src/share/vm/opto/node.cpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "libadt/vectset.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/cfgnode.hpp"
    29 #include "opto/connode.hpp"
    30 #include "opto/loopnode.hpp"
    31 #include "opto/machnode.hpp"
    32 #include "opto/matcher.hpp"
    33 #include "opto/node.hpp"
    34 #include "opto/opcodes.hpp"
    35 #include "opto/regmask.hpp"
    36 #include "opto/type.hpp"
    37 #include "utilities/copy.hpp"
    39 class RegMask;
    40 // #include "phase.hpp"
    41 class PhaseTransform;
    42 class PhaseGVN;
    44 // Arena we are currently building Nodes in
    45 const uint Node::NotAMachineReg = 0xffff0000;
    47 #ifndef PRODUCT
    48 extern int nodes_created;
    49 #endif
    51 #ifdef ASSERT
    53 //-------------------------- construct_node------------------------------------
    54 // Set a breakpoint here to identify where a particular node index is built.
    55 void Node::verify_construction() {
    56   _debug_orig = NULL;
    57   int old_debug_idx = Compile::debug_idx();
    58   int new_debug_idx = old_debug_idx+1;
    59   if (new_debug_idx > 0) {
    60     // Arrange that the lowest five decimal digits of _debug_idx
    61     // will repeat those of _idx. In case this is somehow pathological,
    62     // we continue to assign negative numbers (!) consecutively.
    63     const int mod = 100000;
    64     int bump = (int)(_idx - new_debug_idx) % mod;
    65     if (bump < 0)  bump += mod;
    66     assert(bump >= 0 && bump < mod, "");
    67     new_debug_idx += bump;
    68   }
    69   Compile::set_debug_idx(new_debug_idx);
    70   set_debug_idx( new_debug_idx );
    71   assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
    72   assert(Compile::current()->live_nodes() < (uint)MaxNodeLimit, "Live Node limit exceeded limit");
    73   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
    74     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
    75     BREAKPOINT;
    76   }
    77 #if OPTO_DU_ITERATOR_ASSERT
    78   _last_del = NULL;
    79   _del_tick = 0;
    80 #endif
    81   _hash_lock = 0;
    82 }
    85 // #ifdef ASSERT ...
    87 #if OPTO_DU_ITERATOR_ASSERT
    88 void DUIterator_Common::sample(const Node* node) {
    89   _vdui     = VerifyDUIterators;
    90   _node     = node;
    91   _outcnt   = node->_outcnt;
    92   _del_tick = node->_del_tick;
    93   _last     = NULL;
    94 }
    96 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
    97   assert(_node     == node, "consistent iterator source");
    98   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
    99 }
   101 void DUIterator_Common::verify_resync() {
   102   // Ensure that the loop body has just deleted the last guy produced.
   103   const Node* node = _node;
   104   // Ensure that at least one copy of the last-seen edge was deleted.
   105   // Note:  It is OK to delete multiple copies of the last-seen edge.
   106   // Unfortunately, we have no way to verify that all the deletions delete
   107   // that same edge.  On this point we must use the Honor System.
   108   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
   109   assert(node->_last_del == _last, "must have deleted the edge just produced");
   110   // We liked this deletion, so accept the resulting outcnt and tick.
   111   _outcnt   = node->_outcnt;
   112   _del_tick = node->_del_tick;
   113 }
   115 void DUIterator_Common::reset(const DUIterator_Common& that) {
   116   if (this == &that)  return;  // ignore assignment to self
   117   if (!_vdui) {
   118     // We need to initialize everything, overwriting garbage values.
   119     _last = that._last;
   120     _vdui = that._vdui;
   121   }
   122   // Note:  It is legal (though odd) for an iterator over some node x
   123   // to be reassigned to iterate over another node y.  Some doubly-nested
   124   // progress loops depend on being able to do this.
   125   const Node* node = that._node;
   126   // Re-initialize everything, except _last.
   127   _node     = node;
   128   _outcnt   = node->_outcnt;
   129   _del_tick = node->_del_tick;
   130 }
   132 void DUIterator::sample(const Node* node) {
   133   DUIterator_Common::sample(node);      // Initialize the assertion data.
   134   _refresh_tick = 0;                    // No refreshes have happened, as yet.
   135 }
   137 void DUIterator::verify(const Node* node, bool at_end_ok) {
   138   DUIterator_Common::verify(node, at_end_ok);
   139   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
   140 }
   142 void DUIterator::verify_increment() {
   143   if (_refresh_tick & 1) {
   144     // We have refreshed the index during this loop.
   145     // Fix up _idx to meet asserts.
   146     if (_idx > _outcnt)  _idx = _outcnt;
   147   }
   148   verify(_node, true);
   149 }
   151 void DUIterator::verify_resync() {
   152   // Note:  We do not assert on _outcnt, because insertions are OK here.
   153   DUIterator_Common::verify_resync();
   154   // Make sure we are still in sync, possibly with no more out-edges:
   155   verify(_node, true);
   156 }
   158 void DUIterator::reset(const DUIterator& that) {
   159   if (this == &that)  return;  // self assignment is always a no-op
   160   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
   161   assert(that._idx          == 0, "assign only the result of Node::outs()");
   162   assert(_idx               == that._idx, "already assigned _idx");
   163   if (!_vdui) {
   164     // We need to initialize everything, overwriting garbage values.
   165     sample(that._node);
   166   } else {
   167     DUIterator_Common::reset(that);
   168     if (_refresh_tick & 1) {
   169       _refresh_tick++;                  // Clear the "was refreshed" flag.
   170     }
   171     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
   172   }
   173 }
   175 void DUIterator::refresh() {
   176   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
   177   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
   178 }
   180 void DUIterator::verify_finish() {
   181   // If the loop has killed the node, do not require it to re-run.
   182   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
   183   // If this assert triggers, it means that a loop used refresh_out_pos
   184   // to re-synch an iteration index, but the loop did not correctly
   185   // re-run itself, using a "while (progress)" construct.
   186   // This iterator enforces the rule that you must keep trying the loop
   187   // until it "runs clean" without any need for refreshing.
   188   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
   189 }
   192 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
   193   DUIterator_Common::verify(node, at_end_ok);
   194   Node** out    = node->_out;
   195   uint   cnt    = node->_outcnt;
   196   assert(cnt == _outcnt, "no insertions allowed");
   197   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
   198   // This last check is carefully designed to work for NO_OUT_ARRAY.
   199 }
   201 void DUIterator_Fast::verify_limit() {
   202   const Node* node = _node;
   203   verify(node, true);
   204   assert(_outp == node->_out + node->_outcnt, "limit still correct");
   205 }
   207 void DUIterator_Fast::verify_resync() {
   208   const Node* node = _node;
   209   if (_outp == node->_out + _outcnt) {
   210     // Note that the limit imax, not the pointer i, gets updated with the
   211     // exact count of deletions.  (For the pointer it's always "--i".)
   212     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
   213     // This is a limit pointer, with a name like "imax".
   214     // Fudge the _last field so that the common assert will be happy.
   215     _last = (Node*) node->_last_del;
   216     DUIterator_Common::verify_resync();
   217   } else {
   218     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
   219     // A normal internal pointer.
   220     DUIterator_Common::verify_resync();
   221     // Make sure we are still in sync, possibly with no more out-edges:
   222     verify(node, true);
   223   }
   224 }
   226 void DUIterator_Fast::verify_relimit(uint n) {
   227   const Node* node = _node;
   228   assert((int)n > 0, "use imax -= n only with a positive count");
   229   // This must be a limit pointer, with a name like "imax".
   230   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
   231   // The reported number of deletions must match what the node saw.
   232   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
   233   // Fudge the _last field so that the common assert will be happy.
   234   _last = (Node*) node->_last_del;
   235   DUIterator_Common::verify_resync();
   236 }
   238 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
   239   assert(_outp              == that._outp, "already assigned _outp");
   240   DUIterator_Common::reset(that);
   241 }
   243 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
   244   // at_end_ok means the _outp is allowed to underflow by 1
   245   _outp += at_end_ok;
   246   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
   247   _outp -= at_end_ok;
   248   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
   249 }
   251 void DUIterator_Last::verify_limit() {
   252   // Do not require the limit address to be resynched.
   253   //verify(node, true);
   254   assert(_outp == _node->_out, "limit still correct");
   255 }
   257 void DUIterator_Last::verify_step(uint num_edges) {
   258   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
   259   _outcnt   -= num_edges;
   260   _del_tick += num_edges;
   261   // Make sure we are still in sync, possibly with no more out-edges:
   262   const Node* node = _node;
   263   verify(node, true);
   264   assert(node->_last_del == _last, "must have deleted the edge just produced");
   265 }
   267 #endif //OPTO_DU_ITERATOR_ASSERT
   270 #endif //ASSERT
   273 // This constant used to initialize _out may be any non-null value.
   274 // The value NULL is reserved for the top node only.
   275 #define NO_OUT_ARRAY ((Node**)-1)
   277 // This funny expression handshakes with Node::operator new
   278 // to pull Compile::current out of the new node's _out field,
   279 // and then calls a subroutine which manages most field
   280 // initializations.  The only one which is tricky is the
   281 // _idx field, which is const, and so must be initialized
   282 // by a return value, not an assignment.
   283 //
   284 // (Aren't you thankful that Java finals don't require so many tricks?)
   285 #define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
   286 #ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
   287 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   288 #endif
   290 // Out-of-line code from node constructors.
   291 // Executed only when extra debug info. is being passed around.
   292 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
   293   C->set_node_notes_at(idx, nn);
   294 }
   296 // Shared initialization code.
   297 inline int Node::Init(int req, Compile* C) {
   298   assert(Compile::current() == C, "must use operator new(Compile*)");
   299   int idx = C->next_unique();
   301   // Allocate memory for the necessary number of edges.
   302   if (req > 0) {
   303     // Allocate space for _in array to have double alignment.
   304     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
   305 #ifdef ASSERT
   306     _in[req-1] = this; // magic cookie for assertion check
   307 #endif
   308   }
   309   // If there are default notes floating around, capture them:
   310   Node_Notes* nn = C->default_node_notes();
   311   if (nn != NULL)  init_node_notes(C, idx, nn);
   313   // Note:  At this point, C is dead,
   314   // and we begin to initialize the new Node.
   316   _cnt = _max = req;
   317   _outcnt = _outmax = 0;
   318   _class_id = Class_Node;
   319   _flags = 0;
   320   _out = NO_OUT_ARRAY;
   321   return idx;
   322 }
   324 //------------------------------Node-------------------------------------------
   325 // Create a Node, with a given number of required edges.
   326 Node::Node(uint req)
   327   : _idx(IDX_INIT(req))
   328 {
   329   assert( req < (uint)(MaxNodeLimit - NodeLimitFudgeFactor), "Input limit exceeded" );
   330   debug_only( verify_construction() );
   331   NOT_PRODUCT(nodes_created++);
   332   if (req == 0) {
   333     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
   334     _in = NULL;
   335   } else {
   336     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
   337     Node** to = _in;
   338     for(uint i = 0; i < req; i++) {
   339       to[i] = NULL;
   340     }
   341   }
   342 }
   344 //------------------------------Node-------------------------------------------
   345 Node::Node(Node *n0)
   346   : _idx(IDX_INIT(1))
   347 {
   348   debug_only( verify_construction() );
   349   NOT_PRODUCT(nodes_created++);
   350   // Assert we allocated space for input array already
   351   assert( _in[0] == this, "Must pass arg count to 'new'" );
   352   assert( is_not_dead(n0), "can not use dead node");
   353   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   354 }
   356 //------------------------------Node-------------------------------------------
   357 Node::Node(Node *n0, Node *n1)
   358   : _idx(IDX_INIT(2))
   359 {
   360   debug_only( verify_construction() );
   361   NOT_PRODUCT(nodes_created++);
   362   // Assert we allocated space for input array already
   363   assert( _in[1] == this, "Must pass arg count to 'new'" );
   364   assert( is_not_dead(n0), "can not use dead node");
   365   assert( is_not_dead(n1), "can not use dead node");
   366   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   367   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   368 }
   370 //------------------------------Node-------------------------------------------
   371 Node::Node(Node *n0, Node *n1, Node *n2)
   372   : _idx(IDX_INIT(3))
   373 {
   374   debug_only( verify_construction() );
   375   NOT_PRODUCT(nodes_created++);
   376   // Assert we allocated space for input array already
   377   assert( _in[2] == this, "Must pass arg count to 'new'" );
   378   assert( is_not_dead(n0), "can not use dead node");
   379   assert( is_not_dead(n1), "can not use dead node");
   380   assert( is_not_dead(n2), "can not use dead node");
   381   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   382   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   383   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   384 }
   386 //------------------------------Node-------------------------------------------
   387 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
   388   : _idx(IDX_INIT(4))
   389 {
   390   debug_only( verify_construction() );
   391   NOT_PRODUCT(nodes_created++);
   392   // Assert we allocated space for input array already
   393   assert( _in[3] == this, "Must pass arg count to 'new'" );
   394   assert( is_not_dead(n0), "can not use dead node");
   395   assert( is_not_dead(n1), "can not use dead node");
   396   assert( is_not_dead(n2), "can not use dead node");
   397   assert( is_not_dead(n3), "can not use dead node");
   398   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   399   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   400   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   401   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   402 }
   404 //------------------------------Node-------------------------------------------
   405 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
   406   : _idx(IDX_INIT(5))
   407 {
   408   debug_only( verify_construction() );
   409   NOT_PRODUCT(nodes_created++);
   410   // Assert we allocated space for input array already
   411   assert( _in[4] == this, "Must pass arg count to 'new'" );
   412   assert( is_not_dead(n0), "can not use dead node");
   413   assert( is_not_dead(n1), "can not use dead node");
   414   assert( is_not_dead(n2), "can not use dead node");
   415   assert( is_not_dead(n3), "can not use dead node");
   416   assert( is_not_dead(n4), "can not use dead node");
   417   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   418   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   419   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   420   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   421   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
   422 }
   424 //------------------------------Node-------------------------------------------
   425 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
   426                      Node *n4, Node *n5)
   427   : _idx(IDX_INIT(6))
   428 {
   429   debug_only( verify_construction() );
   430   NOT_PRODUCT(nodes_created++);
   431   // Assert we allocated space for input array already
   432   assert( _in[5] == this, "Must pass arg count to 'new'" );
   433   assert( is_not_dead(n0), "can not use dead node");
   434   assert( is_not_dead(n1), "can not use dead node");
   435   assert( is_not_dead(n2), "can not use dead node");
   436   assert( is_not_dead(n3), "can not use dead node");
   437   assert( is_not_dead(n4), "can not use dead node");
   438   assert( is_not_dead(n5), "can not use dead node");
   439   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   440   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   441   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   442   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   443   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
   444   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
   445 }
   447 //------------------------------Node-------------------------------------------
   448 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
   449                      Node *n4, Node *n5, Node *n6)
   450   : _idx(IDX_INIT(7))
   451 {
   452   debug_only( verify_construction() );
   453   NOT_PRODUCT(nodes_created++);
   454   // Assert we allocated space for input array already
   455   assert( _in[6] == this, "Must pass arg count to 'new'" );
   456   assert( is_not_dead(n0), "can not use dead node");
   457   assert( is_not_dead(n1), "can not use dead node");
   458   assert( is_not_dead(n2), "can not use dead node");
   459   assert( is_not_dead(n3), "can not use dead node");
   460   assert( is_not_dead(n4), "can not use dead node");
   461   assert( is_not_dead(n5), "can not use dead node");
   462   assert( is_not_dead(n6), "can not use dead node");
   463   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   464   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   465   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   466   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   467   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
   468   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
   469   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
   470 }
   473 //------------------------------clone------------------------------------------
   474 // Clone a Node.
   475 Node *Node::clone() const {
   476   Compile* C = Compile::current();
   477   uint s = size_of();           // Size of inherited Node
   478   Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
   479   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
   480   // Set the new input pointer array
   481   n->_in = (Node**)(((char*)n)+s);
   482   // Cannot share the old output pointer array, so kill it
   483   n->_out = NO_OUT_ARRAY;
   484   // And reset the counters to 0
   485   n->_outcnt = 0;
   486   n->_outmax = 0;
   487   // Unlock this guy, since he is not in any hash table.
   488   debug_only(n->_hash_lock = 0);
   489   // Walk the old node's input list to duplicate its edges
   490   uint i;
   491   for( i = 0; i < len(); i++ ) {
   492     Node *x = in(i);
   493     n->_in[i] = x;
   494     if (x != NULL) x->add_out(n);
   495   }
   496   if (is_macro())
   497     C->add_macro_node(n);
   498   if (is_expensive())
   499     C->add_expensive_node(n);
   501   n->set_idx(C->next_unique()); // Get new unique index as well
   502   debug_only( n->verify_construction() );
   503   NOT_PRODUCT(nodes_created++);
   504   // Do not patch over the debug_idx of a clone, because it makes it
   505   // impossible to break on the clone's moment of creation.
   506   //debug_only( n->set_debug_idx( debug_idx() ) );
   508   C->copy_node_notes_to(n, (Node*) this);
   510   // MachNode clone
   511   uint nopnds;
   512   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
   513     MachNode *mach  = n->as_Mach();
   514     MachNode *mthis = this->as_Mach();
   515     // Get address of _opnd_array.
   516     // It should be the same offset since it is the clone of this node.
   517     MachOper **from = mthis->_opnds;
   518     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
   519                     pointer_delta((const void*)from,
   520                                   (const void*)(&mthis->_opnds), 1));
   521     mach->_opnds = to;
   522     for ( uint i = 0; i < nopnds; ++i ) {
   523       to[i] = from[i]->clone(C);
   524     }
   525   }
   526   // cloning CallNode may need to clone JVMState
   527   if (n->is_Call()) {
   528     n->as_Call()->clone_jvms(C);
   529   }
   530   return n;                     // Return the clone
   531 }
   533 //---------------------------setup_is_top--------------------------------------
   534 // Call this when changing the top node, to reassert the invariants
   535 // required by Node::is_top.  See Compile::set_cached_top_node.
   536 void Node::setup_is_top() {
   537   if (this == (Node*)Compile::current()->top()) {
   538     // This node has just become top.  Kill its out array.
   539     _outcnt = _outmax = 0;
   540     _out = NULL;                           // marker value for top
   541     assert(is_top(), "must be top");
   542   } else {
   543     if (_out == NULL)  _out = NO_OUT_ARRAY;
   544     assert(!is_top(), "must not be top");
   545   }
   546 }
   549 //------------------------------~Node------------------------------------------
   550 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
   551 extern int reclaim_idx ;
   552 extern int reclaim_in  ;
   553 extern int reclaim_node;
   554 void Node::destruct() {
   555   // Eagerly reclaim unique Node numberings
   556   Compile* compile = Compile::current();
   557   if ((uint)_idx+1 == compile->unique()) {
   558     compile->set_unique(compile->unique()-1);
   559 #ifdef ASSERT
   560     reclaim_idx++;
   561 #endif
   562   }
   563   // Clear debug info:
   564   Node_Notes* nn = compile->node_notes_at(_idx);
   565   if (nn != NULL)  nn->clear();
   566   // Walk the input array, freeing the corresponding output edges
   567   _cnt = _max;  // forget req/prec distinction
   568   uint i;
   569   for( i = 0; i < _max; i++ ) {
   570     set_req(i, NULL);
   571     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
   572   }
   573   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
   574   // See if the input array was allocated just prior to the object
   575   int edge_size = _max*sizeof(void*);
   576   int out_edge_size = _outmax*sizeof(void*);
   577   char *edge_end = ((char*)_in) + edge_size;
   578   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
   579   char *out_edge_end = out_array + out_edge_size;
   580   int node_size = size_of();
   582   // Free the output edge array
   583   if (out_edge_size > 0) {
   584 #ifdef ASSERT
   585     if( out_edge_end == compile->node_arena()->hwm() )
   586       reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
   587 #endif
   588     compile->node_arena()->Afree(out_array, out_edge_size);
   589   }
   591   // Free the input edge array and the node itself
   592   if( edge_end == (char*)this ) {
   593 #ifdef ASSERT
   594     if( edge_end+node_size == compile->node_arena()->hwm() ) {
   595       reclaim_in  += edge_size;
   596       reclaim_node+= node_size;
   597     }
   598 #else
   599     // It was; free the input array and object all in one hit
   600     compile->node_arena()->Afree(_in,edge_size+node_size);
   601 #endif
   602   } else {
   604     // Free just the input array
   605 #ifdef ASSERT
   606     if( edge_end == compile->node_arena()->hwm() )
   607       reclaim_in  += edge_size;
   608 #endif
   609     compile->node_arena()->Afree(_in,edge_size);
   611     // Free just the object
   612 #ifdef ASSERT
   613     if( ((char*)this) + node_size == compile->node_arena()->hwm() )
   614       reclaim_node+= node_size;
   615 #else
   616     compile->node_arena()->Afree(this,node_size);
   617 #endif
   618   }
   619   if (is_macro()) {
   620     compile->remove_macro_node(this);
   621   }
   622   if (is_expensive()) {
   623     compile->remove_expensive_node(this);
   624   }
   625 #ifdef ASSERT
   626   // We will not actually delete the storage, but we'll make the node unusable.
   627   *(address*)this = badAddress;  // smash the C++ vtbl, probably
   628   _in = _out = (Node**) badAddress;
   629   _max = _cnt = _outmax = _outcnt = 0;
   630 #endif
   631 }
   633 //------------------------------grow-------------------------------------------
   634 // Grow the input array, making space for more edges
   635 void Node::grow( uint len ) {
   636   Arena* arena = Compile::current()->node_arena();
   637   uint new_max = _max;
   638   if( new_max == 0 ) {
   639     _max = 4;
   640     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
   641     Node** to = _in;
   642     to[0] = NULL;
   643     to[1] = NULL;
   644     to[2] = NULL;
   645     to[3] = NULL;
   646     return;
   647   }
   648   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
   649   // Trimming to limit allows a uint8 to handle up to 255 edges.
   650   // Previously I was using only powers-of-2 which peaked at 128 edges.
   651   //if( new_max >= limit ) new_max = limit-1;
   652   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
   653   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
   654   _max = new_max;               // Record new max length
   655   // This assertion makes sure that Node::_max is wide enough to
   656   // represent the numerical value of new_max.
   657   assert(_max == new_max && _max > len, "int width of _max is too small");
   658 }
   660 //-----------------------------out_grow----------------------------------------
   661 // Grow the input array, making space for more edges
   662 void Node::out_grow( uint len ) {
   663   assert(!is_top(), "cannot grow a top node's out array");
   664   Arena* arena = Compile::current()->node_arena();
   665   uint new_max = _outmax;
   666   if( new_max == 0 ) {
   667     _outmax = 4;
   668     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
   669     return;
   670   }
   671   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
   672   // Trimming to limit allows a uint8 to handle up to 255 edges.
   673   // Previously I was using only powers-of-2 which peaked at 128 edges.
   674   //if( new_max >= limit ) new_max = limit-1;
   675   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
   676   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
   677   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
   678   _outmax = new_max;               // Record new max length
   679   // This assertion makes sure that Node::_max is wide enough to
   680   // represent the numerical value of new_max.
   681   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
   682 }
   684 #ifdef ASSERT
   685 //------------------------------is_dead----------------------------------------
   686 bool Node::is_dead() const {
   687   // Mach and pinch point nodes may look like dead.
   688   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
   689     return false;
   690   for( uint i = 0; i < _max; i++ )
   691     if( _in[i] != NULL )
   692       return false;
   693   dump();
   694   return true;
   695 }
   696 #endif
   699 //------------------------------is_unreachable---------------------------------
   700 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
   701   assert(!is_Mach(), "doesn't work with MachNodes");
   702   return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top();
   703 }
   705 //------------------------------add_req----------------------------------------
   706 // Add a new required input at the end
   707 void Node::add_req( Node *n ) {
   708   assert( is_not_dead(n), "can not use dead node");
   710   // Look to see if I can move precedence down one without reallocating
   711   if( (_cnt >= _max) || (in(_max-1) != NULL) )
   712     grow( _max+1 );
   714   // Find a precedence edge to move
   715   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
   716     uint i;
   717     for( i=_cnt; i<_max; i++ )
   718       if( in(i) == NULL )       // Find the NULL at end of prec edge list
   719         break;                  // There must be one, since we grew the array
   720     _in[i] = in(_cnt);          // Move prec over, making space for req edge
   721   }
   722   _in[_cnt++] = n;            // Stuff over old prec edge
   723   if (n != NULL) n->add_out((Node *)this);
   724 }
   726 //---------------------------add_req_batch-------------------------------------
   727 // Add a new required input at the end
   728 void Node::add_req_batch( Node *n, uint m ) {
   729   assert( is_not_dead(n), "can not use dead node");
   730   // check various edge cases
   731   if ((int)m <= 1) {
   732     assert((int)m >= 0, "oob");
   733     if (m != 0)  add_req(n);
   734     return;
   735   }
   737   // Look to see if I can move precedence down one without reallocating
   738   if( (_cnt+m) > _max || _in[_max-m] )
   739     grow( _max+m );
   741   // Find a precedence edge to move
   742   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
   743     uint i;
   744     for( i=_cnt; i<_max; i++ )
   745       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
   746         break;                  // There must be one, since we grew the array
   747     // Slide all the precs over by m positions (assume #prec << m).
   748     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
   749   }
   751   // Stuff over the old prec edges
   752   for(uint i=0; i<m; i++ ) {
   753     _in[_cnt++] = n;
   754   }
   756   // Insert multiple out edges on the node.
   757   if (n != NULL && !n->is_top()) {
   758     for(uint i=0; i<m; i++ ) {
   759       n->add_out((Node *)this);
   760     }
   761   }
   762 }
   764 //------------------------------del_req----------------------------------------
   765 // Delete the required edge and compact the edge array
   766 void Node::del_req( uint idx ) {
   767   assert( idx < _cnt, "oob");
   768   assert( !VerifyHashTableKeys || _hash_lock == 0,
   769           "remove node from hash table before modifying it");
   770   // First remove corresponding def-use edge
   771   Node *n = in(idx);
   772   if (n != NULL) n->del_out((Node *)this);
   773   _in[idx] = in(--_cnt);  // Compact the array
   774   _in[_cnt] = NULL;       // NULL out emptied slot
   775 }
   777 //------------------------------del_req_ordered--------------------------------
   778 // Delete the required edge and compact the edge array with preserved order
   779 void Node::del_req_ordered( uint idx ) {
   780   assert( idx < _cnt, "oob");
   781   assert( !VerifyHashTableKeys || _hash_lock == 0,
   782           "remove node from hash table before modifying it");
   783   // First remove corresponding def-use edge
   784   Node *n = in(idx);
   785   if (n != NULL) n->del_out((Node *)this);
   786   if (idx < _cnt - 1) { // Not last edge ?
   787     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx-1)*sizeof(Node*)));
   788   }
   789   _in[--_cnt] = NULL;   // NULL out emptied slot
   790 }
   792 //------------------------------ins_req----------------------------------------
   793 // Insert a new required input at the end
   794 void Node::ins_req( uint idx, Node *n ) {
   795   assert( is_not_dead(n), "can not use dead node");
   796   add_req(NULL);                // Make space
   797   assert( idx < _max, "Must have allocated enough space");
   798   // Slide over
   799   if(_cnt-idx-1 > 0) {
   800     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
   801   }
   802   _in[idx] = n;                            // Stuff over old required edge
   803   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
   804 }
   806 //-----------------------------find_edge---------------------------------------
   807 int Node::find_edge(Node* n) {
   808   for (uint i = 0; i < len(); i++) {
   809     if (_in[i] == n)  return i;
   810   }
   811   return -1;
   812 }
   814 //----------------------------replace_edge-------------------------------------
   815 int Node::replace_edge(Node* old, Node* neww) {
   816   if (old == neww)  return 0;  // nothing to do
   817   uint nrep = 0;
   818   for (uint i = 0; i < len(); i++) {
   819     if (in(i) == old) {
   820       if (i < req())
   821         set_req(i, neww);
   822       else
   823         set_prec(i, neww);
   824       nrep++;
   825     }
   826   }
   827   return nrep;
   828 }
   830 /**
   831  * Replace input edges in the range pointing to 'old' node.
   832  */
   833 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
   834   if (old == neww)  return 0;  // nothing to do
   835   uint nrep = 0;
   836   for (int i = start; i < end; i++) {
   837     if (in(i) == old) {
   838       set_req(i, neww);
   839       nrep++;
   840     }
   841   }
   842   return nrep;
   843 }
   845 //-------------------------disconnect_inputs-----------------------------------
   846 // NULL out all inputs to eliminate incoming Def-Use edges.
   847 // Return the number of edges between 'n' and 'this'
   848 int Node::disconnect_inputs(Node *n, Compile* C) {
   849   int edges_to_n = 0;
   851   uint cnt = req();
   852   for( uint i = 0; i < cnt; ++i ) {
   853     if( in(i) == 0 ) continue;
   854     if( in(i) == n ) ++edges_to_n;
   855     set_req(i, NULL);
   856   }
   857   // Remove precedence edges if any exist
   858   // Note: Safepoints may have precedence edges, even during parsing
   859   if( (req() != len()) && (in(req()) != NULL) ) {
   860     uint max = len();
   861     for( uint i = 0; i < max; ++i ) {
   862       if( in(i) == 0 ) continue;
   863       if( in(i) == n ) ++edges_to_n;
   864       set_prec(i, NULL);
   865     }
   866   }
   868   // Node::destruct requires all out edges be deleted first
   869   // debug_only(destruct();)   // no reuse benefit expected
   870   if (edges_to_n == 0) {
   871     C->record_dead_node(_idx);
   872   }
   873   return edges_to_n;
   874 }
   876 //-----------------------------uncast---------------------------------------
   877 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
   878 // Strip away casting.  (It is depth-limited.)
   879 Node* Node::uncast() const {
   880   // Should be inline:
   881   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
   882   if (is_ConstraintCast() || is_CheckCastPP())
   883     return uncast_helper(this);
   884   else
   885     return (Node*) this;
   886 }
   888 //---------------------------uncast_helper-------------------------------------
   889 Node* Node::uncast_helper(const Node* p) {
   890 #ifdef ASSERT
   891   uint depth_count = 0;
   892   const Node* orig_p = p;
   893 #endif
   895   while (true) {
   896 #ifdef ASSERT
   897     if (depth_count >= K) {
   898       orig_p->dump(4);
   899       if (p != orig_p)
   900         p->dump(1);
   901     }
   902     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
   903 #endif
   904     if (p == NULL || p->req() != 2) {
   905       break;
   906     } else if (p->is_ConstraintCast()) {
   907       p = p->in(1);
   908     } else if (p->is_CheckCastPP()) {
   909       p = p->in(1);
   910     } else {
   911       break;
   912     }
   913   }
   914   return (Node*) p;
   915 }
   917 //------------------------------add_prec---------------------------------------
   918 // Add a new precedence input.  Precedence inputs are unordered, with
   919 // duplicates removed and NULLs packed down at the end.
   920 void Node::add_prec( Node *n ) {
   921   assert( is_not_dead(n), "can not use dead node");
   923   // Check for NULL at end
   924   if( _cnt >= _max || in(_max-1) )
   925     grow( _max+1 );
   927   // Find a precedence edge to move
   928   uint i = _cnt;
   929   while( in(i) != NULL ) i++;
   930   _in[i] = n;                                // Stuff prec edge over NULL
   931   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
   932 }
   934 //------------------------------rm_prec----------------------------------------
   935 // Remove a precedence input.  Precedence inputs are unordered, with
   936 // duplicates removed and NULLs packed down at the end.
   937 void Node::rm_prec( uint j ) {
   939   // Find end of precedence list to pack NULLs
   940   uint i;
   941   for( i=j; i<_max; i++ )
   942     if( !_in[i] )               // Find the NULL at end of prec edge list
   943       break;
   944   if (_in[j] != NULL) _in[j]->del_out((Node *)this);
   945   _in[j] = _in[--i];            // Move last element over removed guy
   946   _in[i] = NULL;                // NULL out last element
   947 }
   949 //------------------------------size_of----------------------------------------
   950 uint Node::size_of() const { return sizeof(*this); }
   952 //------------------------------ideal_reg--------------------------------------
   953 uint Node::ideal_reg() const { return 0; }
   955 //------------------------------jvms-------------------------------------------
   956 JVMState* Node::jvms() const { return NULL; }
   958 #ifdef ASSERT
   959 //------------------------------jvms-------------------------------------------
   960 bool Node::verify_jvms(const JVMState* using_jvms) const {
   961   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
   962     if (jvms == using_jvms)  return true;
   963   }
   964   return false;
   965 }
   967 //------------------------------init_NodeProperty------------------------------
   968 void Node::init_NodeProperty() {
   969   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
   970   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
   971 }
   972 #endif
   974 //------------------------------format-----------------------------------------
   975 // Print as assembly
   976 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
   977 //------------------------------emit-------------------------------------------
   978 // Emit bytes starting at parameter 'ptr'.
   979 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
   980 //------------------------------size-------------------------------------------
   981 // Size of instruction in bytes
   982 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
   984 //------------------------------CFG Construction-------------------------------
   985 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
   986 // Goto and Return.
   987 const Node *Node::is_block_proj() const { return 0; }
   989 // Minimum guaranteed type
   990 const Type *Node::bottom_type() const { return Type::BOTTOM; }
   993 //------------------------------raise_bottom_type------------------------------
   994 // Get the worst-case Type output for this Node.
   995 void Node::raise_bottom_type(const Type* new_type) {
   996   if (is_Type()) {
   997     TypeNode *n = this->as_Type();
   998     if (VerifyAliases) {
   999       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
  1001     n->set_type(new_type);
  1002   } else if (is_Load()) {
  1003     LoadNode *n = this->as_Load();
  1004     if (VerifyAliases) {
  1005       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
  1007     n->set_type(new_type);
  1011 //------------------------------Identity---------------------------------------
  1012 // Return a node that the given node is equivalent to.
  1013 Node *Node::Identity( PhaseTransform * ) {
  1014   return this;                  // Default to no identities
  1017 //------------------------------Value------------------------------------------
  1018 // Compute a new Type for a node using the Type of the inputs.
  1019 const Type *Node::Value( PhaseTransform * ) const {
  1020   return bottom_type();         // Default to worst-case Type
  1023 //------------------------------Ideal------------------------------------------
  1024 //
  1025 // 'Idealize' the graph rooted at this Node.
  1026 //
  1027 // In order to be efficient and flexible there are some subtle invariants
  1028 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
  1029 // these invariants, although its too slow to have on by default.  If you are
  1030 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
  1031 //
  1032 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
  1033 // pointer.  If ANY change is made, it must return the root of the reshaped
  1034 // graph - even if the root is the same Node.  Example: swapping the inputs
  1035 // to an AddINode gives the same answer and same root, but you still have to
  1036 // return the 'this' pointer instead of NULL.
  1037 //
  1038 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
  1039 // Identity call to return an old Node; basically if Identity can find
  1040 // another Node have the Ideal call make no change and return NULL.
  1041 // Example: AddINode::Ideal must check for add of zero; in this case it
  1042 // returns NULL instead of doing any graph reshaping.
  1043 //
  1044 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
  1045 // sharing there may be other users of the old Nodes relying on their current
  1046 // semantics.  Modifying them will break the other users.
  1047 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
  1048 // "X+3" unchanged in case it is shared.
  1049 //
  1050 // If you modify the 'this' pointer's inputs, you should use
  1051 // 'set_req'.  If you are making a new Node (either as the new root or
  1052 // some new internal piece) you may use 'init_req' to set the initial
  1053 // value.  You can make a new Node with either 'new' or 'clone'.  In
  1054 // either case, def-use info is correctly maintained.
  1055 //
  1056 // Example: reshape "(X+3)+4" into "X+7":
  1057 //    set_req(1, in(1)->in(1));
  1058 //    set_req(2, phase->intcon(7));
  1059 //    return this;
  1060 // Example: reshape "X*4" into "X<<2"
  1061 //    return new (C) LShiftINode(in(1), phase->intcon(2));
  1062 //
  1063 // You must call 'phase->transform(X)' on any new Nodes X you make, except
  1064 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
  1065 //    Node *shift=phase->transform(new(C)LShiftINode(in(1),phase->intcon(5)));
  1066 //    return new (C) AddINode(shift, in(1));
  1067 //
  1068 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
  1069 // These forms are faster than 'phase->transform(new (C) ConNode())' and Do
  1070 // The Right Thing with def-use info.
  1071 //
  1072 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
  1073 // graph uses the 'this' Node it must be the root.  If you want a Node with
  1074 // the same Opcode as the 'this' pointer use 'clone'.
  1075 //
  1076 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
  1077   return NULL;                  // Default to being Ideal already
  1080 // Some nodes have specific Ideal subgraph transformations only if they are
  1081 // unique users of specific nodes. Such nodes should be put on IGVN worklist
  1082 // for the transformations to happen.
  1083 bool Node::has_special_unique_user() const {
  1084   assert(outcnt() == 1, "match only for unique out");
  1085   Node* n = unique_out();
  1086   int op  = Opcode();
  1087   if( this->is_Store() ) {
  1088     // Condition for back-to-back stores folding.
  1089     return n->Opcode() == op && n->in(MemNode::Memory) == this;
  1090   } else if( op == Op_AddL ) {
  1091     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
  1092     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
  1093   } else if( op == Op_SubI || op == Op_SubL ) {
  1094     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
  1095     return n->Opcode() == op && n->in(2) == this;
  1097   return false;
  1098 };
  1100 //--------------------------find_exact_control---------------------------------
  1101 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
  1102 Node* Node::find_exact_control(Node* ctrl) {
  1103   if (ctrl == NULL && this->is_Region())
  1104     ctrl = this->as_Region()->is_copy();
  1106   if (ctrl != NULL && ctrl->is_CatchProj()) {
  1107     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
  1108       ctrl = ctrl->in(0);
  1109     if (ctrl != NULL && !ctrl->is_top())
  1110       ctrl = ctrl->in(0);
  1113   if (ctrl != NULL && ctrl->is_Proj())
  1114     ctrl = ctrl->in(0);
  1116   return ctrl;
  1119 //--------------------------dominates------------------------------------------
  1120 // Helper function for MemNode::all_controls_dominate().
  1121 // Check if 'this' control node dominates or equal to 'sub' control node.
  1122 // We already know that if any path back to Root or Start reaches 'this',
  1123 // then all paths so, so this is a simple search for one example,
  1124 // not an exhaustive search for a counterexample.
  1125 bool Node::dominates(Node* sub, Node_List &nlist) {
  1126   assert(this->is_CFG(), "expecting control");
  1127   assert(sub != NULL && sub->is_CFG(), "expecting control");
  1129   // detect dead cycle without regions
  1130   int iterations_without_region_limit = DominatorSearchLimit;
  1132   Node* orig_sub = sub;
  1133   Node* dom      = this;
  1134   bool  met_dom  = false;
  1135   nlist.clear();
  1137   // Walk 'sub' backward up the chain to 'dom', watching for regions.
  1138   // After seeing 'dom', continue up to Root or Start.
  1139   // If we hit a region (backward split point), it may be a loop head.
  1140   // Keep going through one of the region's inputs.  If we reach the
  1141   // same region again, go through a different input.  Eventually we
  1142   // will either exit through the loop head, or give up.
  1143   // (If we get confused, break out and return a conservative 'false'.)
  1144   while (sub != NULL) {
  1145     if (sub->is_top())  break; // Conservative answer for dead code.
  1146     if (sub == dom) {
  1147       if (nlist.size() == 0) {
  1148         // No Region nodes except loops were visited before and the EntryControl
  1149         // path was taken for loops: it did not walk in a cycle.
  1150         return true;
  1151       } else if (met_dom) {
  1152         break;          // already met before: walk in a cycle
  1153       } else {
  1154         // Region nodes were visited. Continue walk up to Start or Root
  1155         // to make sure that it did not walk in a cycle.
  1156         met_dom = true; // first time meet
  1157         iterations_without_region_limit = DominatorSearchLimit; // Reset
  1160     if (sub->is_Start() || sub->is_Root()) {
  1161       // Success if we met 'dom' along a path to Start or Root.
  1162       // We assume there are no alternative paths that avoid 'dom'.
  1163       // (This assumption is up to the caller to ensure!)
  1164       return met_dom;
  1166     Node* up = sub->in(0);
  1167     // Normalize simple pass-through regions and projections:
  1168     up = sub->find_exact_control(up);
  1169     // If sub == up, we found a self-loop.  Try to push past it.
  1170     if (sub == up && sub->is_Loop()) {
  1171       // Take loop entry path on the way up to 'dom'.
  1172       up = sub->in(1); // in(LoopNode::EntryControl);
  1173     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
  1174       // Always take in(1) path on the way up to 'dom' for clone regions
  1175       // (with only one input) or regions which merge > 2 paths
  1176       // (usually used to merge fast/slow paths).
  1177       up = sub->in(1);
  1178     } else if (sub == up && sub->is_Region()) {
  1179       // Try both paths for Regions with 2 input paths (it may be a loop head).
  1180       // It could give conservative 'false' answer without information
  1181       // which region's input is the entry path.
  1182       iterations_without_region_limit = DominatorSearchLimit; // Reset
  1184       bool region_was_visited_before = false;
  1185       // Was this Region node visited before?
  1186       // If so, we have reached it because we accidentally took a
  1187       // loop-back edge from 'sub' back into the body of the loop,
  1188       // and worked our way up again to the loop header 'sub'.
  1189       // So, take the first unexplored path on the way up to 'dom'.
  1190       for (int j = nlist.size() - 1; j >= 0; j--) {
  1191         intptr_t ni = (intptr_t)nlist.at(j);
  1192         Node* visited = (Node*)(ni & ~1);
  1193         bool  visited_twice_already = ((ni & 1) != 0);
  1194         if (visited == sub) {
  1195           if (visited_twice_already) {
  1196             // Visited 2 paths, but still stuck in loop body.  Give up.
  1197             return false;
  1199           // The Region node was visited before only once.
  1200           // (We will repush with the low bit set, below.)
  1201           nlist.remove(j);
  1202           // We will find a new edge and re-insert.
  1203           region_was_visited_before = true;
  1204           break;
  1208       // Find an incoming edge which has not been seen yet; walk through it.
  1209       assert(up == sub, "");
  1210       uint skip = region_was_visited_before ? 1 : 0;
  1211       for (uint i = 1; i < sub->req(); i++) {
  1212         Node* in = sub->in(i);
  1213         if (in != NULL && !in->is_top() && in != sub) {
  1214           if (skip == 0) {
  1215             up = in;
  1216             break;
  1218           --skip;               // skip this nontrivial input
  1222       // Set 0 bit to indicate that both paths were taken.
  1223       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
  1226     if (up == sub) {
  1227       break;    // some kind of tight cycle
  1229     if (up == orig_sub && met_dom) {
  1230       // returned back after visiting 'dom'
  1231       break;    // some kind of cycle
  1233     if (--iterations_without_region_limit < 0) {
  1234       break;    // dead cycle
  1236     sub = up;
  1239   // Did not meet Root or Start node in pred. chain.
  1240   // Conservative answer for dead code.
  1241   return false;
  1244 //------------------------------remove_dead_region-----------------------------
  1245 // This control node is dead.  Follow the subgraph below it making everything
  1246 // using it dead as well.  This will happen normally via the usual IterGVN
  1247 // worklist but this call is more efficient.  Do not update use-def info
  1248 // inside the dead region, just at the borders.
  1249 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
  1250   // Con's are a popular node to re-hit in the hash table again.
  1251   if( dead->is_Con() ) return;
  1253   // Can't put ResourceMark here since igvn->_worklist uses the same arena
  1254   // for verify pass with +VerifyOpto and we add/remove elements in it here.
  1255   Node_List  nstack(Thread::current()->resource_area());
  1257   Node *top = igvn->C->top();
  1258   nstack.push(dead);
  1259   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
  1261   while (nstack.size() > 0) {
  1262     dead = nstack.pop();
  1263     if (dead->outcnt() > 0) {
  1264       // Keep dead node on stack until all uses are processed.
  1265       nstack.push(dead);
  1266       // For all Users of the Dead...    ;-)
  1267       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
  1268         Node* use = dead->last_out(k);
  1269         igvn->hash_delete(use);       // Yank from hash table prior to mod
  1270         if (use->in(0) == dead) {     // Found another dead node
  1271           assert (!use->is_Con(), "Control for Con node should be Root node.");
  1272           use->set_req(0, top);       // Cut dead edge to prevent processing
  1273           nstack.push(use);           // the dead node again.
  1274         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
  1275                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
  1276                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
  1277           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
  1278           use->set_req(0, top);       // Cut self edge
  1279           nstack.push(use);
  1280         } else {                      // Else found a not-dead user
  1281           // Dead if all inputs are top or null
  1282           bool dead_use = !use->is_Root(); // Keep empty graph alive
  1283           for (uint j = 1; j < use->req(); j++) {
  1284             Node* in = use->in(j);
  1285             if (in == dead) {         // Turn all dead inputs into TOP
  1286               use->set_req(j, top);
  1287             } else if (in != NULL && !in->is_top()) {
  1288               dead_use = false;
  1291           if (dead_use) {
  1292             if (use->is_Region()) {
  1293               use->set_req(0, top);   // Cut self edge
  1295             nstack.push(use);
  1296           } else {
  1297             igvn->_worklist.push(use);
  1300         // Refresh the iterator, since any number of kills might have happened.
  1301         k = dead->last_outs(kmin);
  1303     } else { // (dead->outcnt() == 0)
  1304       // Done with outputs.
  1305       igvn->hash_delete(dead);
  1306       igvn->_worklist.remove(dead);
  1307       igvn->set_type(dead, Type::TOP);
  1308       if (dead->is_macro()) {
  1309         igvn->C->remove_macro_node(dead);
  1311       if (dead->is_expensive()) {
  1312         igvn->C->remove_expensive_node(dead);
  1314       igvn->C->record_dead_node(dead->_idx);
  1315       // Kill all inputs to the dead guy
  1316       for (uint i=0; i < dead->req(); i++) {
  1317         Node *n = dead->in(i);      // Get input to dead guy
  1318         if (n != NULL && !n->is_top()) { // Input is valid?
  1319           dead->set_req(i, top);    // Smash input away
  1320           if (n->outcnt() == 0) {   // Input also goes dead?
  1321             if (!n->is_Con())
  1322               nstack.push(n);       // Clear it out as well
  1323           } else if (n->outcnt() == 1 &&
  1324                      n->has_special_unique_user()) {
  1325             igvn->add_users_to_worklist( n );
  1326           } else if (n->outcnt() <= 2 && n->is_Store()) {
  1327             // Push store's uses on worklist to enable folding optimization for
  1328             // store/store and store/load to the same address.
  1329             // The restriction (outcnt() <= 2) is the same as in set_req_X()
  1330             // and remove_globally_dead_node().
  1331             igvn->add_users_to_worklist( n );
  1335     } // (dead->outcnt() == 0)
  1336   }   // while (nstack.size() > 0) for outputs
  1337   return;
  1340 //------------------------------remove_dead_region-----------------------------
  1341 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
  1342   Node *n = in(0);
  1343   if( !n ) return false;
  1344   // Lost control into this guy?  I.e., it became unreachable?
  1345   // Aggressively kill all unreachable code.
  1346   if (can_reshape && n->is_top()) {
  1347     kill_dead_code(this, phase->is_IterGVN());
  1348     return false; // Node is dead.
  1351   if( n->is_Region() && n->as_Region()->is_copy() ) {
  1352     Node *m = n->nonnull_req();
  1353     set_req(0, m);
  1354     return true;
  1356   return false;
  1359 //------------------------------Ideal_DU_postCCP-------------------------------
  1360 // Idealize graph, using DU info.  Must clone result into new-space
  1361 Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
  1362   return NULL;                 // Default to no change
  1365 //------------------------------hash-------------------------------------------
  1366 // Hash function over Nodes.
  1367 uint Node::hash() const {
  1368   uint sum = 0;
  1369   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
  1370     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
  1371   return (sum>>2) + _cnt + Opcode();
  1374 //------------------------------cmp--------------------------------------------
  1375 // Compare special parts of simple Nodes
  1376 uint Node::cmp( const Node &n ) const {
  1377   return 1;                     // Must be same
  1380 //------------------------------rematerialize-----------------------------------
  1381 // Should we clone rather than spill this instruction?
  1382 bool Node::rematerialize() const {
  1383   if ( is_Mach() )
  1384     return this->as_Mach()->rematerialize();
  1385   else
  1386     return (_flags & Flag_rematerialize) != 0;
  1389 //------------------------------needs_anti_dependence_check---------------------
  1390 // Nodes which use memory without consuming it, hence need antidependences.
  1391 bool Node::needs_anti_dependence_check() const {
  1392   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
  1393     return false;
  1394   else
  1395     return in(1)->bottom_type()->has_memory();
  1399 // Get an integer constant from a ConNode (or CastIINode).
  1400 // Return a default value if there is no apparent constant here.
  1401 const TypeInt* Node::find_int_type() const {
  1402   if (this->is_Type()) {
  1403     return this->as_Type()->type()->isa_int();
  1404   } else if (this->is_Con()) {
  1405     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
  1406     return this->bottom_type()->isa_int();
  1408   return NULL;
  1411 // Get a pointer constant from a ConstNode.
  1412 // Returns the constant if it is a pointer ConstNode
  1413 intptr_t Node::get_ptr() const {
  1414   assert( Opcode() == Op_ConP, "" );
  1415   return ((ConPNode*)this)->type()->is_ptr()->get_con();
  1418 // Get a narrow oop constant from a ConNNode.
  1419 intptr_t Node::get_narrowcon() const {
  1420   assert( Opcode() == Op_ConN, "" );
  1421   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
  1424 // Get a long constant from a ConNode.
  1425 // Return a default value if there is no apparent constant here.
  1426 const TypeLong* Node::find_long_type() const {
  1427   if (this->is_Type()) {
  1428     return this->as_Type()->type()->isa_long();
  1429   } else if (this->is_Con()) {
  1430     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
  1431     return this->bottom_type()->isa_long();
  1433   return NULL;
  1437 /**
  1438  * Return a ptr type for nodes which should have it.
  1439  */
  1440 const TypePtr* Node::get_ptr_type() const {
  1441   const TypePtr* tp = this->bottom_type()->make_ptr();
  1442 #ifdef ASSERT
  1443   if (tp == NULL) {
  1444     this->dump(1);
  1445     assert((tp != NULL), "unexpected node type");
  1447 #endif
  1448   return tp;
  1451 // Get a double constant from a ConstNode.
  1452 // Returns the constant if it is a double ConstNode
  1453 jdouble Node::getd() const {
  1454   assert( Opcode() == Op_ConD, "" );
  1455   return ((ConDNode*)this)->type()->is_double_constant()->getd();
  1458 // Get a float constant from a ConstNode.
  1459 // Returns the constant if it is a float ConstNode
  1460 jfloat Node::getf() const {
  1461   assert( Opcode() == Op_ConF, "" );
  1462   return ((ConFNode*)this)->type()->is_float_constant()->getf();
  1465 #ifndef PRODUCT
  1467 //----------------------------NotANode----------------------------------------
  1468 // Used in debugging code to avoid walking across dead or uninitialized edges.
  1469 static inline bool NotANode(const Node* n) {
  1470   if (n == NULL)                   return true;
  1471   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
  1472   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
  1473   return false;
  1477 //------------------------------find------------------------------------------
  1478 // Find a neighbor of this Node with the given _idx
  1479 // If idx is negative, find its absolute value, following both _in and _out.
  1480 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
  1481                         VectorSet* old_space, VectorSet* new_space ) {
  1482   int node_idx = (idx >= 0) ? idx : -idx;
  1483   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
  1484   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
  1485   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
  1486   if( v->test(n->_idx) ) return;
  1487   if( (int)n->_idx == node_idx
  1488       debug_only(|| n->debug_idx() == node_idx) ) {
  1489     if (result != NULL)
  1490       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
  1491                  (uintptr_t)result, (uintptr_t)n, node_idx);
  1492     result = n;
  1494   v->set(n->_idx);
  1495   for( uint i=0; i<n->len(); i++ ) {
  1496     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
  1497     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
  1499   // Search along forward edges also:
  1500   if (idx < 0 && !only_ctrl) {
  1501     for( uint j=0; j<n->outcnt(); j++ ) {
  1502       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
  1505 #ifdef ASSERT
  1506   // Search along debug_orig edges last, checking for cycles
  1507   Node* orig = n->debug_orig();
  1508   if (orig != NULL) {
  1509     do {
  1510       if (NotANode(orig))  break;
  1511       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
  1512       orig = orig->debug_orig();
  1513     } while (orig != NULL && orig != n->debug_orig());
  1515 #endif //ASSERT
  1518 // call this from debugger:
  1519 Node* find_node(Node* n, int idx) {
  1520   return n->find(idx);
  1523 //------------------------------find-------------------------------------------
  1524 Node* Node::find(int idx) const {
  1525   ResourceArea *area = Thread::current()->resource_area();
  1526   VectorSet old_space(area), new_space(area);
  1527   Node* result = NULL;
  1528   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
  1529   return result;
  1532 //------------------------------find_ctrl--------------------------------------
  1533 // Find an ancestor to this node in the control history with given _idx
  1534 Node* Node::find_ctrl(int idx) const {
  1535   ResourceArea *area = Thread::current()->resource_area();
  1536   VectorSet old_space(area), new_space(area);
  1537   Node* result = NULL;
  1538   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
  1539   return result;
  1541 #endif
  1545 #ifndef PRODUCT
  1547 // -----------------------------Name-------------------------------------------
  1548 extern const char *NodeClassNames[];
  1549 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
  1551 static bool is_disconnected(const Node* n) {
  1552   for (uint i = 0; i < n->req(); i++) {
  1553     if (n->in(i) != NULL)  return false;
  1555   return true;
  1558 #ifdef ASSERT
  1559 static void dump_orig(Node* orig, outputStream *st) {
  1560   Compile* C = Compile::current();
  1561   if (NotANode(orig)) orig = NULL;
  1562   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
  1563   if (orig == NULL) return;
  1564   st->print(" !orig=");
  1565   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
  1566   if (NotANode(fast)) fast = NULL;
  1567   while (orig != NULL) {
  1568     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
  1569     if (discon) st->print("[");
  1570     if (!Compile::current()->node_arena()->contains(orig))
  1571       st->print("o");
  1572     st->print("%d", orig->_idx);
  1573     if (discon) st->print("]");
  1574     orig = orig->debug_orig();
  1575     if (NotANode(orig)) orig = NULL;
  1576     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
  1577     if (orig != NULL) st->print(",");
  1578     if (fast != NULL) {
  1579       // Step fast twice for each single step of orig:
  1580       fast = fast->debug_orig();
  1581       if (NotANode(fast)) fast = NULL;
  1582       if (fast != NULL && fast != orig) {
  1583         fast = fast->debug_orig();
  1584         if (NotANode(fast)) fast = NULL;
  1586       if (fast == orig) {
  1587         st->print("...");
  1588         break;
  1594 void Node::set_debug_orig(Node* orig) {
  1595   _debug_orig = orig;
  1596   if (BreakAtNode == 0)  return;
  1597   if (NotANode(orig))  orig = NULL;
  1598   int trip = 10;
  1599   while (orig != NULL) {
  1600     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
  1601       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
  1602                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
  1603       BREAKPOINT;
  1605     orig = orig->debug_orig();
  1606     if (NotANode(orig))  orig = NULL;
  1607     if (trip-- <= 0)  break;
  1610 #endif //ASSERT
  1612 //------------------------------dump------------------------------------------
  1613 // Dump a Node
  1614 void Node::dump(const char* suffix, outputStream *st) const {
  1615   Compile* C = Compile::current();
  1616   bool is_new = C->node_arena()->contains(this);
  1617   C->_in_dump_cnt++;
  1618   st->print("%c%d\t%s\t=== ", is_new ? ' ' : 'o', _idx, Name());
  1620   // Dump the required and precedence inputs
  1621   dump_req(st);
  1622   dump_prec(st);
  1623   // Dump the outputs
  1624   dump_out(st);
  1626   if (is_disconnected(this)) {
  1627 #ifdef ASSERT
  1628     st->print("  [%d]",debug_idx());
  1629     dump_orig(debug_orig(), st);
  1630 #endif
  1631     st->cr();
  1632     C->_in_dump_cnt--;
  1633     return;                     // don't process dead nodes
  1636   // Dump node-specific info
  1637   dump_spec(st);
  1638 #ifdef ASSERT
  1639   // Dump the non-reset _debug_idx
  1640   if (Verbose && WizardMode) {
  1641     st->print("  [%d]",debug_idx());
  1643 #endif
  1645   const Type *t = bottom_type();
  1647   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
  1648     const TypeInstPtr  *toop = t->isa_instptr();
  1649     const TypeKlassPtr *tkls = t->isa_klassptr();
  1650     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
  1651     if (klass && klass->is_loaded() && klass->is_interface()) {
  1652       st->print("  Interface:");
  1653     } else if (toop) {
  1654       st->print("  Oop:");
  1655     } else if (tkls) {
  1656       st->print("  Klass:");
  1658     t->dump_on(st);
  1659   } else if (t == Type::MEMORY) {
  1660     st->print("  Memory:");
  1661     MemNode::dump_adr_type(this, adr_type(), st);
  1662   } else if (Verbose || WizardMode) {
  1663     st->print("  Type:");
  1664     if (t) {
  1665       t->dump_on(st);
  1666     } else {
  1667       st->print("no type");
  1669   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
  1670     // Dump MachSpillcopy vector type.
  1671     t->dump_on(st);
  1673   if (is_new) {
  1674     debug_only(dump_orig(debug_orig(), st));
  1675     Node_Notes* nn = C->node_notes_at(_idx);
  1676     if (nn != NULL && !nn->is_clear()) {
  1677       if (nn->jvms() != NULL) {
  1678         st->print(" !jvms:");
  1679         nn->jvms()->dump_spec(st);
  1683   if (suffix) st->print("%s", suffix);
  1684   C->_in_dump_cnt--;
  1687 //------------------------------dump_req--------------------------------------
  1688 void Node::dump_req(outputStream *st) const {
  1689   // Dump the required input edges
  1690   for (uint i = 0; i < req(); i++) {    // For all required inputs
  1691     Node* d = in(i);
  1692     if (d == NULL) {
  1693       st->print("_ ");
  1694     } else if (NotANode(d)) {
  1695       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
  1696     } else {
  1697       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
  1703 //------------------------------dump_prec-------------------------------------
  1704 void Node::dump_prec(outputStream *st) const {
  1705   // Dump the precedence edges
  1706   int any_prec = 0;
  1707   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
  1708     Node* p = in(i);
  1709     if (p != NULL) {
  1710       if (!any_prec++) st->print(" |");
  1711       if (NotANode(p)) { st->print("NotANode "); continue; }
  1712       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
  1717 //------------------------------dump_out--------------------------------------
  1718 void Node::dump_out(outputStream *st) const {
  1719   // Delimit the output edges
  1720   st->print(" [[");
  1721   // Dump the output edges
  1722   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
  1723     Node* u = _out[i];
  1724     if (u == NULL) {
  1725       st->print("_ ");
  1726     } else if (NotANode(u)) {
  1727       st->print("NotANode ");
  1728     } else {
  1729       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
  1732   st->print("]] ");
  1735 //------------------------------dump_nodes-------------------------------------
  1736 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
  1737   Node* s = (Node*)start; // remove const
  1738   if (NotANode(s)) return;
  1740   uint depth = (uint)ABS(d);
  1741   int direction = d;
  1742   Compile* C = Compile::current();
  1743   GrowableArray <Node *> nstack(C->unique());
  1745   nstack.append(s);
  1746   int begin = 0;
  1747   int end = 0;
  1748   for(uint i = 0; i < depth; i++) {
  1749     end = nstack.length();
  1750     for(int j = begin; j < end; j++) {
  1751       Node* tp  = nstack.at(j);
  1752       uint limit = direction > 0 ? tp->len() : tp->outcnt();
  1753       for(uint k = 0; k < limit; k++) {
  1754         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
  1756         if (NotANode(n))  continue;
  1757         // do not recurse through top or the root (would reach unrelated stuff)
  1758         if (n->is_Root() || n->is_top())  continue;
  1759         if (only_ctrl && !n->is_CFG()) continue;
  1761         bool on_stack = nstack.contains(n);
  1762         if (!on_stack) {
  1763           nstack.append(n);
  1767     begin = end;
  1769   end = nstack.length();
  1770   if (direction > 0) {
  1771     for(int j = end-1; j >= 0; j--) {
  1772       nstack.at(j)->dump();
  1774   } else {
  1775     for(int j = 0; j < end; j++) {
  1776       nstack.at(j)->dump();
  1781 //------------------------------dump-------------------------------------------
  1782 void Node::dump(int d) const {
  1783   dump_nodes(this, d, false);
  1786 //------------------------------dump_ctrl--------------------------------------
  1787 // Dump a Node's control history to depth
  1788 void Node::dump_ctrl(int d) const {
  1789   dump_nodes(this, d, true);
  1792 // VERIFICATION CODE
  1793 // For each input edge to a node (ie - for each Use-Def edge), verify that
  1794 // there is a corresponding Def-Use edge.
  1795 //------------------------------verify_edges-----------------------------------
  1796 void Node::verify_edges(Unique_Node_List &visited) {
  1797   uint i, j, idx;
  1798   int  cnt;
  1799   Node *n;
  1801   // Recursive termination test
  1802   if (visited.member(this))  return;
  1803   visited.push(this);
  1805   // Walk over all input edges, checking for correspondence
  1806   for( i = 0; i < len(); i++ ) {
  1807     n = in(i);
  1808     if (n != NULL && !n->is_top()) {
  1809       // Count instances of (Node *)this
  1810       cnt = 0;
  1811       for (idx = 0; idx < n->_outcnt; idx++ ) {
  1812         if (n->_out[idx] == (Node *)this)  cnt++;
  1814       assert( cnt > 0,"Failed to find Def-Use edge." );
  1815       // Check for duplicate edges
  1816       // walk the input array downcounting the input edges to n
  1817       for( j = 0; j < len(); j++ ) {
  1818         if( in(j) == n ) cnt--;
  1820       assert( cnt == 0,"Mismatched edge count.");
  1821     } else if (n == NULL) {
  1822       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
  1823     } else {
  1824       assert(n->is_top(), "sanity");
  1825       // Nothing to check.
  1828   // Recursive walk over all input edges
  1829   for( i = 0; i < len(); i++ ) {
  1830     n = in(i);
  1831     if( n != NULL )
  1832       in(i)->verify_edges(visited);
  1836 //------------------------------verify_recur-----------------------------------
  1837 static const Node *unique_top = NULL;
  1839 void Node::verify_recur(const Node *n, int verify_depth,
  1840                         VectorSet &old_space, VectorSet &new_space) {
  1841   if ( verify_depth == 0 )  return;
  1842   if (verify_depth > 0)  --verify_depth;
  1844   Compile* C = Compile::current();
  1846   // Contained in new_space or old_space?
  1847   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
  1848   // Check for visited in the proper space.  Numberings are not unique
  1849   // across spaces so we need a separate VectorSet for each space.
  1850   if( v->test_set(n->_idx) ) return;
  1852   if (n->is_Con() && n->bottom_type() == Type::TOP) {
  1853     if (C->cached_top_node() == NULL)
  1854       C->set_cached_top_node((Node*)n);
  1855     assert(C->cached_top_node() == n, "TOP node must be unique");
  1858   for( uint i = 0; i < n->len(); i++ ) {
  1859     Node *x = n->in(i);
  1860     if (!x || x->is_top()) continue;
  1862     // Verify my input has a def-use edge to me
  1863     if (true /*VerifyDefUse*/) {
  1864       // Count use-def edges from n to x
  1865       int cnt = 0;
  1866       for( uint j = 0; j < n->len(); j++ )
  1867         if( n->in(j) == x )
  1868           cnt++;
  1869       // Count def-use edges from x to n
  1870       uint max = x->_outcnt;
  1871       for( uint k = 0; k < max; k++ )
  1872         if (x->_out[k] == n)
  1873           cnt--;
  1874       assert( cnt == 0, "mismatched def-use edge counts" );
  1877     verify_recur(x, verify_depth, old_space, new_space);
  1882 //------------------------------verify-----------------------------------------
  1883 // Check Def-Use info for my subgraph
  1884 void Node::verify() const {
  1885   Compile* C = Compile::current();
  1886   Node* old_top = C->cached_top_node();
  1887   ResourceMark rm;
  1888   ResourceArea *area = Thread::current()->resource_area();
  1889   VectorSet old_space(area), new_space(area);
  1890   verify_recur(this, -1, old_space, new_space);
  1891   C->set_cached_top_node(old_top);
  1893 #endif
  1896 //------------------------------walk-------------------------------------------
  1897 // Graph walk, with both pre-order and post-order functions
  1898 void Node::walk(NFunc pre, NFunc post, void *env) {
  1899   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
  1900   walk_(pre, post, env, visited);
  1903 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
  1904   if( visited.test_set(_idx) ) return;
  1905   pre(*this,env);               // Call the pre-order walk function
  1906   for( uint i=0; i<_max; i++ )
  1907     if( in(i) )                 // Input exists and is not walked?
  1908       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
  1909   post(*this,env);              // Call the post-order walk function
  1912 void Node::nop(Node &, void*) {}
  1914 //------------------------------Registers--------------------------------------
  1915 // Do we Match on this edge index or not?  Generally false for Control
  1916 // and true for everything else.  Weird for calls & returns.
  1917 uint Node::match_edge(uint idx) const {
  1918   return idx;                   // True for other than index 0 (control)
  1921 static RegMask _not_used_at_all;
  1922 // Register classes are defined for specific machines
  1923 const RegMask &Node::out_RegMask() const {
  1924   ShouldNotCallThis();
  1925   return _not_used_at_all;
  1928 const RegMask &Node::in_RegMask(uint) const {
  1929   ShouldNotCallThis();
  1930   return _not_used_at_all;
  1933 //=============================================================================
  1934 //-----------------------------------------------------------------------------
  1935 void Node_Array::reset( Arena *new_arena ) {
  1936   _a->Afree(_nodes,_max*sizeof(Node*));
  1937   _max   = 0;
  1938   _nodes = NULL;
  1939   _a     = new_arena;
  1942 //------------------------------clear------------------------------------------
  1943 // Clear all entries in _nodes to NULL but keep storage
  1944 void Node_Array::clear() {
  1945   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
  1948 //-----------------------------------------------------------------------------
  1949 void Node_Array::grow( uint i ) {
  1950   if( !_max ) {
  1951     _max = 1;
  1952     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
  1953     _nodes[0] = NULL;
  1955   uint old = _max;
  1956   while( i >= _max ) _max <<= 1;        // Double to fit
  1957   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
  1958   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
  1961 //-----------------------------------------------------------------------------
  1962 void Node_Array::insert( uint i, Node *n ) {
  1963   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
  1964   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
  1965   _nodes[i] = n;
  1968 //-----------------------------------------------------------------------------
  1969 void Node_Array::remove( uint i ) {
  1970   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
  1971   _nodes[_max-1] = NULL;
  1974 //-----------------------------------------------------------------------------
  1975 void Node_Array::sort( C_sort_func_t func) {
  1976   qsort( _nodes, _max, sizeof( Node* ), func );
  1979 //-----------------------------------------------------------------------------
  1980 void Node_Array::dump() const {
  1981 #ifndef PRODUCT
  1982   for( uint i = 0; i < _max; i++ ) {
  1983     Node *nn = _nodes[i];
  1984     if( nn != NULL ) {
  1985       tty->print("%5d--> ",i); nn->dump();
  1988 #endif
  1991 //--------------------------is_iteratively_computed------------------------------
  1992 // Operation appears to be iteratively computed (such as an induction variable)
  1993 // It is possible for this operation to return false for a loop-varying
  1994 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
  1995 bool Node::is_iteratively_computed() {
  1996   if (ideal_reg()) { // does operation have a result register?
  1997     for (uint i = 1; i < req(); i++) {
  1998       Node* n = in(i);
  1999       if (n != NULL && n->is_Phi()) {
  2000         for (uint j = 1; j < n->req(); j++) {
  2001           if (n->in(j) == this) {
  2002             return true;
  2008   return false;
  2011 //--------------------------find_similar------------------------------
  2012 // Return a node with opcode "opc" and same inputs as "this" if one can
  2013 // be found; Otherwise return NULL;
  2014 Node* Node::find_similar(int opc) {
  2015   if (req() >= 2) {
  2016     Node* def = in(1);
  2017     if (def && def->outcnt() >= 2) {
  2018       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
  2019         Node* use = def->fast_out(i);
  2020         if (use->Opcode() == opc &&
  2021             use->req() == req()) {
  2022           uint j;
  2023           for (j = 0; j < use->req(); j++) {
  2024             if (use->in(j) != in(j)) {
  2025               break;
  2028           if (j == use->req()) {
  2029             return use;
  2035   return NULL;
  2039 //--------------------------unique_ctrl_out------------------------------
  2040 // Return the unique control out if only one. Null if none or more than one.
  2041 Node* Node::unique_ctrl_out() {
  2042   Node* found = NULL;
  2043   for (uint i = 0; i < outcnt(); i++) {
  2044     Node* use = raw_out(i);
  2045     if (use->is_CFG() && use != this) {
  2046       if (found != NULL) return NULL;
  2047       found = use;
  2050   return found;
  2053 //=============================================================================
  2054 //------------------------------yank-------------------------------------------
  2055 // Find and remove
  2056 void Node_List::yank( Node *n ) {
  2057   uint i;
  2058   for( i = 0; i < _cnt; i++ )
  2059     if( _nodes[i] == n )
  2060       break;
  2062   if( i < _cnt )
  2063     _nodes[i] = _nodes[--_cnt];
  2066 //------------------------------dump-------------------------------------------
  2067 void Node_List::dump() const {
  2068 #ifndef PRODUCT
  2069   for( uint i = 0; i < _cnt; i++ )
  2070     if( _nodes[i] ) {
  2071       tty->print("%5d--> ",i);
  2072       _nodes[i]->dump();
  2074 #endif
  2077 //=============================================================================
  2078 //------------------------------remove-----------------------------------------
  2079 void Unique_Node_List::remove( Node *n ) {
  2080   if( _in_worklist[n->_idx] ) {
  2081     for( uint i = 0; i < size(); i++ )
  2082       if( _nodes[i] == n ) {
  2083         map(i,Node_List::pop());
  2084         _in_worklist >>= n->_idx;
  2085         return;
  2087     ShouldNotReachHere();
  2091 //-----------------------remove_useless_nodes----------------------------------
  2092 // Remove useless nodes from worklist
  2093 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
  2095   for( uint i = 0; i < size(); ++i ) {
  2096     Node *n = at(i);
  2097     assert( n != NULL, "Did not expect null entries in worklist");
  2098     if( ! useful.test(n->_idx) ) {
  2099       _in_worklist >>= n->_idx;
  2100       map(i,Node_List::pop());
  2101       // Node *replacement = Node_List::pop();
  2102       // if( i != size() ) { // Check if removing last entry
  2103       //   _nodes[i] = replacement;
  2104       // }
  2105       --i;  // Visit popped node
  2106       // If it was last entry, loop terminates since size() was also reduced
  2111 //=============================================================================
  2112 void Node_Stack::grow() {
  2113   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
  2114   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
  2115   size_t max = old_max << 1;             // max * 2
  2116   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
  2117   _inode_max = _inodes + max;
  2118   _inode_top = _inodes + old_top;        // restore _top
  2121 // Node_Stack is used to map nodes.
  2122 Node* Node_Stack::find(uint idx) const {
  2123   uint sz = size();
  2124   for (uint i=0; i < sz; i++) {
  2125     if (idx == index_at(i) )
  2126       return node_at(i);
  2128   return NULL;
  2131 //=============================================================================
  2132 uint TypeNode::size_of() const { return sizeof(*this); }
  2133 #ifndef PRODUCT
  2134 void TypeNode::dump_spec(outputStream *st) const {
  2135   if( !Verbose && !WizardMode ) {
  2136     // standard dump does this in Verbose and WizardMode
  2137     st->print(" #"); _type->dump_on(st);
  2140 #endif
  2141 uint TypeNode::hash() const {
  2142   return Node::hash() + _type->hash();
  2144 uint TypeNode::cmp( const Node &n ) const
  2145 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
  2146 const Type *TypeNode::bottom_type() const { return _type; }
  2147 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
  2149 //------------------------------ideal_reg--------------------------------------
  2150 uint TypeNode::ideal_reg() const {
  2151   return _type->ideal_reg();

mercurial