src/share/vm/opto/block.cpp

Tue, 13 Sep 2011 20:28:00 -0700

author
kvn
date
Tue, 13 Sep 2011 20:28:00 -0700
changeset 3128
f94227b6117b
parent 3051
11211f7cb5a0
child 3311
1bd45abaa507
permissions
-rw-r--r--

7090259: Fix hotspot sources to build with old compilers
Summary: Fixed warnings which prevent building VM with old compilers.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "libadt/vectset.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/block.hpp"
    29 #include "opto/cfgnode.hpp"
    30 #include "opto/chaitin.hpp"
    31 #include "opto/loopnode.hpp"
    32 #include "opto/machnode.hpp"
    33 #include "opto/matcher.hpp"
    34 #include "opto/opcodes.hpp"
    35 #include "opto/rootnode.hpp"
    36 #include "utilities/copy.hpp"
    38 // Optimization - Graph Style
    41 //-----------------------------------------------------------------------------
    42 void Block_Array::grow( uint i ) {
    43   assert(i >= Max(), "must be an overflow");
    44   debug_only(_limit = i+1);
    45   if( i < _size )  return;
    46   if( !_size ) {
    47     _size = 1;
    48     _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
    49     _blocks[0] = NULL;
    50   }
    51   uint old = _size;
    52   while( i >= _size ) _size <<= 1;      // Double to fit
    53   _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
    54   Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
    55 }
    57 //=============================================================================
    58 void Block_List::remove(uint i) {
    59   assert(i < _cnt, "index out of bounds");
    60   Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
    61   pop(); // shrink list by one block
    62 }
    64 void Block_List::insert(uint i, Block *b) {
    65   push(b); // grow list by one block
    66   Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
    67   _blocks[i] = b;
    68 }
    70 #ifndef PRODUCT
    71 void Block_List::print() {
    72   for (uint i=0; i < size(); i++) {
    73     tty->print("B%d ", _blocks[i]->_pre_order);
    74   }
    75   tty->print("size = %d\n", size());
    76 }
    77 #endif
    79 //=============================================================================
    81 uint Block::code_alignment() {
    82   // Check for Root block
    83   if (_pre_order == 0) return CodeEntryAlignment;
    84   // Check for Start block
    85   if (_pre_order == 1) return InteriorEntryAlignment;
    86   // Check for loop alignment
    87   if (has_loop_alignment()) return loop_alignment();
    89   return relocInfo::addr_unit(); // no particular alignment
    90 }
    92 uint Block::compute_loop_alignment() {
    93   Node *h = head();
    94   int unit_sz = relocInfo::addr_unit();
    95   if (h->is_Loop() && h->as_Loop()->is_inner_loop())  {
    96     // Pre- and post-loops have low trip count so do not bother with
    97     // NOPs for align loop head.  The constants are hidden from tuning
    98     // but only because my "divide by 4" heuristic surely gets nearly
    99     // all possible gain (a "do not align at all" heuristic has a
   100     // chance of getting a really tiny gain).
   101     if (h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
   102                                 h->as_CountedLoop()->is_post_loop())) {
   103       return (OptoLoopAlignment > 4*unit_sz) ? (OptoLoopAlignment>>2) : unit_sz;
   104     }
   105     // Loops with low backedge frequency should not be aligned.
   106     Node *n = h->in(LoopNode::LoopBackControl)->in(0);
   107     if (n->is_MachIf() && n->as_MachIf()->_prob < 0.01) {
   108       return unit_sz; // Loop does not loop, more often than not!
   109     }
   110     return OptoLoopAlignment; // Otherwise align loop head
   111   }
   113   return unit_sz; // no particular alignment
   114 }
   116 //-----------------------------------------------------------------------------
   117 // Compute the size of first 'inst_cnt' instructions in this block.
   118 // Return the number of instructions left to compute if the block has
   119 // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
   120 // exceeds OptoLoopAlignment.
   121 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
   122                                     PhaseRegAlloc* ra) {
   123   uint last_inst = _nodes.size();
   124   for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
   125     uint inst_size = _nodes[j]->size(ra);
   126     if( inst_size > 0 ) {
   127       inst_cnt--;
   128       uint sz = sum_size + inst_size;
   129       if( sz <= (uint)OptoLoopAlignment ) {
   130         // Compute size of instructions which fit into fetch buffer only
   131         // since all inst_cnt instructions will not fit even if we align them.
   132         sum_size = sz;
   133       } else {
   134         return 0;
   135       }
   136     }
   137   }
   138   return inst_cnt;
   139 }
   141 //-----------------------------------------------------------------------------
   142 uint Block::find_node( const Node *n ) const {
   143   for( uint i = 0; i < _nodes.size(); i++ ) {
   144     if( _nodes[i] == n )
   145       return i;
   146   }
   147   ShouldNotReachHere();
   148   return 0;
   149 }
   151 // Find and remove n from block list
   152 void Block::find_remove( const Node *n ) {
   153   _nodes.remove(find_node(n));
   154 }
   156 //------------------------------is_Empty---------------------------------------
   157 // Return empty status of a block.  Empty blocks contain only the head, other
   158 // ideal nodes, and an optional trailing goto.
   159 int Block::is_Empty() const {
   161   // Root or start block is not considered empty
   162   if (head()->is_Root() || head()->is_Start()) {
   163     return not_empty;
   164   }
   166   int success_result = completely_empty;
   167   int end_idx = _nodes.size()-1;
   169   // Check for ending goto
   170   if ((end_idx > 0) && (_nodes[end_idx]->is_MachGoto())) {
   171     success_result = empty_with_goto;
   172     end_idx--;
   173   }
   175   // Unreachable blocks are considered empty
   176   if (num_preds() <= 1) {
   177     return success_result;
   178   }
   180   // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
   181   // turn directly into code, because only MachNodes have non-trivial
   182   // emit() functions.
   183   while ((end_idx > 0) && !_nodes[end_idx]->is_Mach()) {
   184     end_idx--;
   185   }
   187   // No room for any interesting instructions?
   188   if (end_idx == 0) {
   189     return success_result;
   190   }
   192   return not_empty;
   193 }
   195 //------------------------------has_uncommon_code------------------------------
   196 // Return true if the block's code implies that it is likely to be
   197 // executed infrequently.  Check to see if the block ends in a Halt or
   198 // a low probability call.
   199 bool Block::has_uncommon_code() const {
   200   Node* en = end();
   202   if (en->is_MachGoto())
   203     en = en->in(0);
   204   if (en->is_Catch())
   205     en = en->in(0);
   206   if (en->is_MachProj() && en->in(0)->is_MachCall()) {
   207     MachCallNode* call = en->in(0)->as_MachCall();
   208     if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
   209       // This is true for slow-path stubs like new_{instance,array},
   210       // slow_arraycopy, complete_monitor_locking, uncommon_trap.
   211       // The magic number corresponds to the probability of an uncommon_trap,
   212       // even though it is a count not a probability.
   213       return true;
   214     }
   215   }
   217   int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
   218   return op == Op_Halt;
   219 }
   221 //------------------------------is_uncommon------------------------------------
   222 // True if block is low enough frequency or guarded by a test which
   223 // mostly does not go here.
