src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    28 #include "gc_implementation/g1/collectionSetChooser.hpp"
    29 #include "gc_implementation/g1/g1MMUTracker.hpp"
    30 #include "memory/collectorPolicy.hpp"
    32 // A G1CollectorPolicy makes policy decisions that determine the
    33 // characteristics of the collector.  Examples include:
    34 //   * choice of collection set.
    35 //   * when to collect.
    37 class HeapRegion;
    38 class CollectionSetChooser;
    39 class G1GCPhaseTimes;
    41 // TraceGen0Time collects data on _both_ young and mixed evacuation pauses
    42 // (the latter may contain non-young regions - i.e. regions that are
    43 // technically in Gen1) while TraceGen1Time collects data about full GCs.
    44 class TraceGen0TimeData : public CHeapObj<mtGC> {
    45  private:
    46   unsigned  _young_pause_num;
    47   unsigned  _mixed_pause_num;
    49   NumberSeq _all_stop_world_times_ms;
    50   NumberSeq _all_yield_times_ms;
    52   NumberSeq _total;
    53   NumberSeq _other;
    54   NumberSeq _root_region_scan_wait;
    55   NumberSeq _parallel;
    56   NumberSeq _ext_root_scan;
    57   NumberSeq _satb_filtering;
    58   NumberSeq _update_rs;
    59   NumberSeq _scan_rs;
    60   NumberSeq _obj_copy;
    61   NumberSeq _termination;
    62   NumberSeq _parallel_other;
    63   NumberSeq _clear_ct;
    65   void print_summary(const char* str, const NumberSeq* seq) const;
    66   void print_summary_sd(const char* str, const NumberSeq* seq) const;
    68 public:
    69    TraceGen0TimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
    70   void record_start_collection(double time_to_stop_the_world_ms);
    71   void record_yield_time(double yield_time_ms);
    72   void record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times);
    73   void increment_young_collection_count();
    74   void increment_mixed_collection_count();
    75   void print() const;
    76 };
    78 class TraceGen1TimeData : public CHeapObj<mtGC> {
    79  private:
    80   NumberSeq _all_full_gc_times;
    82  public:
    83   void record_full_collection(double full_gc_time_ms);
    84   void print() const;
    85 };
    87 // There are three command line options related to the young gen size:
    88 // NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
    89 // just a short form for NewSize==MaxNewSize). G1 will use its internal
    90 // heuristics to calculate the actual young gen size, so these options
    91 // basically only limit the range within which G1 can pick a young gen
    92 // size. Also, these are general options taking byte sizes. G1 will
    93 // internally work with a number of regions instead. So, some rounding
    94 // will occur.
    95 //
    96 // If nothing related to the the young gen size is set on the command
    97 // line we should allow the young gen to be between G1NewSizePercent
    98 // and G1MaxNewSizePercent of the heap size. This means that every time
    99 // the heap size changes, the limits for the young gen size will be
   100 // recalculated.
   101 //
   102 // If only -XX:NewSize is set we should use the specified value as the
   103 // minimum size for young gen. Still using G1MaxNewSizePercent of the
   104 // heap as maximum.
   105 //
   106 // If only -XX:MaxNewSize is set we should use the specified value as the
   107 // maximum size for young gen. Still using G1NewSizePercent of the heap
   108 // as minimum.
   109 //
   110 // If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
   111 // No updates when the heap size changes. There is a special case when
   112 // NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
   113 // different heuristic for calculating the collection set when we do mixed
   114 // collection.
   115 //
   116 // If only -XX:NewRatio is set we should use the specified ratio of the heap
   117 // as both min and max. This will be interpreted as "fixed" just like the
   118 // NewSize==MaxNewSize case above. But we will update the min and max
   119 // everytime the heap size changes.
   120 //
   121 // NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
   122 // combined with either NewSize or MaxNewSize. (A warning message is printed.)
