src/share/vm/runtime/sharedRuntimeTrans.cpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

     1 /*
     2  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "prims/jni.h"
    27 #include "runtime/interfaceSupport.hpp"
    28 #include "runtime/sharedRuntime.hpp"
    30 // This file contains copies of the fdlibm routines used by
    31 // StrictMath. It turns out that it is almost always required to use
    32 // these runtime routines; the Intel CPU doesn't meet the Java
    33 // specification for sin/cos outside a certain limited argument range,
    34 // and the SPARC CPU doesn't appear to have sin/cos instructions. It
    35 // also turns out that avoiding the indirect call through function
    36 // pointer out to libjava.so in SharedRuntime speeds these routines up
    37 // by roughly 15% on both Win32/x86 and Solaris/SPARC.
    39 // Enabling optimizations in this file causes incorrect code to be
    40 // generated; can not figure out how to turn down optimization for one
    41 // file in the IDE on Windows
    42 #ifdef WIN32
    43 # pragma optimize ( "", off )
    44 #endif
    46 #include <math.h>
    48 // VM_LITTLE_ENDIAN is #defined appropriately in the Makefiles
    49 // [jk] this is not 100% correct because the float word order may different
    50 // from the byte order (e.g. on ARM)
    51 #ifdef VM_LITTLE_ENDIAN
    52 # define __HI(x) *(1+(int*)&x)
    53 # define __LO(x) *(int*)&x
    54 #else
    55 # define __HI(x) *(int*)&x
    56 # define __LO(x) *(1+(int*)&x)
    57 #endif
    59 #if !defined(AIX)
    60 double copysign(double x, double y) {
    61   __HI(x) = (__HI(x)&0x7fffffff)|(__HI(y)&0x80000000);
    62   return x;
    63 }
    64 #endif
    66 /*
    67  * ====================================================
    68  * Copyright (c) 1998 Oracle and/or its affiliates. All rights reserved.
    69  *
    70  * Developed at SunSoft, a Sun Microsystems, Inc. business.
    71  * Permission to use, copy, modify, and distribute this
    72  * software is freely granted, provided that this notice
    73  * is preserved.
    74  * ====================================================
    75  */
    77 /*
    78  * scalbn (double x, int n)
    79  * scalbn(x,n) returns x* 2**n  computed by  exponent
    80  * manipulation rather than by actually performing an
    81  * exponentiation or a multiplication.
    82  */
    84 static const double
    85 two54   =  1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
    86   twom54  =  5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
    87   hugeX   = 1.0e+300,
    88   tiny   = 1.0e-300;
    90 #if !defined(AIX)
    91 double scalbn (double x, int n) {
    92   int  k,hx,lx;
    93   hx = __HI(x);
    94   lx = __LO(x);
    95   k = (hx&0x7ff00000)>>20;              /* extract exponent */
    96   if (k==0) {                           /* 0 or subnormal x */
    97     if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
    98     x *= two54;
    99     hx = __HI(x);
   100     k = ((hx&0x7ff00000)>>20) - 54;
   101     if (n< -50000) return tiny*x;       /*underflow*/
   102   }
   103   if (k==0x7ff) return x+x;             /* NaN or Inf */
   104   k = k+n;
   105   if (k >  0x7fe) return hugeX*copysign(hugeX,x); /* overflow  */
   106   if (k > 0)                            /* normal result */
   107     {__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
   108   if (k <= -54) {
   109     if (n > 50000)      /* in case integer overflow in n+k */
   110       return hugeX*copysign(hugeX,x);   /*overflow*/
   111     else return tiny*copysign(tiny,x);  /*underflow*/
   112   }
   113   k += 54;                              /* subnormal result */
   114   __HI(x) = (hx&0x800fffff)|(k<<20);
   115   return x*twom54;
   116 }
   117 #endif
   119 /* __ieee754_log(x)
   120  * Return the logrithm of x
   121  *
   122  * Method :
   123  *   1. Argument Reduction: find k and f such that
   124  *                    x = 2^k * (1+f),
   125  *       where  sqrt(2)/2 < 1+f < sqrt(2) .
