src/cpu/sparc/vm/assembler_sparc.cpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2201
d55217dc206f
child 2344
ac637b7220d1
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "assembler_sparc.inline.hpp"
    27 #include "gc_interface/collectedHeap.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "memory/cardTableModRefBS.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "prims/methodHandles.hpp"
    32 #include "runtime/biasedLocking.hpp"
    33 #include "runtime/interfaceSupport.hpp"
    34 #include "runtime/objectMonitor.hpp"
    35 #include "runtime/os.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #ifndef SERIALGC
    39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    40 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    41 #include "gc_implementation/g1/heapRegion.hpp"
    42 #endif
    44 // Convert the raw encoding form into the form expected by the
    45 // constructor for Address.
    46 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
    47   assert(scale == 0, "not supported");
    48   RelocationHolder rspec;
    49   if (disp_is_oop) {
    50     rspec = Relocation::spec_simple(relocInfo::oop_type);
    51   }
    53   Register rindex = as_Register(index);
    54   if (rindex != G0) {
    55     Address madr(as_Register(base), rindex);
    56     madr._rspec = rspec;
    57     return madr;
    58   } else {
    59     Address madr(as_Register(base), disp);
    60     madr._rspec = rspec;
    61     return madr;
    62   }
    63 }
    65 Address Argument::address_in_frame() const {
    66   // Warning: In LP64 mode disp will occupy more than 10 bits, but
    67   //          op codes such as ld or ldx, only access disp() to get
    68   //          their simm13 argument.
    69   int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
    70   if (is_in())
    71     return Address(FP, disp); // In argument.
    72   else
    73     return Address(SP, disp); // Out argument.
    74 }
    76 static const char* argumentNames[][2] = {
    77   {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
    78   {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
    79   {"A(n>9)","P(n>9)"}
    80 };
    82 const char* Argument::name() const {
    83   int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
    84   int num = number();
    85   if (num >= nofArgs)  num = nofArgs - 1;
    86   return argumentNames[num][is_in() ? 1 : 0];
    87 }
    89 void Assembler::print_instruction(int inst) {
    90   const char* s;
    91   switch (inv_op(inst)) {
    92   default:         s = "????"; break;
    93   case call_op:    s = "call"; break;
    94   case branch_op:
    95     switch (inv_op2(inst)) {
    96       case bpr_op2:    s = "bpr";  break;
    97       case fb_op2:     s = "fb";   break;
    98       case fbp_op2:    s = "fbp";  break;
    99       case br_op2:     s = "br";   break;
   100       case bp_op2:     s = "bp";   break;
   101       case cb_op2:     s = "cb";   break;
   102       default:         s = "????"; break;
   103     }
   104   }
   105   ::tty->print("%s", s);
   106 }
   109 // Patch instruction inst at offset inst_pos to refer to dest_pos
   110 // and return the resulting instruction.
   111 // We should have pcs, not offsets, but since all is relative, it will work out
   112 // OK.
   113 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
   115   int m; // mask for displacement field
   116   int v; // new value for displacement field
   117   const int word_aligned_ones = -4;
   118   switch (inv_op(inst)) {
   119   default: ShouldNotReachHere();
   120   case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
   121   case branch_op:
   122     switch (inv_op2(inst)) {
   123       case bpr_op2:    m = wdisp16(word_aligned_ones, 0);      v = wdisp16(dest_pos, inst_pos);     break;
   124       case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
   125       case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
   126       case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   127       case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   128       case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   129       default: ShouldNotReachHere();
   130     }
   131   }
   132   return  inst & ~m  |  v;
   133 }
   135 // Return the offset of the branch destionation of instruction inst
   136 // at offset pos.
   137 // Should have pcs, but since all is relative, it works out.
   138 int Assembler::branch_destination(int inst, int pos) {
   139   int r;
   140   switch (inv_op(inst)) {
   141   default: ShouldNotReachHere();
   142   case call_op:        r = inv_wdisp(inst, pos, 30);  break;
   143   case branch_op:
   144     switch (inv_op2(inst)) {
   145       case bpr_op2:    r = inv_wdisp16(inst, pos);    break;
   146       case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
   147       case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
   148       case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   149       case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   150       case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   151       default: ShouldNotReachHere();
   152     }
   153   }
   154   return r;
   155 }
   157 int AbstractAssembler::code_fill_byte() {
   158   return 0x00;                  // illegal instruction 0x00000000
   159 }
   161 Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
   162   switch (in) {
   163   case rc_z:   return equal;
   164   case rc_lez: return lessEqual;
   165   case rc_lz:  return less;
   166   case rc_nz:  return notEqual;
   167   case rc_gz:  return greater;
   168   case rc_gez: return greaterEqual;
   169   default:
   170     ShouldNotReachHere();
   171   }
   172   return equal;
   173 }
   175 // Generate a bunch 'o stuff (including v9's
   176 #ifndef PRODUCT
   177 void Assembler::test_v9() {
   178   add(    G0, G1, G2 );
   179   add(    G3,  0, G4 );
   181   addcc(  G5, G6, G7 );
   182   addcc(  I0,  1, I1 );
   183   addc(   I2, I3, I4 );
   184   addc(   I5, -1, I6 );
   185   addccc( I7, L0, L1 );
   186   addccc( L2, (1 << 12) - 2, L3 );
   188   Label lbl1, lbl2, lbl3;
   190   bind(lbl1);
   192   bpr( rc_z,    true, pn, L4, pc(),  relocInfo::oop_type );
   193   delayed()->nop();
   194   bpr( rc_lez, false, pt, L5, lbl1);
   195   delayed()->nop();
   197   fb( f_never,     true, pc() + 4,  relocInfo::none);
   198   delayed()->nop();
   199   fb( f_notEqual, false, lbl2 );
   200   delayed()->nop();
   202   fbp( f_notZero,        true, fcc0, pn, pc() - 4,  relocInfo::none);
   203   delayed()->nop();
   204   fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
   205   delayed()->nop();
   207   br( equal,  true, pc() + 1024, relocInfo::none);
   208   delayed()->nop();
   209   br( lessEqual, false, lbl1 );
   210   delayed()->nop();
   211   br( never, false, lbl1 );
   212   delayed()->nop();
   214   bp( less,               true, icc, pn, pc(), relocInfo::none);
   215   delayed()->nop();
   216   bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
   217   delayed()->nop();
   219   call( pc(), relocInfo::none);
   220   delayed()->nop();
   221   call( lbl3 );
   222   delayed()->nop();
   225   casa(  L6, L7, O0 );
   226   casxa( O1, O2, O3, 0 );
   228   udiv(   O4, O5, O7 );
   229   udiv(   G0, (1 << 12) - 1, G1 );
   230   sdiv(   G1, G2, G3 );
   231   sdiv(   G4, -((1 << 12) - 1), G5 );
   232   udivcc( G6, G7, I0 );
   233   udivcc( I1, -((1 << 12) - 2), I2 );
   234   sdivcc( I3, I4, I5 );
   235   sdivcc( I6, -((1 << 12) - 0), I7 );
   237   done();
   238   retry();
   240   fadd( FloatRegisterImpl::S, F0,  F1, F2 );
   241   fsub( FloatRegisterImpl::D, F34, F0, F62 );
   243   fcmp(  FloatRegisterImpl::Q, fcc0, F0, F60);
   244   fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
   246   ftox( FloatRegisterImpl::D, F2, F4 );
   247   ftoi( FloatRegisterImpl::Q, F4, F8 );
   249   ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
   251   fxtof( FloatRegisterImpl::S, F4, F5 );
   252   fitof( FloatRegisterImpl::D, F6, F8 );
   254   fmov( FloatRegisterImpl::Q, F16, F20 );
   255   fneg( FloatRegisterImpl::S, F6, F7 );
   256   fabs( FloatRegisterImpl::D, F10, F12 );
   258   fmul( FloatRegisterImpl::Q,  F24, F28, F32 );
   259   fmul( FloatRegisterImpl::S,  FloatRegisterImpl::D,  F8, F9, F14 );
   260   fdiv( FloatRegisterImpl::S,  F10, F11, F12 );
   262   fsqrt( FloatRegisterImpl::S, F13, F14 );
   264   flush( L0, L1 );
   265   flush( L2, -1 );
   267   flushw();
   269   illtrap( (1 << 22) - 2);
   271   impdep1( 17, (1 << 19) - 1 );
   272   impdep2( 3,  0 );
   274   jmpl( L3, L4, L5 );
   275   delayed()->nop();
   276   jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
   277   delayed()->nop();
   280   ldf(    FloatRegisterImpl::S, O0, O1, F15 );
   281   ldf(    FloatRegisterImpl::D, O2, -1, F14 );
   284   ldfsr(  O3, O4 );
   285   ldfsr(  O5, -1 );
   286   ldxfsr( O6, O7 );
   287   ldxfsr( I0, -1 );
   289   ldfa(  FloatRegisterImpl::D, I1, I2, 1, F16 );
   290   ldfa(  FloatRegisterImpl::Q, I3, -1,    F36 );
   292   ldsb(  I4, I5, I6 );
   293   ldsb(  I7, -1, G0 );
   294   ldsh(  G1, G3, G4 );
   295   ldsh(  G5, -1, G6 );
   296   ldsw(  G7, L0, L1 );
   297   ldsw(  L2, -1, L3 );
   298   ldub(  L4, L5, L6 );
   299   ldub(  L7, -1, O0 );
   300   lduh(  O1, O2, O3 );
   301   lduh(  O4, -1, O5 );
   302   lduw(  O6, O7, G0 );
   303   lduw(  G1, -1, G2 );
   304   ldx(   G3, G4, G5 );
   305   ldx(   G6, -1, G7 );
   306   ldd(   I0, I1, I2 );
   307   ldd(   I3, -1, I4 );
   309   ldsba(  I5, I6, 2, I7 );
   310   ldsba(  L0, -1, L1 );
   311   ldsha(  L2, L3, 3, L4 );
   312   ldsha(  L5, -1, L6 );
   313   ldswa(  L7, O0, (1 << 8) - 1, O1 );
   314   ldswa(  O2, -1, O3 );
   315   lduba(  O4, O5, 0, O6 );
   316   lduba(  O7, -1, I0 );
   317   lduha(  I1, I2, 1, I3 );
   318   lduha(  I4, -1, I5 );
   319   lduwa(  I6, I7, 2, L0 );
   320   lduwa(  L1, -1, L2 );
   321   ldxa(   L3, L4, 3, L5 );
   322   ldxa(   L6, -1, L7 );
   323   ldda(   G0, G1, 4, G2 );
   324   ldda(   G3, -1, G4 );
   326   ldstub(  G5, G6, G7 );
   327   ldstub(  O0, -1, O1 );
   329   ldstuba( O2, O3, 5, O4 );
   330   ldstuba( O5, -1, O6 );
   332   and3(    I0, L0, O0 );
   333   and3(    G7, -1, O7 );
   334   andcc(   L2, I2, G2 );
   335   andcc(   L4, -1, G4 );
   336   andn(    I5, I6, I7 );
   337   andn(    I6, -1, I7 );
   338   andncc(  I5, I6, I7 );
   339   andncc(  I7, -1, I6 );
   340   or3(     I5, I6, I7 );
   341   or3(     I7, -1, I6 );
   342   orcc(    I5, I6, I7 );
   343   orcc(    I7, -1, I6 );
   344   orn(     I5, I6, I7 );
   345   orn(     I7, -1, I6 );
   346   orncc(   I5, I6, I7 );
   347   orncc(   I7, -1, I6 );
   348   xor3(    I5, I6, I7 );
   349   xor3(    I7, -1, I6 );
   350   xorcc(   I5, I6, I7 );
   351   xorcc(   I7, -1, I6 );
   352   xnor(    I5, I6, I7 );
   353   xnor(    I7, -1, I6 );
   354   xnorcc(  I5, I6, I7 );
   355   xnorcc(  I7, -1, I6 );
   357   membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
   358   membar( StoreStore );
   359   membar( LoadStore );
   360   membar( StoreLoad );
   361   membar( LoadLoad );
   362   membar( Sync );
   363   membar( MemIssue );
   364   membar( Lookaside );
   366   fmov( FloatRegisterImpl::S, f_ordered,  true, fcc2, F16, F17 );
   367   fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
   369   movcc( overflowClear,  false, icc, I6, L4 );
   370   movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
   372   movr( rc_nz, I5, I6, I7 );
   373   movr( rc_gz, L1, -1,  L2 );
   375   mulx(  I5, I6, I7 );
   376   mulx(  I7, -1, I6 );
   377   sdivx( I5, I6, I7 );
   378   sdivx( I7, -1, I6 );
   379   udivx( I5, I6, I7 );
   380   udivx( I7, -1, I6 );
   382   umul(   I5, I6, I7 );
   383   umul(   I7, -1, I6 );
   384   smul(   I5, I6, I7 );
   385   smul(   I7, -1, I6 );
   386   umulcc( I5, I6, I7 );
   387   umulcc( I7, -1, I6 );
   388   smulcc( I5, I6, I7 );
   389   smulcc( I7, -1, I6 );
   391   mulscc(   I5, I6, I7 );
   392   mulscc(   I7, -1, I6 );
   394   nop();
   397   popc( G0,  G1);
   398   popc( -1, G2);
   400   prefetch(   L1, L2,    severalReads );
   401   prefetch(   L3, -1,    oneRead );
   402   prefetcha(  O3, O2, 6, severalWritesAndPossiblyReads );
   403   prefetcha(  G2, -1,    oneWrite );
   405   rett( I7, I7);
   406   delayed()->nop();
   407   rett( G0, -1, relocInfo::none);
   408   delayed()->nop();
   410   save(    I5, I6, I7 );
   411   save(    I7, -1, I6 );
   412   restore( I5, I6, I7 );
   413   restore( I7, -1, I6 );
   415   saved();
   416   restored();
   418   sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
   420   sll(  I5, I6, I7 );
   421   sll(  I7, 31, I6 );
   422   srl(  I5, I6, I7 );
   423   srl(  I7,  0, I6 );
   424   sra(  I5, I6, I7 );
   425   sra(  I7, 30, I6 );
   426   sllx( I5, I6, I7 );
   427   sllx( I7, 63, I6 );
   428   srlx( I5, I6, I7 );
   429   srlx( I7,  0, I6 );
   430   srax( I5, I6, I7 );
   431   srax( I7, 62, I6 );
   433   sir( -1 );
   435   stbar();
   437   stf(    FloatRegisterImpl::Q, F40, G0, I7 );
   438   stf(    FloatRegisterImpl::S, F18, I3, -1 );
   440   stfsr(  L1, L2 );
   441   stfsr(  I7, -1 );
   442   stxfsr( I6, I5 );
   443   stxfsr( L4, -1 );
   445   stfa(  FloatRegisterImpl::D, F22, I6, I7, 7 );
   446   stfa(  FloatRegisterImpl::Q, F44, G0, -1 );
   448   stb(  L5, O2, I7 );
   449   stb(  I7, I6, -1 );
   450   sth(  L5, O2, I7 );
   451   sth(  I7, I6, -1 );
   452   stw(  L5, O2, I7 );
   453   stw(  I7, I6, -1 );
   454   stx(  L5, O2, I7 );
   455   stx(  I7, I6, -1 );
   456   std(  L5, O2, I7 );
   457   std(  I7, I6, -1 );
   459   stba(  L5, O2, I7, 8 );
   460   stba(  I7, I6, -1    );
   461   stha(  L5, O2, I7, 9 );
   462   stha(  I7, I6, -1    );
   463   stwa(  L5, O2, I7, 0 );
   464   stwa(  I7, I6, -1    );
   465   stxa(  L5, O2, I7, 11 );
   466   stxa(  I7, I6, -1     );
   467   stda(  L5, O2, I7, 12 );
   468   stda(  I7, I6, -1     );
   470   sub(    I5, I6, I7 );
   471   sub(    I7, -1, I6 );
   472   subcc(  I5, I6, I7 );
   473   subcc(  I7, -1, I6 );
   474   subc(   I5, I6, I7 );
   475   subc(   I7, -1, I6 );
   476   subccc( I5, I6, I7 );
   477   subccc( I7, -1, I6 );
   479   swap( I5, I6, I7 );
   480   swap( I7, -1, I6 );
   482   swapa(   G0, G1, 13, G2 );
   483   swapa(   I7, -1,     I6 );
   485   taddcc(    I5, I6, I7 );
   486   taddcc(    I7, -1, I6 );
   487   taddcctv(  I5, I6, I7 );
   488   taddcctv(  I7, -1, I6 );
   490   tsubcc(    I5, I6, I7 );
   491   tsubcc(    I7, -1, I6 );
   492   tsubcctv(  I5, I6, I7 );
   493   tsubcctv(  I7, -1, I6 );
   495   trap( overflowClear, xcc, G0, G1 );
   496   trap( lessEqual,     icc, I7, 17 );
   498   bind(lbl2);
   499   bind(lbl3);
   501   code()->decode();
   502 }
   504 // Generate a bunch 'o stuff unique to V8
   505 void Assembler::test_v8_onlys() {
   506   Label lbl1;
   508   cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
   509   delayed()->nop();
   510   cb( cp_never,    true, lbl1);
   511   delayed()->nop();
   513   cpop1(1, 2, 3, 4);
   514   cpop2(5, 6, 7, 8);
   516   ldc( I0, I1, 31);
   517   ldc( I2, -1,  0);
   519   lddc( I4, I4, 30);
   520   lddc( I6,  0, 1 );
   522   ldcsr( L0, L1, 0);
   523   ldcsr( L1, (1 << 12) - 1, 17 );
   525   stc( 31, L4, L5);
   526   stc( 30, L6, -(1 << 12) );
   528   stdc( 0, L7, G0);
   529   stdc( 1, G1, 0 );
   531   stcsr( 16, G2, G3);
   532   stcsr( 17, G4, 1 );
   534   stdcq( 4, G5, G6);
   535   stdcq( 5, G7, -1 );
   537   bind(lbl1);
   539   code()->decode();
   540 }
   541 #endif
   543 // Implementation of MacroAssembler
   545 void MacroAssembler::null_check(Register reg, int offset) {
   546   if (needs_explicit_null_check((intptr_t)offset)) {
   547     // provoke OS NULL exception if reg = NULL by
   548     // accessing M[reg] w/o changing any registers
   549     ld_ptr(reg, 0, G0);
   550   }
   551   else {
   552     // nothing to do, (later) access of M[reg + offset]
   553     // will provoke OS NULL exception if reg = NULL
   554   }
   555 }
   557 // Ring buffer jumps
   559 #ifndef PRODUCT
   560 void MacroAssembler::ret(  bool trace )   { if (trace) {
   561                                                     mov(I7, O7); // traceable register
   562                                                     JMP(O7, 2 * BytesPerInstWord);
   563                                                   } else {
   564                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
   565                                                   }
   566                                                 }
   568 void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
   569                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
   570 #endif /* PRODUCT */
   573 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
   574   assert_not_delayed();
   575   // This can only be traceable if r1 & r2 are visible after a window save
   576   if (TraceJumps) {
   577 #ifndef PRODUCT
   578     save_frame(0);
   579     verify_thread();
   580     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   581     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   582     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   583     add(O2, O1, O1);
   585     add(r1->after_save(), r2->after_save(), O2);
   586     set((intptr_t)file, O3);
   587     set(line, O4);
   588     Label L;
   589     // get nearby pc, store jmp target
   590     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   591     delayed()->st(O2, O1, 0);
   592     bind(L);
   594     // store nearby pc
   595     st(O7, O1, sizeof(intptr_t));
   596     // store file
   597     st(O3, O1, 2*sizeof(intptr_t));
   598     // store line
   599     st(O4, O1, 3*sizeof(intptr_t));
   600     add(O0, 1, O0);
   601     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   602     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   603     restore();
   604 #endif /* PRODUCT */
   605   }
   606   jmpl(r1, r2, G0);
   607 }
   608 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
   609   assert_not_delayed();
   610   // This can only be traceable if r1 is visible after a window save
   611   if (TraceJumps) {
   612 #ifndef PRODUCT
   613     save_frame(0);
   614     verify_thread();
   615     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   616     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   617     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   618     add(O2, O1, O1);
   620     add(r1->after_save(), offset, O2);
   621     set((intptr_t)file, O3);
   622     set(line, O4);
   623     Label L;
   624     // get nearby pc, store jmp target
   625     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   626     delayed()->st(O2, O1, 0);
   627     bind(L);
   629     // store nearby pc
   630     st(O7, O1, sizeof(intptr_t));
   631     // store file
   632     st(O3, O1, 2*sizeof(intptr_t));
   633     // store line
   634     st(O4, O1, 3*sizeof(intptr_t));
   635     add(O0, 1, O0);
   636     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   637     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   638     restore();
   639 #endif /* PRODUCT */
   640   }
   641   jmp(r1, offset);
   642 }
   644 // This code sequence is relocatable to any address, even on LP64.