   123 class G1YoungGenSizer : public CHeapObj<mtGC> {
   124 private:
   125   enum SizerKind {
   126     SizerDefaults,
   127     SizerNewSizeOnly,
   128     SizerMaxNewSizeOnly,
   129     SizerMaxAndNewSize,
   130     SizerNewRatio
   131   };
   132   SizerKind _sizer_kind;
   133   uint _min_desired_young_length;
   134   uint _max_desired_young_length;
   135   bool _adaptive_size;
   136   uint calculate_default_min_length(uint new_number_of_heap_regions);
   137   uint calculate_default_max_length(uint new_number_of_heap_regions);
   139   // Update the given values for minimum and maximum young gen length in regions
   140   // given the number of heap regions depending on the kind of sizing algorithm.
   141   void recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length);
   143 public:
   144   G1YoungGenSizer();
   145   // Calculate the maximum length of the young gen given the number of regions
   146   // depending on the sizing algorithm.
   147   uint max_young_length(uint number_of_heap_regions);
   149   void heap_size_changed(uint new_number_of_heap_regions);
   150   uint min_desired_young_length() {
   151     return _min_desired_young_length;
   152   }
   153   uint max_desired_young_length() {
   154     return _max_desired_young_length;
   155   }
   156   bool adaptive_young_list_length() {
   157     return _adaptive_size;
   158   }
   159 };
   161 class G1CollectorPolicy: public CollectorPolicy {
   162 private:
   163   // either equal to the number of parallel threads, if ParallelGCThreads
   164   // has been set, or 1 otherwise
   165   int _parallel_gc_threads;
   167   // The number of GC threads currently active.
   168   uintx _no_of_gc_threads;
   170   enum SomePrivateConstants {
   171     NumPrevPausesForHeuristics = 10
   172   };
   174   G1MMUTracker* _mmu_tracker;
   176   void initialize_alignments();
   177   void initialize_flags();
   179   CollectionSetChooser* _collectionSetChooser;
   181   double _full_collection_start_sec;
   182   uint   _cur_collection_pause_used_regions_at_start;
   184   // These exclude marking times.
   185   TruncatedSeq* _recent_gc_times_ms;
   187   TruncatedSeq* _concurrent_mark_remark_times_ms;
   188   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   190   TraceGen0TimeData _trace_gen0_time_data;
   191   TraceGen1TimeData _trace_gen1_time_data;
   193   double _stop_world_start;
   195   // indicates whether we are in young or mixed GC mode
   196   bool _gcs_are_young;
   198   uint _young_list_target_length;
   199   uint _young_list_fixed_length;
   201   // The max number of regions we can extend the eden by while the GC
   202   // locker is active. This should be >= _young_list_target_length;
   203   uint _young_list_max_length;
   205   bool                  _last_gc_was_young;
   207   bool                  _during_marking;
   208   bool                  _in_marking_window;
   209   bool                  _in_marking_window_im;
   211   SurvRateGroup*        _short_lived_surv_rate_group;
   212   SurvRateGroup*        _survivor_surv_rate_group;
   213   // add here any more surv rate groups
   215   double                _gc_overhead_perc;
   217   double _reserve_factor;
   218   uint _reserve_regions;
   220   bool during_marking() {
   221     return _during_marking;
   222   }
   224   enum PredictionConstants {
   225     TruncatedSeqLength = 10
   226   };
   228   TruncatedSeq* _alloc_rate_ms_seq;
   229   double        _prev_collection_pause_end_ms;
   231   TruncatedSeq* _rs_length_diff_seq;
   232   TruncatedSeq* _cost_per_card_ms_seq;
   233   TruncatedSeq* _young_cards_per_entry_ratio_seq;
   234   TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
   235   TruncatedSeq* _cost_per_entry_ms_seq;
   236   TruncatedSeq* _mixed_cost_per_entry_ms_seq;
   237   TruncatedSeq* _cost_per_byte_ms_seq;
   238   TruncatedSeq* _constant_other_time_ms_seq;
   239   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   240   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   242   TruncatedSeq* _pending_cards_seq;
   243   TruncatedSeq* _rs_lengths_seq;
   245   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   247   G1YoungGenSizer* _young_gen_sizer;
   249   uint _eden_cset_region_length;
   250   uint _survivor_cset_region_length;
   251   uint _old_cset_region_length;
   253   void init_cset_region_lengths(uint eden_cset_region_length,
   254                                 uint survivor_cset_region_length);
   256   uint eden_cset_region_length()     { return _eden_cset_region_length;     }
   257   uint survivor_cset_region_length() { return _survivor_cset_region_length; }
   258   uint old_cset_region_length()      { return _old_cset_region_length;      }
   260   uint _free_regions_at_end_of_collection;
   262   size_t _recorded_rs_lengths;
   263   size_t _max_rs_lengths;
   264   double _sigma;
   266   size_t _rs_lengths_prediction;
   268   double sigma() { return _sigma; }
   270   // A function that prevents us putting too much stock in small sample
   271   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   272   // of samples.  5 or more samples yields one; fewer scales linearly from
   273   // 2.0 at 1 sample to 1.0 at 5.
