src/share/vm/gc_implementation/g1/concurrentMark.hpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    28 #include "gc_implementation/g1/heapRegionSet.hpp"
    29 #include "utilities/taskqueue.hpp"
    31 class G1CollectedHeap;
    32 class CMTask;
    33 typedef GenericTaskQueue<oop, mtGC>            CMTaskQueue;
    34 typedef GenericTaskQueueSet<CMTaskQueue, mtGC> CMTaskQueueSet;
    36 // Closure used by CM during concurrent reference discovery
    37 // and reference processing (during remarking) to determine
    38 // if a particular object is alive. It is primarily used
    39 // to determine if referents of discovered reference objects
    40 // are alive. An instance is also embedded into the
    41 // reference processor as the _is_alive_non_header field
    42 class G1CMIsAliveClosure: public BoolObjectClosure {
    43   G1CollectedHeap* _g1;
    44  public:
    45   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
    47   bool do_object_b(oop obj);
    48 };
    50 // A generic CM bit map.  This is essentially a wrapper around the BitMap
    51 // class, with one bit per (1<<_shifter) HeapWords.
    53 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
    54  protected:
    55   HeapWord* _bmStartWord;      // base address of range covered by map
    56   size_t    _bmWordSize;       // map size (in #HeapWords covered)
    57   const int _shifter;          // map to char or bit
    58   VirtualSpace _virtual_space; // underlying the bit map
    59   BitMap    _bm;               // the bit map itself
    61  public:
    62   // constructor
    63   CMBitMapRO(int shifter);
    65   enum { do_yield = true };
    67   // inquiries
    68   HeapWord* startWord()   const { return _bmStartWord; }
    69   size_t    sizeInWords() const { return _bmWordSize;  }
    70   // the following is one past the last word in space
    71   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
    73   // read marks
    75   bool isMarked(HeapWord* addr) const {
    76     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
    77            "outside underlying space?");
    78     return _bm.at(heapWordToOffset(addr));
    79   }
    81   // iteration
    82   inline bool iterate(BitMapClosure* cl, MemRegion mr);
    83   inline bool iterate(BitMapClosure* cl);
    85   // Return the address corresponding to the next marked bit at or after
    86   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    87   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    88   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
    89                                      HeapWord* limit = NULL) const;
    90   // Return the address corresponding to the next unmarked bit at or after
    91   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    92   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    93   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
    94                                        HeapWord* limit = NULL) const;
    96   // conversion utilities
    97   HeapWord* offsetToHeapWord(size_t offset) const {
    98     return _bmStartWord + (offset << _shifter);
    99   }
   100   size_t heapWordToOffset(HeapWord* addr) const {
   101     return pointer_delta(addr, _bmStartWord) >> _shifter;
   102   }
   103   int heapWordDiffToOffsetDiff(size_t diff) const;
   105   // The argument addr should be the start address of a valid object
   106   HeapWord* nextObject(HeapWord* addr) {
   107     oop obj = (oop) addr;
   108     HeapWord* res =  addr + obj->size();
   109     assert(offsetToHeapWord(heapWordToOffset(res)) == res, "sanity");
   110     return res;
   111   }
   113   void print_on_error(outputStream* st, const char* prefix) const;
   115   // debugging
   116   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
   117 };
   119 class CMBitMap : public CMBitMapRO {
   121  public:
   122   // constructor
   123   CMBitMap(int shifter) :
   124     CMBitMapRO(shifter) {}
   126   // Allocates the back store for the marking bitmap
   127   bool allocate(ReservedSpace heap_rs);
   129   // write marks
   130   void mark(HeapWord* addr) {
   131     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   132            "outside underlying space?");
   133     _bm.set_bit(heapWordToOffset(addr));
   134   }
   135   void clear(HeapWord* addr) {
   136     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   137            "outside underlying space?");
   138     _bm.clear_bit(heapWordToOffset(addr));
   139   }
   140   bool parMark(HeapWord* addr) {
   141     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   142            "outside underlying space?");
   143     return _bm.par_set_bit(heapWordToOffset(addr));
   144   }
   145   bool parClear(HeapWord* addr) {
   146     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   147            "outside underlying space?");
   148     return _bm.par_clear_bit(heapWordToOffset(addr));
   149   }
   150   void markRange(MemRegion mr);
   151   void clearAll();
   152   void clearRange(MemRegion mr);
   154   // Starting at the bit corresponding to "addr" (inclusive), find the next
   155   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
   156   // the end of this run (stopping at "end_addr").  Return the MemRegion
   157   // covering from the start of the region corresponding to the first bit
   158   // of the run to the end of the region corresponding to the last bit of
   159   // the run.  If there is no "1" bit at or after "addr", return an empty
   160   // MemRegion.
   161   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
   162 };
   164 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
   165 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
   166   VirtualSpace _virtual_space;   // Underlying backing store for actual stack
   167   ConcurrentMark* _cm;
   168   oop* _base;        // bottom of stack
   169   jint _index;       // one more than last occupied index
   170   jint _capacity;    // max #elements
   171   jint _saved_index; // value of _index saved at start of GC
   172   NOT_PRODUCT(jint _max_depth;)   // max depth plumbed during run
   174   bool  _overflow;
   175   bool  _should_expand;
   176   DEBUG_ONLY(bool _drain_in_progress;)
   177   DEBUG_ONLY(bool _drain_in_progress_yields;)
   179  public:
   180   CMMarkStack(ConcurrentMark* cm);
   181   ~CMMarkStack();
   183 #ifndef PRODUCT
   184   jint max_depth() const {
   185     return _max_depth;
   186   }
   187 #endif
   189   bool allocate(size_t capacity);
   191   oop pop() {
   192     if (!isEmpty()) {
   193       return _base[--_index] ;
   194     }
   195     return NULL;
   196   }
   198   // If overflow happens, don't do the push, and record the overflow.
   199   // *Requires* that "ptr" is already marked.
   200   void push(oop ptr) {
   201     if (isFull()) {
   202       // Record overflow.
   203       _overflow = true;
   204       return;
   205     } else {
   206       _base[_index++] = ptr;
   207       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   208     }
   209   }
   210   // Non-block impl.  Note: concurrency is allowed only with other
   211   // "par_push" operations, not with "pop" or "drain".  We would need
   212   // parallel versions of them if such concurrency was desired.
   213   void par_push(oop ptr);
   215   // Pushes the first "n" elements of "ptr_arr" on the stack.
   216   // Non-block impl.  Note: concurrency is allowed only with other
   217   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
   218   void par_adjoin_arr(oop* ptr_arr, int n);
   220   // Pushes the first "n" elements of "ptr_arr" on the stack.
   221   // Locking impl: concurrency is allowed only with
   222   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
   223   // locking strategy.
   224   void par_push_arr(oop* ptr_arr, int n);
   226   // If returns false, the array was empty.  Otherwise, removes up to "max"
   227   // elements from the stack, and transfers them to "ptr_arr" in an
   228   // unspecified order.  The actual number transferred is given in "n" ("n
   229   // == 0" is deliberately redundant with the return value.)  Locking impl:
   230   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
   231   // operations, which use the same locking strategy.
   232   bool par_pop_arr(oop* ptr_arr, int max, int* n);
   234   // Drain the mark stack, applying the given closure to all fields of
   235   // objects on the stack.  (That is, continue until the stack is empty,
   236   // even if closure applications add entries to the stack.)  The "bm"
   237   // argument, if non-null, may be used to verify that only marked objects
   238   // are on the mark stack.  If "yield_after" is "true", then the
   239   // concurrent marker performing the drain offers to yield after
   240   // processing each object.  If a yield occurs, stops the drain operation
   241   // and returns false.  Otherwise, returns true.
   242   template<class OopClosureClass>
   243   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
   245   bool isEmpty()    { return _index == 0; }
   246   bool isFull()     { return _index == _capacity; }
   247   int  maxElems()   { return _capacity; }
   249   bool overflow() { return _overflow; }
   250   void clear_overflow() { _overflow = false; }
   252   bool should_expand() const { return _should_expand; }
   253   void set_should_expand();
   255   // Expand the stack, typically in response to an overflow condition
   256   void expand();
   258   int  size() { return _index; }
   260   void setEmpty()   { _index = 0; clear_overflow(); }
   262   // Record the current index.
   263   void note_start_of_gc();
   265   // Make sure that we have not added any entries to the stack during GC.
   266   void note_end_of_gc();
   268   // iterate over the oops in the mark stack, up to the bound recorded via
   269   // the call above.
   270   void oops_do(OopClosure* f);
   271 };
   273 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
   274 private:
   275 #ifndef PRODUCT
   276   uintx _num_remaining;
   277   bool _force;
   278 #endif // !defined(PRODUCT)
   280 public:
   281   void init() PRODUCT_RETURN;
   282   void update() PRODUCT_RETURN;
   283   bool should_force() PRODUCT_RETURN_( return false; );
   284 };
   286 // this will enable a variety of different statistics per GC task
   287 #define _MARKING_STATS_       0
   288 // this will enable the higher verbose levels
   289 #define _MARKING_VERBOSE_     0
   291 #if _MARKING_STATS_
   292 #define statsOnly(statement)  \
   293 do {                          \
   294   statement ;                 \
   295 } while (0)
   296 #else // _MARKING_STATS_
   297 #define statsOnly(statement)  \
   298 do {                          \
   299 } while (0)
   300 #endif // _MARKING_STATS_
   302 typedef enum {
   303   no_verbose  = 0,   // verbose turned off
   304   stats_verbose,     // only prints stats at the end of marking
   305   low_verbose,       // low verbose, mostly per region and per major event
   306   medium_verbose,    // a bit more detailed than low
   307   high_verbose       // per object verbose
   308 } CMVerboseLevel;
   310 class YoungList;
   312 // Root Regions are regions that are not empty at the beginning of a
   313 // marking cycle and which we might collect during an evacuation pause
   314 // while the cycle is active. Given that, during evacuation pauses, we
   315 // do not copy objects that are explicitly marked, what we have to do
   316 // for the root regions is to scan them and mark all objects reachable
   317 // from them. According to the SATB assumptions, we only need to visit
   318 // each object once during marking. So, as long as we finish this scan
   319 // before the next evacuation pause, we can copy the objects from the
   320 // root regions without having to mark them or do anything else to them.
   321 //
   322 // Currently, we only support root region scanning once (at the start
   323 // of the marking cycle) and the root regions are all the survivor
   324 // regions populated during the initial-mark pause.
   325 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
   326 private:
   327   YoungList*           _young_list;
   328   ConcurrentMark*      _cm;
   330   volatile bool        _scan_in_progress;
   331   volatile bool        _should_abort;
   332   HeapRegion* volatile _next_survivor;
   334 public:
   335   CMRootRegions();
   336   // We actually do most of the initialization in this method.
   337   void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
   339   // Reset the claiming / scanning of the root regions.
   340   void prepare_for_scan();
   342   // Forces get_next() to return NULL so that the iteration aborts early.
   343   void abort() { _should_abort = true; }
   345   // Return true if the CM thread are actively scanning root regions,
   346   // false otherwise.
   347   bool scan_in_progress() { return _scan_in_progress; }
   349   // Claim the next root region to scan atomically, or return NULL if
   350   // all have been claimed.
   351   HeapRegion* claim_next();
   353   // Flag that we're done with root region scanning and notify anyone
   354   // who's waiting on it. If aborted is false, assume that all regions
   355   // have been claimed.
   356   void scan_finished();
   358   // If CM threads are still scanning root regions, wait until they
   359   // are done. Return true if we had to wait, false otherwise.
