaskQueue* work_q = work_queue(i);
  5779   NOT_PRODUCT(int num_steals = 0;)
  5780   oop obj_to_scan;
  5782   while (true) {
  5783     // Completely finish any left over work from (an) earlier round(s)
  5784     drain->trim_queue(0);
  5785     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
  5786                                          (size_t)ParGCDesiredObjsFromOverflowList);
  5787     // Now check if there's any work in the overflow list
  5788     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
  5789     // only affects the number of attempts made to get work from the
  5790     // overflow list and does not affect the number of workers.  Just
  5791     // pass ParallelGCThreads so this behavior is unchanged.
  5792     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  5793                                                 work_q,
  5794                                                 ParallelGCThreads)) {
  5795       // Found something in global overflow list;
  5796       // not yet ready to go stealing work from others.
  5797       // We'd like to assert(work_q->size() != 0, ...)
  5798       // because we just took work from the overflow list,
  5799       // but of course we can't, since all of that might have
  5800       // been already stolen from us.
  5801       continue;
  5803     // Verify that we have no work before we resort to stealing
  5804     assert(work_q->size() == 0, "Have work, shouldn't steal");
  5805     // Try to steal from other queues that have work
  5806     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  5807       NOT_PRODUCT(num_steals++;)
  5808       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  5809       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  5810       // Do scanning work
  5811       obj_to_scan->oop_iterate(keep_alive);
  5812       // Loop around, finish this work, and try to steal some more
  5813     } else if (terminator()->offer_termination()) {
  5814       break;  // nirvana from the infinite cycle
  5817   NOT_PRODUCT(
  5818     if (PrintCMSStatistics != 0) {
  5819       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  5824 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
  5826   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5827   FlexibleWorkGang* workers = gch->workers();
  5828   assert(workers != NULL, "Need parallel worker threads.");
  5829   CMSRefProcTaskProxy rp_task(task, &_collector,
  5830                               _collector.ref_processor()->span(),
  5831                               _collector.markBitMap(),
  5832                               workers, _collector.task_queues());
  5833   workers->run_task(&rp_task);
  5836 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
  5839   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5840   FlexibleWorkGang* workers = gch->workers();
  5841   assert(workers != NULL, "Need parallel worker threads.");
  5842   CMSRefEnqueueTaskProxy enq_task(task);
  5843   workers->run_task(&enq_task);
  5846 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
  5848   ResourceMark rm;
  5849   HandleMark   hm;
  5851   ReferenceProcessor* rp = ref_processor();
  5852   assert(rp->span().equals(_span), "Spans should be equal");
  5853   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
  5854   // Process weak references.
  5855   rp->setup_policy(clear_all_soft_refs);
  5856   verify_work_stacks_empty();
  5858   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
  5859                                           &_markStack, &_revisitStack,
  5860                                           false /* !preclean */);
  5861   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
  5862                                 _span, &_markBitMap, &_markStack,
  5863                                 &cmsKeepAliveClosure, false /* !preclean */);
  5865     TraceTime t("weak refs processing", PrintGCDetails, false, gclog_or_tty);
  5866     if (rp->processing_is_mt()) {
  5867       // Set the degree of MT here.  If the discovery is done MT, there
  5868       // may have been a different number of threads doing the discovery
  5869       // and a different number of discovered lists may have Ref objects.
  5870       // That is OK as long as the Reference lists are balanced (see
  5871       // balance_all_queues() and balance_queues()).
  5874       rp->set_mt_degree(ParallelGCThreads);
  5875       CMSRefProcTaskExecutor task_executor(*this);
  5876       rp->process_discovered_references(&_is_alive_closure,
  5877                                         &cmsKeepAliveClosure,
  5878                                         &cmsDrainMarkingStackClosure,
  5879                                         &task_executor);
  5880     } else {
  5881       rp->process_discovered_references(&_is_alive_closure,
  5882                                         &cmsKeepAliveClosure,
  5883                                         &cmsDrainMarkingStackClosure,
  5884                                         NULL);
  5886     verify_work_stacks_empty();
  5889   if (should_unload_classes()) {
  5891       TraceTime t("class unloading", PrintGCDetails, false, gclog_or_tty);
  5893       // Follow SystemDictionary roots and unload classes
  5894       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
  5896       // Follow CodeCache roots and unload any methods marked for unloading
  5897       CodeCache::do_unloading(&_is_alive_closure,
  5898                               &cmsKeepAliveClosure,
  5899                               purged_class);
  5901       cmsDrainMarkingStackClosure.do_void();
  5902       verify_work_stacks_empty();
  5904       // Update subklass/sibling/implementor links in KlassKlass descendants
  5905       assert(!_revisitStack.isEmpty(), "revisit stack should not be empty");
  5906       oop k;
  5907       while ((k = _revisitStack.pop()) != NULL) {
  5908         ((Klass*)(oopDesc*)k)->follow_weak_klass_links(
  5909                        &_is_alive_closure,
  5910                        &cmsKeepAliveClosure);
  5912       assert(!ClassUnloading ||
  5913              (_markStack.isEmpty() && overflow_list_is_empty()),
  5914              "Should not have found new reachable objects");
  5915       assert(_revisitStack.isEmpty(), "revisit stack should have been drained");
  5916       cmsDrainMarkingStackClosure.do_void();
  5917       verify_work_stacks_empty();
  5921       TraceTime t("scrub symbol & string tables", PrintGCDetails, false, gclog_or_tty);
  5922       // Now clean up stale oops in SymbolTable and StringTable
  5923       SymbolTable::unlink(&_is_alive_closure);
  5924       StringTable::unlink(&_is_alive_closure);
  5928   verify_work_stacks_empty();
  5929   // Restore any preserved marks as a result of mark stack or
  5930   // work queue overflow
  5931   restore_preserved_marks_if_any();  // done single-threaded for now
  5933   rp->set_enqueuing_is_done(true);
  5934   if (rp->processing_is_mt()) {
  5935     rp->balance_all_queues();
  5936     CMSRefProcTaskExecutor task_executor(*this);
  5937     rp->enqueue_discovered_references(&task_executor);
  5938   } else {
  5939     rp->enqueue_discovered_references(NULL);
  5941   rp->verify_no_references_recorded();
  5942   assert(!rp->discovery_enabled(), "should have been disabled");
  5944   // JVMTI object tagging is based on JNI weak refs. If any of these
  5945   // refs were cleared then JVMTI needs to update its maps and
  5946   // maybe post ObjectFrees to agents.
  5947   JvmtiExport::cms_ref_processing_epilogue();
  5950 #ifndef PRODUCT
  5951 void CMSCollector::check_correct_thread_executing() {
  5952   Thread* t = Thread::current();
  5953   // Only the VM thread or the CMS thread should be here.
  5954   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
  5955          "Unexpected thread type");
  5956   // If this is the vm thread, the foreground process
  5957   // should not be waiting.  Note that _foregroundGCIsActive is
  5958   // true while the foreground collector is waiting.
  5959   if (_foregroundGCShouldWait) {
  5960     // We cannot be the VM thread
  5961     assert(t->is_ConcurrentGC_thread(),
  5962            "Should be CMS thread");
  5963   } else {
  5964     // We can be the CMS thread only if we are in a stop-world
  5965     // phase of CMS collection.
  5966     if (t->is_ConcurrentGC_thread()) {
  5967       assert(_collectorState == InitialMarking ||
  5968              _collectorState == FinalMarking,
  5969              "Should be a stop-world phase");
  5970       // The CMS thread should be holding the CMS_token.
  5971       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  5972              "Potential interference with concurrently "
  5973              "executing VM thread");
  5977 #endif
  5979 void CMSCollector::sweep(bool asynch) {
  5980   assert(_collectorState == Sweeping, "just checking");
  5981   check_correct_thread_executing();
  5982   verify_work_stacks_empty();
  5983   verify_overflow_empty();
  5984   increment_sweep_count();
  5985   TraceCMSMemoryManagerStats tms(_collectorState);
  5987   _inter_sweep_timer.stop();
  5988   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
  5989   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
  5991   // PermGen verification support: If perm gen sweeping is disabled in
  5992   // this cycle, we preserve the perm gen object "deadness" information
  5993   // in the perm_gen_verify_bit_map. In order to do that we traverse
  5994   // all blocks in perm gen and mark all dead objects.
  5995   if (verifying() && !should_unload_classes()) {
  5996     assert(perm_gen_verify_bit_map()->sizeInBits() != 0,
  5997            "Should have already been allocated");
  5998     MarkDeadObjectsClosure mdo(this, _permGen->cmsSpace(),
  5999                                markBitMap(), perm_gen_verify_bit_map());
  6000     if (asynch) {
  6001       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
  6002                                bitMapLock());
  6003       _permGen->cmsSpace()->blk_iterate(&mdo);
  6004     } else {
  6005       // In the case of synchronous sweep, we already have
  6006       // the requisite locks/tokens.
  6007       _permGen->cmsSpace()->blk_iterate(&mdo);
  6011   assert(!_intra_sweep_timer.is_active(), "Should not be active");
  6012   _intra_sweep_timer.reset();
  6013   _intra_sweep_timer.start();
  6014   if (asynch) {
  6015     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6016     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
  6017     // First sweep the old gen then the perm gen
  6019       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  6020                                bitMapLock());
  6021       sweepWork(_cmsGen, asynch);
  6024     // Now repeat for perm gen
  6025     if (should_unload_classes()) {
  6026       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
  6027                              bitMapLock());
  6028       sweepWork(_permGen, asynch);
  6031     // Update Universe::_heap_*_at_gc figures.
  6032     // We need all the free list locks to make the abstract state
  6033     // transition from Sweeping to Resetting. See detailed note
  6034     // further below.
  6036       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  6037                                _permGen->freelistLock());
  6038       // Update heap occupancy information which is used as
  6039       // input to soft ref clearing policy at the next gc.
  6040       Universe::update_heap_info_at_gc();
  6041       _collectorState = Resizing;
  6043   } else {
  6044     // already have needed locks
  6045     sweepWork(_cmsGen,  asynch);
  6047     if (should_unload_classes()) {
  6048       sweepWork(_permGen, asynch);
  6050     // Update heap occupancy information which is used as
  6051     // input to soft ref clearing policy at the next gc.
  6052     Universe::update_heap_info_at_gc();
  6053     _collectorState = Resizing;
  6055   verify_work_stacks_empty();
  6056   verify_overflow_empty();
  6058   _intra_sweep_timer.stop();
  6059   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
  6061   _inter_sweep_timer.reset();
  6062   _inter_sweep_timer.start();
  6064   update_time_of_last_gc(os::javaTimeMillis());
  6066   // NOTE on abstract state transitions:
  6067   // Mutators allocate-live and/or mark the mod-union table dirty
  6068   // based on the state of the collection.  The former is done in
  6069   // the interval [Marking, Sweeping] and the latter in the interval
  6070   // [Marking, Sweeping).  Thus the transitions into the Marking state
  6071   // and out of the Sweeping state must be synchronously visible
  6072   // globally to the mutators.
  6073   // The transition into the Marking state happens with the world
  6074   // stopped so the mutators will globally see it.  Sweeping is
  6075   // done asynchronously by the background collector so the transition
  6076   // from the Sweeping state to the Resizing state must be done
  6077   // under the freelistLock (as is the check for whether to
  6078   // allocate-live and whether to dirty the mod-union table).
  6079   assert(_collectorState == Resizing, "Change of collector state to"
  6080     " Resizing must be done under the freelistLocks (plural)");
  6082   // Now that sweeping has been completed, we clear
  6083   // the incremental_collection_failed flag,
  6084   // thus inviting a younger gen collection to promote into
  6085   // this generation. If such a promotion may still fail,
  6086   // the flag will be set again when a young collection is
  6087   // attempted.
  6088   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6089   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
  6090   gch->update_full_collections_completed(_collection_count_start);
  6093 // FIX ME!!! Looks like this belongs in CFLSpace, with
  6094 // CMSGen merely delegating to it.
  6095 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
  6096   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
  6097   HeapWord*  minAddr        = _cmsSpace->bottom();
  6098   HeapWord*  largestAddr    =
  6099     (HeapWord*) _cmsSpace->dictionary()->findLargestDict();
  6100   if (largestAddr == NULL) {
  6101     // The dictionary appears to be empty.  In this case
  6102     // try to coalesce at the end of the heap.
  6103     largestAddr = _cmsSpace->end();
  6105   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
  6106   size_t nearLargestOffset =
  6107     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
  6108   if (PrintFLSStatistics != 0) {
  6109     gclog_or_tty->print_cr(
  6110       "CMS: Large Block: " PTR_FORMAT ";"
  6111       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
  6112       largestAddr,
  6113       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
  6115   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
  6118 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
  6119   return addr >= _cmsSpace->nearLargestChunk();
  6122 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
  6123   return _cmsSpace->find_chunk_at_end();
  6126 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
  6127                                                     bool full) {
  6128   // The next lower level has been collected.  Gather any statistics
  6129   // that are of interest at this point.
  6130   if (!full && (current_level + 1) == level()) {
  6131     // Gather statistics on the young generation collection.
  6132     collector()->stats().record_gc0_end(used());
  6136 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
  6137   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6138   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  6139     "Wrong type of heap");
  6140   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
  6141     gch->gen_policy()->size_policy();
  6142   assert(sp->is_gc_cms_adaptive_size_policy(),
  6143     "Wrong type of size policy");
  6144   return sp;
  6147 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
  6148   if (PrintGCDetails && Verbose) {
  6149     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
  6151   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
  6152   _debug_collection_type =
  6153     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
  6154   if (PrintGCDetails && Verbose) {
  6155     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
  6159 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
  6160   bool asynch) {
  6161   // We iterate over the space(s) underlying this generation,
  6162   // checking the mark bit map to see if the bits corresponding
  6163   // to specific blocks are marked or not. Blocks that are
  6164   // marked are live and are not swept up. All remaining blocks
  6165   // are swept up, with coalescing on-the-fly as we sweep up
  6166   // contiguous free and/or garbage blocks:
  6167   // We need to ensure that the sweeper synchronizes with allocators
  6168   // and stop-the-world collectors. In particular, the following
  6169   // locks are used:
  6170   // . CMS token: if this is held, a stop the world collection cannot occur
  6171   // . freelistLock: if this is held no allocation can occur from this
  6172   //                 generation by another thread
  6173   // . bitMapLock: if this is held, no other thread can access or update
  6174   //
  6176   // Note that we need to hold the freelistLock if we use
  6177   // block iterate below; else the iterator might go awry if
  6178   // a mutator (or promotion) causes block contents to change
  6179   // (for instance if the allocator divvies up a block).
  6180   // If we hold the free list lock, for all practical purposes
  6181   // young generation GC's can't occur (they'll usually need to
  6182   // promote), so we might as well prevent all young generation
  6183   // GC's while we do a sweeping step. For the same reason, we might
  6184   // as well take the bit map lock for the entire duration
  6186   // check that we hold the requisite locks
  6187   assert(have_cms_token(), "Should hold cms token");
  6188   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
  6189          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
  6190         "Should possess CMS token to sweep");
  6191   assert_lock_strong(gen->freelistLock());
  6192   assert_lock_strong(bitMapLock());
  6194   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
  6195   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
  6196   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
  6197                                       _inter_sweep_estimate.padded_average(),
  6198                                       _intra_sweep_estimate.padded_average());
  6199   gen->setNearLargestChunk();
  6202     SweepClosure sweepClosure(this, gen, &_markBitMap,
  6203                             CMSYield && asynch);
  6204     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
  6205     // We need to free-up/coalesce garbage/blocks from a
  6206     // co-terminal free run. This is done in the SweepClosure
  6207     // destructor; so, do not remove this scope, else the
  6208     // end-of-sweep-census below will be off by a little bit.
  6210   gen->cmsSpace()->sweep_completed();
  6211   gen->cmsSpace()->endSweepFLCensus(sweep_count());
  6212   if (should_unload_classes()) {                // unloaded classes this cycle,
  6213     _concurrent_cycles_since_last_unload = 0;   // ... reset count
  6214   } else {                                      // did not unload classes,
  6215     _concurrent_cycles_since_last_unload++;     // ... increment count
  6219 // Reset CMS data structures (for now just the marking bit map)
  6220 // preparatory for the next cycle.
  6221 void CMSCollector::reset(bool asynch) {
  6222   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6223   CMSAdaptiveSizePolicy* sp = size_policy();
  6224   AdaptiveSizePolicyOutput(sp, gch->total_collections());
  6225   if (asynch) {
  6226     CMSTokenSyncWithLocks ts(true, bitMapLock());
  6228     // If the state is not "Resetting", the foreground  thread
  6229     // has done a collection and the resetting.
