src/share/vm/opto/subnode.hpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_SUBNODE_HPP
    26 #define SHARE_VM_OPTO_SUBNODE_HPP
    28 #include "opto/node.hpp"
    29 #include "opto/opcodes.hpp"
    30 #include "opto/type.hpp"
    32 // Portions of code courtesy of Clifford Click
    34 //------------------------------SUBNode----------------------------------------
    35 // Class SUBTRACTION functionality.  This covers all the usual 'subtract'
    36 // behaviors.  Subtract-integer, -float, -double, binary xor, compare-integer,
    37 // -float, and -double are all inherited from this class.  The compare
    38 // functions behave like subtract functions, except that all negative answers
    39 // are compressed into -1, and all positive answers compressed to 1.
    40 class SubNode : public Node {
    41 public:
    42   SubNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {
    43     init_class_id(Class_Sub);
    44   }
    46   // Handle algebraic identities here.  If we have an identity, return the Node
    47   // we are equivalent to.  We look for "add of zero" as an identity.
    48   virtual Node *Identity( PhaseTransform *phase );
    50   // Compute a new Type for this node.  Basically we just do the pre-check,
    51   // then call the virtual add() to set the type.
    52   virtual const Type *Value( PhaseTransform *phase ) const;
    53   const Type* Value_common( PhaseTransform *phase ) const;
    55   // Supplied function returns the subtractend of the inputs.
    56   // This also type-checks the inputs for sanity.  Guaranteed never to
    57   // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
    58   virtual const Type *sub( const Type *, const Type * ) const = 0;
    60   // Supplied function to return the additive identity type.
    61   // This is returned whenever the subtracts inputs are the same.
    62   virtual const Type *add_id() const = 0;
    64 };
    67 // NOTE: SubINode should be taken away and replaced by add and negate
    68 //------------------------------SubINode---------------------------------------
    69 // Subtract 2 integers
    70 class SubINode : public SubNode {
    71 public:
    72   SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
    73   virtual int Opcode() const;
    74   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    75   virtual const Type *sub( const Type *, const Type * ) const;
    76   const Type *add_id() const { return TypeInt::ZERO; }
    77   const Type *bottom_type() const { return TypeInt::INT; }
    78   virtual uint ideal_reg() const { return Op_RegI; }
    79 };
    81 //------------------------------SubLNode---------------------------------------
    82 // Subtract 2 integers
    83 class SubLNode : public SubNode {
    84 public:
    85   SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
    86   virtual int Opcode() const;
    87   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    88   virtual const Type *sub( const Type *, const Type * ) const;
    89   const Type *add_id() const { return TypeLong::ZERO; }
    90   const Type *bottom_type() const { return TypeLong::LONG; }
    91   virtual uint ideal_reg() const { return Op_RegL; }
    92 };
    94 // NOTE: SubFPNode should be taken away and replaced by add and negate
    95 //------------------------------SubFPNode--------------------------------------
    96 // Subtract 2 floats or doubles
    97 class SubFPNode : public SubNode {
    98 protected:
    99   SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
   100 public:
   101   const Type *Value( PhaseTransform *phase ) const;
   102 };
   104 // NOTE: SubFNode should be taken away and replaced by add and negate
   105 //------------------------------SubFNode---------------------------------------
   106 // Subtract 2 doubles
   107 class SubFNode : public SubFPNode {
   108 public:
   109   SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
   110   virtual int Opcode() const;
   111   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   112   virtual const Type *sub( const Type *, const Type * ) const;
   113   const Type   *add_id() const { return TypeF::ZERO; }
   114   const Type   *bottom_type() const { return Type::FLOAT; }
   115   virtual uint  ideal_reg() const { return Op_RegF; }
   116 };
   118 // NOTE: SubDNode should be taken away and replaced by add and negate
   119 //------------------------------SubDNode---------------------------------------
   120 // Subtract 2 doubles
   121 class SubDNode : public SubFPNode {
   122 public:
   123   SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
   124   virtual int Opcode() const;
   125   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   126   virtual const Type *sub( const Type *, const Type * ) const;
   127   const Type   *add_id() const { return TypeD::ZERO; }
   128   const Type   *bottom_type() const { return Type::DOUBLE; }
   129   virtual uint  ideal_reg() const { return Op_RegD; }
   130 };
   132 //------------------------------CmpNode---------------------------------------
   133 // Compare 2 values, returning condition codes (-1, 0 or 1).
   134 class CmpNode : public SubNode {
   135 public:
   136   CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
   137     init_class_id(Class_Cmp);
   138   }
   139   virtual Node *Identity( PhaseTransform *phase );
   140   const Type *add_id() const { return TypeInt::ZERO; }
   141   const Type *bottom_type() const { return TypeInt::CC; }
   142   virtual uint ideal_reg() const { return Op_RegFlags; }
   143 };
   145 //------------------------------CmpINode---------------------------------------
   146 // Compare 2 signed values, returning condition codes (-1, 0 or 1).
   147 class CmpINode : public CmpNode {
   148 public:
   149   CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
   150   virtual int Opcode() const;
   151   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   152   virtual const Type *sub( const Type *, const Type * ) const;
   153 };
   155 //------------------------------CmpUNode---------------------------------------
   156 // Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
   157 class CmpUNode : public CmpNode {
   158 public:
   159   CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
   160   virtual int Opcode() const;
   161   virtual const Type *sub( const Type *, const Type * ) const;
   162   const Type *Value( PhaseTransform *phase ) const;
   163   bool is_index_range_check() const;
   164 };
   166 //------------------------------CmpPNode---------------------------------------
   167 // Compare 2 pointer values, returning condition codes (-1, 0 or 1).
   168 class CmpPNode : public CmpNode {
   169 public:
   170   CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
   171   virtual int Opcode() const;
   172   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   173   virtual const Type *sub( const Type *, const Type * ) const;
   174 };
   176 //------------------------------CmpNNode--------------------------------------
   177 // Compare 2 narrow oop values, returning condition codes (-1, 0 or 1).
   178 class CmpNNode : public CmpNode {
   179 public:
   180   CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
   181   virtual int Opcode() const;
   182   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   183   virtual const Type *sub( const Type *, const Type * ) const;
   184 };
   186 //------------------------------CmpLNode---------------------------------------
   187 // Compare 2 long values, returning condition codes (-1, 0 or 1).
   188 class CmpLNode : public CmpNode {
   189 public:
   190   CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
   191   virtual int    Opcode() const;
   192   virtual const Type *sub( const Type *, const Type * ) const;
   193 };
   195 //------------------------------CmpL3Node--------------------------------------
   196 // Compare 2 long values, returning integer value (-1, 0 or 1).
   197 class CmpL3Node : public CmpLNode {
   198 public:
   199   CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
   200     // Since it is not consumed by Bools, it is not really a Cmp.
   201     init_class_id(Class_Sub);
   202   }
   203   virtual int    Opcode() const;
   204   virtual uint ideal_reg() const { return Op_RegI; }
   205 };
   207 //------------------------------CmpFNode---------------------------------------
   208 // Compare 2 float values, returning condition codes (-1, 0 or 1).
   209 // This implements the Java bytecode fcmpl, so unordered returns -1.
   210 // Operands may not commute.
   211 class CmpFNode : public CmpNode {
   212 public:
   213   CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
   214   virtual int Opcode() const;
   215   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
   216   const Type *Value( PhaseTransform *phase ) const;
   217 };
   219 //------------------------------CmpF3Node--------------------------------------
   220 // Compare 2 float values, returning integer value (-1, 0 or 1).
   221 // This implements the Java bytecode fcmpl, so unordered returns -1.
   222 // Operands may not commute.
   223 class CmpF3Node : public CmpFNode {
   224 public:
   225   CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
   226     // Since it is not consumed by Bools, it is not really a Cmp.
   227     init_class_id(Class_Sub);
   228   }
   229   virtual int Opcode() const;
   230   // Since it is not consumed by Bools, it is not really a Cmp.
   231   virtual uint ideal_reg() const { return Op_RegI; }
   232 };
   235 //------------------------------CmpDNode---------------------------------------
   236 // Compare 2 double values, returning condition codes (-1, 0 or 1).
   237 // This implements the Java bytecode dcmpl, so unordered returns -1.
   238 // Operands may not commute.
   239 class CmpDNode : public CmpNode {
   240 public:
   241   CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
   242   virtual int Opcode() const;
   243   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
   244   const Type *Value( PhaseTransform *phase ) const;
   245   virtual Node  *Ideal(PhaseGVN *phase, bool can_reshape);
   246 };
   248 //------------------------------CmpD3Node--------------------------------------
   249 // Compare 2 double values, returning integer value (-1, 0 or 1).
   250 // This implements the Java bytecode dcmpl, so unordered returns -1.
   251 // Operands may not commute.
   252 class CmpD3Node : public CmpDNode {
   253 public:
   254   CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
   255     // Since it is not consumed by Bools, it is not really a Cmp.
   256     init_class_id(Class_Sub);
   257   }
   258   virtual int Opcode() const;
   259   virtual uint ideal_reg() const { return Op_RegI; }
   260 };
   263 //------------------------------BoolTest---------------------------------------
   264 // Convert condition codes to a boolean test value (0 or -1).
   265 // We pick the values as 3 bits; the low order 2 bits we compare against the
   266 // condition codes, the high bit flips the sense of the result.
   267 struct BoolTest VALUE_OBJ_CLASS_SPEC {
   268   enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, overflow = 2, no_overflow = 6, illegal = 8 };
   269   mask _test;
   270   BoolTest( mask btm ) : _test(btm) {}
   271   const Type *cc2logical( const Type *CC ) const;
   272   // Commute the test.  I use a small table lookup.  The table is created as
   273   // a simple char array where each element is the ASCII version of a 'mask'
   274   // enum from above.
   275   mask commute( ) const { return mask("032147658"[_test]-'0'); }
   276   mask negate( ) const { return mask(_test^4); }
   277   bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le || _test == BoolTest::overflow); }
   278 #ifndef PRODUCT
   279   void dump_on(outputStream *st) const;
   280 #endif
   281 };
   283 //------------------------------BoolNode---------------------------------------
   284 // A Node to convert a Condition Codes to a Logical result.
   285 class BoolNode : public Node {
   286   virtual uint hash() const;
   287   virtual uint cmp( const Node &n ) const;
   288   virtual uint size_of() const;
   289 public:
   290   const BoolTest _test;
   291   BoolNode( Node *cc, BoolTest::mask t): _test(t), Node(0,cc) {
   292     init_class_id(Class_Bool);
   293   }
   294   // Convert an arbitrary int value to a Bool or other suitable predicate.
   295   static Node* make_predicate(Node* test_value, PhaseGVN* phase);
   296   // Convert self back to an integer value.
   297   Node* as_int_value(PhaseGVN* phase);
   298   // Invert sense of self, returning new Bool.
   299   BoolNode* negate(PhaseGVN* phase);
   300   virtual int Opcode() const;
   301   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   302   virtual const Type *Value( PhaseTransform *phase ) const;
   303   virtual const Type *bottom_type() const { return TypeInt::BOOL; }
   304   uint match_edge(uint idx) const { return 0; }
   305   virtual uint ideal_reg() const { return Op_RegI; }
   307   bool is_counted_loop_exit_test();
   308 #ifndef PRODUCT
   309   virtual void dump_spec(outputStream *st) const;
   310 #endif
   311 };
   313 //------------------------------AbsNode----------------------------------------
   314 // Abstract class for absolute value.  Mostly used to get a handy wrapper
   315 // for finding this pattern in the graph.
   316 class AbsNode : public Node {
   317 public:
   318   AbsNode( Node *value ) : Node(0,value) {}
   319 };
   321 //------------------------------AbsINode---------------------------------------
   322 // Absolute value an integer.  Since a naive graph involves control flow, we
   323 // "match" it in the ideal world (so the control flow can be removed).
   324 class AbsINode : public AbsNode {
   325 public:
   326   AbsINode( Node *in1 ) : AbsNode(in1) {}
   327   virtual int Opcode() const;
   328   const Type *bottom_type() const { return TypeInt::INT; }
   329   virtual uint ideal_reg() const { return Op_RegI; }
   330 };
   332 //------------------------------AbsFNode---------------------------------------
   333 // Absolute value a float, a common float-point idiom with a cheap hardware
   334 // implemention on most chips.  Since a naive graph involves control flow, we
   335 // "match" it in the ideal world (so the control flow can be removed).
   336 class AbsFNode : public AbsNode {
   337 public:
   338   AbsFNode( Node *in1 ) : AbsNode(in1) {}
   339   virtual int Opcode() const;
   340   const Type *bottom_type() const { return Type::FLOAT; }
   341   virtual uint ideal_reg() const { return Op_RegF; }
   342 };
   344 //------------------------------AbsDNode---------------------------------------
   345 // Absolute value a double, a common float-point idiom with a cheap hardware
   346 // implemention on most chips.  Since a naive graph involves control flow, we
   347 // "match" it in the ideal world (so the control flow can be removed).
   348 class AbsDNode : public AbsNode {
   349 public:
   350   AbsDNode( Node *in1 ) : AbsNode(in1) {}
   351   virtual int Opcode() const;
   352   const Type *bottom_type() const { return Type::DOUBLE; }
   353   virtual uint ideal_reg() const { return Op_RegD; }
   354 };
   357 //------------------------------CmpLTMaskNode----------------------------------
   358 // If p < q, return -1 else return 0.  Nice for flow-free idioms.
   359 class CmpLTMaskNode : public Node {
   360 public:
   361   CmpLTMaskNode( Node *p, Node *q ) : Node(0, p, q) {}
   362   virtual int Opcode() const;
   363   const Type *bottom_type() const { return TypeInt::INT; }
   364   virtual uint ideal_reg() const { return Op_RegI; }
   365 };
   368 //------------------------------NegNode----------------------------------------
   369 class NegNode : public Node {
   370 public:
   371   NegNode( Node *in1 ) : Node(0,in1) {}
   372 };
   374 //------------------------------NegFNode---------------------------------------
   375 // Negate value a float.  Negating 0.0 returns -0.0, but subtracting from
   376 // zero returns +0.0 (per JVM spec on 'fneg' bytecode).  As subtraction
   377 // cannot be used to replace negation we have to implement negation as ideal
   378 // node; note that negation and addition can replace subtraction.
   379 class NegFNode : public NegNode {
   380 public:
   381   NegFNode( Node *in1 ) : NegNode(in1) {}
   382   virtual int Opcode() const;
   383   const Type *bottom_type() const { return Type::FLOAT; }
   384   virtual uint ideal_reg() const { return Op_RegF; }
   385 };
   387 //------------------------------NegDNode---------------------------------------
   388 // Negate value a double.  Negating 0.0 returns -0.0, but subtracting from
   389 // zero returns +0.0 (per JVM spec on 'dneg' bytecode).  As subtraction
   390 // cannot be used to replace negation we have to implement negation as ideal
   391 // node; note that negation and addition can replace subtraction.
   392 class NegDNode : public NegNode {
   393 public:
   394   NegDNode( Node *in1 ) : NegNode(in1) {}
   395   virtual int Opcode() const;
   396   const Type *bottom_type() const { return Type::DOUBLE; }
   397   virtual uint ideal_reg() const { return Op_RegD; }
   398 };
   400 //------------------------------CosDNode---------------------------------------
   401 // Cosinus of a double
   402 class CosDNode : public Node {
   403 public:
   404   CosDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
   405     init_flags(Flag_is_expensive);
   406     C->add_expensive_node(this);
   407   }
   408   virtual int Opcode() const;
   409   const Type *bottom_type() const { return Type::DOUBLE; }
   410   virtual uint ideal_reg() const { return Op_RegD; }
   411   virtual const Type *Value( PhaseTransform *phase ) const;
   412 };
   414 //------------------------------CosDNode---------------------------------------
   415 // Sinus of a double
   416 class SinDNode : public Node {
   417 public:
   418   SinDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
   419     init_flags(Flag_is_expensive);
   420     C->add_expensive_node(this);
   421   }
   422   virtual int Opcode() const;
   423   const Type *bottom_type() const { return Type::DOUBLE; }
   424   virtual uint ideal_reg() const { return Op_RegD; }
   425   virtual const Type *Value( PhaseTransform *phase ) const;
   426 };
   429 //------------------------------TanDNode---------------------------------------
   430 // tangens of a double
   431 class TanDNode : public Node {
   432 public:
   433   TanDNode(Compile* C, Node *c,Node *in1) : Node(c, in1) {
   434     init_flags(Flag_is_expensive);
   435     C->add_expensive_node(this);
   436   }
   437   virtual int Opcode() const;
   438   const Type *bottom_type() const { return Type::DOUBLE; }
   439   virtual uint ideal_reg() const { return Op_RegD; }
   440   virtual const Type *Value( PhaseTransform *phase ) const;
   441 };
   444 //------------------------------AtanDNode--------------------------------------
   445 // arcus tangens of a double
   446 class AtanDNode : public Node {
   447 public:
   448   AtanDNode(Node *c, Node *in1, Node *in2  ) : Node(c, in1, in2) {}
   449   virtual int Opcode() const;
   450   const Type *bottom_type() const { return Type::DOUBLE; }
   451   virtual uint ideal_reg() const { return Op_RegD; }
   452 };
   455 //------------------------------SqrtDNode--------------------------------------
   456 // square root a double
   457 class SqrtDNode : public Node {
   458 public:
   459   SqrtDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
   460     init_flags(Flag_is_expensive);
   461     C->add_expensive_node(this);
   462   }
   463   virtual int Opcode() const;
   464   const Type *bottom_type() const { return Type::DOUBLE; }
   465   virtual uint ideal_reg() const { return Op_RegD; }
   466   virtual const Type *Value( PhaseTransform *phase ) const;
   467 };
   469 //------------------------------ExpDNode---------------------------------------
   470 //  Exponentiate a double
   471 class ExpDNode : public Node {
   472 public:
   473   ExpDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
   474     init_flags(Flag_is_expensive);
   475     C->add_expensive_node(this);
   476   }
   477   virtual int Opcode() const;
   478   const Type *bottom_type() const { return Type::DOUBLE; }
   479   virtual uint ideal_reg() const { return Op_RegD; }
   480   virtual const Type *Value( PhaseTransform *phase ) const;
   481 };
   483 //------------------------------LogDNode---------------------------------------
   484 // Log_e of a double
   485 class LogDNode : public Node {
   486 public:
   487   LogDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
   488     init_flags(Flag_is_expensive);
   489     C->add_expensive_node(this);
   490   }
   491   virtual int Opcode() const;
   492   const Type *bottom_type() const { return Type::DOUBLE; }
   493   virtual uint ideal_reg() const { return Op_RegD; }
   494   virtual const Type *Value( PhaseTransform *phase ) const;
   495 };
   497 //------------------------------Log10DNode---------------------------------------
   498 // Log_10 of a double
   499 class Log10DNode : public Node {
   500 public:
   501   Log10DNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
   502     init_flags(Flag_is_expensive);
   503     C->add_expensive_node(this);
   504   }
   505   virtual int Opcode() const;
   506   const Type *bottom_type() const { return Type::DOUBLE; }
   507   virtual uint ideal_reg() const { return Op_RegD; }
   508   virtual const Type *Value( PhaseTransform *phase ) const;
   509 };
   511 //------------------------------PowDNode---------------------------------------
   512 // Raise a double to a double power
   513 class PowDNode : public Node {
   514 public:
   515   PowDNode(Compile* C, Node *c, Node *in1, Node *in2 ) : Node(c, in1, in2) {
   516     init_flags(Flag_is_expensive);
   517     C->add_expensive_node(this);
   518   }
   519   virtual int Opcode() const;
   520   const Type *bottom_type() const { return Type::DOUBLE; }
   521   virtual uint ideal_reg() const { return Op_RegD; }
   522   virtual const Type *Value( PhaseTransform *phase ) const;
   523 };
   525 //-------------------------------ReverseBytesINode--------------------------------
   526 // reverse bytes of an integer
   527 class ReverseBytesINode : public Node {
   528 public:
   529   ReverseBytesINode(Node *c, Node *in1) : Node(c, in1) {}
   530   virtual int Opcode() const;
   531   const Type *bottom_type() const { return TypeInt::INT; }
   532   virtual uint ideal_reg() const { return Op_RegI; }
   533 };
   535 //-------------------------------ReverseBytesLNode--------------------------------
   536 // reverse bytes of a long
   537 class ReverseBytesLNode : public Node {
   538 public:
   539   ReverseBytesLNode(Node *c, Node *in1) : Node(c, in1) {}
   540   virtual int Opcode() const;
   541   const Type *bottom_type() const { return TypeLong::LONG; }
   542   virtual uint ideal_reg() const { return Op_RegL; }
   543 };
   545 //-------------------------------ReverseBytesUSNode--------------------------------
   546 // reverse bytes of an unsigned short / char
   547 class ReverseBytesUSNode : public Node {
   548 public:
   549   ReverseBytesUSNode(Node *c, Node *in1) : Node(c, in1) {}
   550   virtual int Opcode() const;
   551   const Type *bottom_type() const { return TypeInt::CHAR; }
   552   virtual uint ideal_reg() const { return Op_RegI; }
   553 };
   555 //-------------------------------ReverseBytesSNode--------------------------------
   556 // reverse bytes of a short
   557 class ReverseBytesSNode : public Node {
   558 public:
   559   ReverseBytesSNode(Node *c, Node *in1) : Node(c, in1) {}
   560   virtual int Opcode() const;
   561   const Type *bottom_type() const { return TypeInt::SHORT; }
   562   virtual uint ideal_reg() const { return Op_RegI; }
   563 };
   565 #endif // SHARE_VM_OPTO_SUBNODE_HPP

mercurial