   126  *
   127  *   2. Approximation of log(1+f).
   128  *    Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
   129  *             = 2s + 2/3 s**3 + 2/5 s**5 + .....,
   130  *             = 2s + s*R
   131  *      We use a special Reme algorithm on [0,0.1716] to generate
   132  *    a polynomial of degree 14 to approximate R The maximum error
   133  *    of this polynomial approximation is bounded by 2**-58.45. In
   134  *    other words,
   135  *                    2      4      6      8      10      12      14
   136  *        R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
   137  *    (the values of Lg1 to Lg7 are listed in the program)
   138  *    and
   139  *        |      2          14          |     -58.45
   140  *        | Lg1*s +...+Lg7*s    -  R(z) | <= 2
   141  *        |                             |
   142  *    Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
   143  *    In order to guarantee error in log below 1ulp, we compute log
   144  *    by
   145  *            log(1+f) = f - s*(f - R)        (if f is not too large)
   146  *            log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
   147  *
   148  *    3. Finally,  log(x) = k*ln2 + log(1+f).
   149  *                        = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
   150  *       Here ln2 is split into two floating point number:
   151  *                    ln2_hi + ln2_lo,
   152  *       where n*ln2_hi is always exact for |n| < 2000.
   153  *
   154  * Special cases:
   155  *    log(x) is NaN with signal if x < 0 (including -INF) ;
   156  *    log(+INF) is +INF; log(0) is -INF with signal;
   157  *    log(NaN) is that NaN with no signal.
   158  *
   159  * Accuracy:
   160  *    according to an error analysis, the error is always less than
   161  *    1 ulp (unit in the last place).
   162  *
   163  * Constants:
   164  * The hexadecimal values are the intended ones for the following
   165  * constants. The decimal values may be used, provided that the
   166  * compiler will convert from decimal to binary accurately enough
   167  * to produce the hexadecimal values shown.
   168  */
   170 static const double
   171 ln2_hi  =  6.93147180369123816490e-01,        /* 3fe62e42 fee00000 */
   172   ln2_lo  =  1.90821492927058770002e-10,        /* 3dea39ef 35793c76 */
   173   Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
   174   Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
   175   Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
   176   Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
   177   Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
   178   Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
   179   Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
   181 static double zero = 0.0;
   183 static double __ieee754_log(double x) {
   184   double hfsq,f,s,z,R,w,t1,t2,dk;
   185   int k,hx,i,j;
   186   unsigned lx;
   188   hx = __HI(x);               /* high word of x */
   189   lx = __LO(x);               /* low  word of x */
   191   k=0;
   192   if (hx < 0x00100000) {                   /* x < 2**-1022  */
   193     if (((hx&0x7fffffff)|lx)==0)
   194       return -two54/zero;             /* log(+-0)=-inf */
   195     if (hx<0) return (x-x)/zero;   /* log(-#) = NaN */
   196     k -= 54; x *= two54; /* subnormal number, scale up x */
   197     hx = __HI(x);             /* high word of x */
   198   }
   199   if (hx >= 0x7ff00000) return x+x;
   200   k += (hx>>20)-1023;
   201   hx &= 0x000fffff;
   202   i = (hx+0x95f64)&0x100000;
   203   __HI(x) = hx|(i^0x3ff00000);        /* normalize x or x/2 */
   204   k += (i>>20);
   205   f = x-1.0;
   206   if((0x000fffff&(2+hx))<3) {  /* |f| < 2**-20 */
   207     if(f==zero) {
   208       if (k==0) return zero;
   209       else {dk=(double)k; return dk*ln2_hi+dk*ln2_lo;}
   210     }
   211     R = f*f*(0.5-0.33333333333333333*f);
   212     if(k==0) return f-R; else {dk=(double)k;
   213     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
   214   }
   215   s = f/(2.0+f);
   216   dk = (double)k;
   217   z = s*s;
   218   i = hx-0x6147a;
   219   w = z*z;
   220   j = 0x6b851-hx;
   221   t1= w*(Lg2+w*(Lg4+w*Lg6));
   222   t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
   223   i |= j;
   224   R = t2+t1;
   225   if(i>0) {
   226     hfsq=0.5*f*f;
   227     if(k==0) return f-(hfsq-s*(hfsq+R)); else
   228       return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
   229   } else {
   230     if(k==0) return f-s*(f-R); else
   231       return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
   232   }
   233 }
   235 JRT_LEAF(jdouble, SharedRuntime::dlog(jdouble x))
   236   return __ieee754_log(x);
   237 JRT_END
   239 /* __ieee754_log10(x)
   240  * Return the base 10 logarithm of x
   241  *
   242  * Method :
   243  *    Let log10_2hi = leading 40 bits of log10(2) and
   244  *        log10_2lo = log10(2) - log10_2hi,
   245  *        ivln10   = 1/log(10) rounded.