   224 bool Block::is_uncommon( Block_Array &bbs ) const {
   225   // Initial blocks must never be moved, so are never uncommon.
   226   if (head()->is_Root() || head()->is_Start())  return false;
   228   // Check for way-low freq
   229   if( _freq < BLOCK_FREQUENCY(0.00001f) ) return true;
   231   // Look for code shape indicating uncommon_trap or slow path
   232   if (has_uncommon_code()) return true;
   234   const float epsilon = 0.05f;
   235   const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
   236   uint uncommon_preds = 0;
   237   uint freq_preds = 0;
   238   uint uncommon_for_freq_preds = 0;
   240   for( uint i=1; i<num_preds(); i++ ) {
   241     Block* guard = bbs[pred(i)->_idx];
   242     // Check to see if this block follows its guard 1 time out of 10000
   243     // or less.
   244     //
   245     // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
   246     // we intend to be "uncommon", such as slow-path TLE allocation,
   247     // predicted call failure, and uncommon trap triggers.
   248     //
   249     // Use an epsilon value of 5% to allow for variability in frequency
   250     // predictions and floating point calculations. The net effect is
   251     // that guard_factor is set to 9500.
   252     //
   253     // Ignore low-frequency blocks.
   254     // The next check is (guard->_freq < 1.e-5 * 9500.).
   255     if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
   256       uncommon_preds++;
   257     } else {
   258       freq_preds++;
   259       if( _freq < guard->_freq * guard_factor ) {
   260         uncommon_for_freq_preds++;
   261       }
   262     }
   263   }
   264   if( num_preds() > 1 &&
   265       // The block is uncommon if all preds are uncommon or
   266       (uncommon_preds == (num_preds()-1) ||
   267       // it is uncommon for all frequent preds.
   268        uncommon_for_freq_preds == freq_preds) ) {
   269     return true;
   270   }
   271   return false;
   272 }
   274 //------------------------------dump-------------------------------------------
   275 #ifndef PRODUCT
   276 void Block::dump_bidx(const Block* orig, outputStream* st) const {
   277   if (_pre_order) st->print("B%d",_pre_order);
   278   else st->print("N%d", head()->_idx);
   280   if (Verbose && orig != this) {
   281     // Dump the original block's idx
   282     st->print(" (");
   283     orig->dump_bidx(orig, st);
   284     st->print(")");
   285   }
   286 }
   288 void Block::dump_pred(const Block_Array *bbs, Block* orig, outputStream* st) const {
   289   if (is_connector()) {
   290     for (uint i=1; i<num_preds(); i++) {
   291       Block *p = ((*bbs)[pred(i)->_idx]);
   292       p->dump_pred(bbs, orig, st);
   293     }
   294   } else {
   295     dump_bidx(orig, st);
   296     st->print(" ");
   297   }
   298 }
   300 void Block::dump_head( const Block_Array *bbs, outputStream* st ) const {
   301   // Print the basic block
   302   dump_bidx(this, st);
   303   st->print(": #\t");
   305   // Print the incoming CFG edges and the outgoing CFG edges
   306   for( uint i=0; i<_num_succs; i++ ) {
   307     non_connector_successor(i)->dump_bidx(_succs[i], st);
   308     st->print(" ");
   309   }
   310   st->print("<- ");
   311   if( head()->is_block_start() ) {
   312     for (uint i=1; i<num_preds(); i++) {
   313       Node *s = pred(i);
   314       if (bbs) {
   315         Block *p = (*bbs)[s->_idx];
   316         p->dump_pred(bbs, p, st);
   317       } else {
   318         while (!s->is_block_start())
   319           s = s->in(0);
   320         st->print("N%d ", s->_idx );
   321       }
   322     }
   323   } else
   324     st->print("BLOCK HEAD IS JUNK  ");
   326   // Print loop, if any
   327   const Block *bhead = this;    // Head of self-loop
   328   Node *bh = bhead->head();
   329   if( bbs && bh->is_Loop() && !head()->is_Root() ) {
   330     LoopNode *loop = bh->as_Loop();
   331     const Block *bx = (*bbs)[loop->in(LoopNode::LoopBackControl)->_idx];
   332     while (bx->is_connector()) {
   333       bx = (*bbs)[bx->pred(1)->_idx];
   334     }
   335     st->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
   336     // Dump any loop-specific bits, especially for CountedLoops.
   337     loop->dump_spec(st);
   338   } else if (has_loop_alignment()) {
   339     st->print(" top-of-loop");
   340   }
   341   st->print(" Freq: %g",_freq);
   342   if( Verbose || WizardMode ) {
   343     st->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
   344     st->print(" RegPressure: %d",_reg_pressure);
   345     st->print(" IHRP Index: %d",_ihrp_index);
   346     st->print(" FRegPressure: %d",_freg_pressure);
   347     st->print(" FHRP Index: %d",_fhrp_index);
   348   }
   349   st->print_cr("");
   350 }
   352 void Block::dump() const { dump(NULL); }
   354 void Block::dump( const Block_Array *bbs ) const {
   355   dump_head(bbs);
   356   uint cnt = _nodes.size();
   357   for( uint i=0; i<cnt; i++ )
   358     _nodes[i]->dump();
   359   tty->print("\n");
   360 }
   361 #endif
   363 //=============================================================================
   364 //------------------------------PhaseCFG---------------------------------------
   365 PhaseCFG::PhaseCFG( Arena *a, RootNode *r, Matcher &m ) :
   366   Phase(CFG),
   367   _bbs(a),
   368   _root(r),
   369   _node_latency(NULL)
   370 #ifndef PRODUCT
   371   , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
   372 #endif
   373 #ifdef ASSERT
   374   , _raw_oops(a)
   375 #endif
   376 {
   377   ResourceMark rm;
   378   // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
   379   // then Match it into a machine-specific Node.  Then clone the machine
   380   // Node on demand.
   381   Node *x = new (C, 1) GotoNode(NULL);
   382   x->init_req(0, x);
   383   _goto = m.match_tree(x);
   384   assert(_goto != NULL, "");
   385   _goto->set_req(0,_goto);
   387   // Build the CFG in Reverse Post Order
   388   _num_blocks = build_cfg();
   389   _broot = _bbs[_root->_idx];
   390 }
   392 //------------------------------build_cfg--------------------------------------
   393 // Build a proper looking CFG.  Make every block begin with either a StartNode
   394 // or a RegionNode.  Make every block end with either a Goto, If or Return.
   395 // The RootNode both starts and ends it's own block.  Do this with a recursive
   396 // backwards walk over the control edges.
   397 uint PhaseCFG::build_cfg() {
   398   Arena *a = Thread::current()->resource_area();
   399   VectorSet visited(a);
   401   // Allocate stack with enough space to avoid frequent realloc
   402   Node_Stack nstack(a, C->unique() >> 1);
   403   nstack.push(_root, 0);
   404   uint sum = 0;                 // Counter for blocks
   406   while (nstack.is_nonempty()) {
   407     // node and in's index from stack's top
   408     // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
   409     // only nodes which point to the start of basic block (see below).
   410     Node *np = nstack.node();
   411     // idx > 0, except for the first node (_root) pushed on stack
   412     // at the beginning when idx == 0.
   413     // We will use the condition (idx == 0) later to end the build.
   414     uint idx = nstack.index();
   415     Node *proj = np->in(idx);
   416     const Node *x = proj->is_block_proj();
   417     // Does the block end with a proper block-ending Node?  One of Return,
   418     // If or Goto? (This check should be done for visited nodes also).
   419     if (x == NULL) {                    // Does not end right...
   420       Node *g = _goto->clone(); // Force it to end in a Goto
   421       g->set_req(0, proj);
   422       np->set_req(idx, g);
   423       x = proj = g;
   424     }
   425     if (!visited.test_set(x->_idx)) { // Visit this block once
   426       // Skip any control-pinned middle'in stuff
   427       Node *p = proj;
   428       do {
   429         proj = p;                   // Update pointer to last Control
   430         p = p->in(0);               // Move control forward
   431       } while( !p->is_block_proj() &&
   432                !p->is_block_start() );
   433       // Make the block begin with one of Region or StartNode.
   434       if( !p->is_block_start() ) {
   435         RegionNode *r = new (C, 2) RegionNode( 2 );
   436         r->init_req(1, p);         // Insert RegionNode in the way
   437         proj->set_req(0, r);        // Insert RegionNode in the way
   438         p = r;
   439       }
   440       // 'p' now points to the start of this basic block
   442       // Put self in array of basic blocks
   443       Block *bb = new (_bbs._arena) Block(_bbs._arena,p);
   444       _bbs.map(p->_idx,bb);
   445       _bbs.map(x->_idx,bb);
   446       if( x != p ) {                // Only for root is x == p
   447         bb->_nodes.push((Node*)x);
   448       }
   449       // Now handle predecessors
   450       ++sum;                        // Count 1 for self block
   451       uint cnt = bb->num_preds();
   452       for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
   453         Node *prevproj = p->in(i);  // Get prior input
   454         assert( !prevproj->is_Con(), "dead input not removed" );
   455         // Check to see if p->in(i) is a "control-dependent" CFG edge -
   456         // i.e., it splits at the source (via an IF or SWITCH) and merges
   457         // at the destination (via a many-input Region).
   458         // This breaks critical edges.  The RegionNode to start the block
   459         // will be added when <p,i> is pulled off the node stack
   460         if ( cnt > 2 ) {             // Merging many things?
   461           assert( prevproj== bb->pred(i),"");
   462           if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
   463             // Force a block on the control-dependent edge
   464             Node *g = _goto->clone();       // Force it to end in a Goto
   465             g->set_req(0,prevproj);
   466             p->set_req(i,g);
   467           }
   468         }
   469         nstack.push(p, i);  // 'p' is RegionNode or StartNode
   470       }
   471     } else { // Post-processing visited nodes
   472       nstack.pop();                 // remove node from stack
   473       // Check if it the fist node pushed on stack at the beginning.
   474       if (idx == 0) break;          // end of the build
   475       // Find predecessor basic block
   476       Block *pb = _bbs[x->_idx];
   477       // Insert into nodes array, if not already there
   478       if( !_bbs.lookup(proj->_idx) ) {
   479         assert( x != proj, "" );
   480         // Map basic block of projection
   481         _bbs.map(proj->_idx,pb);
   482         pb->_nodes.push(proj);
   483       }
   484       // Insert self as a child of my predecessor block
   485       pb->_succs.map(pb->_num_succs++, _bbs[np->_idx]);
   486       assert( pb->_nodes[ pb->_nodes.size() - pb->_num_succs ]->is_block_proj(),
   487               "too many control users, not a CFG?" );
   488     }
   489   }
   490   // Return number of basic blocks for all children and self
   491   return sum;
   492 }
   494 //------------------------------insert_goto_at---------------------------------
   495 // Inserts a goto & corresponding basic block between
   496 // block[block_no] and its succ_no'th successor block
   497 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
   498   // get block with block_no
   499   assert(block_no < _num_blocks, "illegal block number");
   500   Block* in  = _blocks[block_no];
   501   // get successor block succ_no
   502   assert(succ_no < in->_num_succs, "illegal successor number");
   503   Block* out = in->_succs[succ_no];
   504   // Compute frequency of the new block. Do this before inserting
   505   // new block in case succ_prob() needs to infer the probability from
   506   // surrounding blocks.
   507   float freq = in->_freq * in->succ_prob(succ_no);
   508   // get ProjNode corresponding to the succ_no'th successor of the in block
   509   ProjNode* proj = in->_nodes[in->_nodes.size() - in->_num_succs + succ_no]->as_Proj();
   510   // create region for basic block
   511   RegionNode* region = new (C, 2) RegionNode(2);
   512   region->init_req(1, proj);
   513   // setup corresponding basic block
   514   Block* block = new (_bbs._arena) Block(_bbs._arena, region);
   515   _bbs.map(region->_idx, block);
   516   C->regalloc()->set_bad(region->_idx);
   517   // add a goto node
   518   Node* gto = _goto->clone(); // get a new goto node
   519   gto->set_req(0, region);
   520   // add it to the basic block
   521   block->_nodes.push(gto);
   522   _bbs.map(gto->_idx, block);
   523   C->regalloc()->set_bad(gto->_idx);
   524   // hook up successor block
   525   block->_succs.map(block->_num_succs++, out);
   526   // remap successor's predecessors if necessary
   527   for (uint i = 1; i < out->num_preds(); i++) {
   528     if (out->pred(i) == proj) out->head()->set_req(i, gto);
   529   }
   530   // remap predecessor's successor to new block
   531   in->_succs.map(succ_no, block);
   532   // Set the frequency of the new block
   533   block->_freq = freq;
   534   // add new basic block to basic block list
   535   _blocks.insert(block_no + 1, block);
   536   _num_blocks++;
   537 }
   539 //------------------------------no_flip_branch---------------------------------
   540 // Does this block end in a multiway branch that cannot have the default case
   541 // flipped for another case?
   542 static bool no_flip_branch( Block *b ) {
   543   int branch_idx = b->_nodes.size() - b->_num_succs-1;
   544   if( branch_idx < 1 ) return false;
   545   Node *bra = b->_nodes[branch_idx];
   546   if( bra->is_Catch() )
   547     return true;
   548   if( bra->is_Mach() ) {
   549     if( bra->is_MachNullCheck() )
   550       return true;
   551     int iop = bra->as_Mach()->ideal_Opcode();
   552     if( iop == Op_FastLock || iop == Op_FastUnlock )
   553       return true;
   554   }
   555   return false;
   556 }
   558 //------------------------------convert_NeverBranch_to_Goto--------------------
   559 // Check for NeverBranch at block end.  This needs to become a GOTO to the
   560 // true target.  NeverBranch are treated as a conditional branch that always
   561 // goes the same direction for most of the optimizer and are used to give a
   562 // fake exit path to infinite loops.  At this late stage they need to turn
   563 // into Goto's so that when you enter the infinite loop you indeed hang.
