src/share/vm/runtime/orderAccess.hpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

     1 /*
     2  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_RUNTIME_ORDERACCESS_HPP
    26 #define SHARE_VM_RUNTIME_ORDERACCESS_HPP
    28 #include "memory/allocation.hpp"
    30 //                Memory Access Ordering Model
    31 //
    32 // This interface is based on the JSR-133 Cookbook for Compiler Writers
    33 // and on the IA64 memory model.  It is the dynamic equivalent of the
    34 // C/C++ volatile specifier.  I.e., volatility restricts compile-time
    35 // memory access reordering in a way similar to what we want to occur
    36 // at runtime.
    37 //
    38 // In the following, the terms 'previous', 'subsequent', 'before',
    39 // 'after', 'preceding' and 'succeeding' refer to program order.  The
    40 // terms 'down' and 'below' refer to forward load or store motion
    41 // relative to program order, while 'up' and 'above' refer to backward
    42 // motion.
    43 //
    44 //
    45 // We define four primitive memory barrier operations.
    46 //
    47 // LoadLoad:   Load1(s); LoadLoad; Load2
    48 //
    49 // Ensures that Load1 completes (obtains the value it loads from memory)
    50 // before Load2 and any subsequent load operations.  Loads before Load1
    51 // may *not* float below Load2 and any subsequent load operations.
    52 //
    53 // StoreStore: Store1(s); StoreStore; Store2
    54 //
    55 // Ensures that Store1 completes (the effect on memory of Store1 is made
    56 // visible to other processors) before Store2 and any subsequent store
    57 // operations.  Stores before Store1 may *not* float below Store2 and any
    58 // subsequent store operations.
    59 //
    60 // LoadStore:  Load1(s); LoadStore; Store2
    61 //
    62 // Ensures that Load1 completes before Store2 and any subsequent store
    63 // operations.  Loads before Load1 may *not* float below Store2 and any
    64 // subseqeuent store operations.
    65 //
    66 // StoreLoad:  Store1(s); StoreLoad; Load2
    67 //
    68 // Ensures that Store1 completes before Load2 and any subsequent load
    69 // operations.  Stores before Store1 may *not* float below Load2 and any
    70 // subseqeuent load operations.
    71 //
    72 //
    73 // We define two further operations, 'release' and 'acquire'.  They are
    74 // mirror images of each other.
    75 //
    76 // Execution by a processor of release makes the effect of all memory
    77 // accesses issued by it previous to the release visible to all
    78 // processors *before* the release completes.  The effect of subsequent
    79 // memory accesses issued by it *may* be made visible *before* the
    80 // release.  I.e., subsequent memory accesses may float above the
    81 // release, but prior ones may not float below it.
    82 //
    83 // Execution by a processor of acquire makes the effect of all memory
    84 // accesses issued by it subsequent to the acquire visible to all
    85 // processors *after* the acquire completes.  The effect of prior memory
    86 // accesses issued by it *may* be made visible *after* the acquire.
    87 // I.e., prior memory accesses may float below the acquire, but
    88 // subsequent ones may not float above it.
    89 //
    90 // Finally, we define a 'fence' operation, which conceptually is a
    91 // release combined with an acquire.  In the real world these operations
    92 // require one or more machine instructions which can float above and
    93 // below the release or acquire, so we usually can't just issue the
    94 // release-acquire back-to-back.  All machines we know of implement some
    95 // sort of memory fence instruction.
    96 //
    97 //
    98 // The standalone implementations of release and acquire need an associated
    99 // dummy volatile store or load respectively.  To avoid redundant operations,
   100 // we can define the composite operators: 'release_store', 'store_fence' and
   101 // 'load_acquire'.  Here's a summary of the machine instructions corresponding
   102 // to each operation.
   103 //
   104 //               sparc RMO             ia64             x86
   105 // ---------------------------------------------------------------------
   106 // fence         membar #LoadStore |   mf               lock addl 0,(sp)
   107 //                      #StoreStore |
   108 //                      #LoadLoad |
   109 //                      #StoreLoad
   110 //
   111 // release       membar #LoadStore |   st.rel [sp]=r0   movl $0,<dummy>
   112 //                      #StoreStore
   113 //               st %g0,[]
   114 //
   115 // acquire       ld [%sp],%g0          ld.acq <r>=[sp]  movl (sp),<r>
   116 //               membar #LoadLoad |
   117 //                      #LoadStore
   118 //
   119 // release_store membar #LoadStore |   st.rel           <store>
   120 //                      #StoreStore
   121 //               st
   122 //
   123 // store_fence   st                    st               lock xchg
   124 //               fence                 mf
   125 //
   126 // load_acquire  ld                    ld.acq           <load>
   127 //               membar #LoadLoad |
   128 //                      #LoadStore
   129 //
   130 // Using only release_store and load_acquire, we can implement the
   131 // following ordered sequences.