  6230     if (_collectorState != Resetting) {
  6231       assert(_collectorState == Idling, "The state should only change"
  6232         " because the foreground collector has finished the collection");
  6233       return;
  6236     // Clear the mark bitmap (no grey objects to start with)
  6237     // for the next cycle.
  6238     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6239     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
  6241     HeapWord* curAddr = _markBitMap.startWord();
  6242     while (curAddr < _markBitMap.endWord()) {
  6243       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
  6244       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
  6245       _markBitMap.clear_large_range(chunk);
  6246       if (ConcurrentMarkSweepThread::should_yield() &&
  6247           !foregroundGCIsActive() &&
  6248           CMSYield) {
  6249         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6250                "CMS thread should hold CMS token");
  6251         assert_lock_strong(bitMapLock());
  6252         bitMapLock()->unlock();
  6253         ConcurrentMarkSweepThread::desynchronize(true);
  6254         ConcurrentMarkSweepThread::acknowledge_yield_request();
  6255         stopTimer();
  6256         if (PrintCMSStatistics != 0) {
  6257           incrementYields();
  6259         icms_wait();
  6261         // See the comment in coordinator_yield()
  6262         for (unsigned i = 0; i < CMSYieldSleepCount &&
  6263                          ConcurrentMarkSweepThread::should_yield() &&
  6264                          !CMSCollector::foregroundGCIsActive(); ++i) {
  6265           os::sleep(Thread::current(), 1, false);
  6266           ConcurrentMarkSweepThread::acknowledge_yield_request();
  6269         ConcurrentMarkSweepThread::synchronize(true);
  6270         bitMapLock()->lock_without_safepoint_check();
  6271         startTimer();
  6273       curAddr = chunk.end();
  6275     // A successful mostly concurrent collection has been done.
  6276     // Because only the full (i.e., concurrent mode failure) collections
  6277     // are being measured for gc overhead limits, clean the "near" flag
  6278     // and count.
  6279     sp->reset_gc_overhead_limit_count();
  6280     _collectorState = Idling;
  6281   } else {
  6282     // already have the lock
  6283     assert(_collectorState == Resetting, "just checking");
  6284     assert_lock_strong(bitMapLock());
  6285     _markBitMap.clear_all();
  6286     _collectorState = Idling;
  6289   // Stop incremental mode after a cycle completes, so that any future cycles
  6290   // are triggered by allocation.
  6291   stop_icms();
  6293   NOT_PRODUCT(
  6294     if (RotateCMSCollectionTypes) {
  6295       _cmsGen->rotate_debug_collection_type();
  6300 void CMSCollector::do_CMS_operation(CMS_op_type op) {
  6301   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  6302   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6303   TraceTime t("GC", PrintGC, !PrintGCDetails, gclog_or_tty);
  6304   TraceCollectorStats tcs(counters());
  6306   switch (op) {
  6307     case CMS_op_checkpointRootsInitial: {
  6308       checkpointRootsInitial(true);       // asynch
  6309       if (PrintGC) {
  6310         _cmsGen->printOccupancy("initial-mark");
  6312       break;
  6314     case CMS_op_checkpointRootsFinal: {
  6315       checkpointRootsFinal(true,    // asynch
  6316                            false,   // !clear_all_soft_refs
  6317                            false);  // !init_mark_was_synchronous
  6318       if (PrintGC) {
  6319         _cmsGen->printOccupancy("remark");
  6321       break;
  6323     default:
  6324       fatal("No such CMS_op");
  6328 #ifndef PRODUCT
  6329 size_t const CMSCollector::skip_header_HeapWords() {
  6330   return FreeChunk::header_size();
  6333 // Try and collect here conditions that should hold when
  6334 // CMS thread is exiting. The idea is that the foreground GC
  6335 // thread should not be blocked if it wants to terminate
  6336 // the CMS thread and yet continue to run the VM for a while
  6337 // after that.
  6338 void CMSCollector::verify_ok_to_terminate() const {
  6339   assert(Thread::current()->is_ConcurrentGC_thread(),
  6340          "should be called by CMS thread");
  6341   assert(!_foregroundGCShouldWait, "should be false");
  6342   // We could check here that all the various low-level locks
  6343   // are not held by the CMS thread, but that is overkill; see
  6344   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
  6345   // is checked.
  6347 #endif
  6349 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
  6350    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
  6351           "missing Printezis mark?");
  6352   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6353   size_t size = pointer_delta(nextOneAddr + 1, addr);
  6354   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6355          "alignment problem");
  6356   assert(size >= 3, "Necessary for Printezis marks to work");
  6357   return size;
  6360 // A variant of the above (block_size_using_printezis_bits()) except
  6361 // that we return 0 if the P-bits are not yet set.
  6362 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
  6363   if (_markBitMap.isMarked(addr)) {
  6364     assert(_markBitMap.isMarked(addr + 1), "Missing Printezis bit?");
  6365     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6366     size_t size = pointer_delta(nextOneAddr + 1, addr);
  6367     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6368            "alignment problem");
  6369     assert(size >= 3, "Necessary for Printezis marks to work");
  6370     return size;
  6371   } else {
  6372     assert(!_markBitMap.isMarked(addr + 1), "Bit map inconsistency?");
  6373     return 0;
  6377 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
  6378   size_t sz = 0;
  6379   oop p = (oop)addr;
  6380   if (p->klass_or_null() != NULL && p->is_parsable()) {
  6381     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
  6382   } else {
  6383     sz = block_size_using_printezis_bits(addr);
  6385   assert(sz > 0, "size must be nonzero");
  6386   HeapWord* next_block = addr + sz;
  6387   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
  6388                                              CardTableModRefBS::card_size);
  6389   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
  6390          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
  6391          "must be different cards");
  6392   return next_card;
  6396 // CMS Bit Map Wrapper /////////////////////////////////////////
  6398 // Construct a CMS bit map infrastructure, but don't create the
  6399 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
  6400 // further below.
  6401 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
  6402   _bm(),
  6403   _shifter(shifter),
  6404   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
  6406   _bmStartWord = 0;
  6407   _bmWordSize  = 0;
  6410 bool CMSBitMap::allocate(MemRegion mr) {
  6411   _bmStartWord = mr.start();
  6412   _bmWordSize  = mr.word_size();
  6413   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
  6414                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  6415   if (!brs.is_reserved()) {
  6416     warning("CMS bit map allocation failure");
  6417     return false;
  6419   // For now we'll just commit all of the bit map up fromt.
  6420   // Later on we'll try to be more parsimonious with swap.
  6421   if (!_virtual_space.initialize(brs, brs.size())) {
  6422     warning("CMS bit map backing store failure");
  6423     return false;
  6425   assert(_virtual_space.committed_size() == brs.size(),
  6426          "didn't reserve backing store for all of CMS bit map?");
  6427   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
  6428   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
  6429          _bmWordSize, "inconsistency in bit map sizing");
  6430   _bm.set_size(_bmWordSize >> _shifter);
  6432   // bm.clear(); // can we rely on getting zero'd memory? verify below
  6433   assert(isAllClear(),
  6434          "Expected zero'd memory from ReservedSpace constructor");
  6435   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
  6436          "consistency check");
  6437   return true;
  6440 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
  6441   HeapWord *next_addr, *end_addr, *last_addr;
  6442   assert_locked();
  6443   assert(covers(mr), "out-of-range error");
  6444   // XXX assert that start and end are appropriately aligned
  6445   for (next_addr = mr.start(), end_addr = mr.end();
  6446        next_addr < end_addr; next_addr = last_addr) {
  6447     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
  6448     last_addr = dirty_region.end();
  6449     if (!dirty_region.is_empty()) {
  6450       cl->do_MemRegion(dirty_region);
  6451     } else {
  6452       assert(last_addr == end_addr, "program logic");
  6453       return;
  6458 #ifndef PRODUCT
  6459 void CMSBitMap::assert_locked() const {
  6460   CMSLockVerifier::assert_locked(lock());
  6463 bool CMSBitMap::covers(MemRegion mr) const {
  6464   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  6465   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
  6466          "size inconsistency");
  6467   return (mr.start() >= _bmStartWord) &&
  6468          (mr.end()   <= endWord());
  6471 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
  6472     return (start >= _bmStartWord && (start + size) <= endWord());
  6475 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
  6476   // verify that there are no 1 bits in the interval [left, right)
  6477   FalseBitMapClosure falseBitMapClosure;
  6478   iterate(&falseBitMapClosure, left, right);
  6481 void CMSBitMap::region_invariant(MemRegion mr)
  6483   assert_locked();
  6484   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  6485   assert(!mr.is_empty(), "unexpected empty region");
  6486   assert(covers(mr), "mr should be covered by bit map");
  6487   // convert address range into offset range
  6488   size_t start_ofs = heapWordToOffset(mr.start());
  6489   // Make sure that end() is appropriately aligned
  6490   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
  6491                         (1 << (_shifter+LogHeapWordSize))),
  6492          "Misaligned mr.end()");
  6493   size_t end_ofs   = heapWordToOffset(mr.end());
  6494   assert(end_ofs > start_ofs, "Should mark at least one bit");
  6497 #endif
  6499 bool CMSMarkStack::allocate(size_t size) {
  6500   // allocate a stack of the requisite depth
  6501   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6502                    size * sizeof(oop)));
  6503   if (!rs.is_reserved()) {
  6504     warning("CMSMarkStack allocation failure");
  6505     return false;
  6507   if (!_virtual_space.initialize(rs, rs.size())) {
  6508     warning("CMSMarkStack backing store failure");
  6509     return false;
  6511   assert(_virtual_space.committed_size() == rs.size(),
  6512          "didn't reserve backing store for all of CMS stack?");
  6513   _base = (oop*)(_virtual_space.low());
  6514   _index = 0;
  6515   _capacity = size;
  6516   NOT_PRODUCT(_max_depth = 0);
  6517   return true;
  6520 // XXX FIX ME !!! In the MT case we come in here holding a
  6521 // leaf lock. For printing we need to take a further lock
  6522 // which has lower rank. We need to recallibrate the two
  6523 // lock-ranks involved in order to be able to rpint the
  6524 // messages below. (Or defer the printing to the caller.
  6525 // For now we take the expedient path of just disabling the
  6526 // messages for the problematic case.)
  6527 void CMSMarkStack::expand() {
  6528   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
  6529   if (_capacity == MarkStackSizeMax) {
  6530     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6531       // We print a warning message only once per CMS cycle.
  6532       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
  6534     return;
  6536   // Double capacity if possible
  6537   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
  6538   // Do not give up existing stack until we have managed to
  6539   // get the double capacity that we desired.
  6540   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6541                    new_capacity * sizeof(oop)));
  6542   if (rs.is_reserved()) {
  6543     // Release the backing store associated with old stack
  6544     _virtual_space.release();
  6545     // Reinitialize virtual space for new stack
  6546     if (!_virtual_space.initialize(rs, rs.size())) {
  6547       fatal("Not enough swap for expanded marking stack");
  6549     _base = (oop*)(_virtual_space.low());
  6550     _index = 0;
  6551     _capacity = new_capacity;
  6552   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6553     // Failed to double capacity, continue;
  6554     // we print a detail message only once per CMS cycle.
  6555     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
  6556             SIZE_FORMAT"K",
  6557             _capacity / K, new_capacity / K);
  6562 // Closures
  6563 // XXX: there seems to be a lot of code  duplication here;
  6564 // should refactor and consolidate common code.
  6566 // This closure is used to mark refs into the CMS generation in
  6567 // the CMS bit map. Called at the first checkpoint. This closure
  6568 // assumes that we do not need to re-mark dirty cards; if the CMS
  6569 // generation on which this is used is not an oldest (modulo perm gen)
  6570 // generation then this will lose younger_gen cards!
  6572 MarkRefsIntoClosure::MarkRefsIntoClosure(
  6573   MemRegion span, CMSBitMap* bitMap):
  6574     _span(span),
  6575     _bitMap(bitMap)
  6577     assert(_ref_processor == NULL, "deliberately left NULL");
  6578     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
  6581 void MarkRefsIntoClosure::do_oop(oop obj) {
  6582   // if p points into _span, then mark corresponding bit in _markBitMap
  6583   assert(obj->is_oop(), "expected an oop");
  6584   HeapWord* addr = (HeapWord*)obj;
  6585   if (_span.contains(addr)) {
  6586     // this should be made more efficient
  6587     _bitMap->mark(addr);
  6591 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
  6592 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
  6594 // A variant of the above, used for CMS marking verification.
  6595 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
  6596   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
  6597     _span(span),
  6598     _verification_bm(verification_bm),
  6599     _cms_bm(cms_bm)
  6601     assert(_ref_processor == NULL, "deliberately left NULL");
  6602     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
  6605 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
  6606   // if p points into _span, then mark corresponding bit in _markBitMap
  6607   assert(obj->is_oop(), "expected an oop");
  6608   HeapWord* addr = (HeapWord*)obj;
  6609   if (_span.contains(addr)) {
  6610     _verification_bm->mark(addr);
  6611     if (!_cms_bm->isMarked(addr)) {
  6612       oop(addr)->print();
  6613       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
  6614       fatal("... aborting");
  6619 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
  6620 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
  6622 //////////////////////////////////////////////////
  6623 // MarkRefsIntoAndScanClosure
  6624 //////////////////////////////////////////////////
  6626 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
  6627                                                        ReferenceProcessor* rp,
  6628                                                        CMSBitMap* bit_map,
  6629                                                        CMSBitMap* mod_union_table,
  6630                                                        CMSMarkStack*  mark_stack,
  6631                                                        CMSMarkStack*  revisit_stack,
  6632                                                        CMSCollector* collector,
  6633                                                        bool should_yield,
  6634                                                        bool concurrent_precleaning):
  6635   _collector(collector),
  6636   _span(span),
  6637   _bit_map(bit_map),
  6638   _mark_stack(mark_stack),
  6639   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
  6640                       mark_stack, revisit_stack, concurrent_precleaning),
  6641   _yield(should_yield),
  6642   _concurrent_precleaning(concurrent_precleaning),
  6643   _freelistLock(NULL)
  6645   _ref_processor = rp;
  6646   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  6649 // This closure is used to mark refs into the CMS generation at the
  6650 // second (final) checkpoint, and to scan and transitively follow
  6651 // the unmarked oops. It is also used during the concurrent precleaning
  6652 // phase while scanning objects on dirty cards in the CMS generation.
  6653 // The marks are made in the marking bit map and the marking stack is
  6654 // used for keeping the (newly) grey objects during the scan.
  6655 // The parallel version (Par_...) appears further below.
  6656 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
  6657   if (obj != NULL) {
  6658     assert(obj->is_oop(), "expected an oop");
  6659     HeapWord* addr = (HeapWord*)obj;
  6660     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  6661     assert(_collector->overflow_list_is_empty(),
  6662            "overflow list should be empty");
  6663     if (_span.contains(addr) &&
  6664         !_bit_map->isMarked(addr)) {
  6665       // mark bit map (object is now grey)
  6666       _bit_map->mark(addr);
  6667       // push on marking stack (stack should be empty), and drain the
  6668       // stack by applying this closure to the oops in the oops popped
  6669       // from the stack (i.e. blacken the grey objects)
  6670       bool res = _mark_stack->push(obj);
  6671       assert(res, "Should have space to push on empty stack");
  6672       do {
  6673         oop new_oop = _mark_stack->pop();
  6674         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  6675         assert(new_oop->is_parsable(), "Found unparsable oop");
  6676         assert(_bit_map->isMarked((HeapWord*)new_oop),
  6677                "only grey objects on this stack");
  6678         // iterate over the oops in this oop, marking and pushing
  6679         // the ones in CMS heap (i.e. in _span).
  6680         new_oop->oop_iterate(&_pushAndMarkClosure);
  6681         // check if it's time to yield
  6682         do_yield_check();
  6683       } while (!_mark_stack->isEmpty() ||
  6684                (!_concurrent_precleaning && take_from_overflow_list()));
  6685         // if marking stack is empty, and we are not doing this
  6686         // during precleaning, then check the overflow list
  6688     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  6689     assert(_collector->overflow_list_is_empty(),
  6690            "overflow list was drained above");
  6691     // We could restore evacuated mark words, if any, used for
  6692     // overflow list links here because the overflow list is
  6693     // provably empty here. That would reduce the maximum
  6694     // size requirements for preserved_{oop,mark}_stack.
  6695     // But we'll just postpone it until we are all done
  6696     // so we can just stream through.
