src/share/vm/opto/chaitin.hpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_CHAITIN_HPP
    26 #define SHARE_VM_OPTO_CHAITIN_HPP
    28 #include "code/vmreg.hpp"
    29 #include "libadt/port.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "opto/connode.hpp"
    32 #include "opto/live.hpp"
    33 #include "opto/matcher.hpp"
    34 #include "opto/phase.hpp"
    35 #include "opto/regalloc.hpp"
    36 #include "opto/regmask.hpp"
    38 class LoopTree;
    39 class MachCallNode;
    40 class MachSafePointNode;
    41 class Matcher;
    42 class PhaseCFG;
    43 class PhaseLive;
    44 class PhaseRegAlloc;
    45 class   PhaseChaitin;
    47 #define OPTO_DEBUG_SPLIT_FREQ  BLOCK_FREQUENCY(0.001)
    48 #define OPTO_LRG_HIGH_FREQ     BLOCK_FREQUENCY(0.25)
    50 //------------------------------LRG--------------------------------------------
    51 // Live-RanGe structure.
    52 class LRG : public ResourceObj {
    53   friend class VMStructs;
    54 public:
    55   static const uint AllStack_size = 0xFFFFF; // This mask size is used to tell that the mask of this LRG supports stack positions
    56   enum { SPILL_REG=29999 };     // Register number of a spilled LRG
    58   double _cost;                 // 2 for loads/1 for stores times block freq
    59   double _area;                 // Sum of all simultaneously live values
    60   double score() const;         // Compute score from cost and area
    61   double _maxfreq;              // Maximum frequency of any def or use
    63   Node *_def;                   // Check for multi-def live ranges
    64 #ifndef PRODUCT
    65   GrowableArray<Node*>* _defs;
    66 #endif
    68   uint _risk_bias;              // Index of LRG which we want to avoid color
    69   uint _copy_bias;              // Index of LRG which we want to share color
    71   uint _next;                   // Index of next LRG in linked list
    72   uint _prev;                   // Index of prev LRG in linked list
    73 private:
    74   uint _reg;                    // Chosen register; undefined if mask is plural
    75 public:
    76   // Return chosen register for this LRG.  Error if the LRG is not bound to
    77   // a single register.
    78   OptoReg::Name reg() const { return OptoReg::Name(_reg); }
    79   void set_reg( OptoReg::Name r ) { _reg = r; }
    81 private:
    82   uint _eff_degree;             // Effective degree: Sum of neighbors _num_regs
    83 public:
    84   int degree() const { assert( _degree_valid , "" ); return _eff_degree; }
    85   // Degree starts not valid and any change to the IFG neighbor
    86   // set makes it not valid.
    87   void set_degree( uint degree ) {
    88     _eff_degree = degree;
    89     debug_only(_degree_valid = 1;)
    90     assert(!_mask.is_AllStack() || (_mask.is_AllStack() && lo_degree()), "_eff_degree can't be bigger than AllStack_size - _num_regs if the mask supports stack registers");
    91   }
    92   // Made a change that hammered degree
    93   void invalid_degree() { debug_only(_degree_valid=0;) }
    94   // Incrementally modify degree.  If it was correct, it should remain correct
    95   void inc_degree( uint mod ) {
    96     _eff_degree += mod;
    97     assert(!_mask.is_AllStack() || (_mask.is_AllStack() && lo_degree()), "_eff_degree can't be bigger than AllStack_size - _num_regs if the mask supports stack registers");
    98   }
    99   // Compute the degree between 2 live ranges
   100   int compute_degree( LRG &l ) const;
   102 private:
   103   RegMask _mask;                // Allowed registers for this LRG
   104   uint _mask_size;              // cache of _mask.Size();
   105 public:
   106   int compute_mask_size() const { return _mask.is_AllStack() ? AllStack_size : _mask.Size(); }
   107   void set_mask_size( int size ) {
   108     assert((size == (int)AllStack_size) || (size == (int)_mask.Size()), "");
   109     _mask_size = size;
   110 #ifdef ASSERT
   111     _msize_valid=1;
   112     if (_is_vector) {
   113       assert(!_fat_proj, "sanity");
   114       _mask.verify_sets(_num_regs);
   115     } else if (_num_regs == 2 && !_fat_proj) {
   116       _mask.verify_pairs();
   117     }
   118 #endif
   119   }
   120   void compute_set_mask_size() { set_mask_size(compute_mask_size()); }
   121   int mask_size() const { assert( _msize_valid, "mask size not valid" );
   122                           return _mask_size; }
   123   // Get the last mask size computed, even if it does not match the
   124   // count of bits in the current mask.
   125   int get_invalid_mask_size() const { return _mask_size; }
   126   const RegMask &mask() const { return _mask; }
   127   void set_mask( const RegMask &rm ) { _mask = rm; debug_only(_msize_valid=0;)}
   128   void AND( const RegMask &rm ) { _mask.AND(rm); debug_only(_msize_valid=0;)}
   129   void SUBTRACT( const RegMask &rm ) { _mask.SUBTRACT(rm); debug_only(_msize_valid=0;)}
   130   void Clear()   { _mask.Clear()  ; debug_only(_msize_valid=1); _mask_size = 0; }
   131   void Set_All() { _mask.Set_All(); debug_only(_msize_valid=1); _mask_size = RegMask::CHUNK_SIZE; }
   132   void Insert( OptoReg::Name reg ) { _mask.Insert(reg);  debug_only(_msize_valid=0;) }
   133   void Remove( OptoReg::Name reg ) { _mask.Remove(reg);  debug_only(_msize_valid=0;) }
   134   void clear_to_pairs() { _mask.clear_to_pairs(); debug_only(_msize_valid=0;) }
   135   void clear_to_sets()  { _mask.clear_to_sets(_num_regs); debug_only(_msize_valid=0;) }
   137   // Number of registers this live range uses when it colors
   138 private:
   139   uint8 _num_regs;              // 2 for Longs and Doubles, 1 for all else
   140                                 // except _num_regs is kill count for fat_proj
   141 public:
   142   int num_regs() const { return _num_regs; }
   143   void set_num_regs( int reg ) { assert( _num_regs == reg || !_num_regs, "" ); _num_regs = reg; }
   145 private:
   146   // Number of physical registers this live range uses when it colors
   147   // Architecture and register-set dependent
   148   uint8 _reg_pressure;
   149 public:
   150   void set_reg_pressure(int i)  { _reg_pressure = i; }
   151   int      reg_pressure() const { return _reg_pressure; }
   153   // How much 'wiggle room' does this live range have?
   154   // How many color choices can it make (scaled by _num_regs)?
   155   int degrees_of_freedom() const { return mask_size() - _num_regs; }
   156   // Bound LRGs have ZERO degrees of freedom.  We also count
   157   // must_spill as bound.
   158   bool is_bound  () const { return _is_bound; }
   159   // Negative degrees-of-freedom; even with no neighbors this
   160   // live range must spill.
   161   bool not_free() const { return degrees_of_freedom() <  0; }
   162   // Is this live range of "low-degree"?  Trivially colorable?
   163   bool lo_degree () const { return degree() <= degrees_of_freedom(); }
   164   // Is this live range just barely "low-degree"?  Trivially colorable?
   165   bool just_lo_degree () const { return degree() == degrees_of_freedom(); }
   167   uint   _is_oop:1,             // Live-range holds an oop
   168          _is_float:1,           // True if in float registers
   169          _is_vector:1,          // True if in vector registers
   170          _was_spilled1:1,       // True if prior spilling on def
   171          _was_spilled2:1,       // True if twice prior spilling on def
   172          _is_bound:1,           // live range starts life with no
   173                                 // degrees of freedom.
   174          _direct_conflict:1,    // True if def and use registers in conflict
   175          _must_spill:1,         // live range has lost all degrees of freedom
   176     // If _fat_proj is set, live range does NOT require aligned, adjacent
   177     // registers and has NO interferences.
   178     // If _fat_proj is clear, live range requires num_regs() to be a power of
   179     // 2, and it requires registers to form an aligned, adjacent set.
   180          _fat_proj:1,           //
   181          _was_lo:1,             // Was lo-degree prior to coalesce
   182          _msize_valid:1,        // _mask_size cache valid
   183          _degree_valid:1,       // _degree cache valid
   184          _has_copy:1,           // Adjacent to some copy instruction
   185          _at_risk:1;            // Simplify says this guy is at risk to spill
   188   // Alive if non-zero, dead if zero
   189   bool alive() const { return _def != NULL; }
   190   bool is_multidef() const { return _def == NodeSentinel; }
   191   bool is_singledef() const { return _def != NodeSentinel; }
   193 #ifndef PRODUCT
   194   void dump( ) const;
   195 #endif
   196 };
   198 //------------------------------IFG--------------------------------------------
   199 //                         InterFerence Graph
   200 // An undirected graph implementation.  Created with a fixed number of
   201 // vertices.  Edges can be added & tested.  Vertices can be removed, then
   202 // added back later with all edges intact.  Can add edges between one vertex
   203 // and a list of other vertices.  Can union vertices (and their edges)
   204 // together.  The IFG needs to be really really fast, and also fairly
   205 // abstract!  It needs abstraction so I can fiddle with the implementation to
   206 // get even more speed.
   207 class PhaseIFG : public Phase {
   208   friend class VMStructs;
   209   // Current implementation: a triangular adjacency list.
   211   // Array of adjacency-lists, indexed by live-range number
   212   IndexSet *_adjs;
   214   // Assertion bit for proper use of Squaring
   215   bool _is_square;
   217   // Live range structure goes here
   218   LRG *_lrgs;                   // Array of LRG structures
   220 public:
   221   // Largest live-range number
   222   uint _maxlrg;
   224   Arena *_arena;
   226   // Keep track of inserted and deleted Nodes
   227   VectorSet *_yanked;
   229   PhaseIFG( Arena *arena );
   230   void init( uint maxlrg );
   232   // Add edge between a and b.  Returns true if actually addded.
   233   int add_edge( uint a, uint b );
   235   // Add edge between a and everything in the vector
   236   void add_vector( uint a, IndexSet *vec );
   238   // Test for edge existance
   239   int test_edge( uint a, uint b ) const;
   241   // Square-up matrix for faster Union
   242   void SquareUp();
   244   // Return number of LRG neighbors
   245   uint neighbor_cnt( uint a ) const { return _adjs[a].count(); }
   246   // Union edges of b into a on Squared-up matrix
   247   void Union( uint a, uint b );
   248   // Test for edge in Squared-up matrix
   249   int test_edge_sq( uint a, uint b ) const;
   250   // Yank a Node and all connected edges from the IFG.  Be prepared to
   251   // re-insert the yanked Node in reverse order of yanking.  Return a
   252   // list of neighbors (edges) yanked.
   253   IndexSet *remove_node( uint a );
   254   // Reinsert a yanked Node
   255   void re_insert( uint a );
   256   // Return set of neighbors
   257   IndexSet *neighbors( uint a ) const { return &_adjs[a]; }
   259 #ifndef PRODUCT
   260   // Dump the IFG
   261   void dump() const;
   262   void stats() const;
   263   void verify( const PhaseChaitin * ) const;
   264 #endif
   266   //--------------- Live Range Accessors
   267   LRG &lrgs(uint idx) const { assert(idx < _maxlrg, "oob"); return _lrgs[idx]; }
   269   // Compute and set effective degree.  Might be folded into SquareUp().
   270   void Compute_Effective_Degree();
   272   // Compute effective degree as the sum of neighbors' _sizes.
   273   int effective_degree( uint lidx ) const;
   274 };
   276 // The LiveRangeMap class is responsible for storing node to live range id mapping.
   277 // Each node is mapped to a live range id (a virtual register). Nodes that are
   278 // not considered for register allocation are given live range id 0.
   279 class LiveRangeMap VALUE_OBJ_CLASS_SPEC {
   281 private:
   283   uint _max_lrg_id;
   285   // Union-find map.  Declared as a short for speed.
