src/share/vm/gc_implementation/parNew/parCardTableModRefBS.cpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

     1 /*
     2  * Copyright (c) 2007, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "memory/cardTableModRefBS.hpp"
    28 #include "memory/cardTableRS.hpp"
    29 #include "memory/sharedHeap.hpp"
    30 #include "memory/space.inline.hpp"
    31 #include "memory/universe.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "runtime/java.hpp"
    34 #include "runtime/mutexLocker.hpp"
    35 #include "runtime/virtualspace.hpp"
    36 #include "runtime/vmThread.hpp"
    38 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    40 void CardTableModRefBS::non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr,
    41                                                              OopsInGenClosure* cl,
    42                                                              CardTableRS* ct,
    43                                                              int n_threads) {
    44   assert(n_threads > 0, "Error: expected n_threads > 0");
    45   assert((n_threads == 1 && ParallelGCThreads == 0) ||
    46          n_threads <= (int)ParallelGCThreads,
    47          "# worker threads != # requested!");
    48   assert(!Thread::current()->is_VM_thread() || (n_threads == 1), "There is only 1 VM thread");
    49   assert(UseDynamicNumberOfGCThreads ||
    50          !FLAG_IS_DEFAULT(ParallelGCThreads) ||
    51          n_threads == (int)ParallelGCThreads,
    52          "# worker threads != # requested!");
    53   // Make sure the LNC array is valid for the space.
    54   jbyte**   lowest_non_clean;
    55   uintptr_t lowest_non_clean_base_chunk_index;
    56   size_t    lowest_non_clean_chunk_size;
    57   get_LNC_array_for_space(sp, lowest_non_clean,
    58                           lowest_non_clean_base_chunk_index,
    59                           lowest_non_clean_chunk_size);
    61   uint n_strides = n_threads * ParGCStridesPerThread;
    62   SequentialSubTasksDone* pst = sp->par_seq_tasks();
    63   // Sets the condition for completion of the subtask (how many threads
    64   // need to finish in order to be done).
    65   pst->set_n_threads(n_threads);
    66   pst->set_n_tasks(n_strides);
    68   uint stride = 0;
    69   while (!pst->is_task_claimed(/* reference */ stride)) {
    70     process_stride(sp, mr, stride, n_strides, cl, ct,
    71                    lowest_non_clean,
    72                    lowest_non_clean_base_chunk_index,
    73                    lowest_non_clean_chunk_size);
    74   }
    75   if (pst->all_tasks_completed()) {
    76     // Clear lowest_non_clean array for next time.
    77     intptr_t first_chunk_index = addr_to_chunk_index(mr.start());
    78     uintptr_t last_chunk_index  = addr_to_chunk_index(mr.last());
    79     for (uintptr_t ch = first_chunk_index; ch <= last_chunk_index; ch++) {
    80       intptr_t ind = ch - lowest_non_clean_base_chunk_index;
    81       assert(0 <= ind && ind < (intptr_t)lowest_non_clean_chunk_size,
    82              "Bounds error");
    83       lowest_non_clean[ind] = NULL;
    84     }
    85   }
    86 }
    88 void
    89 CardTableModRefBS::
    90 process_stride(Space* sp,
    91                MemRegion used,
    92                jint stride, int n_strides,
    93                OopsInGenClosure* cl,
    94                CardTableRS* ct,
    95                jbyte** lowest_non_clean,
    96                uintptr_t lowest_non_clean_base_chunk_index,
    97                size_t    lowest_non_clean_chunk_size) {
    98   // We go from higher to lower addresses here; it wouldn't help that much
    99   // because of the strided parallelism pattern used here.
   101   // Find the first card address of the first chunk in the stride that is
   102   // at least "bottom" of the used region.
   103   jbyte*    start_card  = byte_for(used.start());
   104   jbyte*    end_card    = byte_after(used.last());
   105   uintptr_t start_chunk = addr_to_chunk_index(used.start());
   106   uintptr_t start_chunk_stride_num = start_chunk % n_strides;
   107   jbyte* chunk_card_start;
   109   if ((uintptr_t)stride >= start_chunk_stride_num) {
   110     chunk_card_start = (jbyte*)(start_card +
   111                                 (stride - start_chunk_stride_num) *
   112                                 ParGCCardsPerStrideChunk);
   113   } else {
   114     // Go ahead to the next chunk group boundary, then to the requested stride.
   115     chunk_card_start = (jbyte*)(start_card +
   116                                 (n_strides - start_chunk_stride_num + stride) *
   117                                 ParGCCardsPerStrideChunk);
   118   }
   120   while (chunk_card_start < end_card) {
   121     // Even though we go from lower to higher addresses below, the
   122     // strided parallelism can interleave the actual processing of the
   123     // dirty pages in various ways. For a specific chunk within this
   124     // stride, we take care to avoid double scanning or missing a card
   125     // by suitably initializing the "min_done" field in process_chunk_boundaries()
   126     // below, together with the dirty region extension accomplished in
   127     // DirtyCardToOopClosure::do_MemRegion().
   128     jbyte*    chunk_card_end = chunk_card_start + ParGCCardsPerStrideChunk;
   129     // Invariant: chunk_mr should be fully contained within the "used" region.
   130     MemRegion chunk_mr       = MemRegion(addr_for(chunk_card_start),
   131                                          chunk_card_end >= end_card ?
   132                                            used.end() : addr_for(chunk_card_end));
   133     assert(chunk_mr.word_size() > 0, "[chunk_card_start > used_end)");
   134     assert(used.contains(chunk_mr), "chunk_mr should be subset of used");
   136     DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(),
   137                                                      cl->gen_boundary());
   138     ClearNoncleanCardWrapper clear_cl(dcto_cl, ct);
   141     // Process the chunk.
   142     process_chunk_boundaries(sp,
   143                              dcto_cl,
   144                              chunk_mr,
   145                              used,
   146                              lowest_non_clean,
   147                              lowest_non_clean_base_chunk_index,
   148                              lowest_non_clean_chunk_size);
   150     // We want the LNC array updates above in process_chunk_boundaries
   151     // to be visible before any of the card table value changes as a
   152     // result of the dirty card iteration below.
   153     OrderAccess::storestore();
   155     // We do not call the non_clean_card_iterate_serial() version because
   156     // we want to clear the cards: clear_cl here does the work of finding
   157     // contiguous dirty ranges of cards to process and clear.
   158     clear_cl.do_MemRegion(chunk_mr);
   160     // Find the next chunk of the stride.
   161     chunk_card_start += ParGCCardsPerStrideChunk * n_strides;
   162   }
   163 }
   166 // If you want a talkative process_chunk_boundaries,
   167 // then #define NOISY(x) x
   168 #ifdef NOISY
   169 #error "Encountered a global preprocessor flag, NOISY, which might clash with local definition to follow"
   170 #else
   171 #define NOISY(x)
   172 #endif
   174 void
   175 CardTableModRefBS::
   176 process_chunk_boundaries(Space* sp,
   177                          DirtyCardToOopClosure* dcto_cl,
   178                          MemRegion chunk_mr,
   179                          MemRegion used,
   180                          jbyte** lowest_non_clean,
   181                          uintptr_t lowest_non_clean_base_chunk_index,
   182                          size_t    lowest_non_clean_chunk_size)
   183 {
   184   // We must worry about non-array objects that cross chunk boundaries,
   185   // because such objects are both precisely and imprecisely marked:
   186   // .. if the head of such an object is dirty, the entire object
   187   //    needs to be scanned, under the interpretation that this
   188   //    was an imprecise mark
   189   // .. if the head of such an object is not dirty, we can assume
   190   //    precise marking and it's efficient to scan just the dirty
   191   //    cards.
   192   // In either case, each scanned reference must be scanned precisely
   193   // once so as to avoid cloning of a young referent. For efficiency,
   194   // our closures depend on this property and do not protect against
   195   // double scans.
   197   uintptr_t cur_chunk_index = addr_to_chunk_index(chunk_mr.start());
   198   cur_chunk_index           = cur_chunk_index - lowest_non_clean_base_chunk_index;
   200   NOISY(tty->print_cr("===========================================================================");)
   201   NOISY(tty->print_cr(" process_chunk_boundary: Called with [" PTR_FORMAT "," PTR_FORMAT ")",
   202                       chunk_mr.start(), chunk_mr.end());)
   204   // First, set "our" lowest_non_clean entry, which would be
   205   // used by the thread scanning an adjoining left chunk with
   206   // a non-array object straddling the mutual boundary.
   207   // Find the object that spans our boundary, if one exists.
   208   // first_block is the block possibly straddling our left boundary.
   209   HeapWord* first_block = sp->block_start(chunk_mr.start());
   210   assert((chunk_mr.start() != used.start()) || (first_block == chunk_mr.start()),
   211          "First chunk should always have a co-initial block");
   212   // Does the block straddle the chunk's left boundary, and is it
   213   // a non-array object?
   214   if (first_block < chunk_mr.start()        // first block straddles left bdry
   215       && sp->block_is_obj(first_block)      // first block is an object
   216       && !(oop(first_block)->is_objArray()  // first block is not an array (arrays are precisely dirtied)
   217            || oop(first_block)->is_typeArray())) {
   218     // Find our least non-clean card, so that a left neighbour
   219     // does not scan an object straddling the mutual boundary
   220     // too far to the right, and attempt to scan a portion of
   221     // that object twice.
   222     jbyte* first_dirty_card = NULL;
   223     jbyte* last_card_of_first_obj =
   224         byte_for(first_block + sp->block_size(first_block) - 1);
   225     jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
   226     jbyte* last_card_of_cur_chunk = byte_for(chunk_mr.last());
   227     jbyte* last_card_to_check =
   228       (jbyte*) MIN2((intptr_t) last_card_of_cur_chunk,
   229                     (intptr_t) last_card_of_first_obj);
   230     // Note that this does not need to go beyond our last card
   231     // if our first object completely straddles this chunk.
   232     for (jbyte* cur = first_card_of_cur_chunk;
   233          cur <= last_card_to_check; cur++) {
   234       jbyte val = *cur;
   235       if (card_will_be_scanned(val)) {
   236         first_dirty_card = cur; break;
   237       } else {
   238         assert(!card_may_have_been_dirty(val), "Error");
   239       }
   240     }
   241     if (first_dirty_card != NULL) {
   242       NOISY(tty->print_cr(" LNC: Found a dirty card at " PTR_FORMAT " in current chunk",
   243                     first_dirty_card);)
   244       assert(0 <= cur_chunk_index && cur_chunk_index < lowest_non_clean_chunk_size,
   245              "Bounds error.");
   246       assert(lowest_non_clean[cur_chunk_index] == NULL,
   247              "Write exactly once : value should be stable hereafter for this round");
   248       lowest_non_clean[cur_chunk_index] = first_dirty_card;
   249     } NOISY(else {
   250       tty->print_cr(" LNC: Found no dirty card in current chunk; leaving LNC entry NULL");
   251       // In the future, we could have this thread look for a non-NULL value to copy from its
   252       // right neighbour (up to the end of the first object).
   253       if (last_card_of_cur_chunk < last_card_of_first_obj) {
   254         tty->print_cr(" LNC: BEWARE!!! first obj straddles past right end of chunk:\n"
   255                       "   might be efficient to get value from right neighbour?");
   256       }
   257     })
   258   } else {
   259     // In this case we can help our neighbour by just asking them
   260     // to stop at our first card (even though it may not be dirty).
   261     NOISY(tty->print_cr(" LNC: first block is not a non-array object; setting LNC to first card of current chunk");)
   262     assert(lowest_non_clean[cur_chunk_index] == NULL, "Write once : value should be stable hereafter");
   263     jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
   264     lowest_non_clean[cur_chunk_index] = first_card_of_cur_chunk;
   265   }
   266   NOISY(tty->print_cr(" process_chunk_boundary: lowest_non_clean[" INTPTR_FORMAT "] = " PTR_FORMAT
   267                 "   which corresponds to the heap address " PTR_FORMAT,
   268                 cur_chunk_index, lowest_non_clean[cur_chunk_index],
   269                 (lowest_non_clean[cur_chunk_index] != NULL)
   270                 ? addr_for(lowest_non_clean[cur_chunk_index])
   271                 : NULL);)
   272   NOISY(tty->print_cr("---------------------------------------------------------------------------");)
   274   // Next, set our own max_to_do, which will strictly/exclusively bound
   275   // the highest address that we will scan past the right end of our chunk.
   276   HeapWord* max_to_do = NULL;
   277   if (chunk_mr.end() < used.end()) {
   278     // This is not the last chunk in the used region.
   279     // What is our last block? We check the first block of
   280     // the next (right) chunk rather than strictly check our last block
   281     // because it's potentially more efficient to do so.
   282     HeapWord* const last_block = sp->block_start(chunk_mr.end());
   283     assert(last_block <= chunk_mr.end(), "In case this property changes.");
   284     if ((last_block == chunk_mr.end())     // our last block does not straddle boundary
   285         || !sp->block_is_obj(last_block)   // last_block isn't an object
   286         || oop(last_block)->is_objArray()  // last_block is an array (precisely marked)
   287         || oop(last_block)->is_typeArray()) {
   288       max_to_do = chunk_mr.end();
   289       NOISY(tty->print_cr(" process_chunk_boundary: Last block on this card is not a non-array object;\n"
   290                          "   max_to_do left at " PTR_FORMAT, max_to_do);)
   291     } else {
   292       assert(last_block < chunk_mr.end(), "Tautology");
   293       // It is a non-array object that straddles the right boundary of this chunk.
   294       // last_obj_card is the card corresponding to the start of the last object
   295       // in the chunk.  Note that the last object may not start in
   296       // the chunk.
   297       jbyte* const last_obj_card = byte_for(last_block);
   298       const jbyte val = *last_obj_card;
   299       if (!card_will_be_scanned(val)) {
   300         assert(!card_may_have_been_dirty(val), "Error");
   301         // The card containing the head is not dirty.  Any marks on
   302         // subsequent cards still in this chunk must have been made
   303         // precisely; we can cap processing at the end of our chunk.
   304         max_to_do = chunk_mr.end();
   305         NOISY(tty->print_cr(" process_chunk_boundary: Head of last object on this card is not dirty;\n"
   306                             "   max_to_do left at " PTR_FORMAT,
   307                             max_to_do);)
   308       } else {
   309         // The last object must be considered dirty, and extends onto the
   310         // following chunk.  Look for a dirty card in that chunk that will
   311         // bound our processing.
   312         jbyte* limit_card = NULL;
   313         const size_t last_block_size = sp->block_size(last_block);
   314         jbyte* const last_card_of_last_obj =
   315           byte_for(last_block + last_block_size - 1);
   316         jbyte* const first_card_of_next_chunk = byte_for(chunk_mr.end());
   317         // This search potentially goes a long distance looking
   318         // for the next card that will be scanned, terminating
   319         // at the end of the last_block, if no earlier dirty card
   320         // is found.
   321         assert(byte_for(chunk_mr.end()) - byte_for(chunk_mr.start()) == ParGCCardsPerStrideChunk,
   322                "last card of next chunk may be wrong");
   323         for (jbyte* cur = first_card_of_next_chunk;
   324              cur <= last_card_of_last_obj; cur++) {
   325           const jbyte val = *cur;
   326           if (card_will_be_scanned(val)) {
   327             NOISY(tty->print_cr(" Found a non-clean card " PTR_FORMAT " with value 0x%x",
   328                                 cur, (int)val);)
   329             limit_card = cur; break;
   330           } else {
   331             assert(!card_may_have_been_dirty(val), "Error: card can't be skipped");
   332           }
   333         }
   334         if (limit_card != NULL) {
   335           max_to_do = addr_for(limit_card);
   336           assert(limit_card != NULL && max_to_do != NULL, "Error");
   337           NOISY(tty->print_cr(" process_chunk_boundary: Found a dirty card at " PTR_FORMAT
   338                         "   max_to_do set at " PTR_FORMAT " which is before end of last block in chunk: "
   339                         PTR_FORMAT " + " PTR_FORMAT " = " PTR_FORMAT,
   340                         limit_card, max_to_do, last_block, last_block_size, (last_block+last_block_size));)
   341         } else {
   342           // The following is a pessimistic value, because it's possible
   343           // that a dirty card on a subsequent chunk has been cleared by
   344           // the time we get to look at it; we'll correct for that further below,
   345           // using the LNC array which records the least non-clean card
   346           // before cards were cleared in a particular chunk.
   347           limit_card = last_card_of_last_obj;
   348           max_to_do = last_block + last_block_size;
   349           assert(limit_card != NULL && max_to_do != NULL, "Error");
   350           NOISY(tty->print_cr(" process_chunk_boundary: Found no dirty card before end of last block in chunk\n"
   351                               "   Setting limit_card to " PTR_FORMAT
   352                               " and max_to_do " PTR_FORMAT " + " PTR_FORMAT " = " PTR_FORMAT,
   353                               limit_card, last_block, last_block_size, max_to_do);)
   354         }
   355         assert(0 < cur_chunk_index+1 && cur_chunk_index+1 < lowest_non_clean_chunk_size,
   356                "Bounds error.");
   357         // It is possible that a dirty card for the last object may have been
   358         // cleared before we had a chance to examine it. In that case, the value
   359         // will have been logged in the LNC for that chunk.
   360         // We need to examine as many chunks to the right as this object
   361         // covers. However, we need to bound this checking to the largest
   362         // entry in the LNC array: this is because the heap may expand
   363         // after the LNC array has been created but before we reach this point,
   364         // and the last block in our chunk may have been expanded to include
   365         // the expansion delta (and possibly subsequently allocated from, so
   366         // it wouldn't be sufficient to check whether that last block was
   367         // or was not an object at this point).
   368         uintptr_t last_chunk_index_to_check = addr_to_chunk_index(last_block + last_block_size - 1)
   369                                               - lowest_non_clean_base_chunk_index;
   370         const uintptr_t last_chunk_index    = addr_to_chunk_index(used.last())
   371                                               - lowest_non_clean_base_chunk_index;
   372         if (last_chunk_index_to_check > last_chunk_index) {
   373           assert(last_block + last_block_size > used.end(),
   374                  err_msg("Inconsistency detected: last_block [" PTR_FORMAT "," PTR_FORMAT "]"
   375                          " does not exceed used.end() = " PTR_FORMAT ","
   376                          " yet last_chunk_index_to_check " INTPTR_FORMAT
   377                          " exceeds last_chunk_index " INTPTR_FORMAT,
   378                          last_block, last_block + last_block_size,
   379                          used.end(),
   380                          last_chunk_index_to_check, last_chunk_index));
   381           assert(sp->used_region().end() > used.end(),
   382                  err_msg("Expansion did not happen: "
   383                          "[" PTR_FORMAT "," PTR_FORMAT ") -> [" PTR_FORMAT "," PTR_FORMAT ")",
   384                          sp->used_region().start(), sp->used_region().end(), used.start(), used.end()));
   385           NOISY(tty->print_cr(" process_chunk_boundary: heap expanded; explicitly bounding last_chunk");)
   386           last_chunk_index_to_check = last_chunk_index;
   387         }
   388         for (uintptr_t lnc_index = cur_chunk_index + 1;
   389              lnc_index <= last_chunk_index_to_check;
   390              lnc_index++) {
   391           jbyte* lnc_card = lowest_non_clean[lnc_index];
   392           if (lnc_card != NULL) {
   393             // we can stop at the first non-NULL entry we find
   394             if (lnc_card <= limit_card) {
   395               NOISY(tty->print_cr(" process_chunk_boundary: LNC card " PTR_FORMAT " is lower than limit_card " PTR_FORMAT,
   396                                   "   max_to_do will be lowered to " PTR_FORMAT " from " PTR_FORMAT,
   397                                   lnc_card, limit_card, addr_for(lnc_card), max_to_do);)
   398               limit_card = lnc_card;
   399               max_to_do = addr_for(limit_card);
   400               assert(limit_card != NULL && max_to_do != NULL, "Error");
   401             }
   402             // In any case, we break now
   403             break;
   404           }  // else continue to look for a non-NULL entry if any
   405         }
   406         assert(limit_card != NULL && max_to_do != NULL, "Error");
   407       }
   408       assert(max_to_do != NULL, "OOPS 1 !");
   409     }
   410     assert(max_to_do != NULL, "OOPS 2!");
   411   } else {
   412     max_to_do = used.end();
   413     NOISY(tty->print_cr(" process_chunk_boundary: Last chunk of this space;\n"
   414                   "   max_to_do left at " PTR_FORMAT,
   415                   max_to_do);)
   416   }
   417   assert(max_to_do != NULL, "OOPS 3!");
   418   // Now we can set the closure we're using so it doesn't to beyond
   419   // max_to_do.
