src/share/vm/runtime/vframeArray.cpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/vmSymbols.hpp"
    27 #include "interpreter/bytecode.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "memory/universe.inline.hpp"
    32 #include "oops/methodData.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/jvmtiThreadState.hpp"
    35 #include "runtime/handles.inline.hpp"
    36 #include "runtime/monitorChunk.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/vframe.hpp"
    39 #include "runtime/vframeArray.hpp"
    40 #include "runtime/vframe_hp.hpp"
    41 #include "utilities/events.hpp"
    42 #ifdef COMPILER2
    43 #include "opto/runtime.hpp"
    44 #endif
    46 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    48 int vframeArrayElement:: bci(void) const { return (_bci == SynchronizationEntryBCI ? 0 : _bci); }
    50 void vframeArrayElement::free_monitors(JavaThread* jt) {
    51   if (_monitors != NULL) {
    52      MonitorChunk* chunk = _monitors;
    53      _monitors = NULL;
    54      jt->remove_monitor_chunk(chunk);
    55      delete chunk;
    56   }
    57 }
    59 void vframeArrayElement::fill_in(compiledVFrame* vf) {
    61 // Copy the information from the compiled vframe to the
    62 // interpreter frame we will be creating to replace vf
    64   _method = vf->method();
    65   _bci    = vf->raw_bci();
    66   _reexecute = vf->should_reexecute();
    68   int index;
    70   // Get the monitors off-stack
    72   GrowableArray<MonitorInfo*>* list = vf->monitors();
    73   if (list->is_empty()) {
    74     _monitors = NULL;
    75   } else {
    77     // Allocate monitor chunk
    78     _monitors = new MonitorChunk(list->length());
    79     vf->thread()->add_monitor_chunk(_monitors);
    81     // Migrate the BasicLocks from the stack to the monitor chunk
    82     for (index = 0; index < list->length(); index++) {
    83       MonitorInfo* monitor = list->at(index);
    84       assert(!monitor->owner_is_scalar_replaced(), "object should be reallocated already");
    85       assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
    86       BasicObjectLock* dest = _monitors->at(index);
    87       dest->set_obj(monitor->owner());
    88       monitor->lock()->move_to(monitor->owner(), dest->lock());
    89     }
    90   }
    92   // Convert the vframe locals and expressions to off stack
    93   // values. Because we will not gc all oops can be converted to
    94   // intptr_t (i.e. a stack slot) and we are fine. This is
    95   // good since we are inside a HandleMark and the oops in our
    96   // collection would go away between packing them here and
    97   // unpacking them in unpack_on_stack.
    99   // First the locals go off-stack
   101   // FIXME this seems silly it creates a StackValueCollection
   102   // in order to get the size to then copy them and
   103   // convert the types to intptr_t size slots. Seems like it
   104   // could do it in place... Still uses less memory than the
   105   // old way though
   107   StackValueCollection *locs = vf->locals();
   108   _locals = new StackValueCollection(locs->size());
   109   for(index = 0; index < locs->size(); index++) {
   110     StackValue* value = locs->at(index);
   111     switch(value->type()) {
   112       case T_OBJECT:
   113         assert(!value->obj_is_scalar_replaced(), "object should be reallocated already");
   114         // preserve object type
   115         _locals->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT ));
   116         break;
   117       case T_CONFLICT:
   118         // A dead local.  Will be initialized to null/zero.
   119         _locals->add( new StackValue());
   120         break;
   121       case T_INT:
   122         _locals->add( new StackValue(value->get_int()));
   123         break;
   124       default:
   125         ShouldNotReachHere();
   126     }
   127   }
   129   // Now the expressions off-stack
   130   // Same silliness as above
   132   StackValueCollection *exprs = vf->expressions();
   133   _expressions = new StackValueCollection(exprs->size());
   134   for(index = 0; index < exprs->size(); index++) {
   135     StackValue* value = exprs->at(index);
   136     switch(value->type()) {
   137       case T_OBJECT:
   138         assert(!value->obj_is_scalar_replaced(), "object should be reallocated already");
   139         // preserve object type
   140         _expressions->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT ));
   141         break;
   142       case T_CONFLICT:
   143         // A dead stack element.  Will be initialized to null/zero.
   144         // This can occur when the compiler emits a state in which stack
   145         // elements are known to be dead (because of an imminent exception).