   645 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
   646   assert_not_delayed();
   647   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   648   // variable length instruction streams.
   649   patchable_sethi(addrlit, temp);
   650   Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
   651   if (TraceJumps) {
   652 #ifndef PRODUCT
   653     // Must do the add here so relocation can find the remainder of the
   654     // value to be relocated.
   655     add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
   656     save_frame(0);
   657     verify_thread();
   658     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   659     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   660     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   661     add(O2, O1, O1);
   663     set((intptr_t)file, O3);
   664     set(line, O4);
   665     Label L;
   667     // get nearby pc, store jmp target
   668     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   669     delayed()->st(a.base()->after_save(), O1, 0);
   670     bind(L);
   672     // store nearby pc
   673     st(O7, O1, sizeof(intptr_t));
   674     // store file
   675     st(O3, O1, 2*sizeof(intptr_t));
   676     // store line
   677     st(O4, O1, 3*sizeof(intptr_t));
   678     add(O0, 1, O0);
   679     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   680     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   681     restore();
   682     jmpl(a.base(), G0, d);
   683 #else
   684     jmpl(a.base(), a.disp(), d);
   685 #endif /* PRODUCT */
   686   } else {
   687     jmpl(a.base(), a.disp(), d);
   688   }
   689 }
   691 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
   692   jumpl(addrlit, temp, G0, offset, file, line);
   693 }
   696 // Convert to C varargs format
   697 void MacroAssembler::set_varargs( Argument inArg, Register d ) {
   698   // spill register-resident args to their memory slots
   699   // (SPARC calling convention requires callers to have already preallocated these)
   700   // Note that the inArg might in fact be an outgoing argument,
   701   // if a leaf routine or stub does some tricky argument shuffling.
   702   // This routine must work even though one of the saved arguments
   703   // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
   704   for (Argument savePtr = inArg;
   705        savePtr.is_register();
   706        savePtr = savePtr.successor()) {
   707     st_ptr(savePtr.as_register(), savePtr.address_in_frame());
   708   }
   709   // return the address of the first memory slot
   710   Address a = inArg.address_in_frame();
   711   add(a.base(), a.disp(), d);
   712 }
   714 // Conditional breakpoint (for assertion checks in assembly code)
   715 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
   716   trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
   717 }
   719 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
   720 void MacroAssembler::breakpoint_trap() {
   721   trap(ST_RESERVED_FOR_USER_0);
   722 }
   724 // flush windows (except current) using flushw instruction if avail.
   725 void MacroAssembler::flush_windows() {
   726   if (VM_Version::v9_instructions_work())  flushw();
   727   else                                     flush_windows_trap();
   728 }
   730 // Write serialization page so VM thread can do a pseudo remote membar
   731 // We use the current thread pointer to calculate a thread specific
   732 // offset to write to within the page. This minimizes bus traffic
   733 // due to cache line collision.
   734 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
   735   srl(thread, os::get_serialize_page_shift_count(), tmp2);
   736   if (Assembler::is_simm13(os::vm_page_size())) {
   737     and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
   738   }
   739   else {
   740     set((os::vm_page_size() - sizeof(int)), tmp1);
   741     and3(tmp2, tmp1, tmp2);
   742   }
   743   set(os::get_memory_serialize_page(), tmp1);
   744   st(G0, tmp1, tmp2);
   745 }
   749 void MacroAssembler::enter() {
   750   Unimplemented();
   751 }
   753 void MacroAssembler::leave() {
   754   Unimplemented();
   755 }
   757 void MacroAssembler::mult(Register s1, Register s2, Register d) {
   758   if(VM_Version::v9_instructions_work()) {
   759     mulx (s1, s2, d);
   760   } else {
   761     smul (s1, s2, d);
   762   }
   763 }
   765 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
   766   if(VM_Version::v9_instructions_work()) {
   767     mulx (s1, simm13a, d);
   768   } else {
   769     smul (s1, simm13a, d);
   770   }
   771 }
   774 #ifdef ASSERT
   775 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
   776   const Register s1 = G3_scratch;
   777   const Register s2 = G4_scratch;
   778   Label get_psr_test;
   779   // Get the condition codes the V8 way.
   780   read_ccr_trap(s1);
   781   mov(ccr_save, s2);
   782   // This is a test of V8 which has icc but not xcc
   783   // so mask off the xcc bits
   784   and3(s2, 0xf, s2);
   785   // Compare condition codes from the V8 and V9 ways.
   786   subcc(s2, s1, G0);
   787   br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
   788   delayed()->breakpoint_trap();
   789   bind(get_psr_test);
   790 }
   792 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
   793   const Register s1 = G3_scratch;
   794   const Register s2 = G4_scratch;
   795   Label set_psr_test;
   796   // Write out the saved condition codes the V8 way
   797   write_ccr_trap(ccr_save, s1, s2);
   798   // Read back the condition codes using the V9 instruction
   799   rdccr(s1);
   800   mov(ccr_save, s2);
   801   // This is a test of V8 which has icc but not xcc
   802   // so mask off the xcc bits
   803   and3(s2, 0xf, s2);
   804   and3(s1, 0xf, s1);
   805   // Compare the V8 way with the V9 way.
   806   subcc(s2, s1, G0);
   807   br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
   808   delayed()->breakpoint_trap();
   809   bind(set_psr_test);
   810 }
   811 #else
   812 #define read_ccr_v8_assert(x)
   813 #define write_ccr_v8_assert(x)
   814 #endif // ASSERT
   816 void MacroAssembler::read_ccr(Register ccr_save) {
   817   if (VM_Version::v9_instructions_work()) {
   818     rdccr(ccr_save);
   819     // Test code sequence used on V8.  Do not move above rdccr.
   820     read_ccr_v8_assert(ccr_save);
   821   } else {
   822     read_ccr_trap(ccr_save);
   823   }
   824 }
   826 void MacroAssembler::write_ccr(Register ccr_save) {
   827   if (VM_Version::v9_instructions_work()) {
   828     // Test code sequence used on V8.  Do not move below wrccr.
   829     write_ccr_v8_assert(ccr_save);
   830     wrccr(ccr_save);
   831   } else {
   832     const Register temp_reg1 = G3_scratch;
   833     const Register temp_reg2 = G4_scratch;
   834     write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
   835   }
   836 }
   839 // Calls to C land
   841 #ifdef ASSERT
   842 // a hook for debugging
   843 static Thread* reinitialize_thread() {
   844   return ThreadLocalStorage::thread();
   845 }
   846 #else
   847 #define reinitialize_thread ThreadLocalStorage::thread
   848 #endif
   850 #ifdef ASSERT
   851 address last_get_thread = NULL;
   852 #endif
   854 // call this when G2_thread is not known to be valid
   855 void MacroAssembler::get_thread() {
   856   save_frame(0);                // to avoid clobbering O0
   857   mov(G1, L0);                  // avoid clobbering G1
   858   mov(G5_method, L1);           // avoid clobbering G5
   859   mov(G3, L2);                  // avoid clobbering G3 also
   860   mov(G4, L5);                  // avoid clobbering G4
   861 #ifdef ASSERT
   862   AddressLiteral last_get_thread_addrlit(&last_get_thread);
   863   set(last_get_thread_addrlit, L3);
   864   inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
   865   st_ptr(L4, L3, 0);
   866 #endif
   867   call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
   868   delayed()->nop();
   869   mov(L0, G1);
   870   mov(L1, G5_method);
   871   mov(L2, G3);
   872   mov(L5, G4);
   873   restore(O0, 0, G2_thread);
   874 }
   876 static Thread* verify_thread_subroutine(Thread* gthread_value) {
   877   Thread* correct_value = ThreadLocalStorage::thread();
   878   guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
   879   return correct_value;
   880 }
   882 void MacroAssembler::verify_thread() {
   883   if (VerifyThread) {
   884     // NOTE: this chops off the heads of the 64-bit O registers.
   885 #ifdef CC_INTERP
   886     save_frame(0);
   887 #else
   888     // make sure G2_thread contains the right value
   889     save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
   890     mov(G1, L1);                // avoid clobbering G1
   891     // G2 saved below
   892     mov(G3, L3);                // avoid clobbering G3
   893     mov(G4, L4);                // avoid clobbering G4
   894     mov(G5_method, L5);         // avoid clobbering G5_method
   895 #endif /* CC_INTERP */
   896 #if defined(COMPILER2) && !defined(_LP64)
   897     // Save & restore possible 64-bit Long arguments in G-regs
   898     srlx(G1,32,L0);
   899     srlx(G4,32,L6);
   900 #endif
   901     call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
   902     delayed()->mov(G2_thread, O0);
   904     mov(L1, G1);                // Restore G1
   905     // G2 restored below
   906     mov(L3, G3);                // restore G3
   907     mov(L4, G4);                // restore G4
   908     mov(L5, G5_method);         // restore G5_method
   909 #if defined(COMPILER2) && !defined(_LP64)
   910     // Save & restore possible 64-bit Long arguments in G-regs
   911     sllx(L0,32,G2);             // Move old high G1 bits high in G2
   912     sllx(G1, 0,G1);             // Clear current high G1 bits
   913     or3 (G1,G2,G1);             // Recover 64-bit G1
   914     sllx(L6,32,G2);             // Move old high G4 bits high in G2
   915     sllx(G4, 0,G4);             // Clear current high G4 bits
   916     or3 (G4,G2,G4);             // Recover 64-bit G4
   917 #endif
   918     restore(O0, 0, G2_thread);
   919   }
   920 }
   923 void MacroAssembler::save_thread(const Register thread_cache) {
   924   verify_thread();
   925   if (thread_cache->is_valid()) {
   926     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   927     mov(G2_thread, thread_cache);
   928   }
   929   if (VerifyThread) {
   930     // smash G2_thread, as if the VM were about to anyway
   931     set(0x67676767, G2_thread);
   932   }
   933 }
   936 void MacroAssembler::restore_thread(const Register thread_cache) {
   937   if (thread_cache->is_valid()) {
   938     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   939     mov(thread_cache, G2_thread);
   940     verify_thread();
   941   } else {
   942     // do it the slow way
   943     get_thread();
   944   }
   945 }
   948 // %%% maybe get rid of [re]set_last_Java_frame
   949 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
   950   assert_not_delayed();
   951   Address flags(G2_thread, JavaThread::frame_anchor_offset() +
   952                            JavaFrameAnchor::flags_offset());
   953   Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
   955   // Always set last_Java_pc and flags first because once last_Java_sp is visible
   956   // has_last_Java_frame is true and users will look at the rest of the fields.
   957   // (Note: flags should always be zero before we get here so doesn't need to be set.)
   959 #ifdef ASSERT
   960   // Verify that flags was zeroed on return to Java
   961   Label PcOk;
   962   save_frame(0);                // to avoid clobbering O0
   963   ld_ptr(pc_addr, L0);
   964   tst(L0);
   965 #ifdef _LP64
   966   brx(Assembler::zero, false, Assembler::pt, PcOk);
   967 #else
   968   br(Assembler::zero, false, Assembler::pt, PcOk);
   969 #endif // _LP64
   970   delayed() -> nop();
   971   stop("last_Java_pc not zeroed before leaving Java");
   972   bind(PcOk);
   974   // Verify that flags was zeroed on return to Java
   975   Label FlagsOk;
   976   ld(flags, L0);
   977   tst(L0);
   978   br(Assembler::zero, false, Assembler::pt, FlagsOk);
   979   delayed() -> restore();
   980   stop("flags not zeroed before leaving Java");
   981   bind(FlagsOk);
   982 #endif /* ASSERT */
   983   //
   984   // When returning from calling out from Java mode the frame anchor's last_Java_pc
   985   // will always be set to NULL. It is set here so that if we are doing a call to
   986   // native (not VM) that we capture the known pc and don't have to rely on the
   987   // native call having a standard frame linkage where we can find the pc.
   989   if (last_Java_pc->is_valid()) {
   990     st_ptr(last_Java_pc, pc_addr);
   991   }
   993 #ifdef _LP64
   994 #ifdef ASSERT
   995   // Make sure that we have an odd stack
   996   Label StackOk;
   997   andcc(last_java_sp, 0x01, G0);
   998   br(Assembler::notZero, false, Assembler::pt, StackOk);
   999   delayed() -> nop();
  1000   stop("Stack Not Biased in set_last_Java_frame");
  1001   bind(StackOk);
  1002 #endif // ASSERT
  1003   assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
  1004   add( last_java_sp, STACK_BIAS, G4_scratch );
  1005   st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
  1006 #else
  1007   st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
  1008 #endif // _LP64
  1011 void MacroAssembler::reset_last_Java_frame(void) {
  1012   assert_not_delayed();
  1014   Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
  1015   Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  1016   Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
  1018 #ifdef ASSERT
  1019   // check that it WAS previously set
  1020 #ifdef CC_INTERP
  1021     save_frame(0);
  1022 #else
  1023     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
  1024 #endif /* CC_INTERP */
  1025     ld_ptr(sp_addr, L0);
  1026     tst(L0);
  1027     breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
  1028     restore();
  1029 #endif // ASSERT
  1031   st_ptr(G0, sp_addr);
  1032   // Always return last_Java_pc to zero
  1033   st_ptr(G0, pc_addr);
  1034   // Always null flags after return to Java
  1035   st(G0, flags);
  1039 void MacroAssembler::call_VM_base(
  1040   Register        oop_result,
  1041   Register        thread_cache,
  1042   Register        last_java_sp,
  1043   address         entry_point,
  1044   int             number_of_arguments,
  1045   bool            check_exceptions)
  1047   assert_not_delayed();
  1049   // determine last_java_sp register
  1050   if (!last_java_sp->is_valid()) {
  1051     last_java_sp = SP;
  1053   // debugging support
  1054   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  1056   // 64-bit last_java_sp is biased!
  1057   set_last_Java_frame(last_java_sp, noreg);
  1058   if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
  1059   save_thread(thread_cache);
  1060   // do the call
  1061   call(entry_point, relocInfo::runtime_call_type);
  1062   if (!VerifyThread)
  1063     delayed()->mov(G2_thread, O0);  // pass thread as first argument
  1064   else
  1065     delayed()->nop();             // (thread already passed)
  1066   restore_thread(thread_cache);
  1067   reset_last_Java_frame();
  1069   // check for pending exceptions. use Gtemp as scratch register.
  1070   if (check_exceptions) {
  1071     check_and_forward_exception(Gtemp);
  1074   // get oop result if there is one and reset the value in the thread
  1075   if (oop_result->is_valid()) {
  1076     get_vm_result(oop_result);
  1080 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
  1082   Label L;
  1084   check_and_handle_popframe(scratch_reg);
  1085   check_and_handle_earlyret(scratch_reg);
  1087   Address exception_addr(G2_thread, Thread::pending_exception_offset());
  1088   ld_ptr(exception_addr, scratch_reg);
  1089   br_null(scratch_reg,false,pt,L);
  1090   delayed()->nop();
  1091   // we use O7 linkage so that forward_exception_entry has the issuing PC
  1092   call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  1093   delayed()->nop();
  1094   bind(L);
  1098 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
  1102 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
  1106 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  1107   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
  1111 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
  1112   // O0 is reserved for the thread
  1113   mov(arg_1, O1);
  1114   call_VM(oop_result, entry_point, 1, check_exceptions);
  1118 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  1119   // O0 is reserved for the thread
  1120   mov(arg_1, O1);
  1121   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  1122   call_VM(oop_result, entry_point, 2, check_exceptions);
  1126 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  1127   // O0 is reserved for the thread
  1128   mov(arg_1, O1);
  1129   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  1130   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  1131   call_VM(oop_result, entry_point, 3, check_exceptions);
  1136 // Note: The following call_VM overloadings are useful when a "save"
  1137 // has already been performed by a stub, and the last Java frame is
  1138 // the previous one.  In that case, last_java_sp must be passed as FP
  1139 // instead of SP.
  1142 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
  1143   call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1147 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
  1148   // O0 is reserved for the thread
  1149   mov(arg_1, O1);
  1150   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1154 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  1155   // O0 is reserved for the thread
  1156   mov(arg_1, O1);
  1157   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  1158   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1162 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  1163   // O0 is reserved for the thread
  1164   mov(arg_1, O1);
  1165   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  1166   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  1167   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1172 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
  1173   assert_not_delayed();
  1174   save_thread(thread_cache);
  1175   // do the call
  1176   call(entry_point, relocInfo::runtime_call_type);
  1177   delayed()->nop();
  1178   restore_thread(thread_cache);
  1182 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
  1183   call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
  1187 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
  1188   mov(arg_1, O0);
  1189   call_VM_leaf(thread_cache, entry_point, 1);
  1193 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
  1194   mov(arg_1, O0);
  1195   mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
  1196   call_VM_leaf(thread_cache, entry_point, 2);
  1200 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
  1201   mov(arg_1, O0);
  1202   mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
  1203   mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
  1204   call_VM_leaf(thread_cache, entry_point, 3);
  1208 void MacroAssembler::get_vm_result(Register oop_result) {
  1209   verify_thread();
  1210   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
  1211   ld_ptr(    vm_result_addr, oop_result);
  1212   st_ptr(G0, vm_result_addr);
  1213   verify_oop(oop_result);
  1217 void MacroAssembler::get_vm_result_2(Register oop_result) {
  1218   verify_thread();
  1219   Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
  1220   ld_ptr(vm_result_addr_2, oop_result);
  1221   st_ptr(G0, vm_result_addr_2);
  1222   verify_oop(oop_result);
  1226 // We require that C code which does not return a value in vm_result will
  1227 // leave it undisturbed.
  1228 void MacroAssembler::set_vm_result(Register oop_result) {
  1229   verify_thread();
  1230   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
  1231   verify_oop(oop_result);
  1233 # ifdef ASSERT
  1234     // Check that we are not overwriting any other oop.
  1235 #ifdef CC_INTERP
  1236     save_frame(0);
  1237 #else
  1238     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
  1239 #endif /* CC_INTERP */
  1240     ld_ptr(vm_result_addr, L0);
  1241     tst(L0);
  1242     restore();
  1243     breakpoint_trap(notZero, Assembler::ptr_cc);
  1244     // }
  1245 # endif
  1247   st_ptr(oop_result, vm_result_addr);
  1251 void MacroAssembler::card_table_write(jbyte* byte_map_base,
  1252                                       Register tmp, Register obj) {
  1253 #ifdef _LP64
  1254   srlx(obj, CardTableModRefBS::card_shift, obj);
  1255 #else
  1256   srl(obj, CardTableModRefBS::card_shift, obj);
  1257 #endif
  1258   assert(tmp != obj, "need separate temp reg");
  1259   set((address) byte_map_base, tmp);
  1260   stb(G0, tmp, obj);
  1264 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
  1265   address save_pc;
  1266   int shiftcnt;
  1267 #ifdef _LP64
  1268 # ifdef CHECK_DELAY
  1269   assert_not_delayed((char*) "cannot put two instructions in delay slot");
  1270 # endif
  1271   v9_dep();
  1272   save_pc = pc();
  1274   int msb32 = (int) (addrlit.value() >> 32);
  1275   int lsb32 = (int) (addrlit.value());
  1277   if (msb32 == 0 && lsb32 >= 0) {
  1278     Assembler::sethi(lsb32, d, addrlit.rspec());
  1280   else if (msb32 == -1) {
  1281     Assembler::sethi(~lsb32, d, addrlit.rspec());
  1282     xor3(d, ~low10(~0), d);
  1284   else {
  1285     Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
  1286     if (msb32 & 0x3ff)                            // Any bits?
