src/share/vm/opto/loopTransform.cpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/connode.hpp"
    31 #include "opto/divnode.hpp"
    32 #include "opto/loopnode.hpp"
    33 #include "opto/mulnode.hpp"
    34 #include "opto/rootnode.hpp"
    35 #include "opto/runtime.hpp"
    36 #include "opto/subnode.hpp"
    38 //------------------------------is_loop_exit-----------------------------------
    39 // Given an IfNode, return the loop-exiting projection or NULL if both
    40 // arms remain in the loop.
    41 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
    42   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
    43   PhaseIdealLoop *phase = _phase;
    44   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
    45   // we need loop unswitching instead of peeling.
    46   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
    47     return iff->raw_out(0);
    48   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
    49     return iff->raw_out(1);
    50   return NULL;
    51 }
    54 //=============================================================================
    57 //------------------------------record_for_igvn----------------------------
    58 // Put loop body on igvn work list
    59 void IdealLoopTree::record_for_igvn() {
    60   for( uint i = 0; i < _body.size(); i++ ) {
    61     Node *n = _body.at(i);
    62     _phase->_igvn._worklist.push(n);
    63   }
    64 }
    66 //------------------------------compute_exact_trip_count-----------------------
    67 // Compute loop exact trip count if possible. Do not recalculate trip count for
    68 // split loops (pre-main-post) which have their limits and inits behind Opaque node.
    69 void IdealLoopTree::compute_exact_trip_count( PhaseIdealLoop *phase ) {
    70   if (!_head->as_Loop()->is_valid_counted_loop()) {
    71     return;
    72   }
    73   CountedLoopNode* cl = _head->as_CountedLoop();
    74   // Trip count may become nonexact for iteration split loops since
    75   // RCE modifies limits. Note, _trip_count value is not reset since
    76   // it is used to limit unrolling of main loop.
    77   cl->set_nonexact_trip_count();
    79   // Loop's test should be part of loop.
    80   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
    81     return; // Infinite loop
    83 #ifdef ASSERT
    84   BoolTest::mask bt = cl->loopexit()->test_trip();
    85   assert(bt == BoolTest::lt || bt == BoolTest::gt ||
    86          bt == BoolTest::ne, "canonical test is expected");
    87 #endif
    89   Node* init_n = cl->init_trip();
    90   Node* limit_n = cl->limit();
    91   if (init_n  != NULL &&  init_n->is_Con() &&
    92       limit_n != NULL && limit_n->is_Con()) {
    93     // Use longs to avoid integer overflow.
    94     int stride_con  = cl->stride_con();
    95     jlong init_con   = cl->init_trip()->get_int();
    96     jlong limit_con  = cl->limit()->get_int();
    97     int stride_m    = stride_con - (stride_con > 0 ? 1 : -1);
    98     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
    99     if (trip_count > 0 && (julong)trip_count < (julong)max_juint) {
   100       // Set exact trip count.
   101       cl->set_exact_trip_count((uint)trip_count);
   102     }
   103   }
   104 }
   106 //------------------------------compute_profile_trip_cnt----------------------------
   107 // Compute loop trip count from profile data as
   108 //    (backedge_count + loop_exit_count) / loop_exit_count
   109 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
   110   if (!_head->is_CountedLoop()) {
   111     return;
   112   }
   113   CountedLoopNode* head = _head->as_CountedLoop();
   114   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
   115     return; // Already computed
   116   }
   117   float trip_cnt = (float)max_jint; // default is big
   119   Node* back = head->in(LoopNode::LoopBackControl);
   120   while (back != head) {
   121     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
   122         back->in(0) &&
   123         back->in(0)->is_If() &&
   124         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
   125         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
   126       break;
   127     }
   128     back = phase->idom(back);
   129   }
   130   if (back != head) {
   131     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
   132            back->in(0), "if-projection exists");
   133     IfNode* back_if = back->in(0)->as_If();
   134     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
   136     // Now compute a loop exit count
   137     float loop_exit_cnt = 0.0f;
   138     for( uint i = 0; i < _body.size(); i++ ) {
   139       Node *n = _body[i];
   140       if( n->is_If() ) {
   141         IfNode *iff = n->as_If();
   142         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
   143           Node *exit = is_loop_exit(iff);
   144           if( exit ) {
   145             float exit_prob = iff->_prob;
   146             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
   147             if (exit_prob > PROB_MIN) {
   148               float exit_cnt = iff->_fcnt * exit_prob;
   149               loop_exit_cnt += exit_cnt;
   150             }
   151           }
   152         }
   153       }
   154     }
   155     if (loop_exit_cnt > 0.0f) {
   156       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
   157     } else {
   158       // No exit count so use
   159       trip_cnt = loop_back_cnt;
   160     }
   161   }
   162 #ifndef PRODUCT
   163   if (TraceProfileTripCount) {
   164     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
   165   }
   166 #endif
   167   head->set_profile_trip_cnt(trip_cnt);
   168 }
   170 //---------------------is_invariant_addition-----------------------------
   171 // Return nonzero index of invariant operand for an Add or Sub
   172 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
   173 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
   174   int op = n->Opcode();
   175   if (op == Op_AddI || op == Op_SubI) {
   176     bool in1_invar = this->is_invariant(n->in(1));
   177     bool in2_invar = this->is_invariant(n->in(2));
   178     if (in1_invar && !in2_invar) return 1;
   179     if (!in1_invar && in2_invar) return 2;
   180   }
   181   return 0;
   182 }
   184 //---------------------reassociate_add_sub-----------------------------
   185 // Reassociate invariant add and subtract expressions:
   186 //
   187 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
   188 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
   189 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
   190 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
   191 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
   192 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
   193 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
   194 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
   195 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
   196 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
   197 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
   198 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
   199 //
   200 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
   201   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
   202   if (is_invariant(n1)) return NULL;
   203   int inv1_idx = is_invariant_addition(n1, phase);
   204   if (!inv1_idx) return NULL;
   205   // Don't mess with add of constant (igvn moves them to expression tree root.)
   206   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
   207   Node* inv1 = n1->in(inv1_idx);
   208   Node* n2 = n1->in(3 - inv1_idx);
   209   int inv2_idx = is_invariant_addition(n2, phase);
   210   if (!inv2_idx) return NULL;
   211   Node* x    = n2->in(3 - inv2_idx);
   212   Node* inv2 = n2->in(inv2_idx);
   214   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
   215   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
   216   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
   217   if (n1->is_Sub() && inv1_idx == 1) {
   218     neg_x    = !neg_x;
   219     neg_inv2 = !neg_inv2;
   220   }
   221   Node* inv1_c = phase->get_ctrl(inv1);
   222   Node* inv2_c = phase->get_ctrl(inv2);
   223   Node* n_inv1;
   224   if (neg_inv1) {
   225     Node *zero = phase->_igvn.intcon(0);
   226     phase->set_ctrl(zero, phase->C->root());
   227     n_inv1 = new (phase->C) SubINode(zero, inv1);
   228     phase->register_new_node(n_inv1, inv1_c);
   229   } else {
   230     n_inv1 = inv1;
   231   }
   232   Node* inv;
   233   if (neg_inv2) {
   234     inv = new (phase->C) SubINode(n_inv1, inv2);
   235   } else {
   236     inv = new (phase->C) AddINode(n_inv1, inv2);
   237   }
   238   phase->register_new_node(inv, phase->get_early_ctrl(inv));
   240   Node* addx;
   241   if (neg_x) {
   242     addx = new (phase->C) SubINode(inv, x);
   243   } else {
   244     addx = new (phase->C) AddINode(x, inv);
   245   }
   246   phase->register_new_node(addx, phase->get_ctrl(x));
   247   phase->_igvn.replace_node(n1, addx);
   248   assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
   249   _body.yank(n1);
   250   return addx;
   251 }
   253 //---------------------reassociate_invariants-----------------------------
   254 // Reassociate invariant expressions:
   255 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
   256   for (int i = _body.size() - 1; i >= 0; i--) {
   257     Node *n = _body.at(i);
   258     for (int j = 0; j < 5; j++) {
   259       Node* nn = reassociate_add_sub(n, phase);
   260       if (nn == NULL) break;
   261       n = nn; // again
   262     };
   263   }
   264 }
   266 //------------------------------policy_peeling---------------------------------
   267 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
   268 // make some loop-invariant test (usually a null-check) happen before the loop.
   269 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
   270   Node *test = ((IdealLoopTree*)this)->tail();
   271   int  body_size = ((IdealLoopTree*)this)->_body.size();
   272   int  live_node_count = phase->C->live_nodes();
   273   // Peeling does loop cloning which can result in O(N^2) node construction
   274   if( body_size > 255 /* Prevent overflow for large body_size */
   275       || (body_size * body_size + live_node_count > MaxNodeLimit) ) {
   276     return false;           // too large to safely clone
   277   }
   278   while( test != _head ) {      // Scan till run off top of loop
   279     if( test->is_If() ) {       // Test?
   280       Node *ctrl = phase->get_ctrl(test->in(1));
   281       if (ctrl->is_top())
   282         return false;           // Found dead test on live IF?  No peeling!
   283       // Standard IF only has one input value to check for loop invariance
   284       assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
   285       // Condition is not a member of this loop?
   286       if( !is_member(phase->get_loop(ctrl)) &&
   287           is_loop_exit(test) )
   288         return true;            // Found reason to peel!
   289     }
   290     // Walk up dominators to loop _head looking for test which is
   291     // executed on every path thru loop.
   292     test = phase->idom(test);
   293   }
   294   return false;
   295 }
   297 //------------------------------peeled_dom_test_elim---------------------------
   298 // If we got the effect of peeling, either by actually peeling or by making
   299 // a pre-loop which must execute at least once, we can remove all
   300 // loop-invariant dominated tests in the main body.
   301 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
   302   bool progress = true;
   303   while( progress ) {
   304     progress = false;           // Reset for next iteration
   305     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
   306     Node *test = prev->in(0);
   307     while( test != loop->_head ) { // Scan till run off top of loop
   309       int p_op = prev->Opcode();
   310       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
   311           test->is_If() &&      // Test?
   312           !test->in(1)->is_Con() && // And not already obvious?
   313           // Condition is not a member of this loop?
   314           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
   315         // Walk loop body looking for instances of this test
   316         for( uint i = 0; i < loop->_body.size(); i++ ) {
   317           Node *n = loop->_body.at(i);
   318           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
   319             // IfNode was dominated by version in peeled loop body
   320             progress = true;
   321             dominated_by( old_new[prev->_idx], n );
   322           }
   323         }
   324       }
   325       prev = test;
   326       test = idom(test);
   327     } // End of scan tests in loop
   329   } // End of while( progress )
   330 }
   332 //------------------------------do_peeling-------------------------------------
   333 // Peel the first iteration of the given loop.
   334 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   335 //         The pre-loop illegally has 2 control users (old & new loops).
   336 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   337 //         Do this by making the old-loop fall-in edges act as if they came
   338 //         around the loopback from the prior iteration (follow the old-loop
   339 //         backedges) and then map to the new peeled iteration.  This leaves
   340 //         the pre-loop with only 1 user (the new peeled iteration), but the
   341 //         peeled-loop backedge has 2 users.
   342 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   343 //         extra backedge user.
   344 //
   345 //                   orig
   346 //
   347 //                  stmt1
   348 //                    |
   349 //                    v
   350 //              loop predicate
   351 //                    |
   352 //                    v
   353 //                   loop<----+
   354 //                     |      |
   355 //                   stmt2    |
   356 //                     |      |
   357 //                     v      |
   358 //                    if      ^
   359 //                   / \      |
   360 //                  /   \     |
   361 //                 v     v    |
   362 //               false true   |
   363 //               /       \    |
   364 //              /         ----+
   365 //             |
   366 //             v
   367 //           exit
   368 //
   369 //
   370 //            after clone loop
   371 //
   372 //                   stmt1
   373 //                     |
   374 //                     v
   375 //               loop predicate
   376 //                 /       \
   377 //        clone   /         \   orig
   378 //               /           \
   379 //              /             \
   380 //             v               v
   381 //   +---->loop clone          loop<----+
   382 //   |      |                    |      |
   383 //   |    stmt2 clone          stmt2    |
   384 //   |      |                    |      |
   385 //   |      v                    v      |
   386 //   ^      if clone            If      ^
   387 //   |      / \                / \      |
   388 //   |     /   \              /   \     |
   389 //   |    v     v            v     v    |
   390 //   |    true  false      false true   |
   391 //   |    /         \      /       \    |
   392 //   +----           \    /         ----+
   393 //                    \  /
   394 //                    1v v2
   395 //                  region
   396 //                     |
   397 //                     v
   398 //                   exit
   399 //
   400 //
   401 //         after peel and predicate move
   402 //
   403 //                   stmt1
   404 //                    /
   405 //                   /
   406 //        clone     /            orig
   407 //                 /
   408 //                /              +----------+
   409 //               /               |          |
   410 //              /          loop predicate   |
   411 //             /                 |          |
   412 //            v                  v          |
   413 //   TOP-->loop clone          loop<----+   |
   414 //          |                    |      |   |
   415 //        stmt2 clone          stmt2    |   |
   416 //          |                    |      |   ^
   417 //          v                    v      |   |
   418 //          if clone            If      ^   |
   419 //          / \                / \      |   |
   420 //         /   \              /   \     |   |
   421 //        v     v            v     v    |   |
   422 //      true   false      false  true   |   |
   423 //        |         \      /       \    |   |
   424 //        |          \    /         ----+   ^
   425 //        |           \  /                  |
   426 //        |           1v v2                 |
   427 //        v         region                  |
   428 //        |            |                    |
   429 //        |            v                    |
   430 //        |          exit                   |
   431 //        |                                 |
   432 //        +--------------->-----------------+
   433 //
   434 //
   435 //              final graph
   436 //
   437 //                  stmt1
   438 //                    |
   439 //                    v
   440 //                  stmt2 clone
   441 //                    |
   442 //                    v
   443 //                   if clone
   444 //                  / |
   445 //                 /  |
   446 //                v   v
   447 //            false  true
   448 //             |      |
   449 //             |      v
   450 //             | loop predicate
   451 //             |      |
   452 //             |      v
   453 //             |     loop<----+
   454 //             |      |       |
   455 //             |    stmt2     |
   456 //             |      |       |
   457 //             |      v       |
   458 //             v      if      ^
   459 //             |     /  \     |
   460 //             |    /    \    |
   461 //             |   v     v    |
   462 //             | false  true  |
   463 //             |  |        \  |
   464 //             v  v         --+
   465 //            region
   466 //              |
   467 //              v
   468 //             exit
   469 //
   470 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
   472   C->set_major_progress();
   473   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
   474   // 'pre' loop from the main and the 'pre' can no longer have it's
   475   // iterations adjusted.  Therefore, we need to declare this loop as
   476   // no longer a 'main' loop; it will need new pre and post loops before
   477   // we can do further RCE.
