src/cpu/x86/vm/stubGenerator_x86_32.cpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2118
d6f45b55c972
child 2552
638119ce7cfd
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

     1 /*
     2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_x86.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "nativeInst_x86.hpp"
    30 #include "oops/instanceOop.hpp"
    31 #include "oops/methodOop.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/frame.inline.hpp"
    36 #include "runtime/handles.inline.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubCodeGenerator.hpp"
    39 #include "runtime/stubRoutines.hpp"
    40 #include "utilities/top.hpp"
    41 #ifdef TARGET_OS_FAMILY_linux
    42 # include "thread_linux.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_FAMILY_solaris
    45 # include "thread_solaris.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_FAMILY_windows
    48 # include "thread_windows.inline.hpp"
    49 #endif
    50 #ifdef COMPILER2
    51 #include "opto/runtime.hpp"
    52 #endif
    54 // Declaration and definition of StubGenerator (no .hpp file).
    55 // For a more detailed description of the stub routine structure
    56 // see the comment in stubRoutines.hpp
    58 #define __ _masm->
    59 #define a__ ((Assembler*)_masm)->
    61 #ifdef PRODUCT
    62 #define BLOCK_COMMENT(str) /* nothing */
    63 #else
    64 #define BLOCK_COMMENT(str) __ block_comment(str)
    65 #endif
    67 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    69 const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
    70 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
    72 // -------------------------------------------------------------------------------------------------------------------------
    73 // Stub Code definitions
    75 static address handle_unsafe_access() {
    76   JavaThread* thread = JavaThread::current();
    77   address pc  = thread->saved_exception_pc();
    78   // pc is the instruction which we must emulate
    79   // doing a no-op is fine:  return garbage from the load
    80   // therefore, compute npc
    81   address npc = Assembler::locate_next_instruction(pc);
    83   // request an async exception
    84   thread->set_pending_unsafe_access_error();
    86   // return address of next instruction to execute
    87   return npc;
    88 }
    90 class StubGenerator: public StubCodeGenerator {
    91  private:
    93 #ifdef PRODUCT
    94 #define inc_counter_np(counter) (0)
    95 #else
    96   void inc_counter_np_(int& counter) {
    97     __ incrementl(ExternalAddress((address)&counter));
    98   }
    99 #define inc_counter_np(counter) \
   100   BLOCK_COMMENT("inc_counter " #counter); \
   101   inc_counter_np_(counter);
   102 #endif //PRODUCT
   104   void inc_copy_counter_np(BasicType t) {
   105 #ifndef PRODUCT
   106     switch (t) {
   107     case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
   108     case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
   109     case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
   110     case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
   111     case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
   112     }
   113     ShouldNotReachHere();
   114 #endif //PRODUCT
   115   }
   117   //------------------------------------------------------------------------------------------------------------------------
   118   // Call stubs are used to call Java from C
   119   //
   120   //    [ return_from_Java     ] <--- rsp
   121   //    [ argument word n      ]
   122   //      ...
   123   // -N [ argument word 1      ]
   124   // -7 [ Possible padding for stack alignment ]
   125   // -6 [ Possible padding for stack alignment ]
   126   // -5 [ Possible padding for stack alignment ]
   127   // -4 [ mxcsr save           ] <--- rsp_after_call
   128   // -3 [ saved rbx,            ]
   129   // -2 [ saved rsi            ]
   130   // -1 [ saved rdi            ]
   131   //  0 [ saved rbp,            ] <--- rbp,
   132   //  1 [ return address       ]
   133   //  2 [ ptr. to call wrapper ]
   134   //  3 [ result               ]
   135   //  4 [ result_type          ]
   136   //  5 [ method               ]
   137   //  6 [ entry_point          ]
   138   //  7 [ parameters           ]
   139   //  8 [ parameter_size       ]
   140   //  9 [ thread               ]
   143   address generate_call_stub(address& return_address) {
   144     StubCodeMark mark(this, "StubRoutines", "call_stub");
   145     address start = __ pc();
   147     // stub code parameters / addresses
   148     assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
   149     bool  sse_save = false;
   150     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
   151     const int     locals_count_in_bytes  (4*wordSize);
   152     const Address mxcsr_save    (rbp, -4 * wordSize);
   153     const Address saved_rbx     (rbp, -3 * wordSize);
   154     const Address saved_rsi     (rbp, -2 * wordSize);
   155     const Address saved_rdi     (rbp, -1 * wordSize);
   156     const Address result        (rbp,  3 * wordSize);
   157     const Address result_type   (rbp,  4 * wordSize);
   158     const Address method        (rbp,  5 * wordSize);
   159     const Address entry_point   (rbp,  6 * wordSize);
   160     const Address parameters    (rbp,  7 * wordSize);
   161     const Address parameter_size(rbp,  8 * wordSize);
   162     const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
   163     sse_save =  UseSSE > 0;
   165     // stub code
   166     __ enter();
   167     __ movptr(rcx, parameter_size);              // parameter counter
   168     __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
   169     __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
   170     __ subptr(rsp, rcx);
   171     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
   173     // save rdi, rsi, & rbx, according to C calling conventions
   174     __ movptr(saved_rdi, rdi);
   175     __ movptr(saved_rsi, rsi);
   176     __ movptr(saved_rbx, rbx);
   177     // save and initialize %mxcsr
   178     if (sse_save) {
   179       Label skip_ldmx;
   180       __ stmxcsr(mxcsr_save);
   181       __ movl(rax, mxcsr_save);
   182       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   183       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   184       __ cmp32(rax, mxcsr_std);
   185       __ jcc(Assembler::equal, skip_ldmx);
   186       __ ldmxcsr(mxcsr_std);
   187       __ bind(skip_ldmx);
   188     }
   190     // make sure the control word is correct.
   191     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   193 #ifdef ASSERT
   194     // make sure we have no pending exceptions
   195     { Label L;
   196       __ movptr(rcx, thread);
   197       __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   198       __ jcc(Assembler::equal, L);
   199       __ stop("StubRoutines::call_stub: entered with pending exception");
   200       __ bind(L);
   201     }
   202 #endif
   204     // pass parameters if any
   205     BLOCK_COMMENT("pass parameters if any");
   206     Label parameters_done;
   207     __ movl(rcx, parameter_size);  // parameter counter
   208     __ testl(rcx, rcx);
   209     __ jcc(Assembler::zero, parameters_done);
   211     // parameter passing loop
   213     Label loop;
   214     // Copy Java parameters in reverse order (receiver last)
   215     // Note that the argument order is inverted in the process
   216     // source is rdx[rcx: N-1..0]
   217     // dest   is rsp[rbx: 0..N-1]
   219     __ movptr(rdx, parameters);          // parameter pointer
   220     __ xorptr(rbx, rbx);
   222     __ BIND(loop);
   224     // get parameter
   225     __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
   226     __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
   227                     Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
   228     __ increment(rbx);
   229     __ decrement(rcx);
   230     __ jcc(Assembler::notZero, loop);
   232     // call Java function
   233     __ BIND(parameters_done);
   234     __ movptr(rbx, method);           // get methodOop
   235     __ movptr(rax, entry_point);      // get entry_point
   236     __ mov(rsi, rsp);                 // set sender sp
   237     BLOCK_COMMENT("call Java function");
   238     __ call(rax);
   240     BLOCK_COMMENT("call_stub_return_address:");
   241     return_address = __ pc();
   243     Label common_return;
   245     __ BIND(common_return);
   247     // store result depending on type
   248     // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
   249     __ movptr(rdi, result);
   250     Label is_long, is_float, is_double, exit;
   251     __ movl(rsi, result_type);
   252     __ cmpl(rsi, T_LONG);
   253     __ jcc(Assembler::equal, is_long);
   254     __ cmpl(rsi, T_FLOAT);
   255     __ jcc(Assembler::equal, is_float);
   256     __ cmpl(rsi, T_DOUBLE);
   257     __ jcc(Assembler::equal, is_double);
   259     // handle T_INT case
   260     __ movl(Address(rdi, 0), rax);
   261     __ BIND(exit);
   263     // check that FPU stack is empty
   264     __ verify_FPU(0, "generate_call_stub");
   266     // pop parameters
   267     __ lea(rsp, rsp_after_call);
   269     // restore %mxcsr
   270     if (sse_save) {
   271       __ ldmxcsr(mxcsr_save);
   272     }
   274     // restore rdi, rsi and rbx,
   275     __ movptr(rbx, saved_rbx);
   276     __ movptr(rsi, saved_rsi);
   277     __ movptr(rdi, saved_rdi);
   278     __ addptr(rsp, 4*wordSize);
   280     // return
   281     __ pop(rbp);
   282     __ ret(0);
   284     // handle return types different from T_INT
   285     __ BIND(is_long);
   286     __ movl(Address(rdi, 0 * wordSize), rax);
   287     __ movl(Address(rdi, 1 * wordSize), rdx);
   288     __ jmp(exit);
   290     __ BIND(is_float);
   291     // interpreter uses xmm0 for return values
   292     if (UseSSE >= 1) {
   293       __ movflt(Address(rdi, 0), xmm0);
   294     } else {
   295       __ fstp_s(Address(rdi, 0));
   296     }
   297     __ jmp(exit);
   299     __ BIND(is_double);
   300     // interpreter uses xmm0 for return values
   301     if (UseSSE >= 2) {
   302       __ movdbl(Address(rdi, 0), xmm0);
   303     } else {
   304       __ fstp_d(Address(rdi, 0));
   305     }
   306     __ jmp(exit);
   308     // If we call compiled code directly from the call stub we will
   309     // need to adjust the return back to the call stub to a specialized
   310     // piece of code that can handle compiled results and cleaning the fpu
   311     // stack. compiled code will be set to return here instead of the
   312     // return above that handles interpreter returns.
   314     BLOCK_COMMENT("call_stub_compiled_return:");
   315     StubRoutines::x86::set_call_stub_compiled_return( __ pc());
   317 #ifdef COMPILER2
   318     if (UseSSE >= 2) {
   319       __ verify_FPU(0, "call_stub_compiled_return");
   320     } else {
   321       for (int i = 1; i < 8; i++) {
   322         __ ffree(i);
   323       }
   325       // UseSSE <= 1 so double result should be left on TOS
   326       __ movl(rsi, result_type);
   327       __ cmpl(rsi, T_DOUBLE);
   328       __ jcc(Assembler::equal, common_return);
   329       if (UseSSE == 0) {
   330         // UseSSE == 0 so float result should be left on TOS
   331         __ cmpl(rsi, T_FLOAT);
   332         __ jcc(Assembler::equal, common_return);
   333       }
   334       __ ffree(0);
   335     }
   336 #endif /* COMPILER2 */
   337     __ jmp(common_return);
   339     return start;
   340   }
   343   //------------------------------------------------------------------------------------------------------------------------
   344   // Return point for a Java call if there's an exception thrown in Java code.