   132 //
   133 // 1. load, load   == load_acquire,  load
   134 //                 or load_acquire,  load_acquire
   135 // 2. load, store  == load,          release_store
   136 //                 or load_acquire,  store
   137 //                 or load_acquire,  release_store
   138 // 3. store, store == store,         release_store
   139 //                 or release_store, release_store
   140 //
   141 // These require no membar instructions for sparc-TSO and no extra
   142 // instructions for ia64.
   143 //
   144 // Ordering a load relative to preceding stores requires a store_fence,
   145 // which implies a membar #StoreLoad between the store and load under
   146 // sparc-TSO.  A fence is required by ia64.  On x86, we use locked xchg.
   147 //
   148 // 4. store, load  == store_fence, load
   149 //
   150 // Use store_fence to make sure all stores done in an 'interesting'
   151 // region are made visible prior to both subsequent loads and stores.
   152 //
   153 // Conventional usage is to issue a load_acquire for ordered loads.  Use
   154 // release_store for ordered stores when you care only that prior stores
   155 // are visible before the release_store, but don't care exactly when the
   156 // store associated with the release_store becomes visible.  Use
   157 // release_store_fence to update values like the thread state, where we
   158 // don't want the current thread to continue until all our prior memory
   159 // accesses (including the new thread state) are visible to other threads.
   160 //
   161 //
   162 //                C++ Volatility
   163 //
   164 // C++ guarantees ordering at operations termed 'sequence points' (defined
   165 // to be volatile accesses and calls to library I/O functions).  'Side
   166 // effects' (defined as volatile accesses, calls to library I/O functions
   167 // and object modification) previous to a sequence point must be visible
   168 // at that sequence point.  See the C++ standard, section 1.9, titled
   169 // "Program Execution".  This means that all barrier implementations,
   170 // including standalone loadload, storestore, loadstore, storeload, acquire
   171 // and release must include a sequence point, usually via a volatile memory
   172 // access.  Other ways to guarantee a sequence point are, e.g., use of
   173 // indirect calls and linux's __asm__ volatile.
   174 // Note: as of 6973570, we have replaced the originally static "dummy" field
   175 // (see above) by a volatile store to the stack. All of the versions of the
   176 // compilers that we currently use (SunStudio, gcc and VC++) respect the
   177 // semantics of volatile here. If you build HotSpot using other
   178 // compilers, you may need to verify that no compiler reordering occurs
   179 // across the sequence point respresented by the volatile access.
   180 //
   181 //
   182 //                os::is_MP Considered Redundant
   183 //
   184 // Callers of this interface do not need to test os::is_MP() before
   185 // issuing an operation. The test is taken care of by the implementation
   186 // of the interface (depending on the vm version and platform, the test
   187 // may or may not be actually done by the implementation).
   188 //
   189 //
   190 //                A Note on Memory Ordering and Cache Coherency
   191 //
   192 // Cache coherency and memory ordering are orthogonal concepts, though they
   193 // interact.  E.g., all existing itanium machines are cache-coherent, but
   194 // the hardware can freely reorder loads wrt other loads unless it sees a
   195 // load-acquire instruction.  All existing sparc machines are cache-coherent
   196 // and, unlike itanium, TSO guarantees that the hardware orders loads wrt
   197 // loads and stores, and stores wrt to each other.
   198 //
   199 // Consider the implementation of loadload.  *If* your platform *isn't*
   200 // cache-coherent, then loadload must not only prevent hardware load
   201 // instruction reordering, but it must *also* ensure that subsequent
   202 // loads from addresses that could be written by other processors (i.e.,
   203 // that are broadcast by other processors) go all the way to the first
   204 // level of memory shared by those processors and the one issuing
   205 // the loadload.
   206 //
   207 // So if we have a MP that has, say, a per-processor D$ that doesn't see
   208 // writes by other processors, and has a shared E$ that does, the loadload
   209 // barrier would have to make sure that either
   210 //
   211 // 1. cache lines in the issuing processor's D$ that contained data from
   212 // addresses that could be written by other processors are invalidated, so
   213 // subsequent loads from those addresses go to the E$, (it could do this
   214 // by tagging such cache lines as 'shared', though how to tell the hardware
   215 // to do the tagging is an interesting problem), or
   216 //
   217 // 2. there never are such cache lines in the issuing processor's D$, which
   218 // means all references to shared data (however identified: see above)
   219 // bypass the D$ (i.e., are satisfied from the E$).
   220 //
   221 // If your machine doesn't have an E$, substitute 'main memory' for 'E$'.
   222 //
   223 // Either of these alternatives is a pain, so no current machine we know of
   224 // has incoherent caches.
   225 //
   226 // If loadload didn't have these properties, the store-release sequence for
   227 // publishing a shared data structure wouldn't work, because a processor
   228 // trying to read data newly published by another processor might go to
   229 // its own incoherent caches to satisfy the read instead of to the newly
   230 // written shared memory.
   231 //
   232 //
   233 //                NOTE WELL!!
   234 //
   235 //                A Note on MutexLocker and Friends
   236 //
   237 // See mutexLocker.hpp.  We assume throughout the VM that MutexLocker's
   238 // and friends' constructors do a fence, a lock and an acquire *in that
   239 // order*.  And that their destructors do a release and unlock, in *that*
   240 // order.  If their implementations change such that these assumptions
   241 // are violated, a whole lot of code will break.
   243 class OrderAccess : AllStatic {
   244  public:
   245   static void     loadload();
   246   static void     storestore();
   247   static void     loadstore();
   248   static void     storeload();
   250   static void     acquire();
   251   static void     release();
   252   static void     fence();
   254   static jbyte    load_acquire(volatile jbyte*   p);
   255   static jshort   load_acquire(volatile jshort*  p);
   256   static jint     load_acquire(volatile jint*    p);
   257   static jlong    load_acquire(volatile jlong*   p);
   258   static jubyte   load_acquire(volatile jubyte*  p);
   259   static jushort  load_acquire(volatile jushort* p);
   260   static juint    load_acquire(volatile juint*   p);
   261   static julong   load_acquire(volatile julong*  p);
   262   static jfloat   load_acquire(volatile jfloat*  p);
   263   static jdouble  load_acquire(volatile jdouble* p);
   265   static intptr_t load_ptr_acquire(volatile intptr_t*   p);
   266   static void*    load_ptr_acquire(volatile void*       p);
   267   static void*    load_ptr_acquire(const volatile void* p);
   269   static void     release_store(volatile jbyte*   p, jbyte   v);
   270   static void     release_store(volatile jshort*  p, jshort  v);
   271   static void     release_store(volatile jint*    p, jint    v);
   272   static void     release_store(volatile jlong*   p, jlong   v);
   273   static void     release_store(volatile jubyte*  p, jubyte  v);
   274   static void     release_store(volatile jushort* p, jushort v);
   275   static void     release_store(volatile juint*   p, juint   v);
   276   static void     release_store(volatile julong*  p, julong  v);
   277   static void     release_store(volatile jfloat*  p, jfloat  v);
   278   static void     release_store(volatile jdouble* p, jdouble v);
   280   static void     release_store_ptr(volatile intptr_t* p, intptr_t v);
   281   static void     release_store_ptr(volatile void*     p, void*    v);
   283   static void     store_fence(jbyte*   p, jbyte   v);
   284   static void     store_fence(jshort*  p, jshort  v);
   285   static void     store_fence(jint*    p, jint    v);
   286   static void     store_fence(jlong*   p, jlong   v);
   287   static void     store_fence(jubyte*  p, jubyte  v);
   288   static void     store_fence(jushort* p, jushort v);
   289   static void     store_fence(juint*   p, juint   v);
   290   static void     store_fence(julong*  p, julong  v);
   291   static void     store_fence(jfloat*  p, jfloat  v);
   292   static void     store_fence(jdouble* p, jdouble v);
   294   static void     store_ptr_fence(intptr_t* p, intptr_t v);
   295   static void     store_ptr_fence(void**    p, void*    v);
   297   static void     release_store_fence(volatile jbyte*   p, jbyte   v);
   298   static void     release_store_fence(volatile jshort*  p, jshort  v);
   299   static void     release_store_fence(volatile jint*    p, jint    v);
   300   static void     release_store_fence(volatile jlong*   p, jlong   v);
   301   static void     release_store_fence(volatile jubyte*  p, jubyte  v);
   302   static void     release_store_fence(volatile jushort* p, jushort v);
   303   static void     release_store_fence(volatile juint*   p, juint   v);
   304   static void     release_store_fence(volatile julong*  p, julong  v);
   305   static void     release_store_fence(volatile jfloat*  p, jfloat  v);
   306   static void     release_store_fence(volatile jdouble* p, jdouble v);
   308   static void     release_store_ptr_fence(volatile intptr_t* p, intptr_t v);
   309   static void     release_store_ptr_fence(volatile void*     p, void*    v);
   311  private:
   312   // This is a helper that invokes the StubRoutines::fence_entry()
   313   // routine if it exists, It should only be used by platforms that
   314   // don't another way to do the inline eassembly.
   315   static void StubRoutines_fence();
   316 };
   318 #endif // SHARE_VM_RUNTIME_ORDERACCESS_HPP

mercurial