   146         _expressions->add( new StackValue());
   147         break;
   148       case T_INT:
   149         _expressions->add( new StackValue(value->get_int()));
   150         break;
   151       default:
   152         ShouldNotReachHere();
   153     }
   154   }
   155 }
   157 int unpack_counter = 0;
   159 void vframeArrayElement::unpack_on_stack(int caller_actual_parameters,
   160                                          int callee_parameters,
   161                                          int callee_locals,
   162                                          frame* caller,
   163                                          bool is_top_frame,
   164                                          bool is_bottom_frame,
   165                                          int exec_mode) {
   166   JavaThread* thread = (JavaThread*) Thread::current();
   168   // Look at bci and decide on bcp and continuation pc
   169   address bcp;
   170   // C++ interpreter doesn't need a pc since it will figure out what to do when it
   171   // begins execution
   172   address pc;
   173   bool use_next_mdp = false; // true if we should use the mdp associated with the next bci
   174                              // rather than the one associated with bcp
   175   if (raw_bci() == SynchronizationEntryBCI) {
   176     // We are deoptimizing while hanging in prologue code for synchronized method
   177     bcp = method()->bcp_from(0); // first byte code
   178     pc  = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
   179   } else if (should_reexecute()) { //reexecute this bytecode
   180     assert(is_top_frame, "reexecute allowed only for the top frame");
   181     bcp = method()->bcp_from(bci());
   182     pc  = Interpreter::deopt_reexecute_entry(method(), bcp);
   183   } else {
   184     bcp = method()->bcp_from(bci());
   185     pc  = Interpreter::deopt_continue_after_entry(method(), bcp, callee_parameters, is_top_frame);
   186     use_next_mdp = true;
   187   }
   188   assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");
   190   // Monitorenter and pending exceptions:
   191   //
   192   // For Compiler2, there should be no pending exception when deoptimizing at monitorenter
   193   // because there is no safepoint at the null pointer check (it is either handled explicitly
   194   // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
   195   // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER).  If an asynchronous
   196   // exception was processed, the bytecode pointer would have to be extended one bytecode beyond
   197   // the monitorenter to place it in the proper exception range.
   198   //
   199   // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
   200   // in which case bcp should point to the monitorenter since it is within the exception's range.
   202   assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
   203   assert(thread->deopt_nmethod() != NULL, "nmethod should be known");
   204   guarantee(!(thread->deopt_nmethod()->is_compiled_by_c2() &&
   205               *bcp == Bytecodes::_monitorenter             &&
   206               exec_mode == Deoptimization::Unpack_exception),
   207             "shouldn't get exception during monitorenter");
   209   int popframe_preserved_args_size_in_bytes = 0;
   210   int popframe_preserved_args_size_in_words = 0;
   211   if (is_top_frame) {
   212     JvmtiThreadState *state = thread->jvmti_thread_state();
   213     if (JvmtiExport::can_pop_frame() &&
   214         (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) {
   215       if (thread->has_pending_popframe()) {
   216         // Pop top frame after deoptimization
   217 #ifndef CC_INTERP
   218         pc = Interpreter::remove_activation_preserving_args_entry();
   219 #else
   220         // Do an uncommon trap type entry. c++ interpreter will know
   221         // to pop frame and preserve the args
   222         pc = Interpreter::deopt_entry(vtos, 0);
   223         use_next_mdp = false;
   224 #endif
   225       } else {
   226         // Reexecute invoke in top frame
   227         pc = Interpreter::deopt_entry(vtos, 0);
   228         use_next_mdp = false;
   229         popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size());
   230         // Note: the PopFrame-related extension of the expression stack size is done in
   231         // Deoptimization::fetch_unroll_info_helper
   232         popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words());
   233       }
   234     } else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
   235       // Force early return from top frame after deoptimization
   236 #ifndef CC_INTERP
   237       pc = Interpreter::remove_activation_early_entry(state->earlyret_tos());
   238 #endif
   239     } else {
   240       // Possibly override the previous pc computation of the top (youngest) frame
   241       switch (exec_mode) {
   242       case Deoptimization::Unpack_deopt:
   243         // use what we've got
   244         break;
   245       case Deoptimization::Unpack_exception:
   246         // exception is pending
   247         pc = SharedRuntime::raw_exception_handler_for_return_address(thread, pc);
   248         // [phh] We're going to end up in some handler or other, so it doesn't
   249         // matter what mdp we point to.  See exception_handler_for_exception()
   250         // in interpreterRuntime.cpp.