   246  *    Then
   247  *            n = ilogb(x),
   248  *            if(n<0)  n = n+1;
   249  *            x = scalbn(x,-n);
   250  *            log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
   251  *
   252  * Note 1:
   253  *    To guarantee log10(10**n)=n, where 10**n is normal, the rounding
   254  *    mode must set to Round-to-Nearest.
   255  * Note 2:
   256  *    [1/log(10)] rounded to 53 bits has error  .198   ulps;
   257  *    log10 is monotonic at all binary break points.
   258  *
   259  * Special cases:
   260  *    log10(x) is NaN with signal if x < 0;
   261  *    log10(+INF) is +INF with no signal; log10(0) is -INF with signal;
   262  *    log10(NaN) is that NaN with no signal;
   263  *    log10(10**N) = N  for N=0,1,...,22.
   264  *
   265  * Constants:
   266  * The hexadecimal values are the intended ones for the following constants.
   267  * The decimal values may be used, provided that the compiler will convert
   268  * from decimal to binary accurately enough to produce the hexadecimal values
   269  * shown.
   270  */
   272 static const double
   273 ivln10     =  4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */
   274   log10_2hi  =  3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
   275   log10_2lo  =  3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
   277 static double __ieee754_log10(double x) {
   278   double y,z;
   279   int i,k,hx;
   280   unsigned lx;
   282   hx = __HI(x);       /* high word of x */
   283   lx = __LO(x);       /* low word of x */
   285   k=0;
   286   if (hx < 0x00100000) {                  /* x < 2**-1022  */
   287     if (((hx&0x7fffffff)|lx)==0)
   288       return -two54/zero;             /* log(+-0)=-inf */
   289     if (hx<0) return (x-x)/zero;        /* log(-#) = NaN */
   290     k -= 54; x *= two54; /* subnormal number, scale up x */
   291     hx = __HI(x);                /* high word of x */
   292   }
   293   if (hx >= 0x7ff00000) return x+x;
   294   k += (hx>>20)-1023;
   295   i  = ((unsigned)k&0x80000000)>>31;
   296   hx = (hx&0x000fffff)|((0x3ff-i)<<20);
   297   y  = (double)(k+i);
   298   __HI(x) = hx;
   299   z  = y*log10_2lo + ivln10*__ieee754_log(x);
   300   return  z+y*log10_2hi;
   301 }
   303 JRT_LEAF(jdouble, SharedRuntime::dlog10(jdouble x))
   304   return __ieee754_log10(x);
   305 JRT_END
   308 /* __ieee754_exp(x)
   309  * Returns the exponential of x.
   310  *
   311  * Method
   312  *   1. Argument reduction:
   313  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
   314  *      Given x, find r and integer k such that
   315  *
   316  *               x = k*ln2 + r,  |r| <= 0.5*ln2.
   317  *
   318  *      Here r will be represented as r = hi-lo for better
   319  *      accuracy.
   320  *
   321  *   2. Approximation of exp(r) by a special rational function on
   322  *      the interval [0,0.34658]:
   323  *      Write
   324  *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
   325  *      We use a special Reme algorithm on [0,0.34658] to generate
   326  *      a polynomial of degree 5 to approximate R. The maximum error
   327  *      of this polynomial approximation is bounded by 2**-59. In
   328  *      other words,
   329  *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
   330  *      (where z=r*r, and the values of P1 to P5 are listed below)
   331  *      and
   332  *          |                  5          |     -59
   333  *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
   334  *          |                             |
   335  *      The computation of exp(r) thus becomes
   336  *                             2*r
   337  *              exp(r) = 1 + -------
   338  *                            R - r
   339  *                                 r*R1(r)
   340  *                     = 1 + r + ----------- (for better accuracy)
   341  *                                2 - R1(r)
   342  *      where
   343  *                               2       4             10
   344  *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
   345  *
   346  *   3. Scale back to obtain exp(x):
   347  *      From step 1, we have
   348  *         exp(x) = 2^k * exp(r)
   349  *
   350  * Special cases:
   351  *      exp(INF) is INF, exp(NaN) is NaN;
   352  *      exp(-INF) is 0, and
   353  *      for finite argument, only exp(0)=1 is exact.
   354  *
   355  * Accuracy:
   356  *      according to an error analysis, the error is always less than
   357  *      1 ulp (unit in the last place).
   358  *
   359  * Misc. info.
   360  *      For IEEE double
   361  *          if x >  7.09782712893383973096e+02 then exp(x) overflow
   362  *          if x < -7.45133219101941108420e+02 then exp(x) underflow
   363  *
   364  * Constants:
   365  * The hexadecimal values are the intended ones for the following
   366  * constants. The decimal values may be used, provided that the
   367  * compiler will convert from decimal to binary accurately enough
   368  * to produce the hexadecimal values shown.
   369  */
   371 static const double
   372 one     = 1.0,
   373   halF[2]       = {0.5,-0.5,},
   374   twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
   375     o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
   376     u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
   377     ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
   378                   -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
   379     ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
   380                   -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
   381       invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
   382         P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
   383         P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
   384         P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
   385         P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
   386         P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
   388 static double __ieee754_exp(double x) {
   389   double y,hi=0,lo=0,c,t;
   390   int k=0,xsb;
   391   unsigned hx;
   393   hx  = __HI(x);        /* high word of x */
   394   xsb = (hx>>31)&1;             /* sign bit of x */
   395   hx &= 0x7fffffff;             /* high word of |x| */
   397   /* filter out non-finite argument */
   398   if(hx >= 0x40862E42) {                        /* if |x|>=709.78... */
   399     if(hx>=0x7ff00000) {
   400       if(((hx&0xfffff)|__LO(x))!=0)
   401         return x+x;             /* NaN */
   402       else return (xsb==0)? x:0.0;      /* exp(+-inf)={inf,0} */
   403     }
   404     if(x > o_threshold) return hugeX*hugeX; /* overflow */
   405     if(x < u_threshold) return twom1000*twom1000; /* underflow */
   406   }
   408   /* argument reduction */
   409   if(hx > 0x3fd62e42) {         /* if  |x| > 0.5 ln2 */
   410     if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
   411       hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
   412     } else {
   413       k  = (int)(invln2*x+halF[xsb]);
   414       t  = k;
   415       hi = x - t*ln2HI[0];      /* t*ln2HI is exact here */
   416       lo = t*ln2LO[0];
   417     }
   418     x  = hi - lo;
   419   }
   420   else if(hx < 0x3e300000)  {   /* when |x|<2**-28 */
   421     if(hugeX+x>one) return one+x;/* trigger inexact */
   422   }
   423   else k = 0;
   425   /* x is now in primary range */
   426   t  = x*x;
   427   c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
   428   if(k==0)      return one-((x*c)/(c-2.0)-x);
   429   else          y = one-((lo-(x*c)/(2.0-c))-hi);
   430   if(k >= -1021) {
   431     __HI(y) += (k<<20); /* add k to y's exponent */
   432     return y;
   433   } else {
   434     __HI(y) += ((k+1000)<<20);/* add k to y's exponent */
   435     return y*twom1000;
   436   }
   437 }
   439 JRT_LEAF(jdouble, SharedRuntime::dexp(jdouble x))
   440   return __ieee754_exp(x);
   441 JRT_END
   443 /* __ieee754_pow(x,y) return x**y
   444  *
   445  *                    n
   446  * Method:  Let x =  2   * (1+f)
   447  *      1. Compute and return log2(x) in two pieces:
   448  *              log2(x) = w1 + w2,
   449  *         where w1 has 53-24 = 29 bit trailing zeros.
   450  *      2. Perform y*log2(x) = n+y' by simulating muti-precision
   451  *         arithmetic, where |y'|<=0.5.
   452  *      3. Return x**y = 2**n*exp(y'*log2)
   453  *
   454  * Special cases:
   455  *      1.  (anything) ** 0  is 1
   456  *      2.  (anything) ** 1  is itself
   457  *      3.  (anything) ** NAN is NAN
   458  *      4.  NAN ** (anything except 0) is NAN
   459  *      5.  +-(|x| > 1) **  +INF is +INF
   460  *      6.  +-(|x| > 1) **  -INF is +0
   461  *      7.  +-(|x| < 1) **  +INF is +0
   462  *      8.  +-(|x| < 1) **  -INF is +INF
   463  *      9.  +-1         ** +-INF is NAN
   464  *      10. +0 ** (+anything except 0, NAN)               is +0
   465  *      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
   466  *      12. +0 ** (-anything except 0, NAN)               is +INF
   467  *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
   468  *      14. -0 ** (odd integer) = -( +0 ** (odd integer) )
   469  *      15. +INF ** (+anything except 0,NAN) is +INF
   470  *      16. +INF ** (-anything except 0,NAN) is +0
   471  *      17. -INF ** (anything)  = -0 ** (-anything)
   472  *      18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
   473  *      19. (-anything except 0 and inf) ** (non-integer) is NAN
   474  *
   475  * Accuracy:
   476  *      pow(x,y) returns x**y nearly rounded. In particular
   477  *                      pow(integer,integer)
   478  *      always returns the correct integer provided it is
   479  *      representable.
   480  *
   481  * Constants :
   482  * The hexadecimal values are the intended ones for the following
   483  * constants. The decimal values may be used, provided that the
   484  * compiler will convert from decimal to binary accurately enough
   485  * to produce the hexadecimal values shown.
   486  */
   488 static const double
   489 bp[] = {1.0, 1.5,},
   490   dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
   491     dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
   492       zeroX    =  0.0,
   493         two     =  2.0,
   494         two53   =  9007199254740992.0,  /* 0x43400000, 0x00000000 */
   495         /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
   496         L1X  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
   497         L2X  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
   498         L3X  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
   499         L4X  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
   500         L5X  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
   501         L6X  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
   502         lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
   503         lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
   504         lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
   505         ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
   506         cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
   507         cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
   508         cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
   509         ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
   510         ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
   511         ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
   513 double __ieee754_pow(double x, double y) {
   514   double z,ax,z_h,z_l,p_h,p_l;
   515   double y1,t1,t2,r,s,t,u,v,w;
   516   int i0,i1,i,j,k,yisint,n;
   517   int hx,hy,ix,iy;
   518   unsigned lx,ly;
   520   i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
   521   hx = __HI(x); lx = __LO(x);
   522   hy = __HI(y); ly = __LO(y);
   523   ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
   525   /* y==zero: x**0 = 1 */
   526   if((iy|ly)==0) return one;
   528   /* +-NaN return x+y */
   529   if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
   530      iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
   531     return x+y;
   533   /* determine if y is an odd int when x < 0
   534    * yisint = 0 ... y is not an integer
   535    * yisint = 1 ... y is an odd int
   536    * yisint = 2 ... y is an even int
   537    */
   538   yisint  = 0;
   539   if(hx<0) {
   540     if(iy>=0x43400000) yisint = 2; /* even integer y */
   541     else if(iy>=0x3ff00000) {
   542       k = (iy>>20)-0x3ff;          /* exponent */
   543       if(k>20) {
   544         j = ly>>(52-k);
   545         if((unsigned)(j<<(52-k))==ly) yisint = 2-(j&1);
   546       } else if(ly==0) {
   547         j = iy>>(20-k);
   548         if((j<<(20-k))==iy) yisint = 2-(j&1);
   549       }
   550     }
   551   }
   553   /* special value of y */
   554   if(ly==0) {
   555     if (iy==0x7ff00000) {       /* y is +-inf */
   556       if(((ix-0x3ff00000)|lx)==0)
   557         return  y - y;  /* inf**+-1 is NaN */
   558       else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
   559         return (hy>=0)? y: zeroX;
   560       else                      /* (|x|<1)**-,+inf = inf,0 */
   561         return (hy<0)?-y: zeroX;
   562     }
   563     if(iy==0x3ff00000) {        /* y is  +-1 */
   564       if(hy<0) return one/x; else return x;
   565     }
   566     if(hy==0x40000000) return x*x; /* y is  2 */
   567     if(hy==0x3fe00000) {        /* y is  0.5 */
   568       if(hx>=0) /* x >= +0 */
   569         return sqrt(x);
   570     }
   571   }
   573   ax   = fabsd(x);
   574   /* special value of x */
   575   if(lx==0) {
   576     if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
   577       z = ax;                   /*x is +-0,+-inf,+-1*/
   578       if(hy<0) z = one/z;       /* z = (1/|x|) */
   579       if(hx<0) {
   580         if(((ix-0x3ff00000)|yisint)==0) {
   581 #ifdef CAN_USE_NAN_DEFINE
   582           z = NAN;
   583 #else
   584           z = (z-z)/(z-z); /* (-1)**non-int is NaN */
   585 #endif
   586         } else if(yisint==1)
   587           z = -1.0*z;           /* (x<0)**odd = -(|x|**odd) */
   588       }
   589       return z;
   590     }
   591   }
   593   n = (hx>>31)+1;
   595   /* (x<0)**(non-int) is NaN */
   596   if((n|yisint)==0)
   597 #ifdef CAN_USE_NAN_DEFINE
   598     return NAN;
   599 #else
   600     return (x-x)/(x-x);
   601 #endif
   603   s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
   604   if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
   606   /* |y| is huge */
   607   if(iy>0x41e00000) { /* if |y| > 2**31 */
   608     if(iy>0x43f00000){  /* if |y| > 2**64, must o/uflow */
   609       if(ix<=0x3fefffff) return (hy<0)? hugeX*hugeX:tiny*tiny;
   610       if(ix>=0x3ff00000) return (hy>0)? hugeX*hugeX:tiny*tiny;
   611     }
   612     /* over/underflow if x is not close to one */
   613     if(ix<0x3fefffff) return (hy<0)? s*hugeX*hugeX:s*tiny*tiny;
   614     if(ix>0x3ff00000) return (hy>0)? s*hugeX*hugeX:s*tiny*tiny;
   615     /* now |1-x| is tiny <= 2**-20, suffice to compute
   616        log(x) by x-x^2/2+x^3/3-x^4/4 */
   617     t = ax-one;         /* t has 20 trailing zeros */
   618     w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
   619     u = ivln2_h*t;      /* ivln2_h has 21 sig. bits */
   620     v = t*ivln2_l-w*ivln2;
   621     t1 = u+v;
   622     __LO(t1) = 0;
   623     t2 = v-(t1-u);
   624   } else {
   625     double ss,s2,s_h,s_l,t_h,t_l;
   626     n = 0;
   627     /* take care subnormal number */
   628     if(ix<0x00100000)
   629       {ax *= two53; n -= 53; ix = __HI(ax); }
   630     n  += ((ix)>>20)-0x3ff;
   631     j  = ix&0x000fffff;
   632     /* determine interval */
   633     ix = j|0x3ff00000;          /* normalize ix */
   634     if(j<=0x3988E) k=0;         /* |x|<sqrt(3/2) */
   635     else if(j<0xBB67A) k=1;     /* |x|<sqrt(3)   */
   636     else {k=0;n+=1;ix -= 0x00100000;}
   637     __HI(ax) = ix;
   639     /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
   640     u = ax-bp[k];               /* bp[0]=1.0, bp[1]=1.5 */
   641     v = one/(ax+bp[k]);
   642     ss = u*v;
   643     s_h = ss;
   644     __LO(s_h) = 0;
   645     /* t_h=ax+bp[k] High */
   646     t_h = zeroX;
   647     __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
   648     t_l = ax - (t_h-bp[k]);
   649     s_l = v*((u-s_h*t_h)-s_h*t_l);
   650     /* compute log(ax) */
   651     s2 = ss*ss;
   652     r = s2*s2*(L1X+s2*(L2X+s2*(L3X+s2*(L4X+s2*(L5X+s2*L6X)))));
   653     r += s_l*(s_h+ss);
   654     s2  = s_h*s_h;
   655     t_h = 3.0+s2+r;
   656     __LO(t_h) = 0;
   657     t_l = r-((t_h-3.0)-s2);
   658     /* u+v = ss*(1+...) */
   659     u = s_h*t_h;
   660     v = s_l*t_h+t_l*ss;
   661     /* 2/(3log2)*(ss+...) */
   662     p_h = u+v;
   663     __LO(p_h) = 0;
   664     p_l = v-(p_h-u);
   665     z_h = cp_h*p_h;             /* cp_h+cp_l = 2/(3*log2) */
   666     z_l = cp_l*p_h+p_l*cp+dp_l[k];
   667     /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
   668     t = (double)n;
   669     t1 = (((z_h+z_l)+dp_h[k])+t);
   670     __LO(t1) = 0;
   671     t2 = z_l-(((t1-t)-dp_h[k])-z_h);
   672   }
   674   /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
   675   y1  = y;
   676   __LO(y1) = 0;
   677   p_l = (y-y1)*t1+y*t2;
   678   p_h = y1*t1;
   679   z = p_l+p_h;
   680   j = __HI(z);
   681   i = __LO(z);
   682   if (j>=0x40900000) {                          /* z >= 1024 */
   683     if(((j-0x40900000)|i)!=0)                   /* if z > 1024 */
   684       return s*hugeX*hugeX;                     /* overflow */
   685     else {
   686       if(p_l+ovt>z-p_h) return s*hugeX*hugeX;   /* overflow */
   687     }
   688   } else if((j&0x7fffffff)>=0x4090cc00 ) {      /* z <= -1075 */
   689     if(((j-0xc090cc00)|i)!=0)           /* z < -1075 */
   690       return s*tiny*tiny;               /* underflow */
   691     else {
   692       if(p_l<=z-p_h) return s*tiny*tiny;        /* underflow */
   693     }
   694   }
   695   /*
   696    * compute 2**(p_h+p_l)
   697    */
   698   i = j&0x7fffffff;
   699   k = (i>>20)-0x3ff;
   700   n = 0;
   701   if(i>0x3fe00000) {            /* if |z| > 0.5, set n = [z+0.5] */
   702     n = j+(0x00100000>>(k+1));
   703     k = ((n&0x7fffffff)>>20)-0x3ff;     /* new k for n */
   704     t = zeroX;
   705     __HI(t) = (n&~(0x000fffff>>k));
   706     n = ((n&0x000fffff)|0x00100000)>>(20-k);
   707     if(j<0) n = -n;
   708     p_h -= t;
   709   }
   710   t = p_l+p_h;
   711   __LO(t) = 0;
   712   u = t*lg2_h;
   713   v = (p_l-(t-p_h))*lg2+t*lg2_l;
   714   z = u+v;
   715   w = v-(z-u);
   716   t  = z*z;
   717   t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
   718   r  = (z*t1)/(t1-two)-(w+z*w);
   719   z  = one-(r-z);
   720   j  = __HI(z);
   721   j += (n<<20);
   722   if((j>>20)<=0) z = scalbn(z,n);       /* subnormal output */
   723   else __HI(z) += (n<<20);
   724   return s*z;
   725 }
   728 JRT_LEAF(jdouble, SharedRuntime::dpow(jdouble x, jdouble y))
   729   return __ieee754_pow(x, y);
   730 JRT_END
   732 #ifdef WIN32
   733 # pragma optimize ( "", on )
   734 #endif

mercurial