   274   double confidence_factor(int samples) {
   275     if (samples > 4) return 1.0;
   276     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   277   }
   279   double get_new_neg_prediction(TruncatedSeq* seq) {
   280     return seq->davg() - sigma() * seq->dsd();
   281   }
   283 #ifndef PRODUCT
   284   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   285 #endif // PRODUCT
   287   void adjust_concurrent_refinement(double update_rs_time,
   288                                     double update_rs_processed_buffers,
   289                                     double goal_ms);
   291   uintx no_of_gc_threads() { return _no_of_gc_threads; }
   292   void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
   294   double _pause_time_target_ms;
   296   size_t _pending_cards;
   298 public:
   299   // Accessors
   301   void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
   302     hr->set_young();
   303     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   304     hr->set_young_index_in_cset(young_index_in_cset);
   305   }
   307   void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
   308     assert(hr->is_young() && hr->is_survivor(), "pre-condition");
   309     hr->install_surv_rate_group(_survivor_surv_rate_group);
   310     hr->set_young_index_in_cset(young_index_in_cset);
   311   }
   313 #ifndef PRODUCT
   314   bool verify_young_ages();
   315 #endif // PRODUCT
   317   double get_new_prediction(TruncatedSeq* seq) {
   318     return MAX2(seq->davg() + sigma() * seq->dsd(),
   319                 seq->davg() * confidence_factor(seq->num()));
   320   }
   322   void record_max_rs_lengths(size_t rs_lengths) {
   323     _max_rs_lengths = rs_lengths;
   324   }
   326   size_t predict_rs_length_diff() {
   327     return (size_t) get_new_prediction(_rs_length_diff_seq);
   328   }
   330   double predict_alloc_rate_ms() {
   331     return get_new_prediction(_alloc_rate_ms_seq);
   332   }
   334   double predict_cost_per_card_ms() {
   335     return get_new_prediction(_cost_per_card_ms_seq);
   336   }
   338   double predict_rs_update_time_ms(size_t pending_cards) {
   339     return (double) pending_cards * predict_cost_per_card_ms();
   340   }
   342   double predict_young_cards_per_entry_ratio() {
   343     return get_new_prediction(_young_cards_per_entry_ratio_seq);
   344   }
   346   double predict_mixed_cards_per_entry_ratio() {
   347     if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
   348       return predict_young_cards_per_entry_ratio();
   349     } else {
   350       return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
   351     }
   352   }
   354   size_t predict_young_card_num(size_t rs_length) {
   355     return (size_t) ((double) rs_length *
   356                      predict_young_cards_per_entry_ratio());
   357   }
   359   size_t predict_non_young_card_num(size_t rs_length) {
   360     return (size_t) ((double) rs_length *
   361                      predict_mixed_cards_per_entry_ratio());
   362   }
   364   double predict_rs_scan_time_ms(size_t card_num) {
   365     if (gcs_are_young()) {
   366       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   367     } else {
   368       return predict_mixed_rs_scan_time_ms(card_num);
   369     }
   370   }
   372   double predict_mixed_rs_scan_time_ms(size_t card_num) {
   373     if (_mixed_cost_per_entry_ms_seq->num() < 3) {
   374       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   375     } else {
   376       return (double) (card_num *
   377                        get_new_prediction(_mixed_cost_per_entry_ms_seq));
   378     }
   379   }
   381   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   382     if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
   383       return (1.1 * (double) bytes_to_copy) *
   384               get_new_prediction(_cost_per_byte_ms_seq);
   385     } else {
   386       return (double) bytes_to_copy *
   387              get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   388     }
   389   }
   391   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   392     if (_in_marking_window && !_in_marking_window_im) {
   393       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   394     } else {
   395       return (double) bytes_to_copy *
   396               get_new_prediction(_cost_per_byte_ms_seq);
   397     }
   398   }
   400   double predict_constant_other_time_ms() {
   401     return get_new_prediction(_constant_other_time_ms_seq);
   402   }
   404   double predict_young_other_time_ms(size_t young_num) {
   405     return (double) young_num *
   406            get_new_prediction(_young_other_cost_per_region_ms_seq);
   407   }
   409   double predict_non_young_other_time_ms(size_t non_young_num) {
   410     return (double) non_young_num *
   411            get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   412   }
   414   double predict_base_elapsed_time_ms(size_t pending_cards);
   415   double predict_base_elapsed_time_ms(size_t pending_cards,
   416                                       size_t scanned_cards);
   417   size_t predict_bytes_to_copy(HeapRegion* hr);
   418   double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc);
   420   void set_recorded_rs_lengths(size_t rs_lengths);
   422   uint cset_region_length()       { return young_cset_region_length() +
   423                                            old_cset_region_length(); }
   424   uint young_cset_region_length() { return eden_cset_region_length() +
   425                                            survivor_cset_region_length(); }
   427   double predict_survivor_regions_evac_time();
   429   void cset_regions_freed() {
   430     bool propagate = _last_gc_was_young && !_in_marking_window;
   431     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   432     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   433     // also call it on any more surv rate groups
   434   }
   436   G1MMUTracker* mmu_tracker() {
   437     return _mmu_tracker;
   438   }
   440   double max_pause_time_ms() {
   441     return _mmu_tracker->max_gc_time() * 1000.0;
   442   }
   444   double predict_remark_time_ms() {
   445     return get_new_prediction(_concurrent_mark_remark_times_ms);
   446   }
   448   double predict_cleanup_time_ms() {
   449     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   450   }
   452   // Returns an estimate of the survival rate of the region at yg-age
   453   // "yg_age".
   454   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   455     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   456     if (seq->num() == 0)
   457       gclog_or_tty->print("BARF! age is %d", age);
   458     guarantee( seq->num() > 0, "invariant" );
   459     double pred = get_new_prediction(seq);
   460     if (pred > 1.0)
   461       pred = 1.0;
   462     return pred;
   463   }
   465   double predict_yg_surv_rate(int age) {
   466     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   467   }
   469   double accum_yg_surv_rate_pred(int age) {
   470     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   471   }
   473 private:
   474   // Statistics kept per GC stoppage, pause or full.
   475   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   477   // Add a new GC of the given duration and end time to the record.
   478   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   480   // The head of the list (via "next_in_collection_set()") representing the
   481   // current collection set. Set from the incrementally built collection
   482   // set at the start of the pause.
   483   HeapRegion* _collection_set;
   485   // The number of bytes in the collection set before the pause. Set from
   486   // the incrementally built collection set at the start of an evacuation
   487   // pause, and incremented in finalize_cset() when adding old regions
   488   // (if any) to the collection set.
   489   size_t _collection_set_bytes_used_before;
   491   // The number of bytes copied during the GC.
   492   size_t _bytes_copied_during_gc;
   494   // The associated information that is maintained while the incremental
   495   // collection set is being built with young regions. Used to populate
   496   // the recorded info for the evacuation pause.
   498   enum CSetBuildType {
   499     Active,             // We are actively building the collection set
   500     Inactive            // We are not actively building the collection set
   501   };
   503   CSetBuildType _inc_cset_build_state;
   505   // The head of the incrementally built collection set.
   506   HeapRegion* _inc_cset_head;
   508   // The tail of the incrementally built collection set.
   509   HeapRegion* _inc_cset_tail;
   511   // The number of bytes in the incrementally built collection set.
   512   // Used to set _collection_set_bytes_used_before at the start of
   513   // an evacuation pause.
   514   size_t _inc_cset_bytes_used_before;
   516   // Used to record the highest end of heap region in collection set
   517   HeapWord* _inc_cset_max_finger;
   519   // The RSet lengths recorded for regions in the CSet. It is updated
   520   // by the thread that adds a new region to the CSet. We assume that
   521   // only one thread can be allocating a new CSet region (currently,
   522   // it does so after taking the Heap_lock) hence no need to
   523   // synchronize updates to this field.
   524   size_t _inc_cset_recorded_rs_lengths;
   526   // A concurrent refinement thread periodcially samples the young
   527   // region RSets and needs to update _inc_cset_recorded_rs_lengths as
   528   // the RSets grow. Instead of having to syncronize updates to that
   529   // field we accumulate them in this field and add it to
   530   // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
   531   ssize_t _inc_cset_recorded_rs_lengths_diffs;
   533   // The predicted elapsed time it will take to collect the regions in
   534   // the CSet. This is updated by the thread that adds a new region to
   535   // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
   536   // MT-safety assumptions.
   537   double _inc_cset_predicted_elapsed_time_ms;
   539   // See the comment for _inc_cset_recorded_rs_lengths_diffs.
   540   double _inc_cset_predicted_elapsed_time_ms_diffs;
   542   // Stash a pointer to the g1 heap.
   543   G1CollectedHeap* _g1;
   545   G1GCPhaseTimes* _phase_times;
   547   // The ratio of gc time to elapsed time, computed over recent pauses.
   548   double _recent_avg_pause_time_ratio;
   550   double recent_avg_pause_time_ratio() {
   551     return _recent_avg_pause_time_ratio;
   552   }
   554   // At the end of a pause we check the heap occupancy and we decide
   555   // whether we will start a marking cycle during the next pause. If
   556   // we decide that we want to do that, we will set this parameter to
   557   // true. So, this parameter will stay true between the end of a
   558   // pause and the beginning of a subsequent pause (not necessarily
   559   // the next one, see the comments on the next field) when we decide
   560   // that we will indeed start a marking cycle and do the initial-mark
   561   // work.
   562   volatile bool _initiate_conc_mark_if_possible;
   564   // If initiate_conc_mark_if_possible() is set at the beginning of a
   565   // pause, it is a suggestion that the pause should start a marking
   566   // cycle by doing the initial-mark work. However, it is possible
   567   // that the concurrent marking thread is still finishing up the
   568   // previous marking cycle (e.g., clearing the next marking
   569   // bitmap). If that is the case we cannot start a new cycle and
   570   // we'll have to wait for the concurrent marking thread to finish
   571   // what it is doing. In this case we will postpone the marking cycle
   572   // initiation decision for the next pause. When we eventually decide
   573   // to start a cycle, we will set _during_initial_mark_pause which
   574   // will stay true until the end of the initial-mark pause and it's
   575   // the condition that indicates that a pause is doing the
   576   // initial-mark work.
   577   volatile bool _during_initial_mark_pause;
   579   bool _last_young_gc;
   581   // This set of variables tracks the collector efficiency, in order to
   582   // determine whether we should initiate a new marking.
   583   double _cur_mark_stop_world_time_ms;
   584   double _mark_remark_start_sec;
   585   double _mark_cleanup_start_sec;
   587   // Update the young list target length either by setting it to the
   588   // desired fixed value or by calculating it using G1's pause
   589   // prediction model. If no rs_lengths parameter is passed, predict
   590   // the RS lengths using the prediction model, otherwise use the
   591   // given rs_lengths as the prediction.
   592   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
   594   // Calculate and return the minimum desired young list target
   595   // length. This is the minimum desired young list length according
   596   // to the user's inputs.
   597   uint calculate_young_list_desired_min_length(uint base_min_length);
   599   // Calculate and return the maximum desired young list target
   600   // length. This is the maximum desired young list length according
   601   // to the user's inputs.
   602   uint calculate_young_list_desired_max_length();
   604   // Calculate and return the maximum young list target length that
   605   // can fit into the pause time goal. The parameters are: rs_lengths
   606   // represent the prediction of how large the young RSet lengths will
   607   // be, base_min_length is the alreay existing number of regions in
   608   // the young list, min_length and max_length are the desired min and
   609   // max young list length according to the user's inputs.
   610   uint calculate_young_list_target_length(size_t rs_lengths,
   611                                           uint base_min_length,
   612                                           uint desired_min_length,
   613                                           uint desired_max_length);
   615   // Check whether a given young length (young_length) fits into the
   616   // given target pause time and whether the prediction for the amount
   617   // of objects to be copied for the given length will fit into the
   618   // given free space (expressed by base_free_regions).  It is used by
   619   // calculate_young_list_target_length().
   620   bool predict_will_fit(uint young_length, double base_time_ms,
   621                         uint base_free_regions, double target_pause_time_ms);
   623   // Calculate the minimum number of old regions we'll add to the CSet
   624   // during a mixed GC.
   625   uint calc_min_old_cset_length();
   627   // Calculate the maximum number of old regions we'll add to the CSet
   628   // during a mixed GC.
   629   uint calc_max_old_cset_length();
   631   // Returns the given amount of uncollected reclaimable space
   632   // as a percentage of the current heap capacity.
   633   double reclaimable_bytes_perc(size_t reclaimable_bytes);
   635 public:
   637   G1CollectorPolicy();
   639   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   641   virtual CollectorPolicy::Name kind() {
   642     return CollectorPolicy::G1CollectorPolicyKind;
   643   }
   645   G1GCPhaseTimes* phase_times() const { return _phase_times; }
   647   // Check the current value of the young list RSet lengths and
   648   // compare it against the last prediction. If the current value is
   649   // higher, recalculate the young list target length prediction.
   650   void revise_young_list_target_length_if_necessary();
   652   // This should be called after the heap is resized.
   653   void record_new_heap_size(uint new_number_of_regions);
   655   void init();
   657   // Create jstat counters for the policy.
   658   virtual void initialize_gc_policy_counters();
   660   virtual HeapWord* mem_allocate_work(size_t size,
   661                                       bool is_tlab,
   662                                       bool* gc_overhead_limit_was_exceeded);
   664   // This method controls how a collector handles one or more
   665   // of its generations being fully allocated.
   666   virtual HeapWord* satisfy_failed_allocation(size_t size,
   667                                               bool is_tlab);
   669   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   671   bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
   673   // Record the start and end of an evacuation pause.
   674   void record_collection_pause_start(double start_time_sec);
   675   void record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info);
   677   // Record the start and end of a full collection.
   678   void record_full_collection_start();
   679   void record_full_collection_end();
   681   // Must currently be called while the world is stopped.
   682   void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms);
   684   // Record start and end of remark.
   685   void record_concurrent_mark_remark_start();
   686   void record_concurrent_mark_remark_end();
   688   // Record start, end, and completion of cleanup.
   689   void record_concurrent_mark_cleanup_start();
   690   void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
   691   void record_concurrent_mark_cleanup_completed();
   693   // Records the information about the heap size for reporting in
   694   // print_detailed_heap_transition
   695   void record_heap_size_info_at_start(bool full);
   697   // Print heap sizing transition (with less and more detail).
   698   void print_heap_transition();
   699   void print_detailed_heap_transition(bool full = false);
   701   void record_stop_world_start();
   702   void record_concurrent_pause();
   704   // Record how much space we copied during a GC. This is typically
   705   // called when a GC alloc region is being retired.