  6697     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
  6698       _collector->restore_preserved_marks_if_any();
  6699       assert(_collector->no_preserved_marks(), "No preserved marks");
  6701     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
  6702            "All preserved marks should have been restored above");
  6706 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6707 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6709 void MarkRefsIntoAndScanClosure::do_yield_work() {
  6710   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6711          "CMS thread should hold CMS token");
  6712   assert_lock_strong(_freelistLock);
  6713   assert_lock_strong(_bit_map->lock());
  6714   // relinquish the free_list_lock and bitMaplock()
  6715   DEBUG_ONLY(RememberKlassesChecker mux(false);)
  6716   _bit_map->lock()->unlock();
  6717   _freelistLock->unlock();
  6718   ConcurrentMarkSweepThread::desynchronize(true);
  6719   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6720   _collector->stopTimer();
  6721   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6722   if (PrintCMSStatistics != 0) {
  6723     _collector->incrementYields();
  6725   _collector->icms_wait();
  6727   // See the comment in coordinator_yield()
  6728   for (unsigned i = 0;
  6729        i < CMSYieldSleepCount &&
  6730        ConcurrentMarkSweepThread::should_yield() &&
  6731        !CMSCollector::foregroundGCIsActive();
  6732        ++i) {
  6733     os::sleep(Thread::current(), 1, false);
  6734     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6737   ConcurrentMarkSweepThread::synchronize(true);
  6738   _freelistLock->lock_without_safepoint_check();
  6739   _bit_map->lock()->lock_without_safepoint_check();
  6740   _collector->startTimer();
  6743 ///////////////////////////////////////////////////////////
  6744 // Par_MarkRefsIntoAndScanClosure: a parallel version of
  6745 //                                 MarkRefsIntoAndScanClosure
  6746 ///////////////////////////////////////////////////////////
  6747 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
  6748   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
  6749   CMSBitMap* bit_map, OopTaskQueue* work_queue, CMSMarkStack*  revisit_stack):
  6750   _span(span),
  6751   _bit_map(bit_map),
  6752   _work_queue(work_queue),
  6753   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  6754                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
  6755   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue,
  6756                           revisit_stack)
  6758   _ref_processor = rp;
  6759   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  6762 // This closure is used to mark refs into the CMS generation at the
  6763 // second (final) checkpoint, and to scan and transitively follow
  6764 // the unmarked oops. The marks are made in the marking bit map and
  6765 // the work_queue is used for keeping the (newly) grey objects during
  6766 // the scan phase whence they are also available for stealing by parallel
  6767 // threads. Since the marking bit map is shared, updates are
  6768 // synchronized (via CAS).
  6769 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
  6770   if (obj != NULL) {
  6771     // Ignore mark word because this could be an already marked oop
  6772     // that may be chained at the end of the overflow list.
  6773     assert(obj->is_oop(true), "expected an oop");
  6774     HeapWord* addr = (HeapWord*)obj;
  6775     if (_span.contains(addr) &&
  6776         !_bit_map->isMarked(addr)) {
  6777       // mark bit map (object will become grey):
  6778       // It is possible for several threads to be
  6779       // trying to "claim" this object concurrently;
  6780       // the unique thread that succeeds in marking the
  6781       // object first will do the subsequent push on
  6782       // to the work queue (or overflow list).
  6783       if (_bit_map->par_mark(addr)) {
  6784         // push on work_queue (which may not be empty), and trim the
  6785         // queue to an appropriate length by applying this closure to
  6786         // the oops in the oops popped from the stack (i.e. blacken the
  6787         // grey objects)
  6788         bool res = _work_queue->push(obj);
  6789         assert(res, "Low water mark should be less than capacity?");
  6790         trim_queue(_low_water_mark);
  6791       } // Else, another thread claimed the object
  6796 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6797 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6799 // This closure is used to rescan the marked objects on the dirty cards
  6800 // in the mod union table and the card table proper.
  6801 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
  6802   oop p, MemRegion mr) {
  6804   size_t size = 0;
  6805   HeapWord* addr = (HeapWord*)p;
  6806   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6807   assert(_span.contains(addr), "we are scanning the CMS generation");
  6808   // check if it's time to yield
  6809   if (do_yield_check()) {
  6810     // We yielded for some foreground stop-world work,
  6811     // and we have been asked to abort this ongoing preclean cycle.
  6812     return 0;
  6814   if (_bitMap->isMarked(addr)) {
  6815     // it's marked; is it potentially uninitialized?
  6816     if (p->klass_or_null() != NULL) {
  6817       // If is_conc_safe is false, the object may be undergoing
  6818       // change by the VM outside a safepoint.  Don't try to
  6819       // scan it, but rather leave it for the remark phase.
  6820       if (CMSPermGenPrecleaningEnabled &&
  6821           (!p->is_conc_safe() || !p->is_parsable())) {
  6822         // Signal precleaning to redirty the card since
  6823         // the klass pointer is already installed.
  6824         assert(size == 0, "Initial value");
  6825       } else {
  6826         assert(p->is_parsable(), "must be parsable.");
  6827         // an initialized object; ignore mark word in verification below
  6828         // since we are running concurrent with mutators
  6829         assert(p->is_oop(true), "should be an oop");
  6830         if (p->is_objArray()) {
  6831           // objArrays are precisely marked; restrict scanning
  6832           // to dirty cards only.
  6833           size = CompactibleFreeListSpace::adjustObjectSize(
  6834                    p->oop_iterate(_scanningClosure, mr));
  6835         } else {
  6836           // A non-array may have been imprecisely marked; we need
  6837           // to scan object in its entirety.
  6838           size = CompactibleFreeListSpace::adjustObjectSize(
  6839                    p->oop_iterate(_scanningClosure));
  6841         #ifdef DEBUG
  6842           size_t direct_size =
  6843             CompactibleFreeListSpace::adjustObjectSize(p->size());
  6844           assert(size == direct_size, "Inconsistency in size");
  6845           assert(size >= 3, "Necessary for Printezis marks to work");
  6846           if (!_bitMap->isMarked(addr+1)) {
  6847             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
  6848           } else {
  6849             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
  6850             assert(_bitMap->isMarked(addr+size-1),
  6851                    "inconsistent Printezis mark");
  6853         #endif // DEBUG
  6855     } else {
  6856       // an unitialized object
  6857       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
  6858       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  6859       size = pointer_delta(nextOneAddr + 1, addr);
  6860       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6861              "alignment problem");
  6862       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
  6863       // will dirty the card when the klass pointer is installed in the
  6864       // object (signalling the completion of initialization).
  6866   } else {
  6867     // Either a not yet marked object or an uninitialized object
  6868     if (p->klass_or_null() == NULL || !p->is_parsable()) {
  6869       // An uninitialized object, skip to the next card, since
  6870       // we may not be able to read its P-bits yet.
  6871       assert(size == 0, "Initial value");
  6872     } else {
  6873       // An object not (yet) reached by marking: we merely need to
  6874       // compute its size so as to go look at the next block.
  6875       assert(p->is_oop(true), "should be an oop");
  6876       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
  6879   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6880   return size;
  6883 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
  6884   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6885          "CMS thread should hold CMS token");
  6886   assert_lock_strong(_freelistLock);
  6887   assert_lock_strong(_bitMap->lock());
  6888   DEBUG_ONLY(RememberKlassesChecker mux(false);)
  6889   // relinquish the free_list_lock and bitMaplock()
  6890   _bitMap->lock()->unlock();
  6891   _freelistLock->unlock();
  6892   ConcurrentMarkSweepThread::desynchronize(true);
  6893   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6894   _collector->stopTimer();
  6895   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6896   if (PrintCMSStatistics != 0) {
  6897     _collector->incrementYields();
  6899   _collector->icms_wait();
  6901   // See the comment in coordinator_yield()
  6902   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6903                    ConcurrentMarkSweepThread::should_yield() &&
  6904                    !CMSCollector::foregroundGCIsActive(); ++i) {
  6905     os::sleep(Thread::current(), 1, false);
  6906     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6909   ConcurrentMarkSweepThread::synchronize(true);
  6910   _freelistLock->lock_without_safepoint_check();
  6911   _bitMap->lock()->lock_without_safepoint_check();
  6912   _collector->startTimer();
  6916 //////////////////////////////////////////////////////////////////
  6917 // SurvivorSpacePrecleanClosure
  6918 //////////////////////////////////////////////////////////////////
  6919 // This (single-threaded) closure is used to preclean the oops in
  6920 // the survivor spaces.
  6921 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
  6923   HeapWord* addr = (HeapWord*)p;
  6924   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6925   assert(!_span.contains(addr), "we are scanning the survivor spaces");
  6926   assert(p->klass_or_null() != NULL, "object should be initializd");
  6927   assert(p->is_parsable(), "must be parsable.");
  6928   // an initialized object; ignore mark word in verification below
  6929   // since we are running concurrent with mutators
  6930   assert(p->is_oop(true), "should be an oop");
  6931   // Note that we do not yield while we iterate over
  6932   // the interior oops of p, pushing the relevant ones
  6933   // on our marking stack.
  6934   size_t size = p->oop_iterate(_scanning_closure);
  6935   do_yield_check();
  6936   // Observe that below, we do not abandon the preclean
  6937   // phase as soon as we should; rather we empty the
  6938   // marking stack before returning. This is to satisfy
  6939   // some existing assertions. In general, it may be a
  6940   // good idea to abort immediately and complete the marking
  6941   // from the grey objects at a later time.
  6942   while (!_mark_stack->isEmpty()) {
  6943     oop new_oop = _mark_stack->pop();
  6944     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  6945     assert(new_oop->is_parsable(), "Found unparsable oop");
  6946     assert(_bit_map->isMarked((HeapWord*)new_oop),
  6947            "only grey objects on this stack");
  6948     // iterate over the oops in this oop, marking and pushing
  6949     // the ones in CMS heap (i.e. in _span).
  6950     new_oop->oop_iterate(_scanning_closure);
  6951     // check if it's time to yield
  6952     do_yield_check();
  6954   unsigned int after_count =
  6955     GenCollectedHeap::heap()->total_collections();
  6956   bool abort = (_before_count != after_count) ||
  6957                _collector->should_abort_preclean();
  6958   return abort ? 0 : size;
  6961 void SurvivorSpacePrecleanClosure::do_yield_work() {
  6962   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6963          "CMS thread should hold CMS token");
  6964   assert_lock_strong(_bit_map->lock());
  6965   DEBUG_ONLY(RememberKlassesChecker smx(false);)
  6966   // Relinquish the bit map lock
  6967   _bit_map->lock()->unlock();
  6968   ConcurrentMarkSweepThread::desynchronize(true);
  6969   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6970   _collector->stopTimer();
  6971   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6972   if (PrintCMSStatistics != 0) {
  6973     _collector->incrementYields();
  6975   _collector->icms_wait();
  6977   // See the comment in coordinator_yield()
  6978   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6979                        ConcurrentMarkSweepThread::should_yield() &&
  6980                        !CMSCollector::foregroundGCIsActive(); ++i) {
  6981     os::sleep(Thread::current(), 1, false);
  6982     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6985   ConcurrentMarkSweepThread::synchronize(true);
  6986   _bit_map->lock()->lock_without_safepoint_check();
  6987   _collector->startTimer();
  6990 // This closure is used to rescan the marked objects on the dirty cards
  6991 // in the mod union table and the card table proper. In the parallel
  6992 // case, although the bitMap is shared, we do a single read so the
  6993 // isMarked() query is "safe".
  6994 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
  6995   // Ignore mark word because we are running concurrent with mutators
  6996   assert(p->is_oop_or_null(true), "expected an oop or null");
  6997   HeapWord* addr = (HeapWord*)p;
  6998   assert(_span.contains(addr), "we are scanning the CMS generation");
  6999   bool is_obj_array = false;
  7000   #ifdef DEBUG
  7001     if (!_parallel) {
  7002       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  7003       assert(_collector->overflow_list_is_empty(),
  7004              "overflow list should be empty");
  7007   #endif // DEBUG
  7008   if (_bit_map->isMarked(addr)) {
  7009     // Obj arrays are precisely marked, non-arrays are not;
  7010     // so we scan objArrays precisely and non-arrays in their
  7011     // entirety.
  7012     if (p->is_objArray()) {
  7013       is_obj_array = true;
  7014       if (_parallel) {
  7015         p->oop_iterate(_par_scan_closure, mr);
  7016       } else {
  7017         p->oop_iterate(_scan_closure, mr);
  7019     } else {
  7020       if (_parallel) {
  7021         p->oop_iterate(_par_scan_closure);
  7022       } else {
  7023         p->oop_iterate(_scan_closure);
  7027   #ifdef DEBUG
  7028     if (!_parallel) {
  7029       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  7030       assert(_collector->overflow_list_is_empty(),
  7031              "overflow list should be empty");
  7034   #endif // DEBUG
  7035   return is_obj_array;
  7038 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
  7039                         MemRegion span,
  7040                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
  7041                         CMSMarkStack*  revisitStack,
  7042                         bool should_yield, bool verifying):
  7043   _collector(collector),
  7044   _span(span),
  7045   _bitMap(bitMap),
  7046   _mut(&collector->_modUnionTable),
  7047   _markStack(markStack),
  7048   _revisitStack(revisitStack),
  7049   _yield(should_yield),
  7050   _skipBits(0)
  7052   assert(_markStack->isEmpty(), "stack should be empty");
  7053   _finger = _bitMap->startWord();
  7054   _threshold = _finger;
  7055   assert(_collector->_restart_addr == NULL, "Sanity check");
  7056   assert(_span.contains(_finger), "Out of bounds _finger?");
  7057   DEBUG_ONLY(_verifying = verifying;)
  7060 void MarkFromRootsClosure::reset(HeapWord* addr) {
  7061   assert(_markStack->isEmpty(), "would cause duplicates on stack");
  7062   assert(_span.contains(addr), "Out of bounds _finger?");
  7063   _finger = addr;
  7064   _threshold = (HeapWord*)round_to(
  7065                  (intptr_t)_finger, CardTableModRefBS::card_size);
  7068 // Should revisit to see if this should be restructured for
  7069 // greater efficiency.
  7070 bool MarkFromRootsClosure::do_bit(size_t offset) {
  7071   if (_skipBits > 0) {
  7072     _skipBits--;
  7073     return true;
  7075   // convert offset into a HeapWord*
  7076   HeapWord* addr = _bitMap->startWord() + offset;
  7077   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
  7078          "address out of range");
  7079   assert(_bitMap->isMarked(addr), "tautology");
  7080   if (_bitMap->isMarked(addr+1)) {
  7081     // this is an allocated but not yet initialized object
  7082     assert(_skipBits == 0, "tautology");
  7083     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
  7084     oop p = oop(addr);
  7085     if (p->klass_or_null() == NULL || !p->is_parsable()) {
  7086       DEBUG_ONLY(if (!_verifying) {)
  7087         // We re-dirty the cards on which this object lies and increase
  7088         // the _threshold so that we'll come back to scan this object
  7089         // during the preclean or remark phase. (CMSCleanOnEnter)
  7090         if (CMSCleanOnEnter) {
  7091           size_t sz = _collector->block_size_using_printezis_bits(addr);
  7092           HeapWord* end_card_addr   = (HeapWord*)round_to(
  7093                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
  7094           MemRegion redirty_range = MemRegion(addr, end_card_addr);
  7095           assert(!redirty_range.is_empty(), "Arithmetical tautology");
  7096           // Bump _threshold to end_card_addr; note that
  7097           // _threshold cannot possibly exceed end_card_addr, anyhow.
  7098           // This prevents future clearing of the card as the scan proceeds
  7099           // to the right.
  7100           assert(_threshold <= end_card_addr,
  7101                  "Because we are just scanning into this object");
  7102           if (_threshold < end_card_addr) {
  7103             _threshold = end_card_addr;
  7105           if (p->klass_or_null() != NULL) {
  7106             // Redirty the range of cards...
  7107             _mut->mark_range(redirty_range);
  7108           } // ...else the setting of klass will dirty the card anyway.
  7110       DEBUG_ONLY(})
  7111       return true;
  7114   scanOopsInOop(addr);
  7115   return true;
  7118 // We take a break if we've been at this for a while,
  7119 // so as to avoid monopolizing the locks involved.