  1287       or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
  1288     if (lsb32 & 0xFFFFFC00) {                     // done?
  1289       if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
  1290         sllx(d, 12, d);                           // Make room for next 12 bits
  1291         or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
  1292         shiftcnt = 0;                             // We already shifted
  1294       else
  1295         shiftcnt = 12;
  1296       if ((lsb32 >> 10) & 0x3ff) {
  1297         sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
  1298         or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
  1299         shiftcnt = 0;
  1301       else
  1302         shiftcnt = 10;
  1303       sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
  1305     else
  1306       sllx(d, 32, d);
  1308   // Pad out the instruction sequence so it can be patched later.
  1309   if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
  1310                            addrlit.rtype() != relocInfo::runtime_call_type)) {
  1311     while (pc() < (save_pc + (7 * BytesPerInstWord)))
  1312       nop();
  1314 #else
  1315   Assembler::sethi(addrlit.value(), d, addrlit.rspec());
  1316 #endif
  1320 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
  1321   internal_sethi(addrlit, d, false);
  1325 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
  1326   internal_sethi(addrlit, d, true);
  1330 int MacroAssembler::size_of_sethi(address a, bool worst_case) {
  1331 #ifdef _LP64
  1332   if (worst_case) return 7;
  1333   intptr_t iaddr = (intptr_t)a;
  1334   int hi32 = (int)(iaddr >> 32);
  1335   int lo32 = (int)(iaddr);
  1336   int inst_count;
  1337   if (hi32 == 0 && lo32 >= 0)
  1338     inst_count = 1;
  1339   else if (hi32 == -1)
  1340     inst_count = 2;
  1341   else {
  1342     inst_count = 2;
  1343     if ( hi32 & 0x3ff )
  1344       inst_count++;
  1345     if ( lo32 & 0xFFFFFC00 ) {
  1346       if( (lo32 >> 20) & 0xfff ) inst_count += 2;
  1347       if( (lo32 >> 10) & 0x3ff ) inst_count += 2;
  1350   return BytesPerInstWord * inst_count;
  1351 #else
  1352   return BytesPerInstWord;
  1353 #endif
  1356 int MacroAssembler::worst_case_size_of_set() {
  1357   return size_of_sethi(NULL, true) + 1;
  1361 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
  1362   intptr_t value = addrlit.value();
  1364   if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
  1365     // can optimize
  1366     if (-4096 <= value && value <= 4095) {
  1367       or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
  1368       return;
  1370     if (inv_hi22(hi22(value)) == value) {
  1371       sethi(addrlit, d);
  1372       return;
  1375   assert_not_delayed((char*) "cannot put two instructions in delay slot");
  1376   internal_sethi(addrlit, d, ForceRelocatable);
  1377   if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
  1378     add(d, addrlit.low10(), d, addrlit.rspec());
  1382 void MacroAssembler::set(const AddressLiteral& al, Register d) {
  1383   internal_set(al, d, false);
  1386 void MacroAssembler::set(intptr_t value, Register d) {
  1387   AddressLiteral al(value);
  1388   internal_set(al, d, false);
  1391 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
  1392   AddressLiteral al(addr, rspec);
  1393   internal_set(al, d, false);
  1396 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
  1397   internal_set(al, d, true);
  1400 void MacroAssembler::patchable_set(intptr_t value, Register d) {
  1401   AddressLiteral al(value);
  1402   internal_set(al, d, true);
  1406 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
  1407   assert_not_delayed();
  1408   v9_dep();
  1410   int hi = (int)(value >> 32);
  1411   int lo = (int)(value & ~0);
  1412   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
  1413   if (Assembler::is_simm13(lo) && value == lo) {
  1414     or3(G0, lo, d);
  1415   } else if (hi == 0) {
  1416     Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
  1417     if (low10(lo) != 0)
  1418       or3(d, low10(lo), d);
  1420   else if (hi == -1) {
  1421     Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
  1422     xor3(d, low10(lo) ^ ~low10(~0), d);
  1424   else if (lo == 0) {
  1425     if (Assembler::is_simm13(hi)) {
  1426       or3(G0, hi, d);
  1427     } else {
  1428       Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
  1429       if (low10(hi) != 0)
  1430         or3(d, low10(hi), d);
  1432     sllx(d, 32, d);
  1434   else {
  1435     Assembler::sethi(hi, tmp);
  1436     Assembler::sethi(lo,   d); // macro assembler version sign-extends
  1437     if (low10(hi) != 0)
  1438       or3 (tmp, low10(hi), tmp);
  1439     if (low10(lo) != 0)
  1440       or3 (  d, low10(lo),   d);
  1441     sllx(tmp, 32, tmp);
  1442     or3 (d, tmp, d);
  1446 // compute size in bytes of sparc frame, given
  1447 // number of extraWords
  1448 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
  1450   int nWords = frame::memory_parameter_word_sp_offset;
  1452   nWords += extraWords;
  1454   if (nWords & 1) ++nWords; // round up to double-word
  1456   return nWords * BytesPerWord;
  1460 // save_frame: given number of "extra" words in frame,
  1461 // issue approp. save instruction (p 200, v8 manual)
  1463 void MacroAssembler::save_frame(int extraWords = 0) {
  1464   int delta = -total_frame_size_in_bytes(extraWords);
  1465   if (is_simm13(delta)) {
  1466     save(SP, delta, SP);
  1467   } else {
  1468     set(delta, G3_scratch);
  1469     save(SP, G3_scratch, SP);
  1474 void MacroAssembler::save_frame_c1(int size_in_bytes) {
  1475   if (is_simm13(-size_in_bytes)) {
  1476     save(SP, -size_in_bytes, SP);
  1477   } else {
  1478     set(-size_in_bytes, G3_scratch);
  1479     save(SP, G3_scratch, SP);
  1484 void MacroAssembler::save_frame_and_mov(int extraWords,
  1485                                         Register s1, Register d1,
  1486                                         Register s2, Register d2) {
  1487   assert_not_delayed();
  1489   // The trick here is to use precisely the same memory word
  1490   // that trap handlers also use to save the register.
  1491   // This word cannot be used for any other purpose, but
  1492   // it works fine to save the register's value, whether or not
  1493   // an interrupt flushes register windows at any given moment!
  1494   Address s1_addr;
  1495   if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
  1496     s1_addr = s1->address_in_saved_window();
  1497     st_ptr(s1, s1_addr);
  1500   Address s2_addr;
  1501   if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
  1502     s2_addr = s2->address_in_saved_window();
  1503     st_ptr(s2, s2_addr);
  1506   save_frame(extraWords);
  1508   if (s1_addr.base() == SP) {
  1509     ld_ptr(s1_addr.after_save(), d1);
  1510   } else if (s1->is_valid()) {
  1511     mov(s1->after_save(), d1);
  1514   if (s2_addr.base() == SP) {
  1515     ld_ptr(s2_addr.after_save(), d2);
  1516   } else if (s2->is_valid()) {
  1517     mov(s2->after_save(), d2);
  1522 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
  1523   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1524   int oop_index = oop_recorder()->allocate_index(obj);
  1525   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
  1529 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
  1530   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1531   int oop_index = oop_recorder()->find_index(obj);
  1532   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
  1535 void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
  1536   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1537   int oop_index = oop_recorder()->find_index(obj);
  1538   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  1540   assert_not_delayed();
  1541   // Relocation with special format (see relocInfo_sparc.hpp).
  1542   relocate(rspec, 1);
  1543   // Assembler::sethi(0x3fffff, d);
  1544   emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
  1545   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
  1546   add(d, 0x3ff, d);
  1551 void MacroAssembler::align(int modulus) {
  1552   while (offset() % modulus != 0) nop();
  1556 void MacroAssembler::safepoint() {
  1557   relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
  1561 void RegistersForDebugging::print(outputStream* s) {
  1562   int j;
  1563   for ( j = 0;  j < 8;  ++j )
  1564     if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
  1565     else          s->print_cr( "fp = 0x%.16lx",    i[j]);
  1566   s->cr();
  1568   for ( j = 0;  j < 8;  ++j )
  1569     s->print_cr("l%d = 0x%.16lx", j, l[j]);
  1570   s->cr();
  1572   for ( j = 0;  j < 8;  ++j )
  1573     if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
  1574     else          s->print_cr( "sp = 0x%.16lx",    o[j]);
  1575   s->cr();
  1577   for ( j = 0;  j < 8;  ++j )
  1578     s->print_cr("g%d = 0x%.16lx", j, g[j]);
  1579   s->cr();
  1581   // print out floats with compression
  1582   for (j = 0; j < 32; ) {
  1583     jfloat val = f[j];
  1584     int last = j;
  1585     for ( ;  last+1 < 32;  ++last ) {
  1586       char b1[1024], b2[1024];
  1587       sprintf(b1, "%f", val);
  1588       sprintf(b2, "%f", f[last+1]);
  1589       if (strcmp(b1, b2))
  1590         break;
  1592     s->print("f%d", j);
  1593     if ( j != last )  s->print(" - f%d", last);
  1594     s->print(" = %f", val);
  1595     s->fill_to(25);
  1596     s->print_cr(" (0x%x)", val);
  1597     j = last + 1;
  1599   s->cr();
  1601   // and doubles (evens only)
  1602   for (j = 0; j < 32; ) {
  1603     jdouble val = d[j];
  1604     int last = j;
  1605     for ( ;  last+1 < 32;  ++last ) {
  1606       char b1[1024], b2[1024];
  1607       sprintf(b1, "%f", val);
  1608       sprintf(b2, "%f", d[last+1]);
  1609       if (strcmp(b1, b2))
  1610         break;
  1612     s->print("d%d", 2 * j);
  1613     if ( j != last )  s->print(" - d%d", last);
  1614     s->print(" = %f", val);
  1615     s->fill_to(30);
  1616     s->print("(0x%x)", *(int*)&val);
  1617     s->fill_to(42);
  1618     s->print_cr("(0x%x)", *(1 + (int*)&val));
  1619     j = last + 1;
  1621   s->cr();
  1624 void RegistersForDebugging::save_registers(MacroAssembler* a) {
  1625   a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
  1626   a->flush_windows();
  1627   int i;
  1628   for (i = 0; i < 8; ++i) {
  1629     a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
  1630     a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
  1631     a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
  1632     a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
  1634   for (i = 0;  i < 32; ++i) {
  1635     a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
  1637   for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
  1638     a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
  1642 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
  1643   for (int i = 1; i < 8;  ++i) {
  1644     a->ld_ptr(r, g_offset(i), as_gRegister(i));
  1646   for (int j = 0; j < 32; ++j) {
  1647     a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
  1649   for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
  1650     a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
  1655 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1656 void MacroAssembler::push_fTOS() {
  1657   // %%%%%% need to implement this
  1660 // pops double TOS element from CPU stack and pushes on FPU stack
  1661 void MacroAssembler::pop_fTOS() {
  1662   // %%%%%% need to implement this
  1665 void MacroAssembler::empty_FPU_stack() {
  1666   // %%%%%% need to implement this
  1669 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
  1670   // plausibility check for oops
  1671   if (!VerifyOops) return;
  1673   if (reg == G0)  return;       // always NULL, which is always an oop
  1675   char buffer[64];
  1676 #ifdef COMPILER1
  1677   if (CommentedAssembly) {
  1678     snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
  1679     block_comment(buffer);
  1681 #endif
  1683   int len = strlen(file) + strlen(msg) + 1 + 4;
  1684   sprintf(buffer, "%d", line);
  1685   len += strlen(buffer);
  1686   sprintf(buffer, " at offset %d ", offset());
  1687   len += strlen(buffer);
  1688   char * real_msg = new char[len];
  1689   sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
  1691   // Call indirectly to solve generation ordering problem
  1692   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
  1694   // Make some space on stack above the current register window.
  1695   // Enough to hold 8 64-bit registers.
  1696   add(SP,-8*8,SP);
  1698   // Save some 64-bit registers; a normal 'save' chops the heads off
  1699   // of 64-bit longs in the 32-bit build.
  1700   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1701   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1702   mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
  1703   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1705   set((intptr_t)real_msg, O1);
  1706   // Load address to call to into O7
  1707   load_ptr_contents(a, O7);
  1708   // Register call to verify_oop_subroutine
  1709   callr(O7, G0);
  1710   delayed()->nop();
  1711   // recover frame size
  1712   add(SP, 8*8,SP);
  1715 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
  1716   // plausibility check for oops
  1717   if (!VerifyOops) return;
  1719   char buffer[64];
  1720   sprintf(buffer, "%d", line);
  1721   int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
  1722   sprintf(buffer, " at SP+%d ", addr.disp());
  1723   len += strlen(buffer);
  1724   char * real_msg = new char[len];
  1725   sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
  1727   // Call indirectly to solve generation ordering problem
  1728   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
  1730   // Make some space on stack above the current register window.
  1731   // Enough to hold 8 64-bit registers.
  1732   add(SP,-8*8,SP);
  1734   // Save some 64-bit registers; a normal 'save' chops the heads off
  1735   // of 64-bit longs in the 32-bit build.
  1736   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1737   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1738   ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
  1739   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1741   set((intptr_t)real_msg, O1);
  1742   // Load address to call to into O7
  1743   load_ptr_contents(a, O7);
  1744   // Register call to verify_oop_subroutine
  1745   callr(O7, G0);
  1746   delayed()->nop();
  1747   // recover frame size
  1748   add(SP, 8*8,SP);
  1751 // side-door communication with signalHandler in os_solaris.cpp
  1752 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
  1754 // This macro is expanded just once; it creates shared code.  Contract:
  1755 // receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
  1756 // registers, including flags.  May not use a register 'save', as this blows
  1757 // the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
  1758 // call.
  1759 void MacroAssembler::verify_oop_subroutine() {
  1760   assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
  1762   // Leaf call; no frame.
  1763   Label succeed, fail, null_or_fail;
  1765   // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
  1766   // O0 is now the oop to be checked.  O7 is the return address.
  1767   Register O0_obj = O0;
  1769   // Save some more registers for temps.
  1770   stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
  1771   stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
  1772   stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
  1773   stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
  1775   // Save flags
  1776   Register O5_save_flags = O5;
  1777   rdccr( O5_save_flags );
  1779   { // count number of verifies
  1780     Register O2_adr   = O2;
  1781     Register O3_accum = O3;
  1782     inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
  1785   Register O2_mask = O2;
  1786   Register O3_bits = O3;
  1787   Register O4_temp = O4;
  1789   // mark lower end of faulting range
  1790   assert(_verify_oop_implicit_branch[0] == NULL, "set once");
  1791   _verify_oop_implicit_branch[0] = pc();
  1793   // We can't check the mark oop because it could be in the process of
  1794   // locking or unlocking while this is running.
  1795   set(Universe::verify_oop_mask (), O2_mask);
  1796   set(Universe::verify_oop_bits (), O3_bits);
  1798   // assert((obj & oop_mask) == oop_bits);
  1799   and3(O0_obj, O2_mask, O4_temp);
  1800   cmp(O4_temp, O3_bits);
  1801   brx(notEqual, false, pn, null_or_fail);
  1802   delayed()->nop();
  1804   if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
  1805     // the null_or_fail case is useless; must test for null separately
  1806     br_null(O0_obj, false, pn, succeed);
  1807     delayed()->nop();
  1810   // Check the klassOop of this object for being in the right area of memory.
  1811   // Cannot do the load in the delay above slot in case O0 is null
  1812   load_klass(O0_obj, O0_obj);
  1813   // assert((klass & klass_mask) == klass_bits);
  1814   if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
  1815     set(Universe::verify_klass_mask(), O2_mask);
  1816   if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
  1817     set(Universe::verify_klass_bits(), O3_bits);
  1818   and3(O0_obj, O2_mask, O4_temp);
  1819   cmp(O4_temp, O3_bits);
  1820   brx(notEqual, false, pn, fail);
  1821   delayed()->nop();
  1822   // Check the klass's klass
  1823   load_klass(O0_obj, O0_obj);
  1824   and3(O0_obj, O2_mask, O4_temp);
  1825   cmp(O4_temp, O3_bits);
  1826   brx(notEqual, false, pn, fail);
  1827   delayed()->wrccr( O5_save_flags ); // Restore CCR's
  1829   // mark upper end of faulting range
  1830   _verify_oop_implicit_branch[1] = pc();
  1832   //-----------------------
  1833   // all tests pass
  1834   bind(succeed);
  1836   // Restore prior 64-bit registers
  1837   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
  1838   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
  1839   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
  1840   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
  1841   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
  1842   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
  1844   retl();                       // Leaf return; restore prior O7 in delay slot
  1845   delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
  1847   //-----------------------
  1848   bind(null_or_fail);           // nulls are less common but OK
  1849   br_null(O0_obj, false, pt, succeed);
  1850   delayed()->wrccr( O5_save_flags ); // Restore CCR's
  1852   //-----------------------
  1853   // report failure:
  1854   bind(fail);
  1855   _verify_oop_implicit_branch[2] = pc();
  1857   wrccr( O5_save_flags ); // Restore CCR's
  1859   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1861   // stop_subroutine expects message pointer in I1.
  1862   mov(I1, O1);
  1864   // Restore prior 64-bit registers
  1865   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
  1866   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
  1867   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
  1868   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
  1869   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
  1870   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
  1872   // factor long stop-sequence into subroutine to save space
  1873   assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1875   // call indirectly to solve generation ordering problem
  1876   AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
  1877   load_ptr_contents(al, O5);
  1878   jmpl(O5, 0, O7);
  1879   delayed()->nop();
  1883 void MacroAssembler::stop(const char* msg) {
  1884   // save frame first to get O7 for return address
  1885   // add one word to size in case struct is odd number of words long
  1886   // It must be doubleword-aligned for storing doubles into it.
  1888     save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1890     // stop_subroutine expects message pointer in I1.
  1891     set((intptr_t)msg, O1);
  1893     // factor long stop-sequence into subroutine to save space
  1894     assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1896     // call indirectly to solve generation ordering problem
  1897     AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
  1898     load_ptr_contents(a, O5);
  1899     jmpl(O5, 0, O7);
  1900     delayed()->nop();
  1902     breakpoint_trap();   // make stop actually stop rather than writing
  1903                          // unnoticeable results in the output files.
  1905     // restore(); done in callee to save space!
  1909 void MacroAssembler::warn(const char* msg) {
  1910   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1911   RegistersForDebugging::save_registers(this);
  1912   mov(O0, L0);
  1913   set((intptr_t)msg, O0);
  1914   call( CAST_FROM_FN_PTR(address, warning) );
  1915   delayed()->nop();
  1916 //  ret();
  1917 //  delayed()->restore();
  1918   RegistersForDebugging::restore_registers(this, L0);
  1919   restore();
  1923 void MacroAssembler::untested(const char* what) {
  1924   // We must be able to turn interactive prompting off
  1925   // in order to run automated test scripts on the VM
  1926   // Use the flag ShowMessageBoxOnError
  1928   char* b = new char[1024];
  1929   sprintf(b, "untested: %s", what);
  1931   if ( ShowMessageBoxOnError )   stop(b);
  1932   else                           warn(b);
  1936 void MacroAssembler::stop_subroutine() {
  1937   RegistersForDebugging::save_registers(this);
  1939   // for the sake of the debugger, stick a PC on the current frame
  1940   // (this assumes that the caller has performed an extra "save")
  1941   mov(I7, L7);
  1942   add(O7, -7 * BytesPerInt, I7);
  1944   save_frame(); // one more save to free up another O7 register
  1945   mov(I0, O1); // addr of reg save area
  1947   // We expect pointer to message in I1. Caller must set it up in O1
  1948   mov(I1, O0); // get msg
  1949   call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
  1950   delayed()->nop();
  1952   restore();
  1954   RegistersForDebugging::restore_registers(this, O0);
  1956   save_frame(0);
  1957   call(CAST_FROM_FN_PTR(address,breakpoint));
  1958   delayed()->nop();
  1959   restore();
  1961   mov(L7, I7);
  1962   retl();
  1963   delayed()->restore(); // see stop above
  1967 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
  1968   if ( ShowMessageBoxOnError ) {
  1969       JavaThreadState saved_state = JavaThread::current()->thread_state();
  1970       JavaThread::current()->set_thread_state(_thread_in_vm);
  1972         // In order to get locks work, we need to fake a in_VM state
  1973         ttyLocker ttyl;
  1974         ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
  1975         if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  1976           ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
  1978         if (os::message_box(msg, "Execution stopped, print registers?"))