   706   void record_bytes_copied_during_gc(size_t bytes) {
   707     _bytes_copied_during_gc += bytes;
   708   }
   710   // The amount of space we copied during a GC.
   711   size_t bytes_copied_during_gc() {
   712     return _bytes_copied_during_gc;
   713   }
   715   // Determine whether there are candidate regions so that the
   716   // next GC should be mixed. The two action strings are used
   717   // in the ergo output when the method returns true or false.
   718   bool next_gc_should_be_mixed(const char* true_action_str,
   719                                const char* false_action_str);
   721   // Choose a new collection set.  Marks the chosen regions as being
   722   // "in_collection_set", and links them together.  The head and number of
   723   // the collection set are available via access methods.
   724   void finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info);
   726   // The head of the list (via "next_in_collection_set()") representing the
   727   // current collection set.
   728   HeapRegion* collection_set() { return _collection_set; }
   730   void clear_collection_set() { _collection_set = NULL; }
   732   // Add old region "hr" to the CSet.
   733   void add_old_region_to_cset(HeapRegion* hr);
   735   // Incremental CSet Support
   737   // The head of the incrementally built collection set.
   738   HeapRegion* inc_cset_head() { return _inc_cset_head; }
   740   // The tail of the incrementally built collection set.
   741   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
   743   // Initialize incremental collection set info.
   744   void start_incremental_cset_building();
   746   // Perform any final calculations on the incremental CSet fields
   747   // before we can use them.
   748   void finalize_incremental_cset_building();
   750   void clear_incremental_cset() {
   751     _inc_cset_head = NULL;
   752     _inc_cset_tail = NULL;
   753   }
   755   // Stop adding regions to the incremental collection set
   756   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
   758   // Add information about hr to the aggregated information for the
   759   // incrementally built collection set.
   760   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
   762   // Update information about hr in the aggregated information for
   763   // the incrementally built collection set.
   764   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
   766 private:
   767   // Update the incremental cset information when adding a region
   768   // (should not be called directly).
   769   void add_region_to_incremental_cset_common(HeapRegion* hr);
   771 public:
   772   // Add hr to the LHS of the incremental collection set.
   773   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
   775   // Add hr to the RHS of the incremental collection set.
   776   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
   778 #ifndef PRODUCT
   779   void print_collection_set(HeapRegion* list_head, outputStream* st);
   780 #endif // !PRODUCT
   782   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
   783   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
   784   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
   786   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
   787   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
   788   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
   790   // This sets the initiate_conc_mark_if_possible() flag to start a
   791   // new cycle, as long as we are not already in one. It's best if it
   792   // is called during a safepoint when the test whether a cycle is in
   793   // progress or not is stable.
   794   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
   796   // This is called at the very beginning of an evacuation pause (it
   797   // has to be the first thing that the pause does). If
   798   // initiate_conc_mark_if_possible() is true, and the concurrent
   799   // marking thread has completed its work during the previous cycle,
   800   // it will set during_initial_mark_pause() to so that the pause does
   801   // the initial-mark work and start a marking cycle.
   802   void decide_on_conc_mark_initiation();
   804   // If an expansion would be appropriate, because recent GC overhead had
   805   // exceeded the desired limit, return an amount to expand by.
   806   size_t expansion_amount();
   808   // Print tracing information.
   809   void print_tracing_info() const;
   811   // Print stats on young survival ratio
   812   void print_yg_surv_rate_info() const;
   814   void finished_recalculating_age_indexes(bool is_survivors) {
   815     if (is_survivors) {
   816       _survivor_surv_rate_group->finished_recalculating_age_indexes();
   817     } else {
   818       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
   819     }
   820     // do that for any other surv rate groups
   821   }
   823   size_t young_list_target_length() const { return _young_list_target_length; }
   825   bool is_young_list_full() {
   826     uint young_list_length = _g1->young_list()->length();
   827     uint young_list_target_length = _young_list_target_length;
   828     return young_list_length >= young_list_target_length;
   829   }
   831   bool can_expand_young_list() {
   832     uint young_list_length = _g1->young_list()->length();
   833     uint young_list_max_length = _young_list_max_length;
   834     return young_list_length < young_list_max_length;
   835   }
   837   uint young_list_max_length() {
   838     return _young_list_max_length;
   839   }
   841   bool gcs_are_young() {
   842     return _gcs_are_young;
   843   }
   844   void set_gcs_are_young(bool gcs_are_young) {
   845     _gcs_are_young = gcs_are_young;
   846   }
   848   bool adaptive_young_list_length() {
   849     return _young_gen_sizer->adaptive_young_list_length();
   850   }
   852 private:
   853   //
   854   // Survivor regions policy.