  7120 void MarkFromRootsClosure::do_yield_work() {
  7121   // First give up the locks, then yield, then re-lock
  7122   // We should probably use a constructor/destructor idiom to
  7123   // do this unlock/lock or modify the MutexUnlocker class to
  7124   // serve our purpose. XXX
  7125   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  7126          "CMS thread should hold CMS token");
  7127   assert_lock_strong(_bitMap->lock());
  7128   DEBUG_ONLY(RememberKlassesChecker mux(false);)
  7129   _bitMap->lock()->unlock();
  7130   ConcurrentMarkSweepThread::desynchronize(true);
  7131   ConcurrentMarkSweepThread::acknowledge_yield_request();
  7132   _collector->stopTimer();
  7133   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  7134   if (PrintCMSStatistics != 0) {
  7135     _collector->incrementYields();
  7137   _collector->icms_wait();
  7139   // See the comment in coordinator_yield()
  7140   for (unsigned i = 0; i < CMSYieldSleepCount &&
  7141                        ConcurrentMarkSweepThread::should_yield() &&
  7142                        !CMSCollector::foregroundGCIsActive(); ++i) {
  7143     os::sleep(Thread::current(), 1, false);
  7144     ConcurrentMarkSweepThread::acknowledge_yield_request();
  7147   ConcurrentMarkSweepThread::synchronize(true);
  7148   _bitMap->lock()->lock_without_safepoint_check();
  7149   _collector->startTimer();
  7152 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
  7153   assert(_bitMap->isMarked(ptr), "expected bit to be set");
  7154   assert(_markStack->isEmpty(),
  7155          "should drain stack to limit stack usage");
  7156   // convert ptr to an oop preparatory to scanning
  7157   oop obj = oop(ptr);
  7158   // Ignore mark word in verification below, since we
  7159   // may be running concurrent with mutators.
  7160   assert(obj->is_oop(true), "should be an oop");
  7161   assert(_finger <= ptr, "_finger runneth ahead");
  7162   // advance the finger to right end of this object
  7163   _finger = ptr + obj->size();
  7164   assert(_finger > ptr, "we just incremented it above");
  7165   // On large heaps, it may take us some time to get through
  7166   // the marking phase (especially if running iCMS). During
  7167   // this time it's possible that a lot of mutations have
  7168   // accumulated in the card table and the mod union table --
  7169   // these mutation records are redundant until we have
  7170   // actually traced into the corresponding card.
  7171   // Here, we check whether advancing the finger would make
  7172   // us cross into a new card, and if so clear corresponding
  7173   // cards in the MUT (preclean them in the card-table in the
  7174   // future).
  7176   DEBUG_ONLY(if (!_verifying) {)
  7177     // The clean-on-enter optimization is disabled by default,
  7178     // until we fix 6178663.
  7179     if (CMSCleanOnEnter && (_finger > _threshold)) {
  7180       // [_threshold, _finger) represents the interval
  7181       // of cards to be cleared  in MUT (or precleaned in card table).
  7182       // The set of cards to be cleared is all those that overlap
  7183       // with the interval [_threshold, _finger); note that
  7184       // _threshold is always kept card-aligned but _finger isn't
  7185       // always card-aligned.
  7186       HeapWord* old_threshold = _threshold;
  7187       assert(old_threshold == (HeapWord*)round_to(
  7188               (intptr_t)old_threshold, CardTableModRefBS::card_size),
  7189              "_threshold should always be card-aligned");
  7190       _threshold = (HeapWord*)round_to(
  7191                      (intptr_t)_finger, CardTableModRefBS::card_size);
  7192       MemRegion mr(old_threshold, _threshold);
  7193       assert(!mr.is_empty(), "Control point invariant");
  7194       assert(_span.contains(mr), "Should clear within span");
  7195       // XXX When _finger crosses from old gen into perm gen
  7196       // we may be doing unnecessary cleaning; do better in the
  7197       // future by detecting that condition and clearing fewer
  7198       // MUT/CT entries.
  7199       _mut->clear_range(mr);
  7201   DEBUG_ONLY(})
  7202   // Note: the finger doesn't advance while we drain
  7203   // the stack below.
  7204   PushOrMarkClosure pushOrMarkClosure(_collector,
  7205                                       _span, _bitMap, _markStack,
  7206                                       _revisitStack,
  7207                                       _finger, this);
  7208   bool res = _markStack->push(obj);
  7209   assert(res, "Empty non-zero size stack should have space for single push");
  7210   while (!_markStack->isEmpty()) {
  7211     oop new_oop = _markStack->pop();
  7212     // Skip verifying header mark word below because we are
  7213     // running concurrent with mutators.
  7214     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  7215     // now scan this oop's oops
  7216     new_oop->oop_iterate(&pushOrMarkClosure);
  7217     do_yield_check();
  7219   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
  7222 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
  7223                        CMSCollector* collector, MemRegion span,
  7224                        CMSBitMap* bit_map,
  7225                        OopTaskQueue* work_queue,
  7226                        CMSMarkStack*  overflow_stack,
  7227                        CMSMarkStack*  revisit_stack,
  7228                        bool should_yield):
  7229   _collector(collector),
  7230   _whole_span(collector->_span),
  7231   _span(span),
  7232   _bit_map(bit_map),
  7233   _mut(&collector->_modUnionTable),
  7234   _work_queue(work_queue),
  7235   _overflow_stack(overflow_stack),
  7236   _revisit_stack(revisit_stack),
  7237   _yield(should_yield),
  7238   _skip_bits(0),
  7239   _task(task)
  7241   assert(_work_queue->size() == 0, "work_queue should be empty");
  7242   _finger = span.start();
  7243   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
  7244   assert(_span.contains(_finger), "Out of bounds _finger?");
  7247 // Should revisit to see if this should be restructured for
  7248 // greater efficiency.
  7249 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
  7250   if (_skip_bits > 0) {
  7251     _skip_bits--;
  7252     return true;
  7254   // convert offset into a HeapWord*
  7255   HeapWord* addr = _bit_map->startWord() + offset;
  7256   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
  7257          "address out of range");
  7258   assert(_bit_map->isMarked(addr), "tautology");
  7259   if (_bit_map->isMarked(addr+1)) {
  7260     // this is an allocated object that might not yet be initialized
  7261     assert(_skip_bits == 0, "tautology");
  7262     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
  7263     oop p = oop(addr);
  7264     if (p->klass_or_null() == NULL || !p->is_parsable()) {
  7265       // in the case of Clean-on-Enter optimization, redirty card
  7266       // and avoid clearing card by increasing  the threshold.
  7267       return true;
  7270   scan_oops_in_oop(addr);
  7271   return true;
  7274 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
  7275   assert(_bit_map->isMarked(ptr), "expected bit to be set");
  7276   // Should we assert that our work queue is empty or
  7277   // below some drain limit?
  7278   assert(_work_queue->size() == 0,
  7279          "should drain stack to limit stack usage");
  7280   // convert ptr to an oop preparatory to scanning
  7281   oop obj = oop(ptr);
  7282   // Ignore mark word in verification below, since we
  7283   // may be running concurrent with mutators.
  7284   assert(obj->is_oop(true), "should be an oop");
  7285   assert(_finger <= ptr, "_finger runneth ahead");
  7286   // advance the finger to right end of this object
  7287   _finger = ptr + obj->size();
  7288   assert(_finger > ptr, "we just incremented it above");
  7289   // On large heaps, it may take us some time to get through
  7290   // the marking phase (especially if running iCMS). During
  7291   // this time it's possible that a lot of mutations have
  7292   // accumulated in the card table and the mod union table --
  7293   // these mutation records are redundant until we have
  7294   // actually traced into the corresponding card.
  7295   // Here, we check whether advancing the finger would make
  7296   // us cross into a new card, and if so clear corresponding
  7297   // cards in the MUT (preclean them in the card-table in the
  7298   // future).
  7300   // The clean-on-enter optimization is disabled by default,
  7301   // until we fix 6178663.
  7302   if (CMSCleanOnEnter && (_finger > _threshold)) {
  7303     // [_threshold, _finger) represents the interval
  7304     // of cards to be cleared  in MUT (or precleaned in card table).
  7305     // The set of cards to be cleared is all those that overlap
  7306     // with the interval [_threshold, _finger); note that
  7307     // _threshold is always kept card-aligned but _finger isn't
  7308     // always card-aligned.
  7309     HeapWord* old_threshold = _threshold;
  7310     assert(old_threshold == (HeapWord*)round_to(
  7311             (intptr_t)old_threshold, CardTableModRefBS::card_size),
  7312            "_threshold should always be card-aligned");
  7313     _threshold = (HeapWord*)round_to(
  7314                    (intptr_t)_finger, CardTableModRefBS::card_size);
  7315     MemRegion mr(old_threshold, _threshold);
  7316     assert(!mr.is_empty(), "Control point invariant");
  7317     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
  7318     // XXX When _finger crosses from old gen into perm gen
  7319     // we may be doing unnecessary cleaning; do better in the
  7320     // future by detecting that condition and clearing fewer
  7321     // MUT/CT entries.
  7322     _mut->clear_range(mr);
  7325   // Note: the local finger doesn't advance while we drain
  7326   // the stack below, but the global finger sure can and will.
  7327   HeapWord** gfa = _task->global_finger_addr();
  7328   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
  7329                                       _span, _bit_map,
  7330                                       _work_queue,
  7331                                       _overflow_stack,
  7332                                       _revisit_stack,
  7333                                       _finger,
  7334                                       gfa, this);
  7335   bool res = _work_queue->push(obj);   // overflow could occur here
  7336   assert(res, "Will hold once we use workqueues");
  7337   while (true) {
  7338     oop new_oop;
  7339     if (!_work_queue->pop_local(new_oop)) {
  7340       // We emptied our work_queue; check if there's stuff that can
  7341       // be gotten from the overflow stack.
  7342       if (CMSConcMarkingTask::get_work_from_overflow_stack(
  7343             _overflow_stack, _work_queue)) {
  7344         do_yield_check();
  7345         continue;
  7346       } else {  // done
  7347         break;
  7350     // Skip verifying header mark word below because we are
  7351     // running concurrent with mutators.
  7352     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  7353     // now scan this oop's oops
  7354     new_oop->oop_iterate(&pushOrMarkClosure);
  7355     do_yield_check();
  7357   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
  7360 // Yield in response to a request from VM Thread or
  7361 // from mutators.
  7362 void Par_MarkFromRootsClosure::do_yield_work() {
  7363   assert(_task != NULL, "sanity");
  7364   _task->yield();
  7367 // A variant of the above used for verifying CMS marking work.
  7368 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
  7369                         MemRegion span,
  7370                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7371                         CMSMarkStack*  mark_stack):
  7372   _collector(collector),
  7373   _span(span),
  7374   _verification_bm(verification_bm),
  7375   _cms_bm(cms_bm),
  7376   _mark_stack(mark_stack),
  7377   _pam_verify_closure(collector, span, verification_bm, cms_bm,
  7378                       mark_stack)
  7380   assert(_mark_stack->isEmpty(), "stack should be empty");
  7381   _finger = _verification_bm->startWord();
  7382   assert(_collector->_restart_addr == NULL, "Sanity check");
  7383   assert(_span.contains(_finger), "Out of bounds _finger?");
  7386 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
  7387   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
  7388   assert(_span.contains(addr), "Out of bounds _finger?");
  7389   _finger = addr;
  7392 // Should revisit to see if this should be restructured for
  7393 // greater efficiency.
  7394 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
  7395   // convert offset into a HeapWord*
  7396   HeapWord* addr = _verification_bm->startWord() + offset;
  7397   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
  7398          "address out of range");
  7399   assert(_verification_bm->isMarked(addr), "tautology");
  7400   assert(_cms_bm->isMarked(addr), "tautology");
  7402   assert(_mark_stack->isEmpty(),
  7403          "should drain stack to limit stack usage");
  7404   // convert addr to an oop preparatory to scanning
  7405   oop obj = oop(addr);
  7406   assert(obj->is_oop(), "should be an oop");
  7407   assert(_finger <= addr, "_finger runneth ahead");
  7408   // advance the finger to right end of this object
  7409   _finger = addr + obj->size();
  7410   assert(_finger > addr, "we just incremented it above");
  7411   // Note: the finger doesn't advance while we drain
  7412   // the stack below.
  7413   bool res = _mark_stack->push(obj);
  7414   assert(res, "Empty non-zero size stack should have space for single push");
  7415   while (!_mark_stack->isEmpty()) {
  7416     oop new_oop = _mark_stack->pop();
  7417     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
  7418     // now scan this oop's oops
  7419     new_oop->oop_iterate(&_pam_verify_closure);
  7421   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
  7422   return true;
  7425 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
  7426   CMSCollector* collector, MemRegion span,
  7427   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7428   CMSMarkStack*  mark_stack):
  7429   OopClosure(collector->ref_processor()),
  7430   _collector(collector),
  7431   _span(span),
  7432   _verification_bm(verification_bm),
  7433   _cms_bm(cms_bm),
  7434   _mark_stack(mark_stack)
  7435 { }
  7437 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
  7438 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
  7440 // Upon stack overflow, we discard (part of) the stack,
  7441 // remembering the least address amongst those discarded
  7442 // in CMSCollector's _restart_address.
  7443 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
  7444   // Remember the least grey address discarded
  7445   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
  7446   _collector->lower_restart_addr(ra);
  7447   _mark_stack->reset();  // discard stack contents
  7448   _mark_stack->expand(); // expand the stack if possible
  7451 void PushAndMarkVerifyClosure::do_oop(oop obj) {
  7452   assert(obj->is_oop_or_null(), "expected an oop or NULL");
  7453   HeapWord* addr = (HeapWord*)obj;
  7454   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
  7455     // Oop lies in _span and isn't yet grey or black
  7456     _verification_bm->mark(addr);            // now grey
  7457     if (!_cms_bm->isMarked(addr)) {
  7458       oop(addr)->print();
  7459       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
  7460                              addr);
  7461       fatal("... aborting");
  7464     if (!_mark_stack->push(obj)) { // stack overflow
  7465       if (PrintCMSStatistics != 0) {
  7466         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7467                                SIZE_FORMAT, _mark_stack->capacity());
  7469       assert(_mark_stack->isFull(), "Else push should have succeeded");
  7470       handle_stack_overflow(addr);
  7472     // anything including and to the right of _finger
  7473     // will be scanned as we iterate over the remainder of the
  7474     // bit map
  7478 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
  7479                      MemRegion span,
  7480                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
  7481                      CMSMarkStack*  revisitStack,
  7482                      HeapWord* finger, MarkFromRootsClosure* parent) :
  7483   KlassRememberingOopClosure(collector, collector->ref_processor(), revisitStack),
  7484   _span(span),
  7485   _bitMap(bitMap),
  7486   _markStack(markStack),
  7487   _finger(finger),
  7488   _parent(parent)
  7489 { }
  7491 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
  7492                      MemRegion span,
  7493                      CMSBitMap* bit_map,
  7494                      OopTaskQueue* work_queue,
  7495                      CMSMarkStack*  overflow_stack,
  7496                      CMSMarkStack*  revisit_stack,
  7497                      HeapWord* finger,
  7498                      HeapWord** global_finger_addr,
  7499                      Par_MarkFromRootsClosure* parent) :
  7500   Par_KlassRememberingOopClosure(collector,
  7501                             collector->ref_processor(),
  7502                             revisit_stack),
  7503   _whole_span(collector->_span),
  7504   _span(span),
  7505   _bit_map(bit_map),
  7506   _work_queue(work_queue),
  7507   _overflow_stack(overflow_stack),
  7508   _finger(finger),
  7509   _global_finger_addr(global_finger_addr),
  7510   _parent(parent)
  7511 { }
  7513 // Assumes thread-safe access by callers, who are
  7514 // responsible for mutual exclusion.
  7515 void CMSCollector::lower_restart_addr(HeapWord* low) {
  7516   assert(_span.contains(low), "Out of bounds addr");
  7517   if (_restart_addr == NULL) {
  7518     _restart_addr = low;
  7519   } else {
  7520     _restart_addr = MIN2(_restart_addr, low);
  7524 // Upon stack overflow, we discard (part of) the stack,
  7525 // remembering the least address amongst those discarded
  7526 // in CMSCollector's _restart_address.
  7527 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7528   // Remember the least grey address discarded
  7529   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
  7530   _collector->lower_restart_addr(ra);
  7531   _markStack->reset();  // discard stack contents
  7532   _markStack->expand(); // expand the stack if possible
  7535 // Upon stack overflow, we discard (part of) the stack,
  7536 // remembering the least address amongst those discarded
  7537 // in CMSCollector's _restart_address.
  7538 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7539   // We need to do this under a mutex to prevent other
  7540   // workers from interfering with the work done below.
  7541   MutexLockerEx ml(_overflow_stack->par_lock(),
  7542                    Mutex::_no_safepoint_check_flag);
  7543   // Remember the least grey address discarded
  7544   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  7545   _collector->lower_restart_addr(ra);
  7546   _overflow_stack->reset();  // discard stack contents
  7547   _overflow_stack->expand(); // expand the stack if possible
  7550 void PushOrMarkClosure::do_oop(oop obj) {
  7551   // Ignore mark word because we are running concurrent with mutators.
  7552   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  7553   HeapWord* addr = (HeapWord*)obj;
  7554   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
  7555     // Oop lies in _span and isn't yet grey or black
  7556     _bitMap->mark(addr);            // now grey
  7557     if (addr < _finger) {
  7558       // the bit map iteration has already either passed, or
  7559       // sampled, this bit in the bit map; we'll need to
  7560       // use the marking stack to scan this oop's oops.
  7561       bool simulate_overflow = false;
  7562       NOT_PRODUCT(
  7563         if (CMSMarkStackOverflowALot &&
  7564             _collector->simulate_overflow()) {
  7565           // simulate a stack overflow
  7566           simulate_overflow = true;
  7569       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
  7570         if (PrintCMSStatistics != 0) {
  7571           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7572                                  SIZE_FORMAT, _markStack->capacity());
  7574         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
  7575         handle_stack_overflow(addr);
  7578     // anything including and to the right of _finger
  7579     // will be scanned as we iterate over the remainder of the
  7580     // bit map
  7581     do_yield_check();
  7585 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
  7586 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
  7588 void Par_PushOrMarkClosure::do_oop(oop obj) {
  7589   // Ignore mark word because we are running concurrent with mutators.
  7590   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  7591   HeapWord* addr = (HeapWord*)obj;
  7592   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7593     // Oop lies in _span and isn't yet grey or black
  7594     // We read the global_finger (volatile read) strictly after marking oop
  7595     bool res = _bit_map->par_mark(addr);    // now grey
  7596     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
  7597     // Should we push this marked oop on our stack?
  7598     // -- if someone else marked it, nothing to do
  7599     // -- if target oop is above global finger nothing to do
  7600     // -- if target oop is in chunk and above local finger
  7601     //      then nothing to do
  7602     // -- else push on work queue
  7603     if (   !res       // someone else marked it, they will deal with it
  7604         || (addr >= *gfa)  // will be scanned in a later task
  7605         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
  7606       return;
  7608     // the bit map iteration has already either passed, or
  7609     // sampled, this bit in the bit map; we'll need to
  7610     // use the marking stack to scan this oop's oops.
  7611     bool simulate_overflow = false;
  7612     NOT_PRODUCT(
  7613       if (CMSMarkStackOverflowALot &&
  7614           _collector->simulate_overflow()) {
  7615         // simulate a stack overflow
  7616         simulate_overflow = true;
  7619     if (simulate_overflow ||
  7620         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
  7621       // stack overflow
  7622       if (PrintCMSStatistics != 0) {
  7623         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7624                                SIZE_FORMAT, _overflow_stack->capacity());
  7626       // We cannot assert that the overflow stack is full because
  7627       // it may have been emptied since.
  7628       assert(simulate_overflow ||
  7629              _work_queue->size() == _work_queue->max_elems(),
  7630             "Else push should have succeeded");
  7631       handle_stack_overflow(addr);
  7633     do_yield_check();
  7637 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
  7638 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
  7640 KlassRememberingOopClosure::KlassRememberingOopClosure(CMSCollector* collector,
  7641                                              ReferenceProcessor* rp,
  7642                                              CMSMarkStack* revisit_stack) :
  7643   OopClosure(rp),
  7644   _collector(collector),
  7645   _revisit_stack(revisit_stack),
  7646   _should_remember_klasses(collector->should_unload_classes()) {}
  7648 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
  7649                                        MemRegion span,
  7650                                        ReferenceProcessor* rp,
  7651                                        CMSBitMap* bit_map,
  7652                                        CMSBitMap* mod_union_table,
  7653                                        CMSMarkStack*  mark_stack,
  7654                                        CMSMarkStack*  revisit_stack,
  7655                                        bool           concurrent_precleaning):
  7656   KlassRememberingOopClosure(collector, rp, revisit_stack),
  7657   _span(span),
  7658   _bit_map(bit_map),
  7659   _mod_union_table(mod_union_table),
  7660   _mark_stack(mark_stack),
  7661   _concurrent_precleaning(concurrent_precleaning)
  7663   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7666 // Grey object rescan during pre-cleaning and second checkpoint phases --
  7667 // the non-parallel version (the parallel version appears further below.)
  7668 void PushAndMarkClosure::do_oop(oop obj) {
  7669   // Ignore mark word verification. If during concurrent precleaning,
  7670   // the object monitor may be locked. If during the checkpoint
  7671   // phases, the object may already have been reached by a  different
  7672   // path and may be at the end of the global overflow list (so
  7673   // the mark word may be NULL).
  7674   assert(obj->is_oop_or_null(true /* ignore mark word */),
  7675          "expected an oop or NULL");
  7676   HeapWord* addr = (HeapWord*)obj;
  7677   // Check if oop points into the CMS generation
  7678   // and is not marked
  7679   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7680     // a white object ...
  7681     _bit_map->mark(addr);         // ... now grey
  7682     // push on the marking stack (grey set)
  7683     bool simulate_overflow = false;
  7684     NOT_PRODUCT(
  7685       if (CMSMarkStackOverflowALot &&
  7686           _collector->simulate_overflow()) {
  7687         // simulate a stack overflow
  7688         simulate_overflow = true;
  7691     if (simulate_overflow || !_mark_stack->push(obj)) {
  7692       if (_concurrent_precleaning) {
  7693          // During precleaning we can just dirty the appropriate card(s)
  7694          // in the mod union table, thus ensuring that the object remains
  7695          // in the grey set  and continue. In the case of object arrays
  7696          // we need to dirty all of the cards that the object spans,
  7697          // since the rescan of object arrays will be limited to the
  7698          // dirty cards.
  7699          // Note that no one can be intefering with us in this action
  7700          // of dirtying the mod union table, so no locking or atomics
  7701          // are required.
  7702          if (obj->is_objArray()) {
  7703            size_t sz = obj->size();
  7704            HeapWord* end_card_addr = (HeapWord*)round_to(
  7705                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
  7706            MemRegion redirty_range = MemRegion(addr, end_card_addr);
  7707            assert(!redirty_range.is_empty(), "Arithmetical tautology");
  7708            _mod_union_table->mark_range(redirty_range);
  7709          } else {
  7710            _mod_union_table->mark(addr);
  7712          _collector->_ser_pmc_preclean_ovflw++;
  7713       } else {
  7714          // During the remark phase, we need to remember this oop
  7715          // in the overflow list.
  7716          _collector->push_on_overflow_list(obj);
  7717          _collector->_ser_pmc_remark_ovflw++;
  7723 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
  7724                                                MemRegion span,
  7725                                                ReferenceProcessor* rp,
  7726                                                CMSBitMap* bit_map,
  7727                                                OopTaskQueue* work_queue,
  7728                                                CMSMarkStack* revisit_stack):
  7729   Par_KlassRememberingOopClosure(collector, rp, revisit_stack),
  7730   _span(span),
  7731   _bit_map(bit_map),
  7732   _work_queue(work_queue)
  7734   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7737 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
  7738 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
  7740 // Grey object rescan during second checkpoint phase --
  7741 // the parallel version.
  7742 void Par_PushAndMarkClosure::do_oop(oop obj) {
  7743   // In the assert below, we ignore the mark word because
  7744   // this oop may point to an already visited object that is
  7745   // on the overflow stack (in which case the mark word has
  7746   // been hijacked for chaining into the overflow stack --
  7747   // if this is the last object in the overflow stack then
  7748   // its mark word will be NULL). Because this object may
  7749   // have been subsequently popped off the global overflow
  7750   // stack, and the mark word possibly restored to the prototypical
  7751   // value, by the time we get to examined this failing assert in
  7752   // the debugger, is_oop_or_null(false) may subsequently start
  7753   // to hold.
  7754   assert(obj->is_oop_or_null(true),
  7755          "expected an oop or NULL");
  7756   HeapWord* addr = (HeapWord*)obj;
  7757   // Check if oop points into the CMS generation
  7758   // and is not marked
  7759   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7760     // a white object ...
  7761     // If we manage to "claim" the object, by being the
  7762     // first thread to mark it, then we push it on our
  7763     // marking stack
  7764     if (_bit_map->par_mark(addr)) {     // ... now grey
  7765       // push on work queue (grey set)
  7766       bool simulate_overflow = false;
  7767       NOT_PRODUCT(
  7768         if (CMSMarkStackOverflowALot &&
  7769             _collector->par_simulate_overflow()) {
  7770           // simulate a stack overflow
  7771           simulate_overflow = true;
  7774       if (simulate_overflow || !_work_queue->push(obj)) {
  7775         _collector->par_push_on_overflow_list(obj);
  7776         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
  7778     } // Else, some other thread got there first
  7782 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
  7783 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
  7785 void PushAndMarkClosure::remember_mdo(DataLayout* v) {
  7786   // TBD
  7789 void Par_PushAndMarkClosure::remember_mdo(DataLayout* v) {
  7790   // TBD
  7793 void CMSPrecleanRefsYieldClosure::do_yield_work() {
  7794   DEBUG_ONLY(RememberKlassesChecker mux(false);)
  7795   Mutex* bml = _collector->bitMapLock();
  7796   assert_lock_strong(bml);
  7797   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  7798          "CMS thread should hold CMS token");
  7800   bml->unlock();
  7801   ConcurrentMarkSweepThread::desynchronize(true);
  7803   ConcurrentMarkSweepThread::acknowledge_yield_request();
  7805   _collector->stopTimer();
  7806   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  7807   if (PrintCMSStatistics != 0) {
  7808     _collector->incrementYields();
  7810   _collector->icms_wait();
  7812   // See the comment in coordinator_yield()
  7813   for (unsigned i = 0; i < CMSYieldSleepCount &&
  7814                        ConcurrentMarkSweepThread::should_yield() &&
  7815                        !CMSCollector::foregroundGCIsActive(); ++i) {
  7816     os::sleep(Thread::current(), 1, false);
  7817     ConcurrentMarkSweepThread::acknowledge_yield_request();
  7820   ConcurrentMarkSweepThread::synchronize(true);
  7821   bml->lock();
  7823   _collector->startTimer();
  7826 bool CMSPrecleanRefsYieldClosure::should_return() {
  7827   if (ConcurrentMarkSweepThread::should_yield()) {
  7828     do_yield_work();
  7830   return _collector->foregroundGCIsActive();
  7833 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
  7834   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
  7835          "mr should be aligned to start at a card boundary");
  7836   // We'd like to assert:
  7837   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
  7838   //        "mr should be a range of cards");
  7839   // However, that would be too strong in one case -- the last
  7840   // partition ends at _unallocated_block which, in general, can be
  7841   // an arbitrary boundary, not necessarily card aligned.
  7842   if (PrintCMSStatistics != 0) {
  7843     _num_dirty_cards +=
  7844          mr.word_size()/CardTableModRefBS::card_size_in_words;
  7846   _space->object_iterate_mem(mr, &_scan_cl);
  7849 SweepClosure::SweepClosure(CMSCollector* collector,
  7850                            ConcurrentMarkSweepGeneration* g,
  7851                            CMSBitMap* bitMap, bool should_yield) :
  7852   _collector(collector),
  7853   _g(g),
  7854   _sp(g->cmsSpace()),
  7855   _limit(_sp->sweep_limit()),
  7856   _freelistLock(_sp->freelistLock()),
  7857   _bitMap(bitMap),
  7858   _yield(should_yield),
  7859   _inFreeRange(false),           // No free range at beginning of sweep
  7860   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
  7861   _lastFreeRangeCoalesced(false),
  7862   _freeFinger(g->used_region().start())
  7864   NOT_PRODUCT(
  7865     _numObjectsFreed = 0;
  7866     _numWordsFreed   = 0;
  7867     _numObjectsLive = 0;
  7868     _numWordsLive = 0;
  7869     _numObjectsAlreadyFree = 0;
  7870     _numWordsAlreadyFree = 0;
  7871     _last_fc = NULL;
  7873     _sp->initializeIndexedFreeListArrayReturnedBytes();
  7874     _sp->dictionary()->initializeDictReturnedBytes();
  7876   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  7877          "sweep _limit out of bounds");
  7878   if (CMSTraceSweeper) {
  7879     gclog_or_tty->print("\n====================\nStarting new sweep\n");
  7883 // We need this destructor to reclaim any space at the end
  7884 // of the space, which do_blk below may not have added back to
  7885 // the free lists. [basically dealing with the "fringe effect"]
  7886 SweepClosure::~SweepClosure() {
  7887   assert_lock_strong(_freelistLock);
  7888   // this should be treated as the end of a free run if any
  7889   // The current free range should be returned to the free lists
  7890   // as one coalesced chunk.
  7891   if (inFreeRange()) {
  7892     flushCurFreeChunk(freeFinger(),
  7893       pointer_delta(_limit, freeFinger()));
  7894     assert(freeFinger() < _limit, "the finger pointeth off base");
  7895     if (CMSTraceSweeper) {
  7896       gclog_or_tty->print("destructor:");
  7897       gclog_or_tty->print("Sweep:put_free_blk 0x%x ("SIZE_FORMAT") "
  7898                  "[coalesced:"SIZE_FORMAT"]\n",
  7899                  freeFinger(), pointer_delta(_limit, freeFinger()),
  7900                  lastFreeRangeCoalesced());
  7903   NOT_PRODUCT(
  7904     if (Verbose && PrintGC) {
  7905       gclog_or_tty->print("Collected "SIZE_FORMAT" objects, "
  7906                           SIZE_FORMAT " bytes",
  7907                  _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
  7908       gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
  7909                              SIZE_FORMAT" bytes  "
  7910         "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
  7911         _numObjectsLive, _numWordsLive*sizeof(HeapWord),
  7912         _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
  7913       size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) *
  7914         sizeof(HeapWord);
  7915       gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
  7917       if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
  7918         size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
  7919         size_t dictReturnedBytes = _sp->dictionary()->sumDictReturnedBytes();
  7920         size_t returnedBytes = indexListReturnedBytes + dictReturnedBytes;
  7921         gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returnedBytes);
  7922         gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
  7923           indexListReturnedBytes);
  7924         gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
  7925           dictReturnedBytes);
  7929   // Now, in debug mode, just null out the sweep_limit
  7930   NOT_PRODUCT(_sp->clear_sweep_limit();)
  7931   if (CMSTraceSweeper) {
  7932     gclog_or_tty->print("end of sweep\n================\n");
  7936 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
  7937     bool freeRangeInFreeLists) {
  7938   if (CMSTraceSweeper) {
  7939     gclog_or_tty->print("---- Start free range 0x%x with free block [%d] (%d)\n",
  7940                freeFinger, _sp->block_size(freeFinger),
  7941                freeRangeInFreeLists);
  7943   assert(!inFreeRange(), "Trampling existing free range");
  7944   set_inFreeRange(true);
  7945   set_lastFreeRangeCoalesced(false);
  7947   set_freeFinger(freeFinger);
  7948   set_freeRangeInFreeLists(freeRangeInFreeLists);
  7949   if (CMSTestInFreeList) {
  7950     if (freeRangeInFreeLists) {
  7951       FreeChunk* fc = (FreeChunk*) freeFinger;
  7952       assert(fc->isFree(), "A chunk on the free list should be free.");
  7953       assert(fc->size() > 0, "Free range should have a size");
  7954       assert(_sp->verifyChunkInFreeLists(fc), "Chunk is not in free lists");
  7959 // Note that the sweeper runs concurrently with mutators. Thus,
  7960 // it is possible for direct allocation in this generation to happen
  7961 // in the middle of the sweep. Note that the sweeper also coalesces
  7962 // contiguous free blocks. Thus, unless the sweeper and the allocator
  7963 // synchronize appropriately freshly allocated blocks may get swept up.
  7964 // This is accomplished by the sweeper locking the free lists while
  7965 // it is sweeping. Thus blocks that are determined to be free are
  7966 // indeed free. There is however one additional complication:
  7967 // blocks that have been allocated since the final checkpoint and
  7968 // mark, will not have been marked and so would be treated as
  7969 // unreachable and swept up. To prevent this, the allocator marks
  7970 // the bit map when allocating during the sweep phase. This leads,
  7971 // however, to a further complication -- objects may have been allocated
  7972 // but not yet initialized -- in the sense that the header isn't yet
  7973 // installed. The sweeper can not then determine the size of the block
  7974 // in order to skip over it. To deal with this case, we use a technique
  7975 // (due to Printezis) to encode such uninitialized block sizes in the
  7976 // bit map. Since the bit map uses a bit per every HeapWord, but the
  7977 // CMS generation has a minimum object size of 3 HeapWords, it follows
  7978 // that "normal marks" won't be adjacent in the bit map (there will
  7979 // always be at least two 0 bits between successive 1 bits). We make use
  7980 // of these "unused" bits to represent uninitialized blocks -- the bit
  7981 // corresponding to the start of the uninitialized object and the next
  7982 // bit are both set. Finally, a 1 bit marks the end of the object that
  7983 // started with the two consecutive 1 bits to indicate its potentially
  7984 // uninitialized state.
  7986 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
  7987   FreeChunk* fc = (FreeChunk*)addr;
  7988   size_t res;
  7990   // Check if we are done sweeping. Below we check "addr >= _limit" rather
  7991   // than "addr == _limit" because although _limit was a block boundary when
  7992   // we started the sweep, it may no longer be one because heap expansion
  7993   // may have caused us to coalesce the block ending at the address _limit
  7994   // with a newly expanded chunk (this happens when _limit was set to the
  7995   // previous _end of the space), so we may have stepped past _limit; see CR 6977970.
  7996   if (addr >= _limit) { // we have swept up to or past the limit, do nothing more
  7997     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  7998            "sweep _limit out of bounds");
  7999     assert(addr < _sp->end(), "addr out of bounds");
  8000     // help the closure application finish
  8001     return pointer_delta(_sp->end(), addr);
  8003   assert(addr < _limit, "sweep invariant");
  8005   // check if we should yield
  8006   do_yield_check(addr);
  8007   if (fc->isFree()) {
  8008     // Chunk that is already free
  8009     res = fc->size();
  8010     doAlreadyFreeChunk(fc);
  8011     debug_only(_sp->verifyFreeLists());
  8012     assert(res == fc->size(), "Don't expect the size to change");
  8013     NOT_PRODUCT(
  8014       _numObjectsAlreadyFree++;
  8015       _numWordsAlreadyFree += res;
  8017     NOT_PRODUCT(_last_fc = fc;)
  8018   } else if (!_bitMap->isMarked(addr)) {
  8019     // Chunk is fresh garbage
  8020     res = doGarbageChunk(fc);
  8021     debug_only(_sp->verifyFreeLists());
  8022     NOT_PRODUCT(
  8023       _numObjectsFreed++;
  8024       _numWordsFreed += res;
  8026   } else {
  8027     // Chunk that is alive.
  8028     res = doLiveChunk(fc);
  8029     debug_only(_sp->verifyFreeLists());
  8030     NOT_PRODUCT(
  8031         _numObjectsLive++;
  8032         _numWordsLive += res;
  8035   return res;
  8038 // For the smart allocation, record following
  8039 //  split deaths - a free chunk is removed from its free list because
  8040 //      it is being split into two or more chunks.
  8041 //  split birth - a free chunk is being added to its free list because
  8042 //      a larger free chunk has been split and resulted in this free chunk.
  8043 //  coal death - a free chunk is being removed from its free list because
  8044 //      it is being coalesced into a large free chunk.
  8045 //  coal birth - a free chunk is being added to its free list because
  8046 //      it was created when two or more free chunks where coalesced into
  8047 //      this free chunk.
  8048 //
  8049 // These statistics are used to determine the desired number of free
  8050 // chunks of a given size.  The desired number is chosen to be relative
  8051 // to the end of a CMS sweep.  The desired number at the end of a sweep
  8052 // is the
  8053 //      count-at-end-of-previous-sweep (an amount that was enough)
  8054 //              - count-at-beginning-of-current-sweep  (the excess)
  8055 //              + split-births  (gains in this size during interval)
  8056 //              - split-deaths  (demands on this size during interval)
  8057 // where the interval is from the end of one sweep to the end of the
  8058 // next.
  8059 //
  8060 // When sweeping the sweeper maintains an accumulated chunk which is
  8061 // the chunk that is made up of chunks that have been coalesced.  That
  8062 // will be termed the left-hand chunk.  A new chunk of garbage that
  8063 // is being considered for coalescing will be referred to as the
  8064 // right-hand chunk.
  8065 //
  8066 // When making a decision on whether to coalesce a right-hand chunk with
  8067 // the current left-hand chunk, the current count vs. the desired count
  8068 // of the left-hand chunk is considered.  Also if the right-hand chunk
  8069 // is near the large chunk at the end of the heap (see
  8070 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
  8071 // left-hand chunk is coalesced.
  8072 //
  8073 // When making a decision about whether to split a chunk, the desired count
  8074 // vs. the current count of the candidate to be split is also considered.
  8075 // If the candidate is underpopulated (currently fewer chunks than desired)
  8076 // a chunk of an overpopulated (currently more chunks than desired) size may
  8077 // be chosen.  The "hint" associated with a free list, if non-null, points
  8078 // to a free list which may be overpopulated.
  8079 //
  8081 void SweepClosure::doAlreadyFreeChunk(FreeChunk* fc) {
  8082   size_t size = fc->size();
  8083   // Chunks that cannot be coalesced are not in the
  8084   // free lists.
  8085   if (CMSTestInFreeList && !fc->cantCoalesce()) {
  8086     assert(_sp->verifyChunkInFreeLists(fc),
  8087       "free chunk should be in free lists");
  8089   // a chunk that is already free, should not have been
  8090   // marked in the bit map
  8091   HeapWord* addr = (HeapWord*) fc;
  8092   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
  8093   // Verify that the bit map has no bits marked between
  8094   // addr and purported end of this block.
  8095   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  8097   // Some chunks cannot be coalesced in under any circumstances.
  8098   // See the definition of cantCoalesce().
  8099   if (!fc->cantCoalesce()) {
  8100     // This chunk can potentially be coalesced.
  8101     if (_sp->adaptive_freelists()) {
  8102       // All the work is done in
  8103       doPostIsFreeOrGarbageChunk(fc, size);
  8104     } else {  // Not adaptive free lists
  8105       // this is a free chunk that can potentially be coalesced by the sweeper;
  8106       if (!inFreeRange()) {
  8107         // if the next chunk is a free block that can't be coalesced
  8108         // it doesn't make sense to remove this chunk from the free lists
  8109         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
  8110         assert((HeapWord*)nextChunk <= _limit, "sweep invariant");
  8111         if ((HeapWord*)nextChunk < _limit  &&    // there's a next chunk...
  8112             nextChunk->isFree()    &&            // which is free...
  8113             nextChunk->cantCoalesce()) {         // ... but cant be coalesced
  8114           // nothing to do
  8115         } else {
  8116           // Potentially the start of a new free range:
  8117           // Don't eagerly remove it from the free lists.
  8118           // No need to remove it if it will just be put
  8119           // back again.  (Also from a pragmatic point of view
  8120           // if it is a free block in a region that is beyond
  8121           // any allocated blocks, an assertion will fail)
  8122           // Remember the start of a free run.
  8123           initialize_free_range(addr, true);
  8124           // end - can coalesce with next chunk
  8126       } else {
  8127         // the midst of a free range, we are coalescing
  8128         debug_only(record_free_block_coalesced(fc);)
  8129         if (CMSTraceSweeper) {
  8130           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
  8132         // remove it from the free lists
  8133         _sp->removeFreeChunkFromFreeLists(fc);
  8134         set_lastFreeRangeCoalesced(true);
  8135         // If the chunk is being coalesced and the current free range is
  8136         // in the free lists, remove the current free range so that it
  8137         // will be returned to the free lists in its entirety - all
  8138         // the coalesced pieces included.
  8139         if (freeRangeInFreeLists()) {
  8140           FreeChunk* ffc = (FreeChunk*) freeFinger();
  8141           assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8142             "Size of free range is inconsistent with chunk size.");
  8143           if (CMSTestInFreeList) {
  8144             assert(_sp->verifyChunkInFreeLists(ffc),
  8145               "free range is not in free lists");
  8147           _sp->removeFreeChunkFromFreeLists(ffc);
  8148           set_freeRangeInFreeLists(false);
  8152   } else {
  8153     // Code path common to both original and adaptive free lists.
  8155     // cant coalesce with previous block; this should be treated
  8156     // as the end of a free run if any
  8157     if (inFreeRange()) {
  8158       // we kicked some butt; time to pick up the garbage
  8159       assert(freeFinger() < addr, "the finger pointeth off base");
  8160       flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
  8162     // else, nothing to do, just continue
  8166 size_t SweepClosure::doGarbageChunk(FreeChunk* fc) {
  8167   // This is a chunk of garbage.  It is not in any free list.
  8168   // Add it to a free list or let it possibly be coalesced into
  8169   // a larger chunk.
  8170   HeapWord* addr = (HeapWord*) fc;
  8171   size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  8173   if (_sp->adaptive_freelists()) {
  8174     // Verify that the bit map has no bits marked between
  8175     // addr and purported end of just dead object.
  8176     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  8178     doPostIsFreeOrGarbageChunk(fc, size);
  8179   } else {
  8180     if (!inFreeRange()) {
  8181       // start of a new free range
  8182       assert(size > 0, "A free range should have a size");
  8183       initialize_free_range(addr, false);
  8185     } else {
  8186       // this will be swept up when we hit the end of the
  8187       // free range
  8188       if (CMSTraceSweeper) {
  8189         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
  8191       // If the chunk is being coalesced and the current free range is
  8192       // in the free lists, remove the current free range so that it
  8193       // will be returned to the free lists in its entirety - all
  8194       // the coalesced pieces included.
  8195       if (freeRangeInFreeLists()) {
  8196         FreeChunk* ffc = (FreeChunk*)freeFinger();
  8197         assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8198           "Size of free range is inconsistent with chunk size.");
  8199         if (CMSTestInFreeList) {
  8200           assert(_sp->verifyChunkInFreeLists(ffc),
  8201             "free range is not in free lists");
  8203         _sp->removeFreeChunkFromFreeLists(ffc);
  8204         set_freeRangeInFreeLists(false);
  8206       set_lastFreeRangeCoalesced(true);
  8208     // this will be swept up when we hit the end of the free range
  8210     // Verify that the bit map has no bits marked between
  8211     // addr and purported end of just dead object.
  8212     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  8214   return size;
  8217 size_t SweepClosure::doLiveChunk(FreeChunk* fc) {
  8218   HeapWord* addr = (HeapWord*) fc;
  8219   // The sweeper has just found a live object. Return any accumulated
  8220   // left hand chunk to the free lists.
  8221   if (inFreeRange()) {
  8222     if (_sp->adaptive_freelists()) {
  8223       flushCurFreeChunk(freeFinger(),
  8224                         pointer_delta(addr, freeFinger()));
  8225     } else { // not adaptive freelists
  8226       set_inFreeRange(false);
  8227       // Add the free range back to the free list if it is not already
  8228       // there.
  8229       if (!freeRangeInFreeLists()) {
  8230         assert(freeFinger() < addr, "the finger pointeth off base");
  8231         if (CMSTraceSweeper) {
  8232           gclog_or_tty->print("Sweep:put_free_blk 0x%x (%d) "
  8233             "[coalesced:%d]\n",
  8234             freeFinger(), pointer_delta(addr, freeFinger()),
  8235             lastFreeRangeCoalesced());
  8237         _sp->addChunkAndRepairOffsetTable(freeFinger(),
  8238           pointer_delta(addr, freeFinger()), lastFreeRangeCoalesced());
  8243   // Common code path for original and adaptive free lists.
  8245   // this object is live: we'd normally expect this to be
  8246   // an oop, and like to assert the following:
  8247   // assert(oop(addr)->is_oop(), "live block should be an oop");
  8248   // However, as we commented above, this may be an object whose
  8249   // header hasn't yet been initialized.
  8250   size_t size;
  8251   assert(_bitMap->isMarked(addr), "Tautology for this control point");
  8252   if (_bitMap->isMarked(addr + 1)) {
  8253     // Determine the size from the bit map, rather than trying to
  8254     // compute it from the object header.
  8255     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  8256     size = pointer_delta(nextOneAddr + 1, addr);
  8257     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  8258            "alignment problem");
  8260     #ifdef DEBUG
  8261       if (oop(addr)->klass_or_null() != NULL &&
  8262           (   !_collector->should_unload_classes()
  8263            || (oop(addr)->is_parsable()) &&
  8264                oop(addr)->is_conc_safe())) {
  8265         // Ignore mark word because we are running concurrent with mutators
  8266         assert(oop(addr)->is_oop(true), "live block should be an oop");
  8267         // is_conc_safe is checked before performing this assertion
  8268         // because an object that is not is_conc_safe may yet have
  8269         // the return from size() correct.
  8270         assert(size ==
  8271                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
  8272                "P-mark and computed size do not agree");
  8274     #endif
  8276   } else {
  8277     // This should be an initialized object that's alive.
  8278     assert(oop(addr)->klass_or_null() != NULL &&
  8279            (!_collector->should_unload_classes()
  8280             || oop(addr)->is_parsable()),
  8281            "Should be an initialized object");
  8282     // Note that there are objects used during class redefinition
  8283     // (e.g., merge_cp in VM_RedefineClasses::merge_cp_and_rewrite()
  8284     // which are discarded with their is_conc_safe state still
  8285     // false.  These object may be floating garbage so may be
  8286     // seen here.  If they are floating garbage their size
  8287     // should be attainable from their klass.  Do not that
  8288     // is_conc_safe() is true for oop(addr).
  8289     // Ignore mark word because we are running concurrent with mutators
  8290     assert(oop(addr)->is_oop(true), "live block should be an oop");
  8291     // Verify that the bit map has no bits marked between
  8292     // addr and purported end of this block.
  8293     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  8294     assert(size >= 3, "Necessary for Printezis marks to work");
  8295     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
  8296     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
  8298   return size;
  8301 void SweepClosure::doPostIsFreeOrGarbageChunk(FreeChunk* fc,
  8302                                             size_t chunkSize) {
  8303   // doPostIsFreeOrGarbageChunk() should only be called in the smart allocation
  8304   // scheme.
  8305   bool fcInFreeLists = fc->isFree();
  8306   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
  8307   assert((HeapWord*)fc <= _limit, "sweep invariant");
  8308   if (CMSTestInFreeList && fcInFreeLists) {
  8309     assert(_sp->verifyChunkInFreeLists(fc),
  8310       "free chunk is not in free lists");
  8314   if (CMSTraceSweeper) {
  8315     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
  8318   HeapWord* addr = (HeapWord*) fc;
  8320   bool coalesce;
  8321   size_t left  = pointer_delta(addr, freeFinger());
  8322   size_t right = chunkSize;
  8323   switch (FLSCoalescePolicy) {
  8324     // numeric value forms a coalition aggressiveness metric
  8325     case 0:  { // never coalesce
  8326       coalesce = false;
  8327       break;
  8329     case 1: { // coalesce if left & right chunks on overpopulated lists
  8330       coalesce = _sp->coalOverPopulated(left) &&
  8331                  _sp->coalOverPopulated(right);
  8332       break;
  8334     case 2: { // coalesce if left chunk on overpopulated list (default)
  8335       coalesce = _sp->coalOverPopulated(left);
  8336       break;
  8338     case 3: { // coalesce if left OR right chunk on overpopulated list
  8339       coalesce = _sp->coalOverPopulated(left) ||
  8340                  _sp->coalOverPopulated(right);
  8341       break;
  8343     case 4: { // always coalesce
  8344       coalesce = true;
  8345       break;
  8347     default:
  8348      ShouldNotReachHere();
  8351   // Should the current free range be coalesced?
  8352   // If the chunk is in a free range and either we decided to coalesce above
  8353   // or the chunk is near the large block at the end of the heap
  8354   // (isNearLargestChunk() returns true), then coalesce this chunk.
  8355   bool doCoalesce = inFreeRange() &&
  8356     (coalesce || _g->isNearLargestChunk((HeapWord*)fc));
  8357   if (doCoalesce) {
  8358     // Coalesce the current free range on the left with the new
  8359     // chunk on the right.  If either is on a free list,
  8360     // it must be removed from the list and stashed in the closure.
  8361     if (freeRangeInFreeLists()) {
  8362       FreeChunk* ffc = (FreeChunk*)freeFinger();
  8363       assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8364         "Size of free range is inconsistent with chunk size.");
  8365       if (CMSTestInFreeList) {
  8366         assert(_sp->verifyChunkInFreeLists(ffc),
  8367           "Chunk is not in free lists");
  8369       _sp->coalDeath(ffc->size());
  8370       _sp->removeFreeChunkFromFreeLists(ffc);
  8371       set_freeRangeInFreeLists(false);
  8373     if (fcInFreeLists) {
  8374       _sp->coalDeath(chunkSize);
  8375       assert(fc->size() == chunkSize,
  8376         "The chunk has the wrong size or is not in the free lists");
  8377       _sp->removeFreeChunkFromFreeLists(fc);
  8379     set_lastFreeRangeCoalesced(true);
  8380   } else {  // not in a free range and/or should not coalesce
  8381     // Return the current free range and start a new one.
  8382     if (inFreeRange()) {
  8383       // In a free range but cannot coalesce with the right hand chunk.
  8384       // Put the current free range into the free lists.
  8385       flushCurFreeChunk(freeFinger(),
  8386         pointer_delta(addr, freeFinger()));
  8388     // Set up for new free range.  Pass along whether the right hand
  8389     // chunk is in the free lists.
  8390     initialize_free_range((HeapWord*)fc, fcInFreeLists);
  8393 void SweepClosure::flushCurFreeChunk(HeapWord* chunk, size_t size) {
  8394   assert(inFreeRange(), "Should only be called if currently in a free range.");
  8395   assert(size > 0,
  8396     "A zero sized chunk cannot be added to the free lists.");
  8397   if (!freeRangeInFreeLists()) {
  8398     if(CMSTestInFreeList) {
  8399       FreeChunk* fc = (FreeChunk*) chunk;
  8400       fc->setSize(size);
  8401       assert(!_sp->verifyChunkInFreeLists(fc),
  8402         "chunk should not be in free lists yet");
  8404     if (CMSTraceSweeper) {
  8405       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
  8406                     chunk, size);
  8408     // A new free range is going to be starting.  The current
  8409     // free range has not been added to the free lists yet or
  8410     // was removed so add it back.
  8411     // If the current free range was coalesced, then the death
  8412     // of the free range was recorded.  Record a birth now.
  8413     if (lastFreeRangeCoalesced()) {
  8414       _sp->coalBirth(size);
  8416     _sp->addChunkAndRepairOffsetTable(chunk, size,
  8417             lastFreeRangeCoalesced());
  8419   set_inFreeRange(false);
  8420   set_freeRangeInFreeLists(false);
  8423 // We take a break if we've been at this for a while,
  8424 // so as to avoid monopolizing the locks involved.
  8425 void SweepClosure::do_yield_work(HeapWord* addr) {
  8426   // Return current free chunk being used for coalescing (if any)
  8427   // to the appropriate freelist.  After yielding, the next
  8428   // free block encountered will start a coalescing range of
  8429   // free blocks.  If the next free block is adjacent to the
  8430   // chunk just flushed, they will need to wait for the next
  8431   // sweep to be coalesced.
  8432   if (inFreeRange()) {
  8433     flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
  8436   // First give up the locks, then yield, then re-lock.
  8437   // We should probably use a constructor/destructor idiom to
  8438   // do this unlock/lock or modify the MutexUnlocker class to
  8439   // serve our purpose. XXX
  8440   assert_lock_strong(_bitMap->lock());
  8441   assert_lock_strong(_freelistLock);
  8442   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  8443          "CMS thread should hold CMS token");
  8444   _bitMap->lock()->unlock();
  8445   _freelistLock->unlock();
  8446   ConcurrentMarkSweepThread::desynchronize(true);
  8447   ConcurrentMarkSweepThread::acknowledge_yield_request();
  8448   _collector->stopTimer();
  8449   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  8450   if (PrintCMSStatistics != 0) {
  8451     _collector->incrementYields();
  8453   _collector->icms_wait();
  8455   // See the comment in coordinator_yield()
  8456   for (unsigned i = 0; i < CMSYieldSleepCount &&
  8457                        ConcurrentMarkSweepThread::should_yield() &&
  8458                        !CMSCollector::foregroundGCIsActive(); ++i) {
  8459     os::sleep(Thread::current(), 1, false);
  8460     ConcurrentMarkSweepThread::acknowledge_yield_request();
  8463   ConcurrentMarkSweepThread::synchronize(true);
  8464   _freelistLock->lock();
  8465   _bitMap->lock()->lock_without_safepoint_check();
  8466   _collector->startTimer();
  8469 #ifndef PRODUCT
  8470 // This is actually very useful in a product build if it can
  8471 // be called from the debugger.  Compile it into the product
  8472 // as needed.
  8473 bool debug_verifyChunkInFreeLists(FreeChunk* fc) {
  8474   return debug_cms_space->verifyChunkInFreeLists(fc);
  8477 void SweepClosure::record_free_block_coalesced(FreeChunk* fc) const {
  8478   if (CMSTraceSweeper) {
  8479     gclog_or_tty->print("Sweep:coal_free_blk 0x%x (%d)\n", fc, fc->size());
  8482 #endif
  8484 // CMSIsAliveClosure
  8485 bool CMSIsAliveClosure::do_object_b(oop obj) {
  8486   HeapWord* addr = (HeapWord*)obj;
  8487   return addr != NULL &&
  8488          (!_span.contains(addr) || _bit_map->isMarked(addr));
  8491 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
  8492                       MemRegion span,
  8493                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
  8494                       CMSMarkStack* revisit_stack, bool cpc):
  8495   KlassRememberingOopClosure(collector, NULL, revisit_stack),
  8496   _span(span),
  8497   _bit_map(bit_map),
  8498   _mark_stack(mark_stack),
  8499   _concurrent_precleaning(cpc) {
  8500   assert(!_span.is_empty(), "Empty span could spell trouble");
  8504 // CMSKeepAliveClosure: the serial version
  8505 void CMSKeepAliveClosure::do_oop(oop obj) {
  8506   HeapWord* addr = (HeapWord*)obj;
  8507   if (_span.contains(addr) &&
  8508       !_bit_map->isMarked(addr)) {
  8509     _bit_map->mark(addr);
  8510     bool simulate_overflow = false;
  8511     NOT_PRODUCT(
  8512       if (CMSMarkStackOverflowALot &&
  8513           _collector->simulate_overflow()) {
  8514         // simulate a stack overflow
  8515         simulate_overflow = true;
  8518     if (simulate_overflow || !_mark_stack->push(obj)) {
  8519       if (_concurrent_precleaning) {
  8520         // We dirty the overflown object and let the remark
  8521         // phase deal with it.
  8522         assert(_collector->overflow_list_is_empty(), "Error");
  8523         // In the case of object arrays, we need to dirty all of
  8524         // the cards that the object spans. No locking or atomics
  8525         // are needed since no one else can be mutating the mod union
  8526         // table.
  8527         if (obj->is_objArray()) {
  8528           size_t sz = obj->size();
  8529           HeapWord* end_card_addr =
  8530             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
  8531           MemRegion redirty_range = MemRegion(addr, end_card_addr);
  8532           assert(!redirty_range.is_empty(), "Arithmetical tautology");
  8533           _collector->_modUnionTable.mark_range(redirty_range);
  8534         } else {
  8535           _collector->_modUnionTable.mark(addr);
  8537         _collector->_ser_kac_preclean_ovflw++;
  8538       } else {
  8539         _collector->push_on_overflow_list(obj);
  8540         _collector->_ser_kac_ovflw++;
  8546 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
  8547 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
  8549 // CMSParKeepAliveClosure: a parallel version of the above.
  8550 // The work queues are private to each closure (thread),
  8551 // but (may be) available for stealing by other threads.
  8552 void CMSParKeepAliveClosure::do_oop(oop obj) {
  8553   HeapWord* addr = (HeapWord*)obj;
  8554   if (_span.contains(addr) &&
  8555       !_bit_map->isMarked(addr)) {
  8556     // In general, during recursive tracing, several threads
  8557     // may be concurrently getting here; the first one to
  8558     // "tag" it, claims it.
  8559     if (_bit_map->par_mark(addr)) {
  8560       bool res = _work_queue->push(obj);
  8561       assert(res, "Low water mark should be much less than capacity");
  8562       // Do a recursive trim in the hope that this will keep
  8563       // stack usage lower, but leave some oops for potential stealers
  8564       trim_queue(_low_water_mark);
  8565     } // Else, another thread got there first
  8569 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
  8570 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
  8572 void CMSParKeepAliveClosure::trim_queue(uint max) {
  8573   while (_work_queue->size() > max) {
  8574     oop new_oop;
  8575     if (_work_queue->pop_local(new_oop)) {
  8576       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  8577       assert(_bit_map->isMarked((HeapWord*)new_oop),
  8578              "no white objects on this stack!");
  8579       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  8580       // iterate over the oops in this oop, marking and pushing
  8581       // the ones in CMS heap (i.e. in _span).
  8582       new_oop->oop_iterate(&_mark_and_push);
  8587 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
  8588                                 CMSCollector* collector,
  8589                                 MemRegion span, CMSBitMap* bit_map,
  8590                                 CMSMarkStack* revisit_stack,
  8591                                 OopTaskQueue* work_queue):
  8592   Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
  8593   _span(span),
  8594   _bit_map(bit_map),
  8595   _work_queue(work_queue) { }
  8597 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
  8598   HeapWord* addr = (HeapWord*)obj;
  8599   if (_span.contains(addr) &&
  8600       !_bit_map->isMarked(addr)) {
  8601     if (_bit_map->par_mark(addr)) {
  8602       bool simulate_overflow = false;
  8603       NOT_PRODUCT(
  8604         if (CMSMarkStackOverflowALot &&
  8605             _collector->par_simulate_overflow()) {
  8606           // simulate a stack overflow
  8607           simulate_overflow = true;
  8610       if (simulate_overflow || !_work_queue->push(obj)) {
  8611         _collector->par_push_on_overflow_list(obj);
  8612         _collector->_par_kac_ovflw++;
  8614     } // Else another thread got there already
  8618 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
  8619 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
  8621 //////////////////////////////////////////////////////////////////
  8622 //  CMSExpansionCause                /////////////////////////////
  8623 //////////////////////////////////////////////////////////////////
  8624 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
  8625   switch (cause) {
  8626     case _no_expansion:
  8627       return "No expansion";
  8628     case _satisfy_free_ratio:
  8629       return "Free ratio";
  8630     case _satisfy_promotion:
  8631       return "Satisfy promotion";
  8632     case _satisfy_allocation:
  8633       return "allocation";
  8634     case _allocate_par_lab:
  8635       return "Par LAB";
  8636     case _allocate_par_spooling_space:
  8637       return "Par Spooling Space";
  8638     case _adaptive_size_policy:
  8639       return "Ergonomics";
  8640     default:
  8641       return "unknown";
  8645 void CMSDrainMarkingStackClosure::do_void() {
  8646   // the max number to take from overflow list at a time
  8647   const size_t num = _mark_stack->capacity()/4;
  8648   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
  8649          "Overflow list should be NULL during concurrent phases");
  8650   while (!_mark_stack->isEmpty() ||
  8651          // if stack is empty, check the overflow list
  8652          _collector->take_from_overflow_list(num, _mark_stack)) {
  8653     oop obj = _mark_stack->pop();
  8654     HeapWord* addr = (HeapWord*)obj;
  8655     assert(_span.contains(addr), "Should be within span");
  8656     assert(_bit_map->isMarked(addr), "Should be marked");
  8657     assert(obj->is_oop(), "Should be an oop");
  8658     obj->oop_iterate(_keep_alive);
  8662 void CMSParDrainMarkingStackClosure::do_void() {
  8663   // drain queue
  8664   trim_queue(0);
  8667 // Trim our work_queue so its length is below max at return
  8668 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
  8669   while (_work_queue->size() > max) {
  8670     oop new_oop;
  8671     if (_work_queue->pop_local(new_oop)) {
  8672       assert(new_oop->is_oop(), "Expected an oop");
  8673       assert(_bit_map->isMarked((HeapWord*)new_oop),
  8674              "no white objects on this stack!");
  8675       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  8676       // iterate over the oops in this oop, marking and pushing
  8677       // the ones in CMS heap (i.e. in _span).
  8678       new_oop->oop_iterate(&_mark_and_push);
  8683 ////////////////////////////////////////////////////////////////////
  8684 // Support for Marking Stack Overflow list handling and related code
  8685 ////////////////////////////////////////////////////////////////////
  8686 // Much of the following code is similar in shape and spirit to the
  8687 // code used in ParNewGC. We should try and share that code
  8688 // as much as possible in the future.
  8690 #ifndef PRODUCT
  8691 // Debugging support for CMSStackOverflowALot
  8693 // It's OK to call this multi-threaded;  the worst thing
  8694 // that can happen is that we'll get a bunch of closely
  8695 // spaced simulated oveflows, but that's OK, in fact
  8696 // probably good as it would exercise the overflow code
  8697 // under contention.
  8698 bool CMSCollector::simulate_overflow() {
  8699   if (_overflow_counter-- <= 0) { // just being defensive
  8700     _overflow_counter = CMSMarkStackOverflowInterval;
  8701     return true;
  8702   } else {
  8703     return false;
  8707 bool CMSCollector::par_simulate_overflow() {
  8708   return simulate_overflow();
  8710 #endif
  8712 // Single-threaded
  8713 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
  8714   assert(stack->isEmpty(), "Expected precondition");
  8715   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
  8716   size_t i = num;
  8717   oop  cur = _overflow_list;
  8718   const markOop proto = markOopDesc::prototype();
  8719   NOT_PRODUCT(ssize_t n = 0;)
  8720   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
  8721     next = oop(cur->mark());
  8722     cur->set_mark(proto);   // until proven otherwise
  8723     assert(cur->is_oop(), "Should be an oop");
  8724     bool res = stack->push(cur);
  8725     assert(res, "Bit off more than can chew?");
  8726     NOT_PRODUCT(n++;)
  8728   _overflow_list = cur;
  8729 #ifndef PRODUCT
  8730   assert(_num_par_pushes >= n, "Too many pops?");
  8731   _num_par_pushes -=n;
  8732 #endif
  8733   return !stack->isEmpty();
  8736 #define BUSY  (oop(0x1aff1aff))
  8737 // (MT-safe) Get a prefix of at most "num" from the list.
  8738 // The overflow list is chained through the mark word of
  8739 // each object in the list. We fetch the entire list,
  8740 // break off a prefix of the right size and return the
  8741 // remainder. If other threads try to take objects from
  8742 // the overflow list at that time, they will wait for
  8743 // some time to see if data becomes available. If (and
  8744 // only if) another thread places one or more object(s)
  8745 // on the global list before we have returned the suffix
  8746 // to the global list, we will walk down our local list
  8747 // to find its end and append the global list to
  8748 // our suffix before returning it. This suffix walk can
  8749 // prove to be expensive (quadratic in the amount of traffic)
  8750 // when there are many objects in the overflow list and
  8751 // there is much producer-consumer contention on the list.
  8752 // *NOTE*: The overflow list manipulation code here and
  8753 // in ParNewGeneration:: are very similar in shape,
  8754 // except that in the ParNew case we use the old (from/eden)
  8755 // copy of the object to thread the list via its klass word.
  8756 // Because of the common code, if you make any changes in
  8757 // the code below, please check the ParNew version to see if
  8758 // similar changes might be needed.
  8759 // CR 6797058 has been filed to consolidate the common code.
  8760 bool CMSCollector::par_take_from_overflow_list(size_t num,
  8761                                                OopTaskQueue* work_q,
  8762                                                int no_of_gc_threads) {
  8763   assert(work_q->size() == 0, "First empty local work queue");
  8764   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
  8765   if (_overflow_list == NULL) {
  8766     return false;
  8768   // Grab the entire list; we'll put back a suffix
  8769   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
  8770   Thread* tid = Thread::current();
  8771   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
  8772   // set to ParallelGCThreads.
  8773   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
  8774   size_t sleep_time_millis = MAX2((size_t)1, num/100);
  8775   // If the list is busy, we spin for a short while,
  8776   // sleeping between attempts to get the list.
  8777   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
  8778     os::sleep(tid, sleep_time_millis, false);
  8779     if (_overflow_list == NULL) {
  8780       // Nothing left to take
  8781       return false;
  8782     } else if (_overflow_list != BUSY) {
  8783       // Try and grab the prefix
  8784       prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
  8787   // If the list was found to be empty, or we spun long
  8788   // enough, we give up and return empty-handed. If we leave
  8789   // the list in the BUSY state below, it must be the case that
  8790   // some other thread holds the overflow list and will set it
  8791   // to a non-BUSY state in the future.
  8792   if (prefix == NULL || prefix == BUSY) {
  8793      // Nothing to take or waited long enough
  8794      if (prefix == NULL) {
  8795        // Write back the NULL in case we overwrote it with BUSY above
  8796        // and it is still the same value.
  8797        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
  8799      return false;
  8801   assert(prefix != NULL && prefix != BUSY, "Error");
  8802   size_t i = num;
  8803   oop cur = prefix;
  8804   // Walk down the first "num" objects, unless we reach the end.
  8805   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
  8806   if (cur->mark() == NULL) {
  8807     // We have "num" or fewer elements in the list, so there
  8808     // is nothing to return to the global list.
  8809     // Write back the NULL in lieu of the BUSY we wrote
  8810     // above, if it is still the same value.
  8811     if (_overflow_list == BUSY) {
  8812       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
  8814   } else {
  8815     // Chop off the suffix and rerturn it to the global list.
  8816     assert(cur->mark() != BUSY, "Error");
  8817     oop suffix_head = cur->mark(); // suffix will be put back on global list
  8818     cur->set_mark(NULL);           // break off suffix
  8819     // It's possible that the list is still in the empty(busy) state
  8820     // we left it in a short while ago; in that case we may be
  8821     // able to place back the suffix without incurring the cost
  8822     // of a walk down the list.
  8823     oop observed_overflow_list = _overflow_list;
  8824     oop cur_overflow_list = observed_overflow_list;
  8825     bool attached = false;
  8826     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
  8827       observed_overflow_list =
  8828         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
  8829       if (cur_overflow_list == observed_overflow_list) {
  8830         attached = true;
  8831         break;
  8832       } else cur_overflow_list = observed_overflow_list;
  8834     if (!attached) {
  8835       // Too bad, someone else sneaked in (at least) an element; we'll need
  8836       // to do a splice. Find tail of suffix so we can prepend suffix to global
  8837       // list.
  8838       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
  8839       oop suffix_tail = cur;
  8840       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
  8841              "Tautology");
  8842       observed_overflow_list = _overflow_list;
  8843       do {
  8844         cur_overflow_list = observed_overflow_list;
  8845         if (cur_overflow_list != BUSY) {
  8846           // Do the splice ...
  8847           suffix_tail->set_mark(markOop(cur_overflow_list));
  8848         } else { // cur_overflow_list == BUSY
  8849           suffix_tail->set_mark(NULL);
  8851         // ... and try to place spliced list back on overflow_list ...
  8852         observed_overflow_list =
  8853           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
  8854       } while (cur_overflow_list != observed_overflow_list);
  8855       // ... until we have succeeded in doing so.
  8859   // Push the prefix elements on work_q
  8860   assert(prefix != NULL, "control point invariant");
  8861   const markOop proto = markOopDesc::prototype();
  8862   oop next;
  8863   NOT_PRODUCT(ssize_t n = 0;)
  8864   for (cur = prefix; cur != NULL; cur = next) {
  8865     next = oop(cur->mark());
  8866     cur->set_mark(proto);   // until proven otherwise
  8867     assert(cur->is_oop(), "Should be an oop");
  8868     bool res = work_q->push(cur);
  8869     assert(res, "Bit off more than we can chew?");
  8870     NOT_PRODUCT(n++;)
  8872 #ifndef PRODUCT
  8873   assert(_num_par_pushes >= n, "Too many pops?");
  8874   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
  8875 #endif
  8876   return true;
  8879 // Single-threaded
  8880 void CMSCollector::push_on_overflow_list(oop p) {
  8881   NOT_PRODUCT(_num_par_pushes++;)
  8882   assert(p->is_oop(), "Not an oop");
  8883   preserve_mark_if_necessary(p);
  8884   p->set_mark((markOop)_overflow_list);
  8885   _overflow_list = p;
  8888 // Multi-threaded; use CAS to prepend to overflow list
  8889 void CMSCollector::par_push_on_overflow_list(oop p) {
  8890   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
  8891   assert(p->is_oop(), "Not an oop");
  8892   par_preserve_mark_if_necessary(p);
  8893   oop observed_overflow_list = _overflow_list;
  8894   oop cur_overflow_list;
  8895   do {
  8896     cur_overflow_list = observed_overflow_list;
  8897     if (cur_overflow_list != BUSY) {
  8898       p->set_mark(markOop(cur_overflow_list));
  8899     } else {
  8900       p->set_mark(NULL);
  8902     observed_overflow_list =
  8903       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
  8904   } while (cur_overflow_list != observed_overflow_list);
  8906 #undef BUSY
  8908 // Single threaded
  8909 // General Note on GrowableArray: pushes may silently fail
  8910 // because we are (temporarily) out of C-heap for expanding
  8911 // the stack. The problem is quite ubiquitous and affects
  8912 // a lot of code in the JVM. The prudent thing for GrowableArray
  8913 // to do (for now) is to exit with an error. However, that may
  8914 // be too draconian in some cases because the caller may be
  8915 // able to recover without much harm. For such cases, we
  8916 // should probably introduce a "soft_push" method which returns
  8917 // an indication of success or failure with the assumption that
  8918 // the caller may be able to recover from a failure; code in
  8919 // the VM can then be changed, incrementally, to deal with such
  8920 // failures where possible, thus, incrementally hardening the VM
  8921 // in such low resource situations.
  8922 void CMSCollector::preserve_mark_work(oop p, markOop m) {
  8923   _preserved_oop_stack.push(p);
  8924   _preserved_mark_stack.push(m);
  8925   assert(m == p->mark(), "Mark word changed");
  8926   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
  8927          "bijection");
  8930 // Single threaded
  8931 void CMSCollector::preserve_mark_if_necessary(oop p) {
  8932   markOop m = p->mark();
  8933   if (m->must_be_preserved(p)) {
  8934     preserve_mark_work(p, m);
  8938 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
  8939   markOop m = p->mark();
  8940   if (m->must_be_preserved(p)) {
  8941     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  8942     // Even though we read the mark word without holding
  8943     // the lock, we are assured that it will not change
  8944     // because we "own" this oop, so no other thread can
  8945     // be trying to push it on the overflow list; see
  8946     // the assertion in preserve_mark_work() that checks
  8947     // that m == p->mark().
  8948     preserve_mark_work(p, m);
  8952 // We should be able to do this multi-threaded,
  8953 // a chunk of stack being a task (this is
  8954 // correct because each oop only ever appears
  8955 // once in the overflow list. However, it's
  8956 // not very easy to completely overlap this with
  8957 // other operations, so will generally not be done
  8958 // until all work's been completed. Because we
  8959 // expect the preserved oop stack (set) to be small,
  8960 // it's probably fine to do this single-threaded.
  8961 // We can explore cleverer concurrent/overlapped/parallel
  8962 // processing of preserved marks if we feel the
  8963 // need for this in the future. Stack overflow should
  8964 // be so rare in practice and, when it happens, its
  8965 // effect on performance so great that this will
  8966 // likely just be in the noise anyway.
  8967 void CMSCollector::restore_preserved_marks_if_any() {
  8968   assert(SafepointSynchronize::is_at_safepoint(),
  8969          "world should be stopped");
  8970   assert(Thread::current()->is_ConcurrentGC_thread() ||
  8971          Thread::current()->is_VM_thread(),
  8972          "should be single-threaded");
  8973   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
  8974          "bijection");
  8976   while (!_preserved_oop_stack.is_empty()) {
  8977     oop p = _preserved_oop_stack.pop();
  8978     assert(p->is_oop(), "Should be an oop");
  8979     assert(_span.contains(p), "oop should be in _span");
  8980     assert(p->mark() == markOopDesc::prototype(),
  8981            "Set when taken from overflow list");
  8982     markOop m = _preserved_mark_stack.pop();
  8983     p->set_mark(m);
  8985   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
  8986          "stacks were cleared above");
  8989 #ifndef PRODUCT
  8990 bool CMSCollector::no_preserved_marks() const {
  8991   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
  8993 #endif
  8995 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
  8997   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  8998   CMSAdaptiveSizePolicy* size_policy =
  8999     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
  9000   assert(size_policy->is_gc_cms_adaptive_size_policy(),
  9001     "Wrong type for size policy");
  9002   return size_policy;
  9005 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
  9006                                            size_t desired_promo_size) {
  9007   if (cur_promo_size < desired_promo_size) {
  9008     size_t expand_bytes = desired_promo_size - cur_promo_size;
  9009     if (PrintAdaptiveSizePolicy && Verbose) {
  9010       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  9011         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
  9012         expand_bytes);
  9014     expand(expand_bytes,
  9015            MinHeapDeltaBytes,
  9016            CMSExpansionCause::_adaptive_size_policy);
  9017   } else if (desired_promo_size < cur_promo_size) {
  9018     size_t shrink_bytes = cur_promo_size - desired_promo_size;
  9019     if (PrintAdaptiveSizePolicy && Verbose) {
  9020       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  9021         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
  9022         shrink_bytes);
  9024     shrink(shrink_bytes);
  9028 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
  9029   GenCollectedHeap* gch = GenCollectedHeap::heap();
  9030   CMSGCAdaptivePolicyCounters* counters =
  9031     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
  9032   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
  9033     "Wrong kind of counters");
  9034   return counters;
  9038 void ASConcurrentMarkSweepGeneration::update_counters() {
  9039   if (UsePerfData) {
  9040     _space_counters->update_all();
  9041     _gen_counters->update_all();
  9042     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  9043     GenCollectedHeap* gch = GenCollectedHeap::heap();
  9044     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  9045     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  9046       "Wrong gc statistics type");
  9047     counters->update_counters(gc_stats_l);
  9051 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
  9052   if (UsePerfData) {
  9053     _space_counters->update_used(used);
  9054     _space_counters->update_capacity();
  9055     _gen_counters->update_all();
  9057     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  9058     GenCollectedHeap* gch = GenCollectedHeap::heap();
  9059     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  9060     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  9061       "Wrong gc statistics type");
  9062     counters->update_counters(gc_stats_l);
  9066 // The desired expansion delta is computed so that:
  9067 // . desired free percentage or greater is used
  9068 void ASConcurrentMarkSweepGeneration::compute_new_size() {
  9069   assert_locked_or_safepoint(Heap_lock);
  9071   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  9073   // If incremental collection failed, we just want to expand
  9074   // to the limit.
  9075   if (incremental_collection_failed()) {
  9076     clear_incremental_collection_failed();
  9077     grow_to_reserved();
  9078     return;
  9081   assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing");
  9083   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  9084     "Wrong type of heap");
  9085   int prev_level = level() - 1;
  9086   assert(prev_level >= 0, "The cms generation is the lowest generation");
  9087   Generation* prev_gen = gch->get_gen(prev_level);
  9088   assert(prev_gen->kind() == Generation::ASParNew,
  9089     "Wrong type of young generation");
  9090   ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen;
  9091   size_t cur_eden = younger_gen->eden()->capacity();
  9092   CMSAdaptiveSizePolicy* size_policy = cms_size_policy();
  9093   size_t cur_promo = free();
  9094   size_policy->compute_tenured_generation_free_space(cur_promo,
  9095                                                        max_available(),
  9096                                                        cur_eden);
  9097   resize(cur_promo, size_policy->promo_size());
  9099   // Record the new size of the space in the cms generation
  9100   // that is available for promotions.  This is temporary.
  9101   // It should be the desired promo size.
  9102   size_policy->avg_cms_promo()->sample(free());
  9103   size_policy->avg_old_live()->sample(used());
  9105   if (UsePerfData) {
  9106     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  9107     counters->update_cms_capacity_counter(capacity());
  9111 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
  9112   assert_locked_or_safepoint(Heap_lock);
  9113   assert_lock_strong(freelistLock());
  9114   HeapWord* old_end = _cmsSpace->end();
  9115   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
  9116   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
  9117   FreeChunk* chunk_at_end = find_chunk_at_end();
  9118   if (chunk_at_end == NULL) {
  9119     // No room to shrink
  9120     if (PrintGCDetails && Verbose) {
  9121       gclog_or_tty->print_cr("No room to shrink: old_end  "
  9122         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
  9123         " chunk_at_end  " PTR_FORMAT,
  9124         old_end, unallocated_start, chunk_at_end);
  9126     return;
  9127   } else {
  9129     // Find the chunk at the end of the space and determine
  9130     // how much it can be shrunk.
  9131     size_t shrinkable_size_in_bytes = chunk_at_end->size();
  9132     size_t aligned_shrinkable_size_in_bytes =
  9133       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
  9134     assert(unallocated_start <= chunk_at_end->end(),
  9135       "Inconsistent chunk at end of space");
  9136     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
  9137     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
  9139     // Shrink the underlying space
  9140     _virtual_space.shrink_by(bytes);
  9141     if (PrintGCDetails && Verbose) {
  9142       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
  9143         " desired_bytes " SIZE_FORMAT
  9144         " shrinkable_size_in_bytes " SIZE_FORMAT
  9145         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
  9146         "  bytes  " SIZE_FORMAT,
  9147         desired_bytes, shrinkable_size_in_bytes,
  9148         aligned_shrinkable_size_in_bytes, bytes);
  9149       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
  9150         "  unallocated_start  " SIZE_FORMAT,
  9151         old_end, unallocated_start);
  9154     // If the space did shrink (shrinking is not guaranteed),
  9155     // shrink the chunk at the end by the appropriate amount.
  9156     if (((HeapWord*)_virtual_space.high()) < old_end) {
  9157       size_t new_word_size =
  9158         heap_word_size(_virtual_space.committed_size());
  9160       // Have to remove the chunk from the dictionary because it is changing
  9161       // size and might be someplace elsewhere in the dictionary.
  9163       // Get the chunk at end, shrink it, and put it
  9164       // back.
  9165       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
  9166       size_t word_size_change = word_size_before - new_word_size;
  9167       size_t chunk_at_end_old_size = chunk_at_end->size();
  9168       assert(chunk_at_end_old_size >= word_size_change,
  9169         "Shrink is too large");
  9170       chunk_at_end->setSize(chunk_at_end_old_size -
  9171                           word_size_change);
  9172       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
  9173         word_size_change);
  9175       _cmsSpace->returnChunkToDictionary(chunk_at_end);
  9177       MemRegion mr(_cmsSpace->bottom(), new_word_size);
  9178       _bts->resize(new_word_size);  // resize the block offset shared array
  9179       Universe::heap()->barrier_set()->resize_covered_region(mr);
  9180       _cmsSpace->assert_locked();
  9181       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  9183       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
  9185       // update the space and generation capacity counters
  9186       if (UsePerfData) {
  9187         _space_counters->update_capacity();
  9188         _gen_counters->update_all();
  9191       if (Verbose && PrintGCDetails) {
  9192         size_t new_mem_size = _virtual_space.committed_size();
  9193         size_t old_mem_size = new_mem_size + bytes;
  9194         gclog_or_tty->print_cr("Shrinking %s from %ldK by %ldK to %ldK",
  9195                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
  9199     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
  9200       "Inconsistency at end of space");
  9201     assert(chunk_at_end->end() == _cmsSpace->end(),
  9202       "Shrinking is inconsistent");
  9203     return;
  9207 // Transfer some number of overflown objects to usual marking
  9208 // stack. Return true if some objects were transferred.
  9209 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
  9210   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
  9211                     (size_t)ParGCDesiredObjsFromOverflowList);
  9213   bool res = _collector->take_from_overflow_list(num, _mark_stack);
  9214   assert(_collector->overflow_list_is_empty() || res,
  9215          "If list is not empty, we should have taken something");
  9216   assert(!res || !_mark_stack->isEmpty(),
  9217          "If we took something, it should now be on our stack");
  9218   return res;
  9221 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
  9222   size_t res = _sp->block_size_no_stall(addr, _collector);
  9223   assert(res != 0, "Should always be able to compute a size");
  9224   if (_sp->block_is_obj(addr)) {
  9225     if (_live_bit_map->isMarked(addr)) {
  9226       // It can't have been dead in a previous cycle
  9227       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
  9228     } else {
  9229       _dead_bit_map->mark(addr);      // mark the dead object
  9232   return res;
  9235 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase): TraceMemoryManagerStats() {
  9237   switch (phase) {
  9238     case CMSCollector::InitialMarking:
  9239       initialize(true  /* fullGC */ ,
  9240                  true  /* recordGCBeginTime */,
  9241                  true  /* recordPreGCUsage */,
  9242                  false /* recordPeakUsage */,
  9243                  false /* recordPostGCusage */,
  9244                  true  /* recordAccumulatedGCTime */,
  9245                  false /* recordGCEndTime */,
  9246                  false /* countCollection */  );
  9247       break;
  9249     case CMSCollector::FinalMarking:
  9250       initialize(true  /* fullGC */ ,
  9251                  false /* recordGCBeginTime */,
  9252                  false /* recordPreGCUsage */,
  9253                  false /* recordPeakUsage */,
  9254                  false /* recordPostGCusage */,
  9255                  true  /* recordAccumulatedGCTime */,
  9256                  false /* recordGCEndTime */,
  9257                  false /* countCollection */  );
  9258       break;
  9260     case CMSCollector::Sweeping:
  9261       initialize(true  /* fullGC */ ,
  9262                  false /* recordGCBeginTime */,
  9263                  false /* recordPreGCUsage */,
  9264                  true  /* recordPeakUsage */,
  9265                  true  /* recordPostGCusage */,
  9266                  false /* recordAccumulatedGCTime */,
  9267                  true  /* recordGCEndTime */,
  9268                  true  /* countCollection */  );
  9269       break;
  9271     default:
  9272       ShouldNotReachHere();
  9276 // when bailing out of cms in concurrent mode failure
  9277 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(): TraceMemoryManagerStats() {
  9278   initialize(true /* fullGC */ ,
  9279              true /* recordGCBeginTime */,
  9280              true /* recordPreGCUsage */,
  9281              true /* recordPeakUsage */,
  9282              true /* recordPostGCusage */,
  9283              true /* recordAccumulatedGCTime */,
  9284              true /* recordGCEndTime */,
  9285              true /* countCollection */ );

mercurial