   564 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
   565   // Find true target
   566   int end_idx = b->end_idx();
   567   int idx = b->_nodes[end_idx+1]->as_Proj()->_con;
   568   Block *succ = b->_succs[idx];
   569   Node* gto = _goto->clone(); // get a new goto node
   570   gto->set_req(0, b->head());
   571   Node *bp = b->_nodes[end_idx];
   572   b->_nodes.map(end_idx,gto); // Slam over NeverBranch
   573   _bbs.map(gto->_idx, b);
   574   C->regalloc()->set_bad(gto->_idx);
   575   b->_nodes.pop();              // Yank projections
   576   b->_nodes.pop();              // Yank projections
   577   b->_succs.map(0,succ);        // Map only successor
   578   b->_num_succs = 1;
   579   // remap successor's predecessors if necessary
   580   uint j;
   581   for( j = 1; j < succ->num_preds(); j++)
   582     if( succ->pred(j)->in(0) == bp )
   583       succ->head()->set_req(j, gto);
   584   // Kill alternate exit path
   585   Block *dead = b->_succs[1-idx];
   586   for( j = 1; j < dead->num_preds(); j++)
   587     if( dead->pred(j)->in(0) == bp )
   588       break;
   589   // Scan through block, yanking dead path from
   590   // all regions and phis.
   591   dead->head()->del_req(j);
   592   for( int k = 1; dead->_nodes[k]->is_Phi(); k++ )
   593     dead->_nodes[k]->del_req(j);
   594 }
   596 //------------------------------move_to_next-----------------------------------
   597 // Helper function to move block bx to the slot following b_index. Return
   598 // true if the move is successful, otherwise false
   599 bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
   600   if (bx == NULL) return false;
   602   // Return false if bx is already scheduled.
   603   uint bx_index = bx->_pre_order;
   604   if ((bx_index <= b_index) && (_blocks[bx_index] == bx)) {
   605     return false;
   606   }
   608   // Find the current index of block bx on the block list
   609   bx_index = b_index + 1;
   610   while( bx_index < _num_blocks && _blocks[bx_index] != bx ) bx_index++;
   611   assert(_blocks[bx_index] == bx, "block not found");
   613   // If the previous block conditionally falls into bx, return false,
   614   // because moving bx will create an extra jump.
   615   for(uint k = 1; k < bx->num_preds(); k++ ) {
   616     Block* pred = _bbs[bx->pred(k)->_idx];
   617     if (pred == _blocks[bx_index-1]) {
   618       if (pred->_num_succs != 1) {
   619         return false;
   620       }
   621     }
   622   }
   624   // Reinsert bx just past block 'b'
   625   _blocks.remove(bx_index);
   626   _blocks.insert(b_index + 1, bx);
   627   return true;
   628 }
   630 //------------------------------move_to_end------------------------------------
   631 // Move empty and uncommon blocks to the end.
   632 void PhaseCFG::move_to_end(Block *b, uint i) {
   633   int e = b->is_Empty();
   634   if (e != Block::not_empty) {
   635     if (e == Block::empty_with_goto) {
   636       // Remove the goto, but leave the block.
   637       b->_nodes.pop();
   638     }
   639     // Mark this block as a connector block, which will cause it to be
   640     // ignored in certain functions such as non_connector_successor().
   641     b->set_connector();
   642   }
   643   // Move the empty block to the end, and don't recheck.
   644   _blocks.remove(i);
   645   _blocks.push(b);
   646 }
   648 //---------------------------set_loop_alignment--------------------------------
   649 // Set loop alignment for every block
   650 void PhaseCFG::set_loop_alignment() {
   651   uint last = _num_blocks;
   652   assert( _blocks[0] == _broot, "" );
   654   for (uint i = 1; i < last; i++ ) {
   655     Block *b = _blocks[i];
   656     if (b->head()->is_Loop()) {
   657       b->set_loop_alignment(b);
   658     }
   659   }
   660 }
   662 //-----------------------------remove_empty------------------------------------
   663 // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
   664 // to the end.
   665 void PhaseCFG::remove_empty() {
   666   // Move uncommon blocks to the end
   667   uint last = _num_blocks;
   668   assert( _blocks[0] == _broot, "" );
   670   for (uint i = 1; i < last; i++) {
   671     Block *b = _blocks[i];
   672     if (b->is_connector()) break;
   674     // Check for NeverBranch at block end.  This needs to become a GOTO to the
   675     // true target.  NeverBranch are treated as a conditional branch that
   676     // always goes the same direction for most of the optimizer and are used
   677     // to give a fake exit path to infinite loops.  At this late stage they
   678     // need to turn into Goto's so that when you enter the infinite loop you
   679     // indeed hang.
   680     if( b->_nodes[b->end_idx()]->Opcode() == Op_NeverBranch )
   681       convert_NeverBranch_to_Goto(b);
   683     // Look for uncommon blocks and move to end.
   684     if (!C->do_freq_based_layout()) {
   685       if( b->is_uncommon(_bbs) ) {
   686         move_to_end(b, i);
   687         last--;                   // No longer check for being uncommon!
   688         if( no_flip_branch(b) ) { // Fall-thru case must follow?
   689           b = _blocks[i];         // Find the fall-thru block
   690           move_to_end(b, i);
   691           last--;
   692         }
   693         i--;                      // backup block counter post-increment
   694       }
   695     }
   696   }
   698   // Move empty blocks to the end
   699   last = _num_blocks;
   700   for (uint i = 1; i < last; i++) {
   701     Block *b = _blocks[i];
   702     if (b->is_Empty() != Block::not_empty) {
   703       move_to_end(b, i);
   704       last--;
   705       i--;
   706     }
   707   } // End of for all blocks
   708 }
   710 //-----------------------------fixup_flow--------------------------------------
   711 // Fix up the final control flow for basic blocks.
   712 void PhaseCFG::fixup_flow() {
   713   // Fixup final control flow for the blocks.  Remove jump-to-next
   714   // block.  If neither arm of a IF follows the conditional branch, we
   715   // have to add a second jump after the conditional.  We place the
   716   // TRUE branch target in succs[0] for both GOTOs and IFs.
   717   for (uint i=0; i < _num_blocks; i++) {
   718     Block *b = _blocks[i];
   719     b->_pre_order = i;          // turn pre-order into block-index
   721     // Connector blocks need no further processing.
   722     if (b->is_connector()) {
   723       assert((i+1) == _num_blocks || _blocks[i+1]->is_connector(),
   724              "All connector blocks should sink to the end");
   725       continue;
   726     }
   727     assert(b->is_Empty() != Block::completely_empty,
   728            "Empty blocks should be connectors");
   730     Block *bnext = (i < _num_blocks-1) ? _blocks[i+1] : NULL;
   731     Block *bs0 = b->non_connector_successor(0);
   733     // Check for multi-way branches where I cannot negate the test to
   734     // exchange the true and false targets.
   735     if( no_flip_branch( b ) ) {
   736       // Find fall through case - if must fall into its target
   737       int branch_idx = b->_nodes.size() - b->_num_succs;
   738       for (uint j2 = 0; j2 < b->_num_succs; j2++) {
   739         const ProjNode* p = b->_nodes[branch_idx + j2]->as_Proj();
   740         if (p->_con == 0) {
   741           // successor j2 is fall through case
   742           if (b->non_connector_successor(j2) != bnext) {
   743             // but it is not the next block => insert a goto
   744             insert_goto_at(i, j2);
   745           }
   746           // Put taken branch in slot 0
   747           if( j2 == 0 && b->_num_succs == 2) {
   748             // Flip targets in succs map
   749             Block *tbs0 = b->_succs[0];
   750             Block *tbs1 = b->_succs[1];
   751             b->_succs.map( 0, tbs1 );
   752             b->_succs.map( 1, tbs0 );
   753           }
   754           break;
   755         }
   756       }
   757       // Remove all CatchProjs
   758       for (uint j1 = 0; j1 < b->_num_succs; j1++) b->_nodes.pop();
   760     } else if (b->_num_succs == 1) {
   761       // Block ends in a Goto?
   762       if (bnext == bs0) {
   763         // We fall into next block; remove the Goto
   764         b->_nodes.pop();
   765       }
   767     } else if( b->_num_succs == 2 ) { // Block ends in a If?
   768       // Get opcode of 1st projection (matches _succs[0])
   769       // Note: Since this basic block has 2 exits, the last 2 nodes must
   770       //       be projections (in any order), the 3rd last node must be
   771       //       the IfNode (we have excluded other 2-way exits such as
   772       //       CatchNodes already).
   773       MachNode *iff   = b->_nodes[b->_nodes.size()-3]->as_Mach();
   774       ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
   775       ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
   777       // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
   778       assert(proj0->raw_out(0) == b->_succs[0]->head(), "Mismatch successor 0");
   779       assert(proj1->raw_out(0) == b->_succs[1]->head(), "Mismatch successor 1");
   781       Block *bs1 = b->non_connector_successor(1);
   783       // Check for neither successor block following the current
   784       // block ending in a conditional. If so, move one of the
   785       // successors after the current one, provided that the
   786       // successor was previously unscheduled, but moveable
   787       // (i.e., all paths to it involve a branch).
   788       if( !C->do_freq_based_layout() && bnext != bs0 && bnext != bs1 ) {
   789         // Choose the more common successor based on the probability
   790         // of the conditional branch.
   791         Block *bx = bs0;
   792         Block *by = bs1;
   794         // _prob is the probability of taking the true path. Make
   795         // p the probability of taking successor #1.
   796         float p = iff->as_MachIf()->_prob;
   797         if( proj0->Opcode() == Op_IfTrue ) {
   798           p = 1.0 - p;
   799         }
   801         // Prefer successor #1 if p > 0.5
   802         if (p > PROB_FAIR) {
   803           bx = bs1;
   804           by = bs0;
   805         }
   807         // Attempt the more common successor first
   808         if (move_to_next(bx, i)) {
   809           bnext = bx;
   810         } else if (move_to_next(by, i)) {
   811           bnext = by;
   812         }
   813       }
   815       // Check for conditional branching the wrong way.  Negate
   816       // conditional, if needed, so it falls into the following block
   817       // and branches to the not-following block.
   819       // Check for the next block being in succs[0].  We are going to branch
   820       // to succs[0], so we want the fall-thru case as the next block in
   821       // succs[1].
   822       if (bnext == bs0) {
   823         // Fall-thru case in succs[0], so flip targets in succs map
   824         Block *tbs0 = b->_succs[0];
   825         Block *tbs1 = b->_succs[1];
   826         b->_succs.map( 0, tbs1 );
   827         b->_succs.map( 1, tbs0 );
   828         // Flip projection for each target
   829         { ProjNode *tmp = proj0; proj0 = proj1; proj1 = tmp; }
   831       } else if( bnext != bs1 ) {
   832         // Need a double-branch
   833         // The existing conditional branch need not change.
   834         // Add a unconditional branch to the false target.
   835         // Alas, it must appear in its own block and adding a
   836         // block this late in the game is complicated.  Sigh.
   837         insert_goto_at(i, 1);
   838       }
   840       // Make sure we TRUE branch to the target
   841       if( proj0->Opcode() == Op_IfFalse ) {
   842         iff->as_MachIf()->negate();
   843       }
   845       b->_nodes.pop();          // Remove IfFalse & IfTrue projections
   846       b->_nodes.pop();
   848     } else {
   849       // Multi-exit block, e.g. a switch statement
   850       // But we don't need to do anything here
   851     }
   852   } // End of for all blocks
   853 }
   856 //------------------------------dump-------------------------------------------
   857 #ifndef PRODUCT
   858 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
   859   const Node *x = end->is_block_proj();
   860   assert( x, "not a CFG" );
   862   // Do not visit this block again
   863   if( visited.test_set(x->_idx) ) return;
   865   // Skip through this block
   866   const Node *p = x;
   867   do {
   868     p = p->in(0);               // Move control forward
   869     assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
   870   } while( !p->is_block_start() );
   872   // Recursively visit
   873   for( uint i=1; i<p->req(); i++ )
   874     _dump_cfg(p->in(i),visited);
   876   // Dump the block
   877   _bbs[p->_idx]->dump(&_bbs);
   878 }
   880 void PhaseCFG::dump( ) const {
   881   tty->print("\n--- CFG --- %d BBs\n",_num_blocks);
   882   if( _blocks.size() ) {        // Did we do basic-block layout?
   883     for( uint i=0; i<_num_blocks; i++ )
   884       _blocks[i]->dump(&_bbs);
   885   } else {                      // Else do it with a DFS
   886     VectorSet visited(_bbs._arena);
   887     _dump_cfg(_root,visited);
   888   }
   889 }
   891 void PhaseCFG::dump_headers() {
   892   for( uint i = 0; i < _num_blocks; i++ ) {
   893     if( _blocks[i] == NULL ) continue;
   894     _blocks[i]->dump_head(&_bbs);
   895   }
   896 }
   898 void PhaseCFG::verify( ) const {
   899 #ifdef ASSERT
   900   // Verify sane CFG
   901   for( uint i = 0; i < _num_blocks; i++ ) {
   902     Block *b = _blocks[i];
   903     uint cnt = b->_nodes.size();
   904     uint j;
   905     for( j = 0; j < cnt; j++ ) {
   906       Node *n = b->_nodes[j];
   907       assert( _bbs[n->_idx] == b, "" );
   908       if( j >= 1 && n->is_Mach() &&
   909           n->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
   910         assert( j == 1 || b->_nodes[j-1]->is_Phi(),
   911                 "CreateEx must be first instruction in block" );
   912       }
   913       for( uint k = 0; k < n->req(); k++ ) {
   914         Node *def = n->in(k);
   915         if( def && def != n ) {
   916           assert( _bbs[def->_idx] || def->is_Con(),
   917                   "must have block; constants for debug info ok" );
   918           // Verify that instructions in the block is in correct order.
   919           // Uses must follow their definition if they are at the same block.
   920           // Mostly done to check that MachSpillCopy nodes are placed correctly
   921           // when CreateEx node is moved in build_ifg_physical().
   922           if( _bbs[def->_idx] == b &&
   923               !(b->head()->is_Loop() && n->is_Phi()) &&
   924               // See (+++) comment in reg_split.cpp
   925               !(n->jvms() != NULL && n->jvms()->is_monitor_use(k)) ) {
   926             bool is_loop = false;
   927             if (n->is_Phi()) {
   928               for( uint l = 1; l < def->req(); l++ ) {
   929                 if (n == def->in(l)) {
   930                   is_loop = true;
   931                   break; // Some kind of loop
   932                 }
   933               }
   934             }
   935             assert( is_loop || b->find_node(def) < j, "uses must follow definitions" );
   936           }
   937           if( def->is_SafePointScalarObject() ) {
   938             assert(_bbs[def->_idx] == b, "SafePointScalarObject Node should be at the same block as its SafePoint node");
   939             assert(_bbs[def->_idx] == _bbs[def->in(0)->_idx], "SafePointScalarObject Node should be at the same block as its control edge");
   940           }
   941         }
   942       }
   943     }
   945     j = b->end_idx();
   946     Node *bp = (Node*)b->_nodes[b->_nodes.size()-1]->is_block_proj();
   947     assert( bp, "last instruction must be a block proj" );
   948     assert( bp == b->_nodes[j], "wrong number of successors for this block" );
   949     if( bp->is_Catch() ) {
   950       while( b->_nodes[--j]->is_MachProj() ) ;
   951       assert( b->_nodes[j]->is_MachCall(), "CatchProj must follow call" );
   952     }
   953     else if( bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If ) {
   954       assert( b->_num_succs == 2, "Conditional branch must have two targets");
   955     }
   956   }
   957 #endif
   958 }
   959 #endif
   961 //=============================================================================
   962 //------------------------------UnionFind--------------------------------------
   963 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
   964   Copy::zero_to_bytes( _indices, sizeof(uint)*max );
   965 }
   967 void UnionFind::extend( uint from_idx, uint to_idx ) {
   968   _nesting.check();
   969   if( from_idx >= _max ) {
   970     uint size = 16;
   971     while( size <= from_idx ) size <<=1;
   972     _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
   973     _max = size;
   974   }
   975   while( _cnt <= from_idx ) _indices[_cnt++] = 0;
   976   _indices[from_idx] = to_idx;
   977 }
   979 void UnionFind::reset( uint max ) {
   980   assert( max <= max_uint, "Must fit within uint" );
   981   // Force the Union-Find mapping to be at least this large
   982   extend(max,0);
   983   // Initialize to be the ID mapping.
   984   for( uint i=0; i<max; i++ ) map(i,i);
   985 }
   987 //------------------------------Find_compress----------------------------------
   988 // Straight out of Tarjan's union-find algorithm
   989 uint UnionFind::Find_compress( uint idx ) {
   990   uint cur  = idx;
   991   uint next = lookup(cur);
   992   while( next != cur ) {        // Scan chain of equivalences
   993     assert( next < cur, "always union smaller" );
   994     cur = next;                 // until find a fixed-point
   995     next = lookup(cur);
   996   }
   997   // Core of union-find algorithm: update chain of
   998   // equivalences to be equal to the root.
   999   while( idx != next ) {
  1000     uint tmp = lookup(idx);
  1001     map(idx, next);
  1002     idx = tmp;
  1004   return idx;
  1007 //------------------------------Find_const-------------------------------------
  1008 // Like Find above, but no path compress, so bad asymptotic behavior
  1009 uint UnionFind::Find_const( uint idx ) const {
  1010   if( idx == 0 ) return idx;    // Ignore the zero idx
  1011   // Off the end?  This can happen during debugging dumps
  1012   // when data structures have not finished being updated.
  1013   if( idx >= _max ) return idx;
  1014   uint next = lookup(idx);
  1015   while( next != idx ) {        // Scan chain of equivalences
  1016     idx = next;                 // until find a fixed-point
  1017     next = lookup(idx);
  1019   return next;
  1022 //------------------------------Union------------------------------------------
  1023 // union 2 sets together.
  1024 void UnionFind::Union( uint idx1, uint idx2 ) {
  1025   uint src = Find(idx1);
  1026   uint dst = Find(idx2);
  1027   assert( src, "" );
  1028   assert( dst, "" );
  1029   assert( src < _max, "oob" );
  1030   assert( dst < _max, "oob" );
  1031   assert( src < dst, "always union smaller" );
  1032   map(dst,src);
  1035 #ifndef PRODUCT
  1036 static void edge_dump(GrowableArray<CFGEdge *> *edges) {
  1037   tty->print_cr("---- Edges ----");
  1038   for (int i = 0; i < edges->length(); i++) {
  1039     CFGEdge *e = edges->at(i);
  1040     if (e != NULL) {
  1041       edges->at(i)->dump();
  1046 static void trace_dump(Trace *traces[], int count) {
  1047   tty->print_cr("---- Traces ----");
  1048   for (int i = 0; i < count; i++) {
  1049     Trace *tr = traces[i];
  1050     if (tr != NULL) {
  1051       tr->dump();
  1056 void Trace::dump( ) const {
  1057   tty->print_cr("Trace (freq %f)", first_block()->_freq);
  1058   for (Block *b = first_block(); b != NULL; b = next(b)) {
  1059     tty->print("  B%d", b->_pre_order);
  1060     if (b->head()->is_Loop()) {
  1061       tty->print(" (L%d)", b->compute_loop_alignment());
  1063     if (b->has_loop_alignment()) {
  1064       tty->print(" (T%d)", b->code_alignment());
  1067   tty->cr();
  1070 void CFGEdge::dump( ) const {
  1071   tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
  1072              from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
  1073   switch(state()) {
  1074   case connected:
  1075     tty->print("connected");
  1076     break;
  1077   case open:
  1078     tty->print("open");
  1079     break;
  1080   case interior:
  1081     tty->print("interior");
  1082     break;
  1084   if (infrequent()) {
  1085     tty->print("  infrequent");
  1087   tty->cr();
  1089 #endif
  1091 //=============================================================================
  1093 //------------------------------edge_order-------------------------------------
  1094 // Comparison function for edges
  1095 static int edge_order(CFGEdge **e0, CFGEdge **e1) {
  1096   float freq0 = (*e0)->freq();
  1097   float freq1 = (*e1)->freq();
  1098   if (freq0 != freq1) {
  1099     return freq0 > freq1 ? -1 : 1;
  1102   int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
  1103   int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
  1105   return dist1 - dist0;
  1108 //------------------------------trace_frequency_order--------------------------
  1109 // Comparison function for edges
  1110 extern "C" int trace_frequency_order(const void *p0, const void *p1) {
  1111   Trace *tr0 = *(Trace **) p0;
  1112   Trace *tr1 = *(Trace **) p1;
  1113   Block *b0 = tr0->first_block();
  1114   Block *b1 = tr1->first_block();
  1116   // The trace of connector blocks goes at the end;
  1117   // we only expect one such trace
  1118   if (b0->is_connector() != b1->is_connector()) {
  1119     return b1->is_connector() ? -1 : 1;
  1122   // Pull more frequently executed blocks to the beginning
  1123   float freq0 = b0->_freq;
  1124   float freq1 = b1->_freq;
  1125   if (freq0 != freq1) {
  1126     return freq0 > freq1 ? -1 : 1;
  1129   int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
  1131   return diff;
  1134 //------------------------------find_edges-------------------------------------
  1135 // Find edges of interest, i.e, those which can fall through. Presumes that
  1136 // edges which don't fall through are of low frequency and can be generally
  1137 // ignored.  Initialize the list of traces.
  1138 void PhaseBlockLayout::find_edges()
  1140   // Walk the blocks, creating edges and Traces
  1141   uint i;
  1142   Trace *tr = NULL;
  1143   for (i = 0; i < _cfg._num_blocks; i++) {
  1144     Block *b = _cfg._blocks[i];
  1145     tr = new Trace(b, next, prev);
  1146     traces[tr->id()] = tr;
  1148     // All connector blocks should be at the end of the list
  1149     if (b->is_connector()) break;
  1151     // If this block and the next one have a one-to-one successor
  1152     // predecessor relationship, simply append the next block
  1153     int nfallthru = b->num_fall_throughs();
  1154     while (nfallthru == 1 &&
  1155            b->succ_fall_through(0)) {
  1156       Block *n = b->_succs[0];
  1158       // Skip over single-entry connector blocks, we don't want to
  1159       // add them to the trace.
  1160       while (n->is_connector() && n->num_preds() == 1) {
  1161         n = n->_succs[0];
  1164       // We see a merge point, so stop search for the next block
  1165       if (n->num_preds() != 1) break;
  1167       i++;
  1168       assert(n = _cfg._blocks[i], "expecting next block");
  1169       tr->append(n);
  1170       uf->map(n->_pre_order, tr->id());
  1171       traces[n->_pre_order] = NULL;
  1172       nfallthru = b->num_fall_throughs();
  1173       b = n;
  1176     if (nfallthru > 0) {
  1177       // Create a CFGEdge for each outgoing
  1178       // edge that could be a fall-through.
  1179       for (uint j = 0; j < b->_num_succs; j++ ) {
  1180         if (b->succ_fall_through(j)) {
  1181           Block *target = b->non_connector_successor(j);
  1182           float freq = b->_freq * b->succ_prob(j);
  1183           int from_pct = (int) ((100 * freq) / b->_freq);
  1184           int to_pct = (int) ((100 * freq) / target->_freq);
  1185           edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
  1191   // Group connector blocks into one trace
  1192   for (i++; i < _cfg._num_blocks; i++) {
  1193     Block *b = _cfg._blocks[i];
  1194     assert(b->is_connector(), "connector blocks at the end");
  1195     tr->append(b);
  1196     uf->map(b->_pre_order, tr->id());
  1197     traces[b->_pre_order] = NULL;
  1201 //------------------------------union_traces----------------------------------
  1202 // Union two traces together in uf, and null out the trace in the list
  1203 void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace)
  1205   uint old_id = old_trace->id();
  1206   uint updated_id = updated_trace->id();
  1208   uint lo_id = updated_id;
  1209   uint hi_id = old_id;
  1211   // If from is greater than to, swap values to meet
  1212   // UnionFind guarantee.
  1213   if (updated_id > old_id) {
  1214     lo_id = old_id;
  1215     hi_id = updated_id;
  1217     // Fix up the trace ids
  1218     traces[lo_id] = traces[updated_id];
  1219     updated_trace->set_id(lo_id);
  1222   // Union the lower with the higher and remove the pointer
  1223   // to the higher.
  1224   uf->Union(lo_id, hi_id);
  1225   traces[hi_id] = NULL;
  1228 //------------------------------grow_traces-------------------------------------
  1229 // Append traces together via the most frequently executed edges
  1230 void PhaseBlockLayout::grow_traces()
  1232   // Order the edges, and drive the growth of Traces via the most
  1233   // frequently executed edges.
  1234   edges->sort(edge_order);
  1235   for (int i = 0; i < edges->length(); i++) {
  1236     CFGEdge *e = edges->at(i);
  1238     if (e->state() != CFGEdge::open) continue;
  1240     Block *src_block = e->from();
  1241     Block *targ_block = e->to();
  1243     // Don't grow traces along backedges?
  1244     if (!BlockLayoutRotateLoops) {
  1245       if (targ_block->_rpo <= src_block->_rpo) {
  1246         targ_block->set_loop_alignment(targ_block);
  1247         continue;
  1251     Trace *src_trace = trace(src_block);
  1252     Trace *targ_trace = trace(targ_block);
  1254     // If the edge in question can join two traces at their ends,
  1255     // append one trace to the other.
  1256    if (src_trace->last_block() == src_block) {
  1257       if (src_trace == targ_trace) {
  1258         e->set_state(CFGEdge::interior);
  1259         if (targ_trace->backedge(e)) {
  1260           // Reset i to catch any newly eligible edge
  1261           // (Or we could remember the first "open" edge, and reset there)
  1262           i = 0;
  1264       } else if (targ_trace->first_block() == targ_block) {
  1265         e->set_state(CFGEdge::connected);
  1266         src_trace->append(targ_trace);
  1267         union_traces(src_trace, targ_trace);
  1273 //------------------------------merge_traces-----------------------------------
  1274 // Embed one trace into another, if the fork or join points are sufficiently
  1275 // balanced.
  1276 void PhaseBlockLayout::merge_traces(bool fall_thru_only)
  1278   // Walk the edge list a another time, looking at unprocessed edges.
  1279   // Fold in diamonds
  1280   for (int i = 0; i < edges->length(); i++) {
  1281     CFGEdge *e = edges->at(i);
  1283     if (e->state() != CFGEdge::open) continue;
  1284     if (fall_thru_only) {
  1285       if (e->infrequent()) continue;
  1288     Block *src_block = e->from();
  1289     Trace *src_trace = trace(src_block);
  1290     bool src_at_tail = src_trace->last_block() == src_block;
  1292     Block *targ_block  = e->to();
  1293     Trace *targ_trace  = trace(targ_block);
  1294     bool targ_at_start = targ_trace->first_block() == targ_block;
  1296     if (src_trace == targ_trace) {
  1297       // This may be a loop, but we can't do much about it.
  1298       e->set_state(CFGEdge::interior);
  1299       continue;
  1302     if (fall_thru_only) {
  1303       // If the edge links the middle of two traces, we can't do anything.
  1304       // Mark the edge and continue.
  1305       if (!src_at_tail & !targ_at_start) {
  1306         continue;
  1309       // Don't grow traces along backedges?
  1310       if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
  1311           continue;
  1314       // If both ends of the edge are available, why didn't we handle it earlier?
  1315       assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
  1317       if (targ_at_start) {
  1318         // Insert the "targ" trace in the "src" trace if the insertion point
  1319         // is a two way branch.
  1320         // Better profitability check possible, but may not be worth it.
  1321         // Someday, see if the this "fork" has an associated "join";
  1322         // then make a policy on merging this trace at the fork or join.
  1323         // For example, other things being equal, it may be better to place this
  1324         // trace at the join point if the "src" trace ends in a two-way, but
  1325         // the insertion point is one-way.
  1326         assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
  1327         e->set_state(CFGEdge::connected);
  1328         src_trace->insert_after(src_block, targ_trace);
  1329         union_traces(src_trace, targ_trace);
  1330       } else if (src_at_tail) {
  1331         if (src_trace != trace(_cfg._broot)) {
  1332           e->set_state(CFGEdge::connected);
  1333           targ_trace->insert_before(targ_block, src_trace);
  1334           union_traces(targ_trace, src_trace);
  1337     } else if (e->state() == CFGEdge::open) {
  1338       // Append traces, even without a fall-thru connection.
  1339       // But leave root entry at the beginning of the block list.
  1340       if (targ_trace != trace(_cfg._broot)) {
  1341         e->set_state(CFGEdge::connected);
  1342         src_trace->append(targ_trace);
  1343         union_traces(src_trace, targ_trace);
  1349 //----------------------------reorder_traces-----------------------------------
  1350 // Order the sequence of the traces in some desirable way, and fixup the
  1351 // jumps at the end of each block.
  1352 void PhaseBlockLayout::reorder_traces(int count)
  1354   ResourceArea *area = Thread::current()->resource_area();
  1355   Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
  1356   Block_List worklist;
  1357   int new_count = 0;
  1359   // Compact the traces.
  1360   for (int i = 0; i < count; i++) {
  1361     Trace *tr = traces[i];
  1362     if (tr != NULL) {
  1363       new_traces[new_count++] = tr;
  1367   // The entry block should be first on the new trace list.
  1368   Trace *tr = trace(_cfg._broot);
  1369   assert(tr == new_traces[0], "entry trace misplaced");
  1371   // Sort the new trace list by frequency
  1372   qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
  1374   // Patch up the successor blocks
  1375   _cfg._blocks.reset();
  1376   _cfg._num_blocks = 0;
  1377   for (int i = 0; i < new_count; i++) {
  1378     Trace *tr = new_traces[i];
  1379     if (tr != NULL) {
  1380       tr->fixup_blocks(_cfg);
  1385 //------------------------------PhaseBlockLayout-------------------------------
  1386 // Order basic blocks based on frequency
  1387 PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg) :
  1388   Phase(BlockLayout),
  1389   _cfg(cfg)
  1391   ResourceMark rm;
  1392   ResourceArea *area = Thread::current()->resource_area();
  1394   // List of traces
  1395   int size = _cfg._num_blocks + 1;
  1396   traces = NEW_ARENA_ARRAY(area, Trace *, size);
  1397   memset(traces, 0, size*sizeof(Trace*));
  1398   next = NEW_ARENA_ARRAY(area, Block *, size);
  1399   memset(next,   0, size*sizeof(Block *));
  1400   prev = NEW_ARENA_ARRAY(area, Block *, size);
  1401   memset(prev  , 0, size*sizeof(Block *));
  1403   // List of edges
  1404   edges = new GrowableArray<CFGEdge*>;
  1406   // Mapping block index --> block_trace
  1407   uf = new UnionFind(size);
  1408   uf->reset(size);
  1410   // Find edges and create traces.
  1411   find_edges();
  1413   // Grow traces at their ends via most frequent edges.
  1414   grow_traces();
  1416   // Merge one trace into another, but only at fall-through points.
  1417   // This may make diamonds and other related shapes in a trace.
  1418   merge_traces(true);
  1420   // Run merge again, allowing two traces to be catenated, even if
  1421   // one does not fall through into the other. This appends loosely
  1422   // related traces to be near each other.
  1423   merge_traces(false);
  1425   // Re-order all the remaining traces by frequency
  1426   reorder_traces(size);
  1428   assert(_cfg._num_blocks >= (uint) (size - 1), "number of blocks can not shrink");
  1432 //------------------------------backedge---------------------------------------
  1433 // Edge e completes a loop in a trace. If the target block is head of the
  1434 // loop, rotate the loop block so that the loop ends in a conditional branch.
  1435 bool Trace::backedge(CFGEdge *e) {
  1436   bool loop_rotated = false;
  1437   Block *src_block  = e->from();
  1438   Block *targ_block    = e->to();
  1440   assert(last_block() == src_block, "loop discovery at back branch");
  1441   if (first_block() == targ_block) {
  1442     if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
  1443       // Find the last block in the trace that has a conditional
  1444       // branch.
  1445       Block *b;
  1446       for (b = last_block(); b != NULL; b = prev(b)) {
  1447         if (b->num_fall_throughs() == 2) {
  1448           break;
  1452       if (b != last_block() && b != NULL) {
  1453         loop_rotated = true;
  1455         // Rotate the loop by doing two-part linked-list surgery.
  1456         append(first_block());
  1457         break_loop_after(b);
  1461     // Backbranch to the top of a trace
  1462     // Scroll forward through the trace from the targ_block. If we find
  1463     // a loop head before another loop top, use the the loop head alignment.
  1464     for (Block *b = targ_block; b != NULL; b = next(b)) {
  1465       if (b->has_loop_alignment()) {
  1466         break;
  1468       if (b->head()->is_Loop()) {
  1469         targ_block = b;
  1470         break;
  1474     first_block()->set_loop_alignment(targ_block);
  1476   } else {
  1477     // Backbranch into the middle of a trace
  1478     targ_block->set_loop_alignment(targ_block);
  1481   return loop_rotated;
  1484 //------------------------------fixup_blocks-----------------------------------
  1485 // push blocks onto the CFG list
  1486 // ensure that blocks have the correct two-way branch sense
  1487 void Trace::fixup_blocks(PhaseCFG &cfg) {
  1488   Block *last = last_block();
  1489   for (Block *b = first_block(); b != NULL; b = next(b)) {
  1490     cfg._blocks.push(b);
  1491     cfg._num_blocks++;
  1492     if (!b->is_connector()) {
  1493       int nfallthru = b->num_fall_throughs();
  1494       if (b != last) {
  1495         if (nfallthru == 2) {
  1496           // Ensure that the sense of the branch is correct
  1497           Block *bnext = next(b);
  1498           Block *bs0 = b->non_connector_successor(0);
  1500           MachNode *iff = b->_nodes[b->_nodes.size()-3]->as_Mach();
  1501           ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
  1502           ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
  1504           if (bnext == bs0) {
  1505             // Fall-thru case in succs[0], should be in succs[1]
  1507             // Flip targets in _succs map
  1508             Block *tbs0 = b->_succs[0];
  1509             Block *tbs1 = b->_succs[1];
  1510             b->_succs.map( 0, tbs1 );
  1511             b->_succs.map( 1, tbs0 );
  1513             // Flip projections to match targets
  1514             b->_nodes.map(b->_nodes.size()-2, proj1);
  1515             b->_nodes.map(b->_nodes.size()-1, proj0);

mercurial