   855   //
   857   // Current tenuring threshold, set to 0 if the collector reaches the
   858   // maximum amount of survivors regions.
   859   uint _tenuring_threshold;
   861   // The limit on the number of regions allocated for survivors.
   862   uint _max_survivor_regions;
   864   // For reporting purposes.
   865   // The value of _heap_bytes_before_gc is also used to calculate
   866   // the cost of copying.
   868   size_t _eden_used_bytes_before_gc;         // Eden occupancy before GC
   869   size_t _survivor_used_bytes_before_gc;     // Survivor occupancy before GC
   870   size_t _heap_used_bytes_before_gc;         // Heap occupancy before GC
   871   size_t _metaspace_used_bytes_before_gc;    // Metaspace occupancy before GC
   873   size_t _eden_capacity_bytes_before_gc;     // Eden capacity before GC
   874   size_t _heap_capacity_bytes_before_gc;     // Heap capacity before GC
   876   // The amount of survivor regions after a collection.
   877   uint _recorded_survivor_regions;
   878   // List of survivor regions.
   879   HeapRegion* _recorded_survivor_head;
   880   HeapRegion* _recorded_survivor_tail;
   882   ageTable _survivors_age_table;
   884 public:
   885   uint tenuring_threshold() const { return _tenuring_threshold; }
   887   inline GCAllocPurpose
   888     evacuation_destination(HeapRegion* src_region, uint age, size_t word_sz) {
   889       if (age < _tenuring_threshold && src_region->is_young()) {
   890         return GCAllocForSurvived;
   891       } else {
   892         return GCAllocForTenured;
   893       }
   894   }
   896   inline bool track_object_age(GCAllocPurpose purpose) {
   897     return purpose == GCAllocForSurvived;
   898   }
   900   static const uint REGIONS_UNLIMITED = (uint) -1;
   902   uint max_regions(int purpose);
   904   // The limit on regions for a particular purpose is reached.
   905   void note_alloc_region_limit_reached(int purpose) {
   906     if (purpose == GCAllocForSurvived) {
   907       _tenuring_threshold = 0;
   908     }
   909   }
   911   void note_start_adding_survivor_regions() {
   912     _survivor_surv_rate_group->start_adding_regions();
   913   }
   915   void note_stop_adding_survivor_regions() {
   916     _survivor_surv_rate_group->stop_adding_regions();
   917   }
   919   void record_survivor_regions(uint regions,
   920                                HeapRegion* head,
   921                                HeapRegion* tail) {
   922     _recorded_survivor_regions = regions;
   923     _recorded_survivor_head    = head;
   924     _recorded_survivor_tail    = tail;
   925   }
   927   uint recorded_survivor_regions() {
   928     return _recorded_survivor_regions;
   929   }
   931   void record_thread_age_table(ageTable* age_table) {
   932     _survivors_age_table.merge_par(age_table);
   933   }
   935   void update_max_gc_locker_expansion();
   937   // Calculates survivor space parameters.
   938   void update_survivors_policy();
   940   virtual void post_heap_initialize();
   941 };
   943 // This should move to some place more general...
   945 // If we have "n" measurements, and we've kept track of their "sum" and the
   946 // "sum_of_squares" of the measurements, this returns the variance of the
   947 // sequence.
   948 inline double variance(int n, double sum_of_squares, double sum) {
   949   double n_d = (double)n;
   950   double avg = sum/n_d;
   951   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
   952 }
   954 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial