src/share/vm/gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.cpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

     1 /*
     2  * Copyright (c) 2004, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
    27 #include "gc_implementation/shared/gcStats.hpp"
    28 #include "memory/defNewGeneration.hpp"
    29 #include "memory/genCollectedHeap.hpp"
    30 #include "runtime/thread.hpp"
    31 #ifdef TARGET_OS_FAMILY_linux
    32 # include "os_linux.inline.hpp"
    33 #endif
    34 #ifdef TARGET_OS_FAMILY_solaris
    35 # include "os_solaris.inline.hpp"
    36 #endif
    37 #ifdef TARGET_OS_FAMILY_windows
    38 # include "os_windows.inline.hpp"
    39 #endif
    40 #ifdef TARGET_OS_FAMILY_aix
    41 # include "os_aix.inline.hpp"
    42 #endif
    43 #ifdef TARGET_OS_FAMILY_bsd
    44 # include "os_bsd.inline.hpp"
    45 #endif
    46 elapsedTimer CMSAdaptiveSizePolicy::_concurrent_timer;
    47 elapsedTimer CMSAdaptiveSizePolicy::_STW_timer;
    49 // Defined if the granularity of the time measurements is potentially too large.
    50 #define CLOCK_GRANULARITY_TOO_LARGE
    52 CMSAdaptiveSizePolicy::CMSAdaptiveSizePolicy(size_t init_eden_size,
    53                                              size_t init_promo_size,
    54                                              size_t init_survivor_size,
    55                                              double max_gc_minor_pause_sec,
    56                                              double max_gc_pause_sec,
    57                                              uint gc_cost_ratio) :
    58   AdaptiveSizePolicy(init_eden_size,
    59                      init_promo_size,
    60                      init_survivor_size,
    61                      max_gc_pause_sec,
    62                      gc_cost_ratio) {
    64   clear_internal_time_intervals();
    66   _processor_count = os::active_processor_count();
    68   if (CMSConcurrentMTEnabled && (ConcGCThreads > 1)) {
    69     assert(_processor_count > 0, "Processor count is suspect");
    70     _concurrent_processor_count = MIN2((uint) ConcGCThreads,
    71                                        (uint) _processor_count);
    72   } else {
    73     _concurrent_processor_count = 1;
    74   }
    76   _avg_concurrent_time  = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    77   _avg_concurrent_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    78   _avg_concurrent_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    80   _avg_initial_pause    = new AdaptivePaddedAverage(AdaptiveTimeWeight,
    81                                                     PausePadding);
    82   _avg_remark_pause     = new AdaptivePaddedAverage(AdaptiveTimeWeight,
    83                                                     PausePadding);
    85   _avg_cms_STW_time     = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    86   _avg_cms_STW_gc_cost  = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    88   _avg_cms_free         = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    89   _avg_cms_free_at_sweep = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    90   _avg_cms_promo        = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    92   // Mark-sweep-compact
    93   _avg_msc_pause        = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    94   _avg_msc_interval     = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    95   _avg_msc_gc_cost      = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    97   // Mark-sweep
    98   _avg_ms_pause = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    99   _avg_ms_interval      = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
   100   _avg_ms_gc_cost       = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
   102   // Variables that estimate pause times as a function of generation
   103   // size.
   104   _remark_pause_old_estimator =
   105     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
   106   _initial_pause_old_estimator =
   107     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
   108   _remark_pause_young_estimator =
   109     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
   110   _initial_pause_young_estimator =
   111     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
   113   // Alignment comes from that used in ReservedSpace.
   114   _generation_alignment = os::vm_allocation_granularity();
   116   // Start the concurrent timer here so that the first
   117   // concurrent_phases_begin() measures a finite mutator
   118   // time.  A finite mutator time is used to determine
   119   // if a concurrent collection has been started.  If this
   120   // proves to be a problem, use some explicit flag to
   121   // signal that a concurrent collection has been started.
   122   _concurrent_timer.start();
   123   _STW_timer.start();
   124 }
   126 double CMSAdaptiveSizePolicy::concurrent_processor_fraction() {
   127   // For now assume no other daemon threads are taking alway
   128   // cpu's from the application.
   129   return ((double) _concurrent_processor_count / (double) _processor_count);
   130 }
   132 double CMSAdaptiveSizePolicy::concurrent_collection_cost(
   133                                                   double interval_in_seconds) {
   134   //  When the precleaning and sweeping phases use multiple
   135   // threads, change one_processor_fraction to
   136   // concurrent_processor_fraction().
   137   double one_processor_fraction = 1.0 / ((double) processor_count());
   138   double concurrent_cost =
   139     collection_cost(_latest_cms_concurrent_marking_time_secs,
   140                 interval_in_seconds) * concurrent_processor_fraction() +
   141     collection_cost(_latest_cms_concurrent_precleaning_time_secs,
   142                 interval_in_seconds) * one_processor_fraction +
   143     collection_cost(_latest_cms_concurrent_sweeping_time_secs,
   144                 interval_in_seconds) * one_processor_fraction;
   145   if (PrintAdaptiveSizePolicy && Verbose) {
   146     gclog_or_tty->print_cr(
   147       "\nCMSAdaptiveSizePolicy::scaled_concurrent_collection_cost(%f) "
   148       "_latest_cms_concurrent_marking_cost %f "
   149       "_latest_cms_concurrent_precleaning_cost %f "
   150       "_latest_cms_concurrent_sweeping_cost %f "
   151       "concurrent_processor_fraction %f "
   152       "concurrent_cost %f ",
   153       interval_in_seconds,
   154       collection_cost(_latest_cms_concurrent_marking_time_secs,
   155         interval_in_seconds),
   156       collection_cost(_latest_cms_concurrent_precleaning_time_secs,
   157         interval_in_seconds),
   158       collection_cost(_latest_cms_concurrent_sweeping_time_secs,
   159         interval_in_seconds),
   160       concurrent_processor_fraction(),
   161       concurrent_cost);
   162   }
   163   return concurrent_cost;
   164 }
   166 double CMSAdaptiveSizePolicy::concurrent_collection_time() {
   167   double latest_cms_sum_concurrent_phases_time_secs =
   168     _latest_cms_concurrent_marking_time_secs +
   169     _latest_cms_concurrent_precleaning_time_secs +
   170     _latest_cms_concurrent_sweeping_time_secs;
   171   return latest_cms_sum_concurrent_phases_time_secs;
   172 }
   174 double CMSAdaptiveSizePolicy::scaled_concurrent_collection_time() {
   175   //  When the precleaning and sweeping phases use multiple
   176   // threads, change one_processor_fraction to
   177   // concurrent_processor_fraction().
   178   double one_processor_fraction = 1.0 / ((double) processor_count());
   179   double latest_cms_sum_concurrent_phases_time_secs =
   180     _latest_cms_concurrent_marking_time_secs * concurrent_processor_fraction() +
   181     _latest_cms_concurrent_precleaning_time_secs * one_processor_fraction +
   182     _latest_cms_concurrent_sweeping_time_secs * one_processor_fraction ;
   183   if (PrintAdaptiveSizePolicy && Verbose) {
   184     gclog_or_tty->print_cr(
   185       "\nCMSAdaptiveSizePolicy::scaled_concurrent_collection_time "
   186       "_latest_cms_concurrent_marking_time_secs %f "
   187       "_latest_cms_concurrent_precleaning_time_secs %f "
   188       "_latest_cms_concurrent_sweeping_time_secs %f "
   189       "concurrent_processor_fraction %f "
   190       "latest_cms_sum_concurrent_phases_time_secs %f ",
   191       _latest_cms_concurrent_marking_time_secs,
   192       _latest_cms_concurrent_precleaning_time_secs,
   193       _latest_cms_concurrent_sweeping_time_secs,
   194       concurrent_processor_fraction(),
   195       latest_cms_sum_concurrent_phases_time_secs);
   196   }
   197   return latest_cms_sum_concurrent_phases_time_secs;
   198 }
   200 void CMSAdaptiveSizePolicy::update_minor_pause_old_estimator(
   201     double minor_pause_in_ms) {
   202   // Get the equivalent of the free space
   203   // that is available for promotions in the CMS generation
   204   // and use that to update _minor_pause_old_estimator
   206   // Don't implement this until it is needed. A warning is
   207   // printed if _minor_pause_old_estimator is used.
   208 }
   210 void CMSAdaptiveSizePolicy::concurrent_marking_begin() {
   211   if (PrintAdaptiveSizePolicy && Verbose) {
   212     gclog_or_tty->print(" ");
   213     gclog_or_tty->stamp();
   214     gclog_or_tty->print(": concurrent_marking_begin ");
   215   }
   216   //  Update the interval time
   217   _concurrent_timer.stop();
   218   _latest_cms_collection_end_to_collection_start_secs = _concurrent_timer.seconds();
   219   if (PrintAdaptiveSizePolicy && Verbose) {
   220     gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_marking_begin: "
   221     "mutator time %f", _latest_cms_collection_end_to_collection_start_secs);
   222   }
   223   _concurrent_timer.reset();
   224   _concurrent_timer.start();
   225 }
   227 void CMSAdaptiveSizePolicy::concurrent_marking_end() {
   228   if (PrintAdaptiveSizePolicy && Verbose) {
   229     gclog_or_tty->stamp();
   230     gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_marking_end()");
   231   }
   233   _concurrent_timer.stop();
   234   _latest_cms_concurrent_marking_time_secs = _concurrent_timer.seconds();
   236   if (PrintAdaptiveSizePolicy && Verbose) {
   237     gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_marking_end"
   238       ":concurrent marking time (s) %f",
   239       _latest_cms_concurrent_marking_time_secs);
   240   }
   241 }
   243 void CMSAdaptiveSizePolicy::concurrent_precleaning_begin() {
   244   if (PrintAdaptiveSizePolicy && Verbose) {
   245     gclog_or_tty->stamp();
   246     gclog_or_tty->print_cr(
   247       "CMSAdaptiveSizePolicy::concurrent_precleaning_begin()");
   248   }
   249   _concurrent_timer.reset();
   250   _concurrent_timer.start();
   251 }
   254 void CMSAdaptiveSizePolicy::concurrent_precleaning_end() {
   255   if (PrintAdaptiveSizePolicy && Verbose) {
   256     gclog_or_tty->stamp();
   257     gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_precleaning_end()");
   258   }
   260   _concurrent_timer.stop();
   261   // May be set again by a second call during the same collection.
   262   _latest_cms_concurrent_precleaning_time_secs = _concurrent_timer.seconds();
   264   if (PrintAdaptiveSizePolicy && Verbose) {
   265     gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_precleaning_end"
   266       ":concurrent precleaning time (s) %f",
   267       _latest_cms_concurrent_precleaning_time_secs);
   268   }
   269 }
   271 void CMSAdaptiveSizePolicy::concurrent_sweeping_begin() {
   272   if (PrintAdaptiveSizePolicy && Verbose) {
   273     gclog_or_tty->stamp();
   274     gclog_or_tty->print_cr(
   275       "CMSAdaptiveSizePolicy::concurrent_sweeping_begin()");
   276   }
   277   _concurrent_timer.reset();
   278   _concurrent_timer.start();
   279 }
   282 void CMSAdaptiveSizePolicy::concurrent_sweeping_end() {
   283   if (PrintAdaptiveSizePolicy && Verbose) {
   284     gclog_or_tty->stamp();
   285     gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_sweeping_end()");
   286   }
   288   _concurrent_timer.stop();
   289   _latest_cms_concurrent_sweeping_time_secs = _concurrent_timer.seconds();
   291   if (PrintAdaptiveSizePolicy && Verbose) {
   292     gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_sweeping_end"
   293       ":concurrent sweeping time (s) %f",
   294       _latest_cms_concurrent_sweeping_time_secs);
   295   }
   296 }
   298 void CMSAdaptiveSizePolicy::concurrent_phases_end(GCCause::Cause gc_cause,
   299                                                   size_t cur_eden,
   300                                                   size_t cur_promo) {
   301   if (PrintAdaptiveSizePolicy && Verbose) {
   302     gclog_or_tty->print(" ");
   303     gclog_or_tty->stamp();
   304     gclog_or_tty->print(": concurrent_phases_end ");
   305   }
   307   // Update the concurrent timer
   308   _concurrent_timer.stop();
   310   if (gc_cause != GCCause::_java_lang_system_gc ||
   311       UseAdaptiveSizePolicyWithSystemGC) {
   313     avg_cms_free()->sample(cur_promo);
   314     double latest_cms_sum_concurrent_phases_time_secs =
   315       concurrent_collection_time();
   317     _avg_concurrent_time->sample(latest_cms_sum_concurrent_phases_time_secs);
   319     // Cost of collection (unit-less)
   321     // Total interval for collection.  May not be valid.  Tests
   322     // below determine whether to use this.
   323     //
   324   if (PrintAdaptiveSizePolicy && Verbose) {
   325     gclog_or_tty->print_cr("\nCMSAdaptiveSizePolicy::concurrent_phases_end \n"
   326       "_latest_cms_reset_end_to_initial_mark_start_secs %f \n"
   327       "_latest_cms_initial_mark_start_to_end_time_secs %f \n"
   328       "_latest_cms_remark_start_to_end_time_secs %f \n"
   329       "_latest_cms_concurrent_marking_time_secs %f \n"
   330       "_latest_cms_concurrent_precleaning_time_secs %f \n"
   331       "_latest_cms_concurrent_sweeping_time_secs %f \n"
   332       "latest_cms_sum_concurrent_phases_time_secs %f \n"
   333       "_latest_cms_collection_end_to_collection_start_secs %f \n"
   334       "concurrent_processor_fraction %f",
   335       _latest_cms_reset_end_to_initial_mark_start_secs,
   336       _latest_cms_initial_mark_start_to_end_time_secs,
   337       _latest_cms_remark_start_to_end_time_secs,
   338       _latest_cms_concurrent_marking_time_secs,
   339       _latest_cms_concurrent_precleaning_time_secs,
   340       _latest_cms_concurrent_sweeping_time_secs,
   341       latest_cms_sum_concurrent_phases_time_secs,
   342       _latest_cms_collection_end_to_collection_start_secs,
   343       concurrent_processor_fraction());
   344   }
   345     double interval_in_seconds =
   346       _latest_cms_initial_mark_start_to_end_time_secs +
   347       _latest_cms_remark_start_to_end_time_secs +
   348       latest_cms_sum_concurrent_phases_time_secs +
   349       _latest_cms_collection_end_to_collection_start_secs;
   350     assert(interval_in_seconds >= 0.0,
   351       "Bad interval between cms collections");
   353     // Sample for performance counter
   354     avg_concurrent_interval()->sample(interval_in_seconds);
   356     // STW costs (initial and remark pauses)
   357     // Cost of collection (unit-less)
   358     assert(_latest_cms_initial_mark_start_to_end_time_secs >= 0.0,
   359       "Bad initial mark pause");
   360     assert(_latest_cms_remark_start_to_end_time_secs >= 0.0,
   361       "Bad remark pause");
   362     double STW_time_in_seconds =
   363       _latest_cms_initial_mark_start_to_end_time_secs +
   364       _latest_cms_remark_start_to_end_time_secs;
   365     double STW_collection_cost = 0.0;
   366     if (interval_in_seconds > 0.0) {
   367       // cost for the STW phases of the concurrent collection.