   251         break;
   252       case Deoptimization::Unpack_uncommon_trap:
   253       case Deoptimization::Unpack_reexecute:
   254         // redo last byte code
   255         pc  = Interpreter::deopt_entry(vtos, 0);
   256         use_next_mdp = false;
   257         break;
   258       default:
   259         ShouldNotReachHere();
   260       }
   261     }
   262   }
   264   // Setup the interpreter frame
   266   assert(method() != NULL, "method must exist");
   267   int temps = expressions()->size();
   269   int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
   271   Interpreter::layout_activation(method(),
   272                                  temps + callee_parameters,
   273                                  popframe_preserved_args_size_in_words,
   274                                  locks,
   275                                  caller_actual_parameters,
   276                                  callee_parameters,
   277                                  callee_locals,
   278                                  caller,
   279                                  iframe(),
   280                                  is_top_frame,
   281                                  is_bottom_frame);
   283   // Update the pc in the frame object and overwrite the temporary pc
   284   // we placed in the skeletal frame now that we finally know the
   285   // exact interpreter address we should use.
   287   _frame.patch_pc(thread, pc);
   289   assert (!method()->is_synchronized() || locks > 0, "synchronized methods must have monitors");
   291   BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
   292   for (int index = 0; index < locks; index++) {
   293     top = iframe()->previous_monitor_in_interpreter_frame(top);
   294     BasicObjectLock* src = _monitors->at(index);
   295     top->set_obj(src->obj());
   296     src->lock()->move_to(src->obj(), top->lock());
   297   }
   298   if (ProfileInterpreter) {
   299     iframe()->interpreter_frame_set_mdx(0); // clear out the mdp.
   300   }
   301   iframe()->interpreter_frame_set_bcx((intptr_t)bcp); // cannot use bcp because frame is not initialized yet
   302   if (ProfileInterpreter) {
   303     MethodData* mdo = method()->method_data();
   304     if (mdo != NULL) {
   305       int bci = iframe()->interpreter_frame_bci();
   306       if (use_next_mdp) ++bci;
   307       address mdp = mdo->bci_to_dp(bci);
   308       iframe()->interpreter_frame_set_mdp(mdp);
   309     }
   310   }
   312   // Unpack expression stack
   313   // If this is an intermediate frame (i.e. not top frame) then this
   314   // only unpacks the part of the expression stack not used by callee
   315   // as parameters. The callee parameters are unpacked as part of the
   316   // callee locals.
   317   int i;
   318   for(i = 0; i < expressions()->size(); i++) {
   319     StackValue *value = expressions()->at(i);
   320     intptr_t*   addr  = iframe()->interpreter_frame_expression_stack_at(i);
   321     switch(value->type()) {
   322       case T_INT:
   323         *addr = value->get_int();
   324         break;
   325       case T_OBJECT:
   326         *addr = value->get_int(T_OBJECT);
   327         break;
   328       case T_CONFLICT:
   329         // A dead stack slot.  Initialize to null in case it is an oop.
   330         *addr = NULL_WORD;
   331         break;
   332       default:
   333         ShouldNotReachHere();
   334     }
   335   }
   338   // Unpack the locals
   339   for(i = 0; i < locals()->size(); i++) {
   340     StackValue *value = locals()->at(i);
   341     intptr_t* addr  = iframe()->interpreter_frame_local_at(i);
   342     switch(value->type()) {
   343       case T_INT:
   344         *addr = value->get_int();
   345         break;
   346       case T_OBJECT:
   347         *addr = value->get_int(T_OBJECT);
   348         break;
   349       case T_CONFLICT:
   350         // A dead location. If it is an oop then we need a NULL to prevent GC from following it
   351         *addr = NULL_WORD;
   352         break;
   353       default:
   354         ShouldNotReachHere();
   355     }
   356   }
   358   if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
   359     // An interpreted frame was popped but it returns to a deoptimized
   360     // frame. The incoming arguments to the interpreted activation
   361     // were preserved in thread-local storage by the
   362     // remove_activation_preserving_args_entry in the interpreter; now
   363     // we put them back into the just-unpacked interpreter frame.
   364     // Note that this assumes that the locals arena grows toward lower
   365     // addresses.
   366     if (popframe_preserved_args_size_in_words != 0) {
   367       void* saved_args = thread->popframe_preserved_args();
   368       assert(saved_args != NULL, "must have been saved by interpreter");
   369 #ifdef ASSERT
   370       assert(popframe_preserved_args_size_in_words <=
   371              iframe()->interpreter_frame_expression_stack_size()*Interpreter::stackElementWords,
   372              "expression stack size should have been extended");
   373 #endif // ASSERT
   374       int top_element = iframe()->interpreter_frame_expression_stack_size()-1;
   375       intptr_t* base;
   376       if (frame::interpreter_frame_expression_stack_direction() < 0) {
   377         base = iframe()->interpreter_frame_expression_stack_at(top_element);
   378       } else {
   379         base = iframe()->interpreter_frame_expression_stack();
   380       }
   381       Copy::conjoint_jbytes(saved_args,
   382                             base,
   383                             popframe_preserved_args_size_in_bytes);
   384       thread->popframe_free_preserved_args();
   385     }
   386   }
   388 #ifndef PRODUCT
   389   if (TraceDeoptimization && Verbose) {
   390     ttyLocker ttyl;
   391     tty->print_cr("[%d Interpreted Frame]", ++unpack_counter);
   392     iframe()->print_on(tty);
   393     RegisterMap map(thread);
   394     vframe* f = vframe::new_vframe(iframe(), &map, thread);
   395     f->print();
   397     tty->print_cr("locals size     %d", locals()->size());
   398     tty->print_cr("expression size %d", expressions()->size());
   400     method()->print_value();
   401     tty->cr();
   402     // method()->print_codes();
   403   } else if (TraceDeoptimization) {
   404     tty->print("     ");
   405     method()->print_value();
   406     Bytecodes::Code code = Bytecodes::java_code_at(method(), bcp);
   407     int bci = method()->bci_from(bcp);
   408     tty->print(" - %s", Bytecodes::name(code));
   409     tty->print(" @ bci %d ", bci);
   410     tty->print_cr("sp = " PTR_FORMAT, iframe()->sp());
   411   }
   412 #endif // PRODUCT
   414   // The expression stack and locals are in the resource area don't leave
   415   // a dangling pointer in the vframeArray we leave around for debug
   416   // purposes
   418   _locals = _expressions = NULL;
   420 }
   422 int vframeArrayElement::on_stack_size(int callee_parameters,
   423                                       int callee_locals,
   424                                       bool is_top_frame,
   425                                       int popframe_extra_stack_expression_els) const {
   426   assert(method()->max_locals() == locals()->size(), "just checking");
   427   int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
   428   int temps = expressions()->size();
   429   return Interpreter::size_activation(method()->max_stack(),
   430                                       temps + callee_parameters,
   431                                       popframe_extra_stack_expression_els,
   432                                       locks,
   433                                       callee_parameters,
   434                                       callee_locals,
   435                                       is_top_frame);
   436 }
   440 vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
   441                                    RegisterMap *reg_map, frame sender, frame caller, frame self) {
   443   // Allocate the vframeArray
   444   vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part
   445                                                      sizeof(vframeArrayElement) * (chunk->length() - 1), // variable part
   446                                                      mtCompiler);
   447   result->_frames = chunk->length();
   448   result->_owner_thread = thread;
   449   result->_sender = sender;
   450   result->_caller = caller;
   451   result->_original = self;
   452   result->set_unroll_block(NULL); // initialize it
   453   result->fill_in(thread, frame_size, chunk, reg_map);
   454   return result;
   455 }
   457 void vframeArray::fill_in(JavaThread* thread,
   458                           int frame_size,
   459                           GrowableArray<compiledVFrame*>* chunk,
   460                           const RegisterMap *reg_map) {
   461   // Set owner first, it is used when adding monitor chunks
   463   _frame_size = frame_size;
   464   for(int i = 0; i < chunk->length(); i++) {
   465     element(i)->fill_in(chunk->at(i));
   466   }
   468   // Copy registers for callee-saved registers
   469   if (reg_map != NULL) {
   470     for(int i = 0; i < RegisterMap::reg_count; i++) {
   471 #ifdef AMD64
   472       // The register map has one entry for every int (32-bit value), so
   473       // 64-bit physical registers have two entries in the map, one for
   474       // each half.  Ignore the high halves of 64-bit registers, just like
   475       // frame::oopmapreg_to_location does.
   476       //
   477       // [phh] FIXME: this is a temporary hack!  This code *should* work
   478       // correctly w/o this hack, possibly by changing RegisterMap::pd_location
   479       // in frame_amd64.cpp and the values of the phantom high half registers
   480       // in amd64.ad.
   481       //      if (VMReg::Name(i) < SharedInfo::stack0 && is_even(i)) {
   482         intptr_t* src = (intptr_t*) reg_map->location(VMRegImpl::as_VMReg(i));
   483         _callee_registers[i] = src != NULL ? *src : NULL_WORD;
   484         //      } else {
   485         //      jint* src = (jint*) reg_map->location(VMReg::Name(i));
   486         //      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
   487         //      }
   488 #else
   489       jint* src = (jint*) reg_map->location(VMRegImpl::as_VMReg(i));
   490       _callee_registers[i] = src != NULL ? *src : NULL_WORD;
   491 #endif
   492       if (src == NULL) {
   493         set_location_valid(i, false);
   494       } else {
   495         set_location_valid(i, true);
   496         jint* dst = (jint*) register_location(i);
   497         *dst = *src;
   498       }
   499     }
   500   }
   501 }
   503 void vframeArray::unpack_to_stack(frame &unpack_frame, int exec_mode, int caller_actual_parameters) {
   504   // stack picture
   505   //   unpack_frame
   506   //   [new interpreter frames ] (frames are skeletal but walkable)
   507   //   caller_frame
   508   //
   509   //  This routine fills in the missing data for the skeletal interpreter frames
   510   //  in the above picture.
