src/share/vm/ci/ciTypeFlow.cpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2201
d55217dc206f
child 2462
8012aa3ccede
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

     1 /*
     2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciConstant.hpp"
    27 #include "ci/ciField.hpp"
    28 #include "ci/ciMethod.hpp"
    29 #include "ci/ciMethodData.hpp"
    30 #include "ci/ciObjArrayKlass.hpp"
    31 #include "ci/ciStreams.hpp"
    32 #include "ci/ciTypeArrayKlass.hpp"
    33 #include "ci/ciTypeFlow.hpp"
    34 #include "compiler/compileLog.hpp"
    35 #include "interpreter/bytecode.hpp"
    36 #include "interpreter/bytecodes.hpp"
    37 #include "memory/allocation.inline.hpp"
    38 #include "runtime/deoptimization.hpp"
    39 #include "utilities/growableArray.hpp"
    41 // ciTypeFlow::JsrSet
    42 //
    43 // A JsrSet represents some set of JsrRecords.  This class
    44 // is used to record a set of all jsr routines which we permit
    45 // execution to return (ret) from.
    46 //
    47 // During abstract interpretation, JsrSets are used to determine
    48 // whether two paths which reach a given block are unique, and
    49 // should be cloned apart, or are compatible, and should merge
    50 // together.
    52 // ------------------------------------------------------------------
    53 // ciTypeFlow::JsrSet::JsrSet
    54 ciTypeFlow::JsrSet::JsrSet(Arena* arena, int default_len) {
    55   if (arena != NULL) {
    56     // Allocate growable array in Arena.
    57     _set = new (arena) GrowableArray<JsrRecord*>(arena, default_len, 0, NULL);
    58   } else {
    59     // Allocate growable array in current ResourceArea.
    60     _set = new GrowableArray<JsrRecord*>(4, 0, NULL, false);
    61   }
    62 }
    64 // ------------------------------------------------------------------
    65 // ciTypeFlow::JsrSet::copy_into
    66 void ciTypeFlow::JsrSet::copy_into(JsrSet* jsrs) {
    67   int len = size();
    68   jsrs->_set->clear();
    69   for (int i = 0; i < len; i++) {
    70     jsrs->_set->append(_set->at(i));
    71   }
    72 }
    74 // ------------------------------------------------------------------
    75 // ciTypeFlow::JsrSet::is_compatible_with
    76 //
    77 // !!!! MISGIVINGS ABOUT THIS... disregard
    78 //
    79 // Is this JsrSet compatible with some other JsrSet?
    80 //
    81 // In set-theoretic terms, a JsrSet can be viewed as a partial function
    82 // from entry addresses to return addresses.  Two JsrSets A and B are
    83 // compatible iff
    84 //
    85 //   For any x,
    86 //   A(x) defined and B(x) defined implies A(x) == B(x)
    87 //
    88 // Less formally, two JsrSets are compatible when they have identical
    89 // return addresses for any entry addresses they share in common.
    90 bool ciTypeFlow::JsrSet::is_compatible_with(JsrSet* other) {
    91   // Walk through both sets in parallel.  If the same entry address
    92   // appears in both sets, then the return address must match for
    93   // the sets to be compatible.
    94   int size1 = size();
    95   int size2 = other->size();
    97   // Special case.  If nothing is on the jsr stack, then there can
    98   // be no ret.
    99   if (size2 == 0) {
   100     return true;
   101   } else if (size1 != size2) {
   102     return false;
   103   } else {
   104     for (int i = 0; i < size1; i++) {
   105       JsrRecord* record1 = record_at(i);
   106       JsrRecord* record2 = other->record_at(i);
   107       if (record1->entry_address() != record2->entry_address() ||
   108           record1->return_address() != record2->return_address()) {
   109         return false;
   110       }
   111     }
   112     return true;
   113   }
   115 #if 0
   116   int pos1 = 0;
   117   int pos2 = 0;
   118   int size1 = size();
   119   int size2 = other->size();
   120   while (pos1 < size1 && pos2 < size2) {
   121     JsrRecord* record1 = record_at(pos1);
   122     JsrRecord* record2 = other->record_at(pos2);
   123     int entry1 = record1->entry_address();
   124     int entry2 = record2->entry_address();
   125     if (entry1 < entry2) {
   126       pos1++;
   127     } else if (entry1 > entry2) {
   128       pos2++;
   129     } else {
   130       if (record1->return_address() == record2->return_address()) {
   131         pos1++;
   132         pos2++;
   133       } else {
   134         // These two JsrSets are incompatible.
   135         return false;
   136       }
   137     }
   138   }
   139   // The two JsrSets agree.
   140   return true;
   141 #endif
   142 }
   144 // ------------------------------------------------------------------
   145 // ciTypeFlow::JsrSet::insert_jsr_record
   146 //
   147 // Insert the given JsrRecord into the JsrSet, maintaining the order
   148 // of the set and replacing any element with the same entry address.
   149 void ciTypeFlow::JsrSet::insert_jsr_record(JsrRecord* record) {
   150   int len = size();
   151   int entry = record->entry_address();
   152   int pos = 0;
   153   for ( ; pos < len; pos++) {
   154     JsrRecord* current = record_at(pos);
   155     if (entry == current->entry_address()) {
   156       // Stomp over this entry.
   157       _set->at_put(pos, record);
   158       assert(size() == len, "must be same size");
   159       return;
   160     } else if (entry < current->entry_address()) {
   161       break;
   162     }
   163   }
   165   // Insert the record into the list.
   166   JsrRecord* swap = record;
   167   JsrRecord* temp = NULL;
   168   for ( ; pos < len; pos++) {
   169     temp = _set->at(pos);
   170     _set->at_put(pos, swap);
   171     swap = temp;
   172   }
   173   _set->append(swap);
   174   assert(size() == len+1, "must be larger");
   175 }
   177 // ------------------------------------------------------------------
   178 // ciTypeFlow::JsrSet::remove_jsr_record
   179 //
   180 // Remove the JsrRecord with the given return address from the JsrSet.
   181 void ciTypeFlow::JsrSet::remove_jsr_record(int return_address) {
   182   int len = size();
   183   for (int i = 0; i < len; i++) {
   184     if (record_at(i)->return_address() == return_address) {
   185       // We have found the proper entry.  Remove it from the
   186       // JsrSet and exit.
   187       for (int j = i+1; j < len ; j++) {
   188         _set->at_put(j-1, _set->at(j));
   189       }
   190       _set->trunc_to(len-1);
   191       assert(size() == len-1, "must be smaller");
   192       return;
   193     }
   194   }
   195   assert(false, "verify: returning from invalid subroutine");
   196 }
   198 // ------------------------------------------------------------------
   199 // ciTypeFlow::JsrSet::apply_control
   200 //
   201 // Apply the effect of a control-flow bytecode on the JsrSet.  The
   202 // only bytecodes that modify the JsrSet are jsr and ret.
   203 void ciTypeFlow::JsrSet::apply_control(ciTypeFlow* analyzer,
   204                                        ciBytecodeStream* str,
   205                                        ciTypeFlow::StateVector* state) {
   206   Bytecodes::Code code = str->cur_bc();
   207   if (code == Bytecodes::_jsr) {
   208     JsrRecord* record =
   209       analyzer->make_jsr_record(str->get_dest(), str->next_bci());
   210     insert_jsr_record(record);
   211   } else if (code == Bytecodes::_jsr_w) {
   212     JsrRecord* record =
   213       analyzer->make_jsr_record(str->get_far_dest(), str->next_bci());
   214     insert_jsr_record(record);
   215   } else if (code == Bytecodes::_ret) {
   216     Cell local = state->local(str->get_index());
   217     ciType* return_address = state->type_at(local);
   218     assert(return_address->is_return_address(), "verify: wrong type");
   219     if (size() == 0) {
   220       // Ret-state underflow:  Hit a ret w/o any previous jsrs.  Bail out.
   221       // This can happen when a loop is inside a finally clause (4614060).
   222       analyzer->record_failure("OSR in finally clause");
   223       return;
   224     }
   225     remove_jsr_record(return_address->as_return_address()->bci());
   226   }
   227 }
   229 #ifndef PRODUCT
   230 // ------------------------------------------------------------------
   231 // ciTypeFlow::JsrSet::print_on
   232 void ciTypeFlow::JsrSet::print_on(outputStream* st) const {
   233   st->print("{ ");
   234   int num_elements = size();
   235   if (num_elements > 0) {
   236     int i = 0;
   237     for( ; i < num_elements - 1; i++) {
   238       _set->at(i)->print_on(st);
   239       st->print(", ");
   240     }
   241     _set->at(i)->print_on(st);
   242     st->print(" ");
   243   }
   244   st->print("}");
   245 }
   246 #endif
   248 // ciTypeFlow::StateVector
   249 //
   250 // A StateVector summarizes the type information at some point in
   251 // the program.
   253 // ------------------------------------------------------------------
   254 // ciTypeFlow::StateVector::type_meet
   255 //
   256 // Meet two types.
   257 //
   258 // The semi-lattice of types use by this analysis are modeled on those
   259 // of the verifier.  The lattice is as follows:
   260 //
   261 //        top_type() >= all non-extremal types >= bottom_type
   262 //                             and
   263 //   Every primitive type is comparable only with itself.  The meet of
   264 //   reference types is determined by their kind: instance class,
   265 //   interface, or array class.  The meet of two types of the same
   266 //   kind is their least common ancestor.  The meet of two types of
   267 //   different kinds is always java.lang.Object.
   268 ciType* ciTypeFlow::StateVector::type_meet_internal(ciType* t1, ciType* t2, ciTypeFlow* analyzer) {
   269   assert(t1 != t2, "checked in caller");
   270   if (t1->equals(top_type())) {
   271     return t2;
   272   } else if (t2->equals(top_type())) {
   273     return t1;
   274   } else if (t1->is_primitive_type() || t2->is_primitive_type()) {
   275     // Special case null_type.  null_type meet any reference type T
   276     // is T.  null_type meet null_type is null_type.
   277     if (t1->equals(null_type())) {
   278       if (!t2->is_primitive_type() || t2->equals(null_type())) {
   279         return t2;
   280       }
   281     } else if (t2->equals(null_type())) {
   282       if (!t1->is_primitive_type()) {
   283         return t1;
   284       }
   285     }
   287     // At least one of the two types is a non-top primitive type.
   288     // The other type is not equal to it.  Fall to bottom.
   289     return bottom_type();
   290   } else {
   291     // Both types are non-top non-primitive types.  That is,
   292     // both types are either instanceKlasses or arrayKlasses.
   293     ciKlass* object_klass = analyzer->env()->Object_klass();
   294     ciKlass* k1 = t1->as_klass();
   295     ciKlass* k2 = t2->as_klass();
   296     if (k1->equals(object_klass) || k2->equals(object_klass)) {
   297       return object_klass;
   298     } else if (!k1->is_loaded() || !k2->is_loaded()) {
   299       // Unloaded classes fall to java.lang.Object at a merge.
   300       return object_klass;
   301     } else if (k1->is_interface() != k2->is_interface()) {
   302       // When an interface meets a non-interface, we get Object;
   303       // This is what the verifier does.
   304       return object_klass;
   305     } else if (k1->is_array_klass() || k2->is_array_klass()) {
   306       // When an array meets a non-array, we get Object.
   307       // When objArray meets typeArray, we also get Object.
   308       // And when typeArray meets different typeArray, we again get Object.
   309       // But when objArray meets objArray, we look carefully at element types.
   310       if (k1->is_obj_array_klass() && k2->is_obj_array_klass()) {
   311         // Meet the element types, then construct the corresponding array type.
   312         ciKlass* elem1 = k1->as_obj_array_klass()->element_klass();
   313         ciKlass* elem2 = k2->as_obj_array_klass()->element_klass();
   314         ciKlass* elem  = type_meet_internal(elem1, elem2, analyzer)->as_klass();
   315         // Do an easy shortcut if one type is a super of the other.
   316         if (elem == elem1) {
   317           assert(k1 == ciObjArrayKlass::make(elem), "shortcut is OK");
   318           return k1;
   319         } else if (elem == elem2) {
   320           assert(k2 == ciObjArrayKlass::make(elem), "shortcut is OK");
   321           return k2;
   322         } else {
   323           return ciObjArrayKlass::make(elem);
   324         }
   325       } else {
   326         return object_klass;
   327       }
   328     } else {
   329       // Must be two plain old instance klasses.
   330       assert(k1->is_instance_klass(), "previous cases handle non-instances");
   331       assert(k2->is_instance_klass(), "previous cases handle non-instances");
   332       return k1->least_common_ancestor(k2);
   333     }
   334   }
   335 }
   338 // ------------------------------------------------------------------
   339 // ciTypeFlow::StateVector::StateVector
   340 //
   341 // Build a new state vector
   342 ciTypeFlow::StateVector::StateVector(ciTypeFlow* analyzer) {
   343   _outer = analyzer;
   344   _stack_size = -1;
   345   _monitor_count = -1;
   346   // Allocate the _types array
   347   int max_cells = analyzer->max_cells();
   348   _types = (ciType**)analyzer->arena()->Amalloc(sizeof(ciType*) * max_cells);
   349   for (int i=0; i<max_cells; i++) {
   350     _types[i] = top_type();
   351   }
   352   _trap_bci = -1;
   353   _trap_index = 0;
   354   _def_locals.clear();
   355 }
   358 // ------------------------------------------------------------------
   359 // ciTypeFlow::get_start_state
   360 //
   361 // Set this vector to the method entry state.
   362 const ciTypeFlow::StateVector* ciTypeFlow::get_start_state() {
   363   StateVector* state = new StateVector(this);
   364   if (is_osr_flow()) {
   365     ciTypeFlow* non_osr_flow = method()->get_flow_analysis();
   366     if (non_osr_flow->failing()) {
   367       record_failure(non_osr_flow->failure_reason());
   368       return NULL;
   369     }
   370     JsrSet* jsrs = new JsrSet(NULL, 16);
   371     Block* non_osr_block = non_osr_flow->existing_block_at(start_bci(), jsrs);
   372     if (non_osr_block == NULL) {
   373       record_failure("cannot reach OSR point");
   374       return NULL;
   375     }
   376     // load up the non-OSR state at this point
   377     non_osr_block->copy_state_into(state);
   378     int non_osr_start = non_osr_block->start();
   379     if (non_osr_start != start_bci()) {
   380       // must flow forward from it
   381       if (CITraceTypeFlow) {
   382         tty->print_cr(">> Interpreting pre-OSR block %d:", non_osr_start);
   383       }
   384       Block* block = block_at(non_osr_start, jsrs);
   385       assert(block->limit() == start_bci(), "must flow forward to start");
   386       flow_block(block, state, jsrs);
   387     }
   388     return state;
   389     // Note:  The code below would be an incorrect for an OSR flow,
   390     // even if it were possible for an OSR entry point to be at bci zero.
   391   }
   392   // "Push" the method signature into the first few locals.
   393   state->set_stack_size(-max_locals());
   394   if (!method()->is_static()) {
   395     state->push(method()->holder());
   396     assert(state->tos() == state->local(0), "");
   397   }
   398   for (ciSignatureStream str(method()->signature());
   399        !str.at_return_type();
   400        str.next()) {
   401     state->push_translate(str.type());
   402   }
   403   // Set the rest of the locals to bottom.
   404   Cell cell = state->next_cell(state->tos());
   405   state->set_stack_size(0);
   406   int limit = state->limit_cell();
   407   for (; cell < limit; cell = state->next_cell(cell)) {
   408     state->set_type_at(cell, state->bottom_type());
   409   }
   410   // Lock an object, if necessary.
   411   state->set_monitor_count(method()->is_synchronized() ? 1 : 0);
   412   return state;
   413 }
   415 // ------------------------------------------------------------------
   416 // ciTypeFlow::StateVector::copy_into
   417 //
   418 // Copy our value into some other StateVector
   419 void ciTypeFlow::StateVector::copy_into(ciTypeFlow::StateVector* copy)
   420 const {
   421   copy->set_stack_size(stack_size());
   422   copy->set_monitor_count(monitor_count());
   423   Cell limit = limit_cell();
   424   for (Cell c = start_cell(); c < limit; c = next_cell(c)) {
   425     copy->set_type_at(c, type_at(c));
   426   }
   427 }
   429 // ------------------------------------------------------------------
   430 // ciTypeFlow::StateVector::meet
   431 //
   432 // Meets this StateVector with another, destructively modifying this
   433 // one.  Returns true if any modification takes place.
   434 bool ciTypeFlow::StateVector::meet(const ciTypeFlow::StateVector* incoming) {
   435   if (monitor_count() == -1) {
   436     set_monitor_count(incoming->monitor_count());
   437   }
   438   assert(monitor_count() == incoming->monitor_count(), "monitors must match");
   440   if (stack_size() == -1) {
   441     set_stack_size(incoming->stack_size());
   442     Cell limit = limit_cell();
   443     #ifdef ASSERT
   444     { for (Cell c = start_cell(); c < limit; c = next_cell(c)) {
   445         assert(type_at(c) == top_type(), "");
   446     } }
   447     #endif
   448     // Make a simple copy of the incoming state.
   449     for (Cell c = start_cell(); c < limit; c = next_cell(c)) {
   450       set_type_at(c, incoming->type_at(c));
   451     }
   452     return true;  // it is always different the first time
   453   }
   454 #ifdef ASSERT
   455   if (stack_size() != incoming->stack_size()) {
   456     _outer->method()->print_codes();
   457     tty->print_cr("!!!! Stack size conflict");
   458     tty->print_cr("Current state:");
   459     print_on(tty);
   460     tty->print_cr("Incoming state:");
   461     ((StateVector*)incoming)->print_on(tty);
   462   }
   463 #endif
   464   assert(stack_size() == incoming->stack_size(), "sanity");
   466   bool different = false;
   467   Cell limit = limit_cell();
   468   for (Cell c = start_cell(); c < limit; c = next_cell(c)) {
   469     ciType* t1 = type_at(c);
   470     ciType* t2 = incoming->type_at(c);
   471     if (!t1->equals(t2)) {
   472       ciType* new_type = type_meet(t1, t2);
   473       if (!t1->equals(new_type)) {
   474         set_type_at(c, new_type);
   475         different = true;
   476       }
   477     }
   478   }
   479   return different;
   480 }
   482 // ------------------------------------------------------------------
   483 // ciTypeFlow::StateVector::meet_exception
   484 //
   485 // Meets this StateVector with another, destructively modifying this
   486 // one.  The incoming state is coming via an exception.  Returns true
   487 // if any modification takes place.
   488 bool ciTypeFlow::StateVector::meet_exception(ciInstanceKlass* exc,
   489                                      const ciTypeFlow::StateVector* incoming) {
   490   if (monitor_count() == -1) {
   491     set_monitor_count(incoming->monitor_count());
   492   }
   493   assert(monitor_count() == incoming->monitor_count(), "monitors must match");
   495   if (stack_size() == -1) {
   496     set_stack_size(1);
   497   }
   499   assert(stack_size() ==  1, "must have one-element stack");
   501   bool different = false;
   503   // Meet locals from incoming array.
   504   Cell limit = local(_outer->max_locals()-1);
   505   for (Cell c = start_cell(); c <= limit; c = next_cell(c)) {
   506     ciType* t1 = type_at(c);
   507     ciType* t2 = incoming->type_at(c);
   508     if (!t1->equals(t2)) {
   509       ciType* new_type = type_meet(t1, t2);
   510       if (!t1->equals(new_type)) {
   511         set_type_at(c, new_type);
   512         different = true;
   513       }
   514     }
   515   }
   517   // Handle stack separately.  When an exception occurs, the
   518   // only stack entry is the exception instance.
   519   ciType* tos_type = type_at_tos();
   520   if (!tos_type->equals(exc)) {
   521     ciType* new_type = type_meet(tos_type, exc);
   522     if (!tos_type->equals(new_type)) {
   523       set_type_at_tos(new_type);
   524       different = true;
   525     }
   526   }
   528   return different;
   529 }
   531 // ------------------------------------------------------------------
   532 // ciTypeFlow::StateVector::push_translate
   533 void ciTypeFlow::StateVector::push_translate(ciType* type) {
   534   BasicType basic_type = type->basic_type();
   535   if (basic_type == T_BOOLEAN || basic_type == T_CHAR ||
   536       basic_type == T_BYTE    || basic_type == T_SHORT) {
   537     push_int();
   538   } else {
   539     push(type);
   540     if (type->is_two_word()) {
   541       push(half_type(type));
   542     }
   543   }
   544 }
   546 // ------------------------------------------------------------------
   547 // ciTypeFlow::StateVector::do_aaload
   548 void ciTypeFlow::StateVector::do_aaload(ciBytecodeStream* str) {
   549   pop_int();
   550   ciObjArrayKlass* array_klass = pop_objArray();
   551   if (array_klass == NULL) {
   552     // Did aaload on a null reference; push a null and ignore the exception.
   553     // This instruction will never continue normally.  All we have to do
   554     // is report a value that will meet correctly with any downstream
   555     // reference types on paths that will truly be executed.  This null type
   556     // meets with any reference type to yield that same reference type.
   557     // (The compiler will generate an unconditional exception here.)
   558     push(null_type());
   559     return;
   560   }
   561   if (!array_klass->is_loaded()) {
   562     // Only fails for some -Xcomp runs
   563     trap(str, array_klass,
   564          Deoptimization::make_trap_request
   565          (Deoptimization::Reason_unloaded,
   566           Deoptimization::Action_reinterpret));
   567     return;
   568   }
   569   ciKlass* element_klass = array_klass->element_klass();
   570   if (!element_klass->is_loaded() && element_klass->is_instance_klass()) {
   571     Untested("unloaded array element class in ciTypeFlow");
   572     trap(str, element_klass,
   573          Deoptimization::make_trap_request
   574          (Deoptimization::Reason_unloaded,
   575           Deoptimization::Action_reinterpret));
   576   } else {
   577     push_object(element_klass);
   578   }
   579 }
   582 // ------------------------------------------------------------------
   583 // ciTypeFlow::StateVector::do_checkcast
   584 void ciTypeFlow::StateVector::do_checkcast(ciBytecodeStream* str) {
   585   bool will_link;
   586   ciKlass* klass = str->get_klass(will_link);
   587   if (!will_link) {
   588     // VM's interpreter will not load 'klass' if object is NULL.
   589     // Type flow after this block may still be needed in two situations:
   590     // 1) C2 uses do_null_assert() and continues compilation for later blocks
   591     // 2) C2 does an OSR compile in a later block (see bug 4778368).
   592     pop_object();
   593     do_null_assert(klass);
   594   } else {
   595     pop_object();
   596     push_object(klass);
   597   }
   598 }
   600 // ------------------------------------------------------------------
   601 // ciTypeFlow::StateVector::do_getfield
   602 void ciTypeFlow::StateVector::do_getfield(ciBytecodeStream* str) {
   603   // could add assert here for type of object.
   604   pop_object();
   605   do_getstatic(str);
   606 }
   608 // ------------------------------------------------------------------
   609 // ciTypeFlow::StateVector::do_getstatic
   610 void ciTypeFlow::StateVector::do_getstatic(ciBytecodeStream* str) {
   611   bool will_link;
   612   ciField* field = str->get_field(will_link);
   613   if (!will_link) {
   614     trap(str, field->holder(), str->get_field_holder_index());
   615   } else {
   616     ciType* field_type = field->type();
   617     if (!field_type->is_loaded()) {
   618       // Normally, we need the field's type to be loaded if we are to
   619       // do anything interesting with its value.
   620       // We used to do this:  trap(str, str->get_field_signature_index());
   621       //
   622       // There is one good reason not to trap here.  Execution can
   623       // get past this "getfield" or "getstatic" if the value of
   624       // the field is null.  As long as the value is null, the class
   625       // does not need to be loaded!  The compiler must assume that
   626       // the value of the unloaded class reference is null; if the code
   627       // ever sees a non-null value, loading has occurred.
   628       //
   629       // This actually happens often enough to be annoying.  If the
   630       // compiler throws an uncommon trap at this bytecode, you can
   631       // get an endless loop of recompilations, when all the code
   632       // needs to do is load a series of null values.  Also, a trap
   633       // here can make an OSR entry point unreachable, triggering the
   634       // assert on non_osr_block in ciTypeFlow::get_start_state.
   635       // (See bug 4379915.)
   636       do_null_assert(field_type->as_klass());
   637     } else {
   638       push_translate(field_type);
   639     }
   640   }
   641 }
   643 // ------------------------------------------------------------------
   644 // ciTypeFlow::StateVector::do_invoke
   645 void ciTypeFlow::StateVector::do_invoke(ciBytecodeStream* str,
   646                                         bool has_receiver) {
   647   bool will_link;
   648   ciMethod* method = str->get_method(will_link);
   649   if (!will_link) {
   650     // We weren't able to find the method.
   651     if (str->cur_bc() == Bytecodes::_invokedynamic) {
   652       trap(str, NULL,
   653            Deoptimization::make_trap_request
   654            (Deoptimization::Reason_uninitialized,
   655             Deoptimization::Action_reinterpret));
   656     } else {
   657       ciKlass* unloaded_holder = method->holder();
   658       trap(str, unloaded_holder, str->get_method_holder_index());
   659     }
   660   } else {
   661     ciSignature* signature = method->signature();
   662     ciSignatureStream sigstr(signature);
   663     int arg_size = signature->size();
   664     int stack_base = stack_size() - arg_size;
   665     int i = 0;
   666     for( ; !sigstr.at_return_type(); sigstr.next()) {
   667       ciType* type = sigstr.type();
   668       ciType* stack_type = type_at(stack(stack_base + i++));
   669       // Do I want to check this type?
   670       // assert(stack_type->is_subtype_of(type), "bad type for field value");
   671       if (type->is_two_word()) {
   672         ciType* stack_type2 = type_at(stack(stack_base + i++));
   673         assert(stack_type2->equals(half_type(type)), "must be 2nd half");
   674       }
   675     }
   676     assert(arg_size == i, "must match");
   677     for (int j = 0; j < arg_size; j++) {
   678       pop();
   679     }
   680     if (has_receiver) {
   681       // Check this?
   682       pop_object();
   683     }
   684     assert(!sigstr.is_done(), "must have return type");
   685     ciType* return_type = sigstr.type();
   686     if (!return_type->is_void()) {
   687       if (!return_type->is_loaded()) {
   688         // As in do_getstatic(), generally speaking, we need the return type to
   689         // be loaded if we are to do anything interesting with its value.
   690         // We used to do this:  trap(str, str->get_method_signature_index());
   691         //
   692         // We do not trap here since execution can get past this invoke if
   693         // the return value is null.  As long as the value is null, the class
   694         // does not need to be loaded!  The compiler must assume that
   695         // the value of the unloaded class reference is null; if the code
   696         // ever sees a non-null value, loading has occurred.
   697         //
   698         // See do_getstatic() for similar explanation, as well as bug 4684993.
   699         do_null_assert(return_type->as_klass());
   700       } else {
   701         push_translate(return_type);
   702       }
   703     }
   704   }
   705 }
   707 // ------------------------------------------------------------------
   708 // ciTypeFlow::StateVector::do_jsr
   709 void ciTypeFlow::StateVector::do_jsr(ciBytecodeStream* str) {
   710   push(ciReturnAddress::make(str->next_bci()));
   711 }
   713 // ------------------------------------------------------------------
   714 // ciTypeFlow::StateVector::do_ldc
   715 void ciTypeFlow::StateVector::do_ldc(ciBytecodeStream* str) {
   716   ciConstant con = str->get_constant();
   717   BasicType basic_type = con.basic_type();
   718   if (basic_type == T_ILLEGAL) {
   719     // OutOfMemoryError in the CI while loading constant
   720     push_null();
   721     outer()->record_failure("ldc did not link");
   722     return;
   723   }
   724   if (basic_type == T_OBJECT || basic_type == T_ARRAY) {
   725     ciObject* obj = con.as_object();
   726     if (obj->is_null_object()) {
   727       push_null();
   728     } else {
   729       assert(!obj->is_klass(), "must be java_mirror of klass");
   730       push_object(obj->klass());
   731     }
   732   } else {
   733     push_translate(ciType::make(basic_type));
   734   }
   735 }
   737 // ------------------------------------------------------------------
   738 // ciTypeFlow::StateVector::do_multianewarray
   739 void ciTypeFlow::StateVector::do_multianewarray(ciBytecodeStream* str) {
   740   int dimensions = str->get_dimensions();
   741   bool will_link;
   742   ciArrayKlass* array_klass = str->get_klass(will_link)->as_array_klass();
   743   if (!will_link) {
   744     trap(str, array_klass, str->get_klass_index());
   745   } else {
   746     for (int i = 0; i < dimensions; i++) {
   747       pop_int();
   748     }
   749     push_object(array_klass);
   750   }
   751 }
   753 // ------------------------------------------------------------------
   754 // ciTypeFlow::StateVector::do_new
   755 void ciTypeFlow::StateVector::do_new(ciBytecodeStream* str) {
   756   bool will_link;
   757   ciKlass* klass = str->get_klass(will_link);
   758   if (!will_link || str->is_unresolved_klass()) {
   759     trap(str, klass, str->get_klass_index());
   760   } else {
   761     push_object(klass);
   762   }
   763 }
   765 // ------------------------------------------------------------------
   766 // ciTypeFlow::StateVector::do_newarray
   767 void ciTypeFlow::StateVector::do_newarray(ciBytecodeStream* str) {
   768   pop_int();
   769   ciKlass* klass = ciTypeArrayKlass::make((BasicType)str->get_index());
   770   push_object(klass);
   771 }
   773 // ------------------------------------------------------------------
   774 // ciTypeFlow::StateVector::do_putfield
   775 void ciTypeFlow::StateVector::do_putfield(ciBytecodeStream* str) {
   776   do_putstatic(str);
   777   if (_trap_bci != -1)  return;  // unloaded field holder, etc.
   778   // could add assert here for type of object.
   779   pop_object();
   780 }
   782 // ------------------------------------------------------------------
   783 // ciTypeFlow::StateVector::do_putstatic
   784 void ciTypeFlow::StateVector::do_putstatic(ciBytecodeStream* str) {
   785   bool will_link;
   786   ciField* field = str->get_field(will_link);
   787   if (!will_link) {
   788     trap(str, field->holder(), str->get_field_holder_index());
   789   } else {
   790     ciType* field_type = field->type();
   791     ciType* type = pop_value();
   792     // Do I want to check this type?
   793     //      assert(type->is_subtype_of(field_type), "bad type for field value");
   794     if (field_type->is_two_word()) {
   795       ciType* type2 = pop_value();
   796       assert(type2->is_two_word(), "must be 2nd half");
   797       assert(type == half_type(type2), "must be 2nd half");
   798     }
   799   }
   800 }
   802 // ------------------------------------------------------------------
   803 // ciTypeFlow::StateVector::do_ret
   804 void ciTypeFlow::StateVector::do_ret(ciBytecodeStream* str) {
   805   Cell index = local(str->get_index());
   807   ciType* address = type_at(index);
   808   assert(address->is_return_address(), "bad return address");
   809   set_type_at(index, bottom_type());
   810 }
   812 // ------------------------------------------------------------------
   813 // ciTypeFlow::StateVector::trap
   814 //
   815 // Stop interpretation of this path with a trap.
   816 void ciTypeFlow::StateVector::trap(ciBytecodeStream* str, ciKlass* klass, int index) {
   817   _trap_bci = str->cur_bci();
   818   _trap_index = index;
   820   // Log information about this trap:
   821   CompileLog* log = outer()->env()->log();
   822   if (log != NULL) {
   823     int mid = log->identify(outer()->method());
   824     int kid = (klass == NULL)? -1: log->identify(klass);
   825     log->begin_elem("uncommon_trap method='%d' bci='%d'", mid, str->cur_bci());
   826     char buf[100];
   827     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
   828                                                           index));
   829     if (kid >= 0)
   830       log->print(" klass='%d'", kid);
   831     log->end_elem();
   832   }
   833 }
   835 // ------------------------------------------------------------------
   836 // ciTypeFlow::StateVector::do_null_assert
   837 // Corresponds to graphKit::do_null_assert.
   838 void ciTypeFlow::StateVector::do_null_assert(ciKlass* unloaded_klass) {
   839   if (unloaded_klass->is_loaded()) {
   840     // We failed to link, but we can still compute with this class,
   841     // since it is loaded somewhere.  The compiler will uncommon_trap
   842     // if the object is not null, but the typeflow pass can not assume
   843     // that the object will be null, otherwise it may incorrectly tell
   844     // the parser that an object is known to be null. 4761344, 4807707
   845     push_object(unloaded_klass);
   846   } else {
   847     // The class is not loaded anywhere.  It is safe to model the
   848     // null in the typestates, because we can compile in a null check
   849     // which will deoptimize us if someone manages to load the
   850     // class later.
   851     push_null();
   852   }
   853 }
   856 // ------------------------------------------------------------------
   857 // ciTypeFlow::StateVector::apply_one_bytecode
   858 //
   859 // Apply the effect of one bytecode to this StateVector
   860 bool ciTypeFlow::StateVector::apply_one_bytecode(ciBytecodeStream* str) {
   861   _trap_bci = -1;
   862   _trap_index = 0;
   864   if (CITraceTypeFlow) {
   865     tty->print_cr(">> Interpreting bytecode %d:%s", str->cur_bci(),
   866                   Bytecodes::name(str->cur_bc()));
   867   }
   869   switch(str->cur_bc()) {
   870   case Bytecodes::_aaload: do_aaload(str);                       break;
   872   case Bytecodes::_aastore:
   873     {
   874       pop_object();
   875       pop_int();
   876       pop_objArray();
   877       break;
   878     }
   879   case Bytecodes::_aconst_null:
   880     {
   881       push_null();
   882       break;
   883     }
   884   case Bytecodes::_aload:   load_local_object(str->get_index());    break;
   885   case Bytecodes::_aload_0: load_local_object(0);                   break;
   886   case Bytecodes::_aload_1: load_local_object(1);                   break;
   887   case Bytecodes::_aload_2: load_local_object(2);                   break;
   888   case Bytecodes::_aload_3: load_local_object(3);                   break;
   890   case Bytecodes::_anewarray:
   891     {
   892       pop_int();
   893       bool will_link;
   894       ciKlass* element_klass = str->get_klass(will_link);
   895       if (!will_link) {
   896         trap(str, element_klass, str->get_klass_index());
   897       } else {
   898         push_object(ciObjArrayKlass::make(element_klass));
   899       }
   900       break;
   901     }
   902   case Bytecodes::_areturn:
   903   case Bytecodes::_ifnonnull:
   904   case Bytecodes::_ifnull:
   905     {
   906       pop_object();
   907       break;
   908     }
   909   case Bytecodes::_monitorenter:
   910     {
   911       pop_object();
   912       set_monitor_count(monitor_count() + 1);
   913       break;
   914     }
   915   case Bytecodes::_monitorexit:
   916     {
   917       pop_object();
   918       assert(monitor_count() > 0, "must be a monitor to exit from");
   919       set_monitor_count(monitor_count() - 1);
   920       break;
   921     }
   922   case Bytecodes::_arraylength:
   923     {
   924       pop_array();
   925       push_int();
   926       break;
   927     }
   928   case Bytecodes::_astore:   store_local_object(str->get_index());  break;
   929   case Bytecodes::_astore_0: store_local_object(0);                 break;
   930   case Bytecodes::_astore_1: store_local_object(1);                 break;
   931   case Bytecodes::_astore_2: store_local_object(2);                 break;
   932   case Bytecodes::_astore_3: store_local_object(3);                 break;
   934   case Bytecodes::_athrow:
   935     {
   936       NEEDS_CLEANUP;
   937       pop_object();
   938       break;
   939     }
   940   case Bytecodes::_baload:
   941   case Bytecodes::_caload:
   942   case Bytecodes::_iaload:
   943   case Bytecodes::_saload:
   944     {
   945       pop_int();
   946       ciTypeArrayKlass* array_klass = pop_typeArray();
   947       // Put assert here for right type?
   948       push_int();
   949       break;
   950     }
   951   case Bytecodes::_bastore:
   952   case Bytecodes::_castore:
   953   case Bytecodes::_iastore:
   954   case Bytecodes::_sastore:
   955     {
   956       pop_int();
   957       pop_int();
   958       pop_typeArray();
   959       // assert here?
   960       break;
   961     }
   962   case Bytecodes::_bipush:
   963   case Bytecodes::_iconst_m1:
   964   case Bytecodes::_iconst_0:
   965   case Bytecodes::_iconst_1:
   966   case Bytecodes::_iconst_2:
   967   case Bytecodes::_iconst_3:
   968   case Bytecodes::_iconst_4:
   969   case Bytecodes::_iconst_5:
   970   case Bytecodes::_sipush:
   971     {
   972       push_int();
   973       break;
   974     }
   975   case Bytecodes::_checkcast: do_checkcast(str);                  break;
   977   case Bytecodes::_d2f:
   978     {
   979       pop_double();
   980       push_float();
   981       break;
   982     }
   983   case Bytecodes::_d2i:
   984     {
   985       pop_double();
   986       push_int();
   987       break;
   988     }
   989   case Bytecodes::_d2l:
   990     {
   991       pop_double();
   992       push_long();
   993       break;
   994     }
   995   case Bytecodes::_dadd:
   996   case Bytecodes::_ddiv:
   997   case Bytecodes::_dmul:
   998   case Bytecodes::_drem:
   999   case Bytecodes::_dsub:
  1001       pop_double();
  1002       pop_double();
  1003       push_double();
  1004       break;
  1006   case Bytecodes::_daload:
  1008       pop_int();
  1009       ciTypeArrayKlass* array_klass = pop_typeArray();
  1010       // Put assert here for right type?
  1011       push_double();
  1012       break;
  1014   case Bytecodes::_dastore:
  1016       pop_double();
  1017       pop_int();
  1018       pop_typeArray();
  1019       // assert here?
  1020       break;
  1022   case Bytecodes::_dcmpg:
  1023   case Bytecodes::_dcmpl:
  1025       pop_double();
  1026       pop_double();
  1027       push_int();
  1028       break;
  1030   case Bytecodes::_dconst_0:
  1031   case Bytecodes::_dconst_1:
  1033       push_double();
  1034       break;
  1036   case Bytecodes::_dload:   load_local_double(str->get_index());    break;
  1037   case Bytecodes::_dload_0: load_local_double(0);                   break;
  1038   case Bytecodes::_dload_1: load_local_double(1);                   break;
  1039   case Bytecodes::_dload_2: load_local_double(2);                   break;
  1040   case Bytecodes::_dload_3: load_local_double(3);                   break;
  1042   case Bytecodes::_dneg:
  1044       pop_double();
  1045       push_double();
  1046       break;
  1048   case Bytecodes::_dreturn:
  1050       pop_double();
  1051       break;
  1053   case Bytecodes::_dstore:   store_local_double(str->get_index());  break;
  1054   case Bytecodes::_dstore_0: store_local_double(0);                 break;
  1055   case Bytecodes::_dstore_1: store_local_double(1);                 break;
  1056   case Bytecodes::_dstore_2: store_local_double(2);                 break;
  1057   case Bytecodes::_dstore_3: store_local_double(3);                 break;
  1059   case Bytecodes::_dup:
  1061       push(type_at_tos());
  1062       break;
  1064   case Bytecodes::_dup_x1:
  1066       ciType* value1 = pop_value();
  1067       ciType* value2 = pop_value();
  1068       push(value1);
  1069       push(value2);
  1070       push(value1);
  1071       break;
  1073   case Bytecodes::_dup_x2:
  1075       ciType* value1 = pop_value();
  1076       ciType* value2 = pop_value();
  1077       ciType* value3 = pop_value();
  1078       push(value1);
  1079       push(value3);
  1080       push(value2);
  1081       push(value1);
  1082       break;
  1084   case Bytecodes::_dup2:
  1086       ciType* value1 = pop_value();
  1087       ciType* value2 = pop_value();
  1088       push(value2);
  1089       push(value1);
  1090       push(value2);
  1091       push(value1);
  1092       break;
  1094   case Bytecodes::_dup2_x1:
  1096       ciType* value1 = pop_value();
  1097       ciType* value2 = pop_value();
  1098       ciType* value3 = pop_value();
  1099       push(value2);
  1100       push(value1);
  1101       push(value3);
  1102       push(value2);
  1103       push(value1);
  1104       break;
  1106   case Bytecodes::_dup2_x2:
  1108       ciType* value1 = pop_value();
  1109       ciType* value2 = pop_value();
  1110       ciType* value3 = pop_value();
  1111       ciType* value4 = pop_value();
  1112       push(value2);
  1113       push(value1);
  1114       push(value4);
  1115       push(value3);
  1116       push(value2);
  1117       push(value1);
  1118       break;
  1120   case Bytecodes::_f2d:
  1122       pop_float();
  1123       push_double();
  1124       break;
  1126   case Bytecodes::_f2i:
  1128       pop_float();
  1129       push_int();
  1130       break;
  1132   case Bytecodes::_f2l:
  1134       pop_float();
  1135       push_long();
  1136       break;
  1138   case Bytecodes::_fadd:
  1139   case Bytecodes::_fdiv:
  1140   case Bytecodes::_fmul:
  1141   case Bytecodes::_frem:
  1142   case Bytecodes::_fsub:
  1144       pop_float();
  1145       pop_float();
  1146       push_float();
  1147       break;
  1149   case Bytecodes::_faload:
  1151       pop_int();
  1152       ciTypeArrayKlass* array_klass = pop_typeArray();
  1153       // Put assert here.
  1154       push_float();
  1155       break;
  1157   case Bytecodes::_fastore:
  1159       pop_float();
  1160       pop_int();
  1161       ciTypeArrayKlass* array_klass = pop_typeArray();
  1162       // Put assert here.
  1163       break;
  1165   case Bytecodes::_fcmpg:
  1166   case Bytecodes::_fcmpl:
  1168       pop_float();
  1169       pop_float();
  1170       push_int();
  1171       break;
  1173   case Bytecodes::_fconst_0:
  1174   case Bytecodes::_fconst_1:
  1175   case Bytecodes::_fconst_2:
  1177       push_float();
  1178       break;
  1180   case Bytecodes::_fload:   load_local_float(str->get_index());     break;
  1181   case Bytecodes::_fload_0: load_local_float(0);                    break;
  1182   case Bytecodes::_fload_1: load_local_float(1);                    break;
  1183   case Bytecodes::_fload_2: load_local_float(2);                    break;
  1184   case Bytecodes::_fload_3: load_local_float(3);                    break;
  1186   case Bytecodes::_fneg:
  1188       pop_float();
  1189       push_float();
  1190       break;
  1192   case Bytecodes::_freturn:
  1194       pop_float();
  1195       break;
  1197   case Bytecodes::_fstore:    store_local_float(str->get_index());   break;
  1198   case Bytecodes::_fstore_0:  store_local_float(0);                  break;
  1199   case Bytecodes::_fstore_1:  store_local_float(1);                  break;
  1200   case Bytecodes::_fstore_2:  store_local_float(2);                  break;
  1201   case Bytecodes::_fstore_3:  store_local_float(3);                  break;
  1203   case Bytecodes::_getfield:  do_getfield(str);                      break;
  1204   case Bytecodes::_getstatic: do_getstatic(str);                     break;
  1206   case Bytecodes::_goto:
  1207   case Bytecodes::_goto_w:
  1208   case Bytecodes::_nop:
  1209   case Bytecodes::_return:
  1211       // do nothing.
  1212       break;
  1214   case Bytecodes::_i2b:
  1215   case Bytecodes::_i2c:
  1216   case Bytecodes::_i2s:
  1217   case Bytecodes::_ineg:
  1219       pop_int();
  1220       push_int();
  1221       break;
  1223   case Bytecodes::_i2d:
  1225       pop_int();
  1226       push_double();
  1227       break;
  1229   case Bytecodes::_i2f:
  1231       pop_int();
  1232       push_float();
  1233       break;
  1235   case Bytecodes::_i2l:
  1237       pop_int();
  1238       push_long();
  1239       break;
  1241   case Bytecodes::_iadd:
  1242   case Bytecodes::_iand:
  1243   case Bytecodes::_idiv:
  1244   case Bytecodes::_imul:
  1245   case Bytecodes::_ior:
  1246   case Bytecodes::_irem:
  1247   case Bytecodes::_ishl:
  1248   case Bytecodes::_ishr:
  1249   case Bytecodes::_isub:
  1250   case Bytecodes::_iushr:
  1251   case Bytecodes::_ixor:
  1253       pop_int();
  1254       pop_int();
  1255       push_int();
  1256       break;
  1258   case Bytecodes::_if_acmpeq:
  1259   case Bytecodes::_if_acmpne:
  1261       pop_object();
  1262       pop_object();
  1263       break;
  1265   case Bytecodes::_if_icmpeq:
  1266   case Bytecodes::_if_icmpge:
  1267   case Bytecodes::_if_icmpgt:
  1268   case Bytecodes::_if_icmple:
  1269   case Bytecodes::_if_icmplt:
  1270   case Bytecodes::_if_icmpne:
  1272       pop_int();
  1273       pop_int();
  1274       break;
  1276   case Bytecodes::_ifeq:
  1277   case Bytecodes::_ifle:
  1278   case Bytecodes::_iflt:
  1279   case Bytecodes::_ifge:
  1280   case Bytecodes::_ifgt:
  1281   case Bytecodes::_ifne:
  1282   case Bytecodes::_ireturn:
  1283   case Bytecodes::_lookupswitch:
  1284   case Bytecodes::_tableswitch:
  1286       pop_int();
  1287       break;
  1289   case Bytecodes::_iinc:
  1291       int lnum = str->get_index();
  1292       check_int(local(lnum));
  1293       store_to_local(lnum);
  1294       break;
  1296   case Bytecodes::_iload:   load_local_int(str->get_index()); break;
  1297   case Bytecodes::_iload_0: load_local_int(0);                      break;
  1298   case Bytecodes::_iload_1: load_local_int(1);                      break;
  1299   case Bytecodes::_iload_2: load_local_int(2);                      break;
  1300   case Bytecodes::_iload_3: load_local_int(3);                      break;
  1302   case Bytecodes::_instanceof:
  1304       // Check for uncommon trap:
  1305       do_checkcast(str);
  1306       pop_object();
  1307       push_int();
  1308       break;
  1310   case Bytecodes::_invokeinterface: do_invoke(str, true);           break;
  1311   case Bytecodes::_invokespecial:   do_invoke(str, true);           break;
  1312   case Bytecodes::_invokestatic:    do_invoke(str, false);          break;
  1313   case Bytecodes::_invokevirtual:   do_invoke(str, true);           break;
  1314   case Bytecodes::_invokedynamic:   do_invoke(str, false);          break;
  1316   case Bytecodes::_istore:   store_local_int(str->get_index());     break;
  1317   case Bytecodes::_istore_0: store_local_int(0);                    break;
  1318   case Bytecodes::_istore_1: store_local_int(1);                    break;
  1319   case Bytecodes::_istore_2: store_local_int(2);                    break;
  1320   case Bytecodes::_istore_3: store_local_int(3);                    break;
  1322   case Bytecodes::_jsr:
  1323   case Bytecodes::_jsr_w: do_jsr(str);                              break;
  1325   case Bytecodes::_l2d:
  1327       pop_long();
  1328       push_double();
  1329       break;
  1331   case Bytecodes::_l2f:
  1333       pop_long();
  1334       push_float();
  1335       break;
  1337   case Bytecodes::_l2i:
  1339       pop_long();
  1340       push_int();
  1341       break;
  1343   case Bytecodes::_ladd:
  1344   case Bytecodes::_land:
  1345   case Bytecodes::_ldiv:
  1346   case Bytecodes::_lmul:
  1347   case Bytecodes::_lor:
  1348   case Bytecodes::_lrem:
  1349   case Bytecodes::_lsub:
  1350   case Bytecodes::_lxor:
  1352       pop_long();
  1353       pop_long();
  1354       push_long();
  1355       break;
  1357   case Bytecodes::_laload:
  1359       pop_int();
  1360       ciTypeArrayKlass* array_klass = pop_typeArray();
  1361       // Put assert here for right type?
  1362       push_long();
  1363       break;
  1365   case Bytecodes::_lastore:
  1367       pop_long();
  1368       pop_int();
  1369       pop_typeArray();
  1370       // assert here?
  1371       break;
  1373   case Bytecodes::_lcmp:
  1375       pop_long();
  1376       pop_long();
  1377       push_int();
  1378       break;
  1380   case Bytecodes::_lconst_0:
  1381   case Bytecodes::_lconst_1:
  1383       push_long();
  1384       break;
  1386   case Bytecodes::_ldc:
  1387   case Bytecodes::_ldc_w:
  1388   case Bytecodes::_ldc2_w:
  1390       do_ldc(str);
  1391       break;
  1394   case Bytecodes::_lload:   load_local_long(str->get_index());      break;
  1395   case Bytecodes::_lload_0: load_local_long(0);                     break;
  1396   case Bytecodes::_lload_1: load_local_long(1);                     break;
  1397   case Bytecodes::_lload_2: load_local_long(2);                     break;
  1398   case Bytecodes::_lload_3: load_local_long(3);                     break;
  1400   case Bytecodes::_lneg:
  1402       pop_long();
  1403       push_long();
  1404       break;
  1406   case Bytecodes::_lreturn:
  1408       pop_long();
  1409       break;
  1411   case Bytecodes::_lshl:
  1412   case Bytecodes::_lshr:
  1413   case Bytecodes::_lushr:
  1415       pop_int();
  1416       pop_long();
  1417       push_long();
  1418       break;
  1420   case Bytecodes::_lstore:   store_local_long(str->get_index());    break;
  1421   case Bytecodes::_lstore_0: store_local_long(0);                   break;
  1422   case Bytecodes::_lstore_1: store_local_long(1);                   break;
  1423   case Bytecodes::_lstore_2: store_local_long(2);                   break;
  1424   case Bytecodes::_lstore_3: store_local_long(3);                   break;
  1426   case Bytecodes::_multianewarray: do_multianewarray(str);          break;
  1428   case Bytecodes::_new:      do_new(str);                           break;
  1430   case Bytecodes::_newarray: do_newarray(str);                      break;
  1432   case Bytecodes::_pop:
  1434       pop();
  1435       break;
  1437   case Bytecodes::_pop2:
  1439       pop();
  1440       pop();
  1441       break;
  1444   case Bytecodes::_putfield:       do_putfield(str);                 break;
  1445   case Bytecodes::_putstatic:      do_putstatic(str);                break;
  1447   case Bytecodes::_ret: do_ret(str);                                 break;
  1449   case Bytecodes::_swap:
  1451       ciType* value1 = pop_value();
  1452       ciType* value2 = pop_value();
  1453       push(value1);
  1454       push(value2);
  1455       break;
  1457   case Bytecodes::_wide:
  1458   default:
  1460       // The iterator should skip this.
  1461       ShouldNotReachHere();
  1462       break;
  1466   if (CITraceTypeFlow) {
  1467     print_on(tty);
  1470   return (_trap_bci != -1);
  1473 #ifndef PRODUCT
  1474 // ------------------------------------------------------------------
  1475 // ciTypeFlow::StateVector::print_cell_on
  1476 void ciTypeFlow::StateVector::print_cell_on(outputStream* st, Cell c) const {
  1477   ciType* type = type_at(c);
  1478   if (type == top_type()) {
  1479     st->print("top");
  1480   } else if (type == bottom_type()) {
  1481     st->print("bottom");
  1482   } else if (type == null_type()) {
  1483     st->print("null");
  1484   } else if (type == long2_type()) {
  1485     st->print("long2");
  1486   } else if (type == double2_type()) {
  1487     st->print("double2");
  1488   } else if (is_int(type)) {
  1489     st->print("int");
  1490   } else if (is_long(type)) {
  1491     st->print("long");
  1492   } else if (is_float(type)) {
  1493     st->print("float");
  1494   } else if (is_double(type)) {
  1495     st->print("double");
  1496   } else if (type->is_return_address()) {
  1497     st->print("address(%d)", type->as_return_address()->bci());
  1498   } else {
  1499     if (type->is_klass()) {
  1500       type->as_klass()->name()->print_symbol_on(st);
  1501     } else {
  1502       st->print("UNEXPECTED TYPE");
  1503       type->print();
  1508 // ------------------------------------------------------------------
  1509 // ciTypeFlow::StateVector::print_on
  1510 void ciTypeFlow::StateVector::print_on(outputStream* st) const {
  1511   int num_locals   = _outer->max_locals();
  1512   int num_stack    = stack_size();
  1513   int num_monitors = monitor_count();
  1514   st->print_cr("  State : locals %d, stack %d, monitors %d", num_locals, num_stack, num_monitors);
  1515   if (num_stack >= 0) {
  1516     int i;
  1517     for (i = 0; i < num_locals; i++) {
  1518       st->print("    local %2d : ", i);
  1519       print_cell_on(st, local(i));
  1520       st->cr();
  1522     for (i = 0; i < num_stack; i++) {
  1523       st->print("    stack %2d : ", i);
  1524       print_cell_on(st, stack(i));
  1525       st->cr();
  1529 #endif
  1532 // ------------------------------------------------------------------
  1533 // ciTypeFlow::SuccIter::next
  1534 //
  1535 void ciTypeFlow::SuccIter::next() {
  1536   int succ_ct = _pred->successors()->length();
  1537   int next = _index + 1;
  1538   if (next < succ_ct) {
  1539     _index = next;
  1540     _succ = _pred->successors()->at(next);
  1541     return;
  1543   for (int i = next - succ_ct; i < _pred->exceptions()->length(); i++) {
  1544     // Do not compile any code for unloaded exception types.
  1545     // Following compiler passes are responsible for doing this also.
  1546     ciInstanceKlass* exception_klass = _pred->exc_klasses()->at(i);
  1547     if (exception_klass->is_loaded()) {
  1548       _index = next;
  1549       _succ = _pred->exceptions()->at(i);
  1550       return;
  1552     next++;
  1554   _index = -1;
  1555   _succ = NULL;
  1558 // ------------------------------------------------------------------
  1559 // ciTypeFlow::SuccIter::set_succ
  1560 //
  1561 void ciTypeFlow::SuccIter::set_succ(Block* succ) {
  1562   int succ_ct = _pred->successors()->length();
  1563   if (_index < succ_ct) {
  1564     _pred->successors()->at_put(_index, succ);
  1565   } else {
  1566     int idx = _index - succ_ct;
  1567     _pred->exceptions()->at_put(idx, succ);
  1571 // ciTypeFlow::Block
  1572 //
  1573 // A basic block.
  1575 // ------------------------------------------------------------------
  1576 // ciTypeFlow::Block::Block
  1577 ciTypeFlow::Block::Block(ciTypeFlow* outer,
  1578                          ciBlock *ciblk,
  1579                          ciTypeFlow::JsrSet* jsrs) {
  1580   _ciblock = ciblk;
  1581   _exceptions = NULL;
  1582   _exc_klasses = NULL;
  1583   _successors = NULL;
  1584   _state = new (outer->arena()) StateVector(outer);
  1585   JsrSet* new_jsrs =
  1586     new (outer->arena()) JsrSet(outer->arena(), jsrs->size());
  1587   jsrs->copy_into(new_jsrs);
  1588   _jsrs = new_jsrs;
  1589   _next = NULL;
  1590   _on_work_list = false;
  1591   _backedge_copy = false;
  1592   _exception_entry = false;
  1593   _trap_bci = -1;
  1594   _trap_index = 0;
  1595   df_init();
  1597   if (CITraceTypeFlow) {
  1598     tty->print_cr(">> Created new block");
  1599     print_on(tty);
  1602   assert(this->outer() == outer, "outer link set up");
  1603   assert(!outer->have_block_count(), "must not have mapped blocks yet");
  1606 // ------------------------------------------------------------------
  1607 // ciTypeFlow::Block::df_init
  1608 void ciTypeFlow::Block::df_init() {
  1609   _pre_order = -1; assert(!has_pre_order(), "");
  1610   _post_order = -1; assert(!has_post_order(), "");
  1611   _loop = NULL;
  1612   _irreducible_entry = false;
  1613   _rpo_next = NULL;
  1616 // ------------------------------------------------------------------
  1617 // ciTypeFlow::Block::successors
  1618 //
  1619 // Get the successors for this Block.
  1620 GrowableArray<ciTypeFlow::Block*>*
  1621 ciTypeFlow::Block::successors(ciBytecodeStream* str,
  1622                               ciTypeFlow::StateVector* state,
  1623                               ciTypeFlow::JsrSet* jsrs) {
  1624   if (_successors == NULL) {
  1625     if (CITraceTypeFlow) {
  1626       tty->print(">> Computing successors for block ");
  1627       print_value_on(tty);
  1628       tty->cr();
  1631     ciTypeFlow* analyzer = outer();
  1632     Arena* arena = analyzer->arena();
  1633     Block* block = NULL;
  1634     bool has_successor = !has_trap() &&
  1635                          (control() != ciBlock::fall_through_bci || limit() < analyzer->code_size());
  1636     if (!has_successor) {
  1637       _successors =
  1638         new (arena) GrowableArray<Block*>(arena, 1, 0, NULL);
  1639       // No successors
  1640     } else if (control() == ciBlock::fall_through_bci) {
  1641       assert(str->cur_bci() == limit(), "bad block end");
  1642       // This block simply falls through to the next.
  1643       _successors =
  1644         new (arena) GrowableArray<Block*>(arena, 1, 0, NULL);
  1646       Block* block = analyzer->block_at(limit(), _jsrs);
  1647       assert(_successors->length() == FALL_THROUGH, "");
  1648       _successors->append(block);
  1649     } else {
  1650       int current_bci = str->cur_bci();
  1651       int next_bci = str->next_bci();
  1652       int branch_bci = -1;
  1653       Block* target = NULL;
  1654       assert(str->next_bci() == limit(), "bad block end");
  1655       // This block is not a simple fall-though.  Interpret
  1656       // the current bytecode to find our successors.
  1657       switch (str->cur_bc()) {
  1658       case Bytecodes::_ifeq:         case Bytecodes::_ifne:
  1659       case Bytecodes::_iflt:         case Bytecodes::_ifge:
  1660       case Bytecodes::_ifgt:         case Bytecodes::_ifle:
  1661       case Bytecodes::_if_icmpeq:    case Bytecodes::_if_icmpne:
  1662       case Bytecodes::_if_icmplt:    case Bytecodes::_if_icmpge:
  1663       case Bytecodes::_if_icmpgt:    case Bytecodes::_if_icmple:
  1664       case Bytecodes::_if_acmpeq:    case Bytecodes::_if_acmpne:
  1665       case Bytecodes::_ifnull:       case Bytecodes::_ifnonnull:
  1666         // Our successors are the branch target and the next bci.
  1667         branch_bci = str->get_dest();
  1668         _successors =
  1669           new (arena) GrowableArray<Block*>(arena, 2, 0, NULL);
  1670         assert(_successors->length() == IF_NOT_TAKEN, "");
  1671         _successors->append(analyzer->block_at(next_bci, jsrs));
  1672         assert(_successors->length() == IF_TAKEN, "");
  1673         _successors->append(analyzer->block_at(branch_bci, jsrs));
  1674         break;
  1676       case Bytecodes::_goto:
  1677         branch_bci = str->get_dest();
  1678         _successors =
  1679           new (arena) GrowableArray<Block*>(arena, 1, 0, NULL);
  1680         assert(_successors->length() == GOTO_TARGET, "");
  1681         _successors->append(analyzer->block_at(branch_bci, jsrs));
  1682         break;
  1684       case Bytecodes::_jsr:
  1685         branch_bci = str->get_dest();
  1686         _successors =
  1687           new (arena) GrowableArray<Block*>(arena, 1, 0, NULL);
  1688         assert(_successors->length() == GOTO_TARGET, "");
  1689         _successors->append(analyzer->block_at(branch_bci, jsrs));
  1690         break;
  1692       case Bytecodes::_goto_w:
  1693       case Bytecodes::_jsr_w:
  1694         _successors =
  1695           new (arena) GrowableArray<Block*>(arena, 1, 0, NULL);
  1696         assert(_successors->length() == GOTO_TARGET, "");
  1697         _successors->append(analyzer->block_at(str->get_far_dest(), jsrs));
  1698         break;
  1700       case Bytecodes::_tableswitch:  {
  1701         Bytecode_tableswitch *tableswitch =
  1702           Bytecode_tableswitch_at(str->cur_bcp());
  1704         int len = tableswitch->length();
  1705         _successors =
  1706           new (arena) GrowableArray<Block*>(arena, len+1, 0, NULL);
  1707         int bci = current_bci + tableswitch->default_offset();
  1708         Block* block = analyzer->block_at(bci, jsrs);
  1709         assert(_successors->length() == SWITCH_DEFAULT, "");
  1710         _successors->append(block);
  1711         while (--len >= 0) {
  1712           int bci = current_bci + tableswitch->dest_offset_at(len);
  1713           block = analyzer->block_at(bci, jsrs);
  1714           assert(_successors->length() >= SWITCH_CASES, "");
  1715           _successors->append_if_missing(block);
  1717         break;
  1720       case Bytecodes::_lookupswitch: {
  1721         Bytecode_lookupswitch *lookupswitch =
  1722           Bytecode_lookupswitch_at(str->cur_bcp());
  1724         int npairs = lookupswitch->number_of_pairs();
  1725         _successors =
  1726           new (arena) GrowableArray<Block*>(arena, npairs+1, 0, NULL);
  1727         int bci = current_bci + lookupswitch->default_offset();
  1728         Block* block = analyzer->block_at(bci, jsrs);
  1729         assert(_successors->length() == SWITCH_DEFAULT, "");
  1730         _successors->append(block);
  1731         while(--npairs >= 0) {
  1732           LookupswitchPair *pair = lookupswitch->pair_at(npairs);
  1733           int bci = current_bci + pair->offset();
  1734           Block* block = analyzer->block_at(bci, jsrs);
  1735           assert(_successors->length() >= SWITCH_CASES, "");
  1736           _successors->append_if_missing(block);
  1738         break;
  1741       case Bytecodes::_athrow:     case Bytecodes::_ireturn:
  1742       case Bytecodes::_lreturn:    case Bytecodes::_freturn:
  1743       case Bytecodes::_dreturn:    case Bytecodes::_areturn:
  1744       case Bytecodes::_return:
  1745         _successors =
  1746           new (arena) GrowableArray<Block*>(arena, 1, 0, NULL);
  1747         // No successors
  1748         break;
  1750       case Bytecodes::_ret: {
  1751         _successors =
  1752           new (arena) GrowableArray<Block*>(arena, 1, 0, NULL);
  1754         Cell local = state->local(str->get_index());
  1755         ciType* return_address = state->type_at(local);
  1756         assert(return_address->is_return_address(), "verify: wrong type");
  1757         int bci = return_address->as_return_address()->bci();
  1758         assert(_successors->length() == GOTO_TARGET, "");
  1759         _successors->append(analyzer->block_at(bci, jsrs));
  1760         break;
  1763       case Bytecodes::_wide:
  1764       default:
  1765         ShouldNotReachHere();
  1766         break;
  1770   return _successors;
  1773 // ------------------------------------------------------------------
  1774 // ciTypeFlow::Block:compute_exceptions
  1775 //
  1776 // Compute the exceptional successors and types for this Block.
  1777 void ciTypeFlow::Block::compute_exceptions() {
  1778   assert(_exceptions == NULL && _exc_klasses == NULL, "repeat");
  1780   if (CITraceTypeFlow) {
  1781     tty->print(">> Computing exceptions for block ");
  1782     print_value_on(tty);
  1783     tty->cr();
  1786   ciTypeFlow* analyzer = outer();
  1787   Arena* arena = analyzer->arena();
  1789   // Any bci in the block will do.
  1790   ciExceptionHandlerStream str(analyzer->method(), start());
  1792   // Allocate our growable arrays.
  1793   int exc_count = str.count();
  1794   _exceptions = new (arena) GrowableArray<Block*>(arena, exc_count, 0, NULL);
  1795   _exc_klasses = new (arena) GrowableArray<ciInstanceKlass*>(arena, exc_count,
  1796                                                              0, NULL);
  1798   for ( ; !str.is_done(); str.next()) {
  1799     ciExceptionHandler* handler = str.handler();
  1800     int bci = handler->handler_bci();
  1801     ciInstanceKlass* klass = NULL;
  1802     if (bci == -1) {
  1803       // There is no catch all.  It is possible to exit the method.
  1804       break;
  1806     if (handler->is_catch_all()) {
  1807       klass = analyzer->env()->Throwable_klass();
  1808     } else {
  1809       klass = handler->catch_klass();
  1811     _exceptions->append(analyzer->block_at(bci, _jsrs));
  1812     _exc_klasses->append(klass);
  1816 // ------------------------------------------------------------------
  1817 // ciTypeFlow::Block::set_backedge_copy
  1818 // Use this only to make a pre-existing public block into a backedge copy.
  1819 void ciTypeFlow::Block::set_backedge_copy(bool z) {
  1820   assert(z || (z == is_backedge_copy()), "cannot make a backedge copy public");
  1821   _backedge_copy = z;
  1824 // ------------------------------------------------------------------
  1825 // ciTypeFlow::Block::is_clonable_exit
  1826 //
  1827 // At most 2 normal successors, one of which continues looping,
  1828 // and all exceptional successors must exit.
  1829 bool ciTypeFlow::Block::is_clonable_exit(ciTypeFlow::Loop* lp) {
  1830   int normal_cnt  = 0;
  1831   int in_loop_cnt = 0;
  1832   for (SuccIter iter(this); !iter.done(); iter.next()) {
  1833     Block* succ = iter.succ();
  1834     if (iter.is_normal_ctrl()) {
  1835       if (++normal_cnt > 2) return false;
  1836       if (lp->contains(succ->loop())) {
  1837         if (++in_loop_cnt > 1) return false;
  1839     } else {
  1840       if (lp->contains(succ->loop())) return false;
  1843   return in_loop_cnt == 1;
  1846 // ------------------------------------------------------------------
  1847 // ciTypeFlow::Block::looping_succ
  1848 //
  1849 ciTypeFlow::Block* ciTypeFlow::Block::looping_succ(ciTypeFlow::Loop* lp) {
  1850   assert(successors()->length() <= 2, "at most 2 normal successors");
  1851   for (SuccIter iter(this); !iter.done(); iter.next()) {
  1852     Block* succ = iter.succ();
  1853     if (lp->contains(succ->loop())) {
  1854       return succ;
  1857   return NULL;
  1860 #ifndef PRODUCT
  1861 // ------------------------------------------------------------------
  1862 // ciTypeFlow::Block::print_value_on
  1863 void ciTypeFlow::Block::print_value_on(outputStream* st) const {
  1864   if (has_pre_order()) st->print("#%-2d ", pre_order());
  1865   if (has_rpo())       st->print("rpo#%-2d ", rpo());
  1866   st->print("[%d - %d)", start(), limit());
  1867   if (is_loop_head()) st->print(" lphd");
  1868   if (is_irreducible_entry()) st->print(" irred");
  1869   if (_jsrs->size() > 0) { st->print("/");  _jsrs->print_on(st); }
  1870   if (is_backedge_copy())  st->print("/backedge_copy");
  1873 // ------------------------------------------------------------------
  1874 // ciTypeFlow::Block::print_on
  1875 void ciTypeFlow::Block::print_on(outputStream* st) const {
  1876   if ((Verbose || WizardMode)) {
  1877     outer()->method()->print_codes_on(start(), limit(), st);
  1879   st->print_cr("  ====================================================  ");
  1880   st->print ("  ");
  1881   print_value_on(st);
  1882   st->print(" Stored locals: "); def_locals()->print_on(st, outer()->method()->max_locals()); tty->cr();
  1883   if (loop() && loop()->parent() != NULL) {
  1884     st->print(" loops:");
  1885     Loop* lp = loop();
  1886     do {
  1887       st->print(" %d<-%d", lp->head()->pre_order(),lp->tail()->pre_order());
  1888       if (lp->is_irreducible()) st->print("(ir)");
  1889       lp = lp->parent();
  1890     } while (lp->parent() != NULL);
  1892   st->cr();
  1893   _state->print_on(st);
  1894   if (_successors == NULL) {
  1895     st->print_cr("  No successor information");
  1896   } else {
  1897     int num_successors = _successors->length();
  1898     st->print_cr("  Successors : %d", num_successors);
  1899     for (int i = 0; i < num_successors; i++) {
  1900       Block* successor = _successors->at(i);
  1901       st->print("    ");
  1902       successor->print_value_on(st);
  1903       st->cr();
  1906   if (_exceptions == NULL) {
  1907     st->print_cr("  No exception information");
  1908   } else {
  1909     int num_exceptions = _exceptions->length();
  1910     st->print_cr("  Exceptions : %d", num_exceptions);
  1911     for (int i = 0; i < num_exceptions; i++) {
  1912       Block* exc_succ = _exceptions->at(i);
  1913       ciInstanceKlass* exc_klass = _exc_klasses->at(i);
  1914       st->print("    ");
  1915       exc_succ->print_value_on(st);
  1916       st->print(" -- ");
  1917       exc_klass->name()->print_symbol_on(st);
  1918       st->cr();
  1921   if (has_trap()) {
  1922     st->print_cr("  Traps on %d with trap index %d", trap_bci(), trap_index());
  1924   st->print_cr("  ====================================================  ");
  1926 #endif
  1928 #ifndef PRODUCT
  1929 // ------------------------------------------------------------------
  1930 // ciTypeFlow::LocalSet::print_on
  1931 void ciTypeFlow::LocalSet::print_on(outputStream* st, int limit) const {
  1932   st->print("{");
  1933   for (int i = 0; i < max; i++) {
  1934     if (test(i)) st->print(" %d", i);
  1936   if (limit > max) {
  1937     st->print(" %d..%d ", max, limit);
  1939   st->print(" }");
  1941 #endif
  1943 // ciTypeFlow
  1944 //
  1945 // This is a pass over the bytecodes which computes the following:
  1946 //   basic block structure
  1947 //   interpreter type-states (a la the verifier)
  1949 // ------------------------------------------------------------------
  1950 // ciTypeFlow::ciTypeFlow
  1951 ciTypeFlow::ciTypeFlow(ciEnv* env, ciMethod* method, int osr_bci) {
  1952   _env = env;
  1953   _method = method;
  1954   _methodBlocks = method->get_method_blocks();
  1955   _max_locals = method->max_locals();
  1956   _max_stack = method->max_stack();
  1957   _code_size = method->code_size();
  1958   _has_irreducible_entry = false;
  1959   _osr_bci = osr_bci;
  1960   _failure_reason = NULL;
  1961   assert(0 <= start_bci() && start_bci() < code_size() , err_msg("correct osr_bci argument: 0 <= %d < %d", start_bci(), code_size()));
  1962   _work_list = NULL;
  1964   _ciblock_count = _methodBlocks->num_blocks();
  1965   _idx_to_blocklist = NEW_ARENA_ARRAY(arena(), GrowableArray<Block*>*, _ciblock_count);
  1966   for (int i = 0; i < _ciblock_count; i++) {
  1967     _idx_to_blocklist[i] = NULL;
  1969   _block_map = NULL;  // until all blocks are seen
  1970   _jsr_count = 0;
  1971   _jsr_records = NULL;
  1974 // ------------------------------------------------------------------
  1975 // ciTypeFlow::work_list_next
  1976 //
  1977 // Get the next basic block from our work list.
  1978 ciTypeFlow::Block* ciTypeFlow::work_list_next() {
  1979   assert(!work_list_empty(), "work list must not be empty");
  1980   Block* next_block = _work_list;
  1981   _work_list = next_block->next();
  1982   next_block->set_next(NULL);
  1983   next_block->set_on_work_list(false);
  1984   return next_block;
  1987 // ------------------------------------------------------------------
  1988 // ciTypeFlow::add_to_work_list
  1989 //
  1990 // Add a basic block to our work list.
  1991 // List is sorted by decreasing postorder sort (same as increasing RPO)
  1992 void ciTypeFlow::add_to_work_list(ciTypeFlow::Block* block) {
  1993   assert(!block->is_on_work_list(), "must not already be on work list");
  1995   if (CITraceTypeFlow) {
  1996     tty->print(">> Adding block ");
  1997     block->print_value_on(tty);
  1998     tty->print_cr(" to the work list : ");
  2001   block->set_on_work_list(true);
  2003   // decreasing post order sort
  2005   Block* prev = NULL;
  2006   Block* current = _work_list;
  2007   int po = block->post_order();
  2008   while (current != NULL) {
  2009     if (!current->has_post_order() || po > current->post_order())
  2010       break;
  2011     prev = current;
  2012     current = current->next();
  2014   if (prev == NULL) {
  2015     block->set_next(_work_list);
  2016     _work_list = block;
  2017   } else {
  2018     block->set_next(current);
  2019     prev->set_next(block);
  2022   if (CITraceTypeFlow) {
  2023     tty->cr();
  2027 // ------------------------------------------------------------------
  2028 // ciTypeFlow::block_at
  2029 //
  2030 // Return the block beginning at bci which has a JsrSet compatible
  2031 // with jsrs.
  2032 ciTypeFlow::Block* ciTypeFlow::block_at(int bci, ciTypeFlow::JsrSet* jsrs, CreateOption option) {
  2033   // First find the right ciBlock.
  2034   if (CITraceTypeFlow) {
  2035     tty->print(">> Requesting block for %d/", bci);
  2036     jsrs->print_on(tty);
  2037     tty->cr();
  2040   ciBlock* ciblk = _methodBlocks->block_containing(bci);
  2041   assert(ciblk->start_bci() == bci, "bad ciBlock boundaries");
  2042   Block* block = get_block_for(ciblk->index(), jsrs, option);
  2044   assert(block == NULL? (option == no_create): block->is_backedge_copy() == (option == create_backedge_copy), "create option consistent with result");
  2046   if (CITraceTypeFlow) {
  2047     if (block != NULL) {
  2048       tty->print(">> Found block ");
  2049       block->print_value_on(tty);
  2050       tty->cr();
  2051     } else {
  2052       tty->print_cr(">> No such block.");
  2056   return block;
  2059 // ------------------------------------------------------------------
  2060 // ciTypeFlow::make_jsr_record
  2061 //
  2062 // Make a JsrRecord for a given (entry, return) pair, if such a record
  2063 // does not already exist.
  2064 ciTypeFlow::JsrRecord* ciTypeFlow::make_jsr_record(int entry_address,
  2065                                                    int return_address) {
  2066   if (_jsr_records == NULL) {
  2067     _jsr_records = new (arena()) GrowableArray<JsrRecord*>(arena(),
  2068                                                            _jsr_count,
  2069                                                            0,
  2070                                                            NULL);
  2072   JsrRecord* record = NULL;
  2073   int len = _jsr_records->length();
  2074   for (int i = 0; i < len; i++) {
  2075     JsrRecord* record = _jsr_records->at(i);
  2076     if (record->entry_address() == entry_address &&
  2077         record->return_address() == return_address) {
  2078       return record;
  2082   record = new (arena()) JsrRecord(entry_address, return_address);
  2083   _jsr_records->append(record);
  2084   return record;
  2087 // ------------------------------------------------------------------
  2088 // ciTypeFlow::flow_exceptions
  2089 //
  2090 // Merge the current state into all exceptional successors at the
  2091 // current point in the code.
  2092 void ciTypeFlow::flow_exceptions(GrowableArray<ciTypeFlow::Block*>* exceptions,
  2093                                  GrowableArray<ciInstanceKlass*>* exc_klasses,
  2094                                  ciTypeFlow::StateVector* state) {
  2095   int len = exceptions->length();
  2096   assert(exc_klasses->length() == len, "must have same length");
  2097   for (int i = 0; i < len; i++) {
  2098     Block* block = exceptions->at(i);
  2099     ciInstanceKlass* exception_klass = exc_klasses->at(i);
  2101     if (!exception_klass->is_loaded()) {
  2102       // Do not compile any code for unloaded exception types.
  2103       // Following compiler passes are responsible for doing this also.
  2104       continue;
  2107     if (block->meet_exception(exception_klass, state)) {
  2108       // Block was modified and has PO.  Add it to the work list.
  2109       if (block->has_post_order() &&
  2110           !block->is_on_work_list()) {
  2111         add_to_work_list(block);
  2117 // ------------------------------------------------------------------
  2118 // ciTypeFlow::flow_successors
  2119 //
  2120 // Merge the current state into all successors at the current point
  2121 // in the code.
  2122 void ciTypeFlow::flow_successors(GrowableArray<ciTypeFlow::Block*>* successors,
  2123                                  ciTypeFlow::StateVector* state) {
  2124   int len = successors->length();
  2125   for (int i = 0; i < len; i++) {
  2126     Block* block = successors->at(i);
  2127     if (block->meet(state)) {
  2128       // Block was modified and has PO.  Add it to the work list.
  2129       if (block->has_post_order() &&
  2130           !block->is_on_work_list()) {
  2131         add_to_work_list(block);
  2137 // ------------------------------------------------------------------
  2138 // ciTypeFlow::can_trap
  2139 //
  2140 // Tells if a given instruction is able to generate an exception edge.
  2141 bool ciTypeFlow::can_trap(ciBytecodeStream& str) {
  2142   // Cf. GenerateOopMap::do_exception_edge.
  2143   if (!Bytecodes::can_trap(str.cur_bc()))  return false;
  2145   switch (str.cur_bc()) {
  2146     // %%% FIXME: ldc of Class can generate an exception
  2147     case Bytecodes::_ldc:
  2148     case Bytecodes::_ldc_w:
  2149     case Bytecodes::_ldc2_w:
  2150     case Bytecodes::_aload_0:
  2151       // These bytecodes can trap for rewriting.  We need to assume that
  2152       // they do not throw exceptions to make the monitor analysis work.
  2153       return false;
  2155     case Bytecodes::_ireturn:
  2156     case Bytecodes::_lreturn:
  2157     case Bytecodes::_freturn:
  2158     case Bytecodes::_dreturn:
  2159     case Bytecodes::_areturn:
  2160     case Bytecodes::_return:
  2161       // We can assume the monitor stack is empty in this analysis.
  2162       return false;
  2164     case Bytecodes::_monitorexit:
  2165       // We can assume monitors are matched in this analysis.
  2166       return false;
  2169   return true;
  2172 // ------------------------------------------------------------------
  2173 // ciTypeFlow::clone_loop_heads
  2174 //
  2175 // Clone the loop heads
  2176 bool ciTypeFlow::clone_loop_heads(Loop* lp, StateVector* temp_vector, JsrSet* temp_set) {
  2177   bool rslt = false;
  2178   for (PreorderLoops iter(loop_tree_root()); !iter.done(); iter.next()) {
  2179     lp = iter.current();
  2180     Block* head = lp->head();
  2181     if (lp == loop_tree_root() ||
  2182         lp->is_irreducible() ||
  2183         !head->is_clonable_exit(lp))
  2184       continue;
  2186     // check not already cloned
  2187     if (head->backedge_copy_count() != 0)
  2188       continue;
  2190     // check _no_ shared head below us
  2191     Loop* ch;
  2192     for (ch = lp->child(); ch != NULL && ch->head() != head; ch = ch->sibling());
  2193     if (ch != NULL)
  2194       continue;
  2196     // Clone head
  2197     Block* new_head = head->looping_succ(lp);
  2198     Block* clone = clone_loop_head(lp, temp_vector, temp_set);
  2199     // Update lp's info
  2200     clone->set_loop(lp);
  2201     lp->set_head(new_head);
  2202     lp->set_tail(clone);
  2203     // And move original head into outer loop
  2204     head->set_loop(lp->parent());
  2206     rslt = true;
  2208   return rslt;
  2211 // ------------------------------------------------------------------
  2212 // ciTypeFlow::clone_loop_head
  2213 //
  2214 // Clone lp's head and replace tail's successors with clone.
  2215 //
  2216 //  |
  2217 //  v
  2218 // head <-> body
  2219 //  |
  2220 //  v
  2221 // exit
  2222 //
  2223 // new_head
  2224 //
  2225 //  |
  2226 //  v
  2227 // head ----------\
  2228 //  |             |
  2229 //  |             v
  2230 //  |  clone <-> body
  2231 //  |    |
  2232 //  | /--/
  2233 //  | |
  2234 //  v v
  2235 // exit
  2236 //
  2237 ciTypeFlow::Block* ciTypeFlow::clone_loop_head(Loop* lp, StateVector* temp_vector, JsrSet* temp_set) {
  2238   Block* head = lp->head();
  2239   Block* tail = lp->tail();
  2240   if (CITraceTypeFlow) {
  2241     tty->print(">> Requesting clone of loop head "); head->print_value_on(tty);
  2242     tty->print("  for predecessor ");                tail->print_value_on(tty);
  2243     tty->cr();
  2245   Block* clone = block_at(head->start(), head->jsrs(), create_backedge_copy);
  2246   assert(clone->backedge_copy_count() == 1, "one backedge copy for all back edges");
  2248   assert(!clone->has_pre_order(), "just created");
  2249   clone->set_next_pre_order();
  2251   // Insert clone after (orig) tail in reverse post order
  2252   clone->set_rpo_next(tail->rpo_next());
  2253   tail->set_rpo_next(clone);
  2255   // tail->head becomes tail->clone
  2256   for (SuccIter iter(tail); !iter.done(); iter.next()) {
  2257     if (iter.succ() == head) {
  2258       iter.set_succ(clone);
  2261   flow_block(tail, temp_vector, temp_set);
  2262   if (head == tail) {
  2263     // For self-loops, clone->head becomes clone->clone
  2264     flow_block(clone, temp_vector, temp_set);
  2265     for (SuccIter iter(clone); !iter.done(); iter.next()) {
  2266       if (iter.succ() == head) {
  2267         iter.set_succ(clone);
  2268         break;
  2272   flow_block(clone, temp_vector, temp_set);
  2274   return clone;
  2277 // ------------------------------------------------------------------
  2278 // ciTypeFlow::flow_block
  2279 //
  2280 // Interpret the effects of the bytecodes on the incoming state
  2281 // vector of a basic block.  Push the changed state to succeeding
  2282 // basic blocks.
  2283 void ciTypeFlow::flow_block(ciTypeFlow::Block* block,
  2284                             ciTypeFlow::StateVector* state,
  2285                             ciTypeFlow::JsrSet* jsrs) {
  2286   if (CITraceTypeFlow) {
  2287     tty->print("\n>> ANALYZING BLOCK : ");
  2288     tty->cr();
  2289     block->print_on(tty);
  2291   assert(block->has_pre_order(), "pre-order is assigned before 1st flow");
  2293   int start = block->start();
  2294   int limit = block->limit();
  2295   int control = block->control();
  2296   if (control != ciBlock::fall_through_bci) {
  2297     limit = control;
  2300   // Grab the state from the current block.
  2301   block->copy_state_into(state);
  2302   state->def_locals()->clear();
  2304   GrowableArray<Block*>*           exceptions = block->exceptions();
  2305   GrowableArray<ciInstanceKlass*>* exc_klasses = block->exc_klasses();
  2306   bool has_exceptions = exceptions->length() > 0;
  2308   bool exceptions_used = false;
  2310   ciBytecodeStream str(method());
  2311   str.reset_to_bci(start);
  2312   Bytecodes::Code code;
  2313   while ((code = str.next()) != ciBytecodeStream::EOBC() &&
  2314          str.cur_bci() < limit) {
  2315     // Check for exceptional control flow from this point.
  2316     if (has_exceptions && can_trap(str)) {
  2317       flow_exceptions(exceptions, exc_klasses, state);
  2318       exceptions_used = true;
  2320     // Apply the effects of the current bytecode to our state.
  2321     bool res = state->apply_one_bytecode(&str);
  2323     // Watch for bailouts.
  2324     if (failing())  return;
  2326     if (res) {
  2328       // We have encountered a trap.  Record it in this block.
  2329       block->set_trap(state->trap_bci(), state->trap_index());
  2331       if (CITraceTypeFlow) {
  2332         tty->print_cr(">> Found trap");
  2333         block->print_on(tty);
  2336       // Save set of locals defined in this block
  2337       block->def_locals()->add(state->def_locals());
  2339       // Record (no) successors.
  2340       block->successors(&str, state, jsrs);
  2342       assert(!has_exceptions || exceptions_used, "Not removing exceptions");
  2344       // Discontinue interpretation of this Block.
  2345       return;
  2349   GrowableArray<Block*>* successors = NULL;
  2350   if (control != ciBlock::fall_through_bci) {
  2351     // Check for exceptional control flow from this point.
  2352     if (has_exceptions && can_trap(str)) {
  2353       flow_exceptions(exceptions, exc_klasses, state);
  2354       exceptions_used = true;
  2357     // Fix the JsrSet to reflect effect of the bytecode.
  2358     block->copy_jsrs_into(jsrs);
  2359     jsrs->apply_control(this, &str, state);
  2361     // Find successor edges based on old state and new JsrSet.
  2362     successors = block->successors(&str, state, jsrs);
  2364     // Apply the control changes to the state.
  2365     state->apply_one_bytecode(&str);
  2366   } else {
  2367     // Fall through control
  2368     successors = block->successors(&str, NULL, NULL);
  2371   // Save set of locals defined in this block
  2372   block->def_locals()->add(state->def_locals());
  2374   // Remove untaken exception paths
  2375   if (!exceptions_used)
  2376     exceptions->clear();
  2378   // Pass our state to successors.
  2379   flow_successors(successors, state);
  2382 // ------------------------------------------------------------------
  2383 // ciTypeFlow::PostOrderLoops::next
  2384 //
  2385 // Advance to next loop tree using a postorder, left-to-right traversal.
  2386 void ciTypeFlow::PostorderLoops::next() {
  2387   assert(!done(), "must not be done.");
  2388   if (_current->sibling() != NULL) {
  2389     _current = _current->sibling();
  2390     while (_current->child() != NULL) {
  2391       _current = _current->child();
  2393   } else {
  2394     _current = _current->parent();
  2398 // ------------------------------------------------------------------
  2399 // ciTypeFlow::PreOrderLoops::next
  2400 //
  2401 // Advance to next loop tree using a preorder, left-to-right traversal.
  2402 void ciTypeFlow::PreorderLoops::next() {
  2403   assert(!done(), "must not be done.");
  2404   if (_current->child() != NULL) {
  2405     _current = _current->child();
  2406   } else if (_current->sibling() != NULL) {
  2407     _current = _current->sibling();
  2408   } else {
  2409     while (_current != _root && _current->sibling() == NULL) {
  2410       _current = _current->parent();
  2412     if (_current == _root) {
  2413       _current = NULL;
  2414       assert(done(), "must be done.");
  2415     } else {
  2416       assert(_current->sibling() != NULL, "must be more to do");
  2417       _current = _current->sibling();
  2422 // ------------------------------------------------------------------
  2423 // ciTypeFlow::Loop::sorted_merge
  2424 //
  2425 // Merge the branch lp into this branch, sorting on the loop head
  2426 // pre_orders. Returns the leaf of the merged branch.
  2427 // Child and sibling pointers will be setup later.
  2428 // Sort is (looking from leaf towards the root)
  2429 //  descending on primary key: loop head's pre_order, and
  2430 //  ascending  on secondary key: loop tail's pre_order.
  2431 ciTypeFlow::Loop* ciTypeFlow::Loop::sorted_merge(Loop* lp) {
  2432   Loop* leaf = this;
  2433   Loop* prev = NULL;
  2434   Loop* current = leaf;
  2435   while (lp != NULL) {
  2436     int lp_pre_order = lp->head()->pre_order();
  2437     // Find insertion point for "lp"
  2438     while (current != NULL) {
  2439       if (current == lp)
  2440         return leaf; // Already in list
  2441       if (current->head()->pre_order() < lp_pre_order)
  2442         break;
  2443       if (current->head()->pre_order() == lp_pre_order &&
  2444           current->tail()->pre_order() > lp->tail()->pre_order()) {
  2445         break;
  2447       prev = current;
  2448       current = current->parent();
  2450     Loop* next_lp = lp->parent(); // Save future list of items to insert
  2451     // Insert lp before current
  2452     lp->set_parent(current);
  2453     if (prev != NULL) {
  2454       prev->set_parent(lp);
  2455     } else {
  2456       leaf = lp;
  2458     prev = lp;     // Inserted item is new prev[ious]
  2459     lp = next_lp;  // Next item to insert
  2461   return leaf;
  2464 // ------------------------------------------------------------------
  2465 // ciTypeFlow::build_loop_tree
  2466 //
  2467 // Incrementally build loop tree.
  2468 void ciTypeFlow::build_loop_tree(Block* blk) {
  2469   assert(!blk->is_post_visited(), "precondition");
  2470   Loop* innermost = NULL; // merge of loop tree branches over all successors
  2472   for (SuccIter iter(blk); !iter.done(); iter.next()) {
  2473     Loop*  lp   = NULL;
  2474     Block* succ = iter.succ();
  2475     if (!succ->is_post_visited()) {
  2476       // Found backedge since predecessor post visited, but successor is not
  2477       assert(succ->pre_order() <= blk->pre_order(), "should be backedge");
  2479       // Create a LoopNode to mark this loop.
  2480       lp = new (arena()) Loop(succ, blk);
  2481       if (succ->loop() == NULL)
  2482         succ->set_loop(lp);
  2483       // succ->loop will be updated to innermost loop on a later call, when blk==succ
  2485     } else {  // Nested loop
  2486       lp = succ->loop();
  2488       // If succ is loop head, find outer loop.
  2489       while (lp != NULL && lp->head() == succ) {
  2490         lp = lp->parent();
  2492       if (lp == NULL) {
  2493         // Infinite loop, it's parent is the root
  2494         lp = loop_tree_root();
  2498     // Check for irreducible loop.
  2499     // Successor has already been visited. If the successor's loop head
  2500     // has already been post-visited, then this is another entry into the loop.
  2501     while (lp->head()->is_post_visited() && lp != loop_tree_root()) {
  2502       _has_irreducible_entry = true;
  2503       lp->set_irreducible(succ);
  2504       if (!succ->is_on_work_list()) {
  2505         // Assume irreducible entries need more data flow
  2506         add_to_work_list(succ);
  2508       Loop* plp = lp->parent();
  2509       if (plp == NULL) {
  2510         // This only happens for some irreducible cases.  The parent
  2511         // will be updated during a later pass.
  2512         break;
  2514       lp = plp;
  2517     // Merge loop tree branch for all successors.
  2518     innermost = innermost == NULL ? lp : innermost->sorted_merge(lp);
  2520   } // end loop
  2522   if (innermost == NULL) {
  2523     assert(blk->successors()->length() == 0, "CFG exit");
  2524     blk->set_loop(loop_tree_root());
  2525   } else if (innermost->head() == blk) {
  2526     // If loop header, complete the tree pointers
  2527     if (blk->loop() != innermost) {
  2528 #if ASSERT
  2529       assert(blk->loop()->head() == innermost->head(), "same head");
  2530       Loop* dl;
  2531       for (dl = innermost; dl != NULL && dl != blk->loop(); dl = dl->parent());
  2532       assert(dl == blk->loop(), "blk->loop() already in innermost list");
  2533 #endif
  2534       blk->set_loop(innermost);
  2536     innermost->def_locals()->add(blk->def_locals());
  2537     Loop* l = innermost;
  2538     Loop* p = l->parent();
  2539     while (p && l->head() == blk) {
  2540       l->set_sibling(p->child());  // Put self on parents 'next child'
  2541       p->set_child(l);             // Make self the first child of parent
  2542       p->def_locals()->add(l->def_locals());
  2543       l = p;                       // Walk up the parent chain
  2544       p = l->parent();
  2546   } else {
  2547     blk->set_loop(innermost);
  2548     innermost->def_locals()->add(blk->def_locals());
  2552 // ------------------------------------------------------------------
  2553 // ciTypeFlow::Loop::contains
  2554 //
  2555 // Returns true if lp is nested loop.
  2556 bool ciTypeFlow::Loop::contains(ciTypeFlow::Loop* lp) const {
  2557   assert(lp != NULL, "");
  2558   if (this == lp || head() == lp->head()) return true;
  2559   int depth1 = depth();
  2560   int depth2 = lp->depth();
  2561   if (depth1 > depth2)
  2562     return false;
  2563   while (depth1 < depth2) {
  2564     depth2--;
  2565     lp = lp->parent();
  2567   return this == lp;
  2570 // ------------------------------------------------------------------
  2571 // ciTypeFlow::Loop::depth
  2572 //
  2573 // Loop depth
  2574 int ciTypeFlow::Loop::depth() const {
  2575   int dp = 0;
  2576   for (Loop* lp = this->parent(); lp != NULL; lp = lp->parent())
  2577     dp++;
  2578   return dp;
  2581 #ifndef PRODUCT
  2582 // ------------------------------------------------------------------
  2583 // ciTypeFlow::Loop::print
  2584 void ciTypeFlow::Loop::print(outputStream* st, int indent) const {
  2585   for (int i = 0; i < indent; i++) st->print(" ");
  2586   st->print("%d<-%d %s",
  2587             is_root() ? 0 : this->head()->pre_order(),
  2588             is_root() ? 0 : this->tail()->pre_order(),
  2589             is_irreducible()?" irr":"");
  2590   st->print(" defs: ");
  2591   def_locals()->print_on(st, _head->outer()->method()->max_locals());
  2592   st->cr();
  2593   for (Loop* ch = child(); ch != NULL; ch = ch->sibling())
  2594     ch->print(st, indent+2);
  2596 #endif
  2598 // ------------------------------------------------------------------
  2599 // ciTypeFlow::df_flow_types
  2600 //
  2601 // Perform the depth first type flow analysis. Helper for flow_types.
  2602 void ciTypeFlow::df_flow_types(Block* start,
  2603                                bool do_flow,
  2604                                StateVector* temp_vector,
  2605                                JsrSet* temp_set) {
  2606   int dft_len = 100;
  2607   GrowableArray<Block*> stk(dft_len);
  2609   ciBlock* dummy = _methodBlocks->make_dummy_block();
  2610   JsrSet* root_set = new JsrSet(NULL, 0);
  2611   Block* root_head = new (arena()) Block(this, dummy, root_set);
  2612   Block* root_tail = new (arena()) Block(this, dummy, root_set);
  2613   root_head->set_pre_order(0);
  2614   root_head->set_post_order(0);
  2615   root_tail->set_pre_order(max_jint);
  2616   root_tail->set_post_order(max_jint);
  2617   set_loop_tree_root(new (arena()) Loop(root_head, root_tail));
  2619   stk.push(start);
  2621   _next_pre_order = 0;  // initialize pre_order counter
  2622   _rpo_list = NULL;
  2623   int next_po = 0;      // initialize post_order counter
  2625   // Compute RPO and the control flow graph
  2626   int size;
  2627   while ((size = stk.length()) > 0) {
  2628     Block* blk = stk.top(); // Leave node on stack
  2629     if (!blk->is_visited()) {
  2630       // forward arc in graph
  2631       assert (!blk->has_pre_order(), "");
  2632       blk->set_next_pre_order();
  2634       if (_next_pre_order >= MaxNodeLimit / 2) {
  2635         // Too many basic blocks.  Bail out.
  2636         // This can happen when try/finally constructs are nested to depth N,
  2637         // and there is O(2**N) cloning of jsr bodies.  See bug 4697245!
  2638         // "MaxNodeLimit / 2" is used because probably the parser will
  2639         // generate at least twice that many nodes and bail out.
  2640         record_failure("too many basic blocks");
  2641         return;
  2643       if (do_flow) {
  2644         flow_block(blk, temp_vector, temp_set);
  2645         if (failing()) return; // Watch for bailouts.
  2647     } else if (!blk->is_post_visited()) {
  2648       // cross or back arc
  2649       for (SuccIter iter(blk); !iter.done(); iter.next()) {
  2650         Block* succ = iter.succ();
  2651         if (!succ->is_visited()) {
  2652           stk.push(succ);
  2655       if (stk.length() == size) {
  2656         // There were no additional children, post visit node now
  2657         stk.pop(); // Remove node from stack
  2659         build_loop_tree(blk);
  2660         blk->set_post_order(next_po++);   // Assign post order
  2661         prepend_to_rpo_list(blk);
  2662         assert(blk->is_post_visited(), "");
  2664         if (blk->is_loop_head() && !blk->is_on_work_list()) {
  2665           // Assume loop heads need more data flow
  2666           add_to_work_list(blk);
  2669     } else {
  2670       stk.pop(); // Remove post-visited node from stack
  2675 // ------------------------------------------------------------------
  2676 // ciTypeFlow::flow_types
  2677 //
  2678 // Perform the type flow analysis, creating and cloning Blocks as
  2679 // necessary.
  2680 void ciTypeFlow::flow_types() {
  2681   ResourceMark rm;
  2682   StateVector* temp_vector = new StateVector(this);
  2683   JsrSet* temp_set = new JsrSet(NULL, 16);
  2685   // Create the method entry block.
  2686   Block* start = block_at(start_bci(), temp_set);
  2688   // Load the initial state into it.
  2689   const StateVector* start_state = get_start_state();
  2690   if (failing())  return;
  2691   start->meet(start_state);
  2693   // Depth first visit
  2694   df_flow_types(start, true /*do flow*/, temp_vector, temp_set);
  2696   if (failing())  return;
  2697   assert(_rpo_list == start, "must be start");
  2699   // Any loops found?
  2700   if (loop_tree_root()->child() != NULL &&
  2701       env()->comp_level() >= CompLevel_full_optimization) {
  2702       // Loop optimizations are not performed on Tier1 compiles.
  2704     bool changed = clone_loop_heads(loop_tree_root(), temp_vector, temp_set);
  2706     // If some loop heads were cloned, recompute postorder and loop tree
  2707     if (changed) {
  2708       loop_tree_root()->set_child(NULL);
  2709       for (Block* blk = _rpo_list; blk != NULL;) {
  2710         Block* next = blk->rpo_next();
  2711         blk->df_init();
  2712         blk = next;
  2714       df_flow_types(start, false /*no flow*/, temp_vector, temp_set);
  2718   if (CITraceTypeFlow) {
  2719     tty->print_cr("\nLoop tree");
  2720     loop_tree_root()->print();
  2723   // Continue flow analysis until fixed point reached
  2725   debug_only(int max_block = _next_pre_order;)
  2727   while (!work_list_empty()) {
  2728     Block* blk = work_list_next();
  2729     assert (blk->has_post_order(), "post order assigned above");
  2731     flow_block(blk, temp_vector, temp_set);
  2733     assert (max_block == _next_pre_order, "no new blocks");
  2734     assert (!failing(), "no more bailouts");
  2738 // ------------------------------------------------------------------
  2739 // ciTypeFlow::map_blocks
  2740 //
  2741 // Create the block map, which indexes blocks in reverse post-order.
  2742 void ciTypeFlow::map_blocks() {
  2743   assert(_block_map == NULL, "single initialization");
  2744   int block_ct = _next_pre_order;
  2745   _block_map = NEW_ARENA_ARRAY(arena(), Block*, block_ct);
  2746   assert(block_ct == block_count(), "");
  2748   Block* blk = _rpo_list;
  2749   for (int m = 0; m < block_ct; m++) {
  2750     int rpo = blk->rpo();
  2751     assert(rpo == m, "should be sequential");
  2752     _block_map[rpo] = blk;
  2753     blk = blk->rpo_next();
  2755   assert(blk == NULL, "should be done");
  2757   for (int j = 0; j < block_ct; j++) {
  2758     assert(_block_map[j] != NULL, "must not drop any blocks");
  2759     Block* block = _block_map[j];
  2760     // Remove dead blocks from successor lists:
  2761     for (int e = 0; e <= 1; e++) {
  2762       GrowableArray<Block*>* l = e? block->exceptions(): block->successors();
  2763       for (int k = 0; k < l->length(); k++) {
  2764         Block* s = l->at(k);
  2765         if (!s->has_post_order()) {
  2766           if (CITraceTypeFlow) {
  2767             tty->print("Removing dead %s successor of #%d: ", (e? "exceptional":  "normal"), block->pre_order());
  2768             s->print_value_on(tty);
  2769             tty->cr();
  2771           l->remove(s);
  2772           --k;
  2779 // ------------------------------------------------------------------
  2780 // ciTypeFlow::get_block_for
  2781 //
  2782 // Find a block with this ciBlock which has a compatible JsrSet.
  2783 // If no such block exists, create it, unless the option is no_create.
  2784 // If the option is create_backedge_copy, always create a fresh backedge copy.
  2785 ciTypeFlow::Block* ciTypeFlow::get_block_for(int ciBlockIndex, ciTypeFlow::JsrSet* jsrs, CreateOption option) {
  2786   Arena* a = arena();
  2787   GrowableArray<Block*>* blocks = _idx_to_blocklist[ciBlockIndex];
  2788   if (blocks == NULL) {
  2789     // Query only?
  2790     if (option == no_create)  return NULL;
  2792     // Allocate the growable array.
  2793     blocks = new (a) GrowableArray<Block*>(a, 4, 0, NULL);
  2794     _idx_to_blocklist[ciBlockIndex] = blocks;
  2797   if (option != create_backedge_copy) {
  2798     int len = blocks->length();
  2799     for (int i = 0; i < len; i++) {
  2800       Block* block = blocks->at(i);
  2801       if (!block->is_backedge_copy() && block->is_compatible_with(jsrs)) {
  2802         return block;
  2807   // Query only?
  2808   if (option == no_create)  return NULL;
  2810   // We did not find a compatible block.  Create one.
  2811   Block* new_block = new (a) Block(this, _methodBlocks->block(ciBlockIndex), jsrs);
  2812   if (option == create_backedge_copy)  new_block->set_backedge_copy(true);
  2813   blocks->append(new_block);
  2814   return new_block;
  2817 // ------------------------------------------------------------------
  2818 // ciTypeFlow::backedge_copy_count
  2819 //
  2820 int ciTypeFlow::backedge_copy_count(int ciBlockIndex, ciTypeFlow::JsrSet* jsrs) const {
  2821   GrowableArray<Block*>* blocks = _idx_to_blocklist[ciBlockIndex];
  2823   if (blocks == NULL) {
  2824     return 0;
  2827   int count = 0;
  2828   int len = blocks->length();
  2829   for (int i = 0; i < len; i++) {
  2830     Block* block = blocks->at(i);
  2831     if (block->is_backedge_copy() && block->is_compatible_with(jsrs)) {
  2832       count++;
  2836   return count;
  2839 // ------------------------------------------------------------------
  2840 // ciTypeFlow::do_flow
  2841 //
  2842 // Perform type inference flow analysis.
  2843 void ciTypeFlow::do_flow() {
  2844   if (CITraceTypeFlow) {
  2845     tty->print_cr("\nPerforming flow analysis on method");
  2846     method()->print();
  2847     if (is_osr_flow())  tty->print(" at OSR bci %d", start_bci());
  2848     tty->cr();
  2849     method()->print_codes();
  2851   if (CITraceTypeFlow) {
  2852     tty->print_cr("Initial CI Blocks");
  2853     print_on(tty);
  2855   flow_types();
  2856   // Watch for bailouts.
  2857   if (failing()) {
  2858     return;
  2861   map_blocks();
  2863   if (CIPrintTypeFlow || CITraceTypeFlow) {
  2864     rpo_print_on(tty);
  2868 // ------------------------------------------------------------------
  2869 // ciTypeFlow::record_failure()
  2870 // The ciTypeFlow object keeps track of failure reasons separately from the ciEnv.
  2871 // This is required because there is not a 1-1 relation between the ciEnv and
  2872 // the TypeFlow passes within a compilation task.  For example, if the compiler
  2873 // is considering inlining a method, it will request a TypeFlow.  If that fails,
  2874 // the compilation as a whole may continue without the inlining.  Some TypeFlow
  2875 // requests are not optional; if they fail the requestor is responsible for
  2876 // copying the failure reason up to the ciEnv.  (See Parse::Parse.)
  2877 void ciTypeFlow::record_failure(const char* reason) {
  2878   if (env()->log() != NULL) {
  2879     env()->log()->elem("failure reason='%s' phase='typeflow'", reason);
  2881   if (_failure_reason == NULL) {
  2882     // Record the first failure reason.
  2883     _failure_reason = reason;
  2887 #ifndef PRODUCT
  2888 // ------------------------------------------------------------------
  2889 // ciTypeFlow::print_on
  2890 void ciTypeFlow::print_on(outputStream* st) const {
  2891   // Walk through CI blocks
  2892   st->print_cr("********************************************************");
  2893   st->print   ("TypeFlow for ");
  2894   method()->name()->print_symbol_on(st);
  2895   int limit_bci = code_size();
  2896   st->print_cr("  %d bytes", limit_bci);
  2897   ciMethodBlocks  *mblks = _methodBlocks;
  2898   ciBlock* current = NULL;
  2899   for (int bci = 0; bci < limit_bci; bci++) {
  2900     ciBlock* blk = mblks->block_containing(bci);
  2901     if (blk != NULL && blk != current) {
  2902       current = blk;
  2903       current->print_on(st);
  2905       GrowableArray<Block*>* blocks = _idx_to_blocklist[blk->index()];
  2906       int num_blocks = (blocks == NULL) ? 0 : blocks->length();
  2908       if (num_blocks == 0) {
  2909         st->print_cr("  No Blocks");
  2910       } else {
  2911         for (int i = 0; i < num_blocks; i++) {
  2912           Block* block = blocks->at(i);
  2913           block->print_on(st);
  2916       st->print_cr("--------------------------------------------------------");
  2917       st->cr();
  2920   st->print_cr("********************************************************");
  2921   st->cr();
  2924 void ciTypeFlow::rpo_print_on(outputStream* st) const {
  2925   st->print_cr("********************************************************");
  2926   st->print   ("TypeFlow for ");
  2927   method()->name()->print_symbol_on(st);
  2928   int limit_bci = code_size();
  2929   st->print_cr("  %d bytes", limit_bci);
  2930   for (Block* blk = _rpo_list; blk != NULL; blk = blk->rpo_next()) {
  2931     blk->print_on(st);
  2932     st->print_cr("--------------------------------------------------------");
  2933     st->cr();
  2935   st->print_cr("********************************************************");
  2936   st->cr();
  2938 #endif

mercurial