src/share/vm/adlc/output_c.cpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 1
2d8a650513c2
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

     1 /*
     2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // output_c.cpp - Class CPP file output routines for architecture definition
    27 #include "adlc.hpp"
    29 // Utilities to characterize effect statements
    30 static bool is_def(int usedef) {
    31   switch(usedef) {
    32   case Component::DEF:
    33   case Component::USE_DEF: return true; break;
    34   }
    35   return false;
    36 }
    38 static bool is_use(int usedef) {
    39   switch(usedef) {
    40   case Component::USE:
    41   case Component::USE_DEF:
    42   case Component::USE_KILL: return true; break;
    43   }
    44   return false;
    45 }
    47 static bool is_kill(int usedef) {
    48   switch(usedef) {
    49   case Component::KILL:
    50   case Component::USE_KILL: return true; break;
    51   }
    52   return false;
    53 }
    55 // Define  an array containing the machine register names, strings.
    56 static void defineRegNames(FILE *fp, RegisterForm *registers) {
    57   if (registers) {
    58     fprintf(fp,"\n");
    59     fprintf(fp,"// An array of character pointers to machine register names.\n");
    60     fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
    62     // Output the register name for each register in the allocation classes
    63     RegDef *reg_def = NULL;
    64     RegDef *next = NULL;
    65     registers->reset_RegDefs();
    66     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
    67       next = registers->iter_RegDefs();
    68       const char *comma = (next != NULL) ? "," : " // no trailing comma";
    69       fprintf(fp,"  \"%s\"%s\n", reg_def->_regname, comma);
    70     }
    72     // Finish defining enumeration
    73     fprintf(fp,"};\n");
    75     fprintf(fp,"\n");
    76     fprintf(fp,"// An array of character pointers to machine register names.\n");
    77     fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
    78     reg_def = NULL;
    79     next = NULL;
    80     registers->reset_RegDefs();
    81     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
    82       next = registers->iter_RegDefs();
    83       const char *comma = (next != NULL) ? "," : " // no trailing comma";
    84       fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma);
    85     }
    86     // Finish defining array
    87     fprintf(fp,"\t};\n");
    88     fprintf(fp,"\n");
    90     fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
    92   }
    93 }
    95 // Define an array containing the machine register encoding values
    96 static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
    97   if (registers) {
    98     fprintf(fp,"\n");
    99     fprintf(fp,"// An array of the machine register encode values\n");
   100     fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
   102     // Output the register encoding for each register in the allocation classes
   103     RegDef *reg_def = NULL;
   104     RegDef *next    = NULL;
   105     registers->reset_RegDefs();
   106     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
   107       next = registers->iter_RegDefs();
   108       const char* register_encode = reg_def->register_encode();
   109       const char *comma = (next != NULL) ? "," : " // no trailing comma";
   110       int encval;
   111       if (!ADLParser::is_int_token(register_encode, encval)) {
   112         fprintf(fp,"  %s%s  // %s\n", register_encode, comma, reg_def->_regname);
   113       } else {
   114         // Output known constants in hex char format (backward compatibility).
   115         assert(encval < 256, "Exceeded supported width for register encoding");
   116         fprintf(fp,"  (unsigned char)'\\x%X'%s  // %s\n", encval, comma, reg_def->_regname);
   117       }
   118     }
   119     // Finish defining enumeration
   120     fprintf(fp,"};\n");
   122   } // Done defining array
   123 }
   125 // Output an enumeration of register class names
   126 static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
   127   if (registers) {
   128     // Output an enumeration of register class names
   129     fprintf(fp,"\n");
   130     fprintf(fp,"// Enumeration of register class names\n");
   131     fprintf(fp, "enum machRegisterClass {\n");
   132     registers->_rclasses.reset();
   133     for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) {
   134       const char * class_name_to_upper = toUpper(class_name);
   135       fprintf(fp,"  %s,\n", class_name_to_upper);
   136       delete[] class_name_to_upper;
   137     }
   138     // Finish defining enumeration
   139     fprintf(fp, "  _last_Mach_Reg_Class\n");
   140     fprintf(fp, "};\n");
   141   }
   142 }
   144 // Declare an enumeration of user-defined register classes
   145 // and a list of register masks, one for each class.
   146 void ArchDesc::declare_register_masks(FILE *fp_hpp) {
   147   const char  *rc_name;
   149   if (_register) {
   150     // Build enumeration of user-defined register classes.
   151     defineRegClassEnum(fp_hpp, _register);
   153     // Generate a list of register masks, one for each class.
   154     fprintf(fp_hpp,"\n");
   155     fprintf(fp_hpp,"// Register masks, one for each register class.\n");
   156     _register->_rclasses.reset();
   157     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
   158       const char *prefix = "";
   159       RegClass *reg_class = _register->getRegClass(rc_name);
   160       assert(reg_class, "Using an undefined register class");
   162       const char* rc_name_to_upper = toUpper(rc_name);
   164       if (reg_class->_user_defined == NULL) {
   165         fprintf(fp_hpp, "extern const RegMask _%s%s_mask;\n", prefix,  rc_name_to_upper);
   166         fprintf(fp_hpp, "inline const RegMask &%s%s_mask() { return _%s%s_mask; }\n", prefix, rc_name_to_upper, prefix, rc_name_to_upper);
   167       } else {
   168         fprintf(fp_hpp, "inline const RegMask &%s%s_mask() { %s }\n", prefix, rc_name_to_upper, reg_class->_user_defined);
   169       }
   171       if (reg_class->_stack_or_reg) {
   172         assert(reg_class->_user_defined == NULL, "no user defined reg class here");
   173         fprintf(fp_hpp, "extern const RegMask _%sSTACK_OR_%s_mask;\n", prefix, rc_name_to_upper);
   174         fprintf(fp_hpp, "inline const RegMask &%sSTACK_OR_%s_mask() { return _%sSTACK_OR_%s_mask; }\n", prefix, rc_name_to_upper, prefix, rc_name_to_upper);
   175       }
   176       delete[] rc_name_to_upper;
   178     }
   179   }
   180 }
   182 // Generate an enumeration of user-defined register classes
   183 // and a list of register masks, one for each class.
   184 void ArchDesc::build_register_masks(FILE *fp_cpp) {
   185   const char  *rc_name;
   187   if (_register) {
   188     // Generate a list of register masks, one for each class.
   189     fprintf(fp_cpp,"\n");
   190     fprintf(fp_cpp,"// Register masks, one for each register class.\n");
   191     _register->_rclasses.reset();
   192     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
   193       const char *prefix = "";
   194       RegClass *reg_class = _register->getRegClass(rc_name);
   195       assert(reg_class, "Using an undefined register class");
   197       if (reg_class->_user_defined != NULL) {
   198         continue;
   199       }
   201       int len = RegisterForm::RegMask_Size();
   202       const char* rc_name_to_upper = toUpper(rc_name);
   203       fprintf(fp_cpp, "const RegMask _%s%s_mask(", prefix, rc_name_to_upper);
   205       {
   206         int i;
   207         for(i = 0; i < len - 1; i++) {
   208           fprintf(fp_cpp," 0x%x,", reg_class->regs_in_word(i, false));
   209         }
   210         fprintf(fp_cpp," 0x%x );\n", reg_class->regs_in_word(i, false));
   211       }
   213       if (reg_class->_stack_or_reg) {
   214         int i;
   215         fprintf(fp_cpp, "const RegMask _%sSTACK_OR_%s_mask(", prefix, rc_name_to_upper);
   216         for(i = 0; i < len - 1; i++) {
   217           fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i, true));
   218         }
   219         fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i, true));
   220       }
   221       delete[] rc_name_to_upper;
   222     }
   223   }
   224 }
   226 // Compute an index for an array in the pipeline_reads_NNN arrays
   227 static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
   228 {
   229   int templen = 1;
   230   int paramcount = 0;
   231   const char *paramname;
   233   if (pipeclass->_parameters.count() == 0)
   234     return -1;
   236   pipeclass->_parameters.reset();
   237   paramname = pipeclass->_parameters.iter();
   238   const PipeClassOperandForm *pipeopnd =
   239     (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   240   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
   241     pipeclass->_parameters.reset();
   243   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
   244     const PipeClassOperandForm *tmppipeopnd =
   245         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   247     if (tmppipeopnd)
   248       templen += 10 + (int)strlen(tmppipeopnd->_stage);
   249     else
   250       templen += 19;
   252     paramcount++;
   253   }
   255   // See if the count is zero
   256   if (paramcount == 0) {
   257     return -1;
   258   }
   260   char *operand_stages = new char [templen];
   261   operand_stages[0] = 0;
   262   int i = 0;
   263   templen = 0;
   265   pipeclass->_parameters.reset();
   266   paramname = pipeclass->_parameters.iter();
   267   pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   268   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
   269     pipeclass->_parameters.reset();
   271   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
   272     const PipeClassOperandForm *tmppipeopnd =
   273         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   274     templen += sprintf(&operand_stages[templen], "  stage_%s%c\n",
   275       tmppipeopnd ? tmppipeopnd->_stage : "undefined",
   276       (++i < paramcount ? ',' : ' ') );
   277   }
   279   // See if the same string is in the table
   280   int ndx = pipeline_reads.index(operand_stages);
   282   // No, add it to the table
   283   if (ndx < 0) {
   284     pipeline_reads.addName(operand_stages);
   285     ndx = pipeline_reads.index(operand_stages);
   287     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
   288       ndx+1, paramcount, operand_stages);
   289   }
   290   else
   291     delete [] operand_stages;
   293   return (ndx);
   294 }
   296 // Compute an index for an array in the pipeline_res_stages_NNN arrays
   297 static int pipeline_res_stages_initializer(
   298   FILE *fp_cpp,
   299   PipelineForm *pipeline,
   300   NameList &pipeline_res_stages,
   301   PipeClassForm *pipeclass)
   302 {
   303   const PipeClassResourceForm *piperesource;
   304   int * res_stages = new int [pipeline->_rescount];
   305   int i;
   307   for (i = 0; i < pipeline->_rescount; i++)
   308      res_stages[i] = 0;
   310   for (pipeclass->_resUsage.reset();
   311        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   312     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   313     for (i = 0; i < pipeline->_rescount; i++)
   314       if ((1 << i) & used_mask) {
   315         int stage = pipeline->_stages.index(piperesource->_stage);
   316         if (res_stages[i] < stage+1)
   317           res_stages[i] = stage+1;
   318       }
   319   }
   321   // Compute the length needed for the resource list
   322   int commentlen = 0;
   323   int max_stage = 0;
   324   for (i = 0; i < pipeline->_rescount; i++) {
   325     if (res_stages[i] == 0) {
   326       if (max_stage < 9)
   327         max_stage = 9;
   328     }
   329     else {
   330       int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
   331       if (max_stage < stagelen)
   332         max_stage = stagelen;
   333     }
   335     commentlen += (int)strlen(pipeline->_reslist.name(i));
   336   }
   338   int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
   340   // Allocate space for the resource list
   341   char * resource_stages = new char [templen];
   343   templen = 0;
   344   for (i = 0; i < pipeline->_rescount; i++) {
   345     const char * const resname =
   346       res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
   348     templen += sprintf(&resource_stages[templen], "  stage_%s%-*s // %s\n",
   349       resname, max_stage - (int)strlen(resname) + 1,
   350       (i < pipeline->_rescount-1) ? "," : "",
   351       pipeline->_reslist.name(i));
   352   }
   354   // See if the same string is in the table
   355   int ndx = pipeline_res_stages.index(resource_stages);
   357   // No, add it to the table
   358   if (ndx < 0) {
   359     pipeline_res_stages.addName(resource_stages);
   360     ndx = pipeline_res_stages.index(resource_stages);
   362     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
   363       ndx+1, pipeline->_rescount, resource_stages);
   364   }
   365   else
   366     delete [] resource_stages;
   368   delete [] res_stages;
   370   return (ndx);
   371 }
   373 // Compute an index for an array in the pipeline_res_cycles_NNN arrays
   374 static int pipeline_res_cycles_initializer(
   375   FILE *fp_cpp,
   376   PipelineForm *pipeline,
   377   NameList &pipeline_res_cycles,
   378   PipeClassForm *pipeclass)
   379 {
   380   const PipeClassResourceForm *piperesource;
   381   int * res_cycles = new int [pipeline->_rescount];
   382   int i;
   384   for (i = 0; i < pipeline->_rescount; i++)
   385      res_cycles[i] = 0;
   387   for (pipeclass->_resUsage.reset();
   388        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   389     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   390     for (i = 0; i < pipeline->_rescount; i++)
   391       if ((1 << i) & used_mask) {
   392         int cycles = piperesource->_cycles;
   393         if (res_cycles[i] < cycles)
   394           res_cycles[i] = cycles;
   395       }
   396   }
   398   // Pre-compute the string length
   399   int templen;
   400   int cyclelen = 0, commentlen = 0;
   401   int max_cycles = 0;
   402   char temp[32];
   404   for (i = 0; i < pipeline->_rescount; i++) {
   405     if (max_cycles < res_cycles[i])
   406       max_cycles = res_cycles[i];
   407     templen = sprintf(temp, "%d", res_cycles[i]);
   408     if (cyclelen < templen)
   409       cyclelen = templen;
   410     commentlen += (int)strlen(pipeline->_reslist.name(i));
   411   }
   413   templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
   415   // Allocate space for the resource list
   416   char * resource_cycles = new char [templen];
   418   templen = 0;
   420   for (i = 0; i < pipeline->_rescount; i++) {
   421     templen += sprintf(&resource_cycles[templen], "  %*d%c // %s\n",
   422       cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
   423   }
   425   // See if the same string is in the table
   426   int ndx = pipeline_res_cycles.index(resource_cycles);
   428   // No, add it to the table
   429   if (ndx < 0) {
   430     pipeline_res_cycles.addName(resource_cycles);
   431     ndx = pipeline_res_cycles.index(resource_cycles);
   433     fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
   434       ndx+1, pipeline->_rescount, resource_cycles);
   435   }
   436   else
   437     delete [] resource_cycles;
   439   delete [] res_cycles;
   441   return (ndx);
   442 }
   444 //typedef unsigned long long uint64_t;
   446 // Compute an index for an array in the pipeline_res_mask_NNN arrays
   447 static int pipeline_res_mask_initializer(
   448   FILE *fp_cpp,
   449   PipelineForm *pipeline,
   450   NameList &pipeline_res_mask,
   451   NameList &pipeline_res_args,
   452   PipeClassForm *pipeclass)
   453 {
   454   const PipeClassResourceForm *piperesource;
   455   const uint rescount      = pipeline->_rescount;
   456   const uint maxcycleused  = pipeline->_maxcycleused;
   457   const uint cyclemasksize = (maxcycleused + 31) >> 5;
   459   int i, j;
   460   int element_count = 0;
   461   uint *res_mask = new uint [cyclemasksize];
   462   uint resources_used             = 0;
   463   uint resources_used_exclusively = 0;
   465   for (pipeclass->_resUsage.reset();
   466        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
   467     element_count++;
   468   }
   470   // Pre-compute the string length
   471   int templen;
   472   int commentlen = 0;
   473   int max_cycles = 0;
   475   int cyclelen = ((maxcycleused + 3) >> 2);
   476   int masklen = (rescount + 3) >> 2;
   478   int cycledigit = 0;
   479   for (i = maxcycleused; i > 0; i /= 10)
   480     cycledigit++;
   482   int maskdigit = 0;
   483   for (i = rescount; i > 0; i /= 10)
   484     maskdigit++;
   486   static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
   487   static const char* pipeline_use_element    = "Pipeline_Use_Element";
   489   templen = 1 +
   490     (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
   491      (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
   493   // Allocate space for the resource list
   494   char * resource_mask = new char [templen];
   495   char * last_comma = NULL;
   497   templen = 0;
   499   for (pipeclass->_resUsage.reset();
   500        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
   501     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   503     if (!used_mask) {
   504       fprintf(stderr, "*** used_mask is 0 ***\n");
   505     }
   507     resources_used |= used_mask;
   509     uint lb, ub;
   511     for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
   512     for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
   514     if (lb == ub) {
   515       resources_used_exclusively |= used_mask;
   516     }
   518     int formatlen =
   519       sprintf(&resource_mask[templen], "  %s(0x%0*x, %*d, %*d, %s %s(",
   520         pipeline_use_element,
   521         masklen, used_mask,
   522         cycledigit, lb, cycledigit, ub,
   523         ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
   524         pipeline_use_cycle_mask);
   526     templen += formatlen;
   528     memset(res_mask, 0, cyclemasksize * sizeof(uint));
   530     int cycles = piperesource->_cycles;
   531     uint stage          = pipeline->_stages.index(piperesource->_stage);
   532     if ((uint)NameList::Not_in_list == stage) {
   533       fprintf(stderr,
   534               "pipeline_res_mask_initializer: "
   535               "semantic error: "
   536               "pipeline stage undeclared: %s\n",
   537               piperesource->_stage);
   538       exit(1);
   539     }
   540     uint upper_limit    = stage + cycles - 1;
   541     uint lower_limit    = stage - 1;
   542     uint upper_idx      = upper_limit >> 5;
   543     uint lower_idx      = lower_limit >> 5;
   544     uint upper_position = upper_limit & 0x1f;
   545     uint lower_position = lower_limit & 0x1f;
   547     uint mask = (((uint)1) << upper_position) - 1;
   549     while (upper_idx > lower_idx) {
   550       res_mask[upper_idx--] |= mask;
   551       mask = (uint)-1;
   552     }
   554     mask -= (((uint)1) << lower_position) - 1;
   555     res_mask[upper_idx] |= mask;
   557     for (j = cyclemasksize-1; j >= 0; j--) {
   558       formatlen =
   559         sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
   560       templen += formatlen;
   561     }
   563     resource_mask[templen++] = ')';
   564     resource_mask[templen++] = ')';
   565     last_comma = &resource_mask[templen];
   566     resource_mask[templen++] = ',';
   567     resource_mask[templen++] = '\n';
   568   }
   570   resource_mask[templen] = 0;
   571   if (last_comma) {
   572     last_comma[0] = ' ';
   573   }
   575   // See if the same string is in the table
   576   int ndx = pipeline_res_mask.index(resource_mask);
   578   // No, add it to the table
   579   if (ndx < 0) {
   580     pipeline_res_mask.addName(resource_mask);
   581     ndx = pipeline_res_mask.index(resource_mask);
   583     if (strlen(resource_mask) > 0)
   584       fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
   585         ndx+1, element_count, resource_mask);
   587     char* args = new char [9 + 2*masklen + maskdigit];
   589     sprintf(args, "0x%0*x, 0x%0*x, %*d",
   590       masklen, resources_used,
   591       masklen, resources_used_exclusively,
   592       maskdigit, element_count);
   594     pipeline_res_args.addName(args);
   595   }
   596   else {
   597     delete [] resource_mask;
   598   }
   600   delete [] res_mask;
   601 //delete [] res_masks;
   603   return (ndx);
   604 }
   606 void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
   607   const char *classname;
   608   const char *resourcename;
   609   int resourcenamelen = 0;
   610   NameList pipeline_reads;
   611   NameList pipeline_res_stages;
   612   NameList pipeline_res_cycles;
   613   NameList pipeline_res_masks;
   614   NameList pipeline_res_args;
   615   const int default_latency = 1;
   616   const int non_operand_latency = 0;
   617   const int node_latency = 0;
   619   if (!_pipeline) {
   620     fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
   621     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
   622     fprintf(fp_cpp, "  return %d;\n", non_operand_latency);
   623     fprintf(fp_cpp, "}\n");
   624     return;
   625   }
   627   fprintf(fp_cpp, "\n");
   628   fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
   629   fprintf(fp_cpp, "#ifndef PRODUCT\n");
   630   fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
   631   fprintf(fp_cpp, "  static const char * const _stage_names[] = {\n");
   632   fprintf(fp_cpp, "    \"undefined\"");
   634   for (int s = 0; s < _pipeline->_stagecnt; s++)
   635     fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
   637   fprintf(fp_cpp, "\n  };\n\n");
   638   fprintf(fp_cpp, "  return (s <= %d ? _stage_names[s] : \"???\");\n",
   639     _pipeline->_stagecnt);
   640   fprintf(fp_cpp, "}\n");
   641   fprintf(fp_cpp, "#endif\n\n");
   643   fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
   644   fprintf(fp_cpp, "  // See if the functional units overlap\n");
   645 #if 0
   646   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   647   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   648   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
   649   fprintf(fp_cpp, "  }\n");
   650   fprintf(fp_cpp, "#endif\n\n");
   651 #endif
   652   fprintf(fp_cpp, "  uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
   653   fprintf(fp_cpp, "  if (mask == 0)\n    return (start);\n\n");
   654 #if 0
   655   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   656   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   657   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
   658   fprintf(fp_cpp, "  }\n");
   659   fprintf(fp_cpp, "#endif\n\n");
   660 #endif
   661   fprintf(fp_cpp, "  for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
   662   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
   663   fprintf(fp_cpp, "    if (predUse->multiple())\n");
   664   fprintf(fp_cpp, "      continue;\n\n");
   665   fprintf(fp_cpp, "    for (uint j = 0; j < resourceUseCount(); j++) {\n");
   666   fprintf(fp_cpp, "      const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
   667   fprintf(fp_cpp, "      if (currUse->multiple())\n");
   668   fprintf(fp_cpp, "        continue;\n\n");
   669   fprintf(fp_cpp, "      if (predUse->used() & currUse->used()) {\n");
   670   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
   671   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
   672   fprintf(fp_cpp, "        for ( y <<= start; x.overlaps(y); start++ )\n");
   673   fprintf(fp_cpp, "          y <<= 1;\n");
   674   fprintf(fp_cpp, "      }\n");
   675   fprintf(fp_cpp, "    }\n");
   676   fprintf(fp_cpp, "  }\n\n");
   677   fprintf(fp_cpp, "  // There is the potential for overlap\n");
   678   fprintf(fp_cpp, "  return (start);\n");
   679   fprintf(fp_cpp, "}\n\n");
   680   fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
   681   fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
   682   fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
   683   fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
   684   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
   685   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
   686   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
   687   fprintf(fp_cpp, "      uint min_delay = %d;\n",
   688     _pipeline->_maxcycleused+1);
   689   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
   690   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   691   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
   692   fprintf(fp_cpp, "        uint curr_delay = delay;\n");
   693   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
   694   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
   695   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
   696   fprintf(fp_cpp, "          for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
   697   fprintf(fp_cpp, "            y <<= 1;\n");
   698   fprintf(fp_cpp, "        }\n");
   699   fprintf(fp_cpp, "        if (min_delay > curr_delay)\n          min_delay = curr_delay;\n");
   700   fprintf(fp_cpp, "      }\n");
   701   fprintf(fp_cpp, "      if (delay < min_delay)\n      delay = min_delay;\n");
   702   fprintf(fp_cpp, "    }\n");
   703   fprintf(fp_cpp, "    else {\n");
   704   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   705   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
   706   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
   707   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
   708   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
   709   fprintf(fp_cpp, "          for ( y <<= delay; x.overlaps(y); delay++ )\n");
   710   fprintf(fp_cpp, "            y <<= 1;\n");
   711   fprintf(fp_cpp, "        }\n");
   712   fprintf(fp_cpp, "      }\n");
   713   fprintf(fp_cpp, "    }\n");
   714   fprintf(fp_cpp, "  }\n\n");
   715   fprintf(fp_cpp, "  return (delay);\n");
   716   fprintf(fp_cpp, "}\n\n");
   717   fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
   718   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
   719   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
   720   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
   721   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
   722   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   723   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
   724   fprintf(fp_cpp, "        if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
   725   fprintf(fp_cpp, "          currUse->_used |= (1 << j);\n");
   726   fprintf(fp_cpp, "          _resources_used |= (1 << j);\n");
   727   fprintf(fp_cpp, "          currUse->_mask.Or(predUse->_mask);\n");
   728   fprintf(fp_cpp, "          break;\n");
   729   fprintf(fp_cpp, "        }\n");
   730   fprintf(fp_cpp, "      }\n");
   731   fprintf(fp_cpp, "    }\n");
   732   fprintf(fp_cpp, "    else {\n");
   733   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   734   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
   735   fprintf(fp_cpp, "        currUse->_used |= (1 << j);\n");
   736   fprintf(fp_cpp, "        _resources_used |= (1 << j);\n");
   737   fprintf(fp_cpp, "        currUse->_mask.Or(predUse->_mask);\n");
   738   fprintf(fp_cpp, "      }\n");
   739   fprintf(fp_cpp, "    }\n");
   740   fprintf(fp_cpp, "  }\n");
   741   fprintf(fp_cpp, "}\n\n");
   743   fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
   744   fprintf(fp_cpp, "  int const default_latency = 1;\n");
   745   fprintf(fp_cpp, "\n");
   746 #if 0
   747   fprintf(fp_cpp, "#ifndef PRODUCT\n");
   748   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   749   fprintf(fp_cpp, "    tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
   750   fprintf(fp_cpp, "  }\n");
   751   fprintf(fp_cpp, "#endif\n\n");
   752 #endif
   753   fprintf(fp_cpp, "  assert(this, \"NULL pipeline info\");\n");
   754   fprintf(fp_cpp, "  assert(pred, \"NULL predecessor pipline info\");\n\n");
   755   fprintf(fp_cpp, "  if (pred->hasFixedLatency())\n    return (pred->fixedLatency());\n\n");
   756   fprintf(fp_cpp, "  // If this is not an operand, then assume a dependence with 0 latency\n");
   757   fprintf(fp_cpp, "  if (opnd > _read_stage_count)\n    return (0);\n\n");
   758   fprintf(fp_cpp, "  uint writeStage = pred->_write_stage;\n");
   759   fprintf(fp_cpp, "  uint readStage  = _read_stages[opnd-1];\n");
   760 #if 0
   761   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   762   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   763   fprintf(fp_cpp, "    tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
   764   fprintf(fp_cpp, "  }\n");
   765   fprintf(fp_cpp, "#endif\n\n");
   766 #endif
   767   fprintf(fp_cpp, "\n");
   768   fprintf(fp_cpp, "  if (writeStage == stage_undefined || readStage == stage_undefined)\n");
   769   fprintf(fp_cpp, "    return (default_latency);\n");
   770   fprintf(fp_cpp, "\n");
   771   fprintf(fp_cpp, "  int delta = writeStage - readStage;\n");
   772   fprintf(fp_cpp, "  if (delta < 0) delta = 0;\n\n");
   773 #if 0
   774   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   775   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   776   fprintf(fp_cpp, "    tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
   777   fprintf(fp_cpp, "  }\n");
   778   fprintf(fp_cpp, "#endif\n\n");
   779 #endif
   780   fprintf(fp_cpp, "  return (delta);\n");
   781   fprintf(fp_cpp, "}\n\n");
   783   if (!_pipeline)
   784     /* Do Nothing */;
   786   else if (_pipeline->_maxcycleused <=
   787 #ifdef SPARC
   788     64
   789 #else
   790     32
   791 #endif
   792       ) {
   793     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   794     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
   795     fprintf(fp_cpp, "}\n\n");
   796     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   797     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
   798     fprintf(fp_cpp, "}\n\n");
   799   }
   800   else {
   801     uint l;
   802     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
   803     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   804     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
   805     for (l = 1; l <= masklen; l++)
   806       fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
   807     fprintf(fp_cpp, ");\n");
   808     fprintf(fp_cpp, "}\n\n");
   809     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   810     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
   811     for (l = 1; l <= masklen; l++)
   812       fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
   813     fprintf(fp_cpp, ");\n");
   814     fprintf(fp_cpp, "}\n\n");
   815     fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
   816     for (l = 1; l <= masklen; l++)
   817       fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
   818     fprintf(fp_cpp, "\n}\n\n");
   819   }
   821   /* Get the length of all the resource names */
   822   for (_pipeline->_reslist.reset(), resourcenamelen = 0;
   823        (resourcename = _pipeline->_reslist.iter()) != NULL;
   824        resourcenamelen += (int)strlen(resourcename));
   826   // Create the pipeline class description
   828   fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
   829   fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
   831   fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
   832   for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
   833     fprintf(fp_cpp, "  Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
   834     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
   835     for (int i2 = masklen-1; i2 >= 0; i2--)
   836       fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
   837     fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
   838   }
   839   fprintf(fp_cpp, "};\n\n");
   841   fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
   842     _pipeline->_rescount);
   844   for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
   845     fprintf(fp_cpp, "\n");
   846     fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
   847     PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
   848     int maxWriteStage = -1;
   849     int maxMoreInstrs = 0;
   850     int paramcount = 0;
   851     int i = 0;
   852     const char *paramname;
   853     int resource_count = (_pipeline->_rescount + 3) >> 2;
   855     // Scan the operands, looking for last output stage and number of inputs
   856     for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
   857       const PipeClassOperandForm *pipeopnd =
   858           (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   859       if (pipeopnd) {
   860         if (pipeopnd->_iswrite) {
   861            int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
   862            int moreinsts = pipeopnd->_more_instrs;
   863           if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
   864             maxWriteStage = stagenum;
   865             maxMoreInstrs = moreinsts;
   866           }
   867         }
   868       }
   870       if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
   871         paramcount++;
   872     }
   874     // Create the list of stages for the operands that are read
   875     // Note that we will build a NameList to reduce the number of copies
   877     int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
   879     int pipeline_res_stages_index = pipeline_res_stages_initializer(
   880       fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
   882     int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
   883       fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
   885     int pipeline_res_mask_index = pipeline_res_mask_initializer(
   886       fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
   888 #if 0
   889     // Process the Resources
   890     const PipeClassResourceForm *piperesource;
   892     unsigned resources_used = 0;
   893     unsigned exclusive_resources_used = 0;
   894     unsigned resource_groups = 0;
   895     for (pipeclass->_resUsage.reset();
   896          (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   897       int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   898       if (used_mask)
   899         resource_groups++;
   900       resources_used |= used_mask;
   901       if ((used_mask & (used_mask-1)) == 0)
   902         exclusive_resources_used |= used_mask;
   903     }
   905     if (resource_groups > 0) {
   906       fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
   907         pipeclass->_num, resource_groups);
   908       for (pipeclass->_resUsage.reset(), i = 1;
   909            (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
   910            i++ ) {
   911         int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   912         if (used_mask) {
   913           fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
   914         }
   915       }
   916       fprintf(fp_cpp, "};\n\n");
   917     }
   918 #endif
   920     // Create the pipeline class description
   921     fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
   922       pipeclass->_num);
   923     if (maxWriteStage < 0)
   924       fprintf(fp_cpp, "(uint)stage_undefined");
   925     else if (maxMoreInstrs == 0)
   926       fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
   927     else
   928       fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
   929     fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
   930       paramcount,
   931       pipeclass->hasFixedLatency() ? "true" : "false",
   932       pipeclass->fixedLatency(),
   933       pipeclass->InstructionCount(),
   934       pipeclass->hasBranchDelay() ? "true" : "false",
   935       pipeclass->hasMultipleBundles() ? "true" : "false",
   936       pipeclass->forceSerialization() ? "true" : "false",
   937       pipeclass->mayHaveNoCode() ? "true" : "false" );
   938     if (paramcount > 0) {
   939       fprintf(fp_cpp, "\n  (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
   940         pipeline_reads_index+1);
   941     }
   942     else
   943       fprintf(fp_cpp, " NULL,");
   944     fprintf(fp_cpp, "  (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
   945       pipeline_res_stages_index+1);
   946     fprintf(fp_cpp, "  (uint * const) pipeline_res_cycles_%03d,\n",
   947       pipeline_res_cycles_index+1);
   948     fprintf(fp_cpp, "  Pipeline_Use(%s, (Pipeline_Use_Element *)",
   949       pipeline_res_args.name(pipeline_res_mask_index));
   950     if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
   951       fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
   952         pipeline_res_mask_index+1);
   953     else
   954       fprintf(fp_cpp, "NULL");
   955     fprintf(fp_cpp, "));\n");
   956   }
   958   // Generate the Node::latency method if _pipeline defined
   959   fprintf(fp_cpp, "\n");
   960   fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
   961   fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
   962   if (_pipeline) {
   963 #if 0
   964     fprintf(fp_cpp, "#ifndef PRODUCT\n");
   965     fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
   966     fprintf(fp_cpp, "    tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
   967     fprintf(fp_cpp, " }\n");
   968     fprintf(fp_cpp, "#endif\n");
   969 #endif
   970     fprintf(fp_cpp, "  uint j;\n");
   971     fprintf(fp_cpp, "  // verify in legal range for inputs\n");
   972     fprintf(fp_cpp, "  assert(i < len(), \"index not in range\");\n\n");
   973     fprintf(fp_cpp, "  // verify input is not null\n");
   974     fprintf(fp_cpp, "  Node *pred = in(i);\n");
   975     fprintf(fp_cpp, "  if (!pred)\n    return %d;\n\n",
   976       non_operand_latency);
   977     fprintf(fp_cpp, "  if (pred->is_Proj())\n    pred = pred->in(0);\n\n");
   978     fprintf(fp_cpp, "  // if either node does not have pipeline info, use default\n");
   979     fprintf(fp_cpp, "  const Pipeline *predpipe = pred->pipeline();\n");
   980     fprintf(fp_cpp, "  assert(predpipe, \"no predecessor pipeline info\");\n\n");
   981     fprintf(fp_cpp, "  if (predpipe->hasFixedLatency())\n    return predpipe->fixedLatency();\n\n");
   982     fprintf(fp_cpp, "  const Pipeline *currpipe = pipeline();\n");
   983     fprintf(fp_cpp, "  assert(currpipe, \"no pipeline info\");\n\n");
   984     fprintf(fp_cpp, "  if (!is_Mach())\n    return %d;\n\n",
   985       node_latency);
   986     fprintf(fp_cpp, "  const MachNode *m = as_Mach();\n");
   987     fprintf(fp_cpp, "  j = m->oper_input_base();\n");
   988     fprintf(fp_cpp, "  if (i < j)\n    return currpipe->functional_unit_latency(%d, predpipe);\n\n",
   989       non_operand_latency);
   990     fprintf(fp_cpp, "  // determine which operand this is in\n");
   991     fprintf(fp_cpp, "  uint n = m->num_opnds();\n");
   992     fprintf(fp_cpp, "  int delta = %d;\n\n",
   993       non_operand_latency);
   994     fprintf(fp_cpp, "  uint k;\n");
   995     fprintf(fp_cpp, "  for (k = 1; k < n; k++) {\n");
   996     fprintf(fp_cpp, "    j += m->_opnds[k]->num_edges();\n");
   997     fprintf(fp_cpp, "    if (i < j)\n");
   998     fprintf(fp_cpp, "      break;\n");
   999     fprintf(fp_cpp, "  }\n");
  1000     fprintf(fp_cpp, "  if (k < n)\n");
  1001     fprintf(fp_cpp, "    delta = currpipe->operand_latency(k,predpipe);\n\n");
  1002     fprintf(fp_cpp, "  return currpipe->functional_unit_latency(delta, predpipe);\n");
  1004   else {
  1005     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
  1006     fprintf(fp_cpp, "  return %d;\n",
  1007       non_operand_latency);
  1009   fprintf(fp_cpp, "}\n\n");
  1011   // Output the list of nop nodes
  1012   fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
  1013   const char *nop;
  1014   int nopcnt = 0;
  1015   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
  1017   fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d], Compile *C) {\n", nopcnt);
  1018   int i = 0;
  1019   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
  1020     fprintf(fp_cpp, "  nop_list[%d] = (MachNode *) new (C) %sNode();\n", i, nop);
  1022   fprintf(fp_cpp, "};\n\n");
  1023   fprintf(fp_cpp, "#ifndef PRODUCT\n");
  1024   fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n");
  1025   fprintf(fp_cpp, "  static const char * bundle_flags[] = {\n");
  1026   fprintf(fp_cpp, "    \"\",\n");
  1027   fprintf(fp_cpp, "    \"use nop delay\",\n");
  1028   fprintf(fp_cpp, "    \"use unconditional delay\",\n");
  1029   fprintf(fp_cpp, "    \"use conditional delay\",\n");
  1030   fprintf(fp_cpp, "    \"used in conditional delay\",\n");
  1031   fprintf(fp_cpp, "    \"used in unconditional delay\",\n");
  1032   fprintf(fp_cpp, "    \"used in all conditional delays\",\n");
  1033   fprintf(fp_cpp, "  };\n\n");
  1035   fprintf(fp_cpp, "  static const char *resource_names[%d] = {", _pipeline->_rescount);
  1036   for (i = 0; i < _pipeline->_rescount; i++)
  1037     fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
  1038   fprintf(fp_cpp, "};\n\n");
  1040   // See if the same string is in the table
  1041   fprintf(fp_cpp, "  bool needs_comma = false;\n\n");
  1042   fprintf(fp_cpp, "  if (_flags) {\n");
  1043   fprintf(fp_cpp, "    st->print(\"%%s\", bundle_flags[_flags]);\n");
  1044   fprintf(fp_cpp, "    needs_comma = true;\n");
  1045   fprintf(fp_cpp, "  };\n");
  1046   fprintf(fp_cpp, "  if (instr_count()) {\n");
  1047   fprintf(fp_cpp, "    st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
  1048   fprintf(fp_cpp, "    needs_comma = true;\n");
  1049   fprintf(fp_cpp, "  };\n");
  1050   fprintf(fp_cpp, "  uint r = resources_used();\n");
  1051   fprintf(fp_cpp, "  if (r) {\n");
  1052   fprintf(fp_cpp, "    st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
  1053   fprintf(fp_cpp, "    for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
  1054   fprintf(fp_cpp, "      if ((r & (1 << i)) != 0)\n");
  1055   fprintf(fp_cpp, "        st->print(\" %%s\", resource_names[i]);\n");
  1056   fprintf(fp_cpp, "    needs_comma = true;\n");
  1057   fprintf(fp_cpp, "  };\n");
  1058   fprintf(fp_cpp, "  st->print(\"\\n\");\n");
  1059   fprintf(fp_cpp, "}\n");
  1060   fprintf(fp_cpp, "#endif\n");
  1063 // ---------------------------------------------------------------------------
  1064 //------------------------------Utilities to build Instruction Classes--------
  1065 // ---------------------------------------------------------------------------
  1067 static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
  1068   fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
  1069           node, regMask);
  1072 static void print_block_index(FILE *fp, int inst_position) {
  1073   assert( inst_position >= 0, "Instruction number less than zero");
  1074   fprintf(fp, "block_index");
  1075   if( inst_position != 0 ) {
  1076     fprintf(fp, " - %d", inst_position);
  1080 // Scan the peepmatch and output a test for each instruction
  1081 static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
  1082   int         parent        = -1;
  1083   int         inst_position = 0;
  1084   const char* inst_name     = NULL;
  1085   int         input         = 0;
  1086   fprintf(fp, "  // Check instruction sub-tree\n");
  1087   pmatch->reset();
  1088   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
  1089        inst_name != NULL;
  1090        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
  1091     // If this is not a placeholder
  1092     if( ! pmatch->is_placeholder() ) {
  1093       // Define temporaries 'inst#', based on parent and parent's input index
  1094       if( parent != -1 ) {                // root was initialized
  1095         fprintf(fp, "  // Identify previous instruction if inside this block\n");
  1096         fprintf(fp, "  if( ");
  1097         print_block_index(fp, inst_position);
  1098         fprintf(fp, " > 0 ) {\n    Node *n = block->get_node(");
  1099         print_block_index(fp, inst_position);
  1100         fprintf(fp, ");\n    inst%d = (n->is_Mach()) ? ", inst_position);
  1101         fprintf(fp, "n->as_Mach() : NULL;\n  }\n");
  1104       // When not the root
  1105       // Test we have the correct instruction by comparing the rule.
  1106       if( parent != -1 ) {
  1107         fprintf(fp, "  matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
  1108                 inst_position, inst_position, inst_name);
  1110     } else {
  1111       // Check that user did not try to constrain a placeholder
  1112       assert( ! pconstraint->constrains_instruction(inst_position),
  1113               "fatal(): Can not constrain a placeholder instruction");
  1118 // Build mapping for register indices, num_edges to input
  1119 static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
  1120   int         parent        = -1;
  1121   int         inst_position = 0;
  1122   const char* inst_name     = NULL;
  1123   int         input         = 0;
  1124   fprintf(fp, "      // Build map to register info\n");
  1125   pmatch->reset();
  1126   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
  1127        inst_name != NULL;
  1128        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
  1129     // If this is not a placeholder
  1130     if( ! pmatch->is_placeholder() ) {
  1131       // Define temporaries 'inst#', based on self's inst_position
  1132       InstructForm *inst = globals[inst_name]->is_instruction();
  1133       if( inst != NULL ) {
  1134         char inst_prefix[]  = "instXXXX_";
  1135         sprintf(inst_prefix, "inst%d_",   inst_position);
  1136         char receiver[]     = "instXXXX->";
  1137         sprintf(receiver,    "inst%d->", inst_position);
  1138         inst->index_temps( fp, globals, inst_prefix, receiver );
  1144 // Generate tests for the constraints
  1145 static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
  1146   fprintf(fp, "\n");
  1147   fprintf(fp, "      // Check constraints on sub-tree-leaves\n");
  1149   // Build mapping from num_edges to local variables
  1150   build_instruction_index_mapping( fp, globals, pmatch );
  1152   // Build constraint tests
  1153   if( pconstraint != NULL ) {
  1154     fprintf(fp, "      matches = matches &&");
  1155     bool   first_constraint = true;
  1156     while( pconstraint != NULL ) {
  1157       // indentation and connecting '&&'
  1158       const char *indentation = "      ";
  1159       fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : "  "));
  1161       // Only have '==' relation implemented
  1162       if( strcmp(pconstraint->_relation,"==") != 0 ) {
  1163         assert( false, "Unimplemented()" );
  1166       // LEFT
  1167       int left_index       = pconstraint->_left_inst;
  1168       const char *left_op  = pconstraint->_left_op;
  1169       // Access info on the instructions whose operands are compared
  1170       InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
  1171       assert( inst_left, "Parser should guaranty this is an instruction");
  1172       int left_op_base  = inst_left->oper_input_base(globals);
  1173       // Access info on the operands being compared
  1174       int left_op_index  = inst_left->operand_position(left_op, Component::USE);
  1175       if( left_op_index == -1 ) {
  1176         left_op_index = inst_left->operand_position(left_op, Component::DEF);
  1177         if( left_op_index == -1 ) {
  1178           left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
  1181       assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
  1182       ComponentList components_left = inst_left->_components;
  1183       const char *left_comp_type = components_left.at(left_op_index)->_type;
  1184       OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
  1185       Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
  1188       // RIGHT
  1189       int right_op_index = -1;
  1190       int right_index      = pconstraint->_right_inst;
  1191       const char *right_op = pconstraint->_right_op;
  1192       if( right_index != -1 ) { // Match operand
  1193         // Access info on the instructions whose operands are compared
  1194         InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
  1195         assert( inst_right, "Parser should guaranty this is an instruction");
  1196         int right_op_base = inst_right->oper_input_base(globals);
  1197         // Access info on the operands being compared
  1198         right_op_index = inst_right->operand_position(right_op, Component::USE);
  1199         if( right_op_index == -1 ) {
  1200           right_op_index = inst_right->operand_position(right_op, Component::DEF);
  1201           if( right_op_index == -1 ) {
  1202             right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
  1205         assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
  1206         ComponentList components_right = inst_right->_components;
  1207         const char *right_comp_type = components_right.at(right_op_index)->_type;
  1208         OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
  1209         Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
  1210         assert( right_interface_type == left_interface_type, "Both must be same interface");
  1212       } else {                  // Else match register
  1213         // assert( false, "should be a register" );
  1216       //
  1217       // Check for equivalence
  1218       //
  1219       // fprintf(fp, "phase->eqv( ");
  1220       // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
  1221       //         left_index,  left_op_base,  left_op_index,  left_op,
  1222       //         right_index, right_op_base, right_op_index, right_op );
  1223       // fprintf(fp, ")");
  1224       //
  1225       switch( left_interface_type ) {
  1226       case Form::register_interface: {
  1227         // Check that they are allocated to the same register
  1228         // Need parameter for index position if not result operand
  1229         char left_reg_index[] = ",instXXXX_idxXXXX";
  1230         if( left_op_index != 0 ) {
  1231           assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
  1232           // Must have index into operands
  1233           sprintf(left_reg_index,",inst%d_idx%d", (int)left_index, left_op_index);
  1234         } else {
  1235           strcpy(left_reg_index, "");
  1237         fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */",
  1238                 left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
  1239         fprintf(fp, " == ");
  1241         if( right_index != -1 ) {
  1242           char right_reg_index[18] = ",instXXXX_idxXXXX";
  1243           if( right_op_index != 0 ) {
  1244             assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
  1245             // Must have index into operands
  1246             sprintf(right_reg_index,",inst%d_idx%d", (int)right_index, right_op_index);
  1247           } else {
  1248             strcpy(right_reg_index, "");
  1250           fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
  1251                   right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
  1252         } else {
  1253           fprintf(fp, "%s_enc", right_op );
  1255         fprintf(fp,")");
  1256         break;
  1258       case Form::constant_interface: {
  1259         // Compare the '->constant()' values
  1260         fprintf(fp, "(inst%d->_opnds[%d]->constant()  /* %d.%s */",
  1261                 left_index,  left_op_index,  left_index, left_op );
  1262         fprintf(fp, " == ");
  1263         fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
  1264                 right_index, right_op, right_index, right_op_index );
  1265         break;
  1267       case Form::memory_interface: {
  1268         // Compare 'base', 'index', 'scale', and 'disp'
  1269         // base
  1270         fprintf(fp, "( \n");
  1271         fprintf(fp, "  (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$base */",
  1272           left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
  1273         fprintf(fp, " == ");
  1274         fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
  1275                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
  1276         // index
  1277         fprintf(fp, "  (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$index */",
  1278                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
  1279         fprintf(fp, " == ");
  1280         fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
  1281                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
  1282         // scale
  1283         fprintf(fp, "  (inst%d->_opnds[%d]->scale()  /* %d.%s$$scale */",
  1284                 left_index,  left_op_index,  left_index, left_op );
  1285         fprintf(fp, " == ");
  1286         fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
  1287                 right_index, right_op, right_index, right_op_index );
  1288         // disp
  1289         fprintf(fp, "  (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$disp */",
  1290                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
  1291         fprintf(fp, " == ");
  1292         fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
  1293                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
  1294         fprintf(fp, ") \n");
  1295         break;
  1297       case Form::conditional_interface: {
  1298         // Compare the condition code being tested
  1299         assert( false, "Unimplemented()" );
  1300         break;
  1302       default: {
  1303         assert( false, "ShouldNotReachHere()" );
  1304         break;
  1308       // Advance to next constraint
  1309       pconstraint = pconstraint->next();
  1310       first_constraint = false;
  1313     fprintf(fp, ";\n");
  1317 // // EXPERIMENTAL -- TEMPORARY code
  1318 // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
  1319 //   int op_index = instr->operand_position(op_name, Component::USE);
  1320 //   if( op_index == -1 ) {
  1321 //     op_index = instr->operand_position(op_name, Component::DEF);
  1322 //     if( op_index == -1 ) {
  1323 //       op_index = instr->operand_position(op_name, Component::USE_DEF);
  1324 //     }
  1325 //   }
  1326 //   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
  1327 //
  1328 //   ComponentList components_right = instr->_components;
  1329 //   char *right_comp_type = components_right.at(op_index)->_type;
  1330 //   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
  1331 //   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
  1332 //
  1333 //   return;
  1334 // }
  1336 // Construct the new sub-tree
  1337 static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
  1338   fprintf(fp, "      // IF instructions and constraints matched\n");
  1339   fprintf(fp, "      if( matches ) {\n");
  1340   fprintf(fp, "        // generate the new sub-tree\n");
  1341   fprintf(fp, "        assert( true, \"Debug stopping point\");\n");
  1342   if( preplace != NULL ) {
  1343     // Get the root of the new sub-tree
  1344     const char *root_inst = NULL;
  1345     preplace->next_instruction(root_inst);
  1346     InstructForm *root_form = globals[root_inst]->is_instruction();
  1347     assert( root_form != NULL, "Replacement instruction was not previously defined");
  1348     fprintf(fp, "        %sNode *root = new (C) %sNode();\n", root_inst, root_inst);
  1350     int         inst_num;
  1351     const char *op_name;
  1352     int         opnds_index = 0;            // define result operand
  1353     // Then install the use-operands for the new sub-tree
  1354     // preplace->reset();             // reset breaks iteration
  1355     for( preplace->next_operand( inst_num, op_name );
  1356          op_name != NULL;
  1357          preplace->next_operand( inst_num, op_name ) ) {
  1358       InstructForm *inst_form;
  1359       inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
  1360       assert( inst_form, "Parser should guaranty this is an instruction");
  1361       int inst_op_num = inst_form->operand_position(op_name, Component::USE);
  1362       if( inst_op_num == NameList::Not_in_list )
  1363         inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
  1364       assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
  1365       // find the name of the OperandForm from the local name
  1366       const Form *form   = inst_form->_localNames[op_name];
  1367       OperandForm  *op_form = form->is_operand();
  1368       if( opnds_index == 0 ) {
  1369         // Initial setup of new instruction
  1370         fprintf(fp, "        // ----- Initial setup -----\n");
  1371         //
  1372         // Add control edge for this node
  1373         fprintf(fp, "        root->add_req(_in[0]);                // control edge\n");
  1374         // Add unmatched edges from root of match tree
  1375         int op_base = root_form->oper_input_base(globals);
  1376         for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
  1377           fprintf(fp, "        root->add_req(inst%d->in(%d));        // unmatched ideal edge\n",
  1378                                           inst_num, unmatched_edge);
  1380         // If new instruction captures bottom type
  1381         if( root_form->captures_bottom_type(globals) ) {
  1382           // Get bottom type from instruction whose result we are replacing
  1383           fprintf(fp, "        root->_bottom_type = inst%d->bottom_type();\n", inst_num);
  1385         // Define result register and result operand
  1386         fprintf(fp, "        ra_->add_reference(root, inst%d);\n", inst_num);
  1387         fprintf(fp, "        ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
  1388         fprintf(fp, "        ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
  1389         fprintf(fp, "        root->_opnds[0] = inst%d->_opnds[0]->clone(C); // result\n", inst_num);
  1390         fprintf(fp, "        // ----- Done with initial setup -----\n");
  1391       } else {
  1392         if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
  1393           // Do not have ideal edges for constants after matching
  1394           fprintf(fp, "        for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
  1395                   inst_op_num, inst_num, inst_op_num,
  1396                   inst_op_num, inst_num, inst_op_num+1, inst_op_num );
  1397           fprintf(fp, "          root->add_req( inst%d->in(x%d) );\n",
  1398                   inst_num, inst_op_num );
  1399         } else {
  1400           fprintf(fp, "        // no ideal edge for constants after matching\n");
  1402         fprintf(fp, "        root->_opnds[%d] = inst%d->_opnds[%d]->clone(C);\n",
  1403                 opnds_index, inst_num, inst_op_num );
  1405       ++opnds_index;
  1407   }else {
  1408     // Replacing subtree with empty-tree
  1409     assert( false, "ShouldNotReachHere();");
  1412   // Return the new sub-tree
  1413   fprintf(fp, "        deleted = %d;\n", max_position+1 /*zero to one based*/);
  1414   fprintf(fp, "        return root;  // return new root;\n");
  1415   fprintf(fp, "      }\n");
  1419 // Define the Peephole method for an instruction node
  1420 void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
  1421   // Generate Peephole function header
  1422   fprintf(fp, "MachNode *%sNode::peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C ) {\n", node->_ident);
  1423   fprintf(fp, "  bool  matches = true;\n");
  1425   // Identify the maximum instruction position,
  1426   // generate temporaries that hold current instruction
  1427   //
  1428   //   MachNode  *inst0 = NULL;
  1429   //   ...
  1430   //   MachNode  *instMAX = NULL;
  1431   //
  1432   int max_position = 0;
  1433   Peephole *peep;
  1434   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
  1435     PeepMatch *pmatch = peep->match();
  1436     assert( pmatch != NULL, "fatal(), missing peepmatch rule");
  1437     if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
  1439   for( int i = 0; i <= max_position; ++i ) {
  1440     if( i == 0 ) {
  1441       fprintf(fp, "  MachNode *inst0 = this;\n");
  1442     } else {
  1443       fprintf(fp, "  MachNode *inst%d = NULL;\n", i);
  1447   // For each peephole rule in architecture description
  1448   //   Construct a test for the desired instruction sub-tree
  1449   //   then check the constraints
  1450   //   If these match, Generate the new subtree
  1451   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
  1452     int         peephole_number = peep->peephole_number();
  1453     PeepMatch      *pmatch      = peep->match();
  1454     PeepConstraint *pconstraint = peep->constraints();
  1455     PeepReplace    *preplace    = peep->replacement();
  1457     // Root of this peephole is the current MachNode
  1458     assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
  1459             "root of PeepMatch does not match instruction");
  1461     // Make each peephole rule individually selectable
  1462     fprintf(fp, "  if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
  1463     fprintf(fp, "    matches = true;\n");
  1464     // Scan the peepmatch and output a test for each instruction
  1465     check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
  1467     // Check constraints and build replacement inside scope
  1468     fprintf(fp, "    // If instruction subtree matches\n");
  1469     fprintf(fp, "    if( matches ) {\n");
  1471     // Generate tests for the constraints
  1472     check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
  1474     // Construct the new sub-tree
  1475     generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
  1477     // End of scope for this peephole's constraints
  1478     fprintf(fp, "    }\n");
  1479     // Closing brace '}' to make each peephole rule individually selectable
  1480     fprintf(fp, "  } // end of peephole rule #%d\n", peephole_number);
  1481     fprintf(fp, "\n");
  1484   fprintf(fp, "  return NULL;  // No peephole rules matched\n");
  1485   fprintf(fp, "}\n");
  1486   fprintf(fp, "\n");
  1489 // Define the Expand method for an instruction node
  1490 void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
  1491   unsigned      cnt  = 0;          // Count nodes we have expand into
  1492   unsigned      i;
  1494   // Generate Expand function header
  1495   fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
  1496   fprintf(fp, "  Compile* C = Compile::current();\n");
  1497   // Generate expand code
  1498   if( node->expands() ) {
  1499     const char   *opid;
  1500     int           new_pos, exp_pos;
  1501     const char   *new_id   = NULL;
  1502     const Form   *frm      = NULL;
  1503     InstructForm *new_inst = NULL;
  1504     OperandForm  *new_oper = NULL;
  1505     unsigned      numo     = node->num_opnds() +
  1506                                 node->_exprule->_newopers.count();
  1508     // If necessary, generate any operands created in expand rule
  1509     if (node->_exprule->_newopers.count()) {
  1510       for(node->_exprule->_newopers.reset();
  1511           (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
  1512         frm = node->_localNames[new_id];
  1513         assert(frm, "Invalid entry in new operands list of expand rule");
  1514         new_oper = frm->is_operand();
  1515         char *tmp = (char *)node->_exprule->_newopconst[new_id];
  1516         if (tmp == NULL) {
  1517           fprintf(fp,"  MachOper *op%d = new (C) %sOper();\n",
  1518                   cnt, new_oper->_ident);
  1520         else {
  1521           fprintf(fp,"  MachOper *op%d = new (C) %sOper(%s);\n",
  1522                   cnt, new_oper->_ident, tmp);
  1526     cnt = 0;
  1527     // Generate the temps to use for DAG building
  1528     for(i = 0; i < numo; i++) {
  1529       if (i < node->num_opnds()) {
  1530         fprintf(fp,"  MachNode *tmp%d = this;\n", i);
  1532       else {
  1533         fprintf(fp,"  MachNode *tmp%d = NULL;\n", i);
  1536     // Build mapping from num_edges to local variables
  1537     fprintf(fp,"  unsigned num0 = 0;\n");
  1538     for( i = 1; i < node->num_opnds(); i++ ) {
  1539       fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
  1542     // Build a mapping from operand index to input edges
  1543     fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
  1545     // The order in which the memory input is added to a node is very
  1546     // strange.  Store nodes get a memory input before Expand is
  1547     // called and other nodes get it afterwards or before depending on
  1548     // match order so oper_input_base is wrong during expansion.  This
  1549     // code adjusts it so that expansion will work correctly.
  1550     int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
  1551     if (has_memory_edge) {
  1552       fprintf(fp,"  if (mem == (Node*)1) {\n");
  1553       fprintf(fp,"    idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
  1554       fprintf(fp,"  }\n");
  1557     for( i = 0; i < node->num_opnds(); i++ ) {
  1558       fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
  1559               i+1,i,i);
  1562     // Declare variable to hold root of expansion
  1563     fprintf(fp,"  MachNode *result = NULL;\n");
  1565     // Iterate over the instructions 'node' expands into
  1566     ExpandRule  *expand       = node->_exprule;
  1567     NameAndList *expand_instr = NULL;
  1568     for(expand->reset_instructions();
  1569         (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
  1570       new_id = expand_instr->name();
  1572       InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
  1574       if (!expand_instruction) {
  1575         globalAD->syntax_err(node->_linenum, "In %s: instruction %s used in expand not declared\n",
  1576                              node->_ident, new_id);
  1577         continue;
  1580       if (expand_instruction->has_temps()) {
  1581         globalAD->syntax_err(node->_linenum, "In %s: expand rules using instructs with TEMPs aren't supported: %s",
  1582                              node->_ident, new_id);
  1585       // Build the node for the instruction
  1586       fprintf(fp,"\n  %sNode *n%d = new (C) %sNode();\n", new_id, cnt, new_id);
  1587       // Add control edge for this node
  1588       fprintf(fp,"  n%d->add_req(_in[0]);\n", cnt);
  1589       // Build the operand for the value this node defines.
  1590       Form *form = (Form*)_globalNames[new_id];
  1591       assert( form, "'new_id' must be a defined form name");
  1592       // Grab the InstructForm for the new instruction
  1593       new_inst = form->is_instruction();
  1594       assert( new_inst, "'new_id' must be an instruction name");
  1595       if( node->is_ideal_if() && new_inst->is_ideal_if() ) {
  1596         fprintf(fp, "  ((MachIfNode*)n%d)->_prob = _prob;\n",cnt);
  1597         fprintf(fp, "  ((MachIfNode*)n%d)->_fcnt = _fcnt;\n",cnt);
  1600       if( node->is_ideal_fastlock() && new_inst->is_ideal_fastlock() ) {
  1601         fprintf(fp, "  ((MachFastLockNode*)n%d)->_counters = _counters;\n",cnt);
  1602         fprintf(fp, "  ((MachFastLockNode*)n%d)->_rtm_counters = _rtm_counters;\n",cnt);
  1603         fprintf(fp, "  ((MachFastLockNode*)n%d)->_stack_rtm_counters = _stack_rtm_counters;\n",cnt);
  1606       // Fill in the bottom_type where requested
  1607       if (node->captures_bottom_type(_globalNames) &&
  1608           new_inst->captures_bottom_type(_globalNames)) {
  1609         fprintf(fp, "  ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt);
  1612       const char *resultOper = new_inst->reduce_result();
  1613       fprintf(fp,"  n%d->set_opnd_array(0, state->MachOperGenerator( %s, C ));\n",
  1614               cnt, machOperEnum(resultOper));
  1616       // get the formal operand NameList
  1617       NameList *formal_lst = &new_inst->_parameters;
  1618       formal_lst->reset();
  1620       // Handle any memory operand
  1621       int memory_operand = new_inst->memory_operand(_globalNames);
  1622       if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
  1623         int node_mem_op = node->memory_operand(_globalNames);
  1624         assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
  1625                 "expand rule member needs memory but top-level inst doesn't have any" );
  1626         if (has_memory_edge) {
  1627           // Copy memory edge
  1628           fprintf(fp,"  if (mem != (Node*)1) {\n");
  1629           fprintf(fp,"    n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
  1630           fprintf(fp,"  }\n");
  1634       // Iterate over the new instruction's operands
  1635       int prev_pos = -1;
  1636       for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
  1637         // Use 'parameter' at current position in list of new instruction's formals
  1638         // instead of 'opid' when looking up info internal to new_inst
  1639         const char *parameter = formal_lst->iter();
  1640         if (!parameter) {
  1641           globalAD->syntax_err(node->_linenum, "Operand %s of expand instruction %s has"
  1642                                " no equivalent in new instruction %s.",
  1643                                opid, node->_ident, new_inst->_ident);
  1644           assert(0, "Wrong expand");
  1647         // Check for an operand which is created in the expand rule
  1648         if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
  1649           new_pos = new_inst->operand_position(parameter,Component::USE);
  1650           exp_pos += node->num_opnds();
  1651           // If there is no use of the created operand, just skip it
  1652           if (new_pos != NameList::Not_in_list) {
  1653             //Copy the operand from the original made above
  1654             fprintf(fp,"  n%d->set_opnd_array(%d, op%d->clone(C)); // %s\n",
  1655                     cnt, new_pos, exp_pos-node->num_opnds(), opid);
  1656             // Check for who defines this operand & add edge if needed
  1657             fprintf(fp,"  if(tmp%d != NULL)\n", exp_pos);
  1658             fprintf(fp,"    n%d->add_req(tmp%d);\n", cnt, exp_pos);
  1661         else {
  1662           // Use operand name to get an index into instruction component list
  1663           // ins = (InstructForm *) _globalNames[new_id];
  1664           exp_pos = node->operand_position_format(opid);
  1665           assert(exp_pos != -1, "Bad expand rule");
  1666           if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
  1667             // For the add_req calls below to work correctly they need
  1668             // to added in the same order that a match would add them.
  1669             // This means that they would need to be in the order of
  1670             // the components list instead of the formal parameters.
  1671             // This is a sort of hidden invariant that previously
  1672             // wasn't checked and could lead to incorrectly
  1673             // constructed nodes.
  1674             syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
  1675                        node->_ident, new_inst->_ident);
  1677           prev_pos = exp_pos;
  1679           new_pos = new_inst->operand_position(parameter,Component::USE);
  1680           if (new_pos != -1) {
  1681             // Copy the operand from the ExpandNode to the new node
  1682             fprintf(fp,"  n%d->set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
  1683                     cnt, new_pos, exp_pos, opid);
  1684             // For each operand add appropriate input edges by looking at tmp's
  1685             fprintf(fp,"  if(tmp%d == this) {\n", exp_pos);
  1686             // Grab corresponding edges from ExpandNode and insert them here
  1687             fprintf(fp,"    for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
  1688             fprintf(fp,"      n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
  1689             fprintf(fp,"    }\n");
  1690             fprintf(fp,"  }\n");
  1691             // This value is generated by one of the new instructions
  1692             fprintf(fp,"  else n%d->add_req(tmp%d);\n", cnt, exp_pos);
  1696         // Update the DAG tmp's for values defined by this instruction
  1697         int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
  1698         Effect *eform = (Effect *)new_inst->_effects[parameter];
  1699         // If this operand is a definition in either an effects rule
  1700         // or a match rule
  1701         if((eform) && (is_def(eform->_use_def))) {
  1702           // Update the temp associated with this operand
  1703           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
  1705         else if( new_def_pos != -1 ) {
  1706           // Instruction defines a value but user did not declare it
  1707           // in the 'effect' clause
  1708           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
  1710       } // done iterating over a new instruction's operands
  1712       // Invoke Expand() for the newly created instruction.
  1713       fprintf(fp,"  result = n%d->Expand( state, proj_list, mem );\n", cnt);
  1714       assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
  1715     } // done iterating over new instructions
  1716     fprintf(fp,"\n");
  1717   } // done generating expand rule
  1719   // Generate projections for instruction's additional DEFs and KILLs
  1720   if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
  1721     // Get string representing the MachNode that projections point at
  1722     const char *machNode = "this";
  1723     // Generate the projections
  1724     fprintf(fp,"  // Add projection edges for additional defs or kills\n");
  1726     // Examine each component to see if it is a DEF or KILL
  1727     node->_components.reset();
  1728     // Skip the first component, if already handled as (SET dst (...))
  1729     Component *comp = NULL;
  1730     // For kills, the choice of projection numbers is arbitrary
  1731     int proj_no = 1;
  1732     bool declared_def  = false;
  1733     bool declared_kill = false;
  1735     while( (comp = node->_components.iter()) != NULL ) {
  1736       // Lookup register class associated with operand type
  1737       Form        *form = (Form*)_globalNames[comp->_type];
  1738       assert( form, "component type must be a defined form");
  1739       OperandForm *op   = form->is_operand();
  1741       if (comp->is(Component::TEMP)) {
  1742         fprintf(fp, "  // TEMP %s\n", comp->_name);
  1743         if (!declared_def) {
  1744           // Define the variable "def" to hold new MachProjNodes
  1745           fprintf(fp, "  MachTempNode *def;\n");
  1746           declared_def = true;
  1748         if (op && op->_interface && op->_interface->is_RegInterface()) {
  1749           fprintf(fp,"  def = new (C) MachTempNode(state->MachOperGenerator( %s, C ));\n",
  1750                   machOperEnum(op->_ident));
  1751           fprintf(fp,"  add_req(def);\n");
  1752           // The operand for TEMP is already constructed during
  1753           // this mach node construction, see buildMachNode().
  1754           //
  1755           // int idx  = node->operand_position_format(comp->_name);
  1756           // fprintf(fp,"  set_opnd_array(%d, state->MachOperGenerator( %s, C ));\n",
  1757           //         idx, machOperEnum(op->_ident));
  1758         } else {
  1759           assert(false, "can't have temps which aren't registers");
  1761       } else if (comp->isa(Component::KILL)) {
  1762         fprintf(fp, "  // DEF/KILL %s\n", comp->_name);
  1764         if (!declared_kill) {
  1765           // Define the variable "kill" to hold new MachProjNodes
  1766           fprintf(fp, "  MachProjNode *kill;\n");
  1767           declared_kill = true;
  1770         assert( op, "Support additional KILLS for base operands");
  1771         const char *regmask    = reg_mask(*op);
  1772         const char *ideal_type = op->ideal_type(_globalNames, _register);
  1774         if (!op->is_bound_register()) {
  1775           syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
  1776                      node->_ident, comp->_type, comp->_name);
  1779         fprintf(fp,"  kill = ");
  1780         fprintf(fp,"new (C) MachProjNode( %s, %d, (%s), Op_%s );\n",
  1781                 machNode, proj_no++, regmask, ideal_type);
  1782         fprintf(fp,"  proj_list.push(kill);\n");
  1787   if( !node->expands() && node->_matrule != NULL ) {
  1788     // Remove duplicated operands and inputs which use the same name.
  1789     // Seach through match operands for the same name usage.
  1790     uint cur_num_opnds = node->num_opnds();
  1791     if( cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds() ) {
  1792       Component *comp = NULL;
  1793       // Build mapping from num_edges to local variables
  1794       fprintf(fp,"  unsigned num0 = 0;\n");
  1795       for( i = 1; i < cur_num_opnds; i++ ) {
  1796         fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();",i,i);
  1797         fprintf(fp, " \t// %s\n", node->opnd_ident(i));
  1799       // Build a mapping from operand index to input edges
  1800       fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
  1801       for( i = 0; i < cur_num_opnds; i++ ) {
  1802         fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
  1803                 i+1,i,i);
  1806       uint new_num_opnds = 1;
  1807       node->_components.reset();
  1808       // Skip first unique operands.
  1809       for( i = 1; i < cur_num_opnds; i++ ) {
  1810         comp = node->_components.iter();
  1811         if (i != node->unique_opnds_idx(i)) {
  1812           break;
  1814         new_num_opnds++;
  1816       // Replace not unique operands with next unique operands.
  1817       for( ; i < cur_num_opnds; i++ ) {
  1818         comp = node->_components.iter();
  1819         uint j = node->unique_opnds_idx(i);
  1820         // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
  1821         if( j != node->unique_opnds_idx(j) ) {
  1822           fprintf(fp,"  set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
  1823                   new_num_opnds, i, comp->_name);
  1824           // delete not unique edges here
  1825           fprintf(fp,"  for(unsigned i = 0; i < num%d; i++) {\n", i);
  1826           fprintf(fp,"    set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
  1827           fprintf(fp,"  }\n");
  1828           fprintf(fp,"  num%d = num%d;\n", new_num_opnds, i);
  1829           fprintf(fp,"  idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
  1830           new_num_opnds++;
  1833       // delete the rest of edges
  1834       fprintf(fp,"  for(int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
  1835       fprintf(fp,"    del_req(i);\n");
  1836       fprintf(fp,"  }\n");
  1837       fprintf(fp,"  _num_opnds = %d;\n", new_num_opnds);
  1838       assert(new_num_opnds == node->num_unique_opnds(), "what?");
  1842   // If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
  1843   // NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
  1844   // There are nodes that don't use $constantablebase, but still require that it
  1845   // is an input to the node. Example: divF_reg_immN, Repl32B_imm on x86_64.
  1846   if (node->is_mach_constant() || node->needs_constant_base()) {
  1847     if (node->is_ideal_call() != Form::invalid_type &&
  1848         node->is_ideal_call() != Form::JAVA_LEAF) {
  1849       fprintf(fp, "  // MachConstantBaseNode added in matcher.\n");
  1850       _needs_clone_jvms = true;
  1851     } else {
  1852       fprintf(fp, "  add_req(C->mach_constant_base_node());\n");
  1856   fprintf(fp, "\n");
  1857   if (node->expands()) {
  1858     fprintf(fp, "  return result;\n");
  1859   } else {
  1860     fprintf(fp, "  return this;\n");
  1862   fprintf(fp, "}\n");
  1863   fprintf(fp, "\n");
  1867 //------------------------------Emit Routines----------------------------------
  1868 // Special classes and routines for defining node emit routines which output
  1869 // target specific instruction object encodings.
  1870 // Define the ___Node::emit() routine
  1871 //
  1872 // (1) void  ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1873 // (2)   // ...  encoding defined by user
  1874 // (3)
  1875 // (4) }
  1876 //
  1878 class DefineEmitState {
  1879 private:
  1880   enum reloc_format { RELOC_NONE        = -1,
  1881                       RELOC_IMMEDIATE   =  0,
  1882                       RELOC_DISP        =  1,
  1883                       RELOC_CALL_DISP   =  2 };
  1884   enum literal_status{ LITERAL_NOT_SEEN  = 0,
  1885                        LITERAL_SEEN      = 1,
  1886                        LITERAL_ACCESSED  = 2,
  1887                        LITERAL_OUTPUT    = 3 };
  1888   // Temporaries that describe current operand
  1889   bool          _cleared;
  1890   OpClassForm  *_opclass;
  1891   OperandForm  *_operand;
  1892   int           _operand_idx;
  1893   const char   *_local_name;
  1894   const char   *_operand_name;
  1895   bool          _doing_disp;
  1896   bool          _doing_constant;
  1897   Form::DataType _constant_type;
  1898   DefineEmitState::literal_status _constant_status;
  1899   DefineEmitState::literal_status _reg_status;
  1900   bool          _doing_emit8;
  1901   bool          _doing_emit_d32;
  1902   bool          _doing_emit_d16;
  1903   bool          _doing_emit_hi;
  1904   bool          _doing_emit_lo;
  1905   bool          _may_reloc;
  1906   reloc_format  _reloc_form;
  1907   const char *  _reloc_type;
  1908   bool          _processing_noninput;
  1910   NameList      _strings_to_emit;
  1912   // Stable state, set by constructor
  1913   ArchDesc     &_AD;
  1914   FILE         *_fp;
  1915   EncClass     &_encoding;
  1916   InsEncode    &_ins_encode;
  1917   InstructForm &_inst;
  1919 public:
  1920   DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
  1921                   InsEncode &ins_encode, InstructForm &inst)
  1922     : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
  1923       clear();
  1926   void clear() {
  1927     _cleared       = true;
  1928     _opclass       = NULL;
  1929     _operand       = NULL;
  1930     _operand_idx   = 0;
  1931     _local_name    = "";
  1932     _operand_name  = "";
  1933     _doing_disp    = false;
  1934     _doing_constant= false;
  1935     _constant_type = Form::none;
  1936     _constant_status = LITERAL_NOT_SEEN;
  1937     _reg_status      = LITERAL_NOT_SEEN;
  1938     _doing_emit8   = false;
  1939     _doing_emit_d32= false;
  1940     _doing_emit_d16= false;
  1941     _doing_emit_hi = false;
  1942     _doing_emit_lo = false;
  1943     _may_reloc     = false;
  1944     _reloc_form    = RELOC_NONE;
  1945     _reloc_type    = AdlcVMDeps::none_reloc_type();
  1946     _strings_to_emit.clear();
  1949   // Track necessary state when identifying a replacement variable
  1950   // @arg rep_var: The formal parameter of the encoding.
  1951   void update_state(const char *rep_var) {
  1952     // A replacement variable or one of its subfields
  1953     // Obtain replacement variable from list
  1954     if ( (*rep_var) != '$' ) {
  1955       // A replacement variable, '$' prefix
  1956       // check_rep_var( rep_var );
  1957       if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
  1958         // No state needed.
  1959         assert( _opclass == NULL,
  1960                 "'primary', 'secondary' and 'tertiary' don't follow operand.");
  1962       else if ((strcmp(rep_var, "constanttablebase") == 0) ||
  1963                (strcmp(rep_var, "constantoffset")    == 0) ||
  1964                (strcmp(rep_var, "constantaddress")   == 0)) {
  1965         if (!(_inst.is_mach_constant() || _inst.needs_constant_base())) {
  1966           _AD.syntax_err(_encoding._linenum,
  1967                          "Replacement variable %s not allowed in instruct %s (only in MachConstantNode or MachCall).\n",
  1968                          rep_var, _encoding._name);
  1971       else {
  1972         // Lookup its position in (formal) parameter list of encoding
  1973         int   param_no  = _encoding.rep_var_index(rep_var);
  1974         if ( param_no == -1 ) {
  1975           _AD.syntax_err( _encoding._linenum,
  1976                           "Replacement variable %s not found in enc_class %s.\n",
  1977                           rep_var, _encoding._name);
  1980         // Lookup the corresponding ins_encode parameter
  1981         // This is the argument (actual parameter) to the encoding.
  1982         const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
  1983         if (inst_rep_var == NULL) {
  1984           _AD.syntax_err( _ins_encode._linenum,
  1985                           "Parameter %s not passed to enc_class %s from instruct %s.\n",
  1986                           rep_var, _encoding._name, _inst._ident);
  1989         // Check if instruction's actual parameter is a local name in the instruction
  1990         const Form  *local     = _inst._localNames[inst_rep_var];
  1991         OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
  1992         // Note: assert removed to allow constant and symbolic parameters
  1993         // assert( opc, "replacement variable was not found in local names");
  1994         // Lookup the index position iff the replacement variable is a localName
  1995         int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
  1997         if ( idx != -1 ) {
  1998           // This is a local in the instruction
  1999           // Update local state info.
  2000           _opclass        = opc;
  2001           _operand_idx    = idx;
  2002           _local_name     = rep_var;
  2003           _operand_name   = inst_rep_var;
  2005           // !!!!!
  2006           // Do not support consecutive operands.
  2007           assert( _operand == NULL, "Unimplemented()");
  2008           _operand = opc->is_operand();
  2010         else if( ADLParser::is_literal_constant(inst_rep_var) ) {
  2011           // Instruction provided a constant expression
  2012           // Check later that encoding specifies $$$constant to resolve as constant
  2013           _constant_status   = LITERAL_SEEN;
  2015         else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
  2016           // Instruction provided an opcode: "primary", "secondary", "tertiary"
  2017           // Check later that encoding specifies $$$constant to resolve as constant
  2018           _constant_status   = LITERAL_SEEN;
  2020         else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
  2021           // Instruction provided a literal register name for this parameter
  2022           // Check that encoding specifies $$$reg to resolve.as register.
  2023           _reg_status        = LITERAL_SEEN;
  2025         else {
  2026           // Check for unimplemented functionality before hard failure
  2027           assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
  2028           assert( false, "ShouldNotReachHere()");
  2030       } // done checking which operand this is.
  2031     } else {
  2032       //
  2033       // A subfield variable, '$$' prefix
  2034       // Check for fields that may require relocation information.
  2035       // Then check that literal register parameters are accessed with 'reg' or 'constant'
  2036       //
  2037       if ( strcmp(rep_var,"$disp") == 0 ) {
  2038         _doing_disp = true;
  2039         assert( _opclass, "Must use operand or operand class before '$disp'");
  2040         if( _operand == NULL ) {
  2041           // Only have an operand class, generate run-time check for relocation
  2042           _may_reloc    = true;
  2043           _reloc_form   = RELOC_DISP;
  2044           _reloc_type   = AdlcVMDeps::oop_reloc_type();
  2045         } else {
  2046           // Do precise check on operand: is it a ConP or not
  2047           //
  2048           // Check interface for value of displacement
  2049           assert( ( _operand->_interface != NULL ),
  2050                   "$disp can only follow memory interface operand");
  2051           MemInterface *mem_interface= _operand->_interface->is_MemInterface();
  2052           assert( mem_interface != NULL,
  2053                   "$disp can only follow memory interface operand");
  2054           const char *disp = mem_interface->_disp;
  2056           if( disp != NULL && (*disp == '$') ) {
  2057             // MemInterface::disp contains a replacement variable,
  2058             // Check if this matches a ConP
  2059             //
  2060             // Lookup replacement variable, in operand's component list
  2061             const char *rep_var_name = disp + 1; // Skip '$'
  2062             const Component *comp = _operand->_components.search(rep_var_name);
  2063             assert( comp != NULL,"Replacement variable not found in components");
  2064             const char      *type = comp->_type;
  2065             // Lookup operand form for replacement variable's type
  2066             const Form *form = _AD.globalNames()[type];
  2067             assert( form != NULL, "Replacement variable's type not found");
  2068             OperandForm *op = form->is_operand();
  2069             assert( op, "Attempting to emit a non-register or non-constant");
  2070             // Check if this is a constant
  2071             if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
  2072               // Check which constant this name maps to: _c0, _c1, ..., _cn
  2073               // const int idx = _operand.constant_position(_AD.globalNames(), comp);
  2074               // assert( idx != -1, "Constant component not found in operand");
  2075               Form::DataType dtype = op->is_base_constant(_AD.globalNames());
  2076               if ( dtype == Form::idealP ) {
  2077                 _may_reloc    = true;
  2078                 // No longer true that idealP is always an oop
  2079                 _reloc_form   = RELOC_DISP;
  2080                 _reloc_type   = AdlcVMDeps::oop_reloc_type();
  2084             else if( _operand->is_user_name_for_sReg() != Form::none ) {
  2085               // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
  2086               assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
  2087               _may_reloc   = false;
  2088             } else {
  2089               assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
  2092         } // finished with precise check of operand for relocation.
  2093       } // finished with subfield variable
  2094       else if ( strcmp(rep_var,"$constant") == 0 ) {
  2095         _doing_constant = true;
  2096         if ( _constant_status == LITERAL_NOT_SEEN ) {
  2097           // Check operand for type of constant
  2098           assert( _operand, "Must use operand before '$$constant'");
  2099           Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
  2100           _constant_type = dtype;
  2101           if ( dtype == Form::idealP ) {
  2102             _may_reloc    = true;
  2103             // No longer true that idealP is always an oop
  2104             // // _must_reloc   = true;
  2105             _reloc_form   = RELOC_IMMEDIATE;
  2106             _reloc_type   = AdlcVMDeps::oop_reloc_type();
  2107           } else {
  2108             // No relocation information needed
  2110         } else {
  2111           // User-provided literals may not require relocation information !!!!!
  2112           assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
  2115       else if ( strcmp(rep_var,"$label") == 0 ) {
  2116         // Calls containing labels require relocation
  2117         if ( _inst.is_ideal_call() )  {
  2118           _may_reloc    = true;
  2119           // !!!!! !!!!!
  2120           _reloc_type   = AdlcVMDeps::none_reloc_type();
  2124       // literal register parameter must be accessed as a 'reg' field.
  2125       if ( _reg_status != LITERAL_NOT_SEEN ) {
  2126         assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
  2127         if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
  2128           _reg_status  = LITERAL_ACCESSED;
  2129         } else {
  2130           _AD.syntax_err(_encoding._linenum,
  2131                          "Invalid access to literal register parameter '%s' in %s.\n",
  2132                          rep_var, _encoding._name);
  2133           assert( false, "invalid access to literal register parameter");
  2136       // literal constant parameters must be accessed as a 'constant' field
  2137       if (_constant_status != LITERAL_NOT_SEEN) {
  2138         assert(_constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
  2139         if (strcmp(rep_var,"$constant") == 0) {
  2140           _constant_status = LITERAL_ACCESSED;
  2141         } else {
  2142           _AD.syntax_err(_encoding._linenum,
  2143                          "Invalid access to literal constant parameter '%s' in %s.\n",
  2144                          rep_var, _encoding._name);
  2147     } // end replacement and/or subfield
  2151   void add_rep_var(const char *rep_var) {
  2152     // Handle subfield and replacement variables.
  2153     if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
  2154       // Check for emit prefix, '$$emit32'
  2155       assert( _cleared, "Can not nest $$$emit32");
  2156       if ( strcmp(rep_var,"$$emit32") == 0 ) {
  2157         _doing_emit_d32 = true;
  2159       else if ( strcmp(rep_var,"$$emit16") == 0 ) {
  2160         _doing_emit_d16 = true;
  2162       else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
  2163         _doing_emit_hi  = true;
  2165       else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
  2166         _doing_emit_lo  = true;
  2168       else if ( strcmp(rep_var,"$$emit8") == 0 ) {
  2169         _doing_emit8    = true;
  2171       else {
  2172         _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
  2173         assert( false, "fatal();");
  2176     else {
  2177       // Update state for replacement variables
  2178       update_state( rep_var );
  2179       _strings_to_emit.addName(rep_var);
  2181     _cleared  = false;
  2184   void emit_replacement() {
  2185     // A replacement variable or one of its subfields
  2186     // Obtain replacement variable from list
  2187     // const char *ec_rep_var = encoding->_rep_vars.iter();
  2188     const char *rep_var;
  2189     _strings_to_emit.reset();
  2190     while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
  2192       if ( (*rep_var) == '$' ) {
  2193         // A subfield variable, '$$' prefix
  2194         emit_field( rep_var );
  2195       } else {
  2196         if (_strings_to_emit.peek() != NULL &&
  2197             strcmp(_strings_to_emit.peek(), "$Address") == 0) {
  2198           fprintf(_fp, "Address::make_raw(");
  2200           emit_rep_var( rep_var );
  2201           fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
  2203           _reg_status = LITERAL_ACCESSED;
  2204           emit_rep_var( rep_var );
  2205           fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
  2207           _reg_status = LITERAL_ACCESSED;
  2208           emit_rep_var( rep_var );
  2209           fprintf(_fp,"->scale(), ");
  2211           _reg_status = LITERAL_ACCESSED;
  2212           emit_rep_var( rep_var );
  2213           Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
  2214           if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
  2215             fprintf(_fp,"->disp(ra_,this,0), ");
  2216           } else {
  2217             fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
  2220           _reg_status = LITERAL_ACCESSED;
  2221           emit_rep_var( rep_var );
  2222           fprintf(_fp,"->disp_reloc())");
  2224           // skip trailing $Address
  2225           _strings_to_emit.iter();
  2226         } else {
  2227           // A replacement variable, '$' prefix
  2228           const char* next = _strings_to_emit.peek();
  2229           const char* next2 = _strings_to_emit.peek(2);
  2230           if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
  2231               (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
  2232             // handle $rev_var$$base$$Register and $rev_var$$index$$Register by
  2233             // producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
  2234             fprintf(_fp, "as_Register(");
  2235             // emit the operand reference
  2236             emit_rep_var( rep_var );
  2237             rep_var = _strings_to_emit.iter();
  2238             assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
  2239             // handle base or index
  2240             emit_field(rep_var);
  2241             rep_var = _strings_to_emit.iter();
  2242             assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
  2243             // close up the parens
  2244             fprintf(_fp, ")");
  2245           } else {
  2246             emit_rep_var( rep_var );
  2249       } // end replacement and/or subfield
  2253   void emit_reloc_type(const char* type) {
  2254     fprintf(_fp, "%s", type)
  2259   void emit() {
  2260     //
  2261     //   "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
  2262     //
  2263     // Emit the function name when generating an emit function
  2264     if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
  2265       const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
  2266       // In general, relocatable isn't known at compiler compile time.
  2267       // Check results of prior scan
  2268       if ( ! _may_reloc ) {
  2269         // Definitely don't need relocation information
  2270         fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
  2271         emit_replacement(); fprintf(_fp, ")");
  2273       else {
  2274         // Emit RUNTIME CHECK to see if value needs relocation info
  2275         // If emitting a relocatable address, use 'emit_d32_reloc'
  2276         const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
  2277         assert( (_doing_disp || _doing_constant)
  2278                 && !(_doing_disp && _doing_constant),
  2279                 "Must be emitting either a displacement or a constant");
  2280         fprintf(_fp,"\n");
  2281         fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n",
  2282                 _operand_idx, disp_constant);
  2283         fprintf(_fp,"  ");
  2284         fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo );
  2285         emit_replacement();             fprintf(_fp,", ");
  2286         fprintf(_fp,"opnd_array(%d)->%s_reloc(), ",
  2287                 _operand_idx, disp_constant);
  2288         fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
  2289         fprintf(_fp,"\n");
  2290         fprintf(_fp,"} else {\n");
  2291         fprintf(_fp,"  emit_%s(cbuf, ", d32_hi_lo);
  2292         emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
  2295     else if ( _doing_emit_d16 ) {
  2296       // Relocation of 16-bit values is not supported
  2297       fprintf(_fp,"emit_d16(cbuf, ");
  2298       emit_replacement(); fprintf(_fp, ")");
  2299       // No relocation done for 16-bit values
  2301     else if ( _doing_emit8 ) {
  2302       // Relocation of 8-bit values is not supported
  2303       fprintf(_fp,"emit_d8(cbuf, ");
  2304       emit_replacement(); fprintf(_fp, ")");
  2305       // No relocation done for 8-bit values
  2307     else {
  2308       // Not an emit# command, just output the replacement string.
  2309       emit_replacement();
  2312     // Get ready for next state collection.
  2313     clear();
  2316 private:
  2318   // recognizes names which represent MacroAssembler register types
  2319   // and return the conversion function to build them from OptoReg
  2320   const char* reg_conversion(const char* rep_var) {
  2321     if (strcmp(rep_var,"$Register") == 0)      return "as_Register";
  2322     if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
  2323 #if defined(IA32) || defined(AMD64)
  2324     if (strcmp(rep_var,"$XMMRegister") == 0)   return "as_XMMRegister";
  2325 #endif
  2326     if (strcmp(rep_var,"$CondRegister") == 0)  return "as_ConditionRegister";
  2327     return NULL;
  2330   void emit_field(const char *rep_var) {
  2331     const char* reg_convert = reg_conversion(rep_var);
  2333     // A subfield variable, '$$subfield'
  2334     if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
  2335       // $reg form or the $Register MacroAssembler type conversions
  2336       assert( _operand_idx != -1,
  2337               "Must use this subfield after operand");
  2338       if( _reg_status == LITERAL_NOT_SEEN ) {
  2339         if (_processing_noninput) {
  2340           const Form  *local     = _inst._localNames[_operand_name];
  2341           OperandForm *oper      = local->is_operand();
  2342           const RegDef* first = oper->get_RegClass()->find_first_elem();
  2343           if (reg_convert != NULL) {
  2344             fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
  2345           } else {
  2346             fprintf(_fp, "%s_enc", first->_regname);
  2348         } else {
  2349           fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
  2350           // Add parameter for index position, if not result operand
  2351           if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
  2352           fprintf(_fp,")");
  2353           fprintf(_fp, "/* %s */", _operand_name);
  2355       } else {
  2356         assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
  2357         // Register literal has already been sent to output file, nothing more needed
  2360     else if ( strcmp(rep_var,"$base") == 0 ) {
  2361       assert( _operand_idx != -1,
  2362               "Must use this subfield after operand");
  2363       assert( ! _may_reloc, "UnImplemented()");
  2364       fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
  2366     else if ( strcmp(rep_var,"$index") == 0 ) {
  2367       assert( _operand_idx != -1,
  2368               "Must use this subfield after operand");
  2369       assert( ! _may_reloc, "UnImplemented()");
  2370       fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
  2372     else if ( strcmp(rep_var,"$scale") == 0 ) {
  2373       assert( ! _may_reloc, "UnImplemented()");
  2374       fprintf(_fp,"->scale()");
  2376     else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
  2377       assert( ! _may_reloc, "UnImplemented()");
  2378       fprintf(_fp,"->ccode()");
  2380     else if ( strcmp(rep_var,"$constant") == 0 ) {
  2381       if( _constant_status == LITERAL_NOT_SEEN ) {
  2382         if ( _constant_type == Form::idealD ) {
  2383           fprintf(_fp,"->constantD()");
  2384         } else if ( _constant_type == Form::idealF ) {
  2385           fprintf(_fp,"->constantF()");
  2386         } else if ( _constant_type == Form::idealL ) {
  2387           fprintf(_fp,"->constantL()");
  2388         } else {
  2389           fprintf(_fp,"->constant()");
  2391       } else {
  2392         assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
  2393         // Constant literal has already been sent to output file, nothing more needed
  2396     else if ( strcmp(rep_var,"$disp") == 0 ) {
  2397       Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
  2398       if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
  2399         fprintf(_fp,"->disp(ra_,this,0)");
  2400       } else {
  2401         fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
  2404     else if ( strcmp(rep_var,"$label") == 0 ) {
  2405       fprintf(_fp,"->label()");
  2407     else if ( strcmp(rep_var,"$method") == 0 ) {
  2408       fprintf(_fp,"->method()");
  2410     else {
  2411       printf("emit_field: %s\n",rep_var);
  2412       globalAD->syntax_err(_inst._linenum, "Unknown replacement variable %s in format statement of %s.",
  2413                            rep_var, _inst._ident);
  2414       assert( false, "UnImplemented()");
  2419   void emit_rep_var(const char *rep_var) {
  2420     _processing_noninput = false;
  2421     // A replacement variable, originally '$'
  2422     if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
  2423       if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
  2424         // Missing opcode
  2425         _AD.syntax_err( _inst._linenum,
  2426                         "Missing $%s opcode definition in %s, used by encoding %s\n",
  2427                         rep_var, _inst._ident, _encoding._name);
  2430     else if (strcmp(rep_var, "constanttablebase") == 0) {
  2431       fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
  2433     else if (strcmp(rep_var, "constantoffset") == 0) {
  2434       fprintf(_fp, "constant_offset()");
  2436     else if (strcmp(rep_var, "constantaddress") == 0) {
  2437       fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
  2439     else {
  2440       // Lookup its position in parameter list
  2441       int   param_no  = _encoding.rep_var_index(rep_var);
  2442       if ( param_no == -1 ) {
  2443         _AD.syntax_err( _encoding._linenum,
  2444                         "Replacement variable %s not found in enc_class %s.\n",
  2445                         rep_var, _encoding._name);
  2447       // Lookup the corresponding ins_encode parameter
  2448       const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
  2450       // Check if instruction's actual parameter is a local name in the instruction
  2451       const Form  *local     = _inst._localNames[inst_rep_var];
  2452       OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
  2453       // Note: assert removed to allow constant and symbolic parameters
  2454       // assert( opc, "replacement variable was not found in local names");
  2455       // Lookup the index position iff the replacement variable is a localName
  2456       int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
  2457       if( idx != -1 ) {
  2458         if (_inst.is_noninput_operand(idx)) {
  2459           // This operand isn't a normal input so printing it is done
  2460           // specially.
  2461           _processing_noninput = true;
  2462         } else {
  2463           // Output the emit code for this operand
  2464           fprintf(_fp,"opnd_array(%d)",idx);
  2466         assert( _operand == opc->is_operand(),
  2467                 "Previous emit $operand does not match current");
  2469       else if( ADLParser::is_literal_constant(inst_rep_var) ) {
  2470         // else check if it is a constant expression
  2471         // Removed following assert to allow primitive C types as arguments to encodings
  2472         // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
  2473         fprintf(_fp,"(%s)", inst_rep_var);
  2474         _constant_status = LITERAL_OUTPUT;
  2476       else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
  2477         // else check if "primary", "secondary", "tertiary"
  2478         assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
  2479         if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
  2480           // Missing opcode
  2481           _AD.syntax_err( _inst._linenum,
  2482                           "Missing $%s opcode definition in %s\n",
  2483                           rep_var, _inst._ident);
  2486         _constant_status = LITERAL_OUTPUT;
  2488       else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
  2489         // Instruction provided a literal register name for this parameter
  2490         // Check that encoding specifies $$$reg to resolve.as register.
  2491         assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
  2492         fprintf(_fp,"(%s_enc)", inst_rep_var);
  2493         _reg_status = LITERAL_OUTPUT;
  2495       else {
  2496         // Check for unimplemented functionality before hard failure
  2497         assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
  2498         assert( false, "ShouldNotReachHere()");
  2500       // all done
  2504 };  // end class DefineEmitState
  2507 void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
  2509   //(1)
  2510   // Output instruction's emit prototype
  2511   fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n",
  2512           inst._ident);
  2514   fprintf(fp, "  assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
  2516   //(2)
  2517   // Print the size
  2518   fprintf(fp, "  return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
  2520   // (3) and (4)
  2521   fprintf(fp,"}\n\n");
  2524 // Emit postalloc expand function.
  2525 void ArchDesc::define_postalloc_expand(FILE *fp, InstructForm &inst) {
  2526   InsEncode *ins_encode = inst._insencode;
  2528   // Output instruction's postalloc_expand prototype.
  2529   fprintf(fp, "void  %sNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {\n",
  2530           inst._ident);
  2532   assert((_encode != NULL) && (ins_encode != NULL), "You must define an encode section.");
  2534   // Output each operand's offset into the array of registers.
  2535   inst.index_temps(fp, _globalNames);
  2537   // Output variables "unsigned idx_<par_name>", Node *n_<par_name> and "MachOpnd *op_<par_name>"
  2538   // for each parameter <par_name> specified in the encoding.
  2539   ins_encode->reset();
  2540   const char *ec_name = ins_encode->encode_class_iter();
  2541   assert(ec_name != NULL, "Postalloc expand must specify an encoding.");
  2543   EncClass *encoding = _encode->encClass(ec_name);
  2544   if (encoding == NULL) {
  2545     fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
  2546     abort();
  2548   if (ins_encode->current_encoding_num_args() != encoding->num_args()) {
  2549     globalAD->syntax_err(ins_encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
  2550                          inst._ident, ins_encode->current_encoding_num_args(),
  2551                          ec_name, encoding->num_args());
  2554   fprintf(fp, "  // Access to ins and operands for postalloc expand.\n");
  2555   const int buflen = 2000;
  2556   char idxbuf[buflen]; char *ib = idxbuf; idxbuf[0] = '\0';
  2557   char nbuf  [buflen]; char *nb = nbuf;   nbuf[0]   = '\0';
  2558   char opbuf [buflen]; char *ob = opbuf;  opbuf[0]  = '\0';
  2560   encoding->_parameter_type.reset();
  2561   encoding->_parameter_name.reset();
  2562   const char *type = encoding->_parameter_type.iter();
  2563   const char *name = encoding->_parameter_name.iter();
  2564   int param_no = 0;
  2565   for (; (type != NULL) && (name != NULL);
  2566        (type = encoding->_parameter_type.iter()), (name = encoding->_parameter_name.iter())) {
  2567     const char* arg_name = ins_encode->rep_var_name(inst, param_no);
  2568     int idx = inst.operand_position_format(arg_name);
  2569     if (strcmp(arg_name, "constanttablebase") == 0) {
  2570       ib += sprintf(ib, "  unsigned idx_%-5s = mach_constant_base_node_input(); \t// %s, \t%s\n",
  2571                     name, type, arg_name);
  2572       nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
  2573       // There is no operand for the constanttablebase.
  2574     } else if (inst.is_noninput_operand(idx)) {
  2575       globalAD->syntax_err(inst._linenum,
  2576                            "In %s: you can not pass the non-input %s to a postalloc expand encoding.\n",
  2577                            inst._ident, arg_name);
  2578     } else {
  2579       ib += sprintf(ib, "  unsigned idx_%-5s = idx%d; \t// %s, \t%s\n",
  2580                     name, idx, type, arg_name);
  2581       nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
  2582       ob += sprintf(ob, "  %sOper *op_%s = (%sOper *)opnd_array(%d);\n", type, name, type, idx);
  2584     param_no++;
  2586   assert(ib < &idxbuf[buflen-1] && nb < &nbuf[buflen-1] && ob < &opbuf[buflen-1], "buffer overflow");
  2588   fprintf(fp, "%s", idxbuf);
  2589   fprintf(fp, "  Node    *n_region  = lookup(0);\n");
  2590   fprintf(fp, "%s%s", nbuf, opbuf);
  2591   fprintf(fp, "  Compile *C = ra_->C;\n");
  2593   // Output this instruction's encodings.
  2594   fprintf(fp, "  {");
  2595   const char *ec_code    = NULL;
  2596   const char *ec_rep_var = NULL;
  2597   assert(encoding == _encode->encClass(ec_name), "");
  2599   DefineEmitState pending(fp, *this, *encoding, *ins_encode, inst);
  2600   encoding->_code.reset();
  2601   encoding->_rep_vars.reset();
  2602   // Process list of user-defined strings,
  2603   // and occurrences of replacement variables.
  2604   // Replacement Vars are pushed into a list and then output.
  2605   while ((ec_code = encoding->_code.iter()) != NULL) {
  2606     if (! encoding->_code.is_signal(ec_code)) {
  2607       // Emit pending code.
  2608       pending.emit();
  2609       pending.clear();
  2610       // Emit this code section.
  2611       fprintf(fp, "%s", ec_code);
  2612     } else {
  2613       // A replacement variable or one of its subfields.
  2614       // Obtain replacement variable from list.
  2615       ec_rep_var = encoding->_rep_vars.iter();
  2616       pending.add_rep_var(ec_rep_var);
  2619   // Emit pending code.
  2620   pending.emit();
  2621   pending.clear();
  2622   fprintf(fp, "  }\n");
  2624   fprintf(fp, "}\n\n");
  2626   ec_name = ins_encode->encode_class_iter();
  2627   assert(ec_name == NULL, "Postalloc expand may only have one encoding.");
  2630 // defineEmit -----------------------------------------------------------------
  2631 void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
  2632   InsEncode* encode = inst._insencode;
  2634   // (1)
  2635   // Output instruction's emit prototype
  2636   fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);
  2638   // If user did not define an encode section,
  2639   // provide stub that does not generate any machine code.
  2640   if( (_encode == NULL) || (encode == NULL) ) {
  2641     fprintf(fp, "  // User did not define an encode section.\n");
  2642     fprintf(fp, "}\n");
  2643     return;
  2646   // Save current instruction's starting address (helps with relocation).
  2647   fprintf(fp, "  cbuf.set_insts_mark();\n");
  2649   // For MachConstantNodes which are ideal jump nodes, fill the jump table.
  2650   if (inst.is_mach_constant() && inst.is_ideal_jump()) {
  2651     fprintf(fp, "  ra_->C->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
  2654   // Output each operand's offset into the array of registers.
  2655   inst.index_temps(fp, _globalNames);
  2657   // Output this instruction's encodings
  2658   const char *ec_name;
  2659   bool        user_defined = false;
  2660   encode->reset();
  2661   while ((ec_name = encode->encode_class_iter()) != NULL) {
  2662     fprintf(fp, "  {\n");
  2663     // Output user-defined encoding
  2664     user_defined           = true;
  2666     const char *ec_code    = NULL;
  2667     const char *ec_rep_var = NULL;
  2668     EncClass   *encoding   = _encode->encClass(ec_name);
  2669     if (encoding == NULL) {
  2670       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
  2671       abort();
  2674     if (encode->current_encoding_num_args() != encoding->num_args()) {
  2675       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
  2676                            inst._ident, encode->current_encoding_num_args(),
  2677                            ec_name, encoding->num_args());
  2680     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
  2681     encoding->_code.reset();
  2682     encoding->_rep_vars.reset();
  2683     // Process list of user-defined strings,
  2684     // and occurrences of replacement variables.
  2685     // Replacement Vars are pushed into a list and then output
  2686     while ((ec_code = encoding->_code.iter()) != NULL) {
  2687       if (!encoding->_code.is_signal(ec_code)) {
  2688         // Emit pending code
  2689         pending.emit();
  2690         pending.clear();
  2691         // Emit this code section
  2692         fprintf(fp, "%s", ec_code);
  2693       } else {
  2694         // A replacement variable or one of its subfields
  2695         // Obtain replacement variable from list
  2696         ec_rep_var  = encoding->_rep_vars.iter();
  2697         pending.add_rep_var(ec_rep_var);
  2700     // Emit pending code
  2701     pending.emit();
  2702     pending.clear();
  2703     fprintf(fp, "  }\n");
  2704   } // end while instruction's encodings
  2706   // Check if user stated which encoding to user
  2707   if ( user_defined == false ) {
  2708     fprintf(fp, "  // User did not define which encode class to use.\n");
  2711   // (3) and (4)
  2712   fprintf(fp, "}\n\n");
  2715 // defineEvalConstant ---------------------------------------------------------
  2716 void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
  2717   InsEncode* encode = inst._constant;
  2719   // (1)
  2720   // Output instruction's emit prototype
  2721   fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);
  2723   // For ideal jump nodes, add a jump-table entry.
  2724   if (inst.is_ideal_jump()) {
  2725     fprintf(fp, "  _constant = C->constant_table().add_jump_table(this);\n");
  2728   // If user did not define an encode section,
  2729   // provide stub that does not generate any machine code.
  2730   if ((_encode == NULL) || (encode == NULL)) {
  2731     fprintf(fp, "  // User did not define an encode section.\n");
  2732     fprintf(fp, "}\n");
  2733     return;
  2736   // Output this instruction's encodings
  2737   const char *ec_name;
  2738   bool        user_defined = false;
  2739   encode->reset();
  2740   while ((ec_name = encode->encode_class_iter()) != NULL) {
  2741     fprintf(fp, "  {\n");
  2742     // Output user-defined encoding
  2743     user_defined           = true;
  2745     const char *ec_code    = NULL;
  2746     const char *ec_rep_var = NULL;
  2747     EncClass   *encoding   = _encode->encClass(ec_name);
  2748     if (encoding == NULL) {
  2749       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
  2750       abort();
  2753     if (encode->current_encoding_num_args() != encoding->num_args()) {
  2754       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
  2755                            inst._ident, encode->current_encoding_num_args(),
  2756                            ec_name, encoding->num_args());
  2759     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
  2760     encoding->_code.reset();
  2761     encoding->_rep_vars.reset();
  2762     // Process list of user-defined strings,
  2763     // and occurrences of replacement variables.
  2764     // Replacement Vars are pushed into a list and then output
  2765     while ((ec_code = encoding->_code.iter()) != NULL) {
  2766       if (!encoding->_code.is_signal(ec_code)) {
  2767         // Emit pending code
  2768         pending.emit();
  2769         pending.clear();
  2770         // Emit this code section
  2771         fprintf(fp, "%s", ec_code);
  2772       } else {
  2773         // A replacement variable or one of its subfields
  2774         // Obtain replacement variable from list
  2775         ec_rep_var  = encoding->_rep_vars.iter();
  2776         pending.add_rep_var(ec_rep_var);
  2779     // Emit pending code
  2780     pending.emit();
  2781     pending.clear();
  2782     fprintf(fp, "  }\n");
  2783   } // end while instruction's encodings
  2785   // Check if user stated which encoding to user
  2786   if (user_defined == false) {
  2787     fprintf(fp, "  // User did not define which encode class to use.\n");
  2790   // (3) and (4)
  2791   fprintf(fp, "}\n");
  2794 // ---------------------------------------------------------------------------
  2795 //--------Utilities to build MachOper and MachNode derived Classes------------
  2796 // ---------------------------------------------------------------------------
  2798 //------------------------------Utilities to build Operand Classes------------
  2799 static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
  2800   uint num_edges = oper.num_edges(globals);
  2801   if( num_edges != 0 ) {
  2802     // Method header
  2803     fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
  2804             oper._ident);
  2806     // Assert that the index is in range.
  2807     fprintf(fp, "  assert(0 <= index && index < %d, \"index out of range\");\n",
  2808             num_edges);
  2810     // Figure out if all RegMasks are the same.
  2811     const char* first_reg_class = oper.in_reg_class(0, globals);
  2812     bool all_same = true;
  2813     assert(first_reg_class != NULL, "did not find register mask");
  2815     for (uint index = 1; all_same && index < num_edges; index++) {
  2816       const char* some_reg_class = oper.in_reg_class(index, globals);
  2817       assert(some_reg_class != NULL, "did not find register mask");
  2818       if (strcmp(first_reg_class, some_reg_class) != 0) {
  2819         all_same = false;
  2823     if (all_same) {
  2824       // Return the sole RegMask.
  2825       if (strcmp(first_reg_class, "stack_slots") == 0) {
  2826         fprintf(fp,"  return &(Compile::current()->FIRST_STACK_mask());\n");
  2827       } else {
  2828         const char* first_reg_class_to_upper = toUpper(first_reg_class);
  2829         fprintf(fp,"  return &%s_mask();\n", first_reg_class_to_upper);
  2830         delete[] first_reg_class_to_upper;
  2832     } else {
  2833       // Build a switch statement to return the desired mask.
  2834       fprintf(fp,"  switch (index) {\n");
  2836       for (uint index = 0; index < num_edges; index++) {
  2837         const char *reg_class = oper.in_reg_class(index, globals);
  2838         assert(reg_class != NULL, "did not find register mask");
  2839         if( !strcmp(reg_class, "stack_slots") ) {
  2840           fprintf(fp, "  case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
  2841         } else {
  2842           const char* reg_class_to_upper = toUpper(reg_class);
  2843           fprintf(fp, "  case %d: return &%s_mask();\n", index, reg_class_to_upper);
  2844           delete[] reg_class_to_upper;
  2847       fprintf(fp,"  }\n");
  2848       fprintf(fp,"  ShouldNotReachHere();\n");
  2849       fprintf(fp,"  return NULL;\n");
  2852     // Method close
  2853     fprintf(fp, "}\n\n");
  2857 // generate code to create a clone for a class derived from MachOper
  2858 //
  2859 // (0)  MachOper  *MachOperXOper::clone(Compile* C) const {
  2860 // (1)    return new (C) MachXOper( _ccode, _c0, _c1, ..., _cn);
  2861 // (2)  }
  2862 //
  2863 static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
  2864   fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper._ident);
  2865   // Check for constants that need to be copied over
  2866   const int  num_consts    = oper.num_consts(globalNames);
  2867   const bool is_ideal_bool = oper.is_ideal_bool();
  2868   if( (num_consts > 0) ) {
  2869     fprintf(fp,"  return new (C) %sOper(", oper._ident);
  2870     // generate parameters for constants
  2871     int i = 0;
  2872     fprintf(fp,"_c%d", i);
  2873     for( i = 1; i < num_consts; ++i) {
  2874       fprintf(fp,", _c%d", i);
  2876     // finish line (1)
  2877     fprintf(fp,");\n");
  2879   else {
  2880     assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
  2881     fprintf(fp,"  return new (C) %sOper();\n", oper._ident);
  2883   // finish method
  2884   fprintf(fp,"}\n");
  2887 // Helper functions for bug 4796752, abstracted with minimal modification
  2888 // from define_oper_interface()
  2889 OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
  2890   OperandForm *op = NULL;
  2891   // Check for replacement variable
  2892   if( *encoding == '$' ) {
  2893     // Replacement variable
  2894     const char *rep_var = encoding + 1;
  2895     // Lookup replacement variable, rep_var, in operand's component list
  2896     const Component *comp = oper._components.search(rep_var);
  2897     assert( comp != NULL, "Replacement variable not found in components");
  2898     // Lookup operand form for replacement variable's type
  2899     const char      *type = comp->_type;
  2900     Form            *form = (Form*)globals[type];
  2901     assert( form != NULL, "Replacement variable's type not found");
  2902     op = form->is_operand();
  2903     assert( op, "Attempting to emit a non-register or non-constant");
  2906   return op;
  2909 int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
  2910   int idx = -1;
  2911   // Check for replacement variable
  2912   if( *encoding == '$' ) {
  2913     // Replacement variable
  2914     const char *rep_var = encoding + 1;
  2915     // Lookup replacement variable, rep_var, in operand's component list
  2916     const Component *comp = oper._components.search(rep_var);
  2917     assert( comp != NULL, "Replacement variable not found in components");
  2918     // Lookup operand form for replacement variable's type
  2919     const char      *type = comp->_type;
  2920     Form            *form = (Form*)globals[type];
  2921     assert( form != NULL, "Replacement variable's type not found");
  2922     OperandForm *op = form->is_operand();
  2923     assert( op, "Attempting to emit a non-register or non-constant");
  2924     // Check that this is a constant and find constant's index:
  2925     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
  2926       idx  = oper.constant_position(globals, comp);
  2930   return idx;
  2933 bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
  2934   bool is_regI = false;
  2936   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
  2937   if( op != NULL ) {
  2938     // Check that this is a register
  2939     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
  2940       // Register
  2941       const char* ideal  = op->ideal_type(globals);
  2942       is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
  2946   return is_regI;
  2949 bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
  2950   bool is_conP = false;
  2952   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
  2953   if( op != NULL ) {
  2954     // Check that this is a constant pointer
  2955     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
  2956       // Constant
  2957       Form::DataType dtype = op->is_base_constant(globals);
  2958       is_conP = (dtype == Form::idealP);
  2962   return is_conP;
  2966 // Define a MachOper interface methods
  2967 void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
  2968                                      const char *name, const char *encoding) {
  2969   bool emit_position = false;
  2970   int position = -1;
  2972   fprintf(fp,"  virtual int            %s", name);
  2973   // Generate access method for base, index, scale, disp, ...
  2974   if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
  2975     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
  2976     emit_position = true;
  2977   } else if ( (strcmp(name,"disp") == 0) ) {
  2978     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
  2979   } else {
  2980     fprintf(fp, "() const {\n");
  2983   // Check for hexadecimal value OR replacement variable
  2984   if( *encoding == '$' ) {
  2985     // Replacement variable
  2986     const char *rep_var = encoding + 1;
  2987     fprintf(fp,"    // Replacement variable: %s\n", encoding+1);
  2988     // Lookup replacement variable, rep_var, in operand's component list
  2989     const Component *comp = oper._components.search(rep_var);
  2990     assert( comp != NULL, "Replacement variable not found in components");
  2991     // Lookup operand form for replacement variable's type
  2992     const char      *type = comp->_type;
  2993     Form            *form = (Form*)globals[type];
  2994     assert( form != NULL, "Replacement variable's type not found");
  2995     OperandForm *op = form->is_operand();
  2996     assert( op, "Attempting to emit a non-register or non-constant");
  2997     // Check that this is a register or a constant and generate code:
  2998     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
  2999       // Register
  3000       int idx_offset = oper.register_position( globals, rep_var);
  3001       position = idx_offset;
  3002       fprintf(fp,"    return (int)ra_->get_encode(node->in(idx");
  3003       if ( idx_offset > 0 ) fprintf(fp,                      "+%d",idx_offset);
  3004       fprintf(fp,"));\n");
  3005     } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
  3006       // StackSlot for an sReg comes either from input node or from self, when idx==0
  3007       fprintf(fp,"    if( idx != 0 ) {\n");
  3008       fprintf(fp,"      // Access stack offset (register number) for input operand\n");
  3009       fprintf(fp,"      return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
  3010       fprintf(fp,"    }\n");
  3011       fprintf(fp,"    // Access stack offset (register number) from myself\n");
  3012       fprintf(fp,"    return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
  3013     } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
  3014       // Constant
  3015       // Check which constant this name maps to: _c0, _c1, ..., _cn
  3016       const int idx = oper.constant_position(globals, comp);
  3017       assert( idx != -1, "Constant component not found in operand");
  3018       // Output code for this constant, type dependent.
  3019       fprintf(fp,"    return (int)" );
  3020       oper.access_constant(fp, globals, (uint)idx /* , const_type */);
  3021       fprintf(fp,";\n");
  3022     } else {
  3023       assert( false, "Attempting to emit a non-register or non-constant");
  3026   else if( *encoding == '0' && *(encoding+1) == 'x' ) {
  3027     // Hex value
  3028     fprintf(fp,"    return %s;\n", encoding);
  3029   } else {
  3030     globalAD->syntax_err(oper._linenum, "In operand %s: Do not support this encode constant: '%s' for %s.",
  3031                          oper._ident, encoding, name);
  3032     assert( false, "Do not support octal or decimal encode constants");
  3034   fprintf(fp,"  }\n");
  3036   if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
  3037     fprintf(fp,"  virtual int            %s_position() const { return %d; }\n", name, position);
  3038     MemInterface *mem_interface = oper._interface->is_MemInterface();
  3039     const char *base = mem_interface->_base;
  3040     const char *disp = mem_interface->_disp;
  3041     if( emit_position && (strcmp(name,"base") == 0)
  3042         && base != NULL && is_regI(base, oper, globals)
  3043         && disp != NULL && is_conP(disp, oper, globals) ) {
  3044       // Found a memory access using a constant pointer for a displacement
  3045       // and a base register containing an integer offset.
  3046       // In this case the base and disp are reversed with respect to what
  3047       // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
  3048       // Provide a non-NULL return for disp_as_type() that will allow adr_type()
  3049       // to correctly compute the access type for alias analysis.
  3050       //
  3051       // See BugId 4796752, operand indOffset32X in i486.ad
  3052       int idx = rep_var_to_constant_index(disp, oper, globals);
  3053       fprintf(fp,"  virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
  3058 //
  3059 // Construct the method to copy _idx, inputs and operands to new node.
  3060 static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
  3061   fprintf(fp_cpp, "\n");
  3062   fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
  3063   fprintf(fp_cpp, "void MachNode::fill_new_machnode( MachNode* node, Compile* C) const {\n");
  3064   if( !used ) {
  3065     fprintf(fp_cpp, "  // This architecture does not have cisc or short branch instructions\n");
  3066     fprintf(fp_cpp, "  ShouldNotCallThis();\n");
  3067     fprintf(fp_cpp, "}\n");
  3068   } else {
  3069     // New node must use same node index for access through allocator's tables
  3070     fprintf(fp_cpp, "  // New node must use same node index\n");
  3071     fprintf(fp_cpp, "  node->set_idx( _idx );\n");
  3072     // Copy machine-independent inputs
  3073     fprintf(fp_cpp, "  // Copy machine-independent inputs\n");
  3074     fprintf(fp_cpp, "  for( uint j = 0; j < req(); j++ ) {\n");
  3075     fprintf(fp_cpp, "    node->add_req(in(j));\n");
  3076     fprintf(fp_cpp, "  }\n");
  3077     // Copy machine operands to new MachNode
  3078     fprintf(fp_cpp, "  // Copy my operands, except for cisc position\n");
  3079     fprintf(fp_cpp, "  int nopnds = num_opnds();\n");
  3080     fprintf(fp_cpp, "  assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
  3081     fprintf(fp_cpp, "  MachOper **to = node->_opnds;\n");
  3082     fprintf(fp_cpp, "  for( int i = 0; i < nopnds; i++ ) {\n");
  3083     fprintf(fp_cpp, "    if( i != cisc_operand() ) \n");
  3084     fprintf(fp_cpp, "      to[i] = _opnds[i]->clone(C);\n");
  3085     fprintf(fp_cpp, "  }\n");
  3086     fprintf(fp_cpp, "}\n");
  3088   fprintf(fp_cpp, "\n");
  3091 //------------------------------defineClasses----------------------------------
  3092 // Define members of MachNode and MachOper classes based on
  3093 // operand and instruction lists
  3094 void ArchDesc::defineClasses(FILE *fp) {
  3096   // Define the contents of an array containing the machine register names
  3097   defineRegNames(fp, _register);
  3098   // Define an array containing the machine register encoding values
  3099   defineRegEncodes(fp, _register);
  3100   // Generate an enumeration of user-defined register classes
  3101   // and a list of register masks, one for each class.
  3102   // Only define the RegMask value objects in the expand file.
  3103   // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
  3104   declare_register_masks(_HPP_file._fp);
  3105   // build_register_masks(fp);
  3106   build_register_masks(_CPP_EXPAND_file._fp);
  3107   // Define the pipe_classes
  3108   build_pipe_classes(_CPP_PIPELINE_file._fp);
  3110   // Generate Machine Classes for each operand defined in AD file
  3111   fprintf(fp,"\n");
  3112   fprintf(fp,"\n");
  3113   fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
  3114   // Iterate through all operands
  3115   _operands.reset();
  3116   OperandForm *oper;
  3117   for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
  3118     // Ensure this is a machine-world instruction
  3119     if ( oper->ideal_only() ) continue;
  3120     // !!!!!
  3121     // The declaration of labelOper is in machine-independent file: machnode
  3122     if ( strcmp(oper->_ident,"label") == 0 ) {
  3123       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
  3125       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
  3126       fprintf(fp,"  return  new (C) %sOper(_label, _block_num);\n", oper->_ident);
  3127       fprintf(fp,"}\n");
  3129       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
  3130               oper->_ident, machOperEnum(oper->_ident));
  3131       // // Currently all XXXOper::Hash() methods are identical (990820)
  3132       // define_hash(fp, oper->_ident);
  3133       // // Currently all XXXOper::Cmp() methods are identical (990820)
  3134       // define_cmp(fp, oper->_ident);
  3135       fprintf(fp,"\n");
  3137       continue;
  3140     // The declaration of methodOper is in machine-independent file: machnode
  3141     if ( strcmp(oper->_ident,"method") == 0 ) {
  3142       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
  3144       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
  3145       fprintf(fp,"  return  new (C) %sOper(_method);\n", oper->_ident);
  3146       fprintf(fp,"}\n");
  3148       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
  3149               oper->_ident, machOperEnum(oper->_ident));
  3150       // // Currently all XXXOper::Hash() methods are identical (990820)
  3151       // define_hash(fp, oper->_ident);
  3152       // // Currently all XXXOper::Cmp() methods are identical (990820)
  3153       // define_cmp(fp, oper->_ident);
  3154       fprintf(fp,"\n");
  3156       continue;
  3159     defineIn_RegMask(fp, _globalNames, *oper);
  3160     defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
  3161     // // Currently all XXXOper::Hash() methods are identical (990820)
  3162     // define_hash(fp, oper->_ident);
  3163     // // Currently all XXXOper::Cmp() methods are identical (990820)
  3164     // define_cmp(fp, oper->_ident);
  3166     // side-call to generate output that used to be in the header file:
  3167     extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
  3168     gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
  3173   // Generate Machine Classes for each instruction defined in AD file
  3174   fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
  3175   // Output the definitions for out_RegMask() // & kill_RegMask()
  3176   _instructions.reset();
  3177   InstructForm *instr;
  3178   MachNodeForm *machnode;
  3179   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3180     // Ensure this is a machine-world instruction
  3181     if ( instr->ideal_only() ) continue;
  3183     defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
  3186   bool used = false;
  3187   // Output the definitions for expand rules & peephole rules
  3188   _instructions.reset();
  3189   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3190     // Ensure this is a machine-world instruction
  3191     if ( instr->ideal_only() ) continue;
  3192     // If there are multiple defs/kills, or an explicit expand rule, build rule
  3193     if( instr->expands() || instr->needs_projections() ||
  3194         instr->has_temps() ||
  3195         instr->is_mach_constant() ||
  3196         instr->needs_constant_base() ||
  3197         instr->_matrule != NULL &&
  3198         instr->num_opnds() != instr->num_unique_opnds() )
  3199       defineExpand(_CPP_EXPAND_file._fp, instr);
  3200     // If there is an explicit peephole rule, build it
  3201     if ( instr->peepholes() )
  3202       definePeephole(_CPP_PEEPHOLE_file._fp, instr);
  3204     // Output code to convert to the cisc version, if applicable
  3205     used |= instr->define_cisc_version(*this, fp);
  3207     // Output code to convert to the short branch version, if applicable
  3208     used |= instr->define_short_branch_methods(*this, fp);
  3211   // Construct the method called by cisc_version() to copy inputs and operands.
  3212   define_fill_new_machnode(used, fp);
  3214   // Output the definitions for labels
  3215   _instructions.reset();
  3216   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  3217     // Ensure this is a machine-world instruction
  3218     if ( instr->ideal_only() ) continue;
  3220     // Access the fields for operand Label
  3221     int label_position = instr->label_position();
  3222     if( label_position != -1 ) {
  3223       // Set the label
  3224       fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
  3225       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
  3226               label_position );
  3227       fprintf(fp,"  oper->_label     = label;\n");
  3228       fprintf(fp,"  oper->_block_num = block_num;\n");
  3229       fprintf(fp,"}\n");
  3230       // Save the label
  3231       fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident);
  3232       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
  3233               label_position );
  3234       fprintf(fp,"  *label = oper->_label;\n");
  3235       fprintf(fp,"  *block_num = oper->_block_num;\n");
  3236       fprintf(fp,"}\n");
  3240   // Output the definitions for methods
  3241   _instructions.reset();
  3242   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  3243     // Ensure this is a machine-world instruction
  3244     if ( instr->ideal_only() ) continue;
  3246     // Access the fields for operand Label
  3247     int method_position = instr->method_position();
  3248     if( method_position != -1 ) {
  3249       // Access the method's address
  3250       fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
  3251       fprintf(fp,"  ((methodOper*)opnd_array(%d))->_method = method;\n",
  3252               method_position );
  3253       fprintf(fp,"}\n");
  3254       fprintf(fp,"\n");
  3258   // Define this instruction's number of relocation entries, base is '0'
  3259   _instructions.reset();
  3260   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  3261     // Output the definition for number of relocation entries
  3262     uint reloc_size = instr->reloc(_globalNames);
  3263     if ( reloc_size != 0 ) {
  3264       fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident);
  3265       fprintf(fp,"  return %d;\n", reloc_size);
  3266       fprintf(fp,"}\n");
  3267       fprintf(fp,"\n");
  3270   fprintf(fp,"\n");
  3272   // Output the definitions for code generation
  3273   //
  3274   // address  ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
  3275   //   // ...  encoding defined by user
  3276   //   return ptr;
  3277   // }
  3278   //
  3279   _instructions.reset();
  3280   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3281     // Ensure this is a machine-world instruction
  3282     if ( instr->ideal_only() ) continue;
  3284     if (instr->_insencode) {
  3285       if (instr->postalloc_expands()) {
  3286         // Don't write this to _CPP_EXPAND_file, as the code generated calls C-code
  3287         // from code sections in ad file that is dumped to fp.
  3288         define_postalloc_expand(fp, *instr);
  3289       } else {
  3290         defineEmit(fp, *instr);
  3293     if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
  3294     if (instr->_size)              defineSize        (fp, *instr);
  3296     // side-call to generate output that used to be in the header file:
  3297     extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
  3298     gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
  3301   // Output the definitions for alias analysis
  3302   _instructions.reset();
  3303   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3304     // Ensure this is a machine-world instruction
  3305     if ( instr->ideal_only() ) continue;
  3307     // Analyze machine instructions that either USE or DEF memory.
  3308     int memory_operand = instr->memory_operand(_globalNames);
  3309     // Some guys kill all of memory
  3310     if ( instr->is_wide_memory_kill(_globalNames) ) {
  3311       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
  3314     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
  3315       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
  3316         fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
  3317         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
  3318       } else {
  3319         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
  3324   // Get the length of the longest identifier
  3325   int max_ident_len = 0;
  3326   _instructions.reset();
  3328   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3329     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
  3330       int ident_len = (int)strlen(instr->_ident);
  3331       if( max_ident_len < ident_len )
  3332         max_ident_len = ident_len;
  3336   // Emit specifically for Node(s)
  3337   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
  3338     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
  3339   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
  3340     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
  3341   fprintf(_CPP_PIPELINE_file._fp, "\n");
  3343   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
  3344     max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
  3345   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
  3346     max_ident_len, "MachNode");
  3347   fprintf(_CPP_PIPELINE_file._fp, "\n");
  3349   // Output the definitions for machine node specific pipeline data
  3350   _machnodes.reset();
  3352   for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
  3353     fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
  3354       machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
  3357   fprintf(_CPP_PIPELINE_file._fp, "\n");
  3359   // Output the definitions for instruction pipeline static data references
  3360   _instructions.reset();
  3362   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3363     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
  3364       fprintf(_CPP_PIPELINE_file._fp, "\n");
  3365       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
  3366         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
  3367       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
  3368         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
  3374 // -------------------------------- maps ------------------------------------
  3376 // Information needed to generate the ReduceOp mapping for the DFA
  3377 class OutputReduceOp : public OutputMap {
  3378 public:
  3379   OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3380     : OutputMap(hpp, cpp, globals, AD, "reduceOp") {};
  3382   void declaration() { fprintf(_hpp, "extern const int   reduceOp[];\n"); }
  3383   void definition()  { fprintf(_cpp, "const        int   reduceOp[] = {\n"); }
  3384   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
  3385                        OutputMap::closing();
  3387   void map(OpClassForm &opc)  {
  3388     const char *reduce = opc._ident;
  3389     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3390     else          fprintf(_cpp, "  0");
  3392   void map(OperandForm &oper) {
  3393     // Most operands without match rules, e.g.  eFlagsReg, do not have a result operand
  3394     const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
  3395     // operand stackSlot does not have a match rule, but produces a stackSlot
  3396     if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
  3397     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3398     else          fprintf(_cpp, "  0");
  3400   void map(InstructForm &inst) {
  3401     const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
  3402     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3403     else          fprintf(_cpp, "  0");
  3405   void map(char         *reduce) {
  3406     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3407     else          fprintf(_cpp, "  0");
  3409 };
  3411 // Information needed to generate the LeftOp mapping for the DFA
  3412 class OutputLeftOp : public OutputMap {
  3413 public:
  3414   OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3415     : OutputMap(hpp, cpp, globals, AD, "leftOp") {};
  3417   void declaration() { fprintf(_hpp, "extern const int   leftOp[];\n"); }
  3418   void definition()  { fprintf(_cpp, "const        int   leftOp[] = {\n"); }
  3419   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
  3420                        OutputMap::closing();
  3422   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
  3423   void map(OperandForm &oper) {
  3424     const char *reduce = oper.reduce_left(_globals);
  3425     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3426     else          fprintf(_cpp, "  0");
  3428   void map(char        *name) {
  3429     const char *reduce = _AD.reduceLeft(name);
  3430     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3431     else          fprintf(_cpp, "  0");
  3433   void map(InstructForm &inst) {
  3434     const char *reduce = inst.reduce_left(_globals);
  3435     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3436     else          fprintf(_cpp, "  0");
  3438 };
  3441 // Information needed to generate the RightOp mapping for the DFA
  3442 class OutputRightOp : public OutputMap {
  3443 public:
  3444   OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3445     : OutputMap(hpp, cpp, globals, AD, "rightOp") {};
  3447   void declaration() { fprintf(_hpp, "extern const int   rightOp[];\n"); }
  3448   void definition()  { fprintf(_cpp, "const        int   rightOp[] = {\n"); }
  3449   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
  3450                        OutputMap::closing();
  3452   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
  3453   void map(OperandForm &oper) {
  3454     const char *reduce = oper.reduce_right(_globals);
  3455     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3456     else          fprintf(_cpp, "  0");
  3458   void map(char        *name) {
  3459     const char *reduce = _AD.reduceRight(name);
  3460     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3461     else          fprintf(_cpp, "  0");
  3463   void map(InstructForm &inst) {
  3464     const char *reduce = inst.reduce_right(_globals);
  3465     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3466     else          fprintf(_cpp, "  0");
  3468 };
  3471 // Information needed to generate the Rule names for the DFA
  3472 class OutputRuleName : public OutputMap {
  3473 public:
  3474   OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3475     : OutputMap(hpp, cpp, globals, AD, "ruleName") {};
  3477   void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
  3478   void definition()  { fprintf(_cpp, "const char        *ruleName[] = {\n"); }
  3479   void closing()     { fprintf(_cpp, "  \"invalid rule name\" // no trailing comma\n");
  3480                        OutputMap::closing();
  3482   void map(OpClassForm &opc)  { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(opc._ident) ); }
  3483   void map(OperandForm &oper) { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(oper._ident) ); }
  3484   void map(char        *name) { fprintf(_cpp, "  \"%s\"", name ? name : "0"); }
  3485   void map(InstructForm &inst){ fprintf(_cpp, "  \"%s\"", inst._ident ? inst._ident : "0"); }
  3486 };
  3489 // Information needed to generate the swallowed mapping for the DFA
  3490 class OutputSwallowed : public OutputMap {
  3491 public:
  3492   OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3493     : OutputMap(hpp, cpp, globals, AD, "swallowed") {};
  3495   void declaration() { fprintf(_hpp, "extern const bool  swallowed[];\n"); }
  3496   void definition()  { fprintf(_cpp, "const        bool  swallowed[] = {\n"); }
  3497   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
  3498                        OutputMap::closing();
  3500   void map(OperandForm &oper) { // Generate the entry for this opcode
  3501     const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
  3502     fprintf(_cpp, "  %s", swallowed);
  3504   void map(OpClassForm &opc)  { fprintf(_cpp, "  false"); }
  3505   void map(char        *name) { fprintf(_cpp, "  false"); }
  3506   void map(InstructForm &inst){ fprintf(_cpp, "  false"); }
  3507 };
  3510 // Information needed to generate the decision array for instruction chain rule
  3511 class OutputInstChainRule : public OutputMap {
  3512 public:
  3513   OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3514     : OutputMap(hpp, cpp, globals, AD, "instruction_chain_rule") {};
  3516   void declaration() { fprintf(_hpp, "extern const bool  instruction_chain_rule[];\n"); }
  3517   void definition()  { fprintf(_cpp, "const        bool  instruction_chain_rule[] = {\n"); }
  3518   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
  3519                        OutputMap::closing();
  3521   void map(OpClassForm &opc)   { fprintf(_cpp, "  false"); }
  3522   void map(OperandForm &oper)  { fprintf(_cpp, "  false"); }
  3523   void map(char        *name)  { fprintf(_cpp, "  false"); }
  3524   void map(InstructForm &inst) { // Check for simple chain rule
  3525     const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
  3526     fprintf(_cpp, "  %s", chain);
  3528 };
  3531 //---------------------------build_map------------------------------------
  3532 // Build  mapping from enumeration for densely packed operands
  3533 // TO result and child types.
  3534 void ArchDesc::build_map(OutputMap &map) {
  3535   FILE         *fp_hpp = map.decl_file();
  3536   FILE         *fp_cpp = map.def_file();
  3537   int           idx    = 0;
  3538   OperandForm  *op;
  3539   OpClassForm  *opc;
  3540   InstructForm *inst;
  3542   // Construct this mapping
  3543   map.declaration();
  3544   fprintf(fp_cpp,"\n");
  3545   map.definition();
  3547   // Output the mapping for operands
  3548   map.record_position(OutputMap::BEGIN_OPERANDS, idx );
  3549   _operands.reset();
  3550   for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
  3551     // Ensure this is a machine-world instruction
  3552     if ( op->ideal_only() )  continue;
  3554     // Generate the entry for this opcode
  3555     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*op); fprintf(fp_cpp, ",\n");
  3556     ++idx;
  3557   };
  3558   fprintf(fp_cpp, "  // last operand\n");
  3560   // Place all user-defined operand classes into the mapping
  3561   map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
  3562   _opclass.reset();
  3563   for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
  3564     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*opc); fprintf(fp_cpp, ",\n");
  3565     ++idx;
  3566   };
  3567   fprintf(fp_cpp, "  // last operand class\n");
  3569   // Place all internally defined operands into the mapping
  3570   map.record_position(OutputMap::BEGIN_INTERNALS, idx );
  3571   _internalOpNames.reset();
  3572   char *name = NULL;
  3573   for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
  3574     fprintf(fp_cpp, "  /* %4d */", idx); map.map(name); fprintf(fp_cpp, ",\n");
  3575     ++idx;
  3576   };
  3577   fprintf(fp_cpp, "  // last internally defined operand\n");
  3579   // Place all user-defined instructions into the mapping
  3580   if( map.do_instructions() ) {
  3581     map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
  3582     // Output all simple instruction chain rules first
  3583     map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
  3585       _instructions.reset();
  3586       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3587         // Ensure this is a machine-world instruction
  3588         if ( inst->ideal_only() )  continue;
  3589         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
  3590         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
  3592         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
  3593         ++idx;
  3594       };
  3595       map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
  3596       _instructions.reset();
  3597       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3598         // Ensure this is a machine-world instruction
  3599         if ( inst->ideal_only() )  continue;
  3600         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
  3601         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
  3603         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
  3604         ++idx;
  3605       };
  3606       map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
  3608     // Output all instructions that are NOT simple chain rules
  3610       _instructions.reset();
  3611       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3612         // Ensure this is a machine-world instruction
  3613         if ( inst->ideal_only() )  continue;
  3614         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
  3615         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
  3617         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
  3618         ++idx;
  3619       };
  3620       map.record_position(OutputMap::END_REMATERIALIZE, idx );
  3621       _instructions.reset();
  3622       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3623         // Ensure this is a machine-world instruction
  3624         if ( inst->ideal_only() )  continue;
  3625         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
  3626         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
  3628         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
  3629         ++idx;
  3630       };
  3632     fprintf(fp_cpp, "  // last instruction\n");
  3633     map.record_position(OutputMap::END_INSTRUCTIONS, idx );
  3635   // Finish defining table
  3636   map.closing();
  3637 };
  3640 // Helper function for buildReduceMaps
  3641 char reg_save_policy(const char *calling_convention) {
  3642   char callconv;
  3644   if      (!strcmp(calling_convention, "NS"))  callconv = 'N';
  3645   else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
  3646   else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
  3647   else if (!strcmp(calling_convention, "AS"))  callconv = 'A';
  3648   else                                         callconv = 'Z';
  3650   return callconv;
  3653 void ArchDesc::generate_needs_clone_jvms(FILE *fp_cpp) {
  3654   fprintf(fp_cpp, "bool Compile::needs_clone_jvms() { return %s; }\n\n",
  3655           _needs_clone_jvms ? "true" : "false");
  3658 //---------------------------generate_assertion_checks-------------------
  3659 void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
  3660   fprintf(fp_cpp, "\n");
  3662   fprintf(fp_cpp, "#ifndef PRODUCT\n");
  3663   fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
  3664   globalDefs().print_asserts(fp_cpp);
  3665   fprintf(fp_cpp, "}\n");
  3666   fprintf(fp_cpp, "#endif\n");
  3667   fprintf(fp_cpp, "\n");
  3670 //---------------------------addSourceBlocks-----------------------------
  3671 void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
  3672   if (_source.count() > 0)
  3673     _source.output(fp_cpp);
  3675   generate_adlc_verification(fp_cpp);
  3677 //---------------------------addHeaderBlocks-----------------------------
  3678 void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
  3679   if (_header.count() > 0)
  3680     _header.output(fp_hpp);
  3682 //-------------------------addPreHeaderBlocks----------------------------
  3683 void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
  3684   // Output #defines from definition block
  3685   globalDefs().print_defines(fp_hpp);
  3687   if (_pre_header.count() > 0)
  3688     _pre_header.output(fp_hpp);
  3691 //---------------------------buildReduceMaps-----------------------------
  3692 // Build  mapping from enumeration for densely packed operands
  3693 // TO result and child types.
  3694 void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
  3695   RegDef       *rdef;
  3696   RegDef       *next;
  3698   // The emit bodies currently require functions defined in the source block.
  3700   // Build external declarations for mappings
  3701   fprintf(fp_hpp, "\n");
  3702   fprintf(fp_hpp, "extern const char  register_save_policy[];\n");
  3703   fprintf(fp_hpp, "extern const char  c_reg_save_policy[];\n");
  3704   fprintf(fp_hpp, "extern const int   register_save_type[];\n");
  3705   fprintf(fp_hpp, "\n");
  3707   // Construct Save-Policy array
  3708   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
  3709   fprintf(fp_cpp, "const        char register_save_policy[] = {\n");
  3710   _register->reset_RegDefs();
  3711   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
  3712     next              = _register->iter_RegDefs();
  3713     char policy       = reg_save_policy(rdef->_callconv);
  3714     const char *comma = (next != NULL) ? "," : " // no trailing comma";
  3715     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
  3717   fprintf(fp_cpp, "};\n\n");
  3719   // Construct Native Save-Policy array
  3720   fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
  3721   fprintf(fp_cpp, "const        char c_reg_save_policy[] = {\n");
  3722   _register->reset_RegDefs();
  3723   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
  3724     next        = _register->iter_RegDefs();
  3725     char policy = reg_save_policy(rdef->_c_conv);
  3726     const char *comma = (next != NULL) ? "," : " // no trailing comma";
  3727     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
  3729   fprintf(fp_cpp, "};\n\n");
  3731   // Construct Register Save Type array
  3732   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
  3733   fprintf(fp_cpp, "const        int register_save_type[] = {\n");
  3734   _register->reset_RegDefs();
  3735   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
  3736     next = _register->iter_RegDefs();
  3737     const char *comma = (next != NULL) ? "," : " // no trailing comma";
  3738     fprintf(fp_cpp, "  %s%s\n", rdef->_idealtype, comma);
  3740   fprintf(fp_cpp, "};\n\n");
  3742   // Construct the table for reduceOp
  3743   OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
  3744   build_map(output_reduce_op);
  3745   // Construct the table for leftOp
  3746   OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
  3747   build_map(output_left_op);
  3748   // Construct the table for rightOp
  3749   OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
  3750   build_map(output_right_op);
  3751   // Construct the table of rule names
  3752   OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
  3753   build_map(output_rule_name);
  3754   // Construct the boolean table for subsumed operands
  3755   OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
  3756   build_map(output_swallowed);
  3757   // // // Preserve in case we decide to use this table instead of another
  3758   //// Construct the boolean table for instruction chain rules
  3759   //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
  3760   //build_map(output_inst_chain);
  3765 //---------------------------buildMachOperGenerator---------------------------
  3767 // Recurse through match tree, building path through corresponding state tree,
  3768 // Until we reach the constant we are looking for.
  3769 static void path_to_constant(FILE *fp, FormDict &globals,
  3770                              MatchNode *mnode, uint idx) {
  3771   if ( ! mnode) return;
  3773   unsigned    position = 0;
  3774   const char *result   = NULL;
  3775   const char *name     = NULL;
  3776   const char *optype   = NULL;
  3778   // Base Case: access constant in ideal node linked to current state node
  3779   // Each type of constant has its own access function
  3780   if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
  3781        && mnode->base_operand(position, globals, result, name, optype) ) {
  3782     if (         strcmp(optype,"ConI") == 0 ) {
  3783       fprintf(fp, "_leaf->get_int()");
  3784     } else if ( (strcmp(optype,"ConP") == 0) ) {
  3785       fprintf(fp, "_leaf->bottom_type()->is_ptr()");
  3786     } else if ( (strcmp(optype,"ConN") == 0) ) {
  3787       fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
  3788     } else if ( (strcmp(optype,"ConNKlass") == 0) ) {
  3789       fprintf(fp, "_leaf->bottom_type()->is_narrowklass()");
  3790     } else if ( (strcmp(optype,"ConF") == 0) ) {
  3791       fprintf(fp, "_leaf->getf()");
  3792     } else if ( (strcmp(optype,"ConD") == 0) ) {
  3793       fprintf(fp, "_leaf->getd()");
  3794     } else if ( (strcmp(optype,"ConL") == 0) ) {
  3795       fprintf(fp, "_leaf->get_long()");
  3796     } else if ( (strcmp(optype,"Con")==0) ) {
  3797       // !!!!! - Update if adding a machine-independent constant type
  3798       fprintf(fp, "_leaf->get_int()");
  3799       assert( false, "Unsupported constant type, pointer or indefinite");
  3800     } else if ( (strcmp(optype,"Bool") == 0) ) {
  3801       fprintf(fp, "_leaf->as_Bool()->_test._test");
  3802     } else {
  3803       assert( false, "Unsupported constant type");
  3805     return;
  3808   // If constant is in left child, build path and recurse
  3809   uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
  3810   uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
  3811   if ( (mnode->_lChild) && (lConsts > idx) ) {
  3812     fprintf(fp, "_kids[0]->");
  3813     path_to_constant(fp, globals, mnode->_lChild, idx);
  3814     return;
  3816   // If constant is in right child, build path and recurse
  3817   if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
  3818     idx = idx - lConsts;
  3819     fprintf(fp, "_kids[1]->");
  3820     path_to_constant(fp, globals, mnode->_rChild, idx);
  3821     return;
  3823   assert( false, "ShouldNotReachHere()");
  3826 // Generate code that is executed when generating a specific Machine Operand
  3827 static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
  3828                             OperandForm &op) {
  3829   const char *opName         = op._ident;
  3830   const char *opEnumName     = AD.machOperEnum(opName);
  3831   uint        num_consts     = op.num_consts(globalNames);
  3833   // Generate the case statement for this opcode
  3834   fprintf(fp, "  case %s:", opEnumName);
  3835   fprintf(fp, "\n    return new (C) %sOper(", opName);
  3836   // Access parameters for constructor from the stat object
  3837   //
  3838   // Build access to condition code value
  3839   if ( (num_consts > 0) ) {
  3840     uint i = 0;
  3841     path_to_constant(fp, globalNames, op._matrule, i);
  3842     for ( i = 1; i < num_consts; ++i ) {
  3843       fprintf(fp, ", ");
  3844       path_to_constant(fp, globalNames, op._matrule, i);
  3847   fprintf(fp, " );\n");
  3851 // Build switch to invoke "new" MachNode or MachOper
  3852 void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
  3853   int idx = 0;
  3855   // Build switch to invoke 'new' for a specific MachOper
  3856   fprintf(fp_cpp, "\n");
  3857   fprintf(fp_cpp, "\n");
  3858   fprintf(fp_cpp,
  3859           "//------------------------- MachOper Generator ---------------\n");
  3860   fprintf(fp_cpp,
  3861           "// A switch statement on the dense-packed user-defined type system\n"
  3862           "// that invokes 'new' on the corresponding class constructor.\n");
  3863   fprintf(fp_cpp, "\n");
  3864   fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
  3865   fprintf(fp_cpp, "(int opcode, Compile* C)");
  3866   fprintf(fp_cpp, "{\n");
  3867   fprintf(fp_cpp, "\n");
  3868   fprintf(fp_cpp, "  switch(opcode) {\n");
  3870   // Place all user-defined operands into the mapping
  3871   _operands.reset();
  3872   int  opIndex = 0;
  3873   OperandForm *op;
  3874   for( ; (op =  (OperandForm*)_operands.iter()) != NULL; ) {
  3875     // Ensure this is a machine-world instruction
  3876     if ( op->ideal_only() )  continue;
  3878     genMachOperCase(fp_cpp, _globalNames, *this, *op);
  3879   };
  3881   // Do not iterate over operand classes for the  operand generator!!!
  3883   // Place all internal operands into the mapping
  3884   _internalOpNames.reset();
  3885   const char *iopn;
  3886   for( ; (iopn =  _internalOpNames.iter()) != NULL; ) {
  3887     const char *opEnumName = machOperEnum(iopn);
  3888     // Generate the case statement for this opcode
  3889     fprintf(fp_cpp, "  case %s:", opEnumName);
  3890     fprintf(fp_cpp, "    return NULL;\n");
  3891   };
  3893   // Generate the default case for switch(opcode)
  3894   fprintf(fp_cpp, "  \n");
  3895   fprintf(fp_cpp, "  default:\n");
  3896   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
  3897   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
  3898   fprintf(fp_cpp, "    break;\n");
  3899   fprintf(fp_cpp, "  }\n");
  3901   // Generate the closing for method Matcher::MachOperGenerator
  3902   fprintf(fp_cpp, "  return NULL;\n");
  3903   fprintf(fp_cpp, "};\n");
  3907 //---------------------------buildMachNode-------------------------------------
  3908 // Build a new MachNode, for MachNodeGenerator or cisc-spilling
  3909 void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
  3910   const char *opType  = NULL;
  3911   const char *opClass = inst->_ident;
  3913   // Create the MachNode object
  3914   fprintf(fp_cpp, "%s %sNode *node = new (C) %sNode();\n",indent, opClass,opClass);
  3916   if ( (inst->num_post_match_opnds() != 0) ) {
  3917     // Instruction that contains operands which are not in match rule.
  3918     //
  3919     // Check if the first post-match component may be an interesting def
  3920     bool           dont_care = false;
  3921     ComponentList &comp_list = inst->_components;
  3922     Component     *comp      = NULL;
  3923     comp_list.reset();
  3924     if ( comp_list.match_iter() != NULL )    dont_care = true;
  3926     // Insert operands that are not in match-rule.
  3927     // Only insert a DEF if the do_care flag is set
  3928     comp_list.reset();
  3929     while ( comp = comp_list.post_match_iter() ) {
  3930       // Check if we don't care about DEFs or KILLs that are not USEs
  3931       if ( dont_care && (! comp->isa(Component::USE)) ) {
  3932         continue;
  3934       dont_care = true;
  3935       // For each operand not in the match rule, call MachOperGenerator
  3936       // with the enum for the opcode that needs to be built.
  3937       ComponentList clist = inst->_components;
  3938       int         index  = clist.operand_position(comp->_name, comp->_usedef, inst);
  3939       const char *opcode = machOperEnum(comp->_type);
  3940       fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
  3941       fprintf(fp_cpp, "MachOperGenerator(%s, C));\n", opcode);
  3944   else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
  3945     // An instruction that chains from a constant!
  3946     // In this case, we need to subsume the constant into the node
  3947     // at operand position, oper_input_base().
  3948     //
  3949     // Fill in the constant
  3950     fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
  3951             inst->oper_input_base(_globalNames));
  3952     // #####
  3953     // Check for multiple constants and then fill them in.
  3954     // Just like MachOperGenerator
  3955     const char *opName = inst->_matrule->_rChild->_opType;
  3956     fprintf(fp_cpp, "new (C) %sOper(", opName);
  3957     // Grab operand form
  3958     OperandForm *op = (_globalNames[opName])->is_operand();
  3959     // Look up the number of constants
  3960     uint num_consts = op->num_consts(_globalNames);
  3961     if ( (num_consts > 0) ) {
  3962       uint i = 0;
  3963       path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
  3964       for ( i = 1; i < num_consts; ++i ) {
  3965         fprintf(fp_cpp, ", ");
  3966         path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
  3969     fprintf(fp_cpp, " );\n");
  3970     // #####
  3973   // Fill in the bottom_type where requested
  3974   if (inst->captures_bottom_type(_globalNames)) {
  3975     if (strncmp("MachCall", inst->mach_base_class(_globalNames), strlen("MachCall"))) {
  3976       fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
  3979   if( inst->is_ideal_if() ) {
  3980     fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
  3981     fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
  3983   if( inst->is_ideal_fastlock() ) {
  3984     fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
  3985     fprintf(fp_cpp, "%s node->_rtm_counters = _leaf->as_FastLock()->rtm_counters();\n", indent);
  3986     fprintf(fp_cpp, "%s node->_stack_rtm_counters = _leaf->as_FastLock()->stack_rtm_counters();\n", indent);
  3991 //---------------------------declare_cisc_version------------------------------
  3992 // Build CISC version of this instruction
  3993 void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
  3994   if( AD.can_cisc_spill() ) {
  3995     InstructForm *inst_cisc = cisc_spill_alternate();
  3996     if (inst_cisc != NULL) {
  3997       fprintf(fp_hpp, "  virtual int            cisc_operand() const { return %d; }\n", cisc_spill_operand());
  3998       fprintf(fp_hpp, "  virtual MachNode      *cisc_version(int offset, Compile* C);\n");
  3999       fprintf(fp_hpp, "  virtual void           use_cisc_RegMask();\n");
  4000       fprintf(fp_hpp, "  virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
  4005 //---------------------------define_cisc_version-------------------------------
  4006 // Build CISC version of this instruction
  4007 bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
  4008   InstructForm *inst_cisc = this->cisc_spill_alternate();
  4009   if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
  4010     const char   *name      = inst_cisc->_ident;
  4011     assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
  4012     OperandForm *cisc_oper = AD.cisc_spill_operand();
  4013     assert( cisc_oper != NULL, "insanity check");
  4014     const char *cisc_oper_name  = cisc_oper->_ident;
  4015     assert( cisc_oper_name != NULL, "insanity check");
  4016     //
  4017     // Set the correct reg_mask_or_stack for the cisc operand
  4018     fprintf(fp_cpp, "\n");
  4019     fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
  4020     // Lookup the correct reg_mask_or_stack
  4021     const char *reg_mask_name = cisc_reg_mask_name();
  4022     fprintf(fp_cpp, "  _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
  4023     fprintf(fp_cpp, "}\n");
  4024     //
  4025     // Construct CISC version of this instruction
  4026     fprintf(fp_cpp, "\n");
  4027     fprintf(fp_cpp, "// Build CISC version of this instruction\n");
  4028     fprintf(fp_cpp, "MachNode *%sNode::cisc_version( int offset, Compile* C ) {\n", this->_ident);
  4029     // Create the MachNode object
  4030     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
  4031     // Fill in the bottom_type where requested
  4032     if ( this->captures_bottom_type(AD.globalNames()) ) {
  4033       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
  4036     uint cur_num_opnds = num_opnds();
  4037     if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
  4038       fprintf(fp_cpp,"  node->_num_opnds = %d;\n", num_unique_opnds());
  4041     fprintf(fp_cpp, "\n");
  4042     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
  4043     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
  4044     // Construct operand to access [stack_pointer + offset]
  4045     fprintf(fp_cpp, "  // Construct operand to access [stack_pointer + offset]\n");
  4046     fprintf(fp_cpp, "  node->set_opnd_array(cisc_operand(), new (C) %sOper(offset));\n", cisc_oper_name);
  4047     fprintf(fp_cpp, "\n");
  4049     // Return result and exit scope
  4050     fprintf(fp_cpp, "  return node;\n");
  4051     fprintf(fp_cpp, "}\n");
  4052     fprintf(fp_cpp, "\n");
  4053     return true;
  4055   return false;
  4058 //---------------------------declare_short_branch_methods----------------------
  4059 // Build prototypes for short branch methods
  4060 void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
  4061   if (has_short_branch_form()) {
  4062     fprintf(fp_hpp, "  virtual MachNode      *short_branch_version(Compile* C);\n");
  4066 //---------------------------define_short_branch_methods-----------------------
  4067 // Build definitions for short branch methods
  4068 bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
  4069   if (has_short_branch_form()) {
  4070     InstructForm *short_branch = short_branch_form();
  4071     const char   *name         = short_branch->_ident;
  4073     // Construct short_branch_version() method.
  4074     fprintf(fp_cpp, "// Build short branch version of this instruction\n");
  4075     fprintf(fp_cpp, "MachNode *%sNode::short_branch_version(Compile* C) {\n", this->_ident);
  4076     // Create the MachNode object
  4077     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
  4078     if( is_ideal_if() ) {
  4079       fprintf(fp_cpp, "  node->_prob = _prob;\n");
  4080       fprintf(fp_cpp, "  node->_fcnt = _fcnt;\n");
  4082     // Fill in the bottom_type where requested
  4083     if ( this->captures_bottom_type(AD.globalNames()) ) {
  4084       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
  4087     fprintf(fp_cpp, "\n");
  4088     // Short branch version must use same node index for access
  4089     // through allocator's tables
  4090     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
  4091     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
  4093     // Return result and exit scope
  4094     fprintf(fp_cpp, "  return node;\n");
  4095     fprintf(fp_cpp, "}\n");
  4096     fprintf(fp_cpp,"\n");
  4097     return true;
  4099   return false;
  4103 //---------------------------buildMachNodeGenerator----------------------------
  4104 // Build switch to invoke appropriate "new" MachNode for an opcode
  4105 void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
  4107   // Build switch to invoke 'new' for a specific MachNode
  4108   fprintf(fp_cpp, "\n");
  4109   fprintf(fp_cpp, "\n");
  4110   fprintf(fp_cpp,
  4111           "//------------------------- MachNode Generator ---------------\n");
  4112   fprintf(fp_cpp,
  4113           "// A switch statement on the dense-packed user-defined type system\n"
  4114           "// that invokes 'new' on the corresponding class constructor.\n");
  4115   fprintf(fp_cpp, "\n");
  4116   fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
  4117   fprintf(fp_cpp, "(int opcode, Compile* C)");
  4118   fprintf(fp_cpp, "{\n");
  4119   fprintf(fp_cpp, "  switch(opcode) {\n");
  4121   // Provide constructor for all user-defined instructions
  4122   _instructions.reset();
  4123   int  opIndex = operandFormCount();
  4124   InstructForm *inst;
  4125   for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  4126     // Ensure that matrule is defined.
  4127     if ( inst->_matrule == NULL ) continue;
  4129     int         opcode  = opIndex++;
  4130     const char *opClass = inst->_ident;
  4131     char       *opType  = NULL;
  4133     // Generate the case statement for this instruction
  4134     fprintf(fp_cpp, "  case %s_rule:", opClass);
  4136     // Start local scope
  4137     fprintf(fp_cpp, " {\n");
  4138     // Generate code to construct the new MachNode
  4139     buildMachNode(fp_cpp, inst, "     ");
  4140     // Return result and exit scope
  4141     fprintf(fp_cpp, "      return node;\n");
  4142     fprintf(fp_cpp, "    }\n");
  4145   // Generate the default case for switch(opcode)
  4146   fprintf(fp_cpp, "  \n");
  4147   fprintf(fp_cpp, "  default:\n");
  4148   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
  4149   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
  4150   fprintf(fp_cpp, "    break;\n");
  4151   fprintf(fp_cpp, "  };\n");
  4153   // Generate the closing for method Matcher::MachNodeGenerator
  4154   fprintf(fp_cpp, "  return NULL;\n");
  4155   fprintf(fp_cpp, "}\n");
  4159 //---------------------------buildInstructMatchCheck--------------------------
  4160 // Output the method to Matcher which checks whether or not a specific
  4161 // instruction has a matching rule for the host architecture.
  4162 void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
  4163   fprintf(fp_cpp, "\n\n");
  4164   fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
  4165   fprintf(fp_cpp, "  assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
  4166   fprintf(fp_cpp, "  return _hasMatchRule[opcode];\n");
  4167   fprintf(fp_cpp, "}\n\n");
  4169   fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
  4170   int i;
  4171   for (i = 0; i < _last_opcode - 1; i++) {
  4172     fprintf(fp_cpp, "    %-5s,  // %s\n",
  4173             _has_match_rule[i] ? "true" : "false",
  4174             NodeClassNames[i]);
  4176   fprintf(fp_cpp, "    %-5s   // %s\n",
  4177           _has_match_rule[i] ? "true" : "false",
  4178           NodeClassNames[i]);
  4179   fprintf(fp_cpp, "};\n");
  4182 //---------------------------buildFrameMethods---------------------------------
  4183 // Output the methods to Matcher which specify frame behavior
  4184 void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
  4185   fprintf(fp_cpp,"\n\n");
  4186   // Stack Direction
  4187   fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
  4188           _frame->_direction ? "true" : "false");
  4189   // Sync Stack Slots
  4190   fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
  4191           _frame->_sync_stack_slots);
  4192   // Java Stack Alignment
  4193   fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
  4194           _frame->_alignment);
  4195   // Java Return Address Location
  4196   fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
  4197   if (_frame->_return_addr_loc) {
  4198     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4199             _frame->_return_addr);
  4201   else {
  4202     fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
  4203             _frame->_return_addr);
  4205   // Java Stack Slot Preservation
  4206   fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
  4207   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
  4208   // Top Of Stack Slot Preservation, for both Java and C
  4209   fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
  4210   fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
  4211   // varargs C out slots killed
  4212   fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
  4213   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
  4214   // Java Argument Position
  4215   fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
  4216   fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
  4217   fprintf(fp_cpp,"}\n\n");
  4218   // Native Argument Position
  4219   fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
  4220   fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
  4221   fprintf(fp_cpp,"}\n\n");
  4222   // Java Return Value Location
  4223   fprintf(fp_cpp,"OptoRegPair Matcher::return_value(int ideal_reg, bool is_outgoing) {\n");
  4224   fprintf(fp_cpp,"%s\n", _frame->_return_value);
  4225   fprintf(fp_cpp,"}\n\n");
  4226   // Native Return Value Location
  4227   fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(int ideal_reg, bool is_outgoing) {\n");
  4228   fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
  4229   fprintf(fp_cpp,"}\n\n");
  4231   // Inline Cache Register, mask definition, and encoding
  4232   fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
  4233   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4234           _frame->_inline_cache_reg);
  4235   fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
  4236   fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
  4238   // Interpreter's Method Oop Register, mask definition, and encoding
  4239   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
  4240   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4241           _frame->_interpreter_method_oop_reg);
  4242   fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
  4243   fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
  4245   // Interpreter's Frame Pointer Register, mask definition, and encoding
  4246   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
  4247   if (_frame->_interpreter_frame_pointer_reg == NULL)
  4248     fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
  4249   else
  4250     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4251             _frame->_interpreter_frame_pointer_reg);
  4253   // Frame Pointer definition
  4254   /* CNC - I can not contemplate having a different frame pointer between
  4255      Java and native code; makes my head hurt to think about it.
  4256   fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
  4257   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4258           _frame->_frame_pointer);
  4259   */
  4260   // (Native) Frame Pointer definition
  4261   fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
  4262   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  4263           _frame->_frame_pointer);
  4265   // Number of callee-save + always-save registers for calling convention
  4266   fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
  4267   fprintf(fp_cpp, "int  Matcher::number_of_saved_registers() {\n");
  4268   RegDef *rdef;
  4269   int nof_saved_registers = 0;
  4270   _register->reset_RegDefs();
  4271   while( (rdef = _register->iter_RegDefs()) != NULL ) {
  4272     if( !strcmp(rdef->_callconv, "SOE") ||  !strcmp(rdef->_callconv, "AS") )
  4273       ++nof_saved_registers;
  4275   fprintf(fp_cpp, "  return %d;\n", nof_saved_registers);
  4276   fprintf(fp_cpp, "};\n\n");
  4282 static int PrintAdlcCisc = 0;
  4283 //---------------------------identify_cisc_spilling----------------------------
  4284 // Get info for the CISC_oracle and MachNode::cisc_version()
  4285 void ArchDesc::identify_cisc_spill_instructions() {
  4287   if (_frame == NULL)
  4288     return;
  4290   // Find the user-defined operand for cisc-spilling
  4291   if( _frame->_cisc_spilling_operand_name != NULL ) {
  4292     const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
  4293     OperandForm *oper = form ? form->is_operand() : NULL;
  4294     // Verify the user's suggestion
  4295     if( oper != NULL ) {
  4296       // Ensure that match field is defined.
  4297       if ( oper->_matrule != NULL )  {
  4298         MatchRule &mrule = *oper->_matrule;
  4299         if( strcmp(mrule._opType,"AddP") == 0 ) {
  4300           MatchNode *left = mrule._lChild;
  4301           MatchNode *right= mrule._rChild;
  4302           if( left != NULL && right != NULL ) {
  4303             const Form *left_op  = _globalNames[left->_opType]->is_operand();
  4304             const Form *right_op = _globalNames[right->_opType]->is_operand();
  4305             if(  (left_op != NULL && right_op != NULL)
  4306               && (left_op->interface_type(_globalNames) == Form::register_interface)
  4307               && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
  4308               // Successfully verified operand
  4309               set_cisc_spill_operand( oper );
  4310               if( _cisc_spill_debug ) {
  4311                 fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
  4320   if( cisc_spill_operand() != NULL ) {
  4321     // N^2 comparison of instructions looking for a cisc-spilling version
  4322     _instructions.reset();
  4323     InstructForm *instr;
  4324     for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  4325       // Ensure that match field is defined.
  4326       if ( instr->_matrule == NULL )  continue;
  4328       MatchRule &mrule = *instr->_matrule;
  4329       Predicate *pred  =  instr->build_predicate();
  4331       // Grab the machine type of the operand
  4332       const char *rootOp = instr->_ident;
  4333       mrule._machType    = rootOp;
  4335       // Find result type for match
  4336       const char *result = instr->reduce_result();
  4338       if( PrintAdlcCisc ) fprintf(stderr, "  new instruction %s \n", instr->_ident ? instr->_ident : " ");
  4339       bool  found_cisc_alternate = false;
  4340       _instructions.reset2();
  4341       InstructForm *instr2;
  4342       for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
  4343         // Ensure that match field is defined.
  4344         if( PrintAdlcCisc ) fprintf(stderr, "  instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
  4345         if ( instr2->_matrule != NULL
  4346             && (instr != instr2 )                // Skip self
  4347             && (instr2->reduce_result() != NULL) // want same result
  4348             && (strcmp(result, instr2->reduce_result()) == 0)) {
  4349           MatchRule &mrule2 = *instr2->_matrule;
  4350           Predicate *pred2  =  instr2->build_predicate();
  4351           found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
  4358 //---------------------------build_cisc_spilling-------------------------------
  4359 // Get info for the CISC_oracle and MachNode::cisc_version()
  4360 void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
  4361   // Output the table for cisc spilling
  4362   fprintf(fp_cpp, "//  The following instructions can cisc-spill\n");
  4363   _instructions.reset();
  4364   InstructForm *inst = NULL;
  4365   for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  4366     // Ensure this is a machine-world instruction
  4367     if ( inst->ideal_only() )  continue;
  4368     const char *inst_name = inst->_ident;
  4369     int   operand   = inst->cisc_spill_operand();
  4370     if( operand != AdlcVMDeps::Not_cisc_spillable ) {
  4371       InstructForm *inst2 = inst->cisc_spill_alternate();
  4372       fprintf(fp_cpp, "//  %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
  4375   fprintf(fp_cpp, "\n\n");
  4378 //---------------------------identify_short_branches----------------------------
  4379 // Get info for our short branch replacement oracle.
  4380 void ArchDesc::identify_short_branches() {
  4381   // Walk over all instructions, checking to see if they match a short
  4382   // branching alternate.
  4383   _instructions.reset();
  4384   InstructForm *instr;
  4385   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  4386     // The instruction must have a match rule.
  4387     if (instr->_matrule != NULL &&
  4388         instr->is_short_branch()) {
  4390       _instructions.reset2();
  4391       InstructForm *instr2;
  4392       while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
  4393         instr2->check_branch_variant(*this, instr);
  4400 //---------------------------identify_unique_operands---------------------------
  4401 // Identify unique operands.
  4402 void ArchDesc::identify_unique_operands() {
  4403   // Walk over all instructions.
  4404   _instructions.reset();
  4405   InstructForm *instr;
  4406   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  4407     // Ensure this is a machine-world instruction
  4408     if (!instr->ideal_only()) {
  4409       instr->set_unique_opnds();

mercurial