  1979           regs->print(::tty);
  1981       ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
  1983   else
  1984      ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  1985   assert(false, "error");
  1989 #ifndef PRODUCT
  1990 void MacroAssembler::test() {
  1991   ResourceMark rm;
  1993   CodeBuffer cb("test", 10000, 10000);
  1994   MacroAssembler* a = new MacroAssembler(&cb);
  1995   VM_Version::allow_all();
  1996   a->test_v9();
  1997   a->test_v8_onlys();
  1998   VM_Version::revert();
  2000   StubRoutines::Sparc::test_stop_entry()();
  2002 #endif
  2005 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
  2006   subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
  2007   Label no_extras;
  2008   br( negative, true, pt, no_extras ); // if neg, clear reg
  2009   delayed()->set(0, Rresult);          // annuled, so only if taken
  2010   bind( no_extras );
  2014 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
  2015 #ifdef _LP64
  2016   add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
  2017 #else
  2018   add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
  2019 #endif
  2020   bclr(1, Rresult);
  2021   sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
  2025 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
  2026   calc_frame_size(Rextra_words, Rresult);
  2027   neg(Rresult);
  2028   save(SP, Rresult, SP);
  2032 // ---------------------------------------------------------
  2033 Assembler::RCondition cond2rcond(Assembler::Condition c) {
  2034   switch (c) {
  2035     /*case zero: */
  2036     case Assembler::equal:        return Assembler::rc_z;
  2037     case Assembler::lessEqual:    return Assembler::rc_lez;
  2038     case Assembler::less:         return Assembler::rc_lz;
  2039     /*case notZero:*/
  2040     case Assembler::notEqual:     return Assembler::rc_nz;
  2041     case Assembler::greater:      return Assembler::rc_gz;
  2042     case Assembler::greaterEqual: return Assembler::rc_gez;
  2044   ShouldNotReachHere();
  2045   return Assembler::rc_z;
  2048 // compares register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
  2049 void MacroAssembler::br_zero( Condition c, bool a, Predict p, Register s1, Label& L) {
  2050   tst(s1);
  2051   br (c, a, p, L);
  2055 // Compares a pointer register with zero and branches on null.
  2056 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
  2057 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
  2058   assert_not_delayed();
  2059 #ifdef _LP64
  2060   bpr( rc_z, a, p, s1, L );
  2061 #else
  2062   tst(s1);
  2063   br ( zero, a, p, L );
  2064 #endif
  2067 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
  2068   assert_not_delayed();
  2069 #ifdef _LP64
  2070   bpr( rc_nz, a, p, s1, L );
  2071 #else
  2072   tst(s1);
  2073   br ( notZero, a, p, L );
  2074 #endif
  2077 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
  2078                                      Register s1, address d,
  2079                                      relocInfo::relocType rt ) {
  2080   if (VM_Version::v9_instructions_work()) {
  2081     bpr(rc, a, p, s1, d, rt);
  2082   } else {
  2083     tst(s1);
  2084     br(reg_cond_to_cc_cond(rc), a, p, d, rt);
  2088 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
  2089                                      Register s1, Label& L ) {
  2090   if (VM_Version::v9_instructions_work()) {
  2091     bpr(rc, a, p, s1, L);
  2092   } else {
  2093     tst(s1);
  2094     br(reg_cond_to_cc_cond(rc), a, p, L);
  2099 // instruction sequences factored across compiler & interpreter
  2102 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
  2103                            Register Rb_hi, Register Rb_low,
  2104                            Register Rresult) {
  2106   Label check_low_parts, done;
  2108   cmp(Ra_hi, Rb_hi );  // compare hi parts
  2109   br(equal, true, pt, check_low_parts);
  2110   delayed()->cmp(Ra_low, Rb_low); // test low parts
  2112   // And, with an unsigned comparison, it does not matter if the numbers
  2113   // are negative or not.
  2114   // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
  2115   // The second one is bigger (unsignedly).
  2117   // Other notes:  The first move in each triplet can be unconditional
  2118   // (and therefore probably prefetchable).
  2119   // And the equals case for the high part does not need testing,
  2120   // since that triplet is reached only after finding the high halves differ.
  2122   if (VM_Version::v9_instructions_work()) {
  2124                                     mov  (                     -1, Rresult);
  2125     ba( false, done );  delayed()-> movcc(greater, false, icc,  1, Rresult);
  2127   else {
  2128     br(less,    true, pt, done); delayed()-> set(-1, Rresult);
  2129     br(greater, true, pt, done); delayed()-> set( 1, Rresult);
  2132   bind( check_low_parts );
  2134   if (VM_Version::v9_instructions_work()) {
  2135     mov(                               -1, Rresult);
  2136     movcc(equal,           false, icc,  0, Rresult);
  2137     movcc(greaterUnsigned, false, icc,  1, Rresult);
  2139   else {
  2140                                                     set(-1, Rresult);
  2141     br(equal,           true, pt, done); delayed()->set( 0, Rresult);
  2142     br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
  2144   bind( done );
  2147 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
  2148   subcc(  G0, Rlow, Rlow );
  2149   subc(   G0, Rhi,  Rhi  );
  2152 void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
  2153                            Register Rcount,
  2154                            Register Rout_high, Register Rout_low,
  2155                            Register Rtemp ) {
  2158   Register Ralt_count = Rtemp;
  2159   Register Rxfer_bits = Rtemp;
  2161   assert( Ralt_count != Rin_high
  2162       &&  Ralt_count != Rin_low
  2163       &&  Ralt_count != Rcount
  2164       &&  Rxfer_bits != Rin_low
  2165       &&  Rxfer_bits != Rin_high
  2166       &&  Rxfer_bits != Rcount
  2167       &&  Rxfer_bits != Rout_low
  2168       &&  Rout_low   != Rin_high,
  2169         "register alias checks");
  2171   Label big_shift, done;
  2173   // This code can be optimized to use the 64 bit shifts in V9.
  2174   // Here we use the 32 bit shifts.
  2176   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2177   subcc(Rcount,         31,             Ralt_count);
  2178   br(greater, true, pn, big_shift);
  2179   delayed()->
  2180   dec(Ralt_count);
  2182   // shift < 32 bits, Ralt_count = Rcount-31
  2184   // We get the transfer bits by shifting right by 32-count the low
  2185   // register. This is done by shifting right by 31-count and then by one
  2186   // more to take care of the special (rare) case where count is zero
  2187   // (shifting by 32 would not work).
  2189   neg(  Ralt_count                                 );
  2191   // The order of the next two instructions is critical in the case where
  2192   // Rin and Rout are the same and should not be reversed.
  2194   srl(  Rin_low,        Ralt_count,     Rxfer_bits ); // shift right by 31-count
  2195   if (Rcount != Rout_low) {
  2196     sll(        Rin_low,        Rcount,         Rout_low   ); // low half
  2198   sll(  Rin_high,       Rcount,         Rout_high  );
  2199   if (Rcount == Rout_low) {
  2200     sll(        Rin_low,        Rcount,         Rout_low   ); // low half
  2202   srl(  Rxfer_bits,     1,              Rxfer_bits ); // shift right by one more
  2203   ba (false, done);
  2204   delayed()->
  2205   or3(  Rout_high,      Rxfer_bits,     Rout_high);   // new hi value: or in shifted old hi part and xfer from low
  2207   // shift >= 32 bits, Ralt_count = Rcount-32
  2208   bind(big_shift);
  2209   sll(  Rin_low,        Ralt_count,     Rout_high  );
  2210   clr(  Rout_low                                   );
  2212   bind(done);
  2216 void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
  2217                            Register Rcount,
  2218                            Register Rout_high, Register Rout_low,
  2219                            Register Rtemp ) {
  2221   Register Ralt_count = Rtemp;
  2222   Register Rxfer_bits = Rtemp;
  2224   assert( Ralt_count != Rin_high
  2225       &&  Ralt_count != Rin_low
  2226       &&  Ralt_count != Rcount
  2227       &&  Rxfer_bits != Rin_low
  2228       &&  Rxfer_bits != Rin_high
  2229       &&  Rxfer_bits != Rcount
  2230       &&  Rxfer_bits != Rout_high
  2231       &&  Rout_high  != Rin_low,
  2232         "register alias checks");
  2234   Label big_shift, done;
  2236   // This code can be optimized to use the 64 bit shifts in V9.
  2237   // Here we use the 32 bit shifts.
  2239   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2240   subcc(Rcount,         31,             Ralt_count);
  2241   br(greater, true, pn, big_shift);
  2242   delayed()->dec(Ralt_count);
  2244   // shift < 32 bits, Ralt_count = Rcount-31
  2246   // We get the transfer bits by shifting left by 32-count the high
  2247   // register. This is done by shifting left by 31-count and then by one
  2248   // more to take care of the special (rare) case where count is zero
  2249   // (shifting by 32 would not work).
  2251   neg(  Ralt_count                                  );
  2252   if (Rcount != Rout_low) {
  2253     srl(        Rin_low,        Rcount,         Rout_low    );
  2256   // The order of the next two instructions is critical in the case where
  2257   // Rin and Rout are the same and should not be reversed.
  2259   sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
  2260   sra(  Rin_high,       Rcount,         Rout_high   ); // high half
  2261   sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
  2262   if (Rcount == Rout_low) {
  2263     srl(        Rin_low,        Rcount,         Rout_low    );
  2265   ba (false, done);
  2266   delayed()->
  2267   or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
  2269   // shift >= 32 bits, Ralt_count = Rcount-32
  2270   bind(big_shift);
  2272   sra(  Rin_high,       Ralt_count,     Rout_low    );
  2273   sra(  Rin_high,       31,             Rout_high   ); // sign into hi
  2275   bind( done );
  2280 void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
  2281                             Register Rcount,
  2282                             Register Rout_high, Register Rout_low,
  2283                             Register Rtemp ) {
  2285   Register Ralt_count = Rtemp;
  2286   Register Rxfer_bits = Rtemp;
  2288   assert( Ralt_count != Rin_high
  2289       &&  Ralt_count != Rin_low
  2290       &&  Ralt_count != Rcount
  2291       &&  Rxfer_bits != Rin_low
  2292       &&  Rxfer_bits != Rin_high
  2293       &&  Rxfer_bits != Rcount
  2294       &&  Rxfer_bits != Rout_high
  2295       &&  Rout_high  != Rin_low,
  2296         "register alias checks");
  2298   Label big_shift, done;
  2300   // This code can be optimized to use the 64 bit shifts in V9.
  2301   // Here we use the 32 bit shifts.
  2303   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2304   subcc(Rcount,         31,             Ralt_count);
  2305   br(greater, true, pn, big_shift);
  2306   delayed()->dec(Ralt_count);
  2308   // shift < 32 bits, Ralt_count = Rcount-31
  2310   // We get the transfer bits by shifting left by 32-count the high
  2311   // register. This is done by shifting left by 31-count and then by one
  2312   // more to take care of the special (rare) case where count is zero
  2313   // (shifting by 32 would not work).
  2315   neg(  Ralt_count                                  );
  2316   if (Rcount != Rout_low) {
  2317     srl(        Rin_low,        Rcount,         Rout_low    );
  2320   // The order of the next two instructions is critical in the case where
  2321   // Rin and Rout are the same and should not be reversed.
  2323   sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
  2324   srl(  Rin_high,       Rcount,         Rout_high   ); // high half
  2325   sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
  2326   if (Rcount == Rout_low) {
  2327     srl(        Rin_low,        Rcount,         Rout_low    );
  2329   ba (false, done);
  2330   delayed()->
  2331   or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
  2333   // shift >= 32 bits, Ralt_count = Rcount-32
  2334   bind(big_shift);
  2336   srl(  Rin_high,       Ralt_count,     Rout_low    );
  2337   clr(  Rout_high                                   );
  2339   bind( done );
  2342 #ifdef _LP64
  2343 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
  2344   cmp(Ra, Rb);
  2345   mov(                       -1, Rresult);
  2346   movcc(equal,   false, xcc,  0, Rresult);
  2347   movcc(greater, false, xcc,  1, Rresult);
  2349 #endif
  2352 void MacroAssembler::load_sized_value(Address src, Register dst,
  2353                                       size_t size_in_bytes, bool is_signed) {
  2354   switch (size_in_bytes) {
  2355   case  8: ldx(src, dst); break;
  2356   case  4: ld( src, dst); break;
  2357   case  2: is_signed ? ldsh(src, dst) : lduh(src, dst); break;
  2358   case  1: is_signed ? ldsb(src, dst) : ldub(src, dst); break;
  2359   default: ShouldNotReachHere();
  2364 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
  2365                                 FloatRegister Fa, FloatRegister Fb,
  2366                                 Register Rresult) {
  2368   fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
  2370   Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
  2371   Condition eq =                          f_equal;
  2372   Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
  2374   if (VM_Version::v9_instructions_work()) {
  2376     mov(                   -1, Rresult );
  2377     movcc( eq, true, fcc0,  0, Rresult );
  2378     movcc( gt, true, fcc0,  1, Rresult );
  2380   } else {
  2381     Label done;
  2383                                          set( -1, Rresult );
  2384     //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
  2385     fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
  2386     fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
  2388     bind (done);
  2393 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2395   if (VM_Version::v9_instructions_work()) {
  2396     Assembler::fneg(w, s, d);
  2397   } else {
  2398     if (w == FloatRegisterImpl::S) {
  2399       Assembler::fneg(w, s, d);
  2400     } else if (w == FloatRegisterImpl::D) {
  2401       // number() does a sanity check on the alignment.
  2402       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2403         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2405       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2406       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2407     } else {
  2408       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2410       // number() does a sanity check on the alignment.
  2411       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2412         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2414       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2415       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2416       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2417       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2422 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2424   if (VM_Version::v9_instructions_work()) {
  2425     Assembler::fmov(w, s, d);
  2426   } else {
  2427     if (w == FloatRegisterImpl::S) {
  2428       Assembler::fmov(w, s, d);
  2429     } else if (w == FloatRegisterImpl::D) {
  2430       // number() does a sanity check on the alignment.
  2431       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2432         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2434       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2435       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2436     } else {
  2437       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2439       // number() does a sanity check on the alignment.
  2440       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2441         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2443       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2444       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2445       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2446       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2451 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2453   if (VM_Version::v9_instructions_work()) {
  2454     Assembler::fabs(w, s, d);
  2455   } else {
  2456     if (w == FloatRegisterImpl::S) {
  2457       Assembler::fabs(w, s, d);
  2458     } else if (w == FloatRegisterImpl::D) {
  2459       // number() does a sanity check on the alignment.
  2460       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2461         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2463       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2464       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2465     } else {
  2466       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2468       // number() does a sanity check on the alignment.
  2469       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2470        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2472       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2473       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2474       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2475       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2480 void MacroAssembler::save_all_globals_into_locals() {
  2481   mov(G1,L1);
  2482   mov(G2,L2);
  2483   mov(G3,L3);
  2484   mov(G4,L4);
  2485   mov(G5,L5);
  2486   mov(G6,L6);
  2487   mov(G7,L7);
  2490 void MacroAssembler::restore_globals_from_locals() {
  2491   mov(L1,G1);
  2492   mov(L2,G2);
  2493   mov(L3,G3);
  2494   mov(L4,G4);
  2495   mov(L5,G5);
  2496   mov(L6,G6);
  2497   mov(L7,G7);
  2500 // Use for 64 bit operation.
  2501 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2503   // store ptr_reg as the new top value
  2504 #ifdef _LP64
  2505   casx(top_ptr_reg, top_reg, ptr_reg);
  2506 #else
  2507   cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
  2508 #endif // _LP64
  2511 // [RGV] This routine does not handle 64 bit operations.
  2512 //       use casx_under_lock() or casx directly!!!
  2513 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2515   // store ptr_reg as the new top value
  2516   if (VM_Version::v9_instructions_work()) {
  2517     cas(top_ptr_reg, top_reg, ptr_reg);
  2518   } else {
  2520     // If the register is not an out nor global, it is not visible
  2521     // after the save.  Allocate a register for it, save its
  2522     // value in the register save area (the save may not flush
  2523     // registers to the save area).
  2525     Register top_ptr_reg_after_save;
  2526     Register top_reg_after_save;
  2527     Register ptr_reg_after_save;
  2529     if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
  2530       top_ptr_reg_after_save = top_ptr_reg->after_save();
  2531     } else {
  2532       Address reg_save_addr = top_ptr_reg->address_in_saved_window();
  2533       top_ptr_reg_after_save = L0;
  2534       st(top_ptr_reg, reg_save_addr);
  2537     if (top_reg->is_out() || top_reg->is_global()) {
  2538       top_reg_after_save = top_reg->after_save();
  2539     } else {
  2540       Address reg_save_addr = top_reg->address_in_saved_window();
  2541       top_reg_after_save = L1;
  2542       st(top_reg, reg_save_addr);
  2545     if (ptr_reg->is_out() || ptr_reg->is_global()) {
  2546       ptr_reg_after_save = ptr_reg->after_save();
  2547     } else {
  2548       Address reg_save_addr = ptr_reg->address_in_saved_window();
  2549       ptr_reg_after_save = L2;
  2550       st(ptr_reg, reg_save_addr);
  2553     const Register& lock_reg = L3;
  2554     const Register& lock_ptr_reg = L4;
  2555     const Register& value_reg = L5;
  2556     const Register& yield_reg = L6;
  2557     const Register& yieldall_reg = L7;
  2559     save_frame();
  2561     if (top_ptr_reg_after_save == L0) {
  2562       ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
  2565     if (top_reg_after_save == L1) {
  2566       ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
  2569     if (ptr_reg_after_save == L2) {
  2570       ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
  2573     Label(retry_get_lock);
  2574     Label(not_same);
  2575     Label(dont_yield);
  2577     assert(lock_addr, "lock_address should be non null for v8");
  2578     set((intptr_t)lock_addr, lock_ptr_reg);
  2579     // Initialize yield counter
  2580     mov(G0,yield_reg);
  2581     mov(G0, yieldall_reg);
  2582     set(StubRoutines::Sparc::locked, lock_reg);
  2584     bind(retry_get_lock);
  2585     cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
  2586     br(Assembler::less, false, Assembler::pt, dont_yield);
  2587     delayed()->nop();
  2589     if(use_call_vm) {
  2590       Untested("Need to verify global reg consistancy");
  2591       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
  2592     } else {
  2593       // Save the regs and make space for a C call
  2594       save(SP, -96, SP);
  2595       save_all_globals_into_locals();
  2596       call(CAST_FROM_FN_PTR(address,os::yield_all));
  2597       delayed()->mov(yieldall_reg, O0);
  2598       restore_globals_from_locals();
  2599       restore();
  2602     // reset the counter
  2603     mov(G0,yield_reg);
  2604     add(yieldall_reg, 1, yieldall_reg);
  2606     bind(dont_yield);
  2607     // try to get lock
  2608     swap(lock_ptr_reg, 0, lock_reg);
  2610     // did we get the lock?
  2611     cmp(lock_reg, StubRoutines::Sparc::unlocked);
  2612     br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
  2613     delayed()->add(yield_reg,1,yield_reg);
  2615     // yes, got lock.  do we have the same top?
  2616     ld(top_ptr_reg_after_save, 0, value_reg);
  2617     cmp(value_reg, top_reg_after_save);
  2618     br(Assembler::notEqual, false, Assembler::pn, not_same);
  2619     delayed()->nop();
  2621     // yes, same top.