   478 #ifndef PRODUCT
   479   if (TraceLoopOpts) {
   480     tty->print("Peel         ");
   481     loop->dump_head();
   482   }
   483 #endif
   484   Node* head = loop->_head;
   485   bool counted_loop = head->is_CountedLoop();
   486   if (counted_loop) {
   487     CountedLoopNode *cl = head->as_CountedLoop();
   488     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
   489     cl->set_trip_count(cl->trip_count() - 1);
   490     if (cl->is_main_loop()) {
   491       cl->set_normal_loop();
   492 #ifndef PRODUCT
   493       if (PrintOpto && VerifyLoopOptimizations) {
   494         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
   495         loop->dump_head();
   496       }
   497 #endif
   498     }
   499   }
   500   Node* entry = head->in(LoopNode::EntryControl);
   502   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   503   //         The pre-loop illegally has 2 control users (old & new loops).
   504   clone_loop( loop, old_new, dom_depth(head) );
   506   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   507   //         Do this by making the old-loop fall-in edges act as if they came
   508   //         around the loopback from the prior iteration (follow the old-loop
   509   //         backedges) and then map to the new peeled iteration.  This leaves
   510   //         the pre-loop with only 1 user (the new peeled iteration), but the
   511   //         peeled-loop backedge has 2 users.
   512   Node* new_entry = old_new[head->in(LoopNode::LoopBackControl)->_idx];
   513   _igvn.hash_delete(head);
   514   head->set_req(LoopNode::EntryControl, new_entry);
   515   for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
   516     Node* old = head->fast_out(j);
   517     if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) {
   518       Node* new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
   519       if (!new_exit_value )     // Backedge value is ALSO loop invariant?
   520         // Then loop body backedge value remains the same.
   521         new_exit_value = old->in(LoopNode::LoopBackControl);
   522       _igvn.hash_delete(old);
   523       old->set_req(LoopNode::EntryControl, new_exit_value);
   524     }
   525   }
   528   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   529   //         extra backedge user.
   530   Node* new_head = old_new[head->_idx];
   531   _igvn.hash_delete(new_head);
   532   new_head->set_req(LoopNode::LoopBackControl, C->top());
   533   for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) {
   534     Node* use = new_head->fast_out(j2);
   535     if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) {
   536       _igvn.hash_delete(use);
   537       use->set_req(LoopNode::LoopBackControl, C->top());
   538     }
   539   }
   542   // Step 4: Correct dom-depth info.  Set to loop-head depth.
   543   int dd = dom_depth(head);
   544   set_idom(head, head->in(1), dd);
   545   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
   546     Node *old = loop->_body.at(j3);
   547     Node *nnn = old_new[old->_idx];
   548     if (!has_ctrl(nnn))
   549       set_idom(nnn, idom(nnn), dd-1);
   550   }
   552   // Now force out all loop-invariant dominating tests.  The optimizer
   553   // finds some, but we _know_ they are all useless.
   554   peeled_dom_test_elim(loop,old_new);
   556   loop->record_for_igvn();
   557 }
   559 #define EMPTY_LOOP_SIZE 7 // number of nodes in an empty loop
   561 //------------------------------policy_maximally_unroll------------------------
   562 // Calculate exact loop trip count and return true if loop can be maximally
   563 // unrolled.
   564 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
   565   CountedLoopNode *cl = _head->as_CountedLoop();
   566   assert(cl->is_normal_loop(), "");
   567   if (!cl->is_valid_counted_loop())
   568     return false; // Malformed counted loop
   570   if (!cl->has_exact_trip_count()) {
   571     // Trip count is not exact.
   572     return false;
   573   }
   575   uint trip_count = cl->trip_count();
   576   // Note, max_juint is used to indicate unknown trip count.
   577   assert(trip_count > 1, "one iteration loop should be optimized out already");
   578   assert(trip_count < max_juint, "exact trip_count should be less than max_uint.");
   580   // Real policy: if we maximally unroll, does it get too big?
   581   // Allow the unrolled mess to get larger than standard loop
   582   // size.  After all, it will no longer be a loop.
   583   uint body_size    = _body.size();
   584   uint unroll_limit = (uint)LoopUnrollLimit * 4;
   585   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
   586   if (trip_count > unroll_limit || body_size > unroll_limit) {
   587     return false;
   588   }
   590   // Fully unroll a loop with few iterations regardless next
   591   // conditions since following loop optimizations will split
   592   // such loop anyway (pre-main-post).
   593   if (trip_count <= 3)
   594     return true;
   596   // Take into account that after unroll conjoined heads and tails will fold,
   597   // otherwise policy_unroll() may allow more unrolling than max unrolling.
   598   uint new_body_size = EMPTY_LOOP_SIZE + (body_size - EMPTY_LOOP_SIZE) * trip_count;
   599   uint tst_body_size = (new_body_size - EMPTY_LOOP_SIZE) / trip_count + EMPTY_LOOP_SIZE;
   600   if (body_size != tst_body_size) // Check for int overflow
   601     return false;
   602   if (new_body_size > unroll_limit ||
   603       // Unrolling can result in a large amount of node construction
   604       new_body_size >= MaxNodeLimit - (uint) phase->C->live_nodes()) {
   605     return false;
   606   }
   608   // Do not unroll a loop with String intrinsics code.
   609   // String intrinsics are large and have loops.
   610   for (uint k = 0; k < _body.size(); k++) {
   611     Node* n = _body.at(k);
   612     switch (n->Opcode()) {
   613       case Op_StrComp:
   614       case Op_StrEquals:
   615       case Op_StrIndexOf:
   616       case Op_EncodeISOArray:
   617       case Op_AryEq: {
   618         return false;
   619       }
   620 #if INCLUDE_RTM_OPT
   621       case Op_FastLock:
   622       case Op_FastUnlock: {
   623         // Don't unroll RTM locking code because it is large.
   624         if (UseRTMLocking) {
   625           return false;
   626         }
   627       }
   628 #endif
   629     } // switch
   630   }
   632   return true; // Do maximally unroll
   633 }
   636 //------------------------------policy_unroll----------------------------------
   637 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
   638 // the loop is a CountedLoop and the body is small enough.
   639 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
   641   CountedLoopNode *cl = _head->as_CountedLoop();
   642   assert(cl->is_normal_loop() || cl->is_main_loop(), "");
   644   if (!cl->is_valid_counted_loop())
   645     return false; // Malformed counted loop
   647   // Protect against over-unrolling.
   648   // After split at least one iteration will be executed in pre-loop.
   649   if (cl->trip_count() <= (uint)(cl->is_normal_loop() ? 2 : 1)) return false;
   651   int future_unroll_ct = cl->unrolled_count() * 2;
   652   if (future_unroll_ct > LoopMaxUnroll) return false;
   654   // Check for initial stride being a small enough constant
   655   if (abs(cl->stride_con()) > (1<<2)*future_unroll_ct) return false;
   657   // Don't unroll if the next round of unrolling would push us
   658   // over the expected trip count of the loop.  One is subtracted
   659   // from the expected trip count because the pre-loop normally
   660   // executes 1 iteration.
   661   if (UnrollLimitForProfileCheck > 0 &&
   662       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
   663       future_unroll_ct        > UnrollLimitForProfileCheck &&
   664       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
   665     return false;
   666   }
   668   // When unroll count is greater than LoopUnrollMin, don't unroll if:
   669   //   the residual iterations are more than 10% of the trip count
   670   //   and rounds of "unroll,optimize" are not making significant progress
   671   //   Progress defined as current size less than 20% larger than previous size.
   672   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
   673       future_unroll_ct > LoopUnrollMin &&
   674       (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
   675       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
   676     return false;
   677   }
   679   Node *init_n = cl->init_trip();
   680   Node *limit_n = cl->limit();
   681   int stride_con = cl->stride_con();
   682   // Non-constant bounds.
   683   // Protect against over-unrolling when init or/and limit are not constant
   684   // (so that trip_count's init value is maxint) but iv range is known.
   685   if (init_n   == NULL || !init_n->is_Con()  ||
   686       limit_n  == NULL || !limit_n->is_Con()) {
   687     Node* phi = cl->phi();
   688     if (phi != NULL) {
   689       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
   690       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
   691       int next_stride = stride_con * 2; // stride after this unroll
   692       if (next_stride > 0) {
   693         if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
   694             iv_type->_lo + next_stride >  iv_type->_hi) {
   695           return false;  // over-unrolling
   696         }
   697       } else if (next_stride < 0) {
   698         if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
   699             iv_type->_hi + next_stride <  iv_type->_lo) {
   700           return false;  // over-unrolling
   701         }
   702       }
   703     }
   704   }
   706   // After unroll limit will be adjusted: new_limit = limit-stride.
   707   // Bailout if adjustment overflow.
   708   const TypeInt* limit_type = phase->_igvn.type(limit_n)->is_int();
   709   if (stride_con > 0 && ((limit_type->_hi - stride_con) >= limit_type->_hi) ||
   710       stride_con < 0 && ((limit_type->_lo - stride_con) <= limit_type->_lo))
   711     return false;  // overflow
   713   // Adjust body_size to determine if we unroll or not
   714   uint body_size = _body.size();
   715   // Key test to unroll loop in CRC32 java code
   716   int xors_in_loop = 0;
   717   // Also count ModL, DivL and MulL which expand mightly
   718   for (uint k = 0; k < _body.size(); k++) {
   719     Node* n = _body.at(k);
   720     switch (n->Opcode()) {
   721       case Op_XorI: xors_in_loop++; break; // CRC32 java code
   722       case Op_ModL: body_size += 30; break;
   723       case Op_DivL: body_size += 30; break;
   724       case Op_MulL: body_size += 10; break;
   725       case Op_StrComp:
   726       case Op_StrEquals:
   727       case Op_StrIndexOf:
   728       case Op_EncodeISOArray:
   729       case Op_AryEq: {
   730         // Do not unroll a loop with String intrinsics code.
   731         // String intrinsics are large and have loops.
   732         return false;
   733       }
   734 #if INCLUDE_RTM_OPT
   735       case Op_FastLock:
   736       case Op_FastUnlock: {
   737         // Don't unroll RTM locking code because it is large.
   738         if (UseRTMLocking) {
   739           return false;
   740         }
   741       }
   742 #endif
   743     } // switch
   744   }
   746   // Check for being too big
   747   if (body_size > (uint)LoopUnrollLimit) {
   748     if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
   749     // Normal case: loop too big
   750     return false;
   751   }
   753   // Unroll once!  (Each trip will soon do double iterations)
   754   return true;
   755 }
   757 //------------------------------policy_align-----------------------------------
   758 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
   759 // expression that does the alignment.  Note that only one array base can be
   760 // aligned in a loop (unless the VM guarantees mutual alignment).  Note that
   761 // if we vectorize short memory ops into longer memory ops, we may want to
   762 // increase alignment.
   763 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
   764   return false;
   765 }
   767 //------------------------------policy_range_check-----------------------------
   768 // Return TRUE or FALSE if the loop should be range-check-eliminated.
   769 // Actually we do iteration-splitting, a more powerful form of RCE.
   770 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
   771   if (!RangeCheckElimination) return false;
   773   CountedLoopNode *cl = _head->as_CountedLoop();
   774   // If we unrolled with no intention of doing RCE and we later
   775   // changed our minds, we got no pre-loop.  Either we need to
   776   // make a new pre-loop, or we gotta disallow RCE.
   777   if (cl->is_main_no_pre_loop()) return false; // Disallowed for now.
   778   Node *trip_counter = cl->phi();
   780   // Check loop body for tests of trip-counter plus loop-invariant vs
   781   // loop-invariant.
   782   for (uint i = 0; i < _body.size(); i++) {
   783     Node *iff = _body[i];
   784     if (iff->Opcode() == Op_If) { // Test?
   786       // Comparing trip+off vs limit
   787       Node *bol = iff->in(1);
   788       if (bol->req() != 2) continue; // dead constant test
   789       if (!bol->is_Bool()) {
   790         assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
   791         continue;
   792       }
   793       if (bol->as_Bool()->_test._test == BoolTest::ne)
   794         continue; // not RC
   796       Node *cmp = bol->in(1);
   797       Node *rc_exp = cmp->in(1);
   798       Node *limit = cmp->in(2);
   800       Node *limit_c = phase->get_ctrl(limit);
   801       if( limit_c == phase->C->top() )
   802         return false;           // Found dead test on live IF?  No RCE!
   803       if( is_member(phase->get_loop(limit_c) ) ) {
   804         // Compare might have operands swapped; commute them
   805         rc_exp = cmp->in(2);
   806         limit  = cmp->in(1);
   807         limit_c = phase->get_ctrl(limit);
   808         if( is_member(phase->get_loop(limit_c) ) )
   809           continue;             // Both inputs are loop varying; cannot RCE
   810       }
   812       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
   813         continue;
   814       }
   815       // Yeah!  Found a test like 'trip+off vs limit'
   816       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
   817       // we need loop unswitching instead of iteration splitting.
   818       if( is_loop_exit(iff) )
   819         return true;            // Found reason to split iterations
   820     } // End of is IF
   821   }
   823   return false;
   824 }
   826 //------------------------------policy_peel_only-------------------------------
   827 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
   828 // for unrolling loops with NO array accesses.
   829 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
   831   for( uint i = 0; i < _body.size(); i++ )
   832     if( _body[i]->is_Mem() )
   833       return false;
   835   // No memory accesses at all!
   836   return true;
   837 }
   839 //------------------------------clone_up_backedge_goo--------------------------
   840 // If Node n lives in the back_ctrl block and cannot float, we clone a private
   841 // version of n in preheader_ctrl block and return that, otherwise return n.
   842 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones ) {
   843   if( get_ctrl(n) != back_ctrl ) return n;
   845   // Only visit once
   846   if (visited.test_set(n->_idx)) {
   847     Node *x = clones.find(n->_idx);
   848     if (x != NULL)
   849       return x;
   850     return n;
   851   }
   853   Node *x = NULL;               // If required, a clone of 'n'
   854   // Check for 'n' being pinned in the backedge.
   855   if( n->in(0) && n->in(0) == back_ctrl ) {
   856     assert(clones.find(n->_idx) == NULL, "dead loop");
   857     x = n->clone();             // Clone a copy of 'n' to preheader
   858     clones.push(x, n->_idx);
   859     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
   860   }
   862   // Recursive fixup any other input edges into x.
   863   // If there are no changes we can just return 'n', otherwise
   864   // we need to clone a private copy and change it.
   865   for( uint i = 1; i < n->req(); i++ ) {
   866     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i), visited, clones );
   867     if( g != n->in(i) ) {
   868       if( !x ) {
   869         assert(clones.find(n->_idx) == NULL, "dead loop");
   870         x = n->clone();
   871         clones.push(x, n->_idx);
   872       }
   873       x->set_req(i, g);
   874     }
   875   }
   876   if( x ) {                     // x can legally float to pre-header location
   877     register_new_node( x, preheader_ctrl );
   878     return x;
   879   } else {                      // raise n to cover LCA of uses
   880     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
   881   }
   882   return n;
   883 }
   885 //------------------------------insert_pre_post_loops--------------------------
   886 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
   887 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
   888 // alignment.  Useful to unroll loops that do no array accesses.
   889 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
   891 #ifndef PRODUCT
   892   if (TraceLoopOpts) {
   893     if (peel_only)
   894       tty->print("PeelMainPost ");
   895     else
   896       tty->print("PreMainPost  ");
   897     loop->dump_head();
   898   }
   899 #endif
   900   C->set_major_progress();
   902   // Find common pieces of the loop being guarded with pre & post loops
   903   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
   904   assert( main_head->is_normal_loop(), "" );
   905   CountedLoopEndNode *main_end = main_head->loopexit();
   906   guarantee(main_end != NULL, "no loop exit node");
   907   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
   908   uint dd_main_head = dom_depth(main_head);
   909   uint max = main_head->outcnt();
   911   Node *pre_header= main_head->in(LoopNode::EntryControl);
   912   Node *init      = main_head->init_trip();
   913   Node *incr      = main_end ->incr();
   914   Node *limit     = main_end ->limit();
   915   Node *stride    = main_end ->stride();
   916   Node *cmp       = main_end ->cmp_node();
   917   BoolTest::mask b_test = main_end->test_trip();
   919   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
   920   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
   921   if( bol->outcnt() != 1 ) {
   922     bol = bol->clone();
   923     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
   924     _igvn.hash_delete(main_end);
   925     main_end->set_req(CountedLoopEndNode::TestValue, bol);
   926   }
   927   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
   928   if( cmp->outcnt() != 1 ) {
   929     cmp = cmp->clone();
   930     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
   931     _igvn.hash_delete(bol);
   932     bol->set_req(1, cmp);
   933   }
   935   //------------------------------
   936   // Step A: Create Post-Loop.
   937   Node* main_exit = main_end->proj_out(false);
   938   assert( main_exit->Opcode() == Op_IfFalse, "" );
   939   int dd_main_exit = dom_depth(main_exit);
   941   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
   942   // loop pre-header illegally has 2 control users (old & new loops).
   943   clone_loop( loop, old_new, dd_main_exit );
   944   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
   945   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
   946   post_head->set_post_loop(main_head);
   948   // Reduce the post-loop trip count.
   949   CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
   950   post_end->_prob = PROB_FAIR;
   952   // Build the main-loop normal exit.
   953   IfFalseNode *new_main_exit = new (C) IfFalseNode(main_end);
   954   _igvn.register_new_node_with_optimizer( new_main_exit );
   955   set_idom(new_main_exit, main_end, dd_main_exit );
   956   set_loop(new_main_exit, loop->_parent);
   958   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
   959   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
   960   // (the main-loop trip-counter exit value) because we will be changing
   961   // the exit value (via unrolling) so we cannot constant-fold away the zero
   962   // trip guard until all unrolling is done.
   963   Node *zer_opaq = new (C) Opaque1Node(C, incr);
   964   Node *zer_cmp  = new (C) CmpINode( zer_opaq, limit );
   965   Node *zer_bol  = new (C) BoolNode( zer_cmp, b_test );
   966   register_new_node( zer_opaq, new_main_exit );
   967   register_new_node( zer_cmp , new_main_exit );
   968   register_new_node( zer_bol , new_main_exit );
   970   // Build the IfNode
   971   IfNode *zer_iff = new (C) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
   972   _igvn.register_new_node_with_optimizer( zer_iff );
   973   set_idom(zer_iff, new_main_exit, dd_main_exit);
   974   set_loop(zer_iff, loop->_parent);
   976   // Plug in the false-path, taken if we need to skip post-loop
   977   _igvn.replace_input_of(main_exit, 0, zer_iff);
   978   set_idom(main_exit, zer_iff, dd_main_exit);
   979   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
   980   // Make the true-path, must enter the post loop
   981   Node *zer_taken = new (C) IfTrueNode( zer_iff );
   982   _igvn.register_new_node_with_optimizer( zer_taken );
   983   set_idom(zer_taken, zer_iff, dd_main_exit);
   984   set_loop(zer_taken, loop->_parent);
   985   // Plug in the true path
   986   _igvn.hash_delete( post_head );
   987   post_head->set_req(LoopNode::EntryControl, zer_taken);
   988   set_idom(post_head, zer_taken, dd_main_exit);
   990   Arena *a = Thread::current()->resource_area();
   991   VectorSet visited(a);
   992   Node_Stack clones(a, main_head->back_control()->outcnt());
   993   // Step A3: Make the fall-in values to the post-loop come from the
   994   // fall-out values of the main-loop.
   995   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
   996     Node* main_phi = main_head->fast_out(i);
   997     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
   998       Node *post_phi = old_new[main_phi->_idx];
   999       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
  1000                                               post_head->init_control(),
  1001                                               main_phi->in(LoopNode::LoopBackControl),
  1002                                               visited, clones);
  1003       _igvn.hash_delete(post_phi);
  1004       post_phi->set_req( LoopNode::EntryControl, fallmain );
  1008   // Update local caches for next stanza
  1009   main_exit = new_main_exit;
  1012   //------------------------------
  1013   // Step B: Create Pre-Loop.
  1015   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
  1016   // loop pre-header illegally has 2 control users (old & new loops).
  1017   clone_loop( loop, old_new, dd_main_head );
  1018   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
  1019   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
  1020   pre_head->set_pre_loop(main_head);
  1021   Node *pre_incr = old_new[incr->_idx];
  1023   // Reduce the pre-loop trip count.
  1024   pre_end->_prob = PROB_FAIR;
  1026   // Find the pre-loop normal exit.
  1027   Node* pre_exit = pre_end->proj_out(false);
  1028   assert( pre_exit->Opcode() == Op_IfFalse, "" );
  1029   IfFalseNode *new_pre_exit = new (C) IfFalseNode(pre_end);
  1030   _igvn.register_new_node_with_optimizer( new_pre_exit );
  1031   set_idom(new_pre_exit, pre_end, dd_main_head);
  1032   set_loop(new_pre_exit, loop->_parent);
  1034   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
  1035   // pre-loop, the main-loop may not execute at all.  Later in life this
  1036   // zero-trip guard will become the minimum-trip guard when we unroll
  1037   // the main-loop.
  1038   Node *min_opaq = new (C) Opaque1Node(C, limit);
  1039   Node *min_cmp  = new (C) CmpINode( pre_incr, min_opaq );
  1040   Node *min_bol  = new (C) BoolNode( min_cmp, b_test );
  1041   register_new_node( min_opaq, new_pre_exit );
  1042   register_new_node( min_cmp , new_pre_exit );
  1043   register_new_node( min_bol , new_pre_exit );
  1045   // Build the IfNode (assume the main-loop is executed always).
  1046   IfNode *min_iff = new (C) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
  1047   _igvn.register_new_node_with_optimizer( min_iff );
  1048   set_idom(min_iff, new_pre_exit, dd_main_head);
  1049   set_loop(min_iff, loop->_parent);
  1051   // Plug in the false-path, taken if we need to skip main-loop
  1052   _igvn.hash_delete( pre_exit );
  1053   pre_exit->set_req(0, min_iff);
  1054   set_idom(pre_exit, min_iff, dd_main_head);
  1055   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
  1056   // Make the true-path, must enter the main loop
  1057   Node *min_taken = new (C) IfTrueNode( min_iff );
  1058   _igvn.register_new_node_with_optimizer( min_taken );
  1059   set_idom(min_taken, min_iff, dd_main_head);
  1060   set_loop(min_taken, loop->_parent);
  1061   // Plug in the true path
  1062   _igvn.hash_delete( main_head );
  1063   main_head->set_req(LoopNode::EntryControl, min_taken);
  1064   set_idom(main_head, min_taken, dd_main_head);
  1066   visited.Clear();
  1067   clones.clear();
  1068   // Step B3: Make the fall-in values to the main-loop come from the
  1069   // fall-out values of the pre-loop.
  1070   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
  1071     Node* main_phi = main_head->fast_out(i2);
  1072     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
  1073       Node *pre_phi = old_new[main_phi->_idx];
  1074       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
  1075                                              main_head->init_control(),
  1076                                              pre_phi->in(LoopNode::LoopBackControl),
  1077                                              visited, clones);
  1078       _igvn.hash_delete(main_phi);
  1079       main_phi->set_req( LoopNode::EntryControl, fallpre );
  1083   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
  1084   // RCE and alignment may change this later.
  1085   Node *cmp_end = pre_end->cmp_node();
  1086   assert( cmp_end->in(2) == limit, "" );
  1087   Node *pre_limit = new (C) AddINode( init, stride );
  1089   // Save the original loop limit in this Opaque1 node for
  1090   // use by range check elimination.
  1091   Node *pre_opaq  = new (C) Opaque1Node(C, pre_limit, limit);
  1093   register_new_node( pre_limit, pre_head->in(0) );
  1094   register_new_node( pre_opaq , pre_head->in(0) );
  1096   // Since no other users of pre-loop compare, I can hack limit directly
  1097   assert( cmp_end->outcnt() == 1, "no other users" );
  1098   _igvn.hash_delete(cmp_end);
  1099   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
  1101   // Special case for not-equal loop bounds:
  1102   // Change pre loop test, main loop test, and the
  1103   // main loop guard test to use lt or gt depending on stride
  1104   // direction:
  1105   // positive stride use <
  1106   // negative stride use >
  1107   //
  1108   // not-equal test is kept for post loop to handle case
  1109   // when init > limit when stride > 0 (and reverse).
  1111   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
  1113     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
  1114     // Modify pre loop end condition
  1115     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
  1116     BoolNode* new_bol0 = new (C) BoolNode(pre_bol->in(1), new_test);
  1117     register_new_node( new_bol0, pre_head->in(0) );
  1118     _igvn.hash_delete(pre_end);
  1119     pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
  1120     // Modify main loop guard condition
  1121     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
  1122     BoolNode* new_bol1 = new (C) BoolNode(min_bol->in(1), new_test);
  1123     register_new_node( new_bol1, new_pre_exit );
  1124     _igvn.hash_delete(min_iff);
  1125     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
  1126     // Modify main loop end condition
  1127     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
  1128     BoolNode* new_bol2 = new (C) BoolNode(main_bol->in(1), new_test);
  1129     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
  1130     _igvn.hash_delete(main_end);
  1131     main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
  1134   // Flag main loop
  1135   main_head->set_main_loop();
  1136   if( peel_only ) main_head->set_main_no_pre_loop();
  1138   // Subtract a trip count for the pre-loop.
  1139   main_head->set_trip_count(main_head->trip_count() - 1);
  1141   // It's difficult to be precise about the trip-counts
  1142   // for the pre/post loops.  They are usually very short,
  1143   // so guess that 4 trips is a reasonable value.
  1144   post_head->set_profile_trip_cnt(4.0);
  1145   pre_head->set_profile_trip_cnt(4.0);
  1147   // Now force out all loop-invariant dominating tests.  The optimizer
  1148   // finds some, but we _know_ they are all useless.
  1149   peeled_dom_test_elim(loop,old_new);
  1150   loop->record_for_igvn();
  1153 //------------------------------is_invariant-----------------------------
  1154 // Return true if n is invariant
  1155 bool IdealLoopTree::is_invariant(Node* n) const {
  1156   Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
  1157   if (n_c->is_top()) return false;
  1158   return !is_member(_phase->get_loop(n_c));
  1162 //------------------------------do_unroll--------------------------------------
  1163 // Unroll the loop body one step - make each trip do 2 iterations.
  1164 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
  1165   assert(LoopUnrollLimit, "");
  1166   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
  1167   CountedLoopEndNode *loop_end = loop_head->loopexit();
  1168   assert(loop_end, "");
  1169 #ifndef PRODUCT
  1170   if (PrintOpto && VerifyLoopOptimizations) {
  1171     tty->print("Unrolling ");
  1172     loop->dump_head();
  1173   } else if (TraceLoopOpts) {
  1174     if (loop_head->trip_count() < (uint)LoopUnrollLimit) {
  1175       tty->print("Unroll %d(%2d) ", loop_head->unrolled_count()*2, loop_head->trip_count());
  1176     } else {
  1177       tty->print("Unroll %d     ", loop_head->unrolled_count()*2);
  1179     loop->dump_head();
  1181 #endif
  1183   // Remember loop node count before unrolling to detect
  1184   // if rounds of unroll,optimize are making progress
  1185   loop_head->set_node_count_before_unroll(loop->_body.size());
  1187   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
  1188   Node *limit = loop_head->limit();
  1189   Node *init  = loop_head->init_trip();
  1190   Node *stride = loop_head->stride();
  1192   Node *opaq = NULL;
  1193   if (adjust_min_trip) {       // If not maximally unrolling, need adjustment
  1194     // Search for zero-trip guard.
  1195     assert( loop_head->is_main_loop(), "" );
  1196     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  1197     Node *iff = ctrl->in(0);
  1198     assert( iff->Opcode() == Op_If, "" );
  1199     Node *bol = iff->in(1);
  1200     assert( bol->Opcode() == Op_Bool, "" );
  1201     Node *cmp = bol->in(1);
  1202     assert( cmp->Opcode() == Op_CmpI, "" );
  1203     opaq = cmp->in(2);
  1204     // Occasionally it's possible for a zero-trip guard Opaque1 node to be
  1205     // optimized away and then another round of loop opts attempted.
  1206     // We can not optimize this particular loop in that case.
  1207     if (opaq->Opcode() != Op_Opaque1)
  1208       return; // Cannot find zero-trip guard!  Bail out!
  1209     // Zero-trip test uses an 'opaque' node which is not shared.
  1210     assert(opaq->outcnt() == 1 && opaq->in(1) == limit, "");
  1213   C->set_major_progress();
  1215   Node* new_limit = NULL;
  1216   if (UnrollLimitCheck) {
  1217     int stride_con = stride->get_int();
  1218     int stride_p = (stride_con > 0) ? stride_con : -stride_con;
  1219     uint old_trip_count = loop_head->trip_count();
  1220     // Verify that unroll policy result is still valid.
  1221     assert(old_trip_count > 1 &&
  1222            (!adjust_min_trip || stride_p <= (1<<3)*loop_head->unrolled_count()), "sanity");
  1224     // Adjust loop limit to keep valid iterations number after unroll.
  1225     // Use (limit - stride) instead of (((limit - init)/stride) & (-2))*stride
  1226     // which may overflow.
  1227     if (!adjust_min_trip) {
  1228       assert(old_trip_count > 1 && (old_trip_count & 1) == 0,
  1229              "odd trip count for maximally unroll");
  1230       // Don't need to adjust limit for maximally unroll since trip count is even.
  1231     } else if (loop_head->has_exact_trip_count() && init->is_Con()) {
  1232       // Loop's limit is constant. Loop's init could be constant when pre-loop
  1233       // become peeled iteration.
  1234       jlong init_con = init->get_int();
  1235       // We can keep old loop limit if iterations count stays the same:
  1236       //   old_trip_count == new_trip_count * 2
  1237       // Note: since old_trip_count >= 2 then new_trip_count >= 1
  1238       // so we also don't need to adjust zero trip test.
  1239       jlong limit_con  = limit->get_int();
  1240       // (stride_con*2) not overflow since stride_con <= 8.
  1241       int new_stride_con = stride_con * 2;
  1242       int stride_m    = new_stride_con - (stride_con > 0 ? 1 : -1);
  1243       jlong trip_count = (limit_con - init_con + stride_m)/new_stride_con;
  1244       // New trip count should satisfy next conditions.
  1245       assert(trip_count > 0 && (julong)trip_count < (julong)max_juint/2, "sanity");
  1246       uint new_trip_count = (uint)trip_count;
  1247       adjust_min_trip = (old_trip_count != new_trip_count*2);
  1250     if (adjust_min_trip) {
  1251       // Step 2: Adjust the trip limit if it is called for.
  1252       // The adjustment amount is -stride. Need to make sure if the
  1253       // adjustment underflows or overflows, then the main loop is skipped.
  1254       Node* cmp = loop_end->cmp_node();
  1255       assert(cmp->in(2) == limit, "sanity");
  1256       assert(opaq != NULL && opaq->in(1) == limit, "sanity");
  1258       // Verify that policy_unroll result is still valid.
  1259       const TypeInt* limit_type = _igvn.type(limit)->is_int();
  1260       assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) ||
  1261              stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), "sanity");
  1263       if (limit->is_Con()) {
  1264         // The check in policy_unroll and the assert above guarantee
  1265         // no underflow if limit is constant.
  1266         new_limit = _igvn.intcon(limit->get_int() - stride_con);
  1267         set_ctrl(new_limit, C->root());
  1268       } else {
  1269         // Limit is not constant.
  1270         if (loop_head->unrolled_count() == 1) { // only for first unroll
  1271           // Separate limit by Opaque node in case it is an incremented
  1272           // variable from previous loop to avoid using pre-incremented
  1273           // value which could increase register pressure.
  1274           // Otherwise reorg_offsets() optimization will create a separate
  1275           // Opaque node for each use of trip-counter and as result
  1276           // zero trip guard limit will be different from loop limit.
  1277           assert(has_ctrl(opaq), "should have it");
  1278           Node* opaq_ctrl = get_ctrl(opaq);
  1279           limit = new (C) Opaque2Node( C, limit );
  1280           register_new_node( limit, opaq_ctrl );
  1282         if (stride_con > 0 && ((limit_type->_lo - stride_con) < limit_type->_lo) ||
  1283                    stride_con < 0 && ((limit_type->_hi - stride_con) > limit_type->_hi)) {
  1284           // No underflow.
  1285           new_limit = new (C) SubINode(limit, stride);
  1286         } else {
  1287           // (limit - stride) may underflow.
  1288           // Clamp the adjustment value with MININT or MAXINT:
  1289           //
  1290           //   new_limit = limit-stride
  1291           //   if (stride > 0)
  1292           //     new_limit = (limit < new_limit) ? MININT : new_limit;
  1293           //   else
  1294           //     new_limit = (limit > new_limit) ? MAXINT : new_limit;
  1295           //
  1296           BoolTest::mask bt = loop_end->test_trip();
  1297           assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
  1298           Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint);
  1299           set_ctrl(adj_max, C->root());
  1300           Node* old_limit = NULL;
  1301           Node* adj_limit = NULL;
  1302           Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL;
  1303           if (loop_head->unrolled_count() > 1 &&
  1304               limit->is_CMove() && limit->Opcode() == Op_CMoveI &&
  1305               limit->in(CMoveNode::IfTrue) == adj_max &&
  1306               bol->as_Bool()->_test._test == bt &&
  1307               bol->in(1)->Opcode() == Op_CmpI &&
  1308               bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) {
  1309             // Loop was unrolled before.
  1310             // Optimize the limit to avoid nested CMove:
  1311             // use original limit as old limit.
  1312             old_limit = bol->in(1)->in(1);
  1313             // Adjust previous adjusted limit.
  1314             adj_limit = limit->in(CMoveNode::IfFalse);
  1315             adj_limit = new (C) SubINode(adj_limit, stride);
  1316           } else {
  1317             old_limit = limit;
  1318             adj_limit = new (C) SubINode(limit, stride);
  1320           assert(old_limit != NULL && adj_limit != NULL, "");
  1321           register_new_node( adj_limit, ctrl ); // adjust amount
  1322           Node* adj_cmp = new (C) CmpINode(old_limit, adj_limit);
  1323           register_new_node( adj_cmp, ctrl );
  1324           Node* adj_bool = new (C) BoolNode(adj_cmp, bt);
  1325           register_new_node( adj_bool, ctrl );
  1326           new_limit = new (C) CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT);
  1328         register_new_node(new_limit, ctrl);
  1330       assert(new_limit != NULL, "");
  1331       // Replace in loop test.
  1332       assert(loop_end->in(1)->in(1) == cmp, "sanity");
  1333       if (cmp->outcnt() == 1 && loop_end->in(1)->outcnt() == 1) {
  1334         // Don't need to create new test since only one user.
  1335         _igvn.hash_delete(cmp);
  1336         cmp->set_req(2, new_limit);
  1337       } else {
  1338         // Create new test since it is shared.
  1339         Node* ctrl2 = loop_end->in(0);
  1340         Node* cmp2  = cmp->clone();
  1341         cmp2->set_req(2, new_limit);
  1342         register_new_node(cmp2, ctrl2);
  1343         Node* bol2 = loop_end->in(1)->clone();
  1344         bol2->set_req(1, cmp2);
  1345         register_new_node(bol2, ctrl2);
  1346         _igvn.hash_delete(loop_end);
  1347         loop_end->set_req(1, bol2);
  1349       // Step 3: Find the min-trip test guaranteed before a 'main' loop.
  1350       // Make it a 1-trip test (means at least 2 trips).
  1352       // Guard test uses an 'opaque' node which is not shared.  Hence I
  1353       // can edit it's inputs directly.  Hammer in the new limit for the
  1354       // minimum-trip guard.
  1355       assert(opaq->outcnt() == 1, "");
  1356       _igvn.hash_delete(opaq);
  1357       opaq->set_req(1, new_limit);
  1360     // Adjust max trip count. The trip count is intentionally rounded
  1361     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
  1362     // the main, unrolled, part of the loop will never execute as it is protected
  1363     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
  1364     // and later determined that part of the unrolled loop was dead.
  1365     loop_head->set_trip_count(old_trip_count / 2);
  1367     // Double the count of original iterations in the unrolled loop body.
  1368     loop_head->double_unrolled_count();
  1370   } else { // LoopLimitCheck
  1372     // Adjust max trip count. The trip count is intentionally rounded
  1373     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
  1374     // the main, unrolled, part of the loop will never execute as it is protected
  1375     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
  1376     // and later determined that part of the unrolled loop was dead.
  1377     loop_head->set_trip_count(loop_head->trip_count() / 2);
  1379     // Double the count of original iterations in the unrolled loop body.
  1380     loop_head->double_unrolled_count();
  1382     // -----------
  1383     // Step 2: Cut back the trip counter for an unroll amount of 2.
  1384     // Loop will normally trip (limit - init)/stride_con.  Since it's a
  1385     // CountedLoop this is exact (stride divides limit-init exactly).
  1386     // We are going to double the loop body, so we want to knock off any
  1387     // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
  1388     Node *span = new (C) SubINode( limit, init );
  1389     register_new_node( span, ctrl );
  1390     Node *trip = new (C) DivINode( 0, span, stride );
  1391     register_new_node( trip, ctrl );
  1392     Node *mtwo = _igvn.intcon(-2);
  1393     set_ctrl(mtwo, C->root());
  1394     Node *rond = new (C) AndINode( trip, mtwo );
  1395     register_new_node( rond, ctrl );
  1396     Node *spn2 = new (C) MulINode( rond, stride );
  1397     register_new_node( spn2, ctrl );
  1398     new_limit = new (C) AddINode( spn2, init );
  1399     register_new_node( new_limit, ctrl );
  1401     // Hammer in the new limit
  1402     Node *ctrl2 = loop_end->in(0);
  1403     Node *cmp2 = new (C) CmpINode( loop_head->incr(), new_limit );
  1404     register_new_node( cmp2, ctrl2 );
  1405     Node *bol2 = new (C) BoolNode( cmp2, loop_end->test_trip() );
  1406     register_new_node( bol2, ctrl2 );
  1407     _igvn.hash_delete(loop_end);
  1408     loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
  1410     // Step 3: Find the min-trip test guaranteed before a 'main' loop.
  1411     // Make it a 1-trip test (means at least 2 trips).
  1412     if( adjust_min_trip ) {
  1413       assert( new_limit != NULL, "" );
  1414       // Guard test uses an 'opaque' node which is not shared.  Hence I
  1415       // can edit it's inputs directly.  Hammer in the new limit for the
  1416       // minimum-trip guard.
  1417       assert( opaq->outcnt() == 1, "" );
  1418       _igvn.hash_delete(opaq);
  1419       opaq->set_req(1, new_limit);
  1421   } // LoopLimitCheck
  1423   // ---------
  1424   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
  1425   // represents the odd iterations; since the loop trips an even number of
  1426   // times its backedge is never taken.  Kill the backedge.
  1427   uint dd = dom_depth(loop_head);
  1428   clone_loop( loop, old_new, dd );
  1430   // Make backedges of the clone equal to backedges of the original.
  1431   // Make the fall-in from the original come from the fall-out of the clone.
  1432   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
  1433     Node* phi = loop_head->fast_out(j);
  1434     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
  1435       Node *newphi = old_new[phi->_idx];
  1436       _igvn.hash_delete( phi );
  1437       _igvn.hash_delete( newphi );
  1439       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
  1440       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
  1441       phi   ->set_req(LoopNode::LoopBackControl, C->top());
  1444   Node *clone_head = old_new[loop_head->_idx];
  1445   _igvn.hash_delete( clone_head );
  1446   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
  1447   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
  1448   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
  1449   loop->_head = clone_head;     // New loop header
  1451   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
  1452   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
  1454   // Kill the clone's backedge
  1455   Node *newcle = old_new[loop_end->_idx];
  1456   _igvn.hash_delete( newcle );
  1457   Node *one = _igvn.intcon(1);
  1458   set_ctrl(one, C->root());
  1459   newcle->set_req(1, one);
  1460   // Force clone into same loop body
  1461   uint max = loop->_body.size();
  1462   for( uint k = 0; k < max; k++ ) {
  1463     Node *old = loop->_body.at(k);
  1464     Node *nnn = old_new[old->_idx];
  1465     loop->_body.push(nnn);
  1466     if (!has_ctrl(old))
  1467       set_loop(nnn, loop);
  1470   loop->record_for_igvn();
  1473 //------------------------------do_maximally_unroll----------------------------
  1475 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
  1476   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1477   assert(cl->has_exact_trip_count(), "trip count is not exact");
  1478   assert(cl->trip_count() > 0, "");
  1479 #ifndef PRODUCT
  1480   if (TraceLoopOpts) {
  1481     tty->print("MaxUnroll  %d ", cl->trip_count());
  1482     loop->dump_head();
  1484 #endif
  1486   // If loop is tripping an odd number of times, peel odd iteration
  1487   if ((cl->trip_count() & 1) == 1) {
  1488     do_peeling(loop, old_new);
  1491   // Now its tripping an even number of times remaining.  Double loop body.
  1492   // Do not adjust pre-guards; they are not needed and do not exist.
  1493   if (cl->trip_count() > 0) {
  1494     assert((cl->trip_count() & 1) == 0, "missed peeling");
  1495     do_unroll(loop, old_new, false);
  1499 //------------------------------dominates_backedge---------------------------------
  1500 // Returns true if ctrl is executed on every complete iteration
  1501 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
  1502   assert(ctrl->is_CFG(), "must be control");
  1503   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
  1504   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
  1507 //------------------------------adjust_limit-----------------------------------
  1508 // Helper function for add_constraint().
  1509 Node* PhaseIdealLoop::adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl) {
  1510   // Compute "I :: (limit-offset)/scale"
  1511   Node *con = new (C) SubINode(rc_limit, offset);
  1512   register_new_node(con, pre_ctrl);
  1513   Node *X = new (C) DivINode(0, con, scale);
  1514   register_new_node(X, pre_ctrl);
  1516   // Adjust loop limit
  1517   loop_limit = (stride_con > 0)
  1518                ? (Node*)(new (C) MinINode(loop_limit, X))
  1519                : (Node*)(new (C) MaxINode(loop_limit, X));
  1520   register_new_node(loop_limit, pre_ctrl);
  1521   return loop_limit;
  1524 //------------------------------add_constraint---------------------------------
  1525 // Constrain the main loop iterations so the conditions:
  1526 //    low_limit <= scale_con * I + offset  <  upper_limit
  1527 // always holds true.  That is, either increase the number of iterations in
  1528 // the pre-loop or the post-loop until the condition holds true in the main
  1529 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
  1530 // stride and scale are constants (offset and limit often are).
  1531 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
  1532   // For positive stride, the pre-loop limit always uses a MAX function
  1533   // and the main loop a MIN function.  For negative stride these are
  1534   // reversed.
  1536   // Also for positive stride*scale the affine function is increasing, so the
  1537   // pre-loop must check for underflow and the post-loop for overflow.
  1538   // Negative stride*scale reverses this; pre-loop checks for overflow and
  1539   // post-loop for underflow.
  1541   Node *scale = _igvn.intcon(scale_con);
  1542   set_ctrl(scale, C->root());
  1544   if ((stride_con^scale_con) >= 0) { // Use XOR to avoid overflow
  1545     // The overflow limit: scale*I+offset < upper_limit
  1546     // For main-loop compute
  1547     //   ( if (scale > 0) /* and stride > 0 */
  1548     //       I < (upper_limit-offset)/scale
  1549     //     else /* scale < 0 and stride < 0 */
  1550     //       I > (upper_limit-offset)/scale
  1551     //   )
  1552     //
  1553     // (upper_limit-offset) may overflow or underflow.
  1554     // But it is fine since main loop will either have
  1555     // less iterations or will be skipped in such case.
  1556     *main_limit = adjust_limit(stride_con, scale, offset, upper_limit, *main_limit, pre_ctrl);
  1558     // The underflow limit: low_limit <= scale*I+offset.
  1559     // For pre-loop compute
  1560     //   NOT(scale*I+offset >= low_limit)
  1561     //   scale*I+offset < low_limit
  1562     //   ( if (scale > 0) /* and stride > 0 */
  1563     //       I < (low_limit-offset)/scale
  1564     //     else /* scale < 0 and stride < 0 */
  1565     //       I > (low_limit-offset)/scale
  1566     //   )
  1568     if (low_limit->get_int() == -max_jint) {
  1569       if (!RangeLimitCheck) return;
  1570       // We need this guard when scale*pre_limit+offset >= limit
  1571       // due to underflow. So we need execute pre-loop until
  1572       // scale*I+offset >= min_int. But (min_int-offset) will
  1573       // underflow when offset > 0 and X will be > original_limit
  1574       // when stride > 0. To avoid it we replace positive offset with 0.
  1575       //
  1576       // Also (min_int+1 == -max_int) is used instead of min_int here
  1577       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
  1578       Node* shift = _igvn.intcon(31);
  1579       set_ctrl(shift, C->root());
  1580       Node* sign = new (C) RShiftINode(offset, shift);
  1581       register_new_node(sign, pre_ctrl);
  1582       offset = new (C) AndINode(offset, sign);
  1583       register_new_node(offset, pre_ctrl);
  1584     } else {
  1585       assert(low_limit->get_int() == 0, "wrong low limit for range check");
  1586       // The only problem we have here when offset == min_int
  1587       // since (0-min_int) == min_int. It may be fine for stride > 0
  1588       // but for stride < 0 X will be < original_limit. To avoid it
  1589       // max(pre_limit, original_limit) is used in do_range_check().
  1591     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
  1592     *pre_limit = adjust_limit((-stride_con), scale, offset, low_limit, *pre_limit, pre_ctrl);
  1594   } else { // stride_con*scale_con < 0
  1595     // For negative stride*scale pre-loop checks for overflow and
  1596     // post-loop for underflow.
  1597     //
  1598     // The overflow limit: scale*I+offset < upper_limit
  1599     // For pre-loop compute
  1600     //   NOT(scale*I+offset < upper_limit)
  1601     //   scale*I+offset >= upper_limit
  1602     //   scale*I+offset+1 > upper_limit
  1603     //   ( if (scale < 0) /* and stride > 0 */
  1604     //       I < (upper_limit-(offset+1))/scale
  1605     //     else /* scale > 0 and stride < 0 */
  1606     //       I > (upper_limit-(offset+1))/scale
  1607     //   )
  1608     //
  1609     // (upper_limit-offset-1) may underflow or overflow.
  1610     // To avoid it min(pre_limit, original_limit) is used
  1611     // in do_range_check() for stride > 0 and max() for < 0.
  1612     Node *one  = _igvn.intcon(1);
  1613     set_ctrl(one, C->root());
  1615     Node *plus_one = new (C) AddINode(offset, one);
  1616     register_new_node( plus_one, pre_ctrl );
  1617     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
  1618     *pre_limit = adjust_limit((-stride_con), scale, plus_one, upper_limit, *pre_limit, pre_ctrl);
  1620     if (low_limit->get_int() == -max_jint) {
  1621       if (!RangeLimitCheck) return;
  1622       // We need this guard when scale*main_limit+offset >= limit
  1623       // due to underflow. So we need execute main-loop while
  1624       // scale*I+offset+1 > min_int. But (min_int-offset-1) will
  1625       // underflow when (offset+1) > 0 and X will be < main_limit
  1626       // when scale < 0 (and stride > 0). To avoid it we replace
  1627       // positive (offset+1) with 0.
  1628       //
  1629       // Also (min_int+1 == -max_int) is used instead of min_int here
  1630       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
  1631       Node* shift = _igvn.intcon(31);
  1632       set_ctrl(shift, C->root());
  1633       Node* sign = new (C) RShiftINode(plus_one, shift);
  1634       register_new_node(sign, pre_ctrl);
  1635       plus_one = new (C) AndINode(plus_one, sign);
  1636       register_new_node(plus_one, pre_ctrl);
  1637     } else {
  1638       assert(low_limit->get_int() == 0, "wrong low limit for range check");
  1639       // The only problem we have here when offset == max_int
  1640       // since (max_int+1) == min_int and (0-min_int) == min_int.
  1641       // But it is fine since main loop will either have
  1642       // less iterations or will be skipped in such case.
  1644     // The underflow limit: low_limit <= scale*I+offset.
  1645     // For main-loop compute
  1646     //   scale*I+offset+1 > low_limit
  1647     //   ( if (scale < 0) /* and stride > 0 */
  1648     //       I < (low_limit-(offset+1))/scale
  1649     //     else /* scale > 0 and stride < 0 */
  1650     //       I > (low_limit-(offset+1))/scale
  1651     //   )
  1653     *main_limit = adjust_limit(stride_con, scale, plus_one, low_limit, *main_limit, pre_ctrl);
  1658 //------------------------------is_scaled_iv---------------------------------
  1659 // Return true if exp is a constant times an induction var
  1660 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
  1661   if (exp == iv) {
  1662     if (p_scale != NULL) {
  1663       *p_scale = 1;
  1665     return true;
  1667   int opc = exp->Opcode();
  1668   if (opc == Op_MulI) {
  1669     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1670       if (p_scale != NULL) {
  1671         *p_scale = exp->in(2)->get_int();
  1673       return true;
  1675     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
  1676       if (p_scale != NULL) {
  1677         *p_scale = exp->in(1)->get_int();
  1679       return true;
  1681   } else if (opc == Op_LShiftI) {
  1682     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1683       if (p_scale != NULL) {
  1684         *p_scale = 1 << exp->in(2)->get_int();
  1686       return true;
  1689   return false;
  1692 //-----------------------------is_scaled_iv_plus_offset------------------------------
  1693 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
  1694 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
  1695   if (is_scaled_iv(exp, iv, p_scale)) {
  1696     if (p_offset != NULL) {
  1697       Node *zero = _igvn.intcon(0);
  1698       set_ctrl(zero, C->root());
  1699       *p_offset = zero;
  1701     return true;
  1703   int opc = exp->Opcode();
  1704   if (opc == Op_AddI) {
  1705     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1706       if (p_offset != NULL) {
  1707         *p_offset = exp->in(2);
  1709       return true;
  1711     if (exp->in(2)->is_Con()) {
  1712       Node* offset2 = NULL;
  1713       if (depth < 2 &&
  1714           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
  1715                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
  1716         if (p_offset != NULL) {
  1717           Node *ctrl_off2 = get_ctrl(offset2);
  1718           Node* offset = new (C) AddINode(offset2, exp->in(2));
  1719           register_new_node(offset, ctrl_off2);
  1720           *p_offset = offset;
  1722         return true;
  1725   } else if (opc == Op_SubI) {
  1726     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1727       if (p_offset != NULL) {
  1728         Node *zero = _igvn.intcon(0);
  1729         set_ctrl(zero, C->root());
  1730         Node *ctrl_off = get_ctrl(exp->in(2));
  1731         Node* offset = new (C) SubINode(zero, exp->in(2));
  1732         register_new_node(offset, ctrl_off);
  1733         *p_offset = offset;
  1735       return true;
  1737     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
  1738       if (p_offset != NULL) {
  1739         *p_scale *= -1;
  1740         *p_offset = exp->in(1);
  1742       return true;
  1745   return false;
  1748 //------------------------------do_range_check---------------------------------
  1749 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
  1750 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
  1751 #ifndef PRODUCT
  1752   if (PrintOpto && VerifyLoopOptimizations) {
  1753     tty->print("Range Check Elimination ");
  1754     loop->dump_head();
  1755   } else if (TraceLoopOpts) {
  1756     tty->print("RangeCheck   ");
  1757     loop->dump_head();
  1759 #endif
  1760   assert(RangeCheckElimination, "");
  1761   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1762   assert(cl->is_main_loop(), "");
  1764   // protect against stride not being a constant
  1765   if (!cl->stride_is_con())
  1766     return;
  1768   // Find the trip counter; we are iteration splitting based on it
  1769   Node *trip_counter = cl->phi();
  1770   // Find the main loop limit; we will trim it's iterations
  1771   // to not ever trip end tests
  1772   Node *main_limit = cl->limit();
  1774   // Need to find the main-loop zero-trip guard
  1775   Node *ctrl  = cl->in(LoopNode::EntryControl);
  1776   assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
  1777   Node *iffm = ctrl->in(0);
  1778   assert(iffm->Opcode() == Op_If, "");
  1779   Node *bolzm = iffm->in(1);
  1780   assert(bolzm->Opcode() == Op_Bool, "");
  1781   Node *cmpzm = bolzm->in(1);
  1782   assert(cmpzm->is_Cmp(), "");
  1783   Node *opqzm = cmpzm->in(2);
  1784   // Can not optimize a loop if zero-trip Opaque1 node is optimized
  1785   // away and then another round of loop opts attempted.
  1786   if (opqzm->Opcode() != Op_Opaque1)
  1787     return;
  1788   assert(opqzm->in(1) == main_limit, "do not understand situation");
  1790   // Find the pre-loop limit; we will expand it's iterations to
  1791   // not ever trip low tests.
  1792   Node *p_f = iffm->in(0);
  1793   assert(p_f->Opcode() == Op_IfFalse, "");
  1794   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
  1795   assert(pre_end->loopnode()->is_pre_loop(), "");
  1796   Node *pre_opaq1 = pre_end->limit();
  1797   // Occasionally it's possible for a pre-loop Opaque1 node to be
  1798   // optimized away and then another round of loop opts attempted.
  1799   // We can not optimize this particular loop in that case.
  1800   if (pre_opaq1->Opcode() != Op_Opaque1)
  1801     return;
  1802   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  1803   Node *pre_limit = pre_opaq->in(1);
  1805   // Where do we put new limit calculations
  1806   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
  1808   // Ensure the original loop limit is available from the
  1809   // pre-loop Opaque1 node.
  1810   Node *orig_limit = pre_opaq->original_loop_limit();
  1811   if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
  1812     return;
  1814   // Must know if its a count-up or count-down loop
  1816   int stride_con = cl->stride_con();
  1817   Node *zero = _igvn.intcon(0);
  1818   Node *one  = _igvn.intcon(1);
  1819   // Use symmetrical int range [-max_jint,max_jint]
  1820   Node *mini = _igvn.intcon(-max_jint);
  1821   set_ctrl(zero, C->root());
  1822   set_ctrl(one,  C->root());
  1823   set_ctrl(mini, C->root());
  1825   // Range checks that do not dominate the loop backedge (ie.
  1826   // conditionally executed) can lengthen the pre loop limit beyond
  1827   // the original loop limit. To prevent this, the pre limit is
  1828   // (for stride > 0) MINed with the original loop limit (MAXed
  1829   // stride < 0) when some range_check (rc) is conditionally
  1830   // executed.
  1831   bool conditional_rc = false;
  1833   // Check loop body for tests of trip-counter plus loop-invariant vs
  1834   // loop-invariant.
  1835   for( uint i = 0; i < loop->_body.size(); i++ ) {
  1836     Node *iff = loop->_body[i];
  1837     if( iff->Opcode() == Op_If ) { // Test?
  1839       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  1840       // we need loop unswitching instead of iteration splitting.
  1841       Node *exit = loop->is_loop_exit(iff);
  1842       if( !exit ) continue;
  1843       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
  1845       // Get boolean condition to test
  1846       Node *i1 = iff->in(1);
  1847       if( !i1->is_Bool() ) continue;
  1848       BoolNode *bol = i1->as_Bool();
  1849       BoolTest b_test = bol->_test;
  1850       // Flip sense of test if exit condition is flipped
  1851       if( flip )
  1852         b_test = b_test.negate();
  1854       // Get compare
  1855       Node *cmp = bol->in(1);
  1857       // Look for trip_counter + offset vs limit
  1858       Node *rc_exp = cmp->in(1);
  1859       Node *limit  = cmp->in(2);
  1860       jint scale_con= 1;        // Assume trip counter not scaled
  1862       Node *limit_c = get_ctrl(limit);
  1863       if( loop->is_member(get_loop(limit_c) ) ) {
  1864         // Compare might have operands swapped; commute them
  1865         b_test = b_test.commute();
  1866         rc_exp = cmp->in(2);
  1867         limit  = cmp->in(1);
  1868         limit_c = get_ctrl(limit);
  1869         if( loop->is_member(get_loop(limit_c) ) )
  1870           continue;             // Both inputs are loop varying; cannot RCE
  1872       // Here we know 'limit' is loop invariant
  1874       // 'limit' maybe pinned below the zero trip test (probably from a
  1875       // previous round of rce), in which case, it can't be used in the
  1876       // zero trip test expression which must occur before the zero test's if.
  1877       if( limit_c == ctrl ) {
  1878         continue;  // Don't rce this check but continue looking for other candidates.
  1881       // Check for scaled induction variable plus an offset
  1882       Node *offset = NULL;
  1884       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
  1885         continue;
  1888       Node *offset_c = get_ctrl(offset);
  1889       if( loop->is_member( get_loop(offset_c) ) )
  1890         continue;               // Offset is not really loop invariant
  1891       // Here we know 'offset' is loop invariant.
  1893       // As above for the 'limit', the 'offset' maybe pinned below the
  1894       // zero trip test.
  1895       if( offset_c == ctrl ) {
  1896         continue; // Don't rce this check but continue looking for other candidates.
  1898 #ifdef ASSERT
  1899       if (TraceRangeLimitCheck) {
  1900         tty->print_cr("RC bool node%s", flip ? " flipped:" : ":");
  1901         bol->dump(2);
  1903 #endif
  1904       // At this point we have the expression as:
  1905       //   scale_con * trip_counter + offset :: limit
  1906       // where scale_con, offset and limit are loop invariant.  Trip_counter
  1907       // monotonically increases by stride_con, a constant.  Both (or either)
  1908       // stride_con and scale_con can be negative which will flip about the
  1909       // sense of the test.
  1911       // Adjust pre and main loop limits to guard the correct iteration set
  1912       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
  1913         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
  1914           // The underflow and overflow limits: 0 <= scale*I+offset < limit
  1915           add_constraint( stride_con, scale_con, offset, zero, limit, pre_ctrl, &pre_limit, &main_limit );
  1916           if (!conditional_rc) {
  1917             // (0-offset)/scale could be outside of loop iterations range.
  1918             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
  1920         } else {
  1921 #ifndef PRODUCT
  1922           if( PrintOpto )
  1923             tty->print_cr("missed RCE opportunity");
  1924 #endif
  1925           continue;             // In release mode, ignore it
  1927       } else {                  // Otherwise work on normal compares
  1928         switch( b_test._test ) {
  1929         case BoolTest::gt:
  1930           // Fall into GE case
  1931         case BoolTest::ge:
  1932           // Convert (I*scale+offset) >= Limit to (I*(-scale)+(-offset)) <= -Limit
  1933           scale_con = -scale_con;
  1934           offset = new (C) SubINode( zero, offset );
  1935           register_new_node( offset, pre_ctrl );
  1936           limit  = new (C) SubINode( zero, limit  );
  1937           register_new_node( limit, pre_ctrl );
  1938           // Fall into LE case
  1939         case BoolTest::le:
  1940           if (b_test._test != BoolTest::gt) {
  1941             // Convert X <= Y to X < Y+1
  1942             limit = new (C) AddINode( limit, one );
  1943             register_new_node( limit, pre_ctrl );
  1945           // Fall into LT case
  1946         case BoolTest::lt:
  1947           // The underflow and overflow limits: MIN_INT <= scale*I+offset < limit
  1948           // Note: (MIN_INT+1 == -MAX_INT) is used instead of MIN_INT here
  1949           // to avoid problem with scale == -1: MIN_INT/(-1) == MIN_INT.
  1950           add_constraint( stride_con, scale_con, offset, mini, limit, pre_ctrl, &pre_limit, &main_limit );
  1951           if (!conditional_rc) {
  1952             // ((MIN_INT+1)-offset)/scale could be outside of loop iterations range.
  1953             // Note: negative offset is replaced with 0 but (MIN_INT+1)/scale could
  1954             // still be outside of loop range.
  1955             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
  1957           break;
  1958         default:
  1959 #ifndef PRODUCT
  1960           if( PrintOpto )
  1961             tty->print_cr("missed RCE opportunity");
  1962 #endif
  1963           continue;             // Unhandled case
  1967       // Kill the eliminated test
  1968       C->set_major_progress();
  1969       Node *kill_con = _igvn.intcon( 1-flip );
  1970       set_ctrl(kill_con, C->root());
  1971       _igvn.replace_input_of(iff, 1, kill_con);
  1972       // Find surviving projection
  1973       assert(iff->is_If(), "");
  1974       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
  1975       // Find loads off the surviving projection; remove their control edge
  1976       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
  1977         Node* cd = dp->fast_out(i); // Control-dependent node
  1978         if (cd->is_Load() && cd->depends_only_on_test()) {   // Loads can now float around in the loop
  1979           // Allow the load to float around in the loop, or before it
  1980           // but NOT before the pre-loop.
  1981           _igvn.replace_input_of(cd, 0, ctrl); // ctrl, not NULL
  1982           --i;
  1983           --imax;
  1987     } // End of is IF
  1991   // Update loop limits
  1992   if (conditional_rc) {
  1993     pre_limit = (stride_con > 0) ? (Node*)new (C) MinINode(pre_limit, orig_limit)
  1994                                  : (Node*)new (C) MaxINode(pre_limit, orig_limit);
  1995     register_new_node(pre_limit, pre_ctrl);
  1997   _igvn.hash_delete(pre_opaq);
  1998   pre_opaq->set_req(1, pre_limit);
  2000   // Note:: we are making the main loop limit no longer precise;
  2001   // need to round up based on stride.
  2002   cl->set_nonexact_trip_count();
  2003   if (!LoopLimitCheck && stride_con != 1 && stride_con != -1) { // Cutout for common case
  2004     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
  2005     // Hopefully, compiler will optimize for powers of 2.
  2006     Node *ctrl = get_ctrl(main_limit);
  2007     Node *stride = cl->stride();
  2008     Node *init = cl->init_trip();
  2009     Node *span = new (C) SubINode(main_limit,init);
  2010     register_new_node(span,ctrl);
  2011     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
  2012     Node *add = new (C) AddINode(span,rndup);
  2013     register_new_node(add,ctrl);
  2014     Node *div = new (C) DivINode(0,add,stride);
  2015     register_new_node(div,ctrl);
  2016     Node *mul = new (C) MulINode(div,stride);
  2017     register_new_node(mul,ctrl);
  2018     Node *newlim = new (C) AddINode(mul,init);
  2019     register_new_node(newlim,ctrl);
  2020     main_limit = newlim;
  2023   Node *main_cle = cl->loopexit();
  2024   Node *main_bol = main_cle->in(1);
  2025   // Hacking loop bounds; need private copies of exit test
  2026   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
  2027     _igvn.hash_delete(main_cle);
  2028     main_bol = main_bol->clone();// Clone a private BoolNode
  2029     register_new_node( main_bol, main_cle->in(0) );
  2030     main_cle->set_req(1,main_bol);
  2032   Node *main_cmp = main_bol->in(1);
  2033   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
  2034     _igvn.hash_delete(main_bol);
  2035     main_cmp = main_cmp->clone();// Clone a private CmpNode
  2036     register_new_node( main_cmp, main_cle->in(0) );
  2037     main_bol->set_req(1,main_cmp);
  2039   // Hack the now-private loop bounds
  2040   _igvn.replace_input_of(main_cmp, 2, main_limit);
  2041   // The OpaqueNode is unshared by design
  2042   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
  2043   _igvn.replace_input_of(opqzm, 1, main_limit);
  2046 //------------------------------DCE_loop_body----------------------------------
  2047 // Remove simplistic dead code from loop body
  2048 void IdealLoopTree::DCE_loop_body() {
  2049   for( uint i = 0; i < _body.size(); i++ )
  2050     if( _body.at(i)->outcnt() == 0 )
  2051       _body.map( i--, _body.pop() );
  2055 //------------------------------adjust_loop_exit_prob--------------------------
  2056 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
  2057 // Replace with a 1-in-10 exit guess.
  2058 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
  2059   Node *test = tail();
  2060   while( test != _head ) {
  2061     uint top = test->Opcode();
  2062     if( top == Op_IfTrue || top == Op_IfFalse ) {
  2063       int test_con = ((ProjNode*)test)->_con;
  2064       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
  2065       IfNode *iff = test->in(0)->as_If();
  2066       if( iff->outcnt() == 2 ) {        // Ignore dead tests
  2067         Node *bol = iff->in(1);
  2068         if( bol && bol->req() > 1 && bol->in(1) &&
  2069             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
  2070              (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
  2071              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
  2072              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
  2073              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
  2074              (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
  2075              (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
  2076           return;               // Allocation loops RARELY take backedge
  2077         // Find the OTHER exit path from the IF
  2078         Node* ex = iff->proj_out(1-test_con);
  2079         float p = iff->_prob;
  2080         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
  2081           if( top == Op_IfTrue ) {
  2082             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
  2083               iff->_prob = PROB_STATIC_FREQUENT;
  2085           } else {
  2086             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
  2087               iff->_prob = PROB_STATIC_INFREQUENT;
  2093     test = phase->idom(test);
  2098 //------------------------------policy_do_remove_empty_loop--------------------
  2099 // Micro-benchmark spamming.  Policy is to always remove empty loops.
  2100 // The 'DO' part is to replace the trip counter with the value it will
  2101 // have on the last iteration.  This will break the loop.
  2102 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
  2103   // Minimum size must be empty loop
  2104   if (_body.size() > EMPTY_LOOP_SIZE)
  2105     return false;
  2107   if (!_head->is_CountedLoop())
  2108     return false;     // Dead loop
  2109   CountedLoopNode *cl = _head->as_CountedLoop();
  2110   if (!cl->is_valid_counted_loop())
  2111     return false; // Malformed loop
  2112   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
  2113     return false;             // Infinite loop
  2115 #ifdef ASSERT
  2116   // Ensure only one phi which is the iv.
  2117   Node* iv = NULL;
  2118   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
  2119     Node* n = cl->fast_out(i);
  2120     if (n->Opcode() == Op_Phi) {
  2121       assert(iv == NULL, "Too many phis" );
  2122       iv = n;
  2125   assert(iv == cl->phi(), "Wrong phi" );
  2126 #endif
  2128   // main and post loops have explicitly created zero trip guard
  2129   bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
  2130   if (needs_guard) {
  2131     // Skip guard if values not overlap.
  2132     const TypeInt* init_t = phase->_igvn.type(cl->init_trip())->is_int();
  2133     const TypeInt* limit_t = phase->_igvn.type(cl->limit())->is_int();
  2134     int  stride_con = cl->stride_con();
  2135     if (stride_con > 0) {
  2136       needs_guard = (init_t->_hi >= limit_t->_lo);
  2137     } else {
  2138       needs_guard = (init_t->_lo <= limit_t->_hi);
  2141   if (needs_guard) {
  2142     // Check for an obvious zero trip guard.
  2143     Node* inctrl = PhaseIdealLoop::skip_loop_predicates(cl->in(LoopNode::EntryControl));
  2144     if (inctrl->Opcode() == Op_IfTrue) {
  2145       // The test should look like just the backedge of a CountedLoop
  2146       Node* iff = inctrl->in(0);
  2147       if (iff->is_If()) {
  2148         Node* bol = iff->in(1);
  2149         if (bol->is_Bool() && bol->as_Bool()->_test._test == cl->loopexit()->test_trip()) {
  2150           Node* cmp = bol->in(1);
  2151           if (cmp->is_Cmp() && cmp->in(1) == cl->init_trip() && cmp->in(2) == cl->limit()) {
  2152             needs_guard = false;
  2159 #ifndef PRODUCT
  2160   if (PrintOpto) {
  2161     tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
  2162     this->dump_head();
  2163   } else if (TraceLoopOpts) {
  2164     tty->print("Empty with%s zero trip guard   ", needs_guard ? "out" : "");
  2165     this->dump_head();
  2167 #endif
  2169   if (needs_guard) {
  2170     // Peel the loop to ensure there's a zero trip guard
  2171     Node_List old_new;
  2172     phase->do_peeling(this, old_new);
  2175   // Replace the phi at loop head with the final value of the last
  2176   // iteration.  Then the CountedLoopEnd will collapse (backedge never
  2177   // taken) and all loop-invariant uses of the exit values will be correct.
  2178   Node *phi = cl->phi();
  2179   Node *exact_limit = phase->exact_limit(this);
  2180   if (exact_limit != cl->limit()) {
  2181     // We also need to replace the original limit to collapse loop exit.
  2182     Node* cmp = cl->loopexit()->cmp_node();
  2183     assert(cl->limit() == cmp->in(2), "sanity");
  2184     phase->_igvn._worklist.push(cmp->in(2)); // put limit on worklist
  2185     phase->_igvn.replace_input_of(cmp, 2, exact_limit); // put cmp on worklist
  2187   // Note: the final value after increment should not overflow since
  2188   // counted loop has limit check predicate.
  2189   Node *final = new (phase->C) SubINode( exact_limit, cl->stride() );
  2190   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
  2191   phase->_igvn.replace_node(phi,final);
  2192   phase->C->set_major_progress();
  2193   return true;
  2196 //------------------------------policy_do_one_iteration_loop-------------------
  2197 // Convert one iteration loop into normal code.
  2198 bool IdealLoopTree::policy_do_one_iteration_loop( PhaseIdealLoop *phase ) {
  2199   if (!_head->as_Loop()->is_valid_counted_loop())
  2200     return false; // Only for counted loop
  2202   CountedLoopNode *cl = _head->as_CountedLoop();
  2203   if (!cl->has_exact_trip_count() || cl->trip_count() != 1) {
  2204     return false;
  2207 #ifndef PRODUCT
  2208   if(TraceLoopOpts) {
  2209     tty->print("OneIteration ");
  2210     this->dump_head();
  2212 #endif
  2214   Node *init_n = cl->init_trip();
  2215 #ifdef ASSERT
  2216   // Loop boundaries should be constant since trip count is exact.
  2217   assert(init_n->get_int() + cl->stride_con() >= cl->limit()->get_int(), "should be one iteration");
  2218 #endif
  2219   // Replace the phi at loop head with the value of the init_trip.
  2220   // Then the CountedLoopEnd will collapse (backedge will not be taken)
  2221   // and all loop-invariant uses of the exit values will be correct.
  2222   phase->_igvn.replace_node(cl->phi(), cl->init_trip());
  2223   phase->C->set_major_progress();
  2224   return true;
  2227 //=============================================================================
  2228 //------------------------------iteration_split_impl---------------------------
  2229 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
  2230   // Compute exact loop trip count if possible.
  2231   compute_exact_trip_count(phase);
  2233   // Convert one iteration loop into normal code.
  2234   if (policy_do_one_iteration_loop(phase))
  2235     return true;
  2237   // Check and remove empty loops (spam micro-benchmarks)
  2238   if (policy_do_remove_empty_loop(phase))
  2239     return true;  // Here we removed an empty loop
  2241   bool should_peel = policy_peeling(phase); // Should we peel?
  2243   bool should_unswitch = policy_unswitching(phase);
  2245   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
  2246   // This removes loop-invariant tests (usually null checks).
  2247   if (!_head->is_CountedLoop()) { // Non-counted loop
  2248     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
  2249       // Partial peel succeeded so terminate this round of loop opts
  2250       return false;
  2252     if (should_peel) {            // Should we peel?
  2253 #ifndef PRODUCT
  2254       if (PrintOpto) tty->print_cr("should_peel");
  2255 #endif
  2256       phase->do_peeling(this,old_new);
  2257     } else if (should_unswitch) {
  2258       phase->do_unswitching(this, old_new);
  2260     return true;
  2262   CountedLoopNode *cl = _head->as_CountedLoop();
  2264   if (!cl->is_valid_counted_loop()) return true; // Ignore various kinds of broken loops
  2266   // Do nothing special to pre- and post- loops
  2267   if (cl->is_pre_loop() || cl->is_post_loop()) return true;
  2269   // Compute loop trip count from profile data
  2270   compute_profile_trip_cnt(phase);
  2272   // Before attempting fancy unrolling, RCE or alignment, see if we want
  2273   // to completely unroll this loop or do loop unswitching.
  2274   if (cl->is_normal_loop()) {
  2275     if (should_unswitch) {
  2276       phase->do_unswitching(this, old_new);
  2277       return true;
  2279     bool should_maximally_unroll =  policy_maximally_unroll(phase);
  2280     if (should_maximally_unroll) {
  2281       // Here we did some unrolling and peeling.  Eventually we will
  2282       // completely unroll this loop and it will no longer be a loop.
  2283       phase->do_maximally_unroll(this,old_new);
  2284       return true;
  2288   // Skip next optimizations if running low on nodes. Note that
  2289   // policy_unswitching and policy_maximally_unroll have this check.
  2290   uint nodes_left = MaxNodeLimit - (uint) phase->C->live_nodes();
  2291   if ((2 * _body.size()) > nodes_left) {
  2292     return true;
  2295   // Counted loops may be peeled, may need some iterations run up
  2296   // front for RCE, and may want to align loop refs to a cache
  2297   // line.  Thus we clone a full loop up front whose trip count is
  2298   // at least 1 (if peeling), but may be several more.
  2300   // The main loop will start cache-line aligned with at least 1
  2301   // iteration of the unrolled body (zero-trip test required) and
  2302   // will have some range checks removed.
  2304   // A post-loop will finish any odd iterations (leftover after
  2305   // unrolling), plus any needed for RCE purposes.
  2307   bool should_unroll = policy_unroll(phase);
  2309   bool should_rce = policy_range_check(phase);
  2311   bool should_align = policy_align(phase);
  2313   // If not RCE'ing (iteration splitting) or Aligning, then we do not
  2314   // need a pre-loop.  We may still need to peel an initial iteration but
  2315   // we will not be needing an unknown number of pre-iterations.
  2316   //
  2317   // Basically, if may_rce_align reports FALSE first time through,
  2318   // we will not be able to later do RCE or Aligning on this loop.
  2319   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
  2321   // If we have any of these conditions (RCE, alignment, unrolling) met, then
  2322   // we switch to the pre-/main-/post-loop model.  This model also covers
  2323   // peeling.
  2324   if (should_rce || should_align || should_unroll) {
  2325     if (cl->is_normal_loop())  // Convert to 'pre/main/post' loops
  2326       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
  2328     // Adjust the pre- and main-loop limits to let the pre and post loops run
  2329     // with full checks, but the main-loop with no checks.  Remove said
  2330     // checks from the main body.
  2331     if (should_rce)
  2332       phase->do_range_check(this,old_new);
  2334     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
  2335     // twice as many iterations as before) and the main body limit (only do
  2336     // an even number of trips).  If we are peeling, we might enable some RCE
  2337     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
  2338     // peeling.
  2339     if (should_unroll && !should_peel)
  2340       phase->do_unroll(this,old_new, true);
  2342     // Adjust the pre-loop limits to align the main body
  2343     // iterations.
  2344     if (should_align)
  2345       Unimplemented();
  2347   } else {                      // Else we have an unchanged counted loop
  2348     if (should_peel)           // Might want to peel but do nothing else
  2349       phase->do_peeling(this,old_new);
  2351   return true;
  2355 //=============================================================================
  2356 //------------------------------iteration_split--------------------------------
  2357 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
  2358   // Recursively iteration split nested loops
  2359   if (_child && !_child->iteration_split(phase, old_new))
  2360     return false;
  2362   // Clean out prior deadwood
  2363   DCE_loop_body();
  2366   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
  2367   // Replace with a 1-in-10 exit guess.
  2368   if (_parent /*not the root loop*/ &&
  2369       !_irreducible &&
  2370       // Also ignore the occasional dead backedge
  2371       !tail()->is_top()) {
  2372     adjust_loop_exit_prob(phase);
  2375   // Gate unrolling, RCE and peeling efforts.
  2376   if (!_child &&                // If not an inner loop, do not split
  2377       !_irreducible &&
  2378       _allow_optimizations &&
  2379       !tail()->is_top()) {     // Also ignore the occasional dead backedge
  2380     if (!_has_call) {
  2381         if (!iteration_split_impl(phase, old_new)) {
  2382           return false;
  2384     } else if (policy_unswitching(phase)) {
  2385       phase->do_unswitching(this, old_new);
  2389   // Minor offset re-organization to remove loop-fallout uses of
  2390   // trip counter when there was no major reshaping.
  2391   phase->reorg_offsets(this);
  2393   if (_next && !_next->iteration_split(phase, old_new))
  2394     return false;
  2395   return true;
  2399 //=============================================================================
  2400 // Process all the loops in the loop tree and replace any fill
  2401 // patterns with an intrisc version.
  2402 bool PhaseIdealLoop::do_intrinsify_fill() {
  2403   bool changed = false;
  2404   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2405     IdealLoopTree* lpt = iter.current();
  2406     changed |= intrinsify_fill(lpt);
  2408   return changed;
  2412 // Examine an inner loop looking for a a single store of an invariant
  2413 // value in a unit stride loop,
  2414 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
  2415                                      Node*& shift, Node*& con) {
  2416   const char* msg = NULL;
  2417   Node* msg_node = NULL;
  2419   store_value = NULL;
  2420   con = NULL;
  2421   shift = NULL;
  2423   // Process the loop looking for stores.  If there are multiple
  2424   // stores or extra control flow give at this point.
  2425   CountedLoopNode* head = lpt->_head->as_CountedLoop();
  2426   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2427     Node* n = lpt->_body.at(i);
  2428     if (n->outcnt() == 0) continue; // Ignore dead
  2429     if (n->is_Store()) {
  2430       if (store != NULL) {
  2431         msg = "multiple stores";
  2432         break;
  2434       int opc = n->Opcode();
  2435       if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreNKlass || opc == Op_StoreCM) {
  2436         msg = "oop fills not handled";
  2437         break;
  2439       Node* value = n->in(MemNode::ValueIn);
  2440       if (!lpt->is_invariant(value)) {
  2441         msg  = "variant store value";
  2442       } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
  2443         msg = "not array address";
  2445       store = n;
  2446       store_value = value;
  2447     } else if (n->is_If() && n != head->loopexit()) {
  2448       msg = "extra control flow";
  2449       msg_node = n;
  2453   if (store == NULL) {
  2454     // No store in loop
  2455     return false;
  2458   if (msg == NULL && head->stride_con() != 1) {
  2459     // could handle negative strides too
  2460     if (head->stride_con() < 0) {
  2461       msg = "negative stride";
  2462     } else {
  2463       msg = "non-unit stride";
  2467   if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
  2468     msg = "can't handle store address";
  2469     msg_node = store->in(MemNode::Address);
  2472   if (msg == NULL &&
  2473       (!store->in(MemNode::Memory)->is_Phi() ||
  2474        store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
  2475     msg = "store memory isn't proper phi";
  2476     msg_node = store->in(MemNode::Memory);
  2479   // Make sure there is an appropriate fill routine
  2480   BasicType t = store->as_Mem()->memory_type();
  2481   const char* fill_name;
  2482   if (msg == NULL &&
  2483       StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
  2484     msg = "unsupported store";
  2485     msg_node = store;
  2488   if (msg != NULL) {
  2489 #ifndef PRODUCT
  2490     if (TraceOptimizeFill) {
  2491       tty->print_cr("not fill intrinsic candidate: %s", msg);
  2492       if (msg_node != NULL) msg_node->dump();
  2494 #endif
  2495     return false;
  2498   // Make sure the address expression can be handled.  It should be
  2499   // head->phi * elsize + con.  head->phi might have a ConvI2L.
  2500   Node* elements[4];
  2501   Node* conv = NULL;
  2502   bool found_index = false;
  2503   int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  2504   for (int e = 0; e < count; e++) {
  2505     Node* n = elements[e];
  2506     if (n->is_Con() && con == NULL) {
  2507       con = n;
  2508     } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
  2509       Node* value = n->in(1);
  2510 #ifdef _LP64
  2511       if (value->Opcode() == Op_ConvI2L) {
  2512         conv = value;
  2513         value = value->in(1);
  2515 #endif
  2516       if (value != head->phi()) {
  2517         msg = "unhandled shift in address";
  2518       } else {
  2519         if (type2aelembytes(store->as_Mem()->memory_type(), true) != (1 << n->in(2)->get_int())) {
  2520           msg = "scale doesn't match";
  2521         } else {
  2522           found_index = true;
  2523           shift = n;
  2526     } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
  2527       if (n->in(1) == head->phi()) {
  2528         found_index = true;
  2529         conv = n;
  2530       } else {
  2531         msg = "unhandled input to ConvI2L";
  2533     } else if (n == head->phi()) {
  2534       // no shift, check below for allowed cases
  2535       found_index = true;
  2536     } else {
  2537       msg = "unhandled node in address";
  2538       msg_node = n;
  2542   if (count == -1) {
  2543     msg = "malformed address expression";
  2544     msg_node = store;
  2547   if (!found_index) {
  2548     msg = "missing use of index";
  2551   // byte sized items won't have a shift
  2552   if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
  2553     msg = "can't find shift";
  2554     msg_node = store;
  2557   if (msg != NULL) {
  2558 #ifndef PRODUCT
  2559     if (TraceOptimizeFill) {
  2560       tty->print_cr("not fill intrinsic: %s", msg);
  2561       if (msg_node != NULL) msg_node->dump();
  2563 #endif
  2564     return false;
  2567   // No make sure all the other nodes in the loop can be handled
  2568   VectorSet ok(Thread::current()->resource_area());
  2570   // store related values are ok
  2571   ok.set(store->_idx);
  2572   ok.set(store->in(MemNode::Memory)->_idx);
  2574   CountedLoopEndNode* loop_exit = head->loopexit();
  2575   guarantee(loop_exit != NULL, "no loop exit node");
  2577   // Loop structure is ok
  2578   ok.set(head->_idx);
  2579   ok.set(loop_exit->_idx);
  2580   ok.set(head->phi()->_idx);
  2581   ok.set(head->incr()->_idx);
  2582   ok.set(loop_exit->cmp_node()->_idx);
  2583   ok.set(loop_exit->in(1)->_idx);
  2585   // Address elements are ok
  2586   if (con)   ok.set(con->_idx);
  2587   if (shift) ok.set(shift->_idx);
  2588   if (conv)  ok.set(conv->_idx);
  2590   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2591     Node* n = lpt->_body.at(i);
  2592     if (n->outcnt() == 0) continue; // Ignore dead
  2593     if (ok.test(n->_idx)) continue;
  2594     // Backedge projection is ok
  2595     if (n->is_IfTrue() && n->in(0) == loop_exit) continue;
  2596     if (!n->is_AddP()) {
  2597       msg = "unhandled node";
  2598       msg_node = n;
  2599       break;
  2603   // Make sure no unexpected values are used outside the loop
  2604   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2605     Node* n = lpt->_body.at(i);
  2606     // These values can be replaced with other nodes if they are used
  2607     // outside the loop.
  2608     if (n == store || n == loop_exit || n == head->incr() || n == store->in(MemNode::Memory)) continue;
  2609     for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
  2610       Node* use = iter.get();
  2611       if (!lpt->_body.contains(use)) {
  2612         msg = "node is used outside loop";
  2613         // lpt->_body.dump();
  2614         msg_node = n;
  2615         break;
  2620 #ifdef ASSERT
  2621   if (TraceOptimizeFill) {
  2622     if (msg != NULL) {
  2623       tty->print_cr("no fill intrinsic: %s", msg);
  2624       if (msg_node != NULL) msg_node->dump();
  2625     } else {
  2626       tty->print_cr("fill intrinsic for:");
  2628     store->dump();
  2629     if (Verbose) {
  2630       lpt->_body.dump();
  2633 #endif
  2635   return msg == NULL;
  2640 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
  2641   // Only for counted inner loops
  2642   if (!lpt->is_counted() || !lpt->is_inner()) {
  2643     return false;
  2646   // Must have constant stride
  2647   CountedLoopNode* head = lpt->_head->as_CountedLoop();
  2648   if (!head->is_valid_counted_loop() || !head->is_normal_loop()) {
  2649     return false;
  2652   // Check that the body only contains a store of a loop invariant
  2653   // value that is indexed by the loop phi.
  2654   Node* store = NULL;
  2655   Node* store_value = NULL;
  2656   Node* shift = NULL;
  2657   Node* offset = NULL;
  2658   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
  2659     return false;
  2662 #ifndef PRODUCT
  2663   if (TraceLoopOpts) {
  2664     tty->print("ArrayFill    ");
  2665     lpt->dump_head();
  2667 #endif
  2669   // Now replace the whole loop body by a call to a fill routine that
  2670   // covers the same region as the loop.
  2671   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
  2673   // Build an expression for the beginning of the copy region
  2674   Node* index = head->init_trip();
  2675 #ifdef _LP64
  2676   index = new (C) ConvI2LNode(index);
  2677   _igvn.register_new_node_with_optimizer(index);
  2678 #endif
  2679   if (shift != NULL) {
  2680     // byte arrays don't require a shift but others do.
  2681     index = new (C) LShiftXNode(index, shift->in(2));
  2682     _igvn.register_new_node_with_optimizer(index);
  2684   index = new (C) AddPNode(base, base, index);
  2685   _igvn.register_new_node_with_optimizer(index);
  2686   Node* from = new (C) AddPNode(base, index, offset);
  2687   _igvn.register_new_node_with_optimizer(from);
  2688   // Compute the number of elements to copy
  2689   Node* len = new (C) SubINode(head->limit(), head->init_trip());
  2690   _igvn.register_new_node_with_optimizer(len);
  2692   BasicType t = store->as_Mem()->memory_type();
  2693   bool aligned = false;
  2694   if (offset != NULL && head->init_trip()->is_Con()) {
  2695     int element_size = type2aelembytes(t);
  2696     aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
  2699   // Build a call to the fill routine
  2700   const char* fill_name;
  2701   address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
  2702   assert(fill != NULL, "what?");
  2704   // Convert float/double to int/long for fill routines
  2705   if (t == T_FLOAT) {
  2706     store_value = new (C) MoveF2INode(store_value);
  2707     _igvn.register_new_node_with_optimizer(store_value);
  2708   } else if (t == T_DOUBLE) {
  2709     store_value = new (C) MoveD2LNode(store_value);
  2710     _igvn.register_new_node_with_optimizer(store_value);
  2713   if (CCallingConventionRequiresIntsAsLongs &&
  2714       // See StubRoutines::select_fill_function for types. FLOAT has been converted to INT.
  2715       (t == T_FLOAT || t == T_INT ||  is_subword_type(t))) {
  2716     store_value = new (C) ConvI2LNode(store_value);
  2717     _igvn.register_new_node_with_optimizer(store_value);
  2720   Node* mem_phi = store->in(MemNode::Memory);
  2721   Node* result_ctrl;
  2722   Node* result_mem;
  2723   const TypeFunc* call_type = OptoRuntime::array_fill_Type();
  2724   CallLeafNode *call = new (C) CallLeafNoFPNode(call_type, fill,
  2725                                                 fill_name, TypeAryPtr::get_array_body_type(t));
  2726   uint cnt = 0;
  2727   call->init_req(TypeFunc::Parms + cnt++, from);
  2728   call->init_req(TypeFunc::Parms + cnt++, store_value);
  2729   if (CCallingConventionRequiresIntsAsLongs) {
  2730     call->init_req(TypeFunc::Parms + cnt++, C->top());
  2732 #ifdef _LP64
  2733   len = new (C) ConvI2LNode(len);
  2734   _igvn.register_new_node_with_optimizer(len);
  2735 #endif
  2736   call->init_req(TypeFunc::Parms + cnt++, len);
  2737 #ifdef _LP64
  2738   call->init_req(TypeFunc::Parms + cnt++, C->top());
  2739 #endif
  2740   call->init_req(TypeFunc::Control,   head->init_control());
  2741   call->init_req(TypeFunc::I_O,       C->top());       // Does no I/O.
  2742   call->init_req(TypeFunc::Memory,    mem_phi->in(LoopNode::EntryControl));
  2743   call->init_req(TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr));
  2744   call->init_req(TypeFunc::FramePtr,  C->start()->proj_out(TypeFunc::FramePtr));
  2745   _igvn.register_new_node_with_optimizer(call);
  2746   result_ctrl = new (C) ProjNode(call,TypeFunc::Control);
  2747   _igvn.register_new_node_with_optimizer(result_ctrl);
  2748   result_mem = new (C) ProjNode(call,TypeFunc::Memory);
  2749   _igvn.register_new_node_with_optimizer(result_mem);
  2751 /* Disable following optimization until proper fix (add missing checks).
  2753   // If this fill is tightly coupled to an allocation and overwrites
  2754   // the whole body, allow it to take over the zeroing.
  2755   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
  2756   if (alloc != NULL && alloc->is_AllocateArray()) {
  2757     Node* length = alloc->as_AllocateArray()->Ideal_length();
  2758     if (head->limit() == length &&
  2759         head->init_trip() == _igvn.intcon(0)) {
  2760       if (TraceOptimizeFill) {
  2761         tty->print_cr("Eliminated zeroing in allocation");
  2763       alloc->maybe_set_complete(&_igvn);
  2764     } else {
  2765 #ifdef ASSERT
  2766       if (TraceOptimizeFill) {
  2767         tty->print_cr("filling array but bounds don't match");
  2768         alloc->dump();
  2769         head->init_trip()->dump();
  2770         head->limit()->dump();
  2771         length->dump();
  2773 #endif
  2776 */
  2778   // Redirect the old control and memory edges that are outside the loop.
  2779   Node* exit = head->loopexit()->proj_out(0);
  2780   // Sometimes the memory phi of the head is used as the outgoing
  2781   // state of the loop.  It's safe in this case to replace it with the
  2782   // result_mem.
  2783   _igvn.replace_node(store->in(MemNode::Memory), result_mem);
  2784   _igvn.replace_node(exit, result_ctrl);
  2785   _igvn.replace_node(store, result_mem);
  2786   // Any uses the increment outside of the loop become the loop limit.
  2787   _igvn.replace_node(head->incr(), head->limit());
  2789   // Disconnect the head from the loop.
  2790   for (uint i = 0; i < lpt->_body.size(); i++) {
  2791     Node* n = lpt->_body.at(i);
  2792     _igvn.replace_node(n, C->top());
  2795   return true;

mercurial