   368       STW_collection_cost = STW_time_in_seconds / interval_in_seconds;
   369       avg_cms_STW_gc_cost()->sample(STW_collection_cost);
   370     }
   371     if (PrintAdaptiveSizePolicy && Verbose) {
   372       gclog_or_tty->print("cmsAdaptiveSizePolicy::STW_collection_end: "
   373         "STW gc cost: %f  average: %f", STW_collection_cost,
   374         avg_cms_STW_gc_cost()->average());
   375       gclog_or_tty->print_cr("  STW pause: %f (ms) STW period %f (ms)",
   376         (double) STW_time_in_seconds * MILLIUNITS,
   377         (double) interval_in_seconds * MILLIUNITS);
   378     }
   380     double concurrent_cost = 0.0;
   381     if (latest_cms_sum_concurrent_phases_time_secs > 0.0) {
   382       concurrent_cost = concurrent_collection_cost(interval_in_seconds);
   384       avg_concurrent_gc_cost()->sample(concurrent_cost);
   385       // Average this ms cost into all the other types gc costs
   387       if (PrintAdaptiveSizePolicy && Verbose) {
   388         gclog_or_tty->print("cmsAdaptiveSizePolicy::concurrent_phases_end: "
   389           "concurrent gc cost: %f  average: %f",
   390           concurrent_cost,
   391           _avg_concurrent_gc_cost->average());
   392         gclog_or_tty->print_cr("  concurrent time: %f (ms) cms period %f (ms)"
   393           " processor fraction: %f",
   394           latest_cms_sum_concurrent_phases_time_secs * MILLIUNITS,
   395           interval_in_seconds * MILLIUNITS,
   396           concurrent_processor_fraction());
   397       }
   398     }
   399     double total_collection_cost = STW_collection_cost + concurrent_cost;
   400     avg_major_gc_cost()->sample(total_collection_cost);
   402     // Gather information for estimating future behavior
   403     double initial_pause_in_ms = _latest_cms_initial_mark_start_to_end_time_secs * MILLIUNITS;
   404     double remark_pause_in_ms = _latest_cms_remark_start_to_end_time_secs * MILLIUNITS;
   406     double cur_promo_size_in_mbytes = ((double)cur_promo)/((double)M);
   407     initial_pause_old_estimator()->update(cur_promo_size_in_mbytes,
   408       initial_pause_in_ms);
   409     remark_pause_old_estimator()->update(cur_promo_size_in_mbytes,
   410       remark_pause_in_ms);
   411     major_collection_estimator()->update(cur_promo_size_in_mbytes,
   412       total_collection_cost);
   414     // This estimate uses the average eden size.  It could also
   415     // have used the latest eden size.  Which is better?
   416     double cur_eden_size_in_mbytes = ((double)cur_eden)/((double) M);
   417     initial_pause_young_estimator()->update(cur_eden_size_in_mbytes,
   418       initial_pause_in_ms);
   419     remark_pause_young_estimator()->update(cur_eden_size_in_mbytes,
   420       remark_pause_in_ms);
   421   }
   423   clear_internal_time_intervals();
   425   set_first_after_collection();
   427   // The concurrent phases keeps track of it's own mutator interval
   428   // with this timer.  This allows the stop-the-world phase to
   429   // be included in the mutator time so that the stop-the-world time
   430   // is not double counted.  Reset and start it.
   431   _concurrent_timer.reset();
   432   _concurrent_timer.start();
   434   // The mutator time between STW phases does not include the
   435   // concurrent collection time.
   436   _STW_timer.reset();
   437   _STW_timer.start();
   438 }
   440 void CMSAdaptiveSizePolicy::checkpoint_roots_initial_begin() {
   441   //  Update the interval time
   442   _STW_timer.stop();
   443   _latest_cms_reset_end_to_initial_mark_start_secs = _STW_timer.seconds();
   444   // Reset for the initial mark
   445   _STW_timer.reset();
   446   _STW_timer.start();
   447 }
   449 void CMSAdaptiveSizePolicy::checkpoint_roots_initial_end(
   450     GCCause::Cause gc_cause) {
   451   _STW_timer.stop();
   453   if (gc_cause != GCCause::_java_lang_system_gc ||
   454       UseAdaptiveSizePolicyWithSystemGC) {
   455     _latest_cms_initial_mark_start_to_end_time_secs = _STW_timer.seconds();
   456     avg_initial_pause()->sample(_latest_cms_initial_mark_start_to_end_time_secs);
   458     if (PrintAdaptiveSizePolicy && Verbose) {
   459       gclog_or_tty->print(
   460         "cmsAdaptiveSizePolicy::checkpoint_roots_initial_end: "
   461         "initial pause: %f ", _latest_cms_initial_mark_start_to_end_time_secs);
   462     }
   463   }
   465   _STW_timer.reset();
   466   _STW_timer.start();
   467 }
   469 void CMSAdaptiveSizePolicy::checkpoint_roots_final_begin() {
   470   _STW_timer.stop();
   471   _latest_cms_initial_mark_end_to_remark_start_secs = _STW_timer.seconds();
   472   // Start accumumlating time for the remark in the STW timer.
   473   _STW_timer.reset();
   474   _STW_timer.start();
   475 }
   477 void CMSAdaptiveSizePolicy::checkpoint_roots_final_end(
   478     GCCause::Cause gc_cause) {
   479   _STW_timer.stop();
   480   if (gc_cause != GCCause::_java_lang_system_gc ||
   481       UseAdaptiveSizePolicyWithSystemGC) {
   482     // Total initial mark pause + remark pause.
   483     _latest_cms_remark_start_to_end_time_secs = _STW_timer.seconds();
   484     double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
   485       _latest_cms_remark_start_to_end_time_secs;
   486     double STW_time_in_ms = STW_time_in_seconds * MILLIUNITS;
   488     avg_remark_pause()->sample(_latest_cms_remark_start_to_end_time_secs);
   490     // Sample total for initial mark + remark
   491     avg_cms_STW_time()->sample(STW_time_in_seconds);
   493     if (PrintAdaptiveSizePolicy && Verbose) {
   494       gclog_or_tty->print("cmsAdaptiveSizePolicy::checkpoint_roots_final_end: "
   495         "remark pause: %f", _latest_cms_remark_start_to_end_time_secs);
   496     }
   498   }
   499   // Don't start the STW times here because the concurrent
   500   // sweep and reset has not happened.
   501   //  Keep the old comment above in case I don't understand
   502   // what is going on but now
   503   // Start the STW timer because it is used by ms_collection_begin()
   504   // and ms_collection_end() to get the sweep time if a MS is being
   505   // done in the foreground.
   506   _STW_timer.reset();
   507   _STW_timer.start();
   508 }
   510 void CMSAdaptiveSizePolicy::msc_collection_begin() {
   511   if (PrintAdaptiveSizePolicy && Verbose) {
   512     gclog_or_tty->print(" ");
   513     gclog_or_tty->stamp();
   514     gclog_or_tty->print(": msc_collection_begin ");
   515   }
   516   _STW_timer.stop();
   517   _latest_cms_msc_end_to_msc_start_time_secs = _STW_timer.seconds();
   518   if (PrintAdaptiveSizePolicy && Verbose) {
   519     gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::msc_collection_begin: "
   520       "mutator time %f",
   521       _latest_cms_msc_end_to_msc_start_time_secs);
   522   }
   523   avg_msc_interval()->sample(_latest_cms_msc_end_to_msc_start_time_secs);
   524   _STW_timer.reset();
   525   _STW_timer.start();
   526 }
   528 void CMSAdaptiveSizePolicy::msc_collection_end(GCCause::Cause gc_cause) {
   529   if (PrintAdaptiveSizePolicy && Verbose) {
   530     gclog_or_tty->print(" ");
   531     gclog_or_tty->stamp();
   532     gclog_or_tty->print(": msc_collection_end ");
   533   }
   534   _STW_timer.stop();
   535   if (gc_cause != GCCause::_java_lang_system_gc ||
   536         UseAdaptiveSizePolicyWithSystemGC) {
   537     double msc_pause_in_seconds = _STW_timer.seconds();
   538     if ((_latest_cms_msc_end_to_msc_start_time_secs > 0.0) &&
   539         (msc_pause_in_seconds > 0.0)) {
   540       avg_msc_pause()->sample(msc_pause_in_seconds);
   541       double mutator_time_in_seconds = 0.0;
   542       if (_latest_cms_collection_end_to_collection_start_secs == 0.0) {
   543         // This assertion may fail because of time stamp gradularity.
   544         // Comment it out and investiage it at a later time.  The large
   545         // time stamp granularity occurs on some older linux systems.
   546 #ifndef CLOCK_GRANULARITY_TOO_LARGE
   547         assert((_latest_cms_concurrent_marking_time_secs == 0.0) &&
   548                (_latest_cms_concurrent_precleaning_time_secs == 0.0) &&
   549                (_latest_cms_concurrent_sweeping_time_secs == 0.0),
   550           "There should not be any concurrent time");
   551 #endif
   552         // A concurrent collection did not start.  Mutator time
   553         // between collections comes from the STW MSC timer.
   554         mutator_time_in_seconds = _latest_cms_msc_end_to_msc_start_time_secs;
   555       } else {
   556         // The concurrent collection did start so count the mutator
   557         // time to the start of the concurrent collection.  In this
   558         // case the _latest_cms_msc_end_to_msc_start_time_secs measures
   559         // the time between the initial mark or remark and the
   560         // start of the MSC.  That has no real meaning.
   561         mutator_time_in_seconds = _latest_cms_collection_end_to_collection_start_secs;
   562       }
   564       double latest_cms_sum_concurrent_phases_time_secs =
   565         concurrent_collection_time();
   566       double interval_in_seconds =
   567         mutator_time_in_seconds +
   568         _latest_cms_initial_mark_start_to_end_time_secs +
   569         _latest_cms_remark_start_to_end_time_secs +
   570         latest_cms_sum_concurrent_phases_time_secs +
   571         msc_pause_in_seconds;
   573       if (PrintAdaptiveSizePolicy && Verbose) {
   574         gclog_or_tty->print_cr("  interval_in_seconds %f \n"
   575           "     mutator_time_in_seconds %f \n"
   576           "     _latest_cms_initial_mark_start_to_end_time_secs %f\n"
   577           "     _latest_cms_remark_start_to_end_time_secs %f\n"
   578           "     latest_cms_sum_concurrent_phases_time_secs %f\n"
   579           "     msc_pause_in_seconds %f\n",
   580           interval_in_seconds,
   581           mutator_time_in_seconds,
   582           _latest_cms_initial_mark_start_to_end_time_secs,
   583           _latest_cms_remark_start_to_end_time_secs,
   584           latest_cms_sum_concurrent_phases_time_secs,
   585           msc_pause_in_seconds);
   586       }
   588       // The concurrent cost is wasted cost but it should be
   589       // included.
   590       double concurrent_cost = concurrent_collection_cost(interval_in_seconds);
   592       // Initial mark and remark, also wasted.
   593       double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
   594         _latest_cms_remark_start_to_end_time_secs;
   595       double STW_collection_cost =
   596         collection_cost(STW_time_in_seconds, interval_in_seconds) +
   597         concurrent_cost;
   599       if (PrintAdaptiveSizePolicy && Verbose) {
   600         gclog_or_tty->print_cr(" msc_collection_end:\n"
   601           "_latest_cms_collection_end_to_collection_start_secs %f\n"
   602           "_latest_cms_msc_end_to_msc_start_time_secs %f\n"
   603           "_latest_cms_initial_mark_start_to_end_time_secs %f\n"
   604           "_latest_cms_remark_start_to_end_time_secs %f\n"
   605           "latest_cms_sum_concurrent_phases_time_secs %f\n",
   606           _latest_cms_collection_end_to_collection_start_secs,
   607           _latest_cms_msc_end_to_msc_start_time_secs,
   608           _latest_cms_initial_mark_start_to_end_time_secs,
   609           _latest_cms_remark_start_to_end_time_secs,
   610           latest_cms_sum_concurrent_phases_time_secs);
   612         gclog_or_tty->print_cr(" msc_collection_end: \n"
   613           "latest_cms_sum_concurrent_phases_time_secs %f\n"
   614           "STW_time_in_seconds %f\n"
   615           "msc_pause_in_seconds %f\n",
   616           latest_cms_sum_concurrent_phases_time_secs,
   617           STW_time_in_seconds,
   618           msc_pause_in_seconds);
   619       }
   621       double cost = concurrent_cost + STW_collection_cost +
   622         collection_cost(msc_pause_in_seconds, interval_in_seconds);
   624       _avg_msc_gc_cost->sample(cost);
   626       // Average this ms cost into all the other types gc costs
   627       avg_major_gc_cost()->sample(cost);
   629       // Sample for performance counter
   630       _avg_msc_interval->sample(interval_in_seconds);
   631       if (PrintAdaptiveSizePolicy && Verbose) {
   632         gclog_or_tty->print("cmsAdaptiveSizePolicy::msc_collection_end: "
   633           "MSC gc cost: %f  average: %f", cost,
   634           _avg_msc_gc_cost->average());
   636         double msc_pause_in_ms = msc_pause_in_seconds * MILLIUNITS;
   637         gclog_or_tty->print_cr("  MSC pause: %f (ms) MSC period %f (ms)",
   638           msc_pause_in_ms, (double) interval_in_seconds * MILLIUNITS);
   639       }
   640     }
   641   }
   643   clear_internal_time_intervals();
   645   // Can this call be put into the epilogue?
   646   set_first_after_collection();
   648   // The concurrent phases keeps track of it's own mutator interval
   649   // with this timer.  This allows the stop-the-world phase to
   650   // be included in the mutator time so that the stop-the-world time
   651   // is not double counted.  Reset and start it.
   652   _concurrent_timer.stop();
   653   _concurrent_timer.reset();
   654   _concurrent_timer.start();
   656   _STW_timer.reset();
   657   _STW_timer.start();
   658 }
   660 void CMSAdaptiveSizePolicy::ms_collection_begin() {
   661   if (PrintAdaptiveSizePolicy && Verbose) {
   662     gclog_or_tty->print(" ");
   663     gclog_or_tty->stamp();
   664     gclog_or_tty->print(": ms_collection_begin ");
   665   }
   666   _STW_timer.stop();
   667   _latest_cms_ms_end_to_ms_start = _STW_timer.seconds();
   668   if (PrintAdaptiveSizePolicy && Verbose) {
   669     gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::ms_collection_begin: "
   670       "mutator time %f",
   671       _latest_cms_ms_end_to_ms_start);
   672   }
   673   avg_ms_interval()->sample(_STW_timer.seconds());
   674   _STW_timer.reset();
   675   _STW_timer.start();
   676 }
   678 void CMSAdaptiveSizePolicy::ms_collection_end(GCCause::Cause gc_cause) {
   679   if (PrintAdaptiveSizePolicy && Verbose) {
   680     gclog_or_tty->print(" ");
   681     gclog_or_tty->stamp();
   682     gclog_or_tty->print(": ms_collection_end ");
   683   }
   684   _STW_timer.stop();
   685   if (gc_cause != GCCause::_java_lang_system_gc ||
   686         UseAdaptiveSizePolicyWithSystemGC) {
   687     // The MS collection is a foreground collection that does all
   688     // the parts of a mostly concurrent collection.
   689     //
   690     // For this collection include the cost of the
   691     //  initial mark
   692     //  remark
   693     //  all concurrent time (scaled down by the
   694     //    concurrent_processor_fraction).  Some
   695     //    may be zero if the baton was passed before
   696     //    it was reached.
   697     //    concurrent marking
   698     //    sweeping
   699     //    resetting
   700     //  STW after baton was passed (STW_in_foreground_in_seconds)
   701     double STW_in_foreground_in_seconds = _STW_timer.seconds();
   703     double latest_cms_sum_concurrent_phases_time_secs =
   704       concurrent_collection_time();
   705     if (PrintAdaptiveSizePolicy && Verbose) {
   706       gclog_or_tty->print_cr("\nCMSAdaptiveSizePolicy::ms_collecton_end "
   707         "STW_in_foreground_in_seconds %f "
   708         "_latest_cms_initial_mark_start_to_end_time_secs %f "
   709         "_latest_cms_remark_start_to_end_time_secs %f "
   710         "latest_cms_sum_concurrent_phases_time_secs %f "
   711         "_latest_cms_ms_marking_start_to_end_time_secs %f "
   712         "_latest_cms_ms_end_to_ms_start %f",
   713         STW_in_foreground_in_seconds,
   714         _latest_cms_initial_mark_start_to_end_time_secs,
   715         _latest_cms_remark_start_to_end_time_secs,
   716         latest_cms_sum_concurrent_phases_time_secs,
   717         _latest_cms_ms_marking_start_to_end_time_secs,
   718         _latest_cms_ms_end_to_ms_start);
   719     }
   721     double STW_marking_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
   722       _latest_cms_remark_start_to_end_time_secs;
   723 #ifndef CLOCK_GRANULARITY_TOO_LARGE
   724     assert(_latest_cms_ms_marking_start_to_end_time_secs == 0.0 ||
   725            latest_cms_sum_concurrent_phases_time_secs == 0.0,
   726            "marking done twice?");
   727 #endif
   728     double ms_time_in_seconds = STW_marking_in_seconds +
   729       STW_in_foreground_in_seconds +
   730       _latest_cms_ms_marking_start_to_end_time_secs +
   731       scaled_concurrent_collection_time();
   732     avg_ms_pause()->sample(ms_time_in_seconds);
   733     // Use the STW costs from the initial mark and remark plus
   734     // the cost of the concurrent phase to calculate a
   735     // collection cost.
   736     double cost = 0.0;
   737     if ((_latest_cms_ms_end_to_ms_start > 0.0) &&
   738         (ms_time_in_seconds > 0.0)) {
   739       double interval_in_seconds =
   740         _latest_cms_ms_end_to_ms_start + ms_time_in_seconds;
   742       if (PrintAdaptiveSizePolicy && Verbose) {
   743         gclog_or_tty->print_cr("\n ms_time_in_seconds  %f  "
   744           "latest_cms_sum_concurrent_phases_time_secs %f  "
   745           "interval_in_seconds %f",
   746           ms_time_in_seconds,
   747           latest_cms_sum_concurrent_phases_time_secs,
   748           interval_in_seconds);
   749       }
   751       cost = collection_cost(ms_time_in_seconds, interval_in_seconds);
   753       _avg_ms_gc_cost->sample(cost);
   754       // Average this ms cost into all the other types gc costs
   755       avg_major_gc_cost()->sample(cost);
   757       // Sample for performance counter
   758       _avg_ms_interval->sample(interval_in_seconds);
   759     }
   760     if (PrintAdaptiveSizePolicy && Verbose) {
   761       gclog_or_tty->print("cmsAdaptiveSizePolicy::ms_collection_end: "
   762         "MS gc cost: %f  average: %f", cost, _avg_ms_gc_cost->average());
   764       double ms_time_in_ms = ms_time_in_seconds * MILLIUNITS;
   765       gclog_or_tty->print_cr("  MS pause: %f (ms) MS period %f (ms)",
   766         ms_time_in_ms,
   767         _latest_cms_ms_end_to_ms_start * MILLIUNITS);
   768     }
   769   }
   771   // Consider putting this code (here to end) into a
   772   // method for convenience.
   773   clear_internal_time_intervals();
   775   set_first_after_collection();
   777   // The concurrent phases keeps track of it's own mutator interval
   778   // with this timer.  This allows the stop-the-world phase to
   779   // be included in the mutator time so that the stop-the-world time
   780   // is not double counted.  Reset and start it.
   781   _concurrent_timer.stop();
   782   _concurrent_timer.reset();
   783   _concurrent_timer.start();
   785   _STW_timer.reset();
   786   _STW_timer.start();
   787 }
   789 void CMSAdaptiveSizePolicy::clear_internal_time_intervals() {
   790   _latest_cms_reset_end_to_initial_mark_start_secs = 0.0;
   791   _latest_cms_initial_mark_end_to_remark_start_secs = 0.0;
   792   _latest_cms_collection_end_to_collection_start_secs = 0.0;
   793   _latest_cms_concurrent_marking_time_secs = 0.0;
   794   _latest_cms_concurrent_precleaning_time_secs = 0.0;
   795   _latest_cms_concurrent_sweeping_time_secs = 0.0;
   796   _latest_cms_msc_end_to_msc_start_time_secs = 0.0;
   797   _latest_cms_ms_end_to_ms_start = 0.0;
   798   _latest_cms_remark_start_to_end_time_secs = 0.0;
   799   _latest_cms_initial_mark_start_to_end_time_secs = 0.0;
   800   _latest_cms_ms_marking_start_to_end_time_secs = 0.0;
   801 }
   803 void CMSAdaptiveSizePolicy::clear_generation_free_space_flags() {
   804   AdaptiveSizePolicy::clear_generation_free_space_flags();
   806   set_change_young_gen_for_maj_pauses(0);
   807 }
   809 void CMSAdaptiveSizePolicy::concurrent_phases_resume() {
   810   if (PrintAdaptiveSizePolicy && Verbose) {
   811     gclog_or_tty->stamp();
   812     gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_phases_resume()");
   813   }
   814   _concurrent_timer.start();
   815 }
   817 double CMSAdaptiveSizePolicy::time_since_major_gc() const {
   818   _concurrent_timer.stop();
   819   double time_since_cms_gc = _concurrent_timer.seconds();
   820   _concurrent_timer.start();
   821   _STW_timer.stop();
   822   double time_since_STW_gc = _STW_timer.seconds();
   823   _STW_timer.start();
   825   return MIN2(time_since_cms_gc, time_since_STW_gc);
   826 }
   828 double CMSAdaptiveSizePolicy::major_gc_interval_average_for_decay() const {
   829   double cms_interval = _avg_concurrent_interval->average();
   830   double msc_interval = _avg_msc_interval->average();
   831   double ms_interval = _avg_ms_interval->average();
   833   return MAX3(cms_interval, msc_interval, ms_interval);
   834 }
   836 double CMSAdaptiveSizePolicy::cms_gc_cost() const {
   837   return avg_major_gc_cost()->average();
   838 }
   840 void CMSAdaptiveSizePolicy::ms_collection_marking_begin() {
   841   _STW_timer.stop();
   842   // Start accumumlating time for the marking in the STW timer.
   843   _STW_timer.reset();
   844   _STW_timer.start();
   845 }
   847 void CMSAdaptiveSizePolicy::ms_collection_marking_end(
   848     GCCause::Cause gc_cause) {
   849   _STW_timer.stop();
   850   if (gc_cause != GCCause::_java_lang_system_gc ||
   851       UseAdaptiveSizePolicyWithSystemGC) {
   852     _latest_cms_ms_marking_start_to_end_time_secs = _STW_timer.seconds();
   853     if (PrintAdaptiveSizePolicy && Verbose) {
   854       gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::"
   855         "msc_collection_marking_end: mutator time %f",
   856         _latest_cms_ms_marking_start_to_end_time_secs);
   857     }
   858   }
   859   _STW_timer.reset();
   860   _STW_timer.start();
   861 }
   863 double CMSAdaptiveSizePolicy::gc_cost() const {
   864   double cms_gen_cost = cms_gc_cost();
   865   double result =  MIN2(1.0, minor_gc_cost() + cms_gen_cost);
   866   assert(result >= 0.0, "Both minor and major costs are non-negative");
   867   return result;
   868 }
   870 // Cost of collection (unit-less)
   871 double CMSAdaptiveSizePolicy::collection_cost(double pause_in_seconds,
   872                                               double interval_in_seconds) {
   873   // Cost of collection (unit-less)
   874   double cost = 0.0;
   875   if ((interval_in_seconds > 0.0) &&
   876       (pause_in_seconds > 0.0)) {
   877     cost =
   878       pause_in_seconds / interval_in_seconds;
   879   }
   880   return cost;
   881 }
   883 size_t CMSAdaptiveSizePolicy::adjust_eden_for_pause_time(size_t cur_eden) {
   884   size_t change = 0;
   885   size_t desired_eden = cur_eden;
   887   // reduce eden size
   888   change = eden_decrement_aligned_down(cur_eden);
   889   desired_eden = cur_eden - change;
   891   if (PrintAdaptiveSizePolicy && Verbose) {
   892     gclog_or_tty->print_cr(
   893       "CMSAdaptiveSizePolicy::adjust_eden_for_pause_time "
   894       "adjusting eden for pause time. "
   895       " starting eden size " SIZE_FORMAT
   896       " reduced eden size " SIZE_FORMAT
   897       " eden delta " SIZE_FORMAT,
   898       cur_eden, desired_eden, change);
   899   }
   901   return desired_eden;
   902 }
   904 size_t CMSAdaptiveSizePolicy::adjust_eden_for_throughput(size_t cur_eden) {
   906   size_t desired_eden = cur_eden;
   908   set_change_young_gen_for_throughput(increase_young_gen_for_througput_true);
   910   size_t change = eden_increment_aligned_up(cur_eden);
   911   size_t scaled_change = scale_by_gen_gc_cost(change, minor_gc_cost());
   913   if (cur_eden + scaled_change > cur_eden) {
   914     desired_eden = cur_eden + scaled_change;
   915   }
   917   _young_gen_change_for_minor_throughput++;
   919   if (PrintAdaptiveSizePolicy && Verbose) {
   920     gclog_or_tty->print_cr(
   921       "CMSAdaptiveSizePolicy::adjust_eden_for_throughput "
   922       "adjusting eden for throughput. "
   923       " starting eden size " SIZE_FORMAT
   924       " increased eden size " SIZE_FORMAT
   925       " eden delta " SIZE_FORMAT,
   926       cur_eden, desired_eden, scaled_change);
   927   }
   929   return desired_eden;
   930 }
   932 size_t CMSAdaptiveSizePolicy::adjust_eden_for_footprint(size_t cur_eden) {
   934   set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
   936   size_t change = eden_decrement(cur_eden);
   937   size_t desired_eden_size = cur_eden - change;
   939   if (PrintAdaptiveSizePolicy && Verbose) {
   940     gclog_or_tty->print_cr(
   941       "CMSAdaptiveSizePolicy::adjust_eden_for_footprint "
   942       "adjusting eden for footprint. "
   943       " starting eden size " SIZE_FORMAT
   944       " reduced eden size " SIZE_FORMAT
   945       " eden delta " SIZE_FORMAT,
   946       cur_eden, desired_eden_size, change);
   947   }
   948   return desired_eden_size;
   949 }
   951 // The eden and promo versions should be combined if possible.
   952 // They are the same except that the sizes of the decrement
   953 // and increment are different for eden and promo.
   954 size_t CMSAdaptiveSizePolicy::eden_decrement_aligned_down(size_t cur_eden) {
   955   size_t delta = eden_decrement(cur_eden);
   956   return align_size_down(delta, generation_alignment());
   957 }
   959 size_t CMSAdaptiveSizePolicy::eden_increment_aligned_up(size_t cur_eden) {
   960   size_t delta = eden_increment(cur_eden);
   961   return align_size_up(delta, generation_alignment());
   962 }
   964 size_t CMSAdaptiveSizePolicy::promo_decrement_aligned_down(size_t cur_promo) {
   965   size_t delta = promo_decrement(cur_promo);
   966   return align_size_down(delta, generation_alignment());
   967 }
   969 size_t CMSAdaptiveSizePolicy::promo_increment_aligned_up(size_t cur_promo) {
   970   size_t delta = promo_increment(cur_promo);
   971   return align_size_up(delta, generation_alignment());
   972 }
   975 void CMSAdaptiveSizePolicy::compute_eden_space_size(size_t cur_eden,
   976                                                     size_t max_eden_size)
   977 {
   978   size_t desired_eden_size = cur_eden;
   979   size_t eden_limit = max_eden_size;
   981   // Printout input
   982   if (PrintGC && PrintAdaptiveSizePolicy) {
   983     gclog_or_tty->print_cr(
   984       "CMSAdaptiveSizePolicy::compute_eden_space_size: "
   985       "cur_eden " SIZE_FORMAT,
   986       cur_eden);
   987   }
   989   // Used for diagnostics
   990   clear_generation_free_space_flags();
   992   if (_avg_minor_pause->padded_average() > gc_pause_goal_sec()) {
   993     if (minor_pause_young_estimator()->decrement_will_decrease()) {
   994       // If the minor pause is too long, shrink the young gen.
   995       set_change_young_gen_for_min_pauses(
   996         decrease_young_gen_for_min_pauses_true);
   997       desired_eden_size = adjust_eden_for_pause_time(desired_eden_size);
   998     }
   999   } else if ((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) ||
  1000              (avg_initial_pause()->padded_average() > gc_pause_goal_sec())) {
  1001     // The remark or initial pauses are not meeting the goal.  Should
  1002     // the generation be shrunk?
  1003     if (get_and_clear_first_after_collection() &&
  1004         ((avg_remark_pause()->padded_average() > gc_pause_goal_sec() &&
  1005           remark_pause_young_estimator()->decrement_will_decrease()) ||
  1006          (avg_initial_pause()->padded_average() > gc_pause_goal_sec() &&
  1007           initial_pause_young_estimator()->decrement_will_decrease()))) {
  1009        set_change_young_gen_for_maj_pauses(
  1010          decrease_young_gen_for_maj_pauses_true);
  1012       // If the remark or initial pause is too long and this is the
  1013       // first young gen collection after a cms collection, shrink
  1014       // the young gen.
  1015       desired_eden_size = adjust_eden_for_pause_time(desired_eden_size);
  1017     // If not the first young gen collection after a cms collection,
  1018     // don't do anything.  In this case an adjustment has already
  1019     // been made and the results of the adjustment has not yet been
  1020     // measured.
  1021   } else if ((minor_gc_cost() >= 0.0) &&
  1022              (adjusted_mutator_cost() < _throughput_goal)) {
  1023     desired_eden_size = adjust_eden_for_throughput(desired_eden_size);
  1024   } else {
  1025     desired_eden_size = adjust_eden_for_footprint(desired_eden_size);
  1028   if (PrintGC && PrintAdaptiveSizePolicy) {
  1029     gclog_or_tty->print_cr(
  1030       "CMSAdaptiveSizePolicy::compute_eden_space_size limits:"
  1031       " desired_eden_size: " SIZE_FORMAT
  1032       " old_eden_size: " SIZE_FORMAT,
  1033       desired_eden_size, cur_eden);
  1036   set_eden_size(desired_eden_size);
  1039 size_t CMSAdaptiveSizePolicy::adjust_promo_for_pause_time(size_t cur_promo) {
  1040   size_t change = 0;
  1041   size_t desired_promo = cur_promo;
  1042   // Move this test up to caller like the adjust_eden_for_pause_time()
  1043   // call.
  1044   if ((AdaptiveSizePausePolicy == 0) &&
  1045       ((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) ||
  1046       (avg_initial_pause()->padded_average() > gc_pause_goal_sec()))) {
  1047     set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
  1048     change = promo_decrement_aligned_down(cur_promo);
  1049     desired_promo = cur_promo - change;
  1050   } else if ((AdaptiveSizePausePolicy > 0) &&
  1051       (((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) &&
  1052        remark_pause_old_estimator()->decrement_will_decrease()) ||
  1053       ((avg_initial_pause()->padded_average() > gc_pause_goal_sec()) &&
  1054        initial_pause_old_estimator()->decrement_will_decrease()))) {
  1055     set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
  1056     change = promo_decrement_aligned_down(cur_promo);
  1057     desired_promo = cur_promo - change;
  1060   if ((change != 0) &&PrintAdaptiveSizePolicy && Verbose) {
  1061     gclog_or_tty->print_cr(
  1062       "CMSAdaptiveSizePolicy::adjust_promo_for_pause_time "
  1063       "adjusting promo for pause time. "
  1064       " starting promo size " SIZE_FORMAT
  1065       " reduced promo size " SIZE_FORMAT
  1066       " promo delta " SIZE_FORMAT,
  1067       cur_promo, desired_promo, change);
  1070   return desired_promo;
  1073 // Try to share this with PS.
  1074 size_t CMSAdaptiveSizePolicy::scale_by_gen_gc_cost(size_t base_change,
  1075                                                   double gen_gc_cost) {
  1077   // Calculate the change to use for the tenured gen.
  1078   size_t scaled_change = 0;
  1079   // Can the increment to the generation be scaled?
  1080   if (gc_cost() >= 0.0 && gen_gc_cost >= 0.0) {
  1081     double scale_by_ratio = gen_gc_cost / gc_cost();
  1082     scaled_change =
  1083       (size_t) (scale_by_ratio * (double) base_change);
  1084     if (PrintAdaptiveSizePolicy && Verbose) {
  1085       gclog_or_tty->print_cr(
  1086         "Scaled tenured increment: " SIZE_FORMAT " by %f down to "
  1087           SIZE_FORMAT,
  1088         base_change, scale_by_ratio, scaled_change);
  1090   } else if (gen_gc_cost >= 0.0) {
  1091     // Scaling is not going to work.  If the major gc time is the
  1092     // larger than the other GC costs, give it a full increment.
  1093     if (gen_gc_cost >= (gc_cost() - gen_gc_cost)) {
  1094       scaled_change = base_change;
  1096   } else {
  1097     // Don't expect to get here but it's ok if it does
  1098     // in the product build since the delta will be 0
  1099     // and nothing will change.
  1100     assert(false, "Unexpected value for gc costs");
  1103   return scaled_change;
  1106 size_t CMSAdaptiveSizePolicy::adjust_promo_for_throughput(size_t cur_promo) {
  1108   size_t desired_promo = cur_promo;
  1110   set_change_old_gen_for_throughput(increase_old_gen_for_throughput_true);
  1112   size_t change = promo_increment_aligned_up(cur_promo);
  1113   size_t scaled_change = scale_by_gen_gc_cost(change, major_gc_cost());
  1115   if (cur_promo + scaled_change > cur_promo) {
  1116     desired_promo = cur_promo + scaled_change;
  1119   _old_gen_change_for_major_throughput++;
  1121   if (PrintAdaptiveSizePolicy && Verbose) {
  1122     gclog_or_tty->print_cr(
  1123       "CMSAdaptiveSizePolicy::adjust_promo_for_throughput "
  1124       "adjusting promo for throughput. "
  1125       " starting promo size " SIZE_FORMAT
  1126       " increased promo size " SIZE_FORMAT
  1127       " promo delta " SIZE_FORMAT,
  1128       cur_promo, desired_promo, scaled_change);
  1131   return desired_promo;
  1134 size_t CMSAdaptiveSizePolicy::adjust_promo_for_footprint(size_t cur_promo,
  1135                                                          size_t cur_eden) {
  1137   set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
  1139   size_t change = promo_decrement(cur_promo);
  1140   size_t desired_promo_size = cur_promo - change;
  1142   if (PrintAdaptiveSizePolicy && Verbose) {
  1143     gclog_or_tty->print_cr(
  1144       "CMSAdaptiveSizePolicy::adjust_promo_for_footprint "
  1145       "adjusting promo for footprint. "
  1146       " starting promo size " SIZE_FORMAT
  1147       " reduced promo size " SIZE_FORMAT
  1148       " promo delta " SIZE_FORMAT,
  1149       cur_promo, desired_promo_size, change);
  1151   return desired_promo_size;
  1154 void CMSAdaptiveSizePolicy::compute_tenured_generation_free_space(
  1155                                 size_t cur_tenured_free,
  1156                                 size_t max_tenured_available,
  1157                                 size_t cur_eden) {
  1158   // This can be bad if the desired value grows/shrinks without
  1159   // any connection to the read free space
  1160   size_t desired_promo_size = promo_size();
  1161   size_t tenured_limit = max_tenured_available;
  1163   // Printout input
  1164   if (PrintGC && PrintAdaptiveSizePolicy) {
  1165     gclog_or_tty->print_cr(
  1166       "CMSAdaptiveSizePolicy::compute_tenured_generation_free_space: "
  1167       "cur_tenured_free " SIZE_FORMAT
  1168       " max_tenured_available " SIZE_FORMAT,
  1169       cur_tenured_free, max_tenured_available);
  1172   // Used for diagnostics
  1173   clear_generation_free_space_flags();
  1175   set_decide_at_full_gc(decide_at_full_gc_true);
  1176   if (avg_remark_pause()->padded_average() > gc_pause_goal_sec() ||
  1177       avg_initial_pause()->padded_average() > gc_pause_goal_sec()) {
  1178     desired_promo_size = adjust_promo_for_pause_time(cur_tenured_free);
  1179   } else if (avg_minor_pause()->padded_average() > gc_pause_goal_sec()) {
  1180     // Nothing to do since the minor collections are too large and
  1181     // this method only deals with the cms generation.
  1182   } else if ((cms_gc_cost() >= 0.0) &&
  1183              (adjusted_mutator_cost() < _throughput_goal)) {
  1184     desired_promo_size = adjust_promo_for_throughput(cur_tenured_free);
  1185   } else {
  1186     desired_promo_size = adjust_promo_for_footprint(cur_tenured_free,
  1187                                                     cur_eden);
  1190   if (PrintGC && PrintAdaptiveSizePolicy) {
  1191     gclog_or_tty->print_cr(
  1192       "CMSAdaptiveSizePolicy::compute_tenured_generation_free_space limits:"
  1193       " desired_promo_size: " SIZE_FORMAT
  1194       " old_promo_size: " SIZE_FORMAT,
  1195       desired_promo_size, cur_tenured_free);
  1198   set_promo_size(desired_promo_size);
  1201 uint CMSAdaptiveSizePolicy::compute_survivor_space_size_and_threshold(
  1202                                              bool is_survivor_overflow,
  1203                                              uint tenuring_threshold,
  1204                                              size_t survivor_limit) {
  1205   assert(survivor_limit >= generation_alignment(),
  1206          "survivor_limit too small");
  1207   assert((size_t)align_size_down(survivor_limit, generation_alignment())
  1208          == survivor_limit, "survivor_limit not aligned");
  1210   // Change UsePSAdaptiveSurvivorSizePolicy -> UseAdaptiveSurvivorSizePolicy?
  1211   if (!UsePSAdaptiveSurvivorSizePolicy ||
  1212       !young_gen_policy_is_ready()) {
  1213     return tenuring_threshold;
  1216   // We'll decide whether to increase or decrease the tenuring
  1217   // threshold based partly on the newly computed survivor size
  1218   // (if we hit the maximum limit allowed, we'll always choose to
  1219   // decrement the threshold).
  1220   bool incr_tenuring_threshold = false;
  1221   bool decr_tenuring_threshold = false;
  1223   set_decrement_tenuring_threshold_for_gc_cost(false);
  1224   set_increment_tenuring_threshold_for_gc_cost(false);
  1225   set_decrement_tenuring_threshold_for_survivor_limit(false);
  1227   if (!is_survivor_overflow) {
  1228     // Keep running averages on how much survived
  1230     // We use the tenuring threshold to equalize the cost of major
  1231     // and minor collections.
  1232     // ThresholdTolerance is used to indicate how sensitive the
  1233     // tenuring threshold is to differences in cost betweent the
  1234     // collection types.
  1236     // Get the times of interest. This involves a little work, so
  1237     // we cache the values here.
  1238     const double major_cost = major_gc_cost();
  1239     const double minor_cost = minor_gc_cost();
  1241     if (minor_cost > major_cost * _threshold_tolerance_percent) {
  1242       // Minor times are getting too long;  lower the threshold so
  1243       // less survives and more is promoted.
  1244       decr_tenuring_threshold = true;
  1245       set_decrement_tenuring_threshold_for_gc_cost(true);
  1246     } else if (major_cost > minor_cost * _threshold_tolerance_percent) {
  1247       // Major times are too long, so we want less promotion.
  1248       incr_tenuring_threshold = true;
  1249       set_increment_tenuring_threshold_for_gc_cost(true);
  1252   } else {
  1253     // Survivor space overflow occurred, so promoted and survived are
  1254     // not accurate. We'll make our best guess by combining survived
  1255     // and promoted and count them as survivors.
  1256     //
  1257     // We'll lower the tenuring threshold to see if we can correct
  1258     // things. Also, set the survivor size conservatively. We're
  1259     // trying to avoid many overflows from occurring if defnew size
  1260     // is just too small.
  1262     decr_tenuring_threshold = true;
  1265   // The padded average also maintains a deviation from the average;
  1266   // we use this to see how good of an estimate we have of what survived.
  1267   // We're trying to pad the survivor size as little as possible without
  1268   // overflowing the survivor spaces.
  1269   size_t target_size = align_size_up((size_t)_avg_survived->padded_average(),
  1270                                      generation_alignment());
  1271   target_size = MAX2(target_size, generation_alignment());
  1273   if (target_size > survivor_limit) {
  1274     // Target size is bigger than we can handle. Let's also reduce
  1275     // the tenuring threshold.
  1276     target_size = survivor_limit;
  1277     decr_tenuring_threshold = true;
  1278     set_decrement_tenuring_threshold_for_survivor_limit(true);
  1281   // Finally, increment or decrement the tenuring threshold, as decided above.
  1282   // We test for decrementing first, as we might have hit the target size
  1283   // limit.
  1284   if (decr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
  1285     if (tenuring_threshold > 1) {
  1286       tenuring_threshold--;
  1288   } else if (incr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
  1289     if (tenuring_threshold < MaxTenuringThreshold) {
  1290       tenuring_threshold++;
  1294   // We keep a running average of the amount promoted which is used
  1295   // to decide when we should collect the old generation (when
  1296   // the amount of old gen free space is less than what we expect to
  1297   // promote).
  1299   if (PrintAdaptiveSizePolicy) {
  1300     // A little more detail if Verbose is on
  1301     GenCollectedHeap* gch = GenCollectedHeap::heap();
  1302     if (Verbose) {
  1303       gclog_or_tty->print( "  avg_survived: %f"
  1304                   "  avg_deviation: %f",
  1305                   _avg_survived->average(),
  1306                   _avg_survived->deviation());
  1309     gclog_or_tty->print( "  avg_survived_padded_avg: %f",
  1310                 _avg_survived->padded_average());
  1312     if (Verbose) {
  1313       gclog_or_tty->print( "  avg_promoted_avg: %f"
  1314                   "  avg_promoted_dev: %f",
  1315                   gch->gc_stats(1)->avg_promoted()->average(),
  1316                   gch->gc_stats(1)->avg_promoted()->deviation());
  1319     gclog_or_tty->print( "  avg_promoted_padded_avg: %f"
  1320                 "  avg_pretenured_padded_avg: %f"
  1321                 "  tenuring_thresh: %u"
  1322                 "  target_size: " SIZE_FORMAT
  1323                 "  survivor_limit: " SIZE_FORMAT,
  1324                 gch->gc_stats(1)->avg_promoted()->padded_average(),
  1325                 _avg_pretenured->padded_average(),
  1326                 tenuring_threshold, target_size, survivor_limit);
  1327     gclog_or_tty->cr();
  1330   set_survivor_size(target_size);
  1332   return tenuring_threshold;
  1335 bool CMSAdaptiveSizePolicy::get_and_clear_first_after_collection() {
  1336   bool result = _first_after_collection;
  1337   _first_after_collection = false;
  1338   return result;
  1341 bool CMSAdaptiveSizePolicy::print_adaptive_size_policy_on(
  1342                                                     outputStream* st) const {
  1344   if (!UseAdaptiveSizePolicy) return false;
  1346   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1347   Generation* gen0 = gch->get_gen(0);
  1348   DefNewGeneration* def_new = gen0->as_DefNewGeneration();
  1349   return
  1350     AdaptiveSizePolicy::print_adaptive_size_policy_on(
  1351                                          st,
  1352                                          def_new->tenuring_threshold());

mercurial