  2622     st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
  2623     membar(Assembler::StoreStore);
  2625     bind(not_same);
  2626     mov(value_reg, ptr_reg_after_save);
  2627     st(lock_reg, lock_ptr_reg, 0); // unlock
  2629     restore();
  2633 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  2634                                                       Register tmp,
  2635                                                       int offset) {
  2636   intptr_t value = *delayed_value_addr;
  2637   if (value != 0)
  2638     return RegisterOrConstant(value + offset);
  2640   // load indirectly to solve generation ordering problem
  2641   AddressLiteral a(delayed_value_addr);
  2642   load_ptr_contents(a, tmp);
  2644 #ifdef ASSERT
  2645   tst(tmp);
  2646   breakpoint_trap(zero, xcc);
  2647 #endif
  2649   if (offset != 0)
  2650     add(tmp, offset, tmp);
  2652   return RegisterOrConstant(tmp);
  2656 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2657   assert(d.register_or_noreg() != G0, "lost side effect");
  2658   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2659       (s2.is_register() && s2.as_register() == G0)) {
  2660     // Do nothing, just move value.
  2661     if (s1.is_register()) {
  2662       if (d.is_constant())  d = temp;
  2663       mov(s1.as_register(), d.as_register());
  2664       return d;
  2665     } else {
  2666       return s1;
  2670   if (s1.is_register()) {
  2671     assert_different_registers(s1.as_register(), temp);
  2672     if (d.is_constant())  d = temp;
  2673     andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2674     return d;
  2675   } else {
  2676     if (s2.is_register()) {
  2677       assert_different_registers(s2.as_register(), temp);
  2678       if (d.is_constant())  d = temp;
  2679       set(s1.as_constant(), temp);
  2680       andn(temp, s2.as_register(), d.as_register());
  2681       return d;
  2682     } else {
  2683       intptr_t res = s1.as_constant() & ~s2.as_constant();
  2684       return res;
  2689 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2690   assert(d.register_or_noreg() != G0, "lost side effect");
  2691   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2692       (s2.is_register() && s2.as_register() == G0)) {
  2693     // Do nothing, just move value.
  2694     if (s1.is_register()) {
  2695       if (d.is_constant())  d = temp;
  2696       mov(s1.as_register(), d.as_register());
  2697       return d;
  2698     } else {
  2699       return s1;
  2703   if (s1.is_register()) {
  2704     assert_different_registers(s1.as_register(), temp);
  2705     if (d.is_constant())  d = temp;
  2706     add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2707     return d;
  2708   } else {
  2709     if (s2.is_register()) {
  2710       assert_different_registers(s2.as_register(), temp);
  2711       if (d.is_constant())  d = temp;
  2712       add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
  2713       return d;
  2714     } else {
  2715       intptr_t res = s1.as_constant() + s2.as_constant();
  2716       return res;
  2721 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2722   assert(d.register_or_noreg() != G0, "lost side effect");
  2723   if (!is_simm13(s2.constant_or_zero()))
  2724     s2 = (s2.as_constant() & 0xFF);
  2725   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2726       (s2.is_register() && s2.as_register() == G0)) {
  2727     // Do nothing, just move value.
  2728     if (s1.is_register()) {
  2729       if (d.is_constant())  d = temp;
  2730       mov(s1.as_register(), d.as_register());
  2731       return d;
  2732     } else {
  2733       return s1;
  2737   if (s1.is_register()) {
  2738     assert_different_registers(s1.as_register(), temp);
  2739     if (d.is_constant())  d = temp;
  2740     sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2741     return d;
  2742   } else {
  2743     if (s2.is_register()) {
  2744       assert_different_registers(s2.as_register(), temp);
  2745       if (d.is_constant())  d = temp;
  2746       set(s1.as_constant(), temp);
  2747       sll_ptr(temp, s2.as_register(), d.as_register());
  2748       return d;
  2749     } else {
  2750       intptr_t res = s1.as_constant() << s2.as_constant();
  2751       return res;
  2757 // Look up the method for a megamorphic invokeinterface call.
  2758 // The target method is determined by <intf_klass, itable_index>.
  2759 // The receiver klass is in recv_klass.
  2760 // On success, the result will be in method_result, and execution falls through.
  2761 // On failure, execution transfers to the given label.
  2762 void MacroAssembler::lookup_interface_method(Register recv_klass,
  2763                                              Register intf_klass,
  2764                                              RegisterOrConstant itable_index,
  2765                                              Register method_result,
  2766                                              Register scan_temp,
  2767                                              Register sethi_temp,
  2768                                              Label& L_no_such_interface) {
  2769   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  2770   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  2771          "caller must use same register for non-constant itable index as for method");
  2773   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  2774   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
  2775   int scan_step   = itableOffsetEntry::size() * wordSize;
  2776   int vte_size    = vtableEntry::size() * wordSize;
  2778   lduw(recv_klass, instanceKlass::vtable_length_offset() * wordSize, scan_temp);
  2779   // %%% We should store the aligned, prescaled offset in the klassoop.
  2780   // Then the next several instructions would fold away.
  2782   int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
  2783   int itb_offset = vtable_base;
  2784   if (round_to_unit != 0) {
  2785     // hoist first instruction of round_to(scan_temp, BytesPerLong):
  2786     itb_offset += round_to_unit - wordSize;
  2788   int itb_scale = exact_log2(vtableEntry::size() * wordSize);
  2789   sll(scan_temp, itb_scale,  scan_temp);
  2790   add(scan_temp, itb_offset, scan_temp);
  2791   if (round_to_unit != 0) {
  2792     // Round up to align_object_offset boundary
  2793     // see code for instanceKlass::start_of_itable!
  2794     // Was: round_to(scan_temp, BytesPerLong);
  2795     // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
  2796     and3(scan_temp, -round_to_unit, scan_temp);
  2798   add(recv_klass, scan_temp, scan_temp);
  2800   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  2801   RegisterOrConstant itable_offset = itable_index;
  2802   itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
  2803   itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
  2804   add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
  2806   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  2807   //   if (scan->interface() == intf) {
  2808   //     result = (klass + scan->offset() + itable_index);
  2809   //   }
  2810   // }
  2811   Label search, found_method;
  2813   for (int peel = 1; peel >= 0; peel--) {
  2814     // %%%% Could load both offset and interface in one ldx, if they were
  2815     // in the opposite order.  This would save a load.
  2816     ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
  2818     // Check that this entry is non-null.  A null entry means that
  2819     // the receiver class doesn't implement the interface, and wasn't the
  2820     // same as when the caller was compiled.
  2821     bpr(Assembler::rc_z, false, Assembler::pn, method_result, L_no_such_interface);
  2822     delayed()->cmp(method_result, intf_klass);
  2824     if (peel) {
  2825       brx(Assembler::equal,    false, Assembler::pt, found_method);
  2826     } else {
  2827       brx(Assembler::notEqual, false, Assembler::pn, search);
  2828       // (invert the test to fall through to found_method...)
  2830     delayed()->add(scan_temp, scan_step, scan_temp);
  2832     if (!peel)  break;
  2834     bind(search);
  2837   bind(found_method);
  2839   // Got a hit.
  2840   int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
  2841   // scan_temp[-scan_step] points to the vtable offset we need
  2842   ito_offset -= scan_step;
  2843   lduw(scan_temp, ito_offset, scan_temp);
  2844   ld_ptr(recv_klass, scan_temp, method_result);
  2848 void MacroAssembler::check_klass_subtype(Register sub_klass,
  2849                                          Register super_klass,
  2850                                          Register temp_reg,
  2851                                          Register temp2_reg,
  2852                                          Label& L_success) {
  2853   Label L_failure, L_pop_to_failure;
  2854   check_klass_subtype_fast_path(sub_klass, super_klass,
  2855                                 temp_reg, temp2_reg,
  2856                                 &L_success, &L_failure, NULL);
  2857   Register sub_2 = sub_klass;
  2858   Register sup_2 = super_klass;
  2859   if (!sub_2->is_global())  sub_2 = L0;
  2860   if (!sup_2->is_global())  sup_2 = L1;
  2862   save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
  2863   check_klass_subtype_slow_path(sub_2, sup_2,
  2864                                 L2, L3, L4, L5,
  2865                                 NULL, &L_pop_to_failure);
  2867   // on success:
  2868   restore();
  2869   ba(false, L_success);
  2870   delayed()->nop();
  2872   // on failure:
  2873   bind(L_pop_to_failure);
  2874   restore();
  2875   bind(L_failure);
  2879 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  2880                                                    Register super_klass,
  2881                                                    Register temp_reg,
  2882                                                    Register temp2_reg,
  2883                                                    Label* L_success,
  2884                                                    Label* L_failure,
  2885                                                    Label* L_slow_path,
  2886                                         RegisterOrConstant super_check_offset,
  2887                                         Register instanceof_hack) {
  2888   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  2889                    Klass::secondary_super_cache_offset_in_bytes());
  2890   int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  2891                     Klass::super_check_offset_offset_in_bytes());
  2893   bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
  2894   bool need_slow_path = (must_load_sco ||
  2895                          super_check_offset.constant_or_zero() == sco_offset);
  2897   assert_different_registers(sub_klass, super_klass, temp_reg);
  2898   if (super_check_offset.is_register()) {
  2899     assert_different_registers(sub_klass, super_klass, temp_reg,
  2900                                super_check_offset.as_register());
  2901   } else if (must_load_sco) {
  2902     assert(temp2_reg != noreg, "supply either a temp or a register offset");
  2905   Label L_fallthrough;
  2906   int label_nulls = 0;
  2907   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  2908   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  2909   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  2910   assert(label_nulls <= 1 || instanceof_hack != noreg ||
  2911          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
  2912          "at most one NULL in the batch, usually");
  2914   // Support for the instanceof hack, which uses delay slots to
  2915   // set a destination register to zero or one.
  2916   bool do_bool_sets = (instanceof_hack != noreg);
  2917 #define BOOL_SET(bool_value)                            \
  2918   if (do_bool_sets && bool_value >= 0)                  \
  2919     set(bool_value, instanceof_hack)
  2920 #define DELAYED_BOOL_SET(bool_value)                    \
  2921   if (do_bool_sets && bool_value >= 0)                  \
  2922     delayed()->set(bool_value, instanceof_hack);        \
  2923   else delayed()->nop()
  2924   // Hacked ba(), which may only be used just before L_fallthrough.
  2925 #define FINAL_JUMP(label, bool_value)                   \
  2926   if (&(label) == &L_fallthrough) {                     \
  2927     BOOL_SET(bool_value);                               \
  2928   } else {                                              \
  2929     ba((do_bool_sets && bool_value >= 0), label);       \
  2930     DELAYED_BOOL_SET(bool_value);                       \
  2933   // If the pointers are equal, we are done (e.g., String[] elements).
  2934   // This self-check enables sharing of secondary supertype arrays among
  2935   // non-primary types such as array-of-interface.  Otherwise, each such
  2936   // type would need its own customized SSA.
  2937   // We move this check to the front of the fast path because many
  2938   // type checks are in fact trivially successful in this manner,
  2939   // so we get a nicely predicted branch right at the start of the check.
  2940   cmp(super_klass, sub_klass);
  2941   brx(Assembler::equal, do_bool_sets, Assembler::pn, *L_success);
  2942   DELAYED_BOOL_SET(1);
  2944   // Check the supertype display:
  2945   if (must_load_sco) {
  2946     // The super check offset is always positive...
  2947     lduw(super_klass, sco_offset, temp2_reg);
  2948     super_check_offset = RegisterOrConstant(temp2_reg);
  2949     // super_check_offset is register.
  2950     assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
  2952   ld_ptr(sub_klass, super_check_offset, temp_reg);
  2953   cmp(super_klass, temp_reg);
  2955   // This check has worked decisively for primary supers.
  2956   // Secondary supers are sought in the super_cache ('super_cache_addr').
  2957   // (Secondary supers are interfaces and very deeply nested subtypes.)
  2958   // This works in the same check above because of a tricky aliasing
  2959   // between the super_cache and the primary super display elements.
  2960   // (The 'super_check_addr' can address either, as the case requires.)
  2961   // Note that the cache is updated below if it does not help us find
  2962   // what we need immediately.
  2963   // So if it was a primary super, we can just fail immediately.
  2964   // Otherwise, it's the slow path for us (no success at this point).
  2966   if (super_check_offset.is_register()) {
  2967     brx(Assembler::equal, do_bool_sets, Assembler::pn, *L_success);
  2968     delayed(); if (do_bool_sets)  BOOL_SET(1);
  2969     // if !do_bool_sets, sneak the next cmp into the delay slot:
  2970     cmp(super_check_offset.as_register(), sc_offset);
  2972     if (L_failure == &L_fallthrough) {
  2973       brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_slow_path);
  2974       delayed()->nop();
  2975       BOOL_SET(0);  // fallthrough on failure
  2976     } else {
  2977       brx(Assembler::notEqual, do_bool_sets, Assembler::pn, *L_failure);
  2978       DELAYED_BOOL_SET(0);
  2979       FINAL_JUMP(*L_slow_path, -1);  // -1 => vanilla delay slot
  2981   } else if (super_check_offset.as_constant() == sc_offset) {
  2982     // Need a slow path; fast failure is impossible.
  2983     if (L_slow_path == &L_fallthrough) {
  2984       brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_success);
  2985       DELAYED_BOOL_SET(1);
  2986     } else {
  2987       brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
  2988       delayed()->nop();
  2989       FINAL_JUMP(*L_success, 1);
  2991   } else {
  2992     // No slow path; it's a fast decision.
  2993     if (L_failure == &L_fallthrough) {
  2994       brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_success);
  2995       DELAYED_BOOL_SET(1);
  2996       BOOL_SET(0);
  2997     } else {
  2998       brx(Assembler::notEqual, do_bool_sets, Assembler::pn, *L_failure);
  2999       DELAYED_BOOL_SET(0);
  3000       FINAL_JUMP(*L_success, 1);
  3004   bind(L_fallthrough);
  3006 #undef final_jump
  3007 #undef bool_set
  3008 #undef DELAYED_BOOL_SET
  3009 #undef final_jump
  3013 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  3014                                                    Register super_klass,
  3015                                                    Register count_temp,
  3016                                                    Register scan_temp,
  3017                                                    Register scratch_reg,
  3018                                                    Register coop_reg,
  3019                                                    Label* L_success,
  3020                                                    Label* L_failure) {
  3021   assert_different_registers(sub_klass, super_klass,
  3022                              count_temp, scan_temp, scratch_reg, coop_reg);
  3024   Label L_fallthrough, L_loop;
  3025   int label_nulls = 0;
  3026   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  3027   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  3028   assert(label_nulls <= 1, "at most one NULL in the batch");
  3030   // a couple of useful fields in sub_klass:
  3031   int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
  3032                    Klass::secondary_supers_offset_in_bytes());
  3033   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  3034                    Klass::secondary_super_cache_offset_in_bytes());
  3036   // Do a linear scan of the secondary super-klass chain.
  3037   // This code is rarely used, so simplicity is a virtue here.
  3039 #ifndef PRODUCT
  3040   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  3041   inc_counter((address) pst_counter, count_temp, scan_temp);
  3042 #endif
  3044   // We will consult the secondary-super array.
  3045   ld_ptr(sub_klass, ss_offset, scan_temp);
  3047   // Compress superclass if necessary.
  3048   Register search_key = super_klass;
  3049   bool decode_super_klass = false;
  3050   if (UseCompressedOops) {
  3051     if (coop_reg != noreg) {
  3052       encode_heap_oop_not_null(super_klass, coop_reg);
  3053       search_key = coop_reg;
  3054     } else {
  3055       encode_heap_oop_not_null(super_klass);
  3056       decode_super_klass = true; // scarce temps!
  3058     // The superclass is never null; it would be a basic system error if a null
  3059     // pointer were to sneak in here.  Note that we have already loaded the
  3060     // Klass::super_check_offset from the super_klass in the fast path,
  3061     // so if there is a null in that register, we are already in the afterlife.
  3064   // Load the array length.  (Positive movl does right thing on LP64.)
  3065   lduw(scan_temp, arrayOopDesc::length_offset_in_bytes(), count_temp);
  3067   // Check for empty secondary super list
  3068   tst(count_temp);
  3070   // Top of search loop
  3071   bind(L_loop);
  3072   br(Assembler::equal, false, Assembler::pn, *L_failure);
  3073   delayed()->add(scan_temp, heapOopSize, scan_temp);
  3074   assert(heapOopSize != 0, "heapOopSize should be initialized");
  3076   // Skip the array header in all array accesses.
  3077   int elem_offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
  3078   elem_offset -= heapOopSize;   // the scan pointer was pre-incremented also
  3080   // Load next super to check
  3081   if (UseCompressedOops) {
  3082     // Don't use load_heap_oop; we don't want to decode the element.
  3083     lduw(   scan_temp, elem_offset, scratch_reg );
  3084   } else {
  3085     ld_ptr( scan_temp, elem_offset, scratch_reg );
  3088   // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
  3089   cmp(scratch_reg, search_key);
  3091   // A miss means we are NOT a subtype and need to keep looping
  3092   brx(Assembler::notEqual, false, Assembler::pn, L_loop);
  3093   delayed()->deccc(count_temp); // decrement trip counter in delay slot
  3095   // Falling out the bottom means we found a hit; we ARE a subtype
  3096   if (decode_super_klass) decode_heap_oop(super_klass);
  3098   // Success.  Cache the super we found and proceed in triumph.
  3099   st_ptr(super_klass, sub_klass, sc_offset);
  3101   if (L_success != &L_fallthrough) {
  3102     ba(false, *L_success);
  3103     delayed()->nop();
  3106   bind(L_fallthrough);
  3110 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
  3111                                               Register temp_reg,
  3112                                               Label& wrong_method_type) {
  3113   assert_different_registers(mtype_reg, mh_reg, temp_reg);
  3114   // compare method type against that of the receiver
  3115   RegisterOrConstant mhtype_offset = delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg);
  3116   load_heap_oop(mh_reg, mhtype_offset, temp_reg);
  3117   cmp(temp_reg, mtype_reg);
  3118   br(Assembler::notEqual, false, Assembler::pn, wrong_method_type);
  3119   delayed()->nop();
  3123 // A method handle has a "vmslots" field which gives the size of its
  3124 // argument list in JVM stack slots.  This field is either located directly
  3125 // in every method handle, or else is indirectly accessed through the
  3126 // method handle's MethodType.  This macro hides the distinction.
  3127 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
  3128                                                 Register temp_reg) {
  3129   assert_different_registers(vmslots_reg, mh_reg, temp_reg);
  3130   // load mh.type.form.vmslots
  3131   if (java_dyn_MethodHandle::vmslots_offset_in_bytes() != 0) {
  3132     // hoist vmslots into every mh to avoid dependent load chain
  3133     ld(           Address(mh_reg,    delayed_value(java_dyn_MethodHandle::vmslots_offset_in_bytes, temp_reg)),   vmslots_reg);
  3134   } else {
  3135     Register temp2_reg = vmslots_reg;
  3136     load_heap_oop(Address(mh_reg,    delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg)),      temp2_reg);
  3137     load_heap_oop(Address(temp2_reg, delayed_value(java_dyn_MethodType::form_offset_in_bytes, temp_reg)),        temp2_reg);
  3138     ld(           Address(temp2_reg, delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)), vmslots_reg);
  3143 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg, bool emit_delayed_nop) {
  3144   assert(mh_reg == G3_method_handle, "caller must put MH object in G3");
  3145   assert_different_registers(mh_reg, temp_reg);
  3147   // pick out the interpreted side of the handler
  3148   // NOTE: vmentry is not an oop!
  3149   ld_ptr(mh_reg, delayed_value(java_dyn_MethodHandle::vmentry_offset_in_bytes, temp_reg), temp_reg);
  3151   // off we go...
  3152   ld_ptr(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes(), temp_reg);
  3153   jmp(temp_reg, 0);
  3155   // for the various stubs which take control at this point,
  3156   // see MethodHandles::generate_method_handle_stub
  3158   // Some callers can fill the delay slot.
  3159   if (emit_delayed_nop) {
  3160     delayed()->nop();
  3165 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
  3166                                                    int extra_slot_offset) {
  3167   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  3168   int stackElementSize = Interpreter::stackElementSize;
  3169   int offset = extra_slot_offset * stackElementSize;
  3170   if (arg_slot.is_constant()) {
  3171     offset += arg_slot.as_constant() * stackElementSize;
  3172     return offset;
  3173   } else {
  3174     Register temp = arg_slot.as_register();
  3175     sll_ptr(temp, exact_log2(stackElementSize), temp);
  3176     if (offset != 0)
  3177       add(temp, offset, temp);
  3178     return temp;
  3183 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  3184                                          int extra_slot_offset) {
  3185   return Address(Gargs, argument_offset(arg_slot, extra_slot_offset));
  3189 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
  3190                                           Register temp_reg,
  3191                                           Label& done, Label* slow_case,
  3192                                           BiasedLockingCounters* counters) {
  3193   assert(UseBiasedLocking, "why call this otherwise?");
  3195   if (PrintBiasedLockingStatistics) {
  3196     assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
  3197     if (counters == NULL)
  3198       counters = BiasedLocking::counters();
  3201   Label cas_label;
  3203   // Biased locking
  3204   // See whether the lock is currently biased toward our thread and
  3205   // whether the epoch is still valid
  3206   // Note that the runtime guarantees sufficient alignment of JavaThread
  3207   // pointers to allow age to be placed into low bits
  3208   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  3209   and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  3210   cmp(temp_reg, markOopDesc::biased_lock_pattern);
  3211   brx(Assembler::notEqual, false, Assembler::pn, cas_label);
  3212   delayed()->nop();
  3214   load_klass(obj_reg, temp_reg);
  3215   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  3216   or3(G2_thread, temp_reg, temp_reg);
  3217   xor3(mark_reg, temp_reg, temp_reg);
  3218   andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
  3219   if (counters != NULL) {
  3220     cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
  3221     // Reload mark_reg as we may need it later
  3222     ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
  3224   brx(Assembler::equal, true, Assembler::pt, done);
  3225   delayed()->nop();
  3227   Label try_revoke_bias;
  3228   Label try_rebias;
  3229   Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
  3230   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3232   // At this point we know that the header has the bias pattern and
  3233   // that we are not the bias owner in the current epoch. We need to
  3234   // figure out more details about the state of the header in order to
  3235   // know what operations can be legally performed on the object's
  3236   // header.
  3238   // If the low three bits in the xor result aren't clear, that means
  3239   // the prototype header is no longer biased and we have to revoke
  3240   // the bias on this object.
  3241   btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
  3242   brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
  3244   // Biasing is still enabled for this data type. See whether the
  3245   // epoch of the current bias is still valid, meaning that the epoch
  3246   // bits of the mark word are equal to the epoch bits of the
  3247   // prototype header. (Note that the prototype header's epoch bits
  3248   // only change at a safepoint.) If not, attempt to rebias the object
  3249   // toward the current thread. Note that we must be absolutely sure
  3250   // that the current epoch is invalid in order to do this because
  3251   // otherwise the manipulations it performs on the mark word are
  3252   // illegal.
  3253   delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
  3254   brx(Assembler::notZero, false, Assembler::pn, try_rebias);
  3256   // The epoch of the current bias is still valid but we know nothing
  3257   // about the owner; it might be set or it might be clear. Try to
  3258   // acquire the bias of the object using an atomic operation. If this
  3259   // fails we will go in to the runtime to revoke the object's bias.
  3260   // Note that we first construct the presumed unbiased header so we
  3261   // don't accidentally blow away another thread's valid bias.
  3262   delayed()->and3(mark_reg,
  3263                   markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
  3264                   mark_reg);
  3265   or3(G2_thread, mark_reg, temp_reg);
  3266   casn(mark_addr.base(), mark_reg, temp_reg);
  3267   // If the biasing toward our thread failed, this means that
  3268   // another thread succeeded in biasing it toward itself and we
  3269   // need to revoke that bias. The revocation will occur in the
  3270   // interpreter runtime in the slow case.
  3271   cmp(mark_reg, temp_reg);
  3272   if (counters != NULL) {
  3273     cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
  3275   if (slow_case != NULL) {
  3276     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  3277     delayed()->nop();
  3279   br(Assembler::always, false, Assembler::pt, done);
  3280   delayed()->nop();
  3282   bind(try_rebias);
  3283   // At this point we know the epoch has expired, meaning that the
  3284   // current "bias owner", if any, is actually invalid. Under these
  3285   // circumstances _only_, we are allowed to use the current header's
  3286   // value as the comparison value when doing the cas to acquire the
  3287   // bias in the current epoch. In other words, we allow transfer of
  3288   // the bias from one thread to another directly in this situation.
  3289   //
  3290   // FIXME: due to a lack of registers we currently blow away the age
  3291   // bits in this situation. Should attempt to preserve them.
  3292   load_klass(obj_reg, temp_reg);
  3293   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  3294   or3(G2_thread, temp_reg, temp_reg);
  3295   casn(mark_addr.base(), mark_reg, temp_reg);
  3296   // If the biasing toward our thread failed, this means that
  3297   // another thread succeeded in biasing it toward itself and we
  3298   // need to revoke that bias. The revocation will occur in the
  3299   // interpreter runtime in the slow case.
  3300   cmp(mark_reg, temp_reg);
  3301   if (counters != NULL) {
  3302     cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
  3304   if (slow_case != NULL) {
  3305     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  3306     delayed()->nop();
  3308   br(Assembler::always, false, Assembler::pt, done);
  3309   delayed()->nop();
  3311   bind(try_revoke_bias);
  3312   // The prototype mark in the klass doesn't have the bias bit set any
  3313   // more, indicating that objects of this data type are not supposed
  3314   // to be biased any more. We are going to try to reset the mark of
  3315   // this object to the prototype value and fall through to the
  3316   // CAS-based locking scheme. Note that if our CAS fails, it means
  3317   // that another thread raced us for the privilege of revoking the
  3318   // bias of this particular object, so it's okay to continue in the
  3319   // normal locking code.
  3320   //
  3321   // FIXME: due to a lack of registers we currently blow away the age
  3322   // bits in this situation. Should attempt to preserve them.
  3323   load_klass(obj_reg, temp_reg);
  3324   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  3325   casn(mark_addr.base(), mark_reg, temp_reg);
  3326   // Fall through to the normal CAS-based lock, because no matter what
  3327   // the result of the above CAS, some thread must have succeeded in
  3328   // removing the bias bit from the object's header.
  3329   if (counters != NULL) {
  3330     cmp(mark_reg, temp_reg);
  3331     cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
  3334   bind(cas_label);
  3337 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
  3338                                           bool allow_delay_slot_filling) {
  3339   // Check for biased locking unlock case, which is a no-op
  3340   // Note: we do not have to check the thread ID for two reasons.
  3341   // First, the interpreter checks for IllegalMonitorStateException at
  3342   // a higher level. Second, if the bias was revoked while we held the
  3343   // lock, the object could not be rebiased toward another thread, so
  3344   // the bias bit would be clear.
  3345   ld_ptr(mark_addr, temp_reg);
  3346   and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  3347   cmp(temp_reg, markOopDesc::biased_lock_pattern);
  3348   brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
  3349   delayed();
  3350   if (!allow_delay_slot_filling) {
  3351     nop();
  3356 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
  3357 // Solaris/SPARC's "as".  Another apt name would be cas_ptr()
  3359 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
  3360   casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()) ;
  3365 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
  3366 // of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
  3367 // The code could be tightened up considerably.
  3368 //
  3369 // box->dhw disposition - post-conditions at DONE_LABEL.
  3370 // -   Successful inflated lock:  box->dhw != 0.
  3371 //     Any non-zero value suffices.
  3372 //     Consider G2_thread, rsp, boxReg, or unused_mark()
  3373 // -   Successful Stack-lock: box->dhw == mark.
  3374 //     box->dhw must contain the displaced mark word value
  3375 // -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
  3376 //     The slow-path fast_enter() and slow_enter() operators
  3377 //     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
  3378 // -   Biased: box->dhw is undefined
  3379 //
  3380 // SPARC refworkload performance - specifically jetstream and scimark - are
  3381 // extremely sensitive to the size of the code emitted by compiler_lock_object
  3382 // and compiler_unlock_object.  Critically, the key factor is code size, not path
  3383 // length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
  3384 // effect).
  3387 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
  3388                                           Register Rbox, Register Rscratch,
  3389                                           BiasedLockingCounters* counters,
  3390                                           bool try_bias) {
  3391    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
  3393    verify_oop(Roop);
  3394    Label done ;
  3396    if (counters != NULL) {
  3397      inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
  3400    if (EmitSync & 1) {
  3401      mov    (3, Rscratch) ;
  3402      st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3403      cmp    (SP, G0) ;
  3404      return ;
  3407    if (EmitSync & 2) {
  3409      // Fetch object's markword
  3410      ld_ptr(mark_addr, Rmark);
  3412      if (try_bias) {
  3413         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3416      // Save Rbox in Rscratch to be used for the cas operation
  3417      mov(Rbox, Rscratch);
  3419      // set Rmark to markOop | markOopDesc::unlocked_value
  3420      or3(Rmark, markOopDesc::unlocked_value, Rmark);
  3422      // Initialize the box.  (Must happen before we update the object mark!)
  3423      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3425      // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
  3426      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3427      casx_under_lock(mark_addr.base(), Rmark, Rscratch,
  3428         (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3430      // if compare/exchange succeeded we found an unlocked object and we now have locked it
  3431      // hence we are done
  3432      cmp(Rmark, Rscratch);
  3433 #ifdef _LP64
  3434      sub(Rscratch, STACK_BIAS, Rscratch);
  3435 #endif
  3436      brx(Assembler::equal, false, Assembler::pt, done);
  3437      delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
  3439      // we did not find an unlocked object so see if this is a recursive case
  3440      // sub(Rscratch, SP, Rscratch);
  3441      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3442      andcc(Rscratch, 0xfffff003, Rscratch);
  3443      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3444      bind (done) ;
  3445      return ;
  3448    Label Egress ;
  3450    if (EmitSync & 256) {
  3451       Label IsInflated ;
  3453       ld_ptr (mark_addr, Rmark);           // fetch obj->mark
  3454       // Triage: biased, stack-locked, neutral, inflated
  3455       if (try_bias) {
  3456         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3457         // Invariant: if control reaches this point in the emitted stream
  3458         // then Rmark has not been modified.
  3461       // Store mark into displaced mark field in the on-stack basic-lock "box"
  3462       // Critically, this must happen before the CAS
  3463       // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
  3464       st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3465       andcc  (Rmark, 2, G0) ;
  3466       brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
  3467       delayed() ->
  3469       // Try stack-lock acquisition.
  3470       // Beware: the 1st instruction is in a delay slot
  3471       mov    (Rbox,  Rscratch);
  3472       or3    (Rmark, markOopDesc::unlocked_value, Rmark);
  3473       assert (mark_addr.disp() == 0, "cas must take a zero displacement");
  3474       casn   (mark_addr.base(), Rmark, Rscratch) ;
  3475       cmp    (Rmark, Rscratch);
  3476       brx    (Assembler::equal, false, Assembler::pt, done);
  3477       delayed()->sub(Rscratch, SP, Rscratch);
  3479       // Stack-lock attempt failed - check for recursive stack-lock.
  3480       // See the comments below about how we might remove this case.
  3481 #ifdef _LP64
  3482       sub    (Rscratch, STACK_BIAS, Rscratch);
  3483 #endif
  3484       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3485       andcc  (Rscratch, 0xfffff003, Rscratch);
  3486       br     (Assembler::always, false, Assembler::pt, done) ;
  3487       delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3489       bind   (IsInflated) ;
  3490       if (EmitSync & 64) {
  3491          // If m->owner != null goto IsLocked
  3492          // Pessimistic form: Test-and-CAS vs CAS
  3493          // The optimistic form avoids RTS->RTO cache line upgrades.
  3494          ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3495          andcc  (Rscratch, Rscratch, G0) ;
  3496          brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3497          delayed()->nop() ;
  3498          // m->owner == null : it's unlocked.
  3501       // Try to CAS m->owner from null to Self
  3502       // Invariant: if we acquire the lock then _recursions should be 0.
  3503       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  3504       mov    (G2_thread, Rscratch) ;
  3505       casn   (Rmark, G0, Rscratch) ;
  3506       cmp    (Rscratch, G0) ;
  3507       // Intentional fall-through into done
  3508    } else {
  3509       // Aggressively avoid the Store-before-CAS penalty
  3510       // Defer the store into box->dhw until after the CAS
  3511       Label IsInflated, Recursive ;
  3513 // Anticipate CAS -- Avoid RTS->RTO upgrade
  3514 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
  3516       ld_ptr (mark_addr, Rmark);           // fetch obj->mark
  3517       // Triage: biased, stack-locked, neutral, inflated
  3519       if (try_bias) {
  3520         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3521         // Invariant: if control reaches this point in the emitted stream
  3522         // then Rmark has not been modified.
  3524       andcc  (Rmark, 2, G0) ;
  3525       brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
  3526       delayed()->                         // Beware - dangling delay-slot
  3528       // Try stack-lock acquisition.
  3529       // Transiently install BUSY (0) encoding in the mark word.
  3530       // if the CAS of 0 into the mark was successful then we execute:
  3531       //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
  3532       //   ST obj->mark = box    -- overwrite transient 0 value
  3533       // This presumes TSO, of course.
  3535       mov    (0, Rscratch) ;
  3536       or3    (Rmark, markOopDesc::unlocked_value, Rmark);
  3537       assert (mark_addr.disp() == 0, "cas must take a zero displacement");
  3538       casn   (mark_addr.base(), Rmark, Rscratch) ;
  3539 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
  3540       cmp    (Rscratch, Rmark) ;
  3541       brx    (Assembler::notZero, false, Assembler::pn, Recursive) ;
  3542       delayed() ->
  3543         st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3544       if (counters != NULL) {
  3545         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  3547       br     (Assembler::always, false, Assembler::pt, done);
  3548       delayed() ->
  3549         st_ptr (Rbox, mark_addr) ;
  3551       bind   (Recursive) ;
  3552       // Stack-lock attempt failed - check for recursive stack-lock.
  3553       // Tests show that we can remove the recursive case with no impact
  3554       // on refworkload 0.83.  If we need to reduce the size of the code
  3555       // emitted by compiler_lock_object() the recursive case is perfect
  3556       // candidate.
  3557       //
  3558       // A more extreme idea is to always inflate on stack-lock recursion.
  3559       // This lets us eliminate the recursive checks in compiler_lock_object
  3560       // and compiler_unlock_object and the (box->dhw == 0) encoding.
  3561       // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
  3562       // and showed a performance *increase*.  In the same experiment I eliminated
  3563       // the fast-path stack-lock code from the interpreter and always passed
  3564       // control to the "slow" operators in synchronizer.cpp.
  3566       // RScratch contains the fetched obj->mark value from the failed CASN.
  3567 #ifdef _LP64
  3568       sub    (Rscratch, STACK_BIAS, Rscratch);
  3569 #endif
  3570       sub(Rscratch, SP, Rscratch);
  3571       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3572       andcc  (Rscratch, 0xfffff003, Rscratch);
  3573       if (counters != NULL) {
  3574         // Accounting needs the Rscratch register
  3575         st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3576         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  3577         br     (Assembler::always, false, Assembler::pt, done) ;
  3578         delayed()->nop() ;
  3579       } else {
  3580         br     (Assembler::always, false, Assembler::pt, done) ;
  3581         delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3584       bind   (IsInflated) ;
  3585       if (EmitSync & 64) {
  3586          // If m->owner != null goto IsLocked
  3587          // Test-and-CAS vs CAS
  3588          // Pessimistic form avoids futile (doomed) CAS attempts
  3589          // The optimistic form avoids RTS->RTO cache line upgrades.
  3590          ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3591          andcc  (Rscratch, Rscratch, G0) ;
  3592          brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3593          delayed()->nop() ;
  3594          // m->owner == null : it's unlocked.
  3597       // Try to CAS m->owner from null to Self
  3598       // Invariant: if we acquire the lock then _recursions should be 0.
  3599       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  3600       mov    (G2_thread, Rscratch) ;
  3601       casn   (Rmark, G0, Rscratch) ;
  3602       cmp    (Rscratch, G0) ;
  3603       // ST box->displaced_header = NonZero.
  3604       // Any non-zero value suffices:
  3605       //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
  3606       st_ptr (Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3607       // Intentional fall-through into done
  3610    bind   (done) ;
  3613 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
  3614                                             Register Rbox, Register Rscratch,
  3615                                             bool try_bias) {
  3616    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
  3618    Label done ;
  3620    if (EmitSync & 4) {
  3621      cmp  (SP, G0) ;
  3622      return ;
  3625    if (EmitSync & 8) {
  3626      if (try_bias) {
  3627         biased_locking_exit(mark_addr, Rscratch, done);
  3630      // Test first if it is a fast recursive unlock
  3631      ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
  3632      cmp(Rmark, G0);
  3633      brx(Assembler::equal, false, Assembler::pt, done);
  3634      delayed()->nop();
  3636      // Check if it is still a light weight lock, this is is true if we see
  3637      // the stack address of the basicLock in the markOop of the object
  3638      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3639      casx_under_lock(mark_addr.base(), Rbox, Rmark,
  3640        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3641      br (Assembler::always, false, Assembler::pt, done);
  3642      delayed()->cmp(Rbox, Rmark);
  3643      bind (done) ;
  3644      return ;
  3647    // Beware ... If the aggregate size of the code emitted by CLO and CUO is
  3648    // is too large performance rolls abruptly off a cliff.
  3649    // This could be related to inlining policies, code cache management, or
  3650    // I$ effects.
  3651    Label LStacked ;
  3653    if (try_bias) {
  3654       // TODO: eliminate redundant LDs of obj->mark
  3655       biased_locking_exit(mark_addr, Rscratch, done);
  3658    ld_ptr (Roop, oopDesc::mark_offset_in_bytes(), Rmark) ;
  3659    ld_ptr (Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
  3660    andcc  (Rscratch, Rscratch, G0);
  3661    brx    (Assembler::zero, false, Assembler::pn, done);
  3662    delayed()-> nop() ;      // consider: relocate fetch of mark, above, into this DS
  3663    andcc  (Rmark, 2, G0) ;
  3664    brx    (Assembler::zero, false, Assembler::pt, LStacked) ;
  3665    delayed()-> nop() ;
  3667    // It's inflated
  3668    // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
  3669    // the ST of 0 into _owner which releases the lock.  This prevents loads
  3670    // and stores within the critical section from reordering (floating)
  3671    // past the store that releases the lock.  But TSO is a strong memory model
  3672    // and that particular flavor of barrier is a noop, so we can safely elide it.
  3673    // Note that we use 1-0 locking by default for the inflated case.  We
  3674    // close the resultant (and rare) race by having contented threads in
  3675    // monitorenter periodically poll _owner.
