src/share/vm/gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

     1 /*
     2  * Copyright (c) 2004, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSADAPTIVESIZEPOLICY_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSADAPTIVESIZEPOLICY_HPP
    28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    29 #include "runtime/timer.hpp"
    31 // This class keeps statistical information and computes the
    32 // size of the heap for the concurrent mark sweep collector.
    33 //
    34 // Cost for garbage collector include cost for
    35 //   minor collection
    36 //   concurrent collection
    37 //      stop-the-world component
    38 //      concurrent component
    39 //   major compacting collection
    40 //      uses decaying cost
    42 // Forward decls
    43 class elapsedTimer;
    45 class CMSAdaptiveSizePolicy : public AdaptiveSizePolicy {
    46  friend class CMSGCAdaptivePolicyCounters;
    47  friend class CMSCollector;
    48  private:
    50   // Total number of processors available
    51   int _processor_count;
    52   // Number of processors used by the concurrent phases of GC
    53   // This number is assumed to be the same for all concurrent
    54   // phases.
    55   int _concurrent_processor_count;
    57   // Time that the mutators run exclusive of a particular
    58   // phase.  For example, the time the mutators run excluding
    59   // the time during which the cms collector runs concurrently
    60   // with the mutators.
    61   //   Between end of most recent cms reset and start of initial mark
    62                 // This may be redundant
    63   double _latest_cms_reset_end_to_initial_mark_start_secs;
    64   //   Between end of the most recent initial mark and start of remark
    65   double _latest_cms_initial_mark_end_to_remark_start_secs;
    66   //   Between end of most recent collection and start of
    67   //   a concurrent collection
    68   double _latest_cms_collection_end_to_collection_start_secs;
    69   //   Times of the concurrent phases of the most recent
    70   //   concurrent collection
    71   double _latest_cms_concurrent_marking_time_secs;
    72   double _latest_cms_concurrent_precleaning_time_secs;
    73   double _latest_cms_concurrent_sweeping_time_secs;
    74   //   Between end of most recent STW MSC and start of next STW MSC
    75   double _latest_cms_msc_end_to_msc_start_time_secs;
    76   //   Between end of most recent MS and start of next MS
    77   //   This does not include any time spent during a concurrent
    78   // collection.
    79   double _latest_cms_ms_end_to_ms_start;
    80   //   Between start and end of the initial mark of the most recent
    81   // concurrent collection.
    82   double _latest_cms_initial_mark_start_to_end_time_secs;
    83   //   Between start and end of the remark phase of the most recent
    84   // concurrent collection
    85   double _latest_cms_remark_start_to_end_time_secs;
    86   //   Between start and end of the most recent MS STW marking phase
    87   double _latest_cms_ms_marking_start_to_end_time_secs;
    89   // Pause time timers
    90   static elapsedTimer _STW_timer;
    91   // Concurrent collection timer.  Used for total of all concurrent phases
    92   // during 1 collection cycle.
    93   static elapsedTimer _concurrent_timer;
    95   // When the size of the generation is changed, the size
    96   // of the change will rounded up or down (depending on the
    97   // type of change) by this value.
    98   size_t _generation_alignment;
   100   // If this variable is true, the size of the young generation
   101   // may be changed in order to reduce the pause(s) of the
   102   // collection of the tenured generation in order to meet the
   103   // pause time goal.  It is common to change the size of the
   104   // tenured generation in order to meet the pause time goal
   105   // for the tenured generation.  With the CMS collector for
   106   // the tenured generation, the size of the young generation
   107   // can have an significant affect on the pause times for collecting the
   108   // tenured generation.
   109   // This is a duplicate of a variable in PSAdaptiveSizePolicy.  It
   110   // is duplicated because it is not clear that it is general enough
   111   // to go into AdaptiveSizePolicy.
   112   int _change_young_gen_for_maj_pauses;
   114   // Variable that is set to true after a collection.
   115   bool _first_after_collection;
   117   // Fraction of collections that are of each type
   118   double concurrent_fraction() const;
   119   double STW_msc_fraction() const;
   120   double STW_ms_fraction() const;
   122   // This call cannot be put into the epilogue as long as some
   123   // of the counters can be set during concurrent phases.
   124   virtual void clear_generation_free_space_flags();
   126   void set_first_after_collection() { _first_after_collection = true; }
   128  protected:
   129   // Average of the sum of the concurrent times for
   130   // one collection in seconds.
   131   AdaptiveWeightedAverage* _avg_concurrent_time;
   132   // Average time between concurrent collections in seconds.