   512   // Find the skeletal interpreter frames to unpack into
   513   JavaThread* THREAD = JavaThread::current();
   514   RegisterMap map(THREAD, false);
   515   // Get the youngest frame we will unpack (last to be unpacked)
   516   frame me = unpack_frame.sender(&map);
   517   int index;
   518   for (index = 0; index < frames(); index++ ) {
   519     *element(index)->iframe() = me;
   520     // Get the caller frame (possibly skeletal)
   521     me = me.sender(&map);
   522   }
   524   // Do the unpacking of interpreter frames; the frame at index 0 represents the top activation, so it has no callee
   525   // Unpack the frames from the oldest (frames() -1) to the youngest (0)
   526   frame* caller_frame = &me;
   527   for (index = frames() - 1; index >= 0 ; index--) {
   528     vframeArrayElement* elem = element(index);  // caller
   529     int callee_parameters, callee_locals;
   530     if (index == 0) {
   531       callee_parameters = callee_locals = 0;
   532     } else {
   533       methodHandle caller = elem->method();
   534       methodHandle callee = element(index - 1)->method();
   535       Bytecode_invoke inv(caller, elem->bci());
   536       // invokedynamic instructions don't have a class but obviously don't have a MemberName appendix.
   537       // NOTE:  Use machinery here that avoids resolving of any kind.
   538       const bool has_member_arg =
   539           !inv.is_invokedynamic() && MethodHandles::has_member_arg(inv.klass(), inv.name());
   540       callee_parameters = callee->size_of_parameters() + (has_member_arg ? 1 : 0);
   541       callee_locals     = callee->max_locals();
   542     }
   543     elem->unpack_on_stack(caller_actual_parameters,
   544                           callee_parameters,
   545                           callee_locals,
   546                           caller_frame,
   547                           index == 0,
   548                           index == frames() - 1,
   549                           exec_mode);
   550     if (index == frames() - 1) {
   551       Deoptimization::unwind_callee_save_values(elem->iframe(), this);
   552     }
   553     caller_frame = elem->iframe();
   554     caller_actual_parameters = callee_parameters;
   555   }
   556   deallocate_monitor_chunks();
   557 }
   559 void vframeArray::deallocate_monitor_chunks() {
   560   JavaThread* jt = JavaThread::current();
   561   for (int index = 0; index < frames(); index++ ) {
   562      element(index)->free_monitors(jt);
   563   }
   564 }
   566 #ifndef PRODUCT
   568 bool vframeArray::structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk) {
   569   if (owner_thread() != thread) return false;
   570   int index = 0;
   571 #if 0 // FIXME can't do this comparison
   573   // Compare only within vframe array.
   574   for (deoptimizedVFrame* vf = deoptimizedVFrame::cast(vframe_at(first_index())); vf; vf = vf->deoptimized_sender_or_null()) {
   575     if (index >= chunk->length() || !vf->structural_compare(chunk->at(index))) return false;
   576     index++;
   577   }
   578   if (index != chunk->length()) return false;
   579 #endif
   581   return true;
   582 }
   584 #endif
   586 address vframeArray::register_location(int i) const {
   587   assert(0 <= i && i < RegisterMap::reg_count, "index out of bounds");
   588   return (address) & _callee_registers[i];
   589 }
   592 #ifndef PRODUCT
   594 // Printing
   596 // Note: we cannot have print_on as const, as we allocate inside the method
   597 void vframeArray::print_on_2(outputStream* st)  {
   598   st->print_cr(" - sp: " INTPTR_FORMAT, sp());
   599   st->print(" - thread: ");
   600   Thread::current()->print();
   601   st->print_cr(" - frame size: %d", frame_size());
   602   for (int index = 0; index < frames() ; index++ ) {
   603     element(index)->print(st);
   604   }
   605 }
   607 void vframeArrayElement::print(outputStream* st) {
   608   st->print_cr(" - interpreter_frame -> sp: " INTPTR_FORMAT, iframe()->sp());
   609 }
   611 void vframeArray::print_value_on(outputStream* st) const {
   612   st->print_cr("vframeArray [%d] ", frames());
   613 }
   616 #endif

mercurial