   286   // Indexed by live-range number, it returns the compacted live-range number
   287   LRG_List _uf_map;
   289   // Map from Nodes to live ranges
   290   LRG_List _names;
   292   // Straight out of Tarjan's union-find algorithm
   293   uint find_compress(const Node *node) {
   294     uint lrg_id = find_compress(_names.at(node->_idx));
   295     _names.at_put(node->_idx, lrg_id);
   296     return lrg_id;
   297   }
   299   uint find_compress(uint lrg);
   301 public:
   303   const LRG_List& names() {
   304     return _names;
   305   }
   307   uint max_lrg_id() const {
   308     return _max_lrg_id;
   309   }
   311   void set_max_lrg_id(uint max_lrg_id) {
   312     _max_lrg_id = max_lrg_id;
   313   }
   315   uint size() const {
   316     return _names.length();
   317   }
   319   uint live_range_id(uint idx) const {
   320     return _names.at(idx);
   321   }
   323   uint live_range_id(const Node *node) const {
   324     return _names.at(node->_idx);
   325   }
   327   uint uf_live_range_id(uint lrg_id) const {
   328     return _uf_map.at(lrg_id);
   329   }
   331   void map(uint idx, uint lrg_id) {
   332     _names.at_put(idx, lrg_id);
   333   }
   335   void uf_map(uint dst_lrg_id, uint src_lrg_id) {
   336     _uf_map.at_put(dst_lrg_id, src_lrg_id);
   337   }
   339   void extend(uint idx, uint lrg_id) {
   340     _names.at_put_grow(idx, lrg_id);
   341   }
   343   void uf_extend(uint dst_lrg_id, uint src_lrg_id) {
   344     _uf_map.at_put_grow(dst_lrg_id, src_lrg_id);
   345   }
   347   LiveRangeMap(Arena* arena, uint unique)
   348   : _names(arena, unique, unique, 0)
   349   , _uf_map(arena, unique, unique, 0)
   350   , _max_lrg_id(0) {}
   352   uint find_id( const Node *n ) {
   353     uint retval = live_range_id(n);
   354     assert(retval == find(n),"Invalid node to lidx mapping");
   355     return retval;
   356   }
   358   // Reset the Union-Find map to identity
   359   void reset_uf_map(uint max_lrg_id);
   361   // Make all Nodes map directly to their final live range; no need for
   362   // the Union-Find mapping after this call.
   363   void compress_uf_map_for_nodes();
   365   uint find(uint lidx) {
   366     uint uf_lidx = _uf_map.at(lidx);
   367     return (uf_lidx == lidx) ? uf_lidx : find_compress(lidx);
   368   }
   370   // Convert a Node into a Live Range Index - a lidx
   371   uint find(const Node *node) {
   372     uint lidx = live_range_id(node);
   373     uint uf_lidx = _uf_map.at(lidx);
   374     return (uf_lidx == lidx) ? uf_lidx : find_compress(node);
   375   }
   377   // Like Find above, but no path compress, so bad asymptotic behavior
   378   uint find_const(uint lrg) const;
   380   // Like Find above, but no path compress, so bad asymptotic behavior
   381   uint find_const(const Node *node) const {
   382     if(node->_idx >= (uint)_names.length()) {
   383       return 0; // not mapped, usual for debug dump
   384     }
   385     return find_const(_names.at(node->_idx));
   386   }
   387 };
   389 //------------------------------Chaitin----------------------------------------
   390 // Briggs-Chaitin style allocation, mostly.
   391 class PhaseChaitin : public PhaseRegAlloc {
   392   friend class VMStructs;
   394   int _trip_cnt;
   395   int _alternate;
   397   LRG &lrgs(uint idx) const { return _ifg->lrgs(idx); }
   398   PhaseLive *_live;             // Liveness, used in the interference graph
   399   PhaseIFG *_ifg;               // Interference graph (for original chunk)
   400   Node_List **_lrg_nodes;       // Array of node; lists for lrgs which spill
   401   VectorSet _spilled_once;      // Nodes that have been spilled
   402   VectorSet _spilled_twice;     // Nodes that have been spilled twice
   404   // Combine the Live Range Indices for these 2 Nodes into a single live
   405   // range.  Future requests for any Node in either live range will
   406   // return the live range index for the combined live range.
   407   void Union( const Node *src, const Node *dst );
   409   void new_lrg( const Node *x, uint lrg );
   411   // Compact live ranges, removing unused ones.  Return new maxlrg.
   412   void compact();
   414   uint _lo_degree;              // Head of lo-degree LRGs list
   415   uint _lo_stk_degree;          // Head of lo-stk-degree LRGs list
   416   uint _hi_degree;              // Head of hi-degree LRGs list
   417   uint _simplified;             // Linked list head of simplified LRGs
   419   // Helper functions for Split()
   420   uint split_DEF( Node *def, Block *b, int loc, uint max, Node **Reachblock, Node **debug_defs, GrowableArray<uint> splits, int slidx );
   421   uint split_USE( Node *def, Block *b, Node *use, uint useidx, uint max, bool def_down, bool cisc_sp, GrowableArray<uint> splits, int slidx );
   423   //------------------------------clone_projs------------------------------------
   424   // After cloning some rematerialized instruction, clone any MachProj's that
   425   // follow it.  Example: Intel zero is XOR, kills flags.  Sparc FP constants
   426   // use G3 as an address temp.
   427   int clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id);
   429   int clone_projs(Block* b, uint idx, Node* orig, Node* copy, LiveRangeMap& lrg_map) {
   430     uint max_lrg_id = lrg_map.max_lrg_id();
   431     int found_projs = clone_projs(b, idx, orig, copy, max_lrg_id);
   432     if (found_projs > 0) {
   433       // max_lrg_id is updated during call above
   434       lrg_map.set_max_lrg_id(max_lrg_id);
   435     }
   436     return found_projs;
   437   }
   439   Node *split_Rematerialize(Node *def, Block *b, uint insidx, uint &maxlrg, GrowableArray<uint> splits,
   440                             int slidx, uint *lrg2reach, Node **Reachblock, bool walkThru);
   441   // True if lidx is used before any real register is def'd in the block
   442   bool prompt_use( Block *b, uint lidx );
   443   Node *get_spillcopy_wide( Node *def, Node *use, uint uidx );
   444   // Insert the spill at chosen location.  Skip over any intervening Proj's or
   445   // Phis.  Skip over a CatchNode and projs, inserting in the fall-through block
   446   // instead.  Update high-pressure indices.  Create a new live range.
   447   void insert_proj( Block *b, uint i, Node *spill, uint maxlrg );
   449   bool is_high_pressure( Block *b, LRG *lrg, uint insidx );
   451   uint _oldphi;                 // Node index which separates pre-allocation nodes
   453   Block **_blks;                // Array of blocks sorted by frequency for coalescing
   455   float _high_frequency_lrg;    // Frequency at which LRG will be spilled for debug info
   457 #ifndef PRODUCT
   458   bool _trace_spilling;
   459 #endif
   461 public:
   462   PhaseChaitin( uint unique, PhaseCFG &cfg, Matcher &matcher );
   463   ~PhaseChaitin() {}
   465   LiveRangeMap _lrg_map;
   467   // Do all the real work of allocate
   468   void Register_Allocate();
   470   float high_frequency_lrg() const { return _high_frequency_lrg; }
   472 #ifndef PRODUCT
   473   bool trace_spilling() const { return _trace_spilling; }
   474 #endif
   476 private:
   477   // De-SSA the world.  Assign registers to Nodes.  Use the same register for
   478   // all inputs to a PhiNode, effectively coalescing live ranges.  Insert
   479   // copies as needed.
   480   void de_ssa();
   482   // Add edge between reg and everything in the vector.
   483   // Same as _ifg->add_vector(reg,live) EXCEPT use the RegMask
   484   // information to trim the set of interferences.  Return the
   485   // count of edges added.
   486   void interfere_with_live( uint reg, IndexSet *live );
   487   // Count register pressure for asserts
   488   uint count_int_pressure( IndexSet *liveout );
   489   uint count_float_pressure( IndexSet *liveout );
   491   // Build the interference graph using virtual registers only.
   492   // Used for aggressive coalescing.
   493   void build_ifg_virtual( );
   495   // Build the interference graph using physical registers when available.
   496   // That is, if 2 live ranges are simultaneously alive but in their
   497   // acceptable register sets do not overlap, then they do not interfere.
   498   uint build_ifg_physical( ResourceArea *a );
   500   // Gather LiveRanGe information, including register masks and base pointer/
   501   // derived pointer relationships.
   502   void gather_lrg_masks( bool mod_cisc_masks );
   504   // Force the bases of derived pointers to be alive at GC points.
   505   bool stretch_base_pointer_live_ranges( ResourceArea *a );
   506   // Helper to stretch above; recursively discover the base Node for
   507   // a given derived Node.  Easy for AddP-related machine nodes, but
   508   // needs to be recursive for derived Phis.
   509   Node *find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg );
   511   // Set the was-lo-degree bit.  Conservative coalescing should not change the
   512   // colorability of the graph.  If any live range was of low-degree before
   513   // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
   514   void set_was_low();
   516   // Split live-ranges that must spill due to register conflicts (as opposed
   517   // to capacity spills).  Typically these are things def'd in a register
   518   // and used on the stack or vice-versa.
   519   void pre_spill();
   521   // Init LRG caching of degree, numregs.  Init lo_degree list.
   522   void cache_lrg_info( );
   524   // Simplify the IFG by removing LRGs of low degree with no copies
   525   void Pre_Simplify();
   527   // Simplify the IFG by removing LRGs of low degree
   528   void Simplify();
   530   // Select colors by re-inserting edges into the IFG.
   531   // Return TRUE if any spills occurred.
   532   uint Select( );
   533   // Helper function for select which allows biased coloring
   534   OptoReg::Name choose_color( LRG &lrg, int chunk );
   535   // Helper function which implements biasing heuristic
   536   OptoReg::Name bias_color( LRG &lrg, int chunk );
   538   // Split uncolorable live ranges
   539   // Return new number of live ranges
   540   uint Split(uint maxlrg, ResourceArea* split_arena);
   542   // Copy 'was_spilled'-edness from one Node to another.
   543   void copy_was_spilled( Node *src, Node *dst );
   544   // Set the 'spilled_once' or 'spilled_twice' flag on a node.
   545   void set_was_spilled( Node *n );
   547   // Convert ideal spill-nodes into machine loads & stores
   548   // Set C->failing when fixup spills could not complete, node limit exceeded.
   549   void fixup_spills();
   551   // Post-Allocation peephole copy removal
   552   void post_allocate_copy_removal();
   553   Node *skip_copies( Node *c );
   554   // Replace the old node with the current live version of that value
   555   // and yank the old value if it's dead.
   556   int replace_and_yank_if_dead( Node *old, OptoReg::Name nreg,
   557                                 Block *current_block, Node_List& value, Node_List& regnd ) {
   558     Node* v = regnd[nreg];
   559     assert(v->outcnt() != 0, "no dead values");
   560     old->replace_by(v);
   561     return yank_if_dead(old, current_block, &value, &regnd);
   562   }
   564   int yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
   565     return yank_if_dead_recurse(old, old, current_block, value, regnd);
   566   }
   567   int yank_if_dead_recurse(Node *old, Node *orig_old, Block *current_block,
   568                            Node_List *value, Node_List *regnd);
   569   int yank( Node *old, Block *current_block, Node_List *value, Node_List *regnd );
   570   int elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List &regnd, bool can_change_regs );
   571   int use_prior_register( Node *copy, uint idx, Node *def, Block *current_block, Node_List &value, Node_List &regnd );
   572   bool may_be_copy_of_callee( Node *def ) const;
   574   // If nreg already contains the same constant as val then eliminate it
   575   bool eliminate_copy_of_constant(Node* val, Node* n,
   576                                   Block *current_block, Node_List& value, Node_List &regnd,
   577                                   OptoReg::Name nreg, OptoReg::Name nreg2);
   578   // Extend the node to LRG mapping
   579   void add_reference( const Node *node, const Node *old_node);
   581 private:
   583   static int _final_loads, _final_stores, _final_copies, _final_memoves;
   584   static double _final_load_cost, _final_store_cost, _final_copy_cost, _final_memove_cost;
   585   static int _conserv_coalesce, _conserv_coalesce_pair;
   586   static int _conserv_coalesce_trie, _conserv_coalesce_quad;
   587   static int _post_alloc;
   588   static int _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce;
   589   static int _used_cisc_instructions, _unused_cisc_instructions;
   590   static int _allocator_attempts, _allocator_successes;
   592 #ifndef PRODUCT
   593   static uint _high_pressure, _low_pressure;
   595   void dump() const;
   596   void dump( const Node *n ) const;
   597   void dump( const Block * b ) const;
   598   void dump_degree_lists() const;
   599   void dump_simplified() const;
   600   void dump_lrg( uint lidx, bool defs_only) const;
   601   void dump_lrg( uint lidx) const {
   602     // dump defs and uses by default
   603     dump_lrg(lidx, false);
   604   }
   605   void dump_bb( uint pre_order ) const;
   607   // Verify that base pointers and derived pointers are still sane
   608   void verify_base_ptrs( ResourceArea *a ) const;
   610   void verify( ResourceArea *a, bool verify_ifg = false ) const;
   612   void dump_for_spill_split_recycle() const;
   614 public:
   615   void dump_frame() const;
   616   char *dump_register( const Node *n, char *buf  ) const;
   617 private:
   618   static void print_chaitin_statistics();
   619 #endif
   620   friend class PhaseCoalesce;
   621   friend class PhaseAggressiveCoalesce;
   622   friend class PhaseConservativeCoalesce;
   623 };
   625 #endif // SHARE_VM_OPTO_CHAITIN_HPP

mercurial