   133   AdaptiveWeightedAverage* _avg_concurrent_interval;
   134   // Average cost of the concurrent part of a collection
   135   // in seconds.
   136   AdaptiveWeightedAverage* _avg_concurrent_gc_cost;
   138   // Average of the initial pause of a concurrent collection in seconds.
   139   AdaptivePaddedAverage* _avg_initial_pause;
   140   // Average of the remark pause of a concurrent collection in seconds.
   141   AdaptivePaddedAverage* _avg_remark_pause;
   143   // Average of the stop-the-world (STW) (initial mark + remark)
   144   // times in seconds for concurrent collections.
   145   AdaptiveWeightedAverage* _avg_cms_STW_time;
   146   // Average of the STW collection cost for concurrent collections.
   147   AdaptiveWeightedAverage* _avg_cms_STW_gc_cost;
   149   // Average of the bytes free at the start of the sweep.
   150   AdaptiveWeightedAverage* _avg_cms_free_at_sweep;
   151   // Average of the bytes free at the end of the collection.
   152   AdaptiveWeightedAverage* _avg_cms_free;
   153   // Average of the bytes promoted between cms collections.
   154   AdaptiveWeightedAverage* _avg_cms_promo;
   156   // stop-the-world (STW) mark-sweep-compact
   157   // Average of the pause time in seconds for STW mark-sweep-compact
   158   // collections.
   159   AdaptiveWeightedAverage* _avg_msc_pause;
   160   // Average of the interval in seconds between STW mark-sweep-compact
   161   // collections.
   162   AdaptiveWeightedAverage* _avg_msc_interval;
   163   // Average of the collection costs for STW mark-sweep-compact
   164   // collections.
   165   AdaptiveWeightedAverage* _avg_msc_gc_cost;
   167   // Averages for mark-sweep collections.
   168   // The collection may have started as a background collection
   169   // that completes in a stop-the-world (STW) collection.
   170   // Average of the pause time in seconds for mark-sweep
   171   // collections.
   172   AdaptiveWeightedAverage* _avg_ms_pause;
   173   // Average of the interval in seconds between mark-sweep
   174   // collections.
   175   AdaptiveWeightedAverage* _avg_ms_interval;
   176   // Average of the collection costs for mark-sweep
   177   // collections.
   178   AdaptiveWeightedAverage* _avg_ms_gc_cost;
   180   // These variables contain a linear fit of
   181   // a generation size as the independent variable
   182   // and a pause time as the dependent variable.
   183   // For example _remark_pause_old_estimator
   184   // is a fit of the old generation size as the
   185   // independent variable and the remark pause
   186   // as the dependent variable.
   187   //   remark pause time vs. cms gen size
   188   LinearLeastSquareFit* _remark_pause_old_estimator;
   189   //   initial pause time vs. cms gen size
   190   LinearLeastSquareFit* _initial_pause_old_estimator;
   191   //   remark pause time vs. young gen size
   192   LinearLeastSquareFit* _remark_pause_young_estimator;
   193   //   initial pause time vs. young gen size
   194   LinearLeastSquareFit* _initial_pause_young_estimator;
   196   // Accessors
   197   int processor_count() const { return _processor_count; }
   198   int concurrent_processor_count() const { return _concurrent_processor_count; }
   200   AdaptiveWeightedAverage* avg_concurrent_time() const {
   201     return _avg_concurrent_time;
   202   }
   204   AdaptiveWeightedAverage* avg_concurrent_interval() const {
   205     return _avg_concurrent_interval;
   206   }
   208   AdaptiveWeightedAverage* avg_concurrent_gc_cost() const {
   209     return _avg_concurrent_gc_cost;
   210   }
   212   AdaptiveWeightedAverage* avg_cms_STW_time() const {
   213     return _avg_cms_STW_time;
   214   }
   216   AdaptiveWeightedAverage* avg_cms_STW_gc_cost() const {
   217     return _avg_cms_STW_gc_cost;
   218   }
   220   AdaptivePaddedAverage* avg_initial_pause() const {
   221     return _avg_initial_pause;
   222   }
   224   AdaptivePaddedAverage* avg_remark_pause() const {
   225     return _avg_remark_pause;
   226   }
   228   AdaptiveWeightedAverage* avg_cms_free() const {
   229     return _avg_cms_free;
   230   }
   232   AdaptiveWeightedAverage* avg_cms_free_at_sweep() const {
   233     return _avg_cms_free_at_sweep;
   234   }
   236   AdaptiveWeightedAverage* avg_msc_pause() const {
   237     return _avg_msc_pause;
   238   }
   240   AdaptiveWeightedAverage* avg_msc_interval() const {
   241     return _avg_msc_interval;
   242   }
   244   AdaptiveWeightedAverage* avg_msc_gc_cost() const {
   245     return _avg_msc_gc_cost;
   246   }
   248   AdaptiveWeightedAverage* avg_ms_pause() const {
   249     return _avg_ms_pause;
   250   }
   252   AdaptiveWeightedAverage* avg_ms_interval() const {
   253     return _avg_ms_interval;
   254   }
   256   AdaptiveWeightedAverage* avg_ms_gc_cost() const {
   257     return _avg_ms_gc_cost;
   258   }
   260   LinearLeastSquareFit* remark_pause_old_estimator() {
   261     return _remark_pause_old_estimator;
   262   }
   263   LinearLeastSquareFit* initial_pause_old_estimator() {
   264     return _initial_pause_old_estimator;
   265   }
   266   LinearLeastSquareFit* remark_pause_young_estimator() {
   267     return _remark_pause_young_estimator;
   268   }
   269   LinearLeastSquareFit* initial_pause_young_estimator() {
   270     return _initial_pause_young_estimator;
   271   }
   273   // These *slope() methods return the slope
   274   // m for the linear fit of an independent
   275   // variable vs. a dependent variable.  For
   276   // example
   277   //  remark_pause = m * old_generation_size + c
   278   // These may be used to determine if an
   279   // adjustment should be made to achieve a goal.
   280   // For example, if remark_pause_old_slope() is
   281   // positive, a reduction of the old generation
   282   // size has on average resulted in the reduction
   283   // of the remark pause.
   284   float remark_pause_old_slope() {
   285     return _remark_pause_old_estimator->slope();
   286   }
   288   float initial_pause_old_slope() {
   289     return _initial_pause_old_estimator->slope();
   290   }
   292   float remark_pause_young_slope() {
   293     return _remark_pause_young_estimator->slope();
   294   }
   296   float initial_pause_young_slope() {
   297     return _initial_pause_young_estimator->slope();
   298   }
   300   // Update estimators
   301   void update_minor_pause_old_estimator(double minor_pause_in_ms);
   303   // Fraction of processors used by the concurrent phases.
   304   double concurrent_processor_fraction();
   306   // Returns the total times for the concurrent part of the
   307   // latest collection in seconds.
   308   double concurrent_collection_time();
   310   // Return the total times for the concurrent part of the
   311   // latest collection in seconds where the times of the various
   312   // concurrent phases are scaled by the processor fraction used
   313   // during the phase.
   314   double scaled_concurrent_collection_time();
   316   // Dimensionless concurrent GC cost for all the concurrent phases.
   317   double concurrent_collection_cost(double interval_in_seconds);
   319   // Dimensionless GC cost
   320   double collection_cost(double pause_in_seconds, double interval_in_seconds);
   322   virtual GCPolicyKind kind() const { return _gc_cms_adaptive_size_policy; }
   324   virtual double time_since_major_gc() const;
   326   // This returns the maximum average for the concurrent, ms, and
   327   // msc collections.  This is meant to be used for the calculation
   328   // of the decayed major gc cost and is not in general the
   329   // average of all the different types of major collections.
   330   virtual double major_gc_interval_average_for_decay() const;
   332  public:
   333   CMSAdaptiveSizePolicy(size_t init_eden_size,
   334                         size_t init_promo_size,
   335                         size_t init_survivor_size,
   336                         double max_gc_minor_pause_sec,
   337                         double max_gc_pause_sec,
   338                         uint gc_cost_ratio);
   340   // The timers for the stop-the-world phases measure a total
   341   // stop-the-world time.  The timer is started and stopped
   342   // for each phase but is only reset after the final checkpoint.
   343   void checkpoint_roots_initial_begin();
   344   void checkpoint_roots_initial_end(GCCause::Cause gc_cause);
   345   void checkpoint_roots_final_begin();
   346   void checkpoint_roots_final_end(GCCause::Cause gc_cause);
   348   // Methods for gathering information about the
   349   // concurrent marking phase of the collection.
   350   // Records the mutator times and
   351   // resets the concurrent timer.
   352   void concurrent_marking_begin();
   353   // Resets concurrent phase timer in the begin methods and
   354   // saves the time for a phase in the end methods.
   355   void concurrent_marking_end();
   356   void concurrent_sweeping_begin();
   357   void concurrent_sweeping_end();
   358   // Similar to the above (e.g., concurrent_marking_end()) and
   359   // is used for both the precleaning an abortable precleaing
   360   // phases.
   361   void concurrent_precleaning_begin();
   362   void concurrent_precleaning_end();
   363   // Stops the concurrent phases time.  Gathers
   364   // information and resets the timer.
   365   void concurrent_phases_end(GCCause::Cause gc_cause,
   366                               size_t cur_eden,
   367                               size_t cur_promo);
   369   // Methods for gather information about STW Mark-Sweep-Compact
   370   void msc_collection_begin();
   371   void msc_collection_end(GCCause::Cause gc_cause);
   373   // Methods for gather information about Mark-Sweep done
   374   // in the foreground.
   375   void ms_collection_begin();
   376   void ms_collection_end(GCCause::Cause gc_cause);
   378   // Cost for a mark-sweep tenured gen collection done in the foreground
   379   double ms_gc_cost() const {
   380     return MAX2(0.0F, _avg_ms_gc_cost->average());
   381   }
   383   // Cost of collecting the tenured generation.  Includes
   384   // concurrent collection and STW collection costs
   385   double cms_gc_cost() const;
   387   // Cost of STW mark-sweep-compact tenured gen collection.
   388   double msc_gc_cost() const {
   389     return MAX2(0.0F, _avg_msc_gc_cost->average());
   390   }
   392   //
   393   double compacting_gc_cost() const {
   394     double result = MIN2(1.0, minor_gc_cost() + msc_gc_cost());
   395     assert(result >= 0.0, "Both minor and major costs are non-negative");
   396     return result;
   397   }
   399    // Restarts the concurrent phases timer.
   400    void concurrent_phases_resume();
   402    // Time beginning and end of the marking phase for
   403    // a synchronous MS collection.  A MS collection
   404    // that finishes in the foreground can have started
   405    // in the background.  These methods capture the
   406    // completion of the marking (after the initial
   407    // marking) that is done in the foreground.
   408    void ms_collection_marking_begin();
   409    void ms_collection_marking_end(GCCause::Cause gc_cause);
   411    static elapsedTimer* concurrent_timer_ptr() {
   412      return &_concurrent_timer;
   413    }
   415   AdaptiveWeightedAverage* avg_cms_promo() const {
   416     return _avg_cms_promo;
   417   }
   419   int change_young_gen_for_maj_pauses() {
   420     return _change_young_gen_for_maj_pauses;
   421   }
   422   void set_change_young_gen_for_maj_pauses(int v) {
   423     _change_young_gen_for_maj_pauses = v;
   424   }
   426   void clear_internal_time_intervals();
   429   // Either calculated_promo_size_in_bytes() or promo_size()
   430   // should be deleted.
   431   size_t promo_size() { return _promo_size; }
   432   void set_promo_size(size_t v) { _promo_size = v; }
   434   // Cost of GC for all types of collections.
   435   virtual double gc_cost() const;
   437   size_t generation_alignment() { return _generation_alignment; }
   439   virtual void compute_eden_space_size(size_t cur_eden,
   440                                        size_t max_eden_size);
   441   // Calculates new survivor space size;  returns a new tenuring threshold
   442   // value. Stores new survivor size in _survivor_size.
   443   virtual uint compute_survivor_space_size_and_threshold(
   444                                                 bool   is_survivor_overflow,
   445                                                 uint   tenuring_threshold,
   446                                                 size_t survivor_limit);
   448   virtual void compute_tenured_generation_free_space(size_t cur_tenured_free,
   449                                            size_t max_tenured_available,
   450                                            size_t cur_eden);
   452   size_t eden_decrement_aligned_down(size_t cur_eden);
   453   size_t eden_increment_aligned_up(size_t cur_eden);
   455   size_t adjust_eden_for_pause_time(size_t cur_eden);
   456   size_t adjust_eden_for_throughput(size_t cur_eden);
   457   size_t adjust_eden_for_footprint(size_t cur_eden);
   459   size_t promo_decrement_aligned_down(size_t cur_promo);
   460   size_t promo_increment_aligned_up(size_t cur_promo);
   462   size_t adjust_promo_for_pause_time(size_t cur_promo);
   463   size_t adjust_promo_for_throughput(size_t cur_promo);
   464   size_t adjust_promo_for_footprint(size_t cur_promo, size_t cur_eden);
   466   // Scale down the input size by the ratio of the cost to collect the
   467   // generation to the total GC cost.
   468   size_t scale_by_gen_gc_cost(size_t base_change, double gen_gc_cost);
   470   // Return the value and clear it.
   471   bool get_and_clear_first_after_collection();
   473   // Printing support
   474   virtual bool print_adaptive_size_policy_on(outputStream* st) const;
   475 };
   477 #endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSADAPTIVESIZEPOLICY_HPP

mercurial