   345   // The exception is caught and transformed into a pending exception stored in
   346   // JavaThread that can be tested from within the VM.
   347   //
   348   // Note: Usually the parameters are removed by the callee. In case of an exception
   349   //       crossing an activation frame boundary, that is not the case if the callee
   350   //       is compiled code => need to setup the rsp.
   351   //
   352   // rax,: exception oop
   354   address generate_catch_exception() {
   355     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   356     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
   357     const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
   358     address start = __ pc();
   360     // get thread directly
   361     __ movptr(rcx, thread);
   362 #ifdef ASSERT
   363     // verify that threads correspond
   364     { Label L;
   365       __ get_thread(rbx);
   366       __ cmpptr(rbx, rcx);
   367       __ jcc(Assembler::equal, L);
   368       __ stop("StubRoutines::catch_exception: threads must correspond");
   369       __ bind(L);
   370     }
   371 #endif
   372     // set pending exception
   373     __ verify_oop(rax);
   374     __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
   375     __ lea(Address(rcx, Thread::exception_file_offset   ()),
   376            ExternalAddress((address)__FILE__));
   377     __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
   378     // complete return to VM
   379     assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
   380     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
   382     return start;
   383   }
   386   //------------------------------------------------------------------------------------------------------------------------
   387   // Continuation point for runtime calls returning with a pending exception.
   388   // The pending exception check happened in the runtime or native call stub.
   389   // The pending exception in Thread is converted into a Java-level exception.
   390   //
   391   // Contract with Java-level exception handlers:
   392   // rax: exception
   393   // rdx: throwing pc
   394   //
   395   // NOTE: At entry of this stub, exception-pc must be on stack !!
   397   address generate_forward_exception() {
   398     StubCodeMark mark(this, "StubRoutines", "forward exception");
   399     address start = __ pc();
   400     const Register thread = rcx;
   402     // other registers used in this stub
   403     const Register exception_oop = rax;
   404     const Register handler_addr  = rbx;
   405     const Register exception_pc  = rdx;
   407     // Upon entry, the sp points to the return address returning into Java
   408     // (interpreted or compiled) code; i.e., the return address becomes the
   409     // throwing pc.
   410     //
   411     // Arguments pushed before the runtime call are still on the stack but
   412     // the exception handler will reset the stack pointer -> ignore them.
   413     // A potential result in registers can be ignored as well.
   415 #ifdef ASSERT
   416     // make sure this code is only executed if there is a pending exception
   417     { Label L;
   418       __ get_thread(thread);
   419       __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   420       __ jcc(Assembler::notEqual, L);
   421       __ stop("StubRoutines::forward exception: no pending exception (1)");
   422       __ bind(L);
   423     }
   424 #endif
   426     // compute exception handler into rbx,
   427     __ get_thread(thread);
   428     __ movptr(exception_pc, Address(rsp, 0));
   429     BLOCK_COMMENT("call exception_handler_for_return_address");
   430     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
   431     __ mov(handler_addr, rax);
   433     // setup rax & rdx, remove return address & clear pending exception
   434     __ get_thread(thread);
   435     __ pop(exception_pc);
   436     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
   437     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   439 #ifdef ASSERT
   440     // make sure exception is set
   441     { Label L;
   442       __ testptr(exception_oop, exception_oop);
   443       __ jcc(Assembler::notEqual, L);
   444       __ stop("StubRoutines::forward exception: no pending exception (2)");
   445       __ bind(L);
   446     }
   447 #endif
   449     // Verify that there is really a valid exception in RAX.
   450     __ verify_oop(exception_oop);
   452     // Restore SP from BP if the exception PC is a MethodHandle call site.
   453     __ cmpl(Address(thread, JavaThread::is_method_handle_return_offset()), 0);
   454     __ cmovptr(Assembler::notEqual, rsp, rbp);
   456     // continue at exception handler (return address removed)
   457     // rax: exception
   458     // rbx: exception handler
   459     // rdx: throwing pc
   460     __ jmp(handler_addr);
   462     return start;
   463   }
   466   //----------------------------------------------------------------------------------------------------
   467   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
   468   //
   469   // xchg exists as far back as 8086, lock needed for MP only
   470   // Stack layout immediately after call:
   471   //
   472   // 0 [ret addr ] <--- rsp
   473   // 1 [  ex     ]
   474   // 2 [  dest   ]
   475   //
   476   // Result:   *dest <- ex, return (old *dest)
   477   //
   478   // Note: win32 does not currently use this code
   480   address generate_atomic_xchg() {
   481     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   482     address start = __ pc();
   484     __ push(rdx);
   485     Address exchange(rsp, 2 * wordSize);
   486     Address dest_addr(rsp, 3 * wordSize);
   487     __ movl(rax, exchange);
   488     __ movptr(rdx, dest_addr);
   489     __ xchgl(rax, Address(rdx, 0));
   490     __ pop(rdx);
   491     __ ret(0);
   493     return start;
   494   }
   496   //----------------------------------------------------------------------------------------------------
   497   // Support for void verify_mxcsr()
   498   //
   499   // This routine is used with -Xcheck:jni to verify that native
   500   // JNI code does not return to Java code without restoring the
   501   // MXCSR register to our expected state.
   504   address generate_verify_mxcsr() {
   505     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
   506     address start = __ pc();
   508     const Address mxcsr_save(rsp, 0);
   510     if (CheckJNICalls && UseSSE > 0 ) {
   511       Label ok_ret;
   512       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   513       __ push(rax);
   514       __ subptr(rsp, wordSize);      // allocate a temp location
   515       __ stmxcsr(mxcsr_save);
   516       __ movl(rax, mxcsr_save);
   517       __ andl(rax, MXCSR_MASK);
   518       __ cmp32(rax, mxcsr_std);
   519       __ jcc(Assembler::equal, ok_ret);
   521       __ warn("MXCSR changed by native JNI code.");
   523       __ ldmxcsr(mxcsr_std);
   525       __ bind(ok_ret);
   526       __ addptr(rsp, wordSize);
   527       __ pop(rax);
   528     }
   530     __ ret(0);
   532     return start;
   533   }
   536   //---------------------------------------------------------------------------
   537   // Support for void verify_fpu_cntrl_wrd()
   538   //
   539   // This routine is used with -Xcheck:jni to verify that native
   540   // JNI code does not return to Java code without restoring the
   541   // FP control word to our expected state.
   543   address generate_verify_fpu_cntrl_wrd() {
   544     StubCodeMark mark(this, "StubRoutines", "verify_spcw");
   545     address start = __ pc();
   547     const Address fpu_cntrl_wrd_save(rsp, 0);
   549     if (CheckJNICalls) {
   550       Label ok_ret;
   551       __ push(rax);
   552       __ subptr(rsp, wordSize);      // allocate a temp location
   553       __ fnstcw(fpu_cntrl_wrd_save);
   554       __ movl(rax, fpu_cntrl_wrd_save);
   555       __ andl(rax, FPU_CNTRL_WRD_MASK);
   556       ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
   557       __ cmp32(rax, fpu_std);
   558       __ jcc(Assembler::equal, ok_ret);
   560       __ warn("Floating point control word changed by native JNI code.");
   562       __ fldcw(fpu_std);
   564       __ bind(ok_ret);
   565       __ addptr(rsp, wordSize);
   566       __ pop(rax);
   567     }
   569     __ ret(0);
   571     return start;
   572   }
   574   //---------------------------------------------------------------------------
   575   // Wrapper for slow-case handling of double-to-integer conversion
   576   // d2i or f2i fast case failed either because it is nan or because
   577   // of under/overflow.
   578   // Input:  FPU TOS: float value
   579   // Output: rax, (rdx): integer (long) result
   581   address generate_d2i_wrapper(BasicType t, address fcn) {
   582     StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
   583     address start = __ pc();
   585   // Capture info about frame layout
   586   enum layout { FPUState_off         = 0,
   587                 rbp_off              = FPUStateSizeInWords,
   588                 rdi_off,
   589                 rsi_off,
   590                 rcx_off,
   591                 rbx_off,
   592                 saved_argument_off,
   593                 saved_argument_off2, // 2nd half of double
   594                 framesize
   595   };
   597   assert(FPUStateSizeInWords == 27, "update stack layout");
   599     // Save outgoing argument to stack across push_FPU_state()
   600     __ subptr(rsp, wordSize * 2);
   601     __ fstp_d(Address(rsp, 0));
   603     // Save CPU & FPU state
   604     __ push(rbx);
   605     __ push(rcx);
   606     __ push(rsi);
   607     __ push(rdi);
   608     __ push(rbp);
   609     __ push_FPU_state();
   611     // push_FPU_state() resets the FP top of stack
   612     // Load original double into FP top of stack
   613     __ fld_d(Address(rsp, saved_argument_off * wordSize));
   614     // Store double into stack as outgoing argument
   615     __ subptr(rsp, wordSize*2);
   616     __ fst_d(Address(rsp, 0));
   618     // Prepare FPU for doing math in C-land
   619     __ empty_FPU_stack();
   620     // Call the C code to massage the double.  Result in EAX
   621     if (t == T_INT)
   622       { BLOCK_COMMENT("SharedRuntime::d2i"); }
   623     else if (t == T_LONG)
   624       { BLOCK_COMMENT("SharedRuntime::d2l"); }
   625     __ call_VM_leaf( fcn, 2 );
   627     // Restore CPU & FPU state
   628     __ pop_FPU_state();
   629     __ pop(rbp);
   630     __ pop(rdi);
   631     __ pop(rsi);
   632     __ pop(rcx);
   633     __ pop(rbx);
   634     __ addptr(rsp, wordSize * 2);
   636     __ ret(0);
   638     return start;
   639   }
   642   //---------------------------------------------------------------------------
   643   // The following routine generates a subroutine to throw an asynchronous
   644   // UnknownError when an unsafe access gets a fault that could not be
   645   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
   646   address generate_handler_for_unsafe_access() {
   647     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   648     address start = __ pc();
   650     __ push(0);                       // hole for return address-to-be
   651     __ pusha();                       // push registers
   652     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
   653     BLOCK_COMMENT("call handle_unsafe_access");
   654     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
   655     __ movptr(next_pc, rax);          // stuff next address
   656     __ popa();
   657     __ ret(0);                        // jump to next address
   659     return start;
   660   }
   663   //----------------------------------------------------------------------------------------------------
   664   // Non-destructive plausibility checks for oops
   666   address generate_verify_oop() {
   667     StubCodeMark mark(this, "StubRoutines", "verify_oop");
   668     address start = __ pc();
   670     // Incoming arguments on stack after saving rax,:
   671     //
   672     // [tos    ]: saved rdx
   673     // [tos + 1]: saved EFLAGS
   674     // [tos + 2]: return address
   675     // [tos + 3]: char* error message
   676     // [tos + 4]: oop   object to verify
   677     // [tos + 5]: saved rax, - saved by caller and bashed
   679     Label exit, error;
   680     __ pushf();
   681     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
   682     __ push(rdx);                                // save rdx
   683     // make sure object is 'reasonable'
   684     __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
   685     __ testptr(rax, rax);
   686     __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
   688     // Check if the oop is in the right area of memory
   689     const int oop_mask = Universe::verify_oop_mask();
   690     const int oop_bits = Universe::verify_oop_bits();
   691     __ mov(rdx, rax);
   692     __ andptr(rdx, oop_mask);
   693     __ cmpptr(rdx, oop_bits);
   694     __ jcc(Assembler::notZero, error);
   696     // make sure klass is 'reasonable'
   697     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
   698     __ testptr(rax, rax);
   699     __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
   701     // Check if the klass is in the right area of memory
   702     const int klass_mask = Universe::verify_klass_mask();
   703     const int klass_bits = Universe::verify_klass_bits();
   704     __ mov(rdx, rax);
   705     __ andptr(rdx, klass_mask);
   706     __ cmpptr(rdx, klass_bits);
   707     __ jcc(Assembler::notZero, error);
   709     // make sure klass' klass is 'reasonable'
   710     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass' klass
   711     __ testptr(rax, rax);
   712     __ jcc(Assembler::zero, error);              // if klass' klass is NULL it is broken
   714     __ mov(rdx, rax);
   715     __ andptr(rdx, klass_mask);
   716     __ cmpptr(rdx, klass_bits);
   717     __ jcc(Assembler::notZero, error);           // if klass not in right area
   718                                                  // of memory it is broken too.
   720     // return if everything seems ok
   721     __ bind(exit);
   722     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   723     __ pop(rdx);                                 // restore rdx
   724     __ popf();                                   // restore EFLAGS
   725     __ ret(3 * wordSize);                        // pop arguments
   727     // handle errors
   728     __ bind(error);
   729     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   730     __ pop(rdx);                                 // get saved rdx back
   731     __ popf();                                   // get saved EFLAGS off stack -- will be ignored
   732     __ pusha();                                  // push registers (eip = return address & msg are already pushed)
   733     BLOCK_COMMENT("call MacroAssembler::debug");
   734     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
   735     __ popa();
   736     __ ret(3 * wordSize);                        // pop arguments
   737     return start;
   738   }
   740   //
   741   //  Generate pre-barrier for array stores
   742   //
   743   //  Input:
   744   //     start   -  starting address
   745   //     count   -  element count
   746   void  gen_write_ref_array_pre_barrier(Register start, Register count) {
   747     assert_different_registers(start, count);
   748     BarrierSet* bs = Universe::heap()->barrier_set();
   749     switch (bs->kind()) {
   750       case BarrierSet::G1SATBCT:
   751       case BarrierSet::G1SATBCTLogging:
   752         {
   753           __ pusha();                      // push registers
   754           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
   755                           start, count);
   756           __ popa();
   757         }
   758         break;
   759       case BarrierSet::CardTableModRef:
   760       case BarrierSet::CardTableExtension:
   761       case BarrierSet::ModRef:
   762         break;
   763       default      :
   764         ShouldNotReachHere();
   766     }
   767   }
   770   //
   771   // Generate a post-barrier for an array store
   772   //
   773   //     start    -  starting address
   774   //     count    -  element count
   775   //
   776   //  The two input registers are overwritten.
   777   //
   778   void  gen_write_ref_array_post_barrier(Register start, Register count) {
   779     BarrierSet* bs = Universe::heap()->barrier_set();
   780     assert_different_registers(start, count);
   781     switch (bs->kind()) {
   782       case BarrierSet::G1SATBCT:
   783       case BarrierSet::G1SATBCTLogging:
   784         {
   785           __ pusha();                      // push registers
   786           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
   787                           start, count);
   788           __ popa();
   789         }
   790         break;
   792       case BarrierSet::CardTableModRef:
   793       case BarrierSet::CardTableExtension:
   794         {
   795           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
   796           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
   798           Label L_loop;
   799           const Register end = count;  // elements count; end == start+count-1
   800           assert_different_registers(start, end);
   802           __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
   803           __ shrptr(start, CardTableModRefBS::card_shift);
   804           __ shrptr(end,   CardTableModRefBS::card_shift);
   805           __ subptr(end, start); // end --> count
   806         __ BIND(L_loop);
   807           intptr_t disp = (intptr_t) ct->byte_map_base;
   808           Address cardtable(start, count, Address::times_1, disp);
   809           __ movb(cardtable, 0);
   810           __ decrement(count);
   811           __ jcc(Assembler::greaterEqual, L_loop);
   812         }
   813         break;
   814       case BarrierSet::ModRef:
   815         break;
   816       default      :
   817         ShouldNotReachHere();
   819     }
   820   }
   823   // Copy 64 bytes chunks
   824   //
   825   // Inputs:
   826   //   from        - source array address
   827   //   to_from     - destination array address - from
   828   //   qword_count - 8-bytes element count, negative
   829   //
   830   void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
   831     assert( UseSSE >= 2, "supported cpu only" );
   832     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   833     // Copy 64-byte chunks
   834     __ jmpb(L_copy_64_bytes);
   835     __ align(OptoLoopAlignment);
   836   __ BIND(L_copy_64_bytes_loop);
   838     if(UseUnalignedLoadStores) {
   839       __ movdqu(xmm0, Address(from, 0));
   840       __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
   841       __ movdqu(xmm1, Address(from, 16));
   842       __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
   843       __ movdqu(xmm2, Address(from, 32));
   844       __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
   845       __ movdqu(xmm3, Address(from, 48));
   846       __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
   848     } else {
   849       __ movq(xmm0, Address(from, 0));
   850       __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
   851       __ movq(xmm1, Address(from, 8));
   852       __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
   853       __ movq(xmm2, Address(from, 16));
   854       __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
   855       __ movq(xmm3, Address(from, 24));
   856       __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
   857       __ movq(xmm4, Address(from, 32));
   858       __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
   859       __ movq(xmm5, Address(from, 40));
   860       __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
   861       __ movq(xmm6, Address(from, 48));
   862       __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
   863       __ movq(xmm7, Address(from, 56));
   864       __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
   865     }
   867     __ addl(from, 64);
   868   __ BIND(L_copy_64_bytes);
   869     __ subl(qword_count, 8);
   870     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   871     __ addl(qword_count, 8);
   872     __ jccb(Assembler::zero, L_exit);
   873     //
   874     // length is too short, just copy qwords
   875     //
   876   __ BIND(L_copy_8_bytes);
   877     __ movq(xmm0, Address(from, 0));
   878     __ movq(Address(from, to_from, Address::times_1), xmm0);
   879     __ addl(from, 8);
   880     __ decrement(qword_count);
   881     __ jcc(Assembler::greater, L_copy_8_bytes);
   882   __ BIND(L_exit);
   883   }
   885   // Copy 64 bytes chunks
   886   //
   887   // Inputs:
   888   //   from        - source array address
   889   //   to_from     - destination array address - from
   890   //   qword_count - 8-bytes element count, negative
   891   //
   892   void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
   893     assert( VM_Version::supports_mmx(), "supported cpu only" );
   894     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   895     // Copy 64-byte chunks
   896     __ jmpb(L_copy_64_bytes);
   897     __ align(OptoLoopAlignment);
   898   __ BIND(L_copy_64_bytes_loop);
   899     __ movq(mmx0, Address(from, 0));
   900     __ movq(mmx1, Address(from, 8));
   901     __ movq(mmx2, Address(from, 16));
   902     __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
   903     __ movq(mmx3, Address(from, 24));
   904     __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
   905     __ movq(mmx4, Address(from, 32));
   906     __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
   907     __ movq(mmx5, Address(from, 40));
   908     __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
   909     __ movq(mmx6, Address(from, 48));
   910     __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
   911     __ movq(mmx7, Address(from, 56));
   912     __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
   913     __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
   914     __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
   915     __ addptr(from, 64);
   916   __ BIND(L_copy_64_bytes);
   917     __ subl(qword_count, 8);
   918     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   919     __ addl(qword_count, 8);
   920     __ jccb(Assembler::zero, L_exit);
   921     //
   922     // length is too short, just copy qwords
   923     //
   924   __ BIND(L_copy_8_bytes);
   925     __ movq(mmx0, Address(from, 0));
   926     __ movq(Address(from, to_from, Address::times_1), mmx0);
   927     __ addptr(from, 8);
   928     __ decrement(qword_count);
   929     __ jcc(Assembler::greater, L_copy_8_bytes);
   930   __ BIND(L_exit);
   931     __ emms();
   932   }
   934   address generate_disjoint_copy(BasicType t, bool aligned,
   935                                  Address::ScaleFactor sf,
   936                                  address* entry, const char *name) {
   937     __ align(CodeEntryAlignment);
   938     StubCodeMark mark(this, "StubRoutines", name);
   939     address start = __ pc();
   941     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
   942     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
   944     int shift = Address::times_ptr - sf;
   946     const Register from     = rsi;  // source array address
   947     const Register to       = rdi;  // destination array address
   948     const Register count    = rcx;  // elements count
   949     const Register to_from  = to;   // (to - from)
   950     const Register saved_to = rdx;  // saved destination array address
   952     __ enter(); // required for proper stackwalking of RuntimeStub frame
   953     __ push(rsi);
   954     __ push(rdi);
   955     __ movptr(from , Address(rsp, 12+ 4));
   956     __ movptr(to   , Address(rsp, 12+ 8));
   957     __ movl(count, Address(rsp, 12+ 12));
   958     if (t == T_OBJECT) {
   959       __ testl(count, count);
   960       __ jcc(Assembler::zero, L_0_count);
   961       gen_write_ref_array_pre_barrier(to, count);
   962       __ mov(saved_to, to);          // save 'to'
   963     }
   965     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
   966     BLOCK_COMMENT("Entry:");
   968     __ subptr(to, from); // to --> to_from
   969     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
   970     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
   971     if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
   972       // align source address at 4 bytes address boundary
   973       if (t == T_BYTE) {
   974         // One byte misalignment happens only for byte arrays
   975         __ testl(from, 1);
   976         __ jccb(Assembler::zero, L_skip_align1);
   977         __ movb(rax, Address(from, 0));
   978         __ movb(Address(from, to_from, Address::times_1, 0), rax);
   979         __ increment(from);
   980         __ decrement(count);
   981       __ BIND(L_skip_align1);
   982       }
   983       // Two bytes misalignment happens only for byte and short (char) arrays
   984       __ testl(from, 2);
   985       __ jccb(Assembler::zero, L_skip_align2);
   986       __ movw(rax, Address(from, 0));
   987       __ movw(Address(from, to_from, Address::times_1, 0), rax);
   988       __ addptr(from, 2);
   989       __ subl(count, 1<<(shift-1));
   990     __ BIND(L_skip_align2);
   991     }
   992     if (!VM_Version::supports_mmx()) {
   993       __ mov(rax, count);      // save 'count'
   994       __ shrl(count, shift); // bytes count
   995       __ addptr(to_from, from);// restore 'to'
   996       __ rep_mov();
   997       __ subptr(to_from, from);// restore 'to_from'
   998       __ mov(count, rax);      // restore 'count'
   999       __ jmpb(L_copy_2_bytes); // all dwords were copied
  1000     } else {
  1001       if (!UseUnalignedLoadStores) {
  1002         // align to 8 bytes, we know we are 4 byte aligned to start
  1003         __ testptr(from, 4);
  1004         __ jccb(Assembler::zero, L_copy_64_bytes);
  1005         __ movl(rax, Address(from, 0));
  1006         __ movl(Address(from, to_from, Address::times_1, 0), rax);
  1007         __ addptr(from, 4);
  1008         __ subl(count, 1<<shift);
  1010     __ BIND(L_copy_64_bytes);
  1011       __ mov(rax, count);
  1012       __ shrl(rax, shift+1);  // 8 bytes chunk count
  1013       //
  1014       // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
  1015       //
  1016       if (UseXMMForArrayCopy) {
  1017         xmm_copy_forward(from, to_from, rax);
  1018       } else {
  1019         mmx_copy_forward(from, to_from, rax);
  1022     // copy tailing dword
  1023   __ BIND(L_copy_4_bytes);
  1024     __ testl(count, 1<<shift);
  1025     __ jccb(Assembler::zero, L_copy_2_bytes);
  1026     __ movl(rax, Address(from, 0));
  1027     __ movl(Address(from, to_from, Address::times_1, 0), rax);
  1028     if (t == T_BYTE || t == T_SHORT) {
  1029       __ addptr(from, 4);
  1030     __ BIND(L_copy_2_bytes);
  1031       // copy tailing word
  1032       __ testl(count, 1<<(shift-1));
  1033       __ jccb(Assembler::zero, L_copy_byte);
  1034       __ movw(rax, Address(from, 0));
  1035       __ movw(Address(from, to_from, Address::times_1, 0), rax);
  1036       if (t == T_BYTE) {
  1037         __ addptr(from, 2);
  1038       __ BIND(L_copy_byte);
  1039         // copy tailing byte
  1040         __ testl(count, 1);
  1041         __ jccb(Assembler::zero, L_exit);
  1042         __ movb(rax, Address(from, 0));
  1043         __ movb(Address(from, to_from, Address::times_1, 0), rax);
  1044       __ BIND(L_exit);
  1045       } else {
  1046       __ BIND(L_copy_byte);
  1048     } else {
  1049     __ BIND(L_copy_2_bytes);
  1052     if (t == T_OBJECT) {
  1053       __ movl(count, Address(rsp, 12+12)); // reread 'count'
  1054       __ mov(to, saved_to); // restore 'to'
  1055       gen_write_ref_array_post_barrier(to, count);
  1056     __ BIND(L_0_count);
  1058     inc_copy_counter_np(t);
  1059     __ pop(rdi);
  1060     __ pop(rsi);
  1061     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1062     __ xorptr(rax, rax); // return 0
  1063     __ ret(0);
  1064     return start;
  1068   address generate_fill(BasicType t, bool aligned, const char *name) {
  1069     __ align(CodeEntryAlignment);
  1070     StubCodeMark mark(this, "StubRoutines", name);
  1071     address start = __ pc();
  1073     BLOCK_COMMENT("Entry:");
  1075     const Register to       = rdi;  // source array address
  1076     const Register value    = rdx;  // value
  1077     const Register count    = rsi;  // elements count
  1079     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1080     __ push(rsi);
  1081     __ push(rdi);
  1082     __ movptr(to   , Address(rsp, 12+ 4));
  1083     __ movl(value, Address(rsp, 12+ 8));
  1084     __ movl(count, Address(rsp, 12+ 12));
  1086     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
  1088     __ pop(rdi);
  1089     __ pop(rsi);
  1090     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1091     __ ret(0);
  1092     return start;
  1095   address generate_conjoint_copy(BasicType t, bool aligned,
  1096                                  Address::ScaleFactor sf,
  1097                                  address nooverlap_target,
  1098                                  address* entry, const char *name) {
  1099     __ align(CodeEntryAlignment);
  1100     StubCodeMark mark(this, "StubRoutines", name);
  1101     address start = __ pc();
  1103     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
  1104     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
  1106     int shift = Address::times_ptr - sf;
  1108     const Register src   = rax;  // source array address
  1109     const Register dst   = rdx;  // destination array address
  1110     const Register from  = rsi;  // source array address
  1111     const Register to    = rdi;  // destination array address
  1112     const Register count = rcx;  // elements count
  1113     const Register end   = rax;  // array end address
  1115     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1116     __ push(rsi);
  1117     __ push(rdi);
  1118     __ movptr(src  , Address(rsp, 12+ 4));   // from
  1119     __ movptr(dst  , Address(rsp, 12+ 8));   // to
  1120     __ movl2ptr(count, Address(rsp, 12+12)); // count
  1121     if (t == T_OBJECT) {
  1122        gen_write_ref_array_pre_barrier(dst, count);
  1125     if (entry != NULL) {
  1126       *entry = __ pc(); // Entry point from generic arraycopy stub.
  1127       BLOCK_COMMENT("Entry:");
  1130     if (t == T_OBJECT) {
  1131       __ testl(count, count);
  1132       __ jcc(Assembler::zero, L_0_count);
  1134     __ mov(from, src);
  1135     __ mov(to  , dst);
  1137     // arrays overlap test
  1138     RuntimeAddress nooverlap(nooverlap_target);
  1139     __ cmpptr(dst, src);
  1140     __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
  1141     __ jump_cc(Assembler::belowEqual, nooverlap);
  1142     __ cmpptr(dst, end);
  1143     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1145     // copy from high to low
  1146     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1147     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
  1148     if (t == T_BYTE || t == T_SHORT) {
  1149       // Align the end of destination array at 4 bytes address boundary
  1150       __ lea(end, Address(dst, count, sf, 0));
  1151       if (t == T_BYTE) {
  1152         // One byte misalignment happens only for byte arrays
  1153         __ testl(end, 1);
  1154         __ jccb(Assembler::zero, L_skip_align1);
  1155         __ decrement(count);
  1156         __ movb(rdx, Address(from, count, sf, 0));
  1157         __ movb(Address(to, count, sf, 0), rdx);
  1158       __ BIND(L_skip_align1);
  1160       // Two bytes misalignment happens only for byte and short (char) arrays
  1161       __ testl(end, 2);
  1162       __ jccb(Assembler::zero, L_skip_align2);
  1163       __ subptr(count, 1<<(shift-1));
  1164       __ movw(rdx, Address(from, count, sf, 0));
  1165       __ movw(Address(to, count, sf, 0), rdx);
  1166     __ BIND(L_skip_align2);
  1167       __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1168       __ jcc(Assembler::below, L_copy_4_bytes);
  1171     if (!VM_Version::supports_mmx()) {
  1172       __ std();
  1173       __ mov(rax, count); // Save 'count'
  1174       __ mov(rdx, to);    // Save 'to'
  1175       __ lea(rsi, Address(from, count, sf, -4));
  1176       __ lea(rdi, Address(to  , count, sf, -4));
  1177       __ shrptr(count, shift); // bytes count
  1178       __ rep_mov();
  1179       __ cld();
  1180       __ mov(count, rax); // restore 'count'
  1181       __ andl(count, (1<<shift)-1);      // mask the number of rest elements
  1182       __ movptr(from, Address(rsp, 12+4)); // reread 'from'
  1183       __ mov(to, rdx);   // restore 'to'
  1184       __ jmpb(L_copy_2_bytes); // all dword were copied
  1185    } else {
  1186       // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
  1187       __ testptr(end, 4);
  1188       __ jccb(Assembler::zero, L_copy_8_bytes);
  1189       __ subl(count, 1<<shift);
  1190       __ movl(rdx, Address(from, count, sf, 0));
  1191       __ movl(Address(to, count, sf, 0), rdx);
  1192       __ jmpb(L_copy_8_bytes);
  1194       __ align(OptoLoopAlignment);
  1195       // Move 8 bytes
  1196     __ BIND(L_copy_8_bytes_loop);
  1197       if (UseXMMForArrayCopy) {
  1198         __ movq(xmm0, Address(from, count, sf, 0));
  1199         __ movq(Address(to, count, sf, 0), xmm0);
  1200       } else {
  1201         __ movq(mmx0, Address(from, count, sf, 0));
  1202         __ movq(Address(to, count, sf, 0), mmx0);
  1204     __ BIND(L_copy_8_bytes);
  1205       __ subl(count, 2<<shift);
  1206       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1207       __ addl(count, 2<<shift);
  1208       if (!UseXMMForArrayCopy) {
  1209         __ emms();
  1212   __ BIND(L_copy_4_bytes);
  1213     // copy prefix qword
  1214     __ testl(count, 1<<shift);
  1215     __ jccb(Assembler::zero, L_copy_2_bytes);
  1216     __ movl(rdx, Address(from, count, sf, -4));
  1217     __ movl(Address(to, count, sf, -4), rdx);
  1219     if (t == T_BYTE || t == T_SHORT) {
  1220         __ subl(count, (1<<shift));
  1221       __ BIND(L_copy_2_bytes);
  1222         // copy prefix dword
  1223         __ testl(count, 1<<(shift-1));
  1224         __ jccb(Assembler::zero, L_copy_byte);
  1225         __ movw(rdx, Address(from, count, sf, -2));
  1226         __ movw(Address(to, count, sf, -2), rdx);
  1227         if (t == T_BYTE) {
  1228           __ subl(count, 1<<(shift-1));
  1229         __ BIND(L_copy_byte);
  1230           // copy prefix byte
  1231           __ testl(count, 1);
  1232           __ jccb(Assembler::zero, L_exit);
  1233           __ movb(rdx, Address(from, 0));
  1234           __ movb(Address(to, 0), rdx);
  1235         __ BIND(L_exit);
  1236         } else {
  1237         __ BIND(L_copy_byte);
  1239     } else {
  1240     __ BIND(L_copy_2_bytes);
  1242     if (t == T_OBJECT) {
  1243       __ movl2ptr(count, Address(rsp, 12+12)); // reread count
  1244       gen_write_ref_array_post_barrier(to, count);
  1245     __ BIND(L_0_count);
  1247     inc_copy_counter_np(t);
  1248     __ pop(rdi);
  1249     __ pop(rsi);
  1250     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1251     __ xorptr(rax, rax); // return 0
  1252     __ ret(0);
  1253     return start;
  1257   address generate_disjoint_long_copy(address* entry, const char *name) {
  1258     __ align(CodeEntryAlignment);
  1259     StubCodeMark mark(this, "StubRoutines", name);
  1260     address start = __ pc();
  1262     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1263     const Register from       = rax;  // source array address
  1264     const Register to         = rdx;  // destination array address
  1265     const Register count      = rcx;  // elements count
  1266     const Register to_from    = rdx;  // (to - from)
  1268     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1269     __ movptr(from , Address(rsp, 8+0));       // from
  1270     __ movptr(to   , Address(rsp, 8+4));       // to
  1271     __ movl2ptr(count, Address(rsp, 8+8));     // count
  1273     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
  1274     BLOCK_COMMENT("Entry:");
  1276     __ subptr(to, from); // to --> to_from
  1277     if (VM_Version::supports_mmx()) {
  1278       if (UseXMMForArrayCopy) {
  1279         xmm_copy_forward(from, to_from, count);
  1280       } else {
  1281         mmx_copy_forward(from, to_from, count);
  1283     } else {
  1284       __ jmpb(L_copy_8_bytes);
  1285       __ align(OptoLoopAlignment);
  1286     __ BIND(L_copy_8_bytes_loop);
  1287       __ fild_d(Address(from, 0));
  1288       __ fistp_d(Address(from, to_from, Address::times_1));
  1289       __ addptr(from, 8);
  1290     __ BIND(L_copy_8_bytes);
  1291       __ decrement(count);
  1292       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1294     inc_copy_counter_np(T_LONG);
  1295     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1296     __ xorptr(rax, rax); // return 0
  1297     __ ret(0);
  1298     return start;
  1301   address generate_conjoint_long_copy(address nooverlap_target,
  1302                                       address* entry, const char *name) {
  1303     __ align(CodeEntryAlignment);
  1304     StubCodeMark mark(this, "StubRoutines", name);
  1305     address start = __ pc();
  1307     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1308     const Register from       = rax;  // source array address
  1309     const Register to         = rdx;  // destination array address
  1310     const Register count      = rcx;  // elements count
  1311     const Register end_from   = rax;  // source array end address
  1313     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1314     __ movptr(from , Address(rsp, 8+0));       // from
  1315     __ movptr(to   , Address(rsp, 8+4));       // to
  1316     __ movl2ptr(count, Address(rsp, 8+8));     // count
  1318     *entry = __ pc(); // Entry point from generic arraycopy stub.
  1319     BLOCK_COMMENT("Entry:");
  1321     // arrays overlap test
  1322     __ cmpptr(to, from);
  1323     RuntimeAddress nooverlap(nooverlap_target);
  1324     __ jump_cc(Assembler::belowEqual, nooverlap);
  1325     __ lea(end_from, Address(from, count, Address::times_8, 0));
  1326     __ cmpptr(to, end_from);
  1327     __ movptr(from, Address(rsp, 8));  // from
  1328     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1330     __ jmpb(L_copy_8_bytes);
  1332     __ align(OptoLoopAlignment);
  1333   __ BIND(L_copy_8_bytes_loop);
  1334     if (VM_Version::supports_mmx()) {
  1335       if (UseXMMForArrayCopy) {
  1336         __ movq(xmm0, Address(from, count, Address::times_8));
  1337         __ movq(Address(to, count, Address::times_8), xmm0);
  1338       } else {
  1339         __ movq(mmx0, Address(from, count, Address::times_8));
  1340         __ movq(Address(to, count, Address::times_8), mmx0);
  1342     } else {
  1343       __ fild_d(Address(from, count, Address::times_8));
  1344       __ fistp_d(Address(to, count, Address::times_8));
  1346   __ BIND(L_copy_8_bytes);
  1347     __ decrement(count);
  1348     __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1350     if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
  1351       __ emms();
  1353     inc_copy_counter_np(T_LONG);
  1354     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1355     __ xorptr(rax, rax); // return 0
  1356     __ ret(0);
  1357     return start;
  1361   // Helper for generating a dynamic type check.
  1362   // The sub_klass must be one of {rbx, rdx, rsi}.
  1363   // The temp is killed.
  1364   void generate_type_check(Register sub_klass,
  1365                            Address& super_check_offset_addr,
  1366                            Address& super_klass_addr,
  1367                            Register temp,
  1368                            Label* L_success, Label* L_failure) {
  1369     BLOCK_COMMENT("type_check:");
  1371     Label L_fallthrough;
  1372 #define LOCAL_JCC(assembler_con, label_ptr)                             \
  1373     if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
  1374     else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/
  1376     // The following is a strange variation of the fast path which requires
  1377     // one less register, because needed values are on the argument stack.
  1378     // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
  1379     //                                  L_success, L_failure, NULL);
  1380     assert_different_registers(sub_klass, temp);
  1382     int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  1383                      Klass::secondary_super_cache_offset_in_bytes());
  1385     // if the pointers are equal, we are done (e.g., String[] elements)
  1386     __ cmpptr(sub_klass, super_klass_addr);
  1387     LOCAL_JCC(Assembler::equal, L_success);
  1389     // check the supertype display:
  1390     __ movl2ptr(temp, super_check_offset_addr);
  1391     Address super_check_addr(sub_klass, temp, Address::times_1, 0);
  1392     __ movptr(temp, super_check_addr); // load displayed supertype
  1393     __ cmpptr(temp, super_klass_addr); // test the super type
  1394     LOCAL_JCC(Assembler::equal, L_success);
  1396     // if it was a primary super, we can just fail immediately
  1397     __ cmpl(super_check_offset_addr, sc_offset);
  1398     LOCAL_JCC(Assembler::notEqual, L_failure);
  1400     // The repne_scan instruction uses fixed registers, which will get spilled.
  1401     // We happen to know this works best when super_klass is in rax.
  1402     Register super_klass = temp;
  1403     __ movptr(super_klass, super_klass_addr);
  1404     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
  1405                                      L_success, L_failure);
  1407     __ bind(L_fallthrough);
  1409     if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
  1410     if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
  1412 #undef LOCAL_JCC
  1415   //
  1416   //  Generate checkcasting array copy stub
  1417   //
  1418   //  Input:
  1419   //    4(rsp)   - source array address
  1420   //    8(rsp)   - destination array address
  1421   //   12(rsp)   - element count, can be zero
  1422   //   16(rsp)   - size_t ckoff (super_check_offset)
  1423   //   20(rsp)   - oop ckval (super_klass)
  1424   //
  1425   //  Output:
  1426   //    rax, ==  0  -  success
  1427   //    rax, == -1^K - failure, where K is partial transfer count
  1428   //
  1429   address generate_checkcast_copy(const char *name, address* entry) {
  1430     __ align(CodeEntryAlignment);
  1431     StubCodeMark mark(this, "StubRoutines", name);
  1432     address start = __ pc();
  1434     Label L_load_element, L_store_element, L_do_card_marks, L_done;
  1436     // register use:
  1437     //  rax, rdx, rcx -- loop control (end_from, end_to, count)
  1438     //  rdi, rsi      -- element access (oop, klass)
  1439     //  rbx,           -- temp
  1440     const Register from       = rax;    // source array address
  1441     const Register to         = rdx;    // destination array address
  1442     const Register length     = rcx;    // elements count
  1443     const Register elem       = rdi;    // each oop copied
  1444     const Register elem_klass = rsi;    // each elem._klass (sub_klass)
  1445     const Register temp       = rbx;    // lone remaining temp
  1447     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1449     __ push(rsi);
  1450     __ push(rdi);
  1451     __ push(rbx);
  1453     Address   from_arg(rsp, 16+ 4);     // from
  1454     Address     to_arg(rsp, 16+ 8);     // to
  1455     Address length_arg(rsp, 16+12);     // elements count
  1456     Address  ckoff_arg(rsp, 16+16);     // super_check_offset
  1457     Address  ckval_arg(rsp, 16+20);     // super_klass
  1459     // Load up:
  1460     __ movptr(from,     from_arg);
  1461     __ movptr(to,         to_arg);
  1462     __ movl2ptr(length, length_arg);
  1464     *entry = __ pc(); // Entry point from generic arraycopy stub.
  1465     BLOCK_COMMENT("Entry:");
  1467     //---------------------------------------------------------------
  1468     // Assembler stub will be used for this call to arraycopy
  1469     // if the two arrays are subtypes of Object[] but the
  1470     // destination array type is not equal to or a supertype
  1471     // of the source type.  Each element must be separately
  1472     // checked.
  1474     // Loop-invariant addresses.  They are exclusive end pointers.
  1475     Address end_from_addr(from, length, Address::times_ptr, 0);
  1476     Address   end_to_addr(to,   length, Address::times_ptr, 0);
  1478     Register end_from = from;           // re-use
  1479     Register end_to   = to;             // re-use
  1480     Register count    = length;         // re-use
  1482     // Loop-variant addresses.  They assume post-incremented count < 0.
  1483     Address from_element_addr(end_from, count, Address::times_ptr, 0);
  1484     Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
  1485     Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
  1487     // Copy from low to high addresses, indexed from the end of each array.
  1488     gen_write_ref_array_pre_barrier(to, count);
  1489     __ lea(end_from, end_from_addr);
  1490     __ lea(end_to,   end_to_addr);
  1491     assert(length == count, "");        // else fix next line:
  1492     __ negptr(count);                   // negate and test the length
  1493     __ jccb(Assembler::notZero, L_load_element);
  1495     // Empty array:  Nothing to do.
  1496     __ xorptr(rax, rax);                  // return 0 on (trivial) success
  1497     __ jmp(L_done);
  1499     // ======== begin loop ========
  1500     // (Loop is rotated; its entry is L_load_element.)
  1501     // Loop control:
  1502     //   for (count = -count; count != 0; count++)
  1503     // Base pointers src, dst are biased by 8*count,to last element.
  1504     __ align(OptoLoopAlignment);
  1506     __ BIND(L_store_element);
  1507     __ movptr(to_element_addr, elem);     // store the oop
  1508     __ increment(count);                // increment the count toward zero
  1509     __ jccb(Assembler::zero, L_do_card_marks);
  1511     // ======== loop entry is here ========
  1512     __ BIND(L_load_element);
  1513     __ movptr(elem, from_element_addr);   // load the oop
  1514     __ testptr(elem, elem);
  1515     __ jccb(Assembler::zero, L_store_element);
  1517     // (Could do a trick here:  Remember last successful non-null
  1518     // element stored and make a quick oop equality check on it.)
  1520     __ movptr(elem_klass, elem_klass_addr); // query the object klass
  1521     generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
  1522                         &L_store_element, NULL);
  1523       // (On fall-through, we have failed the element type check.)
  1524     // ======== end loop ========
  1526     // It was a real error; we must depend on the caller to finish the job.
  1527     // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
  1528     // Emit GC store barriers for the oops we have copied (length_arg + count),
  1529     // and report their number to the caller.
  1530     __ addl(count, length_arg);         // transfers = (length - remaining)
  1531     __ movl2ptr(rax, count);            // save the value
  1532     __ notptr(rax);                     // report (-1^K) to caller
  1533     __ movptr(to, to_arg);              // reload
  1534     assert_different_registers(to, count, rax);
  1535     gen_write_ref_array_post_barrier(to, count);
  1536     __ jmpb(L_done);
  1538     // Come here on success only.
  1539     __ BIND(L_do_card_marks);
  1540     __ movl2ptr(count, length_arg);
  1541     __ movptr(to, to_arg);                // reload
  1542     gen_write_ref_array_post_barrier(to, count);
  1543     __ xorptr(rax, rax);                  // return 0 on success
  1545     // Common exit point (success or failure).
  1546     __ BIND(L_done);
  1547     __ pop(rbx);
  1548     __ pop(rdi);
  1549     __ pop(rsi);
  1550     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
  1551     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1552     __ ret(0);
  1554     return start;
  1557   //
  1558   //  Generate 'unsafe' array copy stub
  1559   //  Though just as safe as the other stubs, it takes an unscaled
  1560   //  size_t argument instead of an element count.
  1561   //
  1562   //  Input:
  1563   //    4(rsp)   - source array address
  1564   //    8(rsp)   - destination array address
  1565   //   12(rsp)   - byte count, can be zero
  1566   //
  1567   //  Output:
  1568   //    rax, ==  0  -  success
  1569   //    rax, == -1  -  need to call System.arraycopy
  1570   //
  1571   // Examines the alignment of the operands and dispatches
  1572   // to a long, int, short, or byte copy loop.
  1573   //
  1574   address generate_unsafe_copy(const char *name,
  1575                                address byte_copy_entry,
  1576                                address short_copy_entry,
  1577                                address int_copy_entry,
  1578                                address long_copy_entry) {
  1580     Label L_long_aligned, L_int_aligned, L_short_aligned;
  1582     __ align(CodeEntryAlignment);
  1583     StubCodeMark mark(this, "StubRoutines", name);
  1584     address start = __ pc();
  1586     const Register from       = rax;  // source array address
  1587     const Register to         = rdx;  // destination array address
  1588     const Register count      = rcx;  // elements count
  1590     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1591     __ push(rsi);
  1592     __ push(rdi);
  1593     Address  from_arg(rsp, 12+ 4);      // from
  1594     Address    to_arg(rsp, 12+ 8);      // to
  1595     Address count_arg(rsp, 12+12);      // byte count
  1597     // Load up:
  1598     __ movptr(from ,  from_arg);
  1599     __ movptr(to   ,    to_arg);
  1600     __ movl2ptr(count, count_arg);
  1602     // bump this on entry, not on exit:
  1603     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
  1605     const Register bits = rsi;
  1606     __ mov(bits, from);
  1607     __ orptr(bits, to);
  1608     __ orptr(bits, count);
  1610     __ testl(bits, BytesPerLong-1);
  1611     __ jccb(Assembler::zero, L_long_aligned);
  1613     __ testl(bits, BytesPerInt-1);
  1614     __ jccb(Assembler::zero, L_int_aligned);
  1616     __ testl(bits, BytesPerShort-1);
  1617     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
  1619     __ BIND(L_short_aligned);
  1620     __ shrptr(count, LogBytesPerShort); // size => short_count
  1621     __ movl(count_arg, count);          // update 'count'
  1622     __ jump(RuntimeAddress(short_copy_entry));
  1624     __ BIND(L_int_aligned);
  1625     __ shrptr(count, LogBytesPerInt); // size => int_count
  1626     __ movl(count_arg, count);          // update 'count'
  1627     __ jump(RuntimeAddress(int_copy_entry));
  1629     __ BIND(L_long_aligned);
  1630     __ shrptr(count, LogBytesPerLong); // size => qword_count
  1631     __ movl(count_arg, count);          // update 'count'
  1632     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1633     __ pop(rsi);
  1634     __ jump(RuntimeAddress(long_copy_entry));
  1636     return start;
  1640   // Perform range checks on the proposed arraycopy.
  1641   // Smashes src_pos and dst_pos.  (Uses them up for temps.)
  1642   void arraycopy_range_checks(Register src,
  1643                               Register src_pos,
  1644                               Register dst,
  1645                               Register dst_pos,
  1646                               Address& length,
  1647                               Label& L_failed) {
  1648     BLOCK_COMMENT("arraycopy_range_checks:");
  1649     const Register src_end = src_pos;   // source array end position
  1650     const Register dst_end = dst_pos;   // destination array end position
  1651     __ addl(src_end, length); // src_pos + length
  1652     __ addl(dst_end, length); // dst_pos + length
  1654     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
  1655     __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
  1656     __ jcc(Assembler::above, L_failed);
  1658     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
  1659     __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
  1660     __ jcc(Assembler::above, L_failed);
  1662     BLOCK_COMMENT("arraycopy_range_checks done");
  1666   //
  1667   //  Generate generic array copy stubs
  1668   //
  1669   //  Input:
  1670   //     4(rsp)    -  src oop
  1671   //     8(rsp)    -  src_pos
  1672   //    12(rsp)    -  dst oop
  1673   //    16(rsp)    -  dst_pos
  1674   //    20(rsp)    -  element count
  1675   //
  1676   //  Output:
  1677   //    rax, ==  0  -  success
  1678   //    rax, == -1^K - failure, where K is partial transfer count
  1679   //
  1680   address generate_generic_copy(const char *name,
  1681                                 address entry_jbyte_arraycopy,
  1682                                 address entry_jshort_arraycopy,
  1683                                 address entry_jint_arraycopy,
  1684                                 address entry_oop_arraycopy,
  1685                                 address entry_jlong_arraycopy,
  1686                                 address entry_checkcast_arraycopy) {
  1687     Label L_failed, L_failed_0, L_objArray;
  1689     { int modulus = CodeEntryAlignment;
  1690       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
  1691       int advance = target - (__ offset() % modulus);
  1692       if (advance < 0)  advance += modulus;
  1693       if (advance > 0)  __ nop(advance);
  1695     StubCodeMark mark(this, "StubRoutines", name);
  1697     // Short-hop target to L_failed.  Makes for denser prologue code.
  1698     __ BIND(L_failed_0);
  1699     __ jmp(L_failed);
  1700     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
  1702     __ align(CodeEntryAlignment);
  1703     address start = __ pc();
  1705     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1706     __ push(rsi);
  1707     __ push(rdi);
  1709     // bump this on entry, not on exit:
  1710     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
  1712     // Input values
  1713     Address SRC     (rsp, 12+ 4);
  1714     Address SRC_POS (rsp, 12+ 8);
  1715     Address DST     (rsp, 12+12);
  1716     Address DST_POS (rsp, 12+16);
  1717     Address LENGTH  (rsp, 12+20);
  1719     //-----------------------------------------------------------------------
  1720     // Assembler stub will be used for this call to arraycopy
  1721     // if the following conditions are met:
  1722     //
  1723     // (1) src and dst must not be null.
  1724     // (2) src_pos must not be negative.
  1725     // (3) dst_pos must not be negative.
  1726     // (4) length  must not be negative.
  1727     // (5) src klass and dst klass should be the same and not NULL.
  1728     // (6) src and dst should be arrays.
  1729     // (7) src_pos + length must not exceed length of src.
  1730     // (8) dst_pos + length must not exceed length of dst.
  1731     //
  1733     const Register src     = rax;       // source array oop
  1734     const Register src_pos = rsi;
  1735     const Register dst     = rdx;       // destination array oop
  1736     const Register dst_pos = rdi;
  1737     const Register length  = rcx;       // transfer count
  1739     //  if (src == NULL) return -1;
  1740     __ movptr(src, SRC);      // src oop
  1741     __ testptr(src, src);
  1742     __ jccb(Assembler::zero, L_failed_0);
  1744     //  if (src_pos < 0) return -1;
  1745     __ movl2ptr(src_pos, SRC_POS);  // src_pos
  1746     __ testl(src_pos, src_pos);
  1747     __ jccb(Assembler::negative, L_failed_0);
  1749     //  if (dst == NULL) return -1;
  1750     __ movptr(dst, DST);      // dst oop
  1751     __ testptr(dst, dst);
  1752     __ jccb(Assembler::zero, L_failed_0);
  1754     //  if (dst_pos < 0) return -1;
  1755     __ movl2ptr(dst_pos, DST_POS);  // dst_pos
  1756     __ testl(dst_pos, dst_pos);
  1757     __ jccb(Assembler::negative, L_failed_0);
  1759     //  if (length < 0) return -1;
  1760     __ movl2ptr(length, LENGTH);   // length
  1761     __ testl(length, length);
  1762     __ jccb(Assembler::negative, L_failed_0);
  1764     //  if (src->klass() == NULL) return -1;
  1765     Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
  1766     Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
  1767     const Register rcx_src_klass = rcx;    // array klass
  1768     __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
  1770 #ifdef ASSERT
  1771     //  assert(src->klass() != NULL);
  1772     BLOCK_COMMENT("assert klasses not null");
  1773     { Label L1, L2;
  1774       __ testptr(rcx_src_klass, rcx_src_klass);
  1775       __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
  1776       __ bind(L1);
  1777       __ stop("broken null klass");
  1778       __ bind(L2);
  1779       __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
  1780       __ jccb(Assembler::equal, L1);      // this would be broken also
  1781       BLOCK_COMMENT("assert done");
  1783 #endif //ASSERT
  1785     // Load layout helper (32-bits)
  1786     //
  1787     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  1788     // 32        30    24            16              8     2                 0
  1789     //
  1790     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  1791     //
  1793     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
  1794                     Klass::layout_helper_offset_in_bytes();
  1795     Address src_klass_lh_addr(rcx_src_klass, lh_offset);
  1797     // Handle objArrays completely differently...
  1798     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  1799     __ cmpl(src_klass_lh_addr, objArray_lh);
  1800     __ jcc(Assembler::equal, L_objArray);
  1802     //  if (src->klass() != dst->klass()) return -1;
  1803     __ cmpptr(rcx_src_klass, dst_klass_addr);
  1804     __ jccb(Assembler::notEqual, L_failed_0);
  1806     const Register rcx_lh = rcx;  // layout helper
  1807     assert(rcx_lh == rcx_src_klass, "known alias");
  1808     __ movl(rcx_lh, src_klass_lh_addr);
  1810     //  if (!src->is_Array()) return -1;
  1811     __ cmpl(rcx_lh, Klass::_lh_neutral_value);
  1812     __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
  1814     // At this point, it is known to be a typeArray (array_tag 0x3).
  1815 #ifdef ASSERT
  1816     { Label L;
  1817       __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
  1818       __ jcc(Assembler::greaterEqual, L); // signed cmp
  1819       __ stop("must be a primitive array");
  1820       __ bind(L);
  1822 #endif
  1824     assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
  1825     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1827     // typeArrayKlass
  1828     //
  1829     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  1830     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  1831     //
  1832     const Register rsi_offset = rsi; // array offset
  1833     const Register src_array  = src; // src array offset
  1834     const Register dst_array  = dst; // dst array offset
  1835     const Register rdi_elsize = rdi; // log2 element size
  1837     __ mov(rsi_offset, rcx_lh);
  1838     __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
  1839     __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
  1840     __ addptr(src_array, rsi_offset);  // src array offset
  1841     __ addptr(dst_array, rsi_offset);  // dst array offset
  1842     __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
  1844     // next registers should be set before the jump to corresponding stub
  1845     const Register from       = src; // source array address
  1846     const Register to         = dst; // destination array address
  1847     const Register count      = rcx; // elements count
  1848     // some of them should be duplicated on stack
  1849 #define FROM   Address(rsp, 12+ 4)
  1850 #define TO     Address(rsp, 12+ 8)   // Not used now
  1851 #define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
  1853     BLOCK_COMMENT("scale indexes to element size");
  1854     __ movl2ptr(rsi, SRC_POS);  // src_pos
  1855     __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
  1856     assert(src_array == from, "");
  1857     __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
  1858     __ movl2ptr(rdi, DST_POS);  // dst_pos
  1859     __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
  1860     assert(dst_array == to, "");
  1861     __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
  1862     __ movptr(FROM, from);      // src_addr
  1863     __ mov(rdi_elsize, rcx_lh); // log2 elsize
  1864     __ movl2ptr(count, LENGTH); // elements count
  1866     BLOCK_COMMENT("choose copy loop based on element size");
  1867     __ cmpl(rdi_elsize, 0);
  1869     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
  1870     __ cmpl(rdi_elsize, LogBytesPerShort);
  1871     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
  1872     __ cmpl(rdi_elsize, LogBytesPerInt);
  1873     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
  1874 #ifdef ASSERT
  1875     __ cmpl(rdi_elsize, LogBytesPerLong);
  1876     __ jccb(Assembler::notEqual, L_failed);
  1877 #endif
  1878     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1879     __ pop(rsi);
  1880     __ jump(RuntimeAddress(entry_jlong_arraycopy));
  1882   __ BIND(L_failed);
  1883     __ xorptr(rax, rax);
  1884     __ notptr(rax); // return -1
  1885     __ pop(rdi);
  1886     __ pop(rsi);
  1887     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1888     __ ret(0);
  1890     // objArrayKlass
  1891   __ BIND(L_objArray);
  1892     // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
  1894     Label L_plain_copy, L_checkcast_copy;
  1895     //  test array classes for subtyping
  1896     __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
  1897     __ jccb(Assembler::notEqual, L_checkcast_copy);
  1899     // Identically typed arrays can be copied without element-wise checks.
  1900     assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
  1901     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1903   __ BIND(L_plain_copy);
  1904     __ movl2ptr(count, LENGTH); // elements count
  1905     __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
  1906     __ lea(from, Address(src, src_pos, Address::times_ptr,
  1907                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
  1908     __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
  1909     __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
  1910                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
  1911     __ movptr(FROM,  from);   // src_addr
  1912     __ movptr(TO,    to);     // dst_addr
  1913     __ movl(COUNT, count);  // count
  1914     __ jump(RuntimeAddress(entry_oop_arraycopy));
  1916   __ BIND(L_checkcast_copy);
  1917     // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
  1919       // Handy offsets:
  1920       int  ek_offset = (klassOopDesc::header_size() * HeapWordSize +
  1921                         objArrayKlass::element_klass_offset_in_bytes());
  1922       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  1923                         Klass::super_check_offset_offset_in_bytes());
  1925       Register rsi_dst_klass = rsi;
  1926       Register rdi_temp      = rdi;
  1927       assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
  1928       assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
  1929       Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
  1931       // Before looking at dst.length, make sure dst is also an objArray.
  1932       __ movptr(rsi_dst_klass, dst_klass_addr);
  1933       __ cmpl(dst_klass_lh_addr, objArray_lh);
  1934       __ jccb(Assembler::notEqual, L_failed);
  1936       // It is safe to examine both src.length and dst.length.
  1937       __ movl2ptr(src_pos, SRC_POS);        // reload rsi
  1938       arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1939       // (Now src_pos and dst_pos are killed, but not src and dst.)
  1941       // We'll need this temp (don't forget to pop it after the type check).
  1942       __ push(rbx);
  1943       Register rbx_src_klass = rbx;
  1945       __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
  1946       __ movptr(rsi_dst_klass, dst_klass_addr);
  1947       Address super_check_offset_addr(rsi_dst_klass, sco_offset);
  1948       Label L_fail_array_check;
  1949       generate_type_check(rbx_src_klass,
  1950                           super_check_offset_addr, dst_klass_addr,
  1951                           rdi_temp, NULL, &L_fail_array_check);
  1952       // (On fall-through, we have passed the array type check.)
  1953       __ pop(rbx);
  1954       __ jmp(L_plain_copy);
  1956       __ BIND(L_fail_array_check);
  1957       // Reshuffle arguments so we can call checkcast_arraycopy:
  1959       // match initial saves for checkcast_arraycopy
  1960       // push(rsi);    // already done; see above
  1961       // push(rdi);    // already done; see above
  1962       // push(rbx);    // already done; see above
  1964       // Marshal outgoing arguments now, freeing registers.
  1965       Address   from_arg(rsp, 16+ 4);   // from
  1966       Address     to_arg(rsp, 16+ 8);   // to
  1967       Address length_arg(rsp, 16+12);   // elements count
  1968       Address  ckoff_arg(rsp, 16+16);   // super_check_offset
  1969       Address  ckval_arg(rsp, 16+20);   // super_klass
  1971       Address SRC_POS_arg(rsp, 16+ 8);
  1972       Address DST_POS_arg(rsp, 16+16);
  1973       Address  LENGTH_arg(rsp, 16+20);
  1974       // push rbx, changed the incoming offsets (why not just use rbp,??)
  1975       // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
  1977       __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
  1978       __ movl2ptr(length, LENGTH_arg);    // reload elements count
  1979       __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
  1980       __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
  1982       __ movptr(ckval_arg, rbx);          // destination element type
  1983       __ movl(rbx, Address(rbx, sco_offset));
  1984       __ movl(ckoff_arg, rbx);          // corresponding class check offset
  1986       __ movl(length_arg, length);      // outgoing length argument
  1988       __ lea(from, Address(src, src_pos, Address::times_ptr,
  1989                             arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1990       __ movptr(from_arg, from);
  1992       __ lea(to, Address(dst, dst_pos, Address::times_ptr,
  1993                           arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1994       __ movptr(to_arg, to);
  1995       __ jump(RuntimeAddress(entry_checkcast_arraycopy));
  1998     return start;
  2001   void generate_arraycopy_stubs() {
  2002     address entry;
  2003     address entry_jbyte_arraycopy;
  2004     address entry_jshort_arraycopy;
  2005     address entry_jint_arraycopy;
  2006     address entry_oop_arraycopy;
  2007     address entry_jlong_arraycopy;
  2008     address entry_checkcast_arraycopy;
  2010     StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
  2011         generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
  2012                                "arrayof_jbyte_disjoint_arraycopy");
  2013     StubRoutines::_arrayof_jbyte_arraycopy =
  2014         generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
  2015                                NULL, "arrayof_jbyte_arraycopy");
  2016     StubRoutines::_jbyte_disjoint_arraycopy =
  2017         generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
  2018                                "jbyte_disjoint_arraycopy");
  2019     StubRoutines::_jbyte_arraycopy =
  2020         generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
  2021                                &entry_jbyte_arraycopy, "jbyte_arraycopy");
  2023     StubRoutines::_arrayof_jshort_disjoint_arraycopy =
  2024         generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
  2025                                "arrayof_jshort_disjoint_arraycopy");
  2026     StubRoutines::_arrayof_jshort_arraycopy =
  2027         generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
  2028                                NULL, "arrayof_jshort_arraycopy");
  2029     StubRoutines::_jshort_disjoint_arraycopy =
  2030         generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
  2031                                "jshort_disjoint_arraycopy");
  2032     StubRoutines::_jshort_arraycopy =
  2033         generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
  2034                                &entry_jshort_arraycopy, "jshort_arraycopy");
  2036     // Next arrays are always aligned on 4 bytes at least.
  2037     StubRoutines::_jint_disjoint_arraycopy =
  2038         generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
  2039                                "jint_disjoint_arraycopy");
  2040     StubRoutines::_jint_arraycopy =
  2041         generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
  2042                                &entry_jint_arraycopy, "jint_arraycopy");
  2044     StubRoutines::_oop_disjoint_arraycopy =
  2045         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
  2046                                "oop_disjoint_arraycopy");
  2047     StubRoutines::_oop_arraycopy =
  2048         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
  2049                                &entry_oop_arraycopy, "oop_arraycopy");
  2051     StubRoutines::_jlong_disjoint_arraycopy =
  2052         generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
  2053     StubRoutines::_jlong_arraycopy =
  2054         generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
  2055                                     "jlong_arraycopy");
  2057     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
  2058     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
  2059     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
  2060     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
  2061     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
  2062     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
  2064     StubRoutines::_arrayof_jint_disjoint_arraycopy  =
  2065         StubRoutines::_jint_disjoint_arraycopy;
  2066     StubRoutines::_arrayof_oop_disjoint_arraycopy   =
  2067         StubRoutines::_oop_disjoint_arraycopy;
  2068     StubRoutines::_arrayof_jlong_disjoint_arraycopy =
  2069         StubRoutines::_jlong_disjoint_arraycopy;
  2071     StubRoutines::_arrayof_jint_arraycopy  = StubRoutines::_jint_arraycopy;
  2072     StubRoutines::_arrayof_oop_arraycopy   = StubRoutines::_oop_arraycopy;
  2073     StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
  2075     StubRoutines::_checkcast_arraycopy =
  2076         generate_checkcast_copy("checkcast_arraycopy",
  2077                                   &entry_checkcast_arraycopy);
  2079     StubRoutines::_unsafe_arraycopy =
  2080         generate_unsafe_copy("unsafe_arraycopy",
  2081                                entry_jbyte_arraycopy,
  2082                                entry_jshort_arraycopy,
  2083                                entry_jint_arraycopy,
  2084                                entry_jlong_arraycopy);
  2086     StubRoutines::_generic_arraycopy =
  2087         generate_generic_copy("generic_arraycopy",
  2088                                entry_jbyte_arraycopy,
  2089                                entry_jshort_arraycopy,
  2090                                entry_jint_arraycopy,
  2091                                entry_oop_arraycopy,
  2092                                entry_jlong_arraycopy,
  2093                                entry_checkcast_arraycopy);
  2096   void generate_math_stubs() {
  2098       StubCodeMark mark(this, "StubRoutines", "log");
  2099       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
  2101       __ fld_d(Address(rsp, 4));
  2102       __ flog();
  2103       __ ret(0);
  2106       StubCodeMark mark(this, "StubRoutines", "log10");
  2107       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
  2109       __ fld_d(Address(rsp, 4));
  2110       __ flog10();
  2111       __ ret(0);
  2114       StubCodeMark mark(this, "StubRoutines", "sin");
  2115       StubRoutines::_intrinsic_sin = (double (*)(double))  __ pc();
  2117       __ fld_d(Address(rsp, 4));
  2118       __ trigfunc('s');
  2119       __ ret(0);
  2122       StubCodeMark mark(this, "StubRoutines", "cos");
  2123       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
  2125       __ fld_d(Address(rsp, 4));
  2126       __ trigfunc('c');
  2127       __ ret(0);
  2130       StubCodeMark mark(this, "StubRoutines", "tan");
  2131       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
  2133       __ fld_d(Address(rsp, 4));
  2134       __ trigfunc('t');
  2135       __ ret(0);
  2138     // The intrinsic version of these seem to return the same value as
  2139     // the strict version.
  2140     StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
  2141     StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
  2144  public:
  2145   // Information about frame layout at time of blocking runtime call.
  2146   // Note that we only have to preserve callee-saved registers since
  2147   // the compilers are responsible for supplying a continuation point
  2148   // if they expect all registers to be preserved.
  2149   enum layout {
  2150     thread_off,    // last_java_sp
  2151     rbp_off,       // callee saved register
  2152     ret_pc,
  2153     framesize
  2154   };
  2156  private:
  2158 #undef  __
  2159 #define __ masm->
  2161   //------------------------------------------------------------------------------------------------------------------------
  2162   // Continuation point for throwing of implicit exceptions that are not handled in
  2163   // the current activation. Fabricates an exception oop and initiates normal
  2164   // exception dispatching in this frame.
  2165   //
  2166   // Previously the compiler (c2) allowed for callee save registers on Java calls.
  2167   // This is no longer true after adapter frames were removed but could possibly
  2168   // be brought back in the future if the interpreter code was reworked and it
  2169   // was deemed worthwhile. The comment below was left to describe what must
  2170   // happen here if callee saves were resurrected. As it stands now this stub
  2171   // could actually be a vanilla BufferBlob and have now oopMap at all.
  2172   // Since it doesn't make much difference we've chosen to leave it the
  2173   // way it was in the callee save days and keep the comment.
  2175   // If we need to preserve callee-saved values we need a callee-saved oop map and
  2176   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
  2177   // If the compiler needs all registers to be preserved between the fault
  2178   // point and the exception handler then it must assume responsibility for that in
  2179   // AbstractCompiler::continuation_for_implicit_null_exception or
  2180   // continuation_for_implicit_division_by_zero_exception. All other implicit
  2181   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
  2182   // either at call sites or otherwise assume that stack unwinding will be initiated,
  2183   // so caller saved registers were assumed volatile in the compiler.
  2184   address generate_throw_exception(const char* name, address runtime_entry,
  2185                                    bool restore_saved_exception_pc) {
  2187     int insts_size = 256;
  2188     int locs_size  = 32;
  2190     CodeBuffer code(name, insts_size, locs_size);
  2191     OopMapSet* oop_maps  = new OopMapSet();
  2192     MacroAssembler* masm = new MacroAssembler(&code);
  2194     address start = __ pc();
  2196     // This is an inlined and slightly modified version of call_VM
  2197     // which has the ability to fetch the return PC out of
  2198     // thread-local storage and also sets up last_Java_sp slightly
  2199     // differently than the real call_VM
  2200     Register java_thread = rbx;
  2201     __ get_thread(java_thread);
  2202     if (restore_saved_exception_pc) {
  2203       __ movptr(rax, Address(java_thread, in_bytes(JavaThread::saved_exception_pc_offset())));
  2204       __ push(rax);
  2207     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2209     // pc and rbp, already pushed
  2210     __ subptr(rsp, (framesize-2) * wordSize); // prolog
  2212     // Frame is now completed as far as size and linkage.
  2214     int frame_complete = __ pc() - start;
  2216     // push java thread (becomes first argument of C function)
  2217     __ movptr(Address(rsp, thread_off * wordSize), java_thread);
  2219     // Set up last_Java_sp and last_Java_fp
  2220     __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
  2222     // Call runtime
  2223     BLOCK_COMMENT("call runtime_entry");
  2224     __ call(RuntimeAddress(runtime_entry));
  2225     // Generate oop map
  2226     OopMap* map =  new OopMap(framesize, 0);
  2227     oop_maps->add_gc_map(__ pc() - start, map);
  2229     // restore the thread (cannot use the pushed argument since arguments
  2230     // may be overwritten by C code generated by an optimizing compiler);
  2231     // however can use the register value directly if it is callee saved.
  2232     __ get_thread(java_thread);
  2234     __ reset_last_Java_frame(java_thread, true, false);
  2236     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2238     // check for pending exceptions
  2239 #ifdef ASSERT
  2240     Label L;
  2241     __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  2242     __ jcc(Assembler::notEqual, L);
  2243     __ should_not_reach_here();
  2244     __ bind(L);
  2245 #endif /* ASSERT */
  2246     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2249     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
  2250     return stub->entry_point();
  2254   void create_control_words() {
  2255     // Round to nearest, 53-bit mode, exceptions masked
  2256     StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
  2257     // Round to zero, 53-bit mode, exception mased
  2258     StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
  2259     // Round to nearest, 24-bit mode, exceptions masked
  2260     StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
  2261     // Round to nearest, 64-bit mode, exceptions masked
  2262     StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
  2263     // Round to nearest, 64-bit mode, exceptions masked
  2264     StubRoutines::_mxcsr_std           = 0x1F80;
  2265     // Note: the following two constants are 80-bit values
  2266     //       layout is critical for correct loading by FPU.
  2267     // Bias for strict fp multiply/divide
  2268     StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
  2269     StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
  2270     StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
  2271     // Un-Bias for strict fp multiply/divide
  2272     StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
  2273     StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
  2274     StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
  2277   //---------------------------------------------------------------------------
  2278   // Initialization
  2280   void generate_initial() {
  2281     // Generates all stubs and initializes the entry points
  2283     //------------------------------------------------------------------------------------------------------------------------
  2284     // entry points that exist in all platforms
  2285     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
  2286     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
  2287     StubRoutines::_forward_exception_entry      = generate_forward_exception();
  2289     StubRoutines::_call_stub_entry              =
  2290       generate_call_stub(StubRoutines::_call_stub_return_address);
  2291     // is referenced by megamorphic call
  2292     StubRoutines::_catch_exception_entry        = generate_catch_exception();
  2294     // These are currently used by Solaris/Intel
  2295     StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
  2297     StubRoutines::_handler_for_unsafe_access_entry =
  2298       generate_handler_for_unsafe_access();
  2300     // platform dependent
  2301     create_control_words();
  2303     StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
  2304     StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
  2305     StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
  2306                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
  2307     StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
  2308                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
  2312   void generate_all() {
  2313     // Generates all stubs and initializes the entry points
  2315     // These entry points require SharedInfo::stack0 to be set up in non-core builds
  2316     // and need to be relocatable, so they each fabricate a RuntimeStub internally.
  2317     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError),  false);
  2318     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError),  false);
  2319     StubRoutines::_throw_ArithmeticException_entry         = generate_throw_exception("ArithmeticException throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException),  true);
  2320     StubRoutines::_throw_NullPointerException_entry        = generate_throw_exception("NullPointerException throw_exception",         CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
  2321     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
  2322     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError),   false);
  2324     //------------------------------------------------------------------------------------------------------------------------
  2325     // entry points that are platform specific
  2327     // support for verify_oop (must happen after universe_init)
  2328     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
  2330     // arraycopy stubs used by compilers
  2331     generate_arraycopy_stubs();
  2333     generate_math_stubs();
  2337  public:
  2338   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  2339     if (all) {
  2340       generate_all();
  2341     } else {
  2342       generate_initial();
  2345 }; // end class declaration
  2348 void StubGenerator_generate(CodeBuffer* code, bool all) {
  2349   StubGenerator g(code, all);

mercurial