  3676    ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3677    ld_ptr (Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
  3678    xor3   (Rscratch, G2_thread, Rscratch) ;
  3679    orcc   (Rbox, Rscratch, Rbox) ;
  3680    brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3681    delayed()->
  3682    ld_ptr (Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
  3683    ld_ptr (Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
  3684    orcc   (Rbox, Rscratch, G0) ;
  3685    if (EmitSync & 65536) {
  3686       Label LSucc ;
  3687       brx    (Assembler::notZero, false, Assembler::pn, LSucc) ;
  3688       delayed()->nop() ;
  3689       br     (Assembler::always, false, Assembler::pt, done) ;
  3690       delayed()->
  3691       st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3693       bind   (LSucc) ;
  3694       st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3695       if (os::is_MP()) { membar (StoreLoad) ; }
  3696       ld_ptr (Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
  3697       andcc  (Rscratch, Rscratch, G0) ;
  3698       brx    (Assembler::notZero, false, Assembler::pt, done) ;
  3699       delayed()-> andcc (G0, G0, G0) ;
  3700       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  3701       mov    (G2_thread, Rscratch) ;
  3702       casn   (Rmark, G0, Rscratch) ;
  3703       cmp    (Rscratch, G0) ;
  3704       // invert icc.zf and goto done
  3705       brx    (Assembler::notZero, false, Assembler::pt, done) ;
  3706       delayed() -> cmp (G0, G0) ;
  3707       br     (Assembler::always, false, Assembler::pt, done);
  3708       delayed() -> cmp (G0, 1) ;
  3709    } else {
  3710       brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3711       delayed()->nop() ;
  3712       br     (Assembler::always, false, Assembler::pt, done) ;
  3713       delayed()->
  3714       st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3717    bind   (LStacked) ;
  3718    // Consider: we could replace the expensive CAS in the exit
  3719    // path with a simple ST of the displaced mark value fetched from
  3720    // the on-stack basiclock box.  That admits a race where a thread T2
  3721    // in the slow lock path -- inflating with monitor M -- could race a
  3722    // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
  3723    // More precisely T1 in the stack-lock unlock path could "stomp" the
  3724    // inflated mark value M installed by T2, resulting in an orphan
  3725    // object monitor M and T2 becoming stranded.  We can remedy that situation
  3726    // by having T2 periodically poll the object's mark word using timed wait
  3727    // operations.  If T2 discovers that a stomp has occurred it vacates
  3728    // the monitor M and wakes any other threads stranded on the now-orphan M.
  3729    // In addition the monitor scavenger, which performs deflation,
  3730    // would also need to check for orpan monitors and stranded threads.
  3731    //
  3732    // Finally, inflation is also used when T2 needs to assign a hashCode
  3733    // to O and O is stack-locked by T1.  The "stomp" race could cause
  3734    // an assigned hashCode value to be lost.  We can avoid that condition
  3735    // and provide the necessary hashCode stability invariants by ensuring
  3736    // that hashCode generation is idempotent between copying GCs.
  3737    // For example we could compute the hashCode of an object O as
  3738    // O's heap address XOR some high quality RNG value that is refreshed
  3739    // at GC-time.  The monitor scavenger would install the hashCode
  3740    // found in any orphan monitors.  Again, the mechanism admits a
  3741    // lost-update "stomp" WAW race but detects and recovers as needed.
  3742    //
  3743    // A prototype implementation showed excellent results, although
  3744    // the scavenger and timeout code was rather involved.
  3746    casn   (mark_addr.base(), Rbox, Rscratch) ;
  3747    cmp    (Rbox, Rscratch);
  3748    // Intentional fall through into done ...
  3750    bind   (done) ;
  3755 void MacroAssembler::print_CPU_state() {
  3756   // %%%%% need to implement this
  3759 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  3760   // %%%%% need to implement this
  3763 void MacroAssembler::push_IU_state() {
  3764   // %%%%% need to implement this
  3768 void MacroAssembler::pop_IU_state() {
  3769   // %%%%% need to implement this
  3773 void MacroAssembler::push_FPU_state() {
  3774   // %%%%% need to implement this
  3778 void MacroAssembler::pop_FPU_state() {
  3779   // %%%%% need to implement this
  3783 void MacroAssembler::push_CPU_state() {
  3784   // %%%%% need to implement this
  3788 void MacroAssembler::pop_CPU_state() {
  3789   // %%%%% need to implement this
  3794 void MacroAssembler::verify_tlab() {
  3795 #ifdef ASSERT
  3796   if (UseTLAB && VerifyOops) {
  3797     Label next, next2, ok;
  3798     Register t1 = L0;
  3799     Register t2 = L1;
  3800     Register t3 = L2;
  3802     save_frame(0);
  3803     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3804     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
  3805     or3(t1, t2, t3);
  3806     cmp(t1, t2);
  3807     br(Assembler::greaterEqual, false, Assembler::pn, next);
  3808     delayed()->nop();
  3809     stop("assert(top >= start)");
  3810     should_not_reach_here();
  3812     bind(next);
  3813     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3814     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
  3815     or3(t3, t2, t3);
  3816     cmp(t1, t2);
  3817     br(Assembler::lessEqual, false, Assembler::pn, next2);
  3818     delayed()->nop();
  3819     stop("assert(top <= end)");
  3820     should_not_reach_here();
  3822     bind(next2);
  3823     and3(t3, MinObjAlignmentInBytesMask, t3);
  3824     cmp(t3, 0);
  3825     br(Assembler::lessEqual, false, Assembler::pn, ok);
  3826     delayed()->nop();
  3827     stop("assert(aligned)");
  3828     should_not_reach_here();
  3830     bind(ok);
  3831     restore();
  3833 #endif
  3837 void MacroAssembler::eden_allocate(
  3838   Register obj,                        // result: pointer to object after successful allocation
  3839   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3840   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3841   Register t1,                         // temp register
  3842   Register t2,                         // temp register
  3843   Label&   slow_case                   // continuation point if fast allocation fails
  3844 ){
  3845   // make sure arguments make sense
  3846   assert_different_registers(obj, var_size_in_bytes, t1, t2);
  3847   assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
  3848   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  3850   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3851     // No allocation in the shared eden.
  3852     br(Assembler::always, false, Assembler::pt, slow_case);
  3853     delayed()->nop();
  3854   } else {
  3855     // get eden boundaries
  3856     // note: we need both top & top_addr!
  3857     const Register top_addr = t1;
  3858     const Register end      = t2;
  3860     CollectedHeap* ch = Universe::heap();
  3861     set((intx)ch->top_addr(), top_addr);
  3862     intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
  3863     ld_ptr(top_addr, delta, end);
  3864     ld_ptr(top_addr, 0, obj);
  3866     // try to allocate
  3867     Label retry;
  3868     bind(retry);
  3869 #ifdef ASSERT
  3870     // make sure eden top is properly aligned
  3872       Label L;
  3873       btst(MinObjAlignmentInBytesMask, obj);
  3874       br(Assembler::zero, false, Assembler::pt, L);
  3875       delayed()->nop();
  3876       stop("eden top is not properly aligned");
  3877       bind(L);
  3879 #endif // ASSERT
  3880     const Register free = end;
  3881     sub(end, obj, free);                                   // compute amount of free space
  3882     if (var_size_in_bytes->is_valid()) {
  3883       // size is unknown at compile time
  3884       cmp(free, var_size_in_bytes);
  3885       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3886       delayed()->add(obj, var_size_in_bytes, end);
  3887     } else {
  3888       // size is known at compile time
  3889       cmp(free, con_size_in_bytes);
  3890       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3891       delayed()->add(obj, con_size_in_bytes, end);
  3893     // Compare obj with the value at top_addr; if still equal, swap the value of
  3894     // end with the value at top_addr. If not equal, read the value at top_addr
  3895     // into end.
  3896     casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3897     // if someone beat us on the allocation, try again, otherwise continue
  3898     cmp(obj, end);
  3899     brx(Assembler::notEqual, false, Assembler::pn, retry);
  3900     delayed()->mov(end, obj);                              // nop if successfull since obj == end
  3902 #ifdef ASSERT
  3903     // make sure eden top is properly aligned
  3905       Label L;
  3906       const Register top_addr = t1;
  3908       set((intx)ch->top_addr(), top_addr);
  3909       ld_ptr(top_addr, 0, top_addr);
  3910       btst(MinObjAlignmentInBytesMask, top_addr);
  3911       br(Assembler::zero, false, Assembler::pt, L);
  3912       delayed()->nop();
  3913       stop("eden top is not properly aligned");
  3914       bind(L);
  3916 #endif // ASSERT
  3921 void MacroAssembler::tlab_allocate(
  3922   Register obj,                        // result: pointer to object after successful allocation
  3923   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3924   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3925   Register t1,                         // temp register
  3926   Label&   slow_case                   // continuation point if fast allocation fails
  3927 ){
  3928   // make sure arguments make sense
  3929   assert_different_registers(obj, var_size_in_bytes, t1);
  3930   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
  3931   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  3933   const Register free  = t1;
  3935   verify_tlab();
  3937   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
  3939   // calculate amount of free space
  3940   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
  3941   sub(free, obj, free);
  3943   Label done;
  3944   if (var_size_in_bytes == noreg) {
  3945     cmp(free, con_size_in_bytes);
  3946   } else {
  3947     cmp(free, var_size_in_bytes);
  3949   br(Assembler::less, false, Assembler::pn, slow_case);
  3950   // calculate the new top pointer
  3951   if (var_size_in_bytes == noreg) {
  3952     delayed()->add(obj, con_size_in_bytes, free);
  3953   } else {
  3954     delayed()->add(obj, var_size_in_bytes, free);
  3957   bind(done);
  3959 #ifdef ASSERT
  3960   // make sure new free pointer is properly aligned
  3962     Label L;
  3963     btst(MinObjAlignmentInBytesMask, free);
  3964     br(Assembler::zero, false, Assembler::pt, L);
  3965     delayed()->nop();
  3966     stop("updated TLAB free is not properly aligned");
  3967     bind(L);
  3969 #endif // ASSERT
  3971   // update the tlab top pointer
  3972   st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3973   verify_tlab();
  3977 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
  3978   Register top = O0;
  3979   Register t1 = G1;
  3980   Register t2 = G3;
  3981   Register t3 = O1;
  3982   assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
  3983   Label do_refill, discard_tlab;
  3985   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3986     // No allocation in the shared eden.
  3987     br(Assembler::always, false, Assembler::pt, slow_case);
  3988     delayed()->nop();
  3991   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
  3992   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
  3993   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
  3995   // calculate amount of free space
  3996   sub(t1, top, t1);
  3997   srl_ptr(t1, LogHeapWordSize, t1);
  3999   // Retain tlab and allocate object in shared space if
  4000   // the amount free in the tlab is too large to discard.
  4001   cmp(t1, t2);
  4002   brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
  4004   // increment waste limit to prevent getting stuck on this slow path
  4005   delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
  4006   st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  4007   if (TLABStats) {
  4008     // increment number of slow_allocations
  4009     ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
  4010     add(t2, 1, t2);
  4011     stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  4013   br(Assembler::always, false, Assembler::pt, try_eden);
  4014   delayed()->nop();
  4016   bind(discard_tlab);
  4017   if (TLABStats) {
  4018     // increment number of refills
  4019     ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
  4020     add(t2, 1, t2);
  4021     stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
  4022     // accumulate wastage
  4023     ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
  4024     add(t2, t1, t2);
  4025     stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  4028   // if tlab is currently allocated (top or end != null) then
  4029   // fill [top, end + alignment_reserve) with array object
  4030   br_null(top, false, Assembler::pn, do_refill);
  4031   delayed()->nop();
  4033   set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
  4034   st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
  4035   // set klass to intArrayKlass
  4036   sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
  4037   add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
  4038   sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
  4039   st(t1, top, arrayOopDesc::length_offset_in_bytes());
  4040   set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
  4041   ld_ptr(t2, 0, t2);
  4042   // store klass last.  concurrent gcs assumes klass length is valid if
  4043   // klass field is not null.
  4044   store_klass(t2, top);
  4045   verify_oop(top);
  4047   // refill the tlab with an eden allocation
  4048   bind(do_refill);
  4049   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
  4050   sll_ptr(t1, LogHeapWordSize, t1);
  4051   // add object_size ??
  4052   eden_allocate(top, t1, 0, t2, t3, slow_case);
  4054   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
  4055   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  4056 #ifdef ASSERT
  4057   // check that tlab_size (t1) is still valid
  4059     Label ok;
  4060     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
  4061     sll_ptr(t2, LogHeapWordSize, t2);
  4062     cmp(t1, t2);
  4063     br(Assembler::equal, false, Assembler::pt, ok);
  4064     delayed()->nop();
  4065     stop("assert(t1 == tlab_size)");
  4066     should_not_reach_here();
  4068     bind(ok);
  4070 #endif // ASSERT
  4071   add(top, t1, top); // t1 is tlab_size
  4072   sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
  4073   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
  4074   verify_tlab();
  4075   br(Assembler::always, false, Assembler::pt, retry);
  4076   delayed()->nop();
  4079 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  4080   switch (cond) {
  4081     // Note some conditions are synonyms for others
  4082     case Assembler::never:                return Assembler::always;
  4083     case Assembler::zero:                 return Assembler::notZero;
  4084     case Assembler::lessEqual:            return Assembler::greater;
  4085     case Assembler::less:                 return Assembler::greaterEqual;
  4086     case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
  4087     case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
  4088     case Assembler::negative:             return Assembler::positive;
  4089     case Assembler::overflowSet:          return Assembler::overflowClear;
  4090     case Assembler::always:               return Assembler::never;
  4091     case Assembler::notZero:              return Assembler::zero;
  4092     case Assembler::greater:              return Assembler::lessEqual;
  4093     case Assembler::greaterEqual:         return Assembler::less;
  4094     case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
  4095     case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
  4096     case Assembler::positive:             return Assembler::negative;
  4097     case Assembler::overflowClear:        return Assembler::overflowSet;
  4100   ShouldNotReachHere(); return Assembler::overflowClear;
  4103 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
  4104                               Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
  4105   Condition negated_cond = negate_condition(cond);
  4106   Label L;
  4107   brx(negated_cond, false, Assembler::pt, L);
  4108   delayed()->nop();
  4109   inc_counter(counter_ptr, Rtmp1, Rtmp2);
  4110   bind(L);
  4113 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
  4114   AddressLiteral addrlit(counter_addr);
  4115   sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
  4116   Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
  4117   ld(addr, Rtmp2);
  4118   inc(Rtmp2);
  4119   st(Rtmp2, addr);
  4122 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
  4123   inc_counter((address) counter_addr, Rtmp1, Rtmp2);
  4126 SkipIfEqual::SkipIfEqual(
  4127     MacroAssembler* masm, Register temp, const bool* flag_addr,
  4128     Assembler::Condition condition) {
  4129   _masm = masm;
  4130   AddressLiteral flag(flag_addr);
  4131   _masm->sethi(flag, temp);
  4132   _masm->ldub(temp, flag.low10(), temp);
  4133   _masm->tst(temp);
  4134   _masm->br(condition, false, Assembler::pt, _label);
  4135   _masm->delayed()->nop();
  4138 SkipIfEqual::~SkipIfEqual() {
  4139   _masm->bind(_label);
  4143 // Writes to stack successive pages until offset reached to check for
  4144 // stack overflow + shadow pages.  This clobbers tsp and scratch.
  4145 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
  4146                                      Register Rscratch) {
  4147   // Use stack pointer in temp stack pointer
  4148   mov(SP, Rtsp);
  4150   // Bang stack for total size given plus stack shadow page size.
  4151   // Bang one page at a time because a large size can overflow yellow and
  4152   // red zones (the bang will fail but stack overflow handling can't tell that
  4153   // it was a stack overflow bang vs a regular segv).
  4154   int offset = os::vm_page_size();
  4155   Register Roffset = Rscratch;
  4157   Label loop;
  4158   bind(loop);
  4159   set((-offset)+STACK_BIAS, Rscratch);
  4160   st(G0, Rtsp, Rscratch);
  4161   set(offset, Roffset);
  4162   sub(Rsize, Roffset, Rsize);
  4163   cmp(Rsize, G0);
  4164   br(Assembler::greater, false, Assembler::pn, loop);
  4165   delayed()->sub(Rtsp, Roffset, Rtsp);
  4167   // Bang down shadow pages too.
  4168   // The -1 because we already subtracted 1 page.
  4169   for (int i = 0; i< StackShadowPages-1; i++) {
  4170     set((-i*offset)+STACK_BIAS, Rscratch);
  4171     st(G0, Rtsp, Rscratch);
  4175 ///////////////////////////////////////////////////////////////////////////////////
  4176 #ifndef SERIALGC
  4178 static uint num_stores = 0;
  4179 static uint num_null_pre_stores = 0;
  4181 static void count_null_pre_vals(void* pre_val) {
  4182   num_stores++;
  4183   if (pre_val == NULL) num_null_pre_stores++;
  4184   if ((num_stores % 1000000) == 0) {
  4185     tty->print_cr(UINT32_FORMAT " stores, " UINT32_FORMAT " (%5.2f%%) with null pre-vals.",
  4186                   num_stores, num_null_pre_stores,
  4187                   100.0*(float)num_null_pre_stores/(float)num_stores);
  4191 static address satb_log_enqueue_with_frame = 0;
  4192 static u_char* satb_log_enqueue_with_frame_end = 0;
  4194 static address satb_log_enqueue_frameless = 0;
  4195 static u_char* satb_log_enqueue_frameless_end = 0;
  4197 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
  4199 // The calls to this don't work.  We'd need to do a fair amount of work to
  4200 // make it work.
  4201 static void check_index(int ind) {
  4202   assert(0 <= ind && ind <= 64*K && ((ind % oopSize) == 0),
  4203          "Invariants.");
  4206 static void generate_satb_log_enqueue(bool with_frame) {
  4207   BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
  4208   CodeBuffer buf(bb);
  4209   MacroAssembler masm(&buf);
  4210   address start = masm.pc();
  4211   Register pre_val;
  4213   Label refill, restart;
  4214   if (with_frame) {
  4215     masm.save_frame(0);
  4216     pre_val = I0;  // Was O0 before the save.
  4217   } else {
  4218     pre_val = O0;
  4220   int satb_q_index_byte_offset =
  4221     in_bytes(JavaThread::satb_mark_queue_offset() +
  4222              PtrQueue::byte_offset_of_index());
  4223   int satb_q_buf_byte_offset =
  4224     in_bytes(JavaThread::satb_mark_queue_offset() +
  4225              PtrQueue::byte_offset_of_buf());
  4226   assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
  4227          in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
  4228          "check sizes in assembly below");
  4230   masm.bind(restart);
  4231   masm.ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
  4233   masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn, L0, refill);
  4234   // If the branch is taken, no harm in executing this in the delay slot.
  4235   masm.delayed()->ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
  4236   masm.sub(L0, oopSize, L0);
  4238   masm.st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
  4239   if (!with_frame) {
  4240     // Use return-from-leaf
  4241     masm.retl();
  4242     masm.delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
  4243   } else {
  4244     // Not delayed.
  4245     masm.st_ptr(L0, G2_thread, satb_q_index_byte_offset);
  4247   if (with_frame) {
  4248     masm.ret();
  4249     masm.delayed()->restore();
  4251   masm.bind(refill);
  4253   address handle_zero =
  4254     CAST_FROM_FN_PTR(address,
  4255                      &SATBMarkQueueSet::handle_zero_index_for_thread);
  4256   // This should be rare enough that we can afford to save all the
  4257   // scratch registers that the calling context might be using.
  4258   masm.mov(G1_scratch, L0);
  4259   masm.mov(G3_scratch, L1);
  4260   masm.mov(G4, L2);
  4261   // We need the value of O0 above (for the write into the buffer), so we
  4262   // save and restore it.
  4263   masm.mov(O0, L3);
  4264   // Since the call will overwrite O7, we save and restore that, as well.
  4265   masm.mov(O7, L4);
  4266   masm.call_VM_leaf(L5, handle_zero, G2_thread);
  4267   masm.mov(L0, G1_scratch);
  4268   masm.mov(L1, G3_scratch);
  4269   masm.mov(L2, G4);
  4270   masm.mov(L3, O0);
  4271   masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  4272   masm.delayed()->mov(L4, O7);
  4274   if (with_frame) {
  4275     satb_log_enqueue_with_frame = start;
  4276     satb_log_enqueue_with_frame_end = masm.pc();
  4277   } else {
  4278     satb_log_enqueue_frameless = start;
  4279     satb_log_enqueue_frameless_end = masm.pc();
  4283 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
  4284   if (with_frame) {
  4285     if (satb_log_enqueue_with_frame == 0) {
  4286       generate_satb_log_enqueue(with_frame);
  4287       assert(satb_log_enqueue_with_frame != 0, "postcondition.");
  4288       if (G1SATBPrintStubs) {
  4289         tty->print_cr("Generated with-frame satb enqueue:");
  4290         Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
  4291                              satb_log_enqueue_with_frame_end,
  4292                              tty);
  4295   } else {
  4296     if (satb_log_enqueue_frameless == 0) {
  4297       generate_satb_log_enqueue(with_frame);
  4298       assert(satb_log_enqueue_frameless != 0, "postcondition.");
  4299       if (G1SATBPrintStubs) {
  4300         tty->print_cr("Generated frameless satb enqueue:");
  4301         Disassembler::decode((u_char*)satb_log_enqueue_frameless,
  4302                              satb_log_enqueue_frameless_end,
  4303                              tty);
  4309 void MacroAssembler::g1_write_barrier_pre(Register obj, Register index, int offset, Register tmp, bool preserve_o_regs) {
  4310   assert(offset == 0 || index == noreg, "choose one");
  4312   if (G1DisablePreBarrier) return;
  4313   // satb_log_barrier(tmp, obj, offset, preserve_o_regs);
  4314   Label filtered;
  4315   // satb_log_barrier_work0(tmp, filtered);
  4316   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  4317     ld(G2,
  4318        in_bytes(JavaThread::satb_mark_queue_offset() +
  4319                 PtrQueue::byte_offset_of_active()),
  4320        tmp);
  4321   } else {
  4322     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  4323               "Assumption");
  4324     ldsb(G2,
  4325          in_bytes(JavaThread::satb_mark_queue_offset() +
  4326                   PtrQueue::byte_offset_of_active()),
  4327          tmp);
  4330   // Check on whether to annul.
  4331   br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
  4332   delayed() -> nop();
  4334   // satb_log_barrier_work1(tmp, offset);
  4335   if (index == noreg) {
  4336     if (Assembler::is_simm13(offset)) {
  4337       load_heap_oop(obj, offset, tmp);
  4338     } else {
  4339       set(offset, tmp);
  4340       load_heap_oop(obj, tmp, tmp);
  4342   } else {
  4343     load_heap_oop(obj, index, tmp);
  4346   // satb_log_barrier_work2(obj, tmp, offset);
  4348   // satb_log_barrier_work3(tmp, filtered, preserve_o_regs);
  4350   const Register pre_val = tmp;
  4352   if (G1SATBBarrierPrintNullPreVals) {
  4353     save_frame(0);
  4354     mov(pre_val, O0);
  4355     // Save G-regs that target may use.
  4356     mov(G1, L1);
  4357     mov(G2, L2);
  4358     mov(G3, L3);
  4359     mov(G4, L4);
  4360     mov(G5, L5);
  4361     call(CAST_FROM_FN_PTR(address, &count_null_pre_vals));
  4362     delayed()->nop();
  4363     // Restore G-regs that target may have used.
  4364     mov(L1, G1);
  4365     mov(L2, G2);
  4366     mov(L3, G3);
  4367     mov(L4, G4);
  4368     mov(L5, G5);
  4369     restore(G0, G0, G0);
  4372   // Check on whether to annul.
  4373   br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, pre_val, filtered);
  4374   delayed() -> nop();
  4376   // OK, it's not filtered, so we'll need to call enqueue.  In the normal
  4377   // case, pre_val will be a scratch G-reg, but there's some cases in which
  4378   // it's an O-reg.  In the first case, do a normal call.  In the latter,
  4379   // do a save here and call the frameless version.
  4381   guarantee(pre_val->is_global() || pre_val->is_out(),
  4382             "Or we need to think harder.");
  4383   if (pre_val->is_global() && !preserve_o_regs) {
  4384     generate_satb_log_enqueue_if_necessary(true); // with frame.
  4385     call(satb_log_enqueue_with_frame);
  4386     delayed()->mov(pre_val, O0);
  4387   } else {
  4388     generate_satb_log_enqueue_if_necessary(false); // with frameless.
  4389     save_frame(0);
  4390     call(satb_log_enqueue_frameless);
  4391     delayed()->mov(pre_val->after_save(), O0);
  4392     restore();
  4395   bind(filtered);
  4398 static jint num_ct_writes = 0;
  4399 static jint num_ct_writes_filtered_in_hr = 0;
  4400 static jint num_ct_writes_filtered_null = 0;
  4401 static G1CollectedHeap* g1 = NULL;
  4403 static Thread* count_ct_writes(void* filter_val, void* new_val) {
  4404   Atomic::inc(&num_ct_writes);
  4405   if (filter_val == NULL) {
  4406     Atomic::inc(&num_ct_writes_filtered_in_hr);
  4407   } else if (new_val == NULL) {
  4408     Atomic::inc(&num_ct_writes_filtered_null);
  4409   } else {
  4410     if (g1 == NULL) {
  4411       g1 = G1CollectedHeap::heap();
  4414   if ((num_ct_writes % 1000000) == 0) {
  4415     jint num_ct_writes_filtered =
  4416       num_ct_writes_filtered_in_hr +
  4417       num_ct_writes_filtered_null;
  4419     tty->print_cr("%d potential CT writes: %5.2f%% filtered\n"
  4420                   "   (%5.2f%% intra-HR, %5.2f%% null).",
  4421                   num_ct_writes,
  4422                   100.0*(float)num_ct_writes_filtered/(float)num_ct_writes,
  4423                   100.0*(float)num_ct_writes_filtered_in_hr/
  4424                   (float)num_ct_writes,
  4425                   100.0*(float)num_ct_writes_filtered_null/
  4426                   (float)num_ct_writes);
  4428   return Thread::current();
  4431 static address dirty_card_log_enqueue = 0;
  4432 static u_char* dirty_card_log_enqueue_end = 0;
  4434 // This gets to assume that o0 contains the object address.
  4435 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
  4436   BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
  4437   CodeBuffer buf(bb);
  4438   MacroAssembler masm(&buf);
  4439   address start = masm.pc();
  4441   Label not_already_dirty, restart, refill;
  4443 #ifdef _LP64
  4444   masm.srlx(O0, CardTableModRefBS::card_shift, O0);
  4445 #else
  4446   masm.srl(O0, CardTableModRefBS::card_shift, O0);
  4447 #endif
  4448   AddressLiteral addrlit(byte_map_base);
  4449   masm.set(addrlit, O1); // O1 := <card table base>
  4450   masm.ldub(O0, O1, O2); // O2 := [O0 + O1]
  4452   masm.br_on_reg_cond(Assembler::rc_nz, /*annul*/false, Assembler::pt,
  4453                       O2, not_already_dirty);
  4454   // Get O1 + O2 into a reg by itself -- useful in the take-the-branch
  4455   // case, harmless if not.
  4456   masm.delayed()->add(O0, O1, O3);
  4458   // We didn't take the branch, so we're already dirty: return.
  4459   // Use return-from-leaf
  4460   masm.retl();
  4461   masm.delayed()->nop();
  4463   // Not dirty.
  4464   masm.bind(not_already_dirty);
  4465   // First, dirty it.
  4466   masm.stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
  4467   int dirty_card_q_index_byte_offset =
  4468     in_bytes(JavaThread::dirty_card_queue_offset() +
  4469              PtrQueue::byte_offset_of_index());
  4470   int dirty_card_q_buf_byte_offset =
  4471     in_bytes(JavaThread::dirty_card_queue_offset() +
  4472              PtrQueue::byte_offset_of_buf());
  4473   masm.bind(restart);
  4474   masm.ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
  4476   masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn,
  4477                       L0, refill);
  4478   // If the branch is taken, no harm in executing this in the delay slot.
  4479   masm.delayed()->ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
  4480   masm.sub(L0, oopSize, L0);
  4482   masm.st_ptr(O3, L1, L0);  // [_buf + index] := I0
  4483   // Use return-from-leaf
  4484   masm.retl();
  4485   masm.delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
  4487   masm.bind(refill);
  4488   address handle_zero =
  4489     CAST_FROM_FN_PTR(address,
  4490                      &DirtyCardQueueSet::handle_zero_index_for_thread);
  4491   // This should be rare enough that we can afford to save all the
  4492   // scratch registers that the calling context might be using.
  4493   masm.mov(G1_scratch, L3);
  4494   masm.mov(G3_scratch, L5);
  4495   // We need the value of O3 above (for the write into the buffer), so we
  4496   // save and restore it.
  4497   masm.mov(O3, L6);
  4498   // Since the call will overwrite O7, we save and restore that, as well.
  4499   masm.mov(O7, L4);
  4501   masm.call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
  4502   masm.mov(L3, G1_scratch);
  4503   masm.mov(L5, G3_scratch);
  4504   masm.mov(L6, O3);
  4505   masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  4506   masm.delayed()->mov(L4, O7);
  4508   dirty_card_log_enqueue = start;
  4509   dirty_card_log_enqueue_end = masm.pc();
  4510   // XXX Should have a guarantee here about not going off the end!
  4511   // Does it already do so?  Do an experiment...
  4514 static inline void
  4515 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
  4516   if (dirty_card_log_enqueue == 0) {
  4517     generate_dirty_card_log_enqueue(byte_map_base);
  4518     assert(dirty_card_log_enqueue != 0, "postcondition.");
  4519     if (G1SATBPrintStubs) {
  4520       tty->print_cr("Generated dirty_card enqueue:");
  4521       Disassembler::decode((u_char*)dirty_card_log_enqueue,
  4522                            dirty_card_log_enqueue_end,
  4523                            tty);
  4529 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  4531   Label filtered;
  4532   MacroAssembler* post_filter_masm = this;
  4534   if (new_val == G0) return;
  4535   if (G1DisablePostBarrier) return;
  4537   G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
  4538   assert(bs->kind() == BarrierSet::G1SATBCT ||
  4539          bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
  4540   if (G1RSBarrierRegionFilter) {
  4541     xor3(store_addr, new_val, tmp);
  4542 #ifdef _LP64
  4543     srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
  4544 #else
  4545     srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
  4546 #endif
  4547     if (G1PrintCTFilterStats) {
  4548       guarantee(tmp->is_global(), "Or stats won't work...");
  4549       // This is a sleazy hack: I'm temporarily hijacking G2, which I
  4550       // promise to restore.
  4551       mov(new_val, G2);
  4552       save_frame(0);
  4553       mov(tmp, O0);
  4554       mov(G2, O1);
  4555       // Save G-regs that target may use.
  4556       mov(G1, L1);
  4557       mov(G2, L2);
  4558       mov(G3, L3);
  4559       mov(G4, L4);
  4560       mov(G5, L5);
  4561       call(CAST_FROM_FN_PTR(address, &count_ct_writes));
  4562       delayed()->nop();
  4563       mov(O0, G2);
  4564       // Restore G-regs that target may have used.
  4565       mov(L1, G1);
  4566       mov(L3, G3);
  4567       mov(L4, G4);
  4568       mov(L5, G5);
  4569       restore(G0, G0, G0);
  4571     // XXX Should I predict this taken or not?  Does it mattern?
  4572     br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
  4573     delayed()->nop();
  4576   // If the "store_addr" register is an "in" or "local" register, move it to
  4577   // a scratch reg so we can pass it as an argument.
  4578   bool use_scr = !(store_addr->is_global() || store_addr->is_out());
  4579   // Pick a scratch register different from "tmp".
  4580   Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
  4581   // Make sure we use up the delay slot!
  4582   if (use_scr) {
  4583     post_filter_masm->mov(store_addr, scr);
  4584   } else {
  4585     post_filter_masm->nop();
  4587   generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
  4588   save_frame(0);
  4589   call(dirty_card_log_enqueue);
  4590   if (use_scr) {
  4591     delayed()->mov(scr, O0);
  4592   } else {
  4593     delayed()->mov(store_addr->after_save(), O0);
  4595   restore();
  4597   bind(filtered);
  4601 #endif  // SERIALGC
  4602 ///////////////////////////////////////////////////////////////////////////////////
  4604 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  4605   // If we're writing constant NULL, we can skip the write barrier.
  4606   if (new_val == G0) return;
  4607   CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
  4608   assert(bs->kind() == BarrierSet::CardTableModRef ||
  4609          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
  4610   card_table_write(bs->byte_map_base, tmp, store_addr);
  4613 void MacroAssembler::load_klass(Register src_oop, Register klass) {
  4614   // The number of bytes in this code is used by
  4615   // MachCallDynamicJavaNode::ret_addr_offset()
  4616   // if this changes, change that.
  4617   if (UseCompressedOops) {
  4618     lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
  4619     decode_heap_oop_not_null(klass);
  4620   } else {
  4621     ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
  4625 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
  4626   if (UseCompressedOops) {
  4627     assert(dst_oop != klass, "not enough registers");
  4628     encode_heap_oop_not_null(klass);
  4629     st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
  4630   } else {
  4631     st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
  4635 void MacroAssembler::store_klass_gap(Register s, Register d) {
  4636   if (UseCompressedOops) {
  4637     assert(s != d, "not enough registers");
  4638     st(s, d, oopDesc::klass_gap_offset_in_bytes());
  4642 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
  4643   if (UseCompressedOops) {
  4644     lduw(s, d);
  4645     decode_heap_oop(d);
  4646   } else {
  4647     ld_ptr(s, d);
  4651 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
  4652    if (UseCompressedOops) {
  4653     lduw(s1, s2, d);
  4654     decode_heap_oop(d, d);
  4655   } else {
  4656     ld_ptr(s1, s2, d);
  4660 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
  4661    if (UseCompressedOops) {
  4662     lduw(s1, simm13a, d);
  4663     decode_heap_oop(d, d);
  4664   } else {
  4665     ld_ptr(s1, simm13a, d);
  4669 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
  4670   if (s2.is_constant())  load_heap_oop(s1, s2.as_constant(), d);
  4671   else                   load_heap_oop(s1, s2.as_register(), d);
  4674 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
  4675   if (UseCompressedOops) {
  4676     assert(s1 != d && s2 != d, "not enough registers");
  4677     encode_heap_oop(d);
  4678     st(d, s1, s2);
  4679   } else {
  4680     st_ptr(d, s1, s2);
  4684 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
  4685   if (UseCompressedOops) {
  4686     assert(s1 != d, "not enough registers");
  4687     encode_heap_oop(d);
  4688     st(d, s1, simm13a);
  4689   } else {
  4690     st_ptr(d, s1, simm13a);
  4694 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
  4695   if (UseCompressedOops) {
  4696     assert(a.base() != d, "not enough registers");
  4697     encode_heap_oop(d);
  4698     st(d, a, offset);
  4699   } else {
  4700     st_ptr(d, a, offset);
  4705 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
  4706   assert (UseCompressedOops, "must be compressed");
  4707   assert (Universe::heap() != NULL, "java heap should be initialized");
  4708   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4709   verify_oop(src);
  4710   if (Universe::narrow_oop_base() == NULL) {
  4711     srlx(src, LogMinObjAlignmentInBytes, dst);
  4712     return;
  4714   Label done;
  4715   if (src == dst) {
  4716     // optimize for frequent case src == dst
  4717     bpr(rc_nz, true, Assembler::pt, src, done);
  4718     delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
  4719     bind(done);
  4720     srlx(src, LogMinObjAlignmentInBytes, dst);
  4721   } else {
  4722     bpr(rc_z, false, Assembler::pn, src, done);
  4723     delayed() -> mov(G0, dst);
  4724     // could be moved before branch, and annulate delay,
  4725     // but may add some unneeded work decoding null
  4726     sub(src, G6_heapbase, dst);
  4727     srlx(dst, LogMinObjAlignmentInBytes, dst);
  4728     bind(done);
  4733 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  4734   assert (UseCompressedOops, "must be compressed");
  4735   assert (Universe::heap() != NULL, "java heap should be initialized");
  4736   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4737   verify_oop(r);
  4738   if (Universe::narrow_oop_base() != NULL)
  4739     sub(r, G6_heapbase, r);
  4740   srlx(r, LogMinObjAlignmentInBytes, r);
  4743 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
  4744   assert (UseCompressedOops, "must be compressed");
  4745   assert (Universe::heap() != NULL, "java heap should be initialized");
  4746   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4747   verify_oop(src);
  4748   if (Universe::narrow_oop_base() == NULL) {
  4749     srlx(src, LogMinObjAlignmentInBytes, dst);
  4750   } else {
  4751     sub(src, G6_heapbase, dst);
  4752     srlx(dst, LogMinObjAlignmentInBytes, dst);
  4756 // Same algorithm as oops.inline.hpp decode_heap_oop.
  4757 void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
  4758   assert (UseCompressedOops, "must be compressed");
  4759   assert (Universe::heap() != NULL, "java heap should be initialized");
  4760   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4761   sllx(src, LogMinObjAlignmentInBytes, dst);
  4762   if (Universe::narrow_oop_base() != NULL) {
  4763     Label done;
  4764     bpr(rc_nz, true, Assembler::pt, dst, done);
  4765     delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
  4766     bind(done);
  4768   verify_oop(dst);
  4771 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  4772   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4773   // pd_code_size_limit.
  4774   // Also do not verify_oop as this is called by verify_oop.
  4775   assert (UseCompressedOops, "must be compressed");
  4776   assert (Universe::heap() != NULL, "java heap should be initialized");
  4777   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4778   sllx(r, LogMinObjAlignmentInBytes, r);
  4779   if (Universe::narrow_oop_base() != NULL)
  4780     add(r, G6_heapbase, r);
  4783 void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
  4784   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4785   // pd_code_size_limit.
  4786   // Also do not verify_oop as this is called by verify_oop.
  4787   assert (UseCompressedOops, "must be compressed");
  4788   assert (Universe::heap() != NULL, "java heap should be initialized");
  4789   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4790   sllx(src, LogMinObjAlignmentInBytes, dst);
  4791   if (Universe::narrow_oop_base() != NULL)
  4792     add(dst, G6_heapbase, dst);
  4795 void MacroAssembler::reinit_heapbase() {
  4796   if (UseCompressedOops) {
  4797     // call indirectly to solve generation ordering problem
  4798     AddressLiteral base(Universe::narrow_oop_base_addr());
  4799     load_ptr_contents(base, G6_heapbase);
  4803 // Compare char[] arrays aligned to 4 bytes.
  4804 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
  4805                                         Register limit, Register result,
  4806                                         Register chr1, Register chr2, Label& Ldone) {
  4807   Label Lvector, Lloop;
  4808   assert(chr1 == result, "should be the same");
  4810   // Note: limit contains number of bytes (2*char_elements) != 0.
  4811   andcc(limit, 0x2, chr1); // trailing character ?
  4812   br(Assembler::zero, false, Assembler::pt, Lvector);
  4813   delayed()->nop();
  4815   // compare the trailing char
  4816   sub(limit, sizeof(jchar), limit);
  4817   lduh(ary1, limit, chr1);
  4818   lduh(ary2, limit, chr2);
  4819   cmp(chr1, chr2);
  4820   br(Assembler::notEqual, true, Assembler::pt, Ldone);
  4821   delayed()->mov(G0, result);     // not equal
  4823   // only one char ?
  4824   br_on_reg_cond(rc_z, true, Assembler::pn, limit, Ldone);
  4825   delayed()->add(G0, 1, result); // zero-length arrays are equal
  4827   // word by word compare, dont't need alignment check
  4828   bind(Lvector);
  4829   // Shift ary1 and ary2 to the end of the arrays, negate limit
  4830   add(ary1, limit, ary1);
  4831   add(ary2, limit, ary2);
  4832   neg(limit, limit);
  4834   lduw(ary1, limit, chr1);
  4835   bind(Lloop);
  4836   lduw(ary2, limit, chr2);
  4837   cmp(chr1, chr2);
  4838   br(Assembler::notEqual, true, Assembler::pt, Ldone);
  4839   delayed()->mov(G0, result);     // not equal
  4840   inccc(limit, 2*sizeof(jchar));
  4841   // annul LDUW if branch is not taken to prevent access past end of array
  4842   br(Assembler::notZero, true, Assembler::pt, Lloop);
  4843   delayed()->lduw(ary1, limit, chr1); // hoisted
  4845   // Caller should set it:
  4846   // add(G0, 1, result); // equals

mercurial