   420   dcto_cl->set_min_done(max_to_do);
   421 #ifndef PRODUCT
   422   dcto_cl->set_last_bottom(max_to_do);
   423 #endif
   424   NOISY(tty->print_cr("===========================================================================\n");)
   425 }
   427 #undef NOISY
   429 void
   430 CardTableModRefBS::
   431 get_LNC_array_for_space(Space* sp,
   432                         jbyte**& lowest_non_clean,
   433                         uintptr_t& lowest_non_clean_base_chunk_index,
   434                         size_t& lowest_non_clean_chunk_size) {
   436   int       i        = find_covering_region_containing(sp->bottom());
   437   MemRegion covered  = _covered[i];
   438   size_t    n_chunks = chunks_to_cover(covered);
   440   // Only the first thread to obtain the lock will resize the
   441   // LNC array for the covered region.  Any later expansion can't affect
   442   // the used_at_save_marks region.
   443   // (I observed a bug in which the first thread to execute this would
   444   // resize, and then it would cause "expand_and_allocate" that would
   445   // increase the number of chunks in the covered region.  Then a second
   446   // thread would come and execute this, see that the size didn't match,
   447   // and free and allocate again.  So the first thread would be using a
   448   // freed "_lowest_non_clean" array.)
   450   // Do a dirty read here. If we pass the conditional then take the rare
   451   // event lock and do the read again in case some other thread had already
   452   // succeeded and done the resize.
   453   int cur_collection = Universe::heap()->total_collections();
   454   if (_last_LNC_resizing_collection[i] != cur_collection) {
   455     MutexLocker x(ParGCRareEvent_lock);
   456     if (_last_LNC_resizing_collection[i] != cur_collection) {
   457       if (_lowest_non_clean[i] == NULL ||
   458           n_chunks != _lowest_non_clean_chunk_size[i]) {
   460         // Should we delete the old?
   461         if (_lowest_non_clean[i] != NULL) {
   462           assert(n_chunks != _lowest_non_clean_chunk_size[i],
   463                  "logical consequence");
   464           FREE_C_HEAP_ARRAY(CardPtr, _lowest_non_clean[i], mtGC);
   465           _lowest_non_clean[i] = NULL;
   466         }
   467         // Now allocate a new one if necessary.
   468         if (_lowest_non_clean[i] == NULL) {
   469           _lowest_non_clean[i]                  = NEW_C_HEAP_ARRAY(CardPtr, n_chunks, mtGC);
   470           _lowest_non_clean_chunk_size[i]       = n_chunks;
   471           _lowest_non_clean_base_chunk_index[i] = addr_to_chunk_index(covered.start());
   472           for (int j = 0; j < (int)n_chunks; j++)
   473             _lowest_non_clean[i][j] = NULL;
   474         }
   475       }
   476       _last_LNC_resizing_collection[i] = cur_collection;
   477     }
   478   }
   479   // In any case, now do the initialization.
   480   lowest_non_clean                  = _lowest_non_clean[i];
   481   lowest_non_clean_base_chunk_index = _lowest_non_clean_base_chunk_index[i];
   482   lowest_non_clean_chunk_size       = _lowest_non_clean_chunk_size[i];
   483 }

mercurial