   360   bool wait_until_scan_finished();
   361 };
   363 class ConcurrentMarkThread;
   365 class ConcurrentMark: public CHeapObj<mtGC> {
   366   friend class CMMarkStack;
   367   friend class ConcurrentMarkThread;
   368   friend class CMTask;
   369   friend class CMBitMapClosure;
   370   friend class CMGlobalObjectClosure;
   371   friend class CMRemarkTask;
   372   friend class CMConcurrentMarkingTask;
   373   friend class G1ParNoteEndTask;
   374   friend class CalcLiveObjectsClosure;
   375   friend class G1CMRefProcTaskProxy;
   376   friend class G1CMRefProcTaskExecutor;
   377   friend class G1CMKeepAliveAndDrainClosure;
   378   friend class G1CMDrainMarkingStackClosure;
   380 protected:
   381   ConcurrentMarkThread* _cmThread;   // the thread doing the work
   382   G1CollectedHeap*      _g1h;        // the heap.
   383   uint                  _parallel_marking_threads; // the number of marking
   384                                                    // threads we're use
   385   uint                  _max_parallel_marking_threads; // max number of marking
   386                                                    // threads we'll ever use
   387   double                _sleep_factor; // how much we have to sleep, with
   388                                        // respect to the work we just did, to
   389                                        // meet the marking overhead goal
   390   double                _marking_task_overhead; // marking target overhead for
   391                                                 // a single task
   393   // same as the two above, but for the cleanup task
   394   double                _cleanup_sleep_factor;
   395   double                _cleanup_task_overhead;
   397   FreeRegionList        _cleanup_list;
   399   // Concurrent marking support structures
   400   CMBitMap                _markBitMap1;
   401   CMBitMap                _markBitMap2;
   402   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
   403   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
   405   BitMap                  _region_bm;
   406   BitMap                  _card_bm;
   408   // Heap bounds
   409   HeapWord*               _heap_start;
   410   HeapWord*               _heap_end;
   412   // Root region tracking and claiming.
   413   CMRootRegions           _root_regions;
   415   // For gray objects
   416   CMMarkStack             _markStack; // Grey objects behind global finger.
   417   HeapWord* volatile      _finger;  // the global finger, region aligned,
   418                                     // always points to the end of the
   419                                     // last claimed region
   421   // marking tasks
   422   uint                    _max_worker_id;// maximum worker id
   423   uint                    _active_tasks; // task num currently active
   424   CMTask**                _tasks;        // task queue array (max_worker_id len)
   425   CMTaskQueueSet*         _task_queues;  // task queue set
   426   ParallelTaskTerminator  _terminator;   // for termination
   428   // Two sync barriers that are used to synchronise tasks when an
   429   // overflow occurs. The algorithm is the following. All tasks enter
   430   // the first one to ensure that they have all stopped manipulating
   431   // the global data structures. After they exit it, they re-initialise
   432   // their data structures and task 0 re-initialises the global data
   433   // structures. Then, they enter the second sync barrier. This
   434   // ensure, that no task starts doing work before all data
   435   // structures (local and global) have been re-initialised. When they
   436   // exit it, they are free to start working again.
   437   WorkGangBarrierSync     _first_overflow_barrier_sync;
   438   WorkGangBarrierSync     _second_overflow_barrier_sync;
   440   // this is set by any task, when an overflow on the global data
   441   // structures is detected.
   442   volatile bool           _has_overflown;
   443   // true: marking is concurrent, false: we're in remark
   444   volatile bool           _concurrent;
   445   // set at the end of a Full GC so that marking aborts
   446   volatile bool           _has_aborted;
   448   // used when remark aborts due to an overflow to indicate that
   449   // another concurrent marking phase should start
   450   volatile bool           _restart_for_overflow;
   452   // This is true from the very start of concurrent marking until the
   453   // point when all the tasks complete their work. It is really used
   454   // to determine the points between the end of concurrent marking and
   455   // time of remark.
   456   volatile bool           _concurrent_marking_in_progress;
   458   // verbose level
   459   CMVerboseLevel          _verbose_level;
   461   // All of these times are in ms.
   462   NumberSeq _init_times;
   463   NumberSeq _remark_times;
   464   NumberSeq   _remark_mark_times;
   465   NumberSeq   _remark_weak_ref_times;
   466   NumberSeq _cleanup_times;
   467   double    _total_counting_time;
   468   double    _total_rs_scrub_time;
   470   double*   _accum_task_vtime;   // accumulated task vtime
   472   FlexibleWorkGang* _parallel_workers;
   474   ForceOverflowSettings _force_overflow_conc;
   475   ForceOverflowSettings _force_overflow_stw;
   477   void weakRefsWork(bool clear_all_soft_refs);
   479   void swapMarkBitMaps();
   481   // It resets the global marking data structures, as well as the
   482   // task local ones; should be called during initial mark.
   483   void reset();
   485   // Resets all the marking data structures. Called when we have to restart
   486   // marking or when marking completes (via set_non_marking_state below).
   487   void reset_marking_state(bool clear_overflow = true);
   489   // We do this after we're done with marking so that the marking data
   490   // structures are initialised to a sensible and predictable state.
   491   void set_non_marking_state();
   493   // Called to indicate how many threads are currently active.
   494   void set_concurrency(uint active_tasks);
   496   // It should be called to indicate which phase we're in (concurrent
   497   // mark or remark) and how many threads are currently active.
   498   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
   500   // prints all gathered CM-related statistics
   501   void print_stats();
   503   bool cleanup_list_is_empty() {
   504     return _cleanup_list.is_empty();
   505   }
   507   // accessor methods
   508   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
   509   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
   510   double sleep_factor()                     { return _sleep_factor; }
   511   double marking_task_overhead()            { return _marking_task_overhead;}
   512   double cleanup_sleep_factor()             { return _cleanup_sleep_factor; }
   513   double cleanup_task_overhead()            { return _cleanup_task_overhead;}
   515   bool use_parallel_marking_threads() const {
   516     assert(parallel_marking_threads() <=
   517            max_parallel_marking_threads(), "sanity");
   518     assert((_parallel_workers == NULL && parallel_marking_threads() == 0) ||
   519            parallel_marking_threads() > 0,
   520            "parallel workers not set up correctly");
   521     return _parallel_workers != NULL;
   522   }
   524   HeapWord*               finger()          { return _finger;   }
   525   bool                    concurrent()      { return _concurrent; }
   526   uint                    active_tasks()    { return _active_tasks; }
   527   ParallelTaskTerminator* terminator()      { return &_terminator; }
   529   // It claims the next available region to be scanned by a marking
   530   // task/thread. It might return NULL if the next region is empty or
   531   // we have run out of regions. In the latter case, out_of_regions()
   532   // determines whether we've really run out of regions or the task
   533   // should call claim_region() again. This might seem a bit
   534   // awkward. Originally, the code was written so that claim_region()
   535   // either successfully returned with a non-empty region or there
   536   // were no more regions to be claimed. The problem with this was
   537   // that, in certain circumstances, it iterated over large chunks of
   538   // the heap finding only empty regions and, while it was working, it
   539   // was preventing the calling task to call its regular clock
   540   // method. So, this way, each task will spend very little time in
   541   // claim_region() and is allowed to call the regular clock method
   542   // frequently.
   543   HeapRegion* claim_region(uint worker_id);
   545   // It determines whether we've run out of regions to scan. Note that
   546   // the finger can point past the heap end in case the heap was expanded
   547   // to satisfy an allocation without doing a GC. This is fine, because all
   548   // objects in those regions will be considered live anyway because of
   549   // SATB guarantees (i.e. their TAMS will be equal to bottom).
   550   bool        out_of_regions() { return _finger >= _heap_end; }
   552   // Returns the task with the given id
   553   CMTask* task(int id) {
   554     assert(0 <= id && id < (int) _active_tasks,
   555            "task id not within active bounds");
   556     return _tasks[id];
   557   }
   559   // Returns the task queue with the given id
   560   CMTaskQueue* task_queue(int id) {
   561     assert(0 <= id && id < (int) _active_tasks,
   562            "task queue id not within active bounds");
   563     return (CMTaskQueue*) _task_queues->queue(id);
   564   }
   566   // Returns the task queue set
   567   CMTaskQueueSet* task_queues()  { return _task_queues; }
   569   // Access / manipulation of the overflow flag which is set to
   570   // indicate that the global stack has overflown
   571   bool has_overflown()           { return _has_overflown; }
   572   void set_has_overflown()       { _has_overflown = true; }
   573   void clear_has_overflown()     { _has_overflown = false; }
   574   bool restart_for_overflow()    { return _restart_for_overflow; }
   576   // Methods to enter the two overflow sync barriers
   577   void enter_first_sync_barrier(uint worker_id);
   578   void enter_second_sync_barrier(uint worker_id);
   580   ForceOverflowSettings* force_overflow_conc() {
   581     return &_force_overflow_conc;
   582   }
   584   ForceOverflowSettings* force_overflow_stw() {
   585     return &_force_overflow_stw;
   586   }
   588   ForceOverflowSettings* force_overflow() {
   589     if (concurrent()) {
   590       return force_overflow_conc();
   591     } else {
   592       return force_overflow_stw();
   593     }
   594   }
   596   // Live Data Counting data structures...
   597   // These data structures are initialized at the start of
   598   // marking. They are written to while marking is active.
   599   // They are aggregated during remark; the aggregated values
   600   // are then used to populate the _region_bm, _card_bm, and
   601   // the total live bytes, which are then subsequently updated
   602   // during cleanup.
   604   // An array of bitmaps (one bit map per task). Each bitmap
   605   // is used to record the cards spanned by the live objects
   606   // marked by that task/worker.
   607   BitMap*  _count_card_bitmaps;
   609   // Used to record the number of marked live bytes
   610   // (for each region, by worker thread).
   611   size_t** _count_marked_bytes;
   613   // Card index of the bottom of the G1 heap. Used for biasing indices into
   614   // the card bitmaps.
   615   intptr_t _heap_bottom_card_num;
   617   // Set to true when initialization is complete
   618   bool _completed_initialization;
   620 public:
   621   // Manipulation of the global mark stack.
   622   // Notice that the first mark_stack_push is CAS-based, whereas the
   623   // two below are Mutex-based. This is OK since the first one is only
   624   // called during evacuation pauses and doesn't compete with the
   625   // other two (which are called by the marking tasks during
   626   // concurrent marking or remark).
   627   bool mark_stack_push(oop p) {
   628     _markStack.par_push(p);
   629     if (_markStack.overflow()) {
   630       set_has_overflown();
   631       return false;
   632     }
   633     return true;
   634   }
   635   bool mark_stack_push(oop* arr, int n) {
   636     _markStack.par_push_arr(arr, n);
   637     if (_markStack.overflow()) {
   638       set_has_overflown();
   639       return false;
   640     }
   641     return true;
   642   }
   643   void mark_stack_pop(oop* arr, int max, int* n) {
   644     _markStack.par_pop_arr(arr, max, n);
   645   }
   646   size_t mark_stack_size()                { return _markStack.size(); }
   647   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
   648   bool mark_stack_overflow()              { return _markStack.overflow(); }
   649   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
   651   CMRootRegions* root_regions() { return &_root_regions; }
   653   bool concurrent_marking_in_progress() {
   654     return _concurrent_marking_in_progress;
   655   }
   656   void set_concurrent_marking_in_progress() {
   657     _concurrent_marking_in_progress = true;
   658   }
   659   void clear_concurrent_marking_in_progress() {
   660     _concurrent_marking_in_progress = false;
   661   }
   663   void update_accum_task_vtime(int i, double vtime) {
   664     _accum_task_vtime[i] += vtime;
   665   }
   667   double all_task_accum_vtime() {
   668     double ret = 0.0;
   669     for (uint i = 0; i < _max_worker_id; ++i)
   670       ret += _accum_task_vtime[i];
   671     return ret;
   672   }
   674   // Attempts to steal an object from the task queues of other tasks
   675   bool try_stealing(uint worker_id, int* hash_seed, oop& obj) {
   676     return _task_queues->steal(worker_id, hash_seed, obj);
   677   }
   679   ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs);
   680   ~ConcurrentMark();
   682   ConcurrentMarkThread* cmThread() { return _cmThread; }
   684   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
   685   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
   687   // Returns the number of GC threads to be used in a concurrent
   688   // phase based on the number of GC threads being used in a STW
   689   // phase.
   690   uint scale_parallel_threads(uint n_par_threads);
   692   // Calculates the number of GC threads to be used in a concurrent phase.
   693   uint calc_parallel_marking_threads();
   695   // The following three are interaction between CM and
   696   // G1CollectedHeap
   698   // This notifies CM that a root during initial-mark needs to be
   699   // grayed. It is MT-safe. word_size is the size of the object in
   700   // words. It is passed explicitly as sometimes we cannot calculate
   701   // it from the given object because it might be in an inconsistent
   702   // state (e.g., in to-space and being copied). So the caller is
   703   // responsible for dealing with this issue (e.g., get the size from
   704   // the from-space image when the to-space image might be
   705   // inconsistent) and always passing the size. hr is the region that
   706   // contains the object and it's passed optionally from callers who
   707   // might already have it (no point in recalculating it).
   708   inline void grayRoot(oop obj, size_t word_size,
   709                        uint worker_id, HeapRegion* hr = NULL);
   711   // It iterates over the heap and for each object it comes across it
   712   // will dump the contents of its reference fields, as well as
   713   // liveness information for the object and its referents. The dump
   714   // will be written to a file with the following name:
   715   // G1PrintReachableBaseFile + "." + str.
   716   // vo decides whether the prev (vo == UsePrevMarking), the next
   717   // (vo == UseNextMarking) marking information, or the mark word
   718   // (vo == UseMarkWord) will be used to determine the liveness of
   719   // each object / referent.
   720   // If all is true, all objects in the heap will be dumped, otherwise
   721   // only the live ones. In the dump the following symbols / breviations
   722   // are used:
   723   //   M : an explicitly live object (its bitmap bit is set)
   724   //   > : an implicitly live object (over tams)
   725   //   O : an object outside the G1 heap (typically: in the perm gen)
   726   //   NOT : a reference field whose referent is not live
   727   //   AND MARKED : indicates that an object is both explicitly and
   728   //   implicitly live (it should be one or the other, not both)
   729   void print_reachable(const char* str,
   730                        VerifyOption vo, bool all) PRODUCT_RETURN;
   732   // Clear the next marking bitmap (will be called concurrently).
   733   void clearNextBitmap();
   735   // These two do the work that needs to be done before and after the
   736   // initial root checkpoint. Since this checkpoint can be done at two
   737   // different points (i.e. an explicit pause or piggy-backed on a
   738   // young collection), then it's nice to be able to easily share the
   739   // pre/post code. It might be the case that we can put everything in
   740   // the post method. TP
   741   void checkpointRootsInitialPre();
   742   void checkpointRootsInitialPost();
   744   // Scan all the root regions and mark everything reachable from
   745   // them.
   746   void scanRootRegions();
   748   // Scan a single root region and mark everything reachable from it.
   749   void scanRootRegion(HeapRegion* hr, uint worker_id);
   751   // Do concurrent phase of marking, to a tentative transitive closure.
   752   void markFromRoots();
   754   void checkpointRootsFinal(bool clear_all_soft_refs);
   755   void checkpointRootsFinalWork();
   756   void cleanup();
   757   void completeCleanup();
   759   // Mark in the previous bitmap.  NB: this is usually read-only, so use
   760   // this carefully!
   761   inline void markPrev(oop p);
   763   // Clears marks for all objects in the given range, for the prev,
   764   // next, or both bitmaps.  NB: the previous bitmap is usually
   765   // read-only, so use this carefully!
   766   void clearRangePrevBitmap(MemRegion mr);
   767   void clearRangeNextBitmap(MemRegion mr);
   768   void clearRangeBothBitmaps(MemRegion mr);
   770   // Notify data structures that a GC has started.
   771   void note_start_of_gc() {
   772     _markStack.note_start_of_gc();
   773   }
   775   // Notify data structures that a GC is finished.
   776   void note_end_of_gc() {
   777     _markStack.note_end_of_gc();
   778   }
   780   // Verify that there are no CSet oops on the stacks (taskqueues /
   781   // global mark stack), enqueued SATB buffers, per-thread SATB
   782   // buffers, and fingers (global / per-task). The boolean parameters
   783   // decide which of the above data structures to verify. If marking
   784   // is not in progress, it's a no-op.
   785   void verify_no_cset_oops(bool verify_stacks,
   786                            bool verify_enqueued_buffers,
   787                            bool verify_thread_buffers,
   788                            bool verify_fingers) PRODUCT_RETURN;
   790   // It is called at the end of an evacuation pause during marking so
   791   // that CM is notified of where the new end of the heap is. It
   792   // doesn't do anything if concurrent_marking_in_progress() is false,
   793   // unless the force parameter is true.
   794   void update_g1_committed(bool force = false);
   796   bool isMarked(oop p) const {
   797     assert(p != NULL && p->is_oop(), "expected an oop");
   798     HeapWord* addr = (HeapWord*)p;
   799     assert(addr >= _nextMarkBitMap->startWord() ||
   800            addr < _nextMarkBitMap->endWord(), "in a region");
   802     return _nextMarkBitMap->isMarked(addr);
   803   }
   805   inline bool not_yet_marked(oop p) const;
   807   // XXX Debug code
   808   bool containing_card_is_marked(void* p);
   809   bool containing_cards_are_marked(void* start, void* last);
   811   bool isPrevMarked(oop p) const {
   812     assert(p != NULL && p->is_oop(), "expected an oop");
   813     HeapWord* addr = (HeapWord*)p;
   814     assert(addr >= _prevMarkBitMap->startWord() ||
   815            addr < _prevMarkBitMap->endWord(), "in a region");
   817     return _prevMarkBitMap->isMarked(addr);
   818   }
   820   inline bool do_yield_check(uint worker_i = 0);
   821   inline bool should_yield();
   823   // Called to abort the marking cycle after a Full GC takes palce.
   824   void abort();
   826   bool has_aborted()      { return _has_aborted; }
   828   // This prints the global/local fingers. It is used for debugging.
   829   NOT_PRODUCT(void print_finger();)
   831   void print_summary_info();
   833   void print_worker_threads_on(outputStream* st) const;
   835   void print_on_error(outputStream* st) const;
   837   // The following indicate whether a given verbose level has been
   838   // set. Notice that anything above stats is conditional to
   839   // _MARKING_VERBOSE_ having been set to 1
   840   bool verbose_stats() {
   841     return _verbose_level >= stats_verbose;
   842   }
   843   bool verbose_low() {
   844     return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
   845   }
   846   bool verbose_medium() {
   847     return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
   848   }
   849   bool verbose_high() {
   850     return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
   851   }
   853   // Liveness counting
   855   // Utility routine to set an exclusive range of cards on the given
   856   // card liveness bitmap
   857   inline void set_card_bitmap_range(BitMap* card_bm,
   858                                     BitMap::idx_t start_idx,
   859                                     BitMap::idx_t end_idx,
   860                                     bool is_par);
   862   // Returns the card number of the bottom of the G1 heap.
   863   // Used in biasing indices into accounting card bitmaps.
   864   intptr_t heap_bottom_card_num() const {
   865     return _heap_bottom_card_num;
   866   }
   868   // Returns the card bitmap for a given task or worker id.
   869   BitMap* count_card_bitmap_for(uint worker_id) {
   870     assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
   871     assert(_count_card_bitmaps != NULL, "uninitialized");
   872     BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
   873     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
   874     return task_card_bm;
   875   }
   877   // Returns the array containing the marked bytes for each region,
   878   // for the given worker or task id.
   879   size_t* count_marked_bytes_array_for(uint worker_id) {
   880     assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
   881     assert(_count_marked_bytes != NULL, "uninitialized");
   882     size_t* marked_bytes_array = _count_marked_bytes[worker_id];
   883     assert(marked_bytes_array != NULL, "uninitialized");
   884     return marked_bytes_array;
   885   }
   887   // Returns the index in the liveness accounting card table bitmap
   888   // for the given address
   889   inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
   891   // Counts the size of the given memory region in the the given
   892   // marked_bytes array slot for the given HeapRegion.
   893   // Sets the bits in the given card bitmap that are associated with the
   894   // cards that are spanned by the memory region.
   895   inline void count_region(MemRegion mr, HeapRegion* hr,
   896                            size_t* marked_bytes_array,
   897                            BitMap* task_card_bm);
   899   // Counts the given memory region in the task/worker counting
   900   // data structures for the given worker id.
   901   inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
   903   // Counts the given memory region in the task/worker counting
   904   // data structures for the given worker id.
   905   inline void count_region(MemRegion mr, uint worker_id);
   907   // Counts the given object in the given task/worker counting
   908   // data structures.
   909   inline void count_object(oop obj, HeapRegion* hr,
   910                            size_t* marked_bytes_array,
   911                            BitMap* task_card_bm);
   913   // Counts the given object in the task/worker counting data
   914   // structures for the given worker id.
   915   inline void count_object(oop obj, HeapRegion* hr, uint worker_id);
   917   // Attempts to mark the given object and, if successful, counts
   918   // the object in the given task/worker counting structures.
   919   inline bool par_mark_and_count(oop obj, HeapRegion* hr,
   920                                  size_t* marked_bytes_array,
   921                                  BitMap* task_card_bm);
   923   // Attempts to mark the given object and, if successful, counts
   924   // the object in the task/worker counting structures for the
   925   // given worker id.
   926   inline bool par_mark_and_count(oop obj, size_t word_size,
   927                                  HeapRegion* hr, uint worker_id);
   929   // Attempts to mark the given object and, if successful, counts
   930   // the object in the task/worker counting structures for the
   931   // given worker id.
   932   inline bool par_mark_and_count(oop obj, HeapRegion* hr, uint worker_id);
   934   // Similar to the above routine but we don't know the heap region that
   935   // contains the object to be marked/counted, which this routine looks up.
   936   inline bool par_mark_and_count(oop obj, uint worker_id);
   938   // Similar to the above routine but there are times when we cannot
   939   // safely calculate the size of obj due to races and we, therefore,
   940   // pass the size in as a parameter. It is the caller's reponsibility
   941   // to ensure that the size passed in for obj is valid.
   942   inline bool par_mark_and_count(oop obj, size_t word_size, uint worker_id);
   944   // Unconditionally mark the given object, and unconditinally count
   945   // the object in the counting structures for worker id 0.
   946   // Should *not* be called from parallel code.
   947   inline bool mark_and_count(oop obj, HeapRegion* hr);
   949   // Similar to the above routine but we don't know the heap region that
   950   // contains the object to be marked/counted, which this routine looks up.
   951   // Should *not* be called from parallel code.
   952   inline bool mark_and_count(oop obj);
   954   // Returns true if initialization was successfully completed.
   955   bool completed_initialization() const {
   956     return _completed_initialization;
   957   }
   959 protected:
   960   // Clear all the per-task bitmaps and arrays used to store the
   961   // counting data.
   962   void clear_all_count_data();
   964   // Aggregates the counting data for each worker/task
   965   // that was constructed while marking. Also sets
   966   // the amount of marked bytes for each region and
   967   // the top at concurrent mark count.
   968   void aggregate_count_data();
   970   // Verification routine
   971   void verify_count_data();
   972 };
   974 // A class representing a marking task.
   975 class CMTask : public TerminatorTerminator {
   976 private:
   977   enum PrivateConstants {
   978     // the regular clock call is called once the scanned words reaches
   979     // this limit
   980     words_scanned_period          = 12*1024,
   981     // the regular clock call is called once the number of visited
   982     // references reaches this limit
   983     refs_reached_period           = 384,
   984     // initial value for the hash seed, used in the work stealing code
   985     init_hash_seed                = 17,
   986     // how many entries will be transferred between global stack and
   987     // local queues
   988     global_stack_transfer_size    = 16
   989   };
   991   uint                        _worker_id;
   992   G1CollectedHeap*            _g1h;
   993   ConcurrentMark*             _cm;
   994   CMBitMap*                   _nextMarkBitMap;
   995   // the task queue of this task
   996   CMTaskQueue*                _task_queue;
   997 private:
   998   // the task queue set---needed for stealing
   999   CMTaskQueueSet*             _task_queues;
  1000   // indicates whether the task has been claimed---this is only  for
  1001   // debugging purposes
  1002   bool                        _claimed;
  1004   // number of calls to this task
  1005   int                         _calls;
  1007   // when the virtual timer reaches this time, the marking step should
  1008   // exit
  1009   double                      _time_target_ms;
  1010   // the start time of the current marking step
  1011   double                      _start_time_ms;
  1013   // the oop closure used for iterations over oops
  1014   G1CMOopClosure*             _cm_oop_closure;
  1016   // the region this task is scanning, NULL if we're not scanning any
  1017   HeapRegion*                 _curr_region;
  1018   // the local finger of this task, NULL if we're not scanning a region
  1019   HeapWord*                   _finger;
  1020   // limit of the region this task is scanning, NULL if we're not scanning one
  1021   HeapWord*                   _region_limit;
  1023   // the number of words this task has scanned
  1024   size_t                      _words_scanned;
  1025   // When _words_scanned reaches this limit, the regular clock is
  1026   // called. Notice that this might be decreased under certain
  1027   // circumstances (i.e. when we believe that we did an expensive
  1028   // operation).
  1029   size_t                      _words_scanned_limit;
  1030   // the initial value of _words_scanned_limit (i.e. what it was
  1031   // before it was decreased).
  1032   size_t                      _real_words_scanned_limit;
  1034   // the number of references this task has visited
  1035   size_t                      _refs_reached;
  1036   // When _refs_reached reaches this limit, the regular clock is
  1037   // called. Notice this this might be decreased under certain
  1038   // circumstances (i.e. when we believe that we did an expensive
  1039   // operation).
  1040   size_t                      _refs_reached_limit;
  1041   // the initial value of _refs_reached_limit (i.e. what it was before
  1042   // it was decreased).
  1043   size_t                      _real_refs_reached_limit;
  1045   // used by the work stealing stuff
  1046   int                         _hash_seed;
  1047   // if this is true, then the task has aborted for some reason
  1048   bool                        _has_aborted;
  1049   // set when the task aborts because it has met its time quota
  1050   bool                        _has_timed_out;
  1051   // true when we're draining SATB buffers; this avoids the task
  1052   // aborting due to SATB buffers being available (as we're already
  1053   // dealing with them)
  1054   bool                        _draining_satb_buffers;
  1056   // number sequence of past step times
  1057   NumberSeq                   _step_times_ms;
  1058   // elapsed time of this task
  1059   double                      _elapsed_time_ms;
  1060   // termination time of this task
  1061   double                      _termination_time_ms;
  1062   // when this task got into the termination protocol
  1063   double                      _termination_start_time_ms;
  1065   // true when the task is during a concurrent phase, false when it is
  1066   // in the remark phase (so, in the latter case, we do not have to
  1067   // check all the things that we have to check during the concurrent
  1068   // phase, i.e. SATB buffer availability...)
  1069   bool                        _concurrent;
  1071   TruncatedSeq                _marking_step_diffs_ms;
  1073   // Counting data structures. Embedding the task's marked_bytes_array
  1074   // and card bitmap into the actual task saves having to go through
  1075   // the ConcurrentMark object.
  1076   size_t*                     _marked_bytes_array;
  1077   BitMap*                     _card_bm;
  1079   // LOTS of statistics related with this task
  1080 #if _MARKING_STATS_
  1081   NumberSeq                   _all_clock_intervals_ms;
  1082   double                      _interval_start_time_ms;
  1084   int                         _aborted;
  1085   int                         _aborted_overflow;
  1086   int                         _aborted_cm_aborted;
  1087   int                         _aborted_yield;
  1088   int                         _aborted_timed_out;
  1089   int                         _aborted_satb;
  1090   int                         _aborted_termination;
  1092   int                         _steal_attempts;
  1093   int                         _steals;
  1095   int                         _clock_due_to_marking;
  1096   int                         _clock_due_to_scanning;
  1098   int                         _local_pushes;
  1099   int                         _local_pops;
  1100   int                         _local_max_size;
  1101   int                         _objs_scanned;
  1103   int                         _global_pushes;
  1104   int                         _global_pops;
  1105   int                         _global_max_size;
  1107   int                         _global_transfers_to;
  1108   int                         _global_transfers_from;
  1110   int                         _regions_claimed;
  1111   int                         _objs_found_on_bitmap;
  1113   int                         _satb_buffers_processed;
  1114 #endif // _MARKING_STATS_
  1116   // it updates the local fields after this task has claimed
  1117   // a new region to scan
  1118   void setup_for_region(HeapRegion* hr);
  1119   // it brings up-to-date the limit of the region
  1120   void update_region_limit();
  1122   // called when either the words scanned or the refs visited limit
  1123   // has been reached
  1124   void reached_limit();
  1125   // recalculates the words scanned and refs visited limits
  1126   void recalculate_limits();
  1127   // decreases the words scanned and refs visited limits when we reach
  1128   // an expensive operation
  1129   void decrease_limits();
  1130   // it checks whether the words scanned or refs visited reached their
  1131   // respective limit and calls reached_limit() if they have
  1132   void check_limits() {
  1133     if (_words_scanned >= _words_scanned_limit ||
  1134         _refs_reached >= _refs_reached_limit) {
  1135       reached_limit();
  1138   // this is supposed to be called regularly during a marking step as
  1139   // it checks a bunch of conditions that might cause the marking step
  1140   // to abort
  1141   void regular_clock_call();
  1142   bool concurrent() { return _concurrent; }
  1144 public:
  1145   // It resets the task; it should be called right at the beginning of
  1146   // a marking phase.
  1147   void reset(CMBitMap* _nextMarkBitMap);
  1148   // it clears all the fields that correspond to a claimed region.
  1149   void clear_region_fields();
  1151   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
  1153   // The main method of this class which performs a marking step
  1154   // trying not to exceed the given duration. However, it might exit
  1155   // prematurely, according to some conditions (i.e. SATB buffers are
  1156   // available for processing).
  1157   void do_marking_step(double target_ms,
  1158                        bool do_termination,
  1159                        bool is_serial);
  1161   // These two calls start and stop the timer
  1162   void record_start_time() {
  1163     _elapsed_time_ms = os::elapsedTime() * 1000.0;
  1165   void record_end_time() {
  1166     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
  1169   // returns the worker ID associated with this task.
  1170   uint worker_id() { return _worker_id; }
  1172   // From TerminatorTerminator. It determines whether this task should
  1173   // exit the termination protocol after it's entered it.
  1174   virtual bool should_exit_termination();
  1176   // Resets the local region fields after a task has finished scanning a
  1177   // region; or when they have become stale as a result of the region
  1178   // being evacuated.
  1179   void giveup_current_region();
  1181   HeapWord* finger()            { return _finger; }
  1183   bool has_aborted()            { return _has_aborted; }
  1184   void set_has_aborted()        { _has_aborted = true; }
  1185   void clear_has_aborted()      { _has_aborted = false; }
  1186   bool has_timed_out()          { return _has_timed_out; }
  1187   bool claimed()                { return _claimed; }
  1189   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
  1191   // It grays the object by marking it and, if necessary, pushing it
  1192   // on the local queue
  1193   inline void deal_with_reference(oop obj);
  1195   // It scans an object and visits its children.
  1196   void scan_object(oop obj);
  1198   // It pushes an object on the local queue.
  1199   inline void push(oop obj);
  1201   // These two move entries to/from the global stack.
  1202   void move_entries_to_global_stack();
  1203   void get_entries_from_global_stack();
  1205   // It pops and scans objects from the local queue. If partially is
  1206   // true, then it stops when the queue size is of a given limit. If
  1207   // partially is false, then it stops when the queue is empty.
  1208   void drain_local_queue(bool partially);
  1209   // It moves entries from the global stack to the local queue and
  1210   // drains the local queue. If partially is true, then it stops when
  1211   // both the global stack and the local queue reach a given size. If
  1212   // partially if false, it tries to empty them totally.
  1213   void drain_global_stack(bool partially);
  1214   // It keeps picking SATB buffers and processing them until no SATB
  1215   // buffers are available.
  1216   void drain_satb_buffers();
  1218   // moves the local finger to a new location
  1219   inline void move_finger_to(HeapWord* new_finger) {
  1220     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
  1221     _finger = new_finger;
  1224   CMTask(uint worker_id, ConcurrentMark *cm,
  1225          size_t* marked_bytes, BitMap* card_bm,
  1226          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
  1228   // it prints statistics associated with this task
  1229   void print_stats();
  1231 #if _MARKING_STATS_
  1232   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
  1233 #endif // _MARKING_STATS_
  1234 };
  1236 // Class that's used to to print out per-region liveness
  1237 // information. It's currently used at the end of marking and also
  1238 // after we sort the old regions at the end of the cleanup operation.
  1239 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
  1240 private:
  1241   outputStream* _out;
  1243   // Accumulators for these values.
  1244   size_t _total_used_bytes;
  1245   size_t _total_capacity_bytes;
  1246   size_t _total_prev_live_bytes;
  1247   size_t _total_next_live_bytes;
  1249   // These are set up when we come across a "stars humongous" region
  1250   // (as this is where most of this information is stored, not in the
  1251   // subsequent "continues humongous" regions). After that, for every
  1252   // region in a given humongous region series we deduce the right
  1253   // values for it by simply subtracting the appropriate amount from
  1254   // these fields. All these values should reach 0 after we've visited
  1255   // the last region in the series.
  1256   size_t _hum_used_bytes;
  1257   size_t _hum_capacity_bytes;
  1258   size_t _hum_prev_live_bytes;
  1259   size_t _hum_next_live_bytes;
  1261   // Accumulator for the remembered set size
  1262   size_t _total_remset_bytes;
  1264   // Accumulator for strong code roots memory size
  1265   size_t _total_strong_code_roots_bytes;
  1267   static double perc(size_t val, size_t total) {
  1268     if (total == 0) {
  1269       return 0.0;
  1270     } else {
  1271       return 100.0 * ((double) val / (double) total);
  1275   static double bytes_to_mb(size_t val) {
  1276     return (double) val / (double) M;
  1279   // See the .cpp file.
  1280   size_t get_hum_bytes(size_t* hum_bytes);
  1281   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
  1282                      size_t* prev_live_bytes, size_t* next_live_bytes);
  1284 public:
  1285   // The header and footer are printed in the constructor and
  1286   // destructor respectively.
  1287   G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
  1288   virtual bool doHeapRegion(HeapRegion* r);
  1289   ~G1PrintRegionLivenessInfoClosure();
  1290 };
  1292 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial