src/cpu/x86/vm/x86_32.ad

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

     1 //
     2 // Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // X86 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
    64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
    67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
    68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
    69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
    70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
    71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
    72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
    73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
    74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
    75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
    77 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
    78 // allocator, and only shows up in the encodings.
    79 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    80 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    81 // Ok so here's the trick FPR1 is really st(0) except in the midst
    82 // of emission of assembly for a machnode. During the emission the fpu stack
    83 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
    84 // the stack will not have this element so FPR1 == st(0) from the
    85 // oopMap viewpoint. This same weirdness with numbering causes
    86 // instruction encoding to have to play games with the register
    87 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
    88 // where it does flt->flt moves to see an example
    89 //
    90 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
    91 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
    92 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
    93 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
    94 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
    95 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
    96 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
    97 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
    98 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
    99 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
   100 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
   101 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
   102 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
   103 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
   105 // Specify priority of register selection within phases of register
   106 // allocation.  Highest priority is first.  A useful heuristic is to
   107 // give registers a low priority when they are required by machine
   108 // instructions, like EAX and EDX.  Registers which are used as
   109 // pairs must fall on an even boundary (witness the FPR#L's in this list).
   110 // For the Intel integer registers, the equivalent Long pairs are
   111 // EDX:EAX, EBX:ECX, and EDI:EBP.
   112 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
   113                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
   114                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
   115                     FPR6L, FPR6H, FPR7L, FPR7H );
   118 //----------Architecture Description Register Classes--------------------------
   119 // Several register classes are automatically defined based upon information in
   120 // this architecture description.
   121 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   122 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   123 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   124 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   125 //
   126 // Class for all registers
   127 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
   128 // Class for general registers
   129 reg_class int_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
   130 // Class for general registers which may be used for implicit null checks on win95
   131 // Also safe for use by tailjump. We don't want to allocate in rbp,
   132 reg_class int_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
   133 // Class of "X" registers
   134 reg_class int_x_reg(EBX, ECX, EDX, EAX);
   135 // Class of registers that can appear in an address with no offset.
   136 // EBP and ESP require an extra instruction byte for zero offset.
   137 // Used in fast-unlock
   138 reg_class p_reg(EDX, EDI, ESI, EBX);
   139 // Class for general registers not including ECX
   140 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
   141 // Class for general registers not including EAX
   142 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
   143 // Class for general registers not including EAX or EBX.
   144 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
   145 // Class of EAX (for multiply and divide operations)
   146 reg_class eax_reg(EAX);
   147 // Class of EBX (for atomic add)
   148 reg_class ebx_reg(EBX);
   149 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
   150 reg_class ecx_reg(ECX);
   151 // Class of EDX (for multiply and divide operations)
   152 reg_class edx_reg(EDX);
   153 // Class of EDI (for synchronization)
   154 reg_class edi_reg(EDI);
   155 // Class of ESI (for synchronization)
   156 reg_class esi_reg(ESI);
   157 // Singleton class for interpreter's stack pointer
   158 reg_class ebp_reg(EBP);
   159 // Singleton class for stack pointer
   160 reg_class sp_reg(ESP);
   161 // Singleton class for instruction pointer
   162 // reg_class ip_reg(EIP);
   163 // Class of integer register pairs
   164 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
   165 // Class of integer register pairs that aligns with calling convention
   166 reg_class eadx_reg( EAX,EDX );
   167 reg_class ebcx_reg( ECX,EBX );
   168 // Not AX or DX, used in divides
   169 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
   171 // Floating point registers.  Notice FPR0 is not a choice.
   172 // FPR0 is not ever allocated; we use clever encodings to fake
   173 // a 2-address instructions out of Intels FP stack.
   174 reg_class fp_flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
   176 reg_class fp_dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
   177                       FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
   178                       FPR7L,FPR7H );
   180 reg_class fp_flt_reg0( FPR1L );
   181 reg_class fp_dbl_reg0( FPR1L,FPR1H );
   182 reg_class fp_dbl_reg1( FPR2L,FPR2H );
   183 reg_class fp_dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
   184                           FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
   186 %}
   189 //----------SOURCE BLOCK-------------------------------------------------------
   190 // This is a block of C++ code which provides values, functions, and
   191 // definitions necessary in the rest of the architecture description
   192 source_hpp %{
   193 // Must be visible to the DFA in dfa_x86_32.cpp
   194 extern bool is_operand_hi32_zero(Node* n);
   195 %}
   197 source %{
   198 #define   RELOC_IMM32    Assembler::imm_operand
   199 #define   RELOC_DISP32   Assembler::disp32_operand
   201 #define __ _masm.
   203 // How to find the high register of a Long pair, given the low register
   204 #define   HIGH_FROM_LOW(x) ((x)+2)
   206 // These masks are used to provide 128-bit aligned bitmasks to the XMM
   207 // instructions, to allow sign-masking or sign-bit flipping.  They allow
   208 // fast versions of NegF/NegD and AbsF/AbsD.
   210 // Note: 'double' and 'long long' have 32-bits alignment on x86.
   211 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
   212   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
   213   // of 128-bits operands for SSE instructions.
   214   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
   215   // Store the value to a 128-bits operand.
   216   operand[0] = lo;
   217   operand[1] = hi;
   218   return operand;
   219 }
   221 // Buffer for 128-bits masks used by SSE instructions.
   222 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
   224 // Static initialization during VM startup.
   225 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
   226 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
   227 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
   228 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
   230 // Offset hacking within calls.
   231 static int pre_call_resets_size() {
   232   int size = 0;
   233   Compile* C = Compile::current();
   234   if (C->in_24_bit_fp_mode()) {
   235     size += 6; // fldcw
   236   }
   237   if (C->max_vector_size() > 16) {
   238     size += 3; // vzeroupper
   239   }
   240   return size;
   241 }
   243 static int preserve_SP_size() {
   244   return 2;  // op, rm(reg/reg)
   245 }
   247 // !!!!! Special hack to get all type of calls to specify the byte offset
   248 //       from the start of the call to the point where the return address
   249 //       will point.
   250 int MachCallStaticJavaNode::ret_addr_offset() {
   251   int offset = 5 + pre_call_resets_size();  // 5 bytes from start of call to where return address points
   252   if (_method_handle_invoke)
   253     offset += preserve_SP_size();
   254   return offset;
   255 }
   257 int MachCallDynamicJavaNode::ret_addr_offset() {
   258   return 10 + pre_call_resets_size();  // 10 bytes from start of call to where return address points
   259 }
   261 static int sizeof_FFree_Float_Stack_All = -1;
   263 int MachCallRuntimeNode::ret_addr_offset() {
   264   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
   265   return sizeof_FFree_Float_Stack_All + 5 + pre_call_resets_size();
   266 }
   268 // Indicate if the safepoint node needs the polling page as an input.
   269 // Since x86 does have absolute addressing, it doesn't.
   270 bool SafePointNode::needs_polling_address_input() {
   271   return false;
   272 }
   274 //
   275 // Compute padding required for nodes which need alignment
   276 //
   278 // The address of the call instruction needs to be 4-byte aligned to
   279 // ensure that it does not span a cache line so that it can be patched.
   280 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   281   current_offset += pre_call_resets_size();  // skip fldcw, if any
   282   current_offset += 1;      // skip call opcode byte
   283   return round_to(current_offset, alignment_required()) - current_offset;
   284 }
   286 // The address of the call instruction needs to be 4-byte aligned to
   287 // ensure that it does not span a cache line so that it can be patched.
   288 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
   289   current_offset += pre_call_resets_size();  // skip fldcw, if any
   290   current_offset += preserve_SP_size();   // skip mov rbp, rsp
   291   current_offset += 1;      // skip call opcode byte
   292   return round_to(current_offset, alignment_required()) - current_offset;
   293 }
   295 // The address of the call instruction needs to be 4-byte aligned to
   296 // ensure that it does not span a cache line so that it can be patched.
   297 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   298   current_offset += pre_call_resets_size();  // skip fldcw, if any
   299   current_offset += 5;      // skip MOV instruction
   300   current_offset += 1;      // skip call opcode byte
   301   return round_to(current_offset, alignment_required()) - current_offset;
   302 }
   304 // EMIT_RM()
   305 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
   306   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
   307   cbuf.insts()->emit_int8(c);
   308 }
   310 // EMIT_CC()
   311 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
   312   unsigned char c = (unsigned char)( f1 | f2 );
   313   cbuf.insts()->emit_int8(c);
   314 }
   316 // EMIT_OPCODE()
   317 void emit_opcode(CodeBuffer &cbuf, int code) {
   318   cbuf.insts()->emit_int8((unsigned char) code);
   319 }
   321 // EMIT_OPCODE() w/ relocation information
   322 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
   323   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
   324   emit_opcode(cbuf, code);
   325 }
   327 // EMIT_D8()
   328 void emit_d8(CodeBuffer &cbuf, int d8) {
   329   cbuf.insts()->emit_int8((unsigned char) d8);
   330 }
   332 // EMIT_D16()
   333 void emit_d16(CodeBuffer &cbuf, int d16) {
   334   cbuf.insts()->emit_int16(d16);
   335 }
   337 // EMIT_D32()
   338 void emit_d32(CodeBuffer &cbuf, int d32) {
   339   cbuf.insts()->emit_int32(d32);
   340 }
   342 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   343 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
   344         int format) {
   345   cbuf.relocate(cbuf.insts_mark(), reloc, format);
   346   cbuf.insts()->emit_int32(d32);
   347 }
   349 // emit 32 bit value and construct relocation entry from RelocationHolder
   350 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
   351         int format) {
   352 #ifdef ASSERT
   353   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
   354     assert(cast_to_oop(d32)->is_oop() && (ScavengeRootsInCode || !cast_to_oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
   355   }
   356 #endif
   357   cbuf.relocate(cbuf.insts_mark(), rspec, format);
   358   cbuf.insts()->emit_int32(d32);
   359 }
   361 // Access stack slot for load or store
   362 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
   363   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
   364   if( -128 <= disp && disp <= 127 ) {
   365     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
   366     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   367     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
   368   } else {
   369     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
   370     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   371     emit_d32(cbuf, disp);     // Displacement  // R/M byte
   372   }
   373 }
   375    // rRegI ereg, memory mem) %{    // emit_reg_mem
   376 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, relocInfo::relocType disp_reloc ) {
   377   // There is no index & no scale, use form without SIB byte
   378   if ((index == 0x4) &&
   379       (scale == 0) && (base != ESP_enc)) {
   380     // If no displacement, mode is 0x0; unless base is [EBP]
   381     if ( (displace == 0) && (base != EBP_enc) ) {
   382       emit_rm(cbuf, 0x0, reg_encoding, base);
   383     }
   384     else {                    // If 8-bit displacement, mode 0x1
   385       if ((displace >= -128) && (displace <= 127)
   386           && (disp_reloc == relocInfo::none) ) {
   387         emit_rm(cbuf, 0x1, reg_encoding, base);
   388         emit_d8(cbuf, displace);
   389       }
   390       else {                  // If 32-bit displacement
   391         if (base == -1) { // Special flag for absolute address
   392           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
   393           // (manual lies; no SIB needed here)
   394           if ( disp_reloc != relocInfo::none ) {
   395             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
   396           } else {
   397             emit_d32      (cbuf, displace);
   398           }
   399         }
   400         else {                // Normal base + offset
   401           emit_rm(cbuf, 0x2, reg_encoding, base);
   402           if ( disp_reloc != relocInfo::none ) {
   403             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
   404           } else {
   405             emit_d32      (cbuf, displace);
   406           }
   407         }
   408       }
   409     }
   410   }
   411   else {                      // Else, encode with the SIB byte
   412     // If no displacement, mode is 0x0; unless base is [EBP]
   413     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
   414       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
   415       emit_rm(cbuf, scale, index, base);
   416     }
   417     else {                    // If 8-bit displacement, mode 0x1
   418       if ((displace >= -128) && (displace <= 127)
   419           && (disp_reloc == relocInfo::none) ) {
   420         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
   421         emit_rm(cbuf, scale, index, base);
   422         emit_d8(cbuf, displace);
   423       }
   424       else {                  // If 32-bit displacement
   425         if (base == 0x04 ) {
   426           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   427           emit_rm(cbuf, scale, index, 0x04);
   428         } else {
   429           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   430           emit_rm(cbuf, scale, index, base);
   431         }
   432         if ( disp_reloc != relocInfo::none ) {
   433           emit_d32_reloc(cbuf, displace, disp_reloc, 1);
   434         } else {
   435           emit_d32      (cbuf, displace);
   436         }
   437       }
   438     }
   439   }
   440 }
   443 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   444   if( dst_encoding == src_encoding ) {
   445     // reg-reg copy, use an empty encoding
   446   } else {
   447     emit_opcode( cbuf, 0x8B );
   448     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
   449   }
   450 }
   452 void emit_cmpfp_fixup(MacroAssembler& _masm) {
   453   Label exit;
   454   __ jccb(Assembler::noParity, exit);
   455   __ pushf();
   456   //
   457   // comiss/ucomiss instructions set ZF,PF,CF flags and
   458   // zero OF,AF,SF for NaN values.
   459   // Fixup flags by zeroing ZF,PF so that compare of NaN
   460   // values returns 'less than' result (CF is set).
   461   // Leave the rest of flags unchanged.
   462   //
   463   //    7 6 5 4 3 2 1 0
   464   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
   465   //    0 0 1 0 1 0 1 1   (0x2B)
   466   //
   467   __ andl(Address(rsp, 0), 0xffffff2b);
   468   __ popf();
   469   __ bind(exit);
   470 }
   472 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
   473   Label done;
   474   __ movl(dst, -1);
   475   __ jcc(Assembler::parity, done);
   476   __ jcc(Assembler::below, done);
   477   __ setb(Assembler::notEqual, dst);
   478   __ movzbl(dst, dst);
   479   __ bind(done);
   480 }
   483 //=============================================================================
   484 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
   486 int Compile::ConstantTable::calculate_table_base_offset() const {
   487   return 0;  // absolute addressing, no offset
   488 }
   490 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
   491 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
   492   ShouldNotReachHere();
   493 }
   495 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
   496   // Empty encoding
   497 }
   499 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
   500   return 0;
   501 }
   503 #ifndef PRODUCT
   504 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   505   st->print("# MachConstantBaseNode (empty encoding)");
   506 }
   507 #endif
   510 //=============================================================================
   511 #ifndef PRODUCT
   512 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   513   Compile* C = ra_->C;
   515   int framesize = C->frame_size_in_bytes();
   516   int bangsize = C->bang_size_in_bytes();
   517   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   518   // Remove wordSize for return addr which is already pushed.
   519   framesize -= wordSize;
   521   if (C->need_stack_bang(bangsize)) {
   522     framesize -= wordSize;
   523     st->print("# stack bang (%d bytes)", bangsize);
   524     st->print("\n\t");
   525     st->print("PUSH   EBP\t# Save EBP");
   526     if (framesize) {
   527       st->print("\n\t");
   528       st->print("SUB    ESP, #%d\t# Create frame",framesize);
   529     }
   530   } else {
   531     st->print("SUB    ESP, #%d\t# Create frame",framesize);
   532     st->print("\n\t");
   533     framesize -= wordSize;
   534     st->print("MOV    [ESP + #%d], EBP\t# Save EBP",framesize);
   535   }
   537   if (VerifyStackAtCalls) {
   538     st->print("\n\t");
   539     framesize -= wordSize;
   540     st->print("MOV    [ESP + #%d], 0xBADB100D\t# Majik cookie for stack depth check",framesize);
   541   }
   543   if( C->in_24_bit_fp_mode() ) {
   544     st->print("\n\t");
   545     st->print("FLDCW  \t# load 24 bit fpu control word");
   546   }
   547   if (UseSSE >= 2 && VerifyFPU) {
   548     st->print("\n\t");
   549     st->print("# verify FPU stack (must be clean on entry)");
   550   }
   552 #ifdef ASSERT
   553   if (VerifyStackAtCalls) {
   554     st->print("\n\t");
   555     st->print("# stack alignment check");
   556   }
   557 #endif
   558   st->cr();
   559 }
   560 #endif
   563 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   564   Compile* C = ra_->C;
   565   MacroAssembler _masm(&cbuf);
   567   int framesize = C->frame_size_in_bytes();
   568   int bangsize = C->bang_size_in_bytes();
   570   __ verified_entry(framesize, C->need_stack_bang(bangsize)?bangsize:0, C->in_24_bit_fp_mode());
   572   C->set_frame_complete(cbuf.insts_size());
   574   if (C->has_mach_constant_base_node()) {
   575     // NOTE: We set the table base offset here because users might be
   576     // emitted before MachConstantBaseNode.
   577     Compile::ConstantTable& constant_table = C->constant_table();
   578     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
   579   }
   580 }
   582 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
   583   return MachNode::size(ra_); // too many variables; just compute it the hard way
   584 }
   586 int MachPrologNode::reloc() const {
   587   return 0; // a large enough number
   588 }
   590 //=============================================================================
   591 #ifndef PRODUCT
   592 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   593   Compile *C = ra_->C;
   594   int framesize = C->frame_size_in_bytes();
   595   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   596   // Remove two words for return addr and rbp,
   597   framesize -= 2*wordSize;
   599   if (C->max_vector_size() > 16) {
   600     st->print("VZEROUPPER");
   601     st->cr(); st->print("\t");
   602   }
   603   if (C->in_24_bit_fp_mode()) {
   604     st->print("FLDCW  standard control word");
   605     st->cr(); st->print("\t");
   606   }
   607   if (framesize) {
   608     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
   609     st->cr(); st->print("\t");
   610   }
   611   st->print_cr("POPL   EBP"); st->print("\t");
   612   if (do_polling() && C->is_method_compilation()) {
   613     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
   614     st->cr(); st->print("\t");
   615   }
   616 }
   617 #endif
   619 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   620   Compile *C = ra_->C;
   622   if (C->max_vector_size() > 16) {
   623     // Clear upper bits of YMM registers when current compiled code uses
   624     // wide vectors to avoid AVX <-> SSE transition penalty during call.
   625     MacroAssembler masm(&cbuf);
   626     masm.vzeroupper();
   627   }
   628   // If method set FPU control word, restore to standard control word
   629   if (C->in_24_bit_fp_mode()) {
   630     MacroAssembler masm(&cbuf);
   631     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   632   }
   634   int framesize = C->frame_size_in_bytes();
   635   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   636   // Remove two words for return addr and rbp,
   637   framesize -= 2*wordSize;
   639   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
   641   if (framesize >= 128) {
   642     emit_opcode(cbuf, 0x81); // add  SP, #framesize
   643     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   644     emit_d32(cbuf, framesize);
   645   } else if (framesize) {
   646     emit_opcode(cbuf, 0x83); // add  SP, #framesize
   647     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   648     emit_d8(cbuf, framesize);
   649   }
   651   emit_opcode(cbuf, 0x58 | EBP_enc);
   653   if (do_polling() && C->is_method_compilation()) {
   654     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
   655     emit_opcode(cbuf,0x85);
   656     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
   657     emit_d32(cbuf, (intptr_t)os::get_polling_page());
   658   }
   659 }
   661 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
   662   Compile *C = ra_->C;
   663   // If method set FPU control word, restore to standard control word
   664   int size = C->in_24_bit_fp_mode() ? 6 : 0;
   665   if (C->max_vector_size() > 16) size += 3; // vzeroupper
   666   if (do_polling() && C->is_method_compilation()) size += 6;
   668   int framesize = C->frame_size_in_bytes();
   669   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   670   // Remove two words for return addr and rbp,
   671   framesize -= 2*wordSize;
   673   size++; // popl rbp,
   675   if (framesize >= 128) {
   676     size += 6;
   677   } else {
   678     size += framesize ? 3 : 0;
   679   }
   680   return size;
   681 }
   683 int MachEpilogNode::reloc() const {
   684   return 0; // a large enough number
   685 }
   687 const Pipeline * MachEpilogNode::pipeline() const {
   688   return MachNode::pipeline_class();
   689 }
   691 int MachEpilogNode::safepoint_offset() const { return 0; }
   693 //=============================================================================
   695 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
   696 static enum RC rc_class( OptoReg::Name reg ) {
   698   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   699   if (OptoReg::is_stack(reg)) return rc_stack;
   701   VMReg r = OptoReg::as_VMReg(reg);
   702   if (r->is_Register()) return rc_int;
   703   if (r->is_FloatRegister()) {
   704     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
   705     return rc_float;
   706   }
   707   assert(r->is_XMMRegister(), "must be");
   708   return rc_xmm;
   709 }
   711 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
   712                         int opcode, const char *op_str, int size, outputStream* st ) {
   713   if( cbuf ) {
   714     emit_opcode  (*cbuf, opcode );
   715     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, relocInfo::none);
   716 #ifndef PRODUCT
   717   } else if( !do_size ) {
   718     if( size != 0 ) st->print("\n\t");
   719     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
   720       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
   721       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
   722     } else { // FLD, FST, PUSH, POP
   723       st->print("%s [ESP + #%d]",op_str,offset);
   724     }
   725 #endif
   726   }
   727   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   728   return size+3+offset_size;
   729 }
   731 // Helper for XMM registers.  Extra opcode bits, limited syntax.
   732 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
   733                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
   734   if (cbuf) {
   735     MacroAssembler _masm(cbuf);
   736     if (reg_lo+1 == reg_hi) { // double move?
   737       if (is_load) {
   738         __ movdbl(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   739       } else {
   740         __ movdbl(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   741       }
   742     } else {
   743       if (is_load) {
   744         __ movflt(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   745       } else {
   746         __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   747       }
   748     }
   749 #ifndef PRODUCT
   750   } else if (!do_size) {
   751     if (size != 0) st->print("\n\t");
   752     if (reg_lo+1 == reg_hi) { // double move?
   753       if (is_load) st->print("%s %s,[ESP + #%d]",
   754                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
   755                               Matcher::regName[reg_lo], offset);
   756       else         st->print("MOVSD  [ESP + #%d],%s",
   757                               offset, Matcher::regName[reg_lo]);
   758     } else {
   759       if (is_load) st->print("MOVSS  %s,[ESP + #%d]",
   760                               Matcher::regName[reg_lo], offset);
   761       else         st->print("MOVSS  [ESP + #%d],%s",
   762                               offset, Matcher::regName[reg_lo]);
   763     }
   764 #endif
   765   }
   766   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   767   // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes as SIMD prefix.
   768   return size+5+offset_size;
   769 }
   772 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   773                             int src_hi, int dst_hi, int size, outputStream* st ) {
   774   if (cbuf) {
   775     MacroAssembler _masm(cbuf);
   776     if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   777       __ movdbl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   778                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   779     } else {
   780       __ movflt(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   781                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   782     }
   783 #ifndef PRODUCT
   784   } else if (!do_size) {
   785     if (size != 0) st->print("\n\t");
   786     if (UseXmmRegToRegMoveAll) {//Use movaps,movapd to move between xmm registers
   787       if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   788         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   789       } else {
   790         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   791       }
   792     } else {
   793       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   794         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   795       } else {
   796         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   797       }
   798     }
   799 #endif
   800   }
   801   // VEX_2bytes prefix is used if UseAVX > 0, and it takes the same 2 bytes as SIMD prefix.
   802   // Only MOVAPS SSE prefix uses 1 byte.
   803   int sz = 4;
   804   if (!(src_lo+1 == src_hi && dst_lo+1 == dst_hi) &&
   805       UseXmmRegToRegMoveAll && (UseAVX == 0)) sz = 3;
   806   return size + sz;
   807 }
   809 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   810                             int src_hi, int dst_hi, int size, outputStream* st ) {
   811   // 32-bit
   812   if (cbuf) {
   813     MacroAssembler _masm(cbuf);
   814     __ movdl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   815              as_Register(Matcher::_regEncode[src_lo]));
   816 #ifndef PRODUCT
   817   } else if (!do_size) {
   818     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   819 #endif
   820   }
   821   return 4;
   822 }
   825 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   826                                  int src_hi, int dst_hi, int size, outputStream* st ) {
   827   // 32-bit
   828   if (cbuf) {
   829     MacroAssembler _masm(cbuf);
   830     __ movdl(as_Register(Matcher::_regEncode[dst_lo]),
   831              as_XMMRegister(Matcher::_regEncode[src_lo]));
   832 #ifndef PRODUCT
   833   } else if (!do_size) {
   834     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   835 #endif
   836   }
   837   return 4;
   838 }
   840 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
   841   if( cbuf ) {
   842     emit_opcode(*cbuf, 0x8B );
   843     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
   844 #ifndef PRODUCT
   845   } else if( !do_size ) {
   846     if( size != 0 ) st->print("\n\t");
   847     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
   848 #endif
   849   }
   850   return size+2;
   851 }
   853 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
   854                                  int offset, int size, outputStream* st ) {
   855   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
   856     if( cbuf ) {
   857       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
   858       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
   859 #ifndef PRODUCT
   860     } else if( !do_size ) {
   861       if( size != 0 ) st->print("\n\t");
   862       st->print("FLD    %s",Matcher::regName[src_lo]);
   863 #endif
   864     }
   865     size += 2;
   866   }
   868   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
   869   const char *op_str;
   870   int op;
   871   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
   872     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
   873     op = 0xDD;
   874   } else {                   // 32-bit store
   875     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
   876     op = 0xD9;
   877     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
   878   }
   880   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
   881 }
   883 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
   884 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   885                           int src_hi, int dst_hi, uint ireg, outputStream* st);
   887 static int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
   888                             int stack_offset, int reg, uint ireg, outputStream* st);
   890 static int vec_stack_to_stack_helper(CodeBuffer *cbuf, bool do_size, int src_offset,
   891                                      int dst_offset, uint ireg, outputStream* st) {
   892   int calc_size = 0;
   893   int src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
   894   int dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
   895   switch (ireg) {
   896   case Op_VecS:
   897     calc_size = 3+src_offset_size + 3+dst_offset_size;
   898     break;
   899   case Op_VecD:
   900     calc_size = 3+src_offset_size + 3+dst_offset_size;
   901     src_offset += 4;
   902     dst_offset += 4;
   903     src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
   904     dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
   905     calc_size += 3+src_offset_size + 3+dst_offset_size;
   906     break;
   907   case Op_VecX:
   908     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
   909     break;
   910   case Op_VecY:
   911     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
   912     break;
   913   default:
   914     ShouldNotReachHere();
   915   }
   916   if (cbuf) {
   917     MacroAssembler _masm(cbuf);
   918     int offset = __ offset();
   919     switch (ireg) {
   920     case Op_VecS:
   921       __ pushl(Address(rsp, src_offset));
   922       __ popl (Address(rsp, dst_offset));
   923       break;
   924     case Op_VecD:
   925       __ pushl(Address(rsp, src_offset));
   926       __ popl (Address(rsp, dst_offset));
   927       __ pushl(Address(rsp, src_offset+4));
   928       __ popl (Address(rsp, dst_offset+4));
   929       break;
   930     case Op_VecX:
   931       __ movdqu(Address(rsp, -16), xmm0);
   932       __ movdqu(xmm0, Address(rsp, src_offset));
   933       __ movdqu(Address(rsp, dst_offset), xmm0);
   934       __ movdqu(xmm0, Address(rsp, -16));
   935       break;
   936     case Op_VecY:
   937       __ vmovdqu(Address(rsp, -32), xmm0);
   938       __ vmovdqu(xmm0, Address(rsp, src_offset));
   939       __ vmovdqu(Address(rsp, dst_offset), xmm0);
   940       __ vmovdqu(xmm0, Address(rsp, -32));
   941       break;
   942     default:
   943       ShouldNotReachHere();
   944     }
   945     int size = __ offset() - offset;
   946     assert(size == calc_size, "incorrect size calculattion");
   947     return size;
   948 #ifndef PRODUCT
   949   } else if (!do_size) {
   950     switch (ireg) {
   951     case Op_VecS:
   952       st->print("pushl   [rsp + #%d]\t# 32-bit mem-mem spill\n\t"
   953                 "popl    [rsp + #%d]",
   954                 src_offset, dst_offset);
   955       break;
   956     case Op_VecD:
   957       st->print("pushl   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
   958                 "popq    [rsp + #%d]\n\t"
   959                 "pushl   [rsp + #%d]\n\t"
   960                 "popq    [rsp + #%d]",
   961                 src_offset, dst_offset, src_offset+4, dst_offset+4);
   962       break;
   963      case Op_VecX:
   964       st->print("movdqu  [rsp - #16], xmm0\t# 128-bit mem-mem spill\n\t"
   965                 "movdqu  xmm0, [rsp + #%d]\n\t"
   966                 "movdqu  [rsp + #%d], xmm0\n\t"
   967                 "movdqu  xmm0, [rsp - #16]",
   968                 src_offset, dst_offset);
   969       break;
   970     case Op_VecY:
   971       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
   972                 "vmovdqu xmm0, [rsp + #%d]\n\t"
   973                 "vmovdqu [rsp + #%d], xmm0\n\t"
   974                 "vmovdqu xmm0, [rsp - #32]",
   975                 src_offset, dst_offset);
   976       break;
   977     default:
   978       ShouldNotReachHere();
   979     }
   980 #endif
   981   }
   982   return calc_size;
   983 }
   985 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   986   // Get registers to move
   987   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   988   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   989   OptoReg::Name dst_second = ra_->get_reg_second(this );
   990   OptoReg::Name dst_first = ra_->get_reg_first(this );
   992   enum RC src_second_rc = rc_class(src_second);
   993   enum RC src_first_rc = rc_class(src_first);
   994   enum RC dst_second_rc = rc_class(dst_second);
   995   enum RC dst_first_rc = rc_class(dst_first);
   997   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
   999   // Generate spill code!
  1000   int size = 0;
  1002   if( src_first == dst_first && src_second == dst_second )
  1003     return size;            // Self copy, no move
  1005   if (bottom_type()->isa_vect() != NULL) {
  1006     uint ireg = ideal_reg();
  1007     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
  1008     assert((src_first_rc != rc_float && dst_first_rc != rc_float), "sanity");
  1009     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY), "sanity");
  1010     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1011       // mem -> mem
  1012       int src_offset = ra_->reg2offset(src_first);
  1013       int dst_offset = ra_->reg2offset(dst_first);
  1014       return vec_stack_to_stack_helper(cbuf, do_size, src_offset, dst_offset, ireg, st);
  1015     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1016       return vec_mov_helper(cbuf, do_size, src_first, dst_first, src_second, dst_second, ireg, st);
  1017     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1018       int stack_offset = ra_->reg2offset(dst_first);
  1019       return vec_spill_helper(cbuf, do_size, false, stack_offset, src_first, ireg, st);
  1020     } else if (src_first_rc == rc_stack && dst_first_rc == rc_xmm ) {
  1021       int stack_offset = ra_->reg2offset(src_first);
  1022       return vec_spill_helper(cbuf, do_size, true,  stack_offset, dst_first, ireg, st);
  1023     } else {
  1024       ShouldNotReachHere();
  1028   // --------------------------------------
  1029   // Check for mem-mem move.  push/pop to move.
  1030   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1031     if( src_second == dst_first ) { // overlapping stack copy ranges
  1032       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
  1033       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
  1034       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
  1035       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
  1037     // move low bits
  1038     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
  1039     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
  1040     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
  1041       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
  1042       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
  1044     return size;
  1047   // --------------------------------------
  1048   // Check for integer reg-reg copy
  1049   if( src_first_rc == rc_int && dst_first_rc == rc_int )
  1050     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
  1052   // Check for integer store
  1053   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
  1054     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
  1056   // Check for integer load
  1057   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
  1058     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
  1060   // Check for integer reg-xmm reg copy
  1061   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
  1062     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1063             "no 64 bit integer-float reg moves" );
  1064     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1066   // --------------------------------------
  1067   // Check for float reg-reg copy
  1068   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1069     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1070             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
  1071     if( cbuf ) {
  1073       // Note the mucking with the register encode to compensate for the 0/1
  1074       // indexing issue mentioned in a comment in the reg_def sections
  1075       // for FPR registers many lines above here.
  1077       if( src_first != FPR1L_num ) {
  1078         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
  1079         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
  1080         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1081         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1082      } else {
  1083         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
  1084         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
  1086 #ifndef PRODUCT
  1087     } else if( !do_size ) {
  1088       if( size != 0 ) st->print("\n\t");
  1089       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
  1090       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
  1091 #endif
  1093     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
  1096   // Check for float store
  1097   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1098     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
  1101   // Check for float load
  1102   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1103     int offset = ra_->reg2offset(src_first);
  1104     const char *op_str;
  1105     int op;
  1106     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
  1107       op_str = "FLD_D";
  1108       op = 0xDD;
  1109     } else {                   // 32-bit load
  1110       op_str = "FLD_S";
  1111       op = 0xD9;
  1112       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
  1114     if( cbuf ) {
  1115       emit_opcode  (*cbuf, op );
  1116       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, relocInfo::none);
  1117       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1118       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1119 #ifndef PRODUCT
  1120     } else if( !do_size ) {
  1121       if( size != 0 ) st->print("\n\t");
  1122       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
  1123 #endif
  1125     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
  1126     return size + 3+offset_size+2;
  1129   // Check for xmm reg-reg copy
  1130   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1131     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1132             (src_first+1 == src_second && dst_first+1 == dst_second),
  1133             "no non-adjacent float-moves" );
  1134     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1137   // Check for xmm reg-integer reg copy
  1138   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
  1139     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1140             "no 64 bit float-integer reg moves" );
  1141     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1144   // Check for xmm store
  1145   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1146     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
  1149   // Check for float xmm load
  1150   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
  1151     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
  1154   // Copy from float reg to xmm reg
  1155   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
  1156     // copy to the top of stack from floating point reg
  1157     // and use LEA to preserve flags
  1158     if( cbuf ) {
  1159       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
  1160       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1161       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1162       emit_d8(*cbuf,0xF8);
  1163 #ifndef PRODUCT
  1164     } else if( !do_size ) {
  1165       if( size != 0 ) st->print("\n\t");
  1166       st->print("LEA    ESP,[ESP-8]");
  1167 #endif
  1169     size += 4;
  1171     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
  1173     // Copy from the temp memory to the xmm reg.
  1174     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
  1176     if( cbuf ) {
  1177       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
  1178       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1179       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1180       emit_d8(*cbuf,0x08);
  1181 #ifndef PRODUCT
  1182     } else if( !do_size ) {
  1183       if( size != 0 ) st->print("\n\t");
  1184       st->print("LEA    ESP,[ESP+8]");
  1185 #endif
  1187     size += 4;
  1188     return size;
  1191   assert( size > 0, "missed a case" );
  1193   // --------------------------------------------------------------------
  1194   // Check for second bits still needing moving.
  1195   if( src_second == dst_second )
  1196     return size;               // Self copy; no move
  1197   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1199   // Check for second word int-int move
  1200   if( src_second_rc == rc_int && dst_second_rc == rc_int )
  1201     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
  1203   // Check for second word integer store
  1204   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1205     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
  1207   // Check for second word integer load
  1208   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1209     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
  1212   Unimplemented();
  1215 #ifndef PRODUCT
  1216 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
  1217   implementation( NULL, ra_, false, st );
  1219 #endif
  1221 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1222   implementation( &cbuf, ra_, false, NULL );
  1225 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1226   return implementation( NULL, ra_, true, NULL );
  1230 //=============================================================================
  1231 #ifndef PRODUCT
  1232 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1233   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1234   int reg = ra_->get_reg_first(this);
  1235   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
  1237 #endif
  1239 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1240   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1241   int reg = ra_->get_encode(this);
  1242   if( offset >= 128 ) {
  1243     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1244     emit_rm(cbuf, 0x2, reg, 0x04);
  1245     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1246     emit_d32(cbuf, offset);
  1248   else {
  1249     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1250     emit_rm(cbuf, 0x1, reg, 0x04);
  1251     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1252     emit_d8(cbuf, offset);
  1256 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1257   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1258   if( offset >= 128 ) {
  1259     return 7;
  1261   else {
  1262     return 4;
  1266 //=============================================================================
  1267 #ifndef PRODUCT
  1268 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1269   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  1270   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  1271   st->print_cr("\tNOP");
  1272   st->print_cr("\tNOP");
  1273   if( !OptoBreakpoint )
  1274     st->print_cr("\tNOP");
  1276 #endif
  1278 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1279   MacroAssembler masm(&cbuf);
  1280 #ifdef ASSERT
  1281   uint insts_size = cbuf.insts_size();
  1282 #endif
  1283   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
  1284   masm.jump_cc(Assembler::notEqual,
  1285                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1286   /* WARNING these NOPs are critical so that verified entry point is properly
  1287      aligned for patching by NativeJump::patch_verified_entry() */
  1288   int nops_cnt = 2;
  1289   if( !OptoBreakpoint ) // Leave space for int3
  1290      nops_cnt += 1;
  1291   masm.nop(nops_cnt);
  1293   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
  1296 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1297   return OptoBreakpoint ? 11 : 12;
  1301 //=============================================================================
  1303 int Matcher::regnum_to_fpu_offset(int regnum) {
  1304   return regnum - 32; // The FP registers are in the second chunk
  1307 // This is UltraSparc specific, true just means we have fast l2f conversion
  1308 const bool Matcher::convL2FSupported(void) {
  1309   return true;
  1312 // Is this branch offset short enough that a short branch can be used?
  1313 //
  1314 // NOTE: If the platform does not provide any short branch variants, then
  1315 //       this method should return false for offset 0.
  1316 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1317   // The passed offset is relative to address of the branch.
  1318   // On 86 a branch displacement is calculated relative to address
  1319   // of a next instruction.
  1320   offset -= br_size;
  1322   // the short version of jmpConUCF2 contains multiple branches,
  1323   // making the reach slightly less
  1324   if (rule == jmpConUCF2_rule)
  1325     return (-126 <= offset && offset <= 125);
  1326   return (-128 <= offset && offset <= 127);
  1329 const bool Matcher::isSimpleConstant64(jlong value) {
  1330   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1331   return false;
  1334 // The ecx parameter to rep stos for the ClearArray node is in dwords.
  1335 const bool Matcher::init_array_count_is_in_bytes = false;
  1337 // Threshold size for cleararray.
  1338 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1340 // Needs 2 CMOV's for longs.
  1341 const int Matcher::long_cmove_cost() { return 1; }
  1343 // No CMOVF/CMOVD with SSE/SSE2
  1344 const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
  1346 // Does the CPU require late expand (see block.cpp for description of late expand)?
  1347 const bool Matcher::require_postalloc_expand = false;
  1349 // Should the Matcher clone shifts on addressing modes, expecting them to
  1350 // be subsumed into complex addressing expressions or compute them into
  1351 // registers?  True for Intel but false for most RISCs
  1352 const bool Matcher::clone_shift_expressions = true;
  1354 // Do we need to mask the count passed to shift instructions or does
  1355 // the cpu only look at the lower 5/6 bits anyway?
  1356 const bool Matcher::need_masked_shift_count = false;
  1358 bool Matcher::narrow_oop_use_complex_address() {
  1359   ShouldNotCallThis();
  1360   return true;
  1363 bool Matcher::narrow_klass_use_complex_address() {
  1364   ShouldNotCallThis();
  1365   return true;
  1369 // Is it better to copy float constants, or load them directly from memory?
  1370 // Intel can load a float constant from a direct address, requiring no
  1371 // extra registers.  Most RISCs will have to materialize an address into a
  1372 // register first, so they would do better to copy the constant from stack.
  1373 const bool Matcher::rematerialize_float_constants = true;
  1375 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1376 // needed.  Else we split the double into 2 integer pieces and move it
  1377 // piece-by-piece.  Only happens when passing doubles into C code as the
  1378 // Java calling convention forces doubles to be aligned.
  1379 const bool Matcher::misaligned_doubles_ok = true;
  1382 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1383   // Get the memory operand from the node
  1384   uint numopnds = node->num_opnds();        // Virtual call for number of operands
  1385   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  1386   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  1387   uint opcnt     = 1;                 // First operand
  1388   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  1389   while( idx >= skipped+num_edges ) {
  1390     skipped += num_edges;
  1391     opcnt++;                          // Bump operand count
  1392     assert( opcnt < numopnds, "Accessing non-existent operand" );
  1393     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  1396   MachOper *memory = node->_opnds[opcnt];
  1397   MachOper *new_memory = NULL;
  1398   switch (memory->opcode()) {
  1399   case DIRECT:
  1400   case INDOFFSET32X:
  1401     // No transformation necessary.
  1402     return;
  1403   case INDIRECT:
  1404     new_memory = new (C) indirect_win95_safeOper( );
  1405     break;
  1406   case INDOFFSET8:
  1407     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
  1408     break;
  1409   case INDOFFSET32:
  1410     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
  1411     break;
  1412   case INDINDEXOFFSET:
  1413     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
  1414     break;
  1415   case INDINDEXSCALE:
  1416     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
  1417     break;
  1418   case INDINDEXSCALEOFFSET:
  1419     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
  1420     break;
  1421   case LOAD_LONG_INDIRECT:
  1422   case LOAD_LONG_INDOFFSET32:
  1423     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
  1424     return;
  1425   default:
  1426     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
  1427     return;
  1429   node->_opnds[opcnt] = new_memory;
  1432 // Advertise here if the CPU requires explicit rounding operations
  1433 // to implement the UseStrictFP mode.
  1434 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  1436 // Are floats conerted to double when stored to stack during deoptimization?
  1437 // On x32 it is stored with convertion only when FPU is used for floats.
  1438 bool Matcher::float_in_double() { return (UseSSE == 0); }
  1440 // Do ints take an entire long register or just half?
  1441 const bool Matcher::int_in_long = false;
  1443 // Return whether or not this register is ever used as an argument.  This
  1444 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1445 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1446 // arguments in those registers not be available to the callee.
  1447 bool Matcher::can_be_java_arg( int reg ) {
  1448   if(  reg == ECX_num   || reg == EDX_num   ) return true;
  1449   if( (reg == XMM0_num  || reg == XMM1_num ) && UseSSE>=1 ) return true;
  1450   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  1451   return false;
  1454 bool Matcher::is_spillable_arg( int reg ) {
  1455   return can_be_java_arg(reg);
  1458 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1459   // Use hardware integer DIV instruction when
  1460   // it is faster than a code which use multiply.
  1461   // Only when constant divisor fits into 32 bit
  1462   // (min_jint is excluded to get only correct
  1463   // positive 32 bit values from negative).
  1464   return VM_Version::has_fast_idiv() &&
  1465          (divisor == (int)divisor && divisor != min_jint);
  1468 // Register for DIVI projection of divmodI
  1469 RegMask Matcher::divI_proj_mask() {
  1470   return EAX_REG_mask();
  1473 // Register for MODI projection of divmodI
  1474 RegMask Matcher::modI_proj_mask() {
  1475   return EDX_REG_mask();
  1478 // Register for DIVL projection of divmodL
  1479 RegMask Matcher::divL_proj_mask() {
  1480   ShouldNotReachHere();
  1481   return RegMask();
  1484 // Register for MODL projection of divmodL
  1485 RegMask Matcher::modL_proj_mask() {
  1486   ShouldNotReachHere();
  1487   return RegMask();
  1490 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1491   return EBP_REG_mask();
  1494 // Returns true if the high 32 bits of the value is known to be zero.
  1495 bool is_operand_hi32_zero(Node* n) {
  1496   int opc = n->Opcode();
  1497   if (opc == Op_AndL) {
  1498     Node* o2 = n->in(2);
  1499     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1500       return true;
  1503   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1504     return true;
  1506   return false;
  1509 %}
  1511 //----------ENCODING BLOCK-----------------------------------------------------
  1512 // This block specifies the encoding classes used by the compiler to output
  1513 // byte streams.  Encoding classes generate functions which are called by
  1514 // Machine Instruction Nodes in order to generate the bit encoding of the
  1515 // instruction.  Operands specify their base encoding interface with the
  1516 // interface keyword.  There are currently supported four interfaces,
  1517 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1518 // operand to generate a function which returns its register number when
  1519 // queried.   CONST_INTER causes an operand to generate a function which
  1520 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1521 // operand to generate four functions which return the Base Register, the
  1522 // Index Register, the Scale Value, and the Offset Value of the operand when
  1523 // queried.  COND_INTER causes an operand to generate six functions which
  1524 // return the encoding code (ie - encoding bits for the instruction)
  1525 // associated with each basic boolean condition for a conditional instruction.
  1526 // Instructions specify two basic values for encoding.  They use the
  1527 // ins_encode keyword to specify their encoding class (which must be one of
  1528 // the class names specified in the encoding block), and they use the
  1529 // opcode keyword to specify, in order, their primary, secondary, and
  1530 // tertiary opcode.  Only the opcode sections which a particular instruction
  1531 // needs for encoding need to be specified.
  1532 encode %{
  1533   // Build emit functions for each basic byte or larger field in the intel
  1534   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  1535   // code in the enc_class source block.  Emit functions will live in the
  1536   // main source block for now.  In future, we can generalize this by
  1537   // adding a syntax that specifies the sizes of fields in an order,
  1538   // so that the adlc can build the emit functions automagically
  1540   // Emit primary opcode
  1541   enc_class OpcP %{
  1542     emit_opcode(cbuf, $primary);
  1543   %}
  1545   // Emit secondary opcode
  1546   enc_class OpcS %{
  1547     emit_opcode(cbuf, $secondary);
  1548   %}
  1550   // Emit opcode directly
  1551   enc_class Opcode(immI d8) %{
  1552     emit_opcode(cbuf, $d8$$constant);
  1553   %}
  1555   enc_class SizePrefix %{
  1556     emit_opcode(cbuf,0x66);
  1557   %}
  1559   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
  1560     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1561   %}
  1563   enc_class OpcRegReg (immI opcode, rRegI dst, rRegI src) %{    // OpcRegReg(Many)
  1564     emit_opcode(cbuf,$opcode$$constant);
  1565     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1566   %}
  1568   enc_class mov_r32_imm0( rRegI dst ) %{
  1569     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
  1570     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  1571   %}
  1573   enc_class cdq_enc %{
  1574     // Full implementation of Java idiv and irem; checks for
  1575     // special case as described in JVM spec., p.243 & p.271.
  1576     //
  1577     //         normal case                           special case
  1578     //
  1579     // input : rax,: dividend                         min_int
  1580     //         reg: divisor                          -1
  1581     //
  1582     // output: rax,: quotient  (= rax, idiv reg)       min_int
  1583     //         rdx: remainder (= rax, irem reg)       0
  1584     //
  1585     //  Code sequnce:
  1586     //
  1587     //  81 F8 00 00 00 80    cmp         rax,80000000h
  1588     //  0F 85 0B 00 00 00    jne         normal_case
  1589     //  33 D2                xor         rdx,edx
  1590     //  83 F9 FF             cmp         rcx,0FFh
  1591     //  0F 84 03 00 00 00    je          done
  1592     //                  normal_case:
  1593     //  99                   cdq
  1594     //  F7 F9                idiv        rax,ecx
  1595     //                  done:
  1596     //
  1597     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
  1598     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
  1599     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
  1600     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
  1601     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
  1602     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
  1603     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
  1604     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
  1605     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
  1606     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
  1607     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
  1608     // normal_case:
  1609     emit_opcode(cbuf,0x99);                                         // cdq
  1610     // idiv (note: must be emitted by the user of this rule)
  1611     // normal:
  1612   %}
  1614   // Dense encoding for older common ops
  1615   enc_class Opc_plus(immI opcode, rRegI reg) %{
  1616     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  1617   %}
  1620   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  1621   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
  1622     // Check for 8-bit immediate, and set sign extend bit in opcode
  1623     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1624       emit_opcode(cbuf, $primary | 0x02);
  1626     else {                          // If 32-bit immediate
  1627       emit_opcode(cbuf, $primary);
  1629   %}
  1631   enc_class OpcSErm (rRegI dst, immI imm) %{    // OpcSEr/m
  1632     // Emit primary opcode and set sign-extend bit
  1633     // Check for 8-bit immediate, and set sign extend bit in opcode
  1634     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1635       emit_opcode(cbuf, $primary | 0x02);    }
  1636     else {                          // If 32-bit immediate
  1637       emit_opcode(cbuf, $primary);
  1639     // Emit r/m byte with secondary opcode, after primary opcode.
  1640     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1641   %}
  1643   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
  1644     // Check for 8-bit immediate, and set sign extend bit in opcode
  1645     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1646       $$$emit8$imm$$constant;
  1648     else {                          // If 32-bit immediate
  1649       // Output immediate
  1650       $$$emit32$imm$$constant;
  1652   %}
  1654   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
  1655     // Emit primary opcode and set sign-extend bit
  1656     // Check for 8-bit immediate, and set sign extend bit in opcode
  1657     int con = (int)$imm$$constant; // Throw away top bits
  1658     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1659     // Emit r/m byte with secondary opcode, after primary opcode.
  1660     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1661     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1662     else                               emit_d32(cbuf,con);
  1663   %}
  1665   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
  1666     // Emit primary opcode and set sign-extend bit
  1667     // Check for 8-bit immediate, and set sign extend bit in opcode
  1668     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
  1669     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1670     // Emit r/m byte with tertiary opcode, after primary opcode.
  1671     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
  1672     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1673     else                               emit_d32(cbuf,con);
  1674   %}
  1676   enc_class OpcSReg (rRegI dst) %{    // BSWAP
  1677     emit_cc(cbuf, $secondary, $dst$$reg );
  1678   %}
  1680   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
  1681     int destlo = $dst$$reg;
  1682     int desthi = HIGH_FROM_LOW(destlo);
  1683     // bswap lo
  1684     emit_opcode(cbuf, 0x0F);
  1685     emit_cc(cbuf, 0xC8, destlo);
  1686     // bswap hi
  1687     emit_opcode(cbuf, 0x0F);
  1688     emit_cc(cbuf, 0xC8, desthi);
  1689     // xchg lo and hi
  1690     emit_opcode(cbuf, 0x87);
  1691     emit_rm(cbuf, 0x3, destlo, desthi);
  1692   %}
  1694   enc_class RegOpc (rRegI div) %{    // IDIV, IMOD, JMP indirect, ...
  1695     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  1696   %}
  1698   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
  1699     $$$emit8$primary;
  1700     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1701   %}
  1703   enc_class enc_cmov_dpr(cmpOp cop, regDPR src ) %{ // CMOV
  1704     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
  1705     emit_d8(cbuf, op >> 8 );
  1706     emit_d8(cbuf, op & 255);
  1707   %}
  1709   // emulate a CMOV with a conditional branch around a MOV
  1710   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
  1711     // Invert sense of branch from sense of CMOV
  1712     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
  1713     emit_d8( cbuf, $brOffs$$constant );
  1714   %}
  1716   enc_class enc_PartialSubtypeCheck( ) %{
  1717     Register Redi = as_Register(EDI_enc); // result register
  1718     Register Reax = as_Register(EAX_enc); // super class
  1719     Register Recx = as_Register(ECX_enc); // killed
  1720     Register Resi = as_Register(ESI_enc); // sub class
  1721     Label miss;
  1723     MacroAssembler _masm(&cbuf);
  1724     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
  1725                                      NULL, &miss,
  1726                                      /*set_cond_codes:*/ true);
  1727     if ($primary) {
  1728       __ xorptr(Redi, Redi);
  1730     __ bind(miss);
  1731   %}
  1733   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
  1734     MacroAssembler masm(&cbuf);
  1735     int start = masm.offset();
  1736     if (UseSSE >= 2) {
  1737       if (VerifyFPU) {
  1738         masm.verify_FPU(0, "must be empty in SSE2+ mode");
  1740     } else {
  1741       // External c_calling_convention expects the FPU stack to be 'clean'.
  1742       // Compiled code leaves it dirty.  Do cleanup now.
  1743       masm.empty_FPU_stack();
  1745     if (sizeof_FFree_Float_Stack_All == -1) {
  1746       sizeof_FFree_Float_Stack_All = masm.offset() - start;
  1747     } else {
  1748       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
  1750   %}
  1752   enc_class Verify_FPU_For_Leaf %{
  1753     if( VerifyFPU ) {
  1754       MacroAssembler masm(&cbuf);
  1755       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
  1757   %}
  1759   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  1760     // This is the instruction starting address for relocation info.
  1761     cbuf.set_insts_mark();
  1762     $$$emit8$primary;
  1763     // CALL directly to the runtime
  1764     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1765                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1767     if (UseSSE >= 2) {
  1768       MacroAssembler _masm(&cbuf);
  1769       BasicType rt = tf()->return_type();
  1771       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
  1772         // A C runtime call where the return value is unused.  In SSE2+
  1773         // mode the result needs to be removed from the FPU stack.  It's
  1774         // likely that this function call could be removed by the
  1775         // optimizer if the C function is a pure function.
  1776         __ ffree(0);
  1777       } else if (rt == T_FLOAT) {
  1778         __ lea(rsp, Address(rsp, -4));
  1779         __ fstp_s(Address(rsp, 0));
  1780         __ movflt(xmm0, Address(rsp, 0));
  1781         __ lea(rsp, Address(rsp,  4));
  1782       } else if (rt == T_DOUBLE) {
  1783         __ lea(rsp, Address(rsp, -8));
  1784         __ fstp_d(Address(rsp, 0));
  1785         __ movdbl(xmm0, Address(rsp, 0));
  1786         __ lea(rsp, Address(rsp,  8));
  1789   %}
  1792   enc_class pre_call_resets %{
  1793     // If method sets FPU control word restore it here
  1794     debug_only(int off0 = cbuf.insts_size());
  1795     if (ra_->C->in_24_bit_fp_mode()) {
  1796       MacroAssembler _masm(&cbuf);
  1797       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1799     if (ra_->C->max_vector_size() > 16) {
  1800       // Clear upper bits of YMM registers when current compiled code uses
  1801       // wide vectors to avoid AVX <-> SSE transition penalty during call.
  1802       MacroAssembler _masm(&cbuf);
  1803       __ vzeroupper();
  1805     debug_only(int off1 = cbuf.insts_size());
  1806     assert(off1 - off0 == pre_call_resets_size(), "correct size prediction");
  1807   %}
  1809   enc_class post_call_FPU %{
  1810     // If method sets FPU control word do it here also
  1811     if (Compile::current()->in_24_bit_fp_mode()) {
  1812       MacroAssembler masm(&cbuf);
  1813       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  1815   %}
  1817   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1818     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1819     // who we intended to call.
  1820     cbuf.set_insts_mark();
  1821     $$$emit8$primary;
  1822     if (!_method) {
  1823       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1824                      runtime_call_Relocation::spec(), RELOC_IMM32 );
  1825     } else if (_optimized_virtual) {
  1826       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1827                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  1828     } else {
  1829       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1830                      static_call_Relocation::spec(), RELOC_IMM32 );
  1832     if (_method) {  // Emit stub for static call.
  1833       CompiledStaticCall::emit_to_interp_stub(cbuf);
  1835   %}
  1837   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1838     MacroAssembler _masm(&cbuf);
  1839     __ ic_call((address)$meth$$method);
  1840   %}
  1842   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1843     int disp = in_bytes(Method::from_compiled_offset());
  1844     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
  1846     // CALL *[EAX+in_bytes(Method::from_compiled_code_entry_point_offset())]
  1847     cbuf.set_insts_mark();
  1848     $$$emit8$primary;
  1849     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
  1850     emit_d8(cbuf, disp);             // Displacement
  1852   %}
  1854 //   Following encoding is no longer used, but may be restored if calling
  1855 //   convention changes significantly.
  1856 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
  1857 //
  1858 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
  1859 //     // int ic_reg     = Matcher::inline_cache_reg();
  1860 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
  1861 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
  1862 //     // int imo_encode = Matcher::_regEncode[imo_reg];
  1863 //
  1864 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
  1865 //     // // so we load it immediately before the call
  1866 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
  1867 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
  1868 //
  1869 //     // xor rbp,ebp
  1870 //     emit_opcode(cbuf, 0x33);
  1871 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
  1872 //
  1873 //     // CALL to interpreter.
  1874 //     cbuf.set_insts_mark();
  1875 //     $$$emit8$primary;
  1876 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
  1877 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1878 //   %}
  1880   enc_class RegOpcImm (rRegI dst, immI8 shift) %{    // SHL, SAR, SHR
  1881     $$$emit8$primary;
  1882     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1883     $$$emit8$shift$$constant;
  1884   %}
  1886   enc_class LdImmI (rRegI dst, immI src) %{    // Load Immediate
  1887     // Load immediate does not have a zero or sign extended version
  1888     // for 8-bit immediates
  1889     emit_opcode(cbuf, 0xB8 + $dst$$reg);
  1890     $$$emit32$src$$constant;
  1891   %}
  1893   enc_class LdImmP (rRegI dst, immI src) %{    // Load Immediate
  1894     // Load immediate does not have a zero or sign extended version
  1895     // for 8-bit immediates
  1896     emit_opcode(cbuf, $primary + $dst$$reg);
  1897     $$$emit32$src$$constant;
  1898   %}
  1900   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
  1901     // Load immediate does not have a zero or sign extended version
  1902     // for 8-bit immediates
  1903     int dst_enc = $dst$$reg;
  1904     int src_con = $src$$constant & 0x0FFFFFFFFL;
  1905     if (src_con == 0) {
  1906       // xor dst, dst
  1907       emit_opcode(cbuf, 0x33);
  1908       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1909     } else {
  1910       emit_opcode(cbuf, $primary + dst_enc);
  1911       emit_d32(cbuf, src_con);
  1913   %}
  1915   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
  1916     // Load immediate does not have a zero or sign extended version
  1917     // for 8-bit immediates
  1918     int dst_enc = $dst$$reg + 2;
  1919     int src_con = ((julong)($src$$constant)) >> 32;
  1920     if (src_con == 0) {
  1921       // xor dst, dst
  1922       emit_opcode(cbuf, 0x33);
  1923       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1924     } else {
  1925       emit_opcode(cbuf, $primary + dst_enc);
  1926       emit_d32(cbuf, src_con);
  1928   %}
  1931   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1932   enc_class enc_Copy( rRegI dst, rRegI src ) %{
  1933     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  1934   %}
  1936   enc_class enc_CopyL_Lo( rRegI dst, eRegL src ) %{
  1937     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  1938   %}
  1940   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
  1941     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1942   %}
  1944   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
  1945     $$$emit8$primary;
  1946     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1947   %}
  1949   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
  1950     $$$emit8$secondary;
  1951     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  1952   %}
  1954   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
  1955     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1956   %}
  1958   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
  1959     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  1960   %}
  1962   enc_class RegReg_HiLo( eRegL src, rRegI dst ) %{
  1963     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  1964   %}
  1966   enc_class Con32 (immI src) %{    // Con32(storeImmI)
  1967     // Output immediate
  1968     $$$emit32$src$$constant;
  1969   %}
  1971   enc_class Con32FPR_as_bits(immFPR src) %{        // storeF_imm
  1972     // Output Float immediate bits
  1973     jfloat jf = $src$$constant;
  1974     int    jf_as_bits = jint_cast( jf );
  1975     emit_d32(cbuf, jf_as_bits);
  1976   %}
  1978   enc_class Con32F_as_bits(immF src) %{      // storeX_imm
  1979     // Output Float immediate bits
  1980     jfloat jf = $src$$constant;
  1981     int    jf_as_bits = jint_cast( jf );
  1982     emit_d32(cbuf, jf_as_bits);
  1983   %}
  1985   enc_class Con16 (immI src) %{    // Con16(storeImmI)
  1986     // Output immediate
  1987     $$$emit16$src$$constant;
  1988   %}
  1990   enc_class Con_d32(immI src) %{
  1991     emit_d32(cbuf,$src$$constant);
  1992   %}
  1994   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
  1995     // Output immediate memory reference
  1996     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  1997     emit_d32(cbuf, 0x00);
  1998   %}
  2000   enc_class lock_prefix( ) %{
  2001     if( os::is_MP() )
  2002       emit_opcode(cbuf,0xF0);         // [Lock]
  2003   %}
  2005   // Cmp-xchg long value.
  2006   // Note: we need to swap rbx, and rcx before and after the
  2007   //       cmpxchg8 instruction because the instruction uses
  2008   //       rcx as the high order word of the new value to store but
  2009   //       our register encoding uses rbx,.
  2010   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
  2012     // XCHG  rbx,ecx
  2013     emit_opcode(cbuf,0x87);
  2014     emit_opcode(cbuf,0xD9);
  2015     // [Lock]
  2016     if( os::is_MP() )
  2017       emit_opcode(cbuf,0xF0);
  2018     // CMPXCHG8 [Eptr]
  2019     emit_opcode(cbuf,0x0F);
  2020     emit_opcode(cbuf,0xC7);
  2021     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2022     // XCHG  rbx,ecx
  2023     emit_opcode(cbuf,0x87);
  2024     emit_opcode(cbuf,0xD9);
  2025   %}
  2027   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
  2028     // [Lock]
  2029     if( os::is_MP() )
  2030       emit_opcode(cbuf,0xF0);
  2032     // CMPXCHG [Eptr]
  2033     emit_opcode(cbuf,0x0F);
  2034     emit_opcode(cbuf,0xB1);
  2035     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2036   %}
  2038   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
  2039     int res_encoding = $res$$reg;
  2041     // MOV  res,0
  2042     emit_opcode( cbuf, 0xB8 + res_encoding);
  2043     emit_d32( cbuf, 0 );
  2044     // JNE,s  fail
  2045     emit_opcode(cbuf,0x75);
  2046     emit_d8(cbuf, 5 );
  2047     // MOV  res,1
  2048     emit_opcode( cbuf, 0xB8 + res_encoding);
  2049     emit_d32( cbuf, 1 );
  2050     // fail:
  2051   %}
  2053   enc_class set_instruction_start( ) %{
  2054     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
  2055   %}
  2057   enc_class RegMem (rRegI ereg, memory mem) %{    // emit_reg_mem
  2058     int reg_encoding = $ereg$$reg;
  2059     int base  = $mem$$base;
  2060     int index = $mem$$index;
  2061     int scale = $mem$$scale;
  2062     int displace = $mem$$disp;
  2063     relocInfo::relocType disp_reloc = $mem->disp_reloc();
  2064     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2065   %}
  2067   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
  2068     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
  2069     int base  = $mem$$base;
  2070     int index = $mem$$index;
  2071     int scale = $mem$$scale;
  2072     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
  2073     assert( $mem->disp_reloc() == relocInfo::none, "Cannot add 4 to oop" );
  2074     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, relocInfo::none);
  2075   %}
  2077   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
  2078     int r1, r2;
  2079     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2080     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2081     emit_opcode(cbuf,0x0F);
  2082     emit_opcode(cbuf,$tertiary);
  2083     emit_rm(cbuf, 0x3, r1, r2);
  2084     emit_d8(cbuf,$cnt$$constant);
  2085     emit_d8(cbuf,$primary);
  2086     emit_rm(cbuf, 0x3, $secondary, r1);
  2087     emit_d8(cbuf,$cnt$$constant);
  2088   %}
  2090   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
  2091     emit_opcode( cbuf, 0x8B ); // Move
  2092     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2093     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2094       emit_d8(cbuf,$primary);
  2095       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  2096       emit_d8(cbuf,$cnt$$constant-32);
  2098     emit_d8(cbuf,$primary);
  2099     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
  2100     emit_d8(cbuf,31);
  2101   %}
  2103   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
  2104     int r1, r2;
  2105     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2106     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2108     emit_opcode( cbuf, 0x8B ); // Move r1,r2
  2109     emit_rm(cbuf, 0x3, r1, r2);
  2110     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2111       emit_opcode(cbuf,$primary);
  2112       emit_rm(cbuf, 0x3, $secondary, r1);
  2113       emit_d8(cbuf,$cnt$$constant-32);
  2115     emit_opcode(cbuf,0x33);  // XOR r2,r2
  2116     emit_rm(cbuf, 0x3, r2, r2);
  2117   %}
  2119   // Clone of RegMem but accepts an extra parameter to access each
  2120   // half of a double in memory; it never needs relocation info.
  2121   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, rRegI rm_reg) %{
  2122     emit_opcode(cbuf,$opcode$$constant);
  2123     int reg_encoding = $rm_reg$$reg;
  2124     int base     = $mem$$base;
  2125     int index    = $mem$$index;
  2126     int scale    = $mem$$scale;
  2127     int displace = $mem$$disp + $disp_for_half$$constant;
  2128     relocInfo::relocType disp_reloc = relocInfo::none;
  2129     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2130   %}
  2132   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  2133   //
  2134   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  2135   // and it never needs relocation information.
  2136   // Frequently used to move data between FPU's Stack Top and memory.
  2137   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
  2138     int rm_byte_opcode = $rm_opcode$$constant;
  2139     int base     = $mem$$base;
  2140     int index    = $mem$$index;
  2141     int scale    = $mem$$scale;
  2142     int displace = $mem$$disp;
  2143     assert( $mem->disp_reloc() == relocInfo::none, "No oops here because no reloc info allowed" );
  2144     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, relocInfo::none);
  2145   %}
  2147   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
  2148     int rm_byte_opcode = $rm_opcode$$constant;
  2149     int base     = $mem$$base;
  2150     int index    = $mem$$index;
  2151     int scale    = $mem$$scale;
  2152     int displace = $mem$$disp;
  2153     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  2154     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
  2155   %}
  2157   enc_class RegLea (rRegI dst, rRegI src0, immI src1 ) %{    // emit_reg_lea
  2158     int reg_encoding = $dst$$reg;
  2159     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  2160     int index        = 0x04;            // 0x04 indicates no index
  2161     int scale        = 0x00;            // 0x00 indicates no scale
  2162     int displace     = $src1$$constant; // 0x00 indicates no displacement
  2163     relocInfo::relocType disp_reloc = relocInfo::none;
  2164     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2165   %}
  2167   enc_class min_enc (rRegI dst, rRegI src) %{    // MIN
  2168     // Compare dst,src
  2169     emit_opcode(cbuf,0x3B);
  2170     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2171     // jmp dst < src around move
  2172     emit_opcode(cbuf,0x7C);
  2173     emit_d8(cbuf,2);
  2174     // move dst,src
  2175     emit_opcode(cbuf,0x8B);
  2176     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2177   %}
  2179   enc_class max_enc (rRegI dst, rRegI src) %{    // MAX
  2180     // Compare dst,src
  2181     emit_opcode(cbuf,0x3B);
  2182     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2183     // jmp dst > src around move
  2184     emit_opcode(cbuf,0x7F);
  2185     emit_d8(cbuf,2);
  2186     // move dst,src
  2187     emit_opcode(cbuf,0x8B);
  2188     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2189   %}
  2191   enc_class enc_FPR_store(memory mem, regDPR src) %{
  2192     // If src is FPR1, we can just FST to store it.
  2193     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
  2194     int reg_encoding = 0x2; // Just store
  2195     int base  = $mem$$base;
  2196     int index = $mem$$index;
  2197     int scale = $mem$$scale;
  2198     int displace = $mem$$disp;
  2199     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  2200     if( $src$$reg != FPR1L_enc ) {
  2201       reg_encoding = 0x3;  // Store & pop
  2202       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
  2203       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2205     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2206     emit_opcode(cbuf,$primary);
  2207     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2208   %}
  2210   enc_class neg_reg(rRegI dst) %{
  2211     // NEG $dst
  2212     emit_opcode(cbuf,0xF7);
  2213     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  2214   %}
  2216   enc_class setLT_reg(eCXRegI dst) %{
  2217     // SETLT $dst
  2218     emit_opcode(cbuf,0x0F);
  2219     emit_opcode(cbuf,0x9C);
  2220     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  2221   %}
  2223   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
  2224     int tmpReg = $tmp$$reg;
  2226     // SUB $p,$q
  2227     emit_opcode(cbuf,0x2B);
  2228     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2229     // SBB $tmp,$tmp
  2230     emit_opcode(cbuf,0x1B);
  2231     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2232     // AND $tmp,$y
  2233     emit_opcode(cbuf,0x23);
  2234     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
  2235     // ADD $p,$tmp
  2236     emit_opcode(cbuf,0x03);
  2237     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2238   %}
  2240   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
  2241     // TEST shift,32
  2242     emit_opcode(cbuf,0xF7);
  2243     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2244     emit_d32(cbuf,0x20);
  2245     // JEQ,s small
  2246     emit_opcode(cbuf, 0x74);
  2247     emit_d8(cbuf, 0x04);
  2248     // MOV    $dst.hi,$dst.lo
  2249     emit_opcode( cbuf, 0x8B );
  2250     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2251     // CLR    $dst.lo
  2252     emit_opcode(cbuf, 0x33);
  2253     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  2254 // small:
  2255     // SHLD   $dst.hi,$dst.lo,$shift
  2256     emit_opcode(cbuf,0x0F);
  2257     emit_opcode(cbuf,0xA5);
  2258     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2259     // SHL    $dst.lo,$shift"
  2260     emit_opcode(cbuf,0xD3);
  2261     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  2262   %}
  2264   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
  2265     // TEST shift,32
  2266     emit_opcode(cbuf,0xF7);
  2267     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2268     emit_d32(cbuf,0x20);
  2269     // JEQ,s small
  2270     emit_opcode(cbuf, 0x74);
  2271     emit_d8(cbuf, 0x04);
  2272     // MOV    $dst.lo,$dst.hi
  2273     emit_opcode( cbuf, 0x8B );
  2274     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2275     // CLR    $dst.hi
  2276     emit_opcode(cbuf, 0x33);
  2277     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
  2278 // small:
  2279     // SHRD   $dst.lo,$dst.hi,$shift
  2280     emit_opcode(cbuf,0x0F);
  2281     emit_opcode(cbuf,0xAD);
  2282     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2283     // SHR    $dst.hi,$shift"
  2284     emit_opcode(cbuf,0xD3);
  2285     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  2286   %}
  2288   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
  2289     // TEST shift,32
  2290     emit_opcode(cbuf,0xF7);
  2291     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2292     emit_d32(cbuf,0x20);
  2293     // JEQ,s small
  2294     emit_opcode(cbuf, 0x74);
  2295     emit_d8(cbuf, 0x05);
  2296     // MOV    $dst.lo,$dst.hi
  2297     emit_opcode( cbuf, 0x8B );
  2298     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2299     // SAR    $dst.hi,31
  2300     emit_opcode(cbuf, 0xC1);
  2301     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
  2302     emit_d8(cbuf, 0x1F );
  2303 // small:
  2304     // SHRD   $dst.lo,$dst.hi,$shift
  2305     emit_opcode(cbuf,0x0F);
  2306     emit_opcode(cbuf,0xAD);
  2307     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2308     // SAR    $dst.hi,$shift"
  2309     emit_opcode(cbuf,0xD3);
  2310     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  2311   %}
  2314   // ----------------- Encodings for floating point unit -----------------
  2315   // May leave result in FPU-TOS or FPU reg depending on opcodes
  2316   enc_class OpcReg_FPR(regFPR src) %{    // FMUL, FDIV
  2317     $$$emit8$primary;
  2318     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  2319   %}
  2321   // Pop argument in FPR0 with FSTP ST(0)
  2322   enc_class PopFPU() %{
  2323     emit_opcode( cbuf, 0xDD );
  2324     emit_d8( cbuf, 0xD8 );
  2325   %}
  2327   // !!!!! equivalent to Pop_Reg_F
  2328   enc_class Pop_Reg_DPR( regDPR dst ) %{
  2329     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2330     emit_d8( cbuf, 0xD8+$dst$$reg );
  2331   %}
  2333   enc_class Push_Reg_DPR( regDPR dst ) %{
  2334     emit_opcode( cbuf, 0xD9 );
  2335     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  2336   %}
  2338   enc_class strictfp_bias1( regDPR dst ) %{
  2339     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2340     emit_opcode( cbuf, 0x2D );
  2341     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
  2342     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2343     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2344   %}
  2346   enc_class strictfp_bias2( regDPR dst ) %{
  2347     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2348     emit_opcode( cbuf, 0x2D );
  2349     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
  2350     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2351     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2352   %}
  2354   // Special case for moving an integer register to a stack slot.
  2355   enc_class OpcPRegSS( stackSlotI dst, rRegI src ) %{ // RegSS
  2356     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  2357   %}
  2359   // Special case for moving a register to a stack slot.
  2360   enc_class RegSS( stackSlotI dst, rRegI src ) %{ // RegSS
  2361     // Opcode already emitted
  2362     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
  2363     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
  2364     emit_d32(cbuf, $dst$$disp);   // Displacement
  2365   %}
  2367   // Push the integer in stackSlot 'src' onto FP-stack
  2368   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
  2369     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  2370   %}
  2372   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  2373   enc_class Pop_Mem_FPR( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
  2374     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  2375   %}
  2377   // Same as Pop_Mem_F except for opcode
  2378   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  2379   enc_class Pop_Mem_DPR( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
  2380     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  2381   %}
  2383   enc_class Pop_Reg_FPR( regFPR dst ) %{
  2384     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2385     emit_d8( cbuf, 0xD8+$dst$$reg );
  2386   %}
  2388   enc_class Push_Reg_FPR( regFPR dst ) %{
  2389     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
  2390     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2391   %}
  2393   // Push FPU's float to a stack-slot, and pop FPU-stack
  2394   enc_class Pop_Mem_Reg_FPR( stackSlotF dst, regFPR src ) %{
  2395     int pop = 0x02;
  2396     if ($src$$reg != FPR1L_enc) {
  2397       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2398       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2399       pop = 0x03;
  2401     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  2402   %}
  2404   // Push FPU's double to a stack-slot, and pop FPU-stack
  2405   enc_class Pop_Mem_Reg_DPR( stackSlotD dst, regDPR src ) %{
  2406     int pop = 0x02;
  2407     if ($src$$reg != FPR1L_enc) {
  2408       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2409       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2410       pop = 0x03;
  2412     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  2413   %}
  2415   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  2416   enc_class Pop_Reg_Reg_DPR( regDPR dst, regFPR src ) %{
  2417     int pop = 0xD0 - 1; // -1 since we skip FLD
  2418     if ($src$$reg != FPR1L_enc) {
  2419       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
  2420       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2421       pop = 0xD8;
  2423     emit_opcode( cbuf, 0xDD );
  2424     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  2425   %}
  2428   enc_class Push_Reg_Mod_DPR( regDPR dst, regDPR src) %{
  2429     // load dst in FPR0
  2430     emit_opcode( cbuf, 0xD9 );
  2431     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2432     if ($src$$reg != FPR1L_enc) {
  2433       // fincstp
  2434       emit_opcode (cbuf, 0xD9);
  2435       emit_opcode (cbuf, 0xF7);
  2436       // swap src with FPR1:
  2437       // FXCH FPR1 with src
  2438       emit_opcode(cbuf, 0xD9);
  2439       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2440       // fdecstp
  2441       emit_opcode (cbuf, 0xD9);
  2442       emit_opcode (cbuf, 0xF6);
  2444   %}
  2446   enc_class Push_ModD_encoding(regD src0, regD src1) %{
  2447     MacroAssembler _masm(&cbuf);
  2448     __ subptr(rsp, 8);
  2449     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
  2450     __ fld_d(Address(rsp, 0));
  2451     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
  2452     __ fld_d(Address(rsp, 0));
  2453   %}
  2455   enc_class Push_ModF_encoding(regF src0, regF src1) %{
  2456     MacroAssembler _masm(&cbuf);
  2457     __ subptr(rsp, 4);
  2458     __ movflt(Address(rsp, 0), $src1$$XMMRegister);
  2459     __ fld_s(Address(rsp, 0));
  2460     __ movflt(Address(rsp, 0), $src0$$XMMRegister);
  2461     __ fld_s(Address(rsp, 0));
  2462   %}
  2464   enc_class Push_ResultD(regD dst) %{
  2465     MacroAssembler _masm(&cbuf);
  2466     __ fstp_d(Address(rsp, 0));
  2467     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
  2468     __ addptr(rsp, 8);
  2469   %}
  2471   enc_class Push_ResultF(regF dst, immI d8) %{
  2472     MacroAssembler _masm(&cbuf);
  2473     __ fstp_s(Address(rsp, 0));
  2474     __ movflt($dst$$XMMRegister, Address(rsp, 0));
  2475     __ addptr(rsp, $d8$$constant);
  2476   %}
  2478   enc_class Push_SrcD(regD src) %{
  2479     MacroAssembler _masm(&cbuf);
  2480     __ subptr(rsp, 8);
  2481     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2482     __ fld_d(Address(rsp, 0));
  2483   %}
  2485   enc_class push_stack_temp_qword() %{
  2486     MacroAssembler _masm(&cbuf);
  2487     __ subptr(rsp, 8);
  2488   %}
  2490   enc_class pop_stack_temp_qword() %{
  2491     MacroAssembler _masm(&cbuf);
  2492     __ addptr(rsp, 8);
  2493   %}
  2495   enc_class push_xmm_to_fpr1(regD src) %{
  2496     MacroAssembler _masm(&cbuf);
  2497     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2498     __ fld_d(Address(rsp, 0));
  2499   %}
  2501   enc_class Push_Result_Mod_DPR( regDPR src) %{
  2502     if ($src$$reg != FPR1L_enc) {
  2503       // fincstp
  2504       emit_opcode (cbuf, 0xD9);
  2505       emit_opcode (cbuf, 0xF7);
  2506       // FXCH FPR1 with src
  2507       emit_opcode(cbuf, 0xD9);
  2508       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2509       // fdecstp
  2510       emit_opcode (cbuf, 0xD9);
  2511       emit_opcode (cbuf, 0xF6);
  2513     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
  2514     // // FSTP   FPR$dst$$reg
  2515     // emit_opcode( cbuf, 0xDD );
  2516     // emit_d8( cbuf, 0xD8+$dst$$reg );
  2517   %}
  2519   enc_class fnstsw_sahf_skip_parity() %{
  2520     // fnstsw ax
  2521     emit_opcode( cbuf, 0xDF );
  2522     emit_opcode( cbuf, 0xE0 );
  2523     // sahf
  2524     emit_opcode( cbuf, 0x9E );
  2525     // jnp  ::skip
  2526     emit_opcode( cbuf, 0x7B );
  2527     emit_opcode( cbuf, 0x05 );
  2528   %}
  2530   enc_class emitModDPR() %{
  2531     // fprem must be iterative
  2532     // :: loop
  2533     // fprem
  2534     emit_opcode( cbuf, 0xD9 );
  2535     emit_opcode( cbuf, 0xF8 );
  2536     // wait
  2537     emit_opcode( cbuf, 0x9b );
  2538     // fnstsw ax
  2539     emit_opcode( cbuf, 0xDF );
  2540     emit_opcode( cbuf, 0xE0 );
  2541     // sahf
  2542     emit_opcode( cbuf, 0x9E );
  2543     // jp  ::loop
  2544     emit_opcode( cbuf, 0x0F );
  2545     emit_opcode( cbuf, 0x8A );
  2546     emit_opcode( cbuf, 0xF4 );
  2547     emit_opcode( cbuf, 0xFF );
  2548     emit_opcode( cbuf, 0xFF );
  2549     emit_opcode( cbuf, 0xFF );
  2550   %}
  2552   enc_class fpu_flags() %{
  2553     // fnstsw_ax
  2554     emit_opcode( cbuf, 0xDF);
  2555     emit_opcode( cbuf, 0xE0);
  2556     // test ax,0x0400
  2557     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
  2558     emit_opcode( cbuf, 0xA9 );
  2559     emit_d16   ( cbuf, 0x0400 );
  2560     // // // This sequence works, but stalls for 12-16 cycles on PPro
  2561     // // test rax,0x0400
  2562     // emit_opcode( cbuf, 0xA9 );
  2563     // emit_d32   ( cbuf, 0x00000400 );
  2564     //
  2565     // jz exit (no unordered comparison)
  2566     emit_opcode( cbuf, 0x74 );
  2567     emit_d8    ( cbuf, 0x02 );
  2568     // mov ah,1 - treat as LT case (set carry flag)
  2569     emit_opcode( cbuf, 0xB4 );
  2570     emit_d8    ( cbuf, 0x01 );
  2571     // sahf
  2572     emit_opcode( cbuf, 0x9E);
  2573   %}
  2575   enc_class cmpF_P6_fixup() %{
  2576     // Fixup the integer flags in case comparison involved a NaN
  2577     //
  2578     // JNP exit (no unordered comparison, P-flag is set by NaN)
  2579     emit_opcode( cbuf, 0x7B );
  2580     emit_d8    ( cbuf, 0x03 );
  2581     // MOV AH,1 - treat as LT case (set carry flag)
  2582     emit_opcode( cbuf, 0xB4 );
  2583     emit_d8    ( cbuf, 0x01 );
  2584     // SAHF
  2585     emit_opcode( cbuf, 0x9E);
  2586     // NOP     // target for branch to avoid branch to branch
  2587     emit_opcode( cbuf, 0x90);
  2588   %}
  2590 //     fnstsw_ax();
  2591 //     sahf();
  2592 //     movl(dst, nan_result);
  2593 //     jcc(Assembler::parity, exit);
  2594 //     movl(dst, less_result);
  2595 //     jcc(Assembler::below, exit);
  2596 //     movl(dst, equal_result);
  2597 //     jcc(Assembler::equal, exit);
  2598 //     movl(dst, greater_result);
  2600 // less_result     =  1;
  2601 // greater_result  = -1;
  2602 // equal_result    = 0;
  2603 // nan_result      = -1;
  2605   enc_class CmpF_Result(rRegI dst) %{
  2606     // fnstsw_ax();
  2607     emit_opcode( cbuf, 0xDF);
  2608     emit_opcode( cbuf, 0xE0);
  2609     // sahf
  2610     emit_opcode( cbuf, 0x9E);
  2611     // movl(dst, nan_result);
  2612     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2613     emit_d32( cbuf, -1 );
  2614     // jcc(Assembler::parity, exit);
  2615     emit_opcode( cbuf, 0x7A );
  2616     emit_d8    ( cbuf, 0x13 );
  2617     // movl(dst, less_result);
  2618     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2619     emit_d32( cbuf, -1 );
  2620     // jcc(Assembler::below, exit);
  2621     emit_opcode( cbuf, 0x72 );
  2622     emit_d8    ( cbuf, 0x0C );
  2623     // movl(dst, equal_result);
  2624     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2625     emit_d32( cbuf, 0 );
  2626     // jcc(Assembler::equal, exit);
  2627     emit_opcode( cbuf, 0x74 );
  2628     emit_d8    ( cbuf, 0x05 );
  2629     // movl(dst, greater_result);
  2630     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2631     emit_d32( cbuf, 1 );
  2632   %}
  2635   // Compare the longs and set flags
  2636   // BROKEN!  Do Not use as-is
  2637   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
  2638     // CMP    $src1.hi,$src2.hi
  2639     emit_opcode( cbuf, 0x3B );
  2640     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2641     // JNE,s  done
  2642     emit_opcode(cbuf,0x75);
  2643     emit_d8(cbuf, 2 );
  2644     // CMP    $src1.lo,$src2.lo
  2645     emit_opcode( cbuf, 0x3B );
  2646     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2647 // done:
  2648   %}
  2650   enc_class convert_int_long( regL dst, rRegI src ) %{
  2651     // mov $dst.lo,$src
  2652     int dst_encoding = $dst$$reg;
  2653     int src_encoding = $src$$reg;
  2654     encode_Copy( cbuf, dst_encoding  , src_encoding );
  2655     // mov $dst.hi,$src
  2656     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
  2657     // sar $dst.hi,31
  2658     emit_opcode( cbuf, 0xC1 );
  2659     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
  2660     emit_d8(cbuf, 0x1F );
  2661   %}
  2663   enc_class convert_long_double( eRegL src ) %{
  2664     // push $src.hi
  2665     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2666     // push $src.lo
  2667     emit_opcode(cbuf, 0x50+$src$$reg  );
  2668     // fild 64-bits at [SP]
  2669     emit_opcode(cbuf,0xdf);
  2670     emit_d8(cbuf, 0x6C);
  2671     emit_d8(cbuf, 0x24);
  2672     emit_d8(cbuf, 0x00);
  2673     // pop stack
  2674     emit_opcode(cbuf, 0x83); // add  SP, #8
  2675     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2676     emit_d8(cbuf, 0x8);
  2677   %}
  2679   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
  2680     // IMUL   EDX:EAX,$src1
  2681     emit_opcode( cbuf, 0xF7 );
  2682     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
  2683     // SAR    EDX,$cnt-32
  2684     int shift_count = ((int)$cnt$$constant) - 32;
  2685     if (shift_count > 0) {
  2686       emit_opcode(cbuf, 0xC1);
  2687       emit_rm(cbuf, 0x3, 7, $dst$$reg );
  2688       emit_d8(cbuf, shift_count);
  2690   %}
  2692   // this version doesn't have add sp, 8
  2693   enc_class convert_long_double2( eRegL src ) %{
  2694     // push $src.hi
  2695     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2696     // push $src.lo
  2697     emit_opcode(cbuf, 0x50+$src$$reg  );
  2698     // fild 64-bits at [SP]
  2699     emit_opcode(cbuf,0xdf);
  2700     emit_d8(cbuf, 0x6C);
  2701     emit_d8(cbuf, 0x24);
  2702     emit_d8(cbuf, 0x00);
  2703   %}
  2705   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
  2706     // Basic idea: long = (long)int * (long)int
  2707     // IMUL EDX:EAX, src
  2708     emit_opcode( cbuf, 0xF7 );
  2709     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  2710   %}
  2712   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
  2713     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  2714     // MUL EDX:EAX, src
  2715     emit_opcode( cbuf, 0xF7 );
  2716     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  2717   %}
  2719   enc_class long_multiply( eADXRegL dst, eRegL src, rRegI tmp ) %{
  2720     // Basic idea: lo(result) = lo(x_lo * y_lo)
  2721     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  2722     // MOV    $tmp,$src.lo
  2723     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
  2724     // IMUL   $tmp,EDX
  2725     emit_opcode( cbuf, 0x0F );
  2726     emit_opcode( cbuf, 0xAF );
  2727     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2728     // MOV    EDX,$src.hi
  2729     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
  2730     // IMUL   EDX,EAX
  2731     emit_opcode( cbuf, 0x0F );
  2732     emit_opcode( cbuf, 0xAF );
  2733     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2734     // ADD    $tmp,EDX
  2735     emit_opcode( cbuf, 0x03 );
  2736     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2737     // MUL   EDX:EAX,$src.lo
  2738     emit_opcode( cbuf, 0xF7 );
  2739     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
  2740     // ADD    EDX,ESI
  2741     emit_opcode( cbuf, 0x03 );
  2742     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  2743   %}
  2745   enc_class long_multiply_con( eADXRegL dst, immL_127 src, rRegI tmp ) %{
  2746     // Basic idea: lo(result) = lo(src * y_lo)
  2747     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
  2748     // IMUL   $tmp,EDX,$src
  2749     emit_opcode( cbuf, 0x6B );
  2750     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2751     emit_d8( cbuf, (int)$src$$constant );
  2752     // MOV    EDX,$src
  2753     emit_opcode(cbuf, 0xB8 + EDX_enc);
  2754     emit_d32( cbuf, (int)$src$$constant );
  2755     // MUL   EDX:EAX,EDX
  2756     emit_opcode( cbuf, 0xF7 );
  2757     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
  2758     // ADD    EDX,ESI
  2759     emit_opcode( cbuf, 0x03 );
  2760     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  2761   %}
  2763   enc_class long_div( eRegL src1, eRegL src2 ) %{
  2764     // PUSH src1.hi
  2765     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2766     // PUSH src1.lo
  2767     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2768     // PUSH src2.hi
  2769     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2770     // PUSH src2.lo
  2771     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2772     // CALL directly to the runtime
  2773     cbuf.set_insts_mark();
  2774     emit_opcode(cbuf,0xE8);       // Call into runtime
  2775     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2776     // Restore stack
  2777     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2778     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2779     emit_d8(cbuf, 4*4);
  2780   %}
  2782   enc_class long_mod( eRegL src1, eRegL src2 ) %{
  2783     // PUSH src1.hi
  2784     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2785     // PUSH src1.lo
  2786     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2787     // PUSH src2.hi
  2788     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2789     // PUSH src2.lo
  2790     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2791     // CALL directly to the runtime
  2792     cbuf.set_insts_mark();
  2793     emit_opcode(cbuf,0xE8);       // Call into runtime
  2794     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2795     // Restore stack
  2796     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2797     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2798     emit_d8(cbuf, 4*4);
  2799   %}
  2801   enc_class long_cmp_flags0( eRegL src, rRegI tmp ) %{
  2802     // MOV   $tmp,$src.lo
  2803     emit_opcode(cbuf, 0x8B);
  2804     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  2805     // OR    $tmp,$src.hi
  2806     emit_opcode(cbuf, 0x0B);
  2807     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  2808   %}
  2810   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
  2811     // CMP    $src1.lo,$src2.lo
  2812     emit_opcode( cbuf, 0x3B );
  2813     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2814     // JNE,s  skip
  2815     emit_cc(cbuf, 0x70, 0x5);
  2816     emit_d8(cbuf,2);
  2817     // CMP    $src1.hi,$src2.hi
  2818     emit_opcode( cbuf, 0x3B );
  2819     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2820   %}
  2822   enc_class long_cmp_flags2( eRegL src1, eRegL src2, rRegI tmp ) %{
  2823     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
  2824     emit_opcode( cbuf, 0x3B );
  2825     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2826     // MOV    $tmp,$src1.hi
  2827     emit_opcode( cbuf, 0x8B );
  2828     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
  2829     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
  2830     emit_opcode( cbuf, 0x1B );
  2831     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  2832   %}
  2834   enc_class long_cmp_flags3( eRegL src, rRegI tmp ) %{
  2835     // XOR    $tmp,$tmp
  2836     emit_opcode(cbuf,0x33);  // XOR
  2837     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
  2838     // CMP    $tmp,$src.lo
  2839     emit_opcode( cbuf, 0x3B );
  2840     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
  2841     // SBB    $tmp,$src.hi
  2842     emit_opcode( cbuf, 0x1B );
  2843     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  2844   %}
  2846  // Sniff, sniff... smells like Gnu Superoptimizer
  2847   enc_class neg_long( eRegL dst ) %{
  2848     emit_opcode(cbuf,0xF7);    // NEG hi
  2849     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  2850     emit_opcode(cbuf,0xF7);    // NEG lo
  2851     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
  2852     emit_opcode(cbuf,0x83);    // SBB hi,0
  2853     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  2854     emit_d8    (cbuf,0 );
  2855   %}
  2857   enc_class enc_pop_rdx() %{
  2858     emit_opcode(cbuf,0x5A);
  2859   %}
  2861   enc_class enc_rethrow() %{
  2862     cbuf.set_insts_mark();
  2863     emit_opcode(cbuf, 0xE9);        // jmp    entry
  2864     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
  2865                    runtime_call_Relocation::spec(), RELOC_IMM32 );
  2866   %}
  2869   // Convert a double to an int.  Java semantics require we do complex
  2870   // manglelations in the corner cases.  So we set the rounding mode to
  2871   // 'zero', store the darned double down as an int, and reset the
  2872   // rounding mode to 'nearest'.  The hardware throws an exception which
  2873   // patches up the correct value directly to the stack.
  2874   enc_class DPR2I_encoding( regDPR src ) %{
  2875     // Flip to round-to-zero mode.  We attempted to allow invalid-op
  2876     // exceptions here, so that a NAN or other corner-case value will
  2877     // thrown an exception (but normal values get converted at full speed).
  2878     // However, I2C adapters and other float-stack manglers leave pending
  2879     // invalid-op exceptions hanging.  We would have to clear them before
  2880     // enabling them and that is more expensive than just testing for the
  2881     // invalid value Intel stores down in the corner cases.
  2882     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  2883     emit_opcode(cbuf,0x2D);
  2884     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  2885     // Allocate a word
  2886     emit_opcode(cbuf,0x83);            // SUB ESP,4
  2887     emit_opcode(cbuf,0xEC);
  2888     emit_d8(cbuf,0x04);
  2889     // Encoding assumes a double has been pushed into FPR0.
  2890     // Store down the double as an int, popping the FPU stack
  2891     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
  2892     emit_opcode(cbuf,0x1C);
  2893     emit_d8(cbuf,0x24);
  2894     // Restore the rounding mode; mask the exception
  2895     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  2896     emit_opcode(cbuf,0x2D);
  2897     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  2898         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  2899         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  2901     // Load the converted int; adjust CPU stack
  2902     emit_opcode(cbuf,0x58);       // POP EAX
  2903     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
  2904     emit_d32   (cbuf,0x80000000); //         0x80000000
  2905     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  2906     emit_d8    (cbuf,0x07);       // Size of slow_call
  2907     // Push src onto stack slow-path
  2908     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  2909     emit_d8    (cbuf,0xC0-1+$src$$reg );
  2910     // CALL directly to the runtime
  2911     cbuf.set_insts_mark();
  2912     emit_opcode(cbuf,0xE8);       // Call into runtime
  2913     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2914     // Carry on here...
  2915   %}
  2917   enc_class DPR2L_encoding( regDPR src ) %{
  2918     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  2919     emit_opcode(cbuf,0x2D);
  2920     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  2921     // Allocate a word
  2922     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2923     emit_opcode(cbuf,0xEC);
  2924     emit_d8(cbuf,0x08);
  2925     // Encoding assumes a double has been pushed into FPR0.
  2926     // Store down the double as a long, popping the FPU stack
  2927     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
  2928     emit_opcode(cbuf,0x3C);
  2929     emit_d8(cbuf,0x24);
  2930     // Restore the rounding mode; mask the exception
  2931     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  2932     emit_opcode(cbuf,0x2D);
  2933     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  2934         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  2935         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  2937     // Load the converted int; adjust CPU stack
  2938     emit_opcode(cbuf,0x58);       // POP EAX
  2939     emit_opcode(cbuf,0x5A);       // POP EDX
  2940     emit_opcode(cbuf,0x81);       // CMP EDX,imm
  2941     emit_d8    (cbuf,0xFA);       // rdx
  2942     emit_d32   (cbuf,0x80000000); //         0x80000000
  2943     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  2944     emit_d8    (cbuf,0x07+4);     // Size of slow_call
  2945     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
  2946     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
  2947     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  2948     emit_d8    (cbuf,0x07);       // Size of slow_call
  2949     // Push src onto stack slow-path
  2950     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  2951     emit_d8    (cbuf,0xC0-1+$src$$reg );
  2952     // CALL directly to the runtime
  2953     cbuf.set_insts_mark();
  2954     emit_opcode(cbuf,0xE8);       // Call into runtime
  2955     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2956     // Carry on here...
  2957   %}
  2959   enc_class FMul_ST_reg( eRegFPR src1 ) %{
  2960     // Operand was loaded from memory into fp ST (stack top)
  2961     // FMUL   ST,$src  /* D8 C8+i */
  2962     emit_opcode(cbuf, 0xD8);
  2963     emit_opcode(cbuf, 0xC8 + $src1$$reg);
  2964   %}
  2966   enc_class FAdd_ST_reg( eRegFPR src2 ) %{
  2967     // FADDP  ST,src2  /* D8 C0+i */
  2968     emit_opcode(cbuf, 0xD8);
  2969     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  2970     //could use FADDP  src2,fpST  /* DE C0+i */
  2971   %}
  2973   enc_class FAddP_reg_ST( eRegFPR src2 ) %{
  2974     // FADDP  src2,ST  /* DE C0+i */
  2975     emit_opcode(cbuf, 0xDE);
  2976     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  2977   %}
  2979   enc_class subFPR_divFPR_encode( eRegFPR src1, eRegFPR src2) %{
  2980     // Operand has been loaded into fp ST (stack top)
  2981       // FSUB   ST,$src1
  2982       emit_opcode(cbuf, 0xD8);
  2983       emit_opcode(cbuf, 0xE0 + $src1$$reg);
  2985       // FDIV
  2986       emit_opcode(cbuf, 0xD8);
  2987       emit_opcode(cbuf, 0xF0 + $src2$$reg);
  2988   %}
  2990   enc_class MulFAddF (eRegFPR src1, eRegFPR src2) %{
  2991     // Operand was loaded from memory into fp ST (stack top)
  2992     // FADD   ST,$src  /* D8 C0+i */
  2993     emit_opcode(cbuf, 0xD8);
  2994     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  2996     // FMUL  ST,src2  /* D8 C*+i */
  2997     emit_opcode(cbuf, 0xD8);
  2998     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  2999   %}
  3002   enc_class MulFAddFreverse (eRegFPR src1, eRegFPR src2) %{
  3003     // Operand was loaded from memory into fp ST (stack top)
  3004     // FADD   ST,$src  /* D8 C0+i */
  3005     emit_opcode(cbuf, 0xD8);
  3006     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  3008     // FMULP  src2,ST  /* DE C8+i */
  3009     emit_opcode(cbuf, 0xDE);
  3010     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  3011   %}
  3013   // Atomically load the volatile long
  3014   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
  3015     emit_opcode(cbuf,0xDF);
  3016     int rm_byte_opcode = 0x05;
  3017     int base     = $mem$$base;
  3018     int index    = $mem$$index;
  3019     int scale    = $mem$$scale;
  3020     int displace = $mem$$disp;
  3021     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  3022     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
  3023     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  3024   %}
  3026   // Volatile Store Long.  Must be atomic, so move it into
  3027   // the FP TOS and then do a 64-bit FIST.  Has to probe the
  3028   // target address before the store (for null-ptr checks)
  3029   // so the memory operand is used twice in the encoding.
  3030   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
  3031     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
  3032     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
  3033     emit_opcode(cbuf,0xDF);
  3034     int rm_byte_opcode = 0x07;
  3035     int base     = $mem$$base;
  3036     int index    = $mem$$index;
  3037     int scale    = $mem$$scale;
  3038     int displace = $mem$$disp;
  3039     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  3040     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
  3041   %}
  3043   // Safepoint Poll.  This polls the safepoint page, and causes an
  3044   // exception if it is not readable. Unfortunately, it kills the condition code
  3045   // in the process
  3046   // We current use TESTL [spp],EDI
  3047   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
  3049   enc_class Safepoint_Poll() %{
  3050     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
  3051     emit_opcode(cbuf,0x85);
  3052     emit_rm (cbuf, 0x0, 0x7, 0x5);
  3053     emit_d32(cbuf, (intptr_t)os::get_polling_page());
  3054   %}
  3055 %}
  3058 //----------FRAME--------------------------------------------------------------
  3059 // Definition of frame structure and management information.
  3060 //
  3061 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3062 //                             |   (to get allocators register number
  3063 //  G  Owned by    |        |  v    add OptoReg::stack0())
  3064 //  r   CALLER     |        |
  3065 //  o     |        +--------+      pad to even-align allocators stack-slot
  3066 //  w     V        |  pad0  |        numbers; owned by CALLER
  3067 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3068 //  h     ^        |   in   |  5
  3069 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3070 //  |     |        |        |  3
  3071 //  |     |        +--------+
  3072 //  V     |        | old out|      Empty on Intel, window on Sparc
  3073 //        |    old |preserve|      Must be even aligned.
  3074 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  3075 //        |        |   in   |  3   area for Intel ret address
  3076 //     Owned by    |preserve|      Empty on Sparc.
  3077 //       SELF      +--------+
  3078 //        |        |  pad2  |  2   pad to align old SP
  3079 //        |        +--------+  1
  3080 //        |        | locks  |  0
  3081 //        |        +--------+----> OptoReg::stack0(), even aligned
  3082 //        |        |  pad1  | 11   pad to align new SP
  3083 //        |        +--------+
  3084 //        |        |        | 10
  3085 //        |        | spills |  9   spills
  3086 //        V        |        |  8   (pad0 slot for callee)
  3087 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3088 //        ^        |  out   |  7
  3089 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3090 //     Owned by    +--------+
  3091 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3092 //        |    new |preserve|      Must be even-aligned.
  3093 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3094 //        |        |        |
  3095 //
  3096 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3097 //         known from SELF's arguments and the Java calling convention.
  3098 //         Region 6-7 is determined per call site.
  3099 // Note 2: If the calling convention leaves holes in the incoming argument
  3100 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3101 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3102 //         incoming area, as the Java calling convention is completely under
  3103 //         the control of the AD file.  Doubles can be sorted and packed to
  3104 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3105 //         varargs C calling conventions.
  3106 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3107 //         even aligned with pad0 as needed.
  3108 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3109 //         region 6-11 is even aligned; it may be padded out more so that
  3110 //         the region from SP to FP meets the minimum stack alignment.
  3112 frame %{
  3113   // What direction does stack grow in (assumed to be same for C & Java)
  3114   stack_direction(TOWARDS_LOW);
  3116   // These three registers define part of the calling convention
  3117   // between compiled code and the interpreter.
  3118   inline_cache_reg(EAX);                // Inline Cache Register
  3119   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
  3121   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3122   cisc_spilling_operand_name(indOffset32);
  3124   // Number of stack slots consumed by locking an object
  3125   sync_stack_slots(1);
  3127   // Compiled code's Frame Pointer
  3128   frame_pointer(ESP);
  3129   // Interpreter stores its frame pointer in a register which is
  3130   // stored to the stack by I2CAdaptors.
  3131   // I2CAdaptors convert from interpreted java to compiled java.
  3132   interpreter_frame_pointer(EBP);
  3134   // Stack alignment requirement
  3135   // Alignment size in bytes (128-bit -> 16 bytes)
  3136   stack_alignment(StackAlignmentInBytes);
  3138   // Number of stack slots between incoming argument block and the start of
  3139   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3140   // EPILOG must remove this many slots.  Intel needs one slot for
  3141   // return address and one for rbp, (must save rbp)
  3142   in_preserve_stack_slots(2+VerifyStackAtCalls);
  3144   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3145   // for calls to C.  Supports the var-args backing area for register parms.
  3146   varargs_C_out_slots_killed(0);
  3148   // The after-PROLOG location of the return address.  Location of
  3149   // return address specifies a type (REG or STACK) and a number
  3150   // representing the register number (i.e. - use a register name) or
  3151   // stack slot.
  3152   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  3153   // Otherwise, it is above the locks and verification slot and alignment word
  3154   return_addr(STACK - 1 +
  3155               round_to((Compile::current()->in_preserve_stack_slots() +
  3156                         Compile::current()->fixed_slots()),
  3157                        stack_alignment_in_slots()));
  3159   // Body of function which returns an integer array locating
  3160   // arguments either in registers or in stack slots.  Passed an array
  3161   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3162   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3163   // arguments for a CALLEE.  Incoming stack arguments are
  3164   // automatically biased by the preserve_stack_slots field above.
  3165   calling_convention %{
  3166     // No difference between ingoing/outgoing just pass false
  3167     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3168   %}
  3171   // Body of function which returns an integer array locating
  3172   // arguments either in registers or in stack slots.  Passed an array
  3173   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3174   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3175   // arguments for a CALLEE.  Incoming stack arguments are
  3176   // automatically biased by the preserve_stack_slots field above.
  3177   c_calling_convention %{
  3178     // This is obviously always outgoing
  3179     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  3180   %}
  3182   // Location of C & interpreter return values
  3183   c_return_value %{
  3184     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3185     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3186     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3188     // in SSE2+ mode we want to keep the FPU stack clean so pretend
  3189     // that C functions return float and double results in XMM0.
  3190     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3191       return OptoRegPair(XMM0b_num,XMM0_num);
  3192     if( ideal_reg == Op_RegF && UseSSE>=2 )
  3193       return OptoRegPair(OptoReg::Bad,XMM0_num);
  3195     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3196   %}
  3198   // Location of return values
  3199   return_value %{
  3200     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3201     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3202     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3203     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3204       return OptoRegPair(XMM0b_num,XMM0_num);
  3205     if( ideal_reg == Op_RegF && UseSSE>=1 )
  3206       return OptoRegPair(OptoReg::Bad,XMM0_num);
  3207     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3208   %}
  3210 %}
  3212 //----------ATTRIBUTES---------------------------------------------------------
  3213 //----------Operand Attributes-------------------------------------------------
  3214 op_attrib op_cost(0);        // Required cost attribute
  3216 //----------Instruction Attributes---------------------------------------------
  3217 ins_attrib ins_cost(100);       // Required cost attribute
  3218 ins_attrib ins_size(8);         // Required size attribute (in bits)
  3219 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3220                                 // non-matching short branch variant of some
  3221                                                             // long branch?
  3222 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
  3223                                 // specifies the alignment that some part of the instruction (not
  3224                                 // necessarily the start) requires.  If > 1, a compute_padding()
  3225                                 // function must be provided for the instruction
  3227 //----------OPERANDS-----------------------------------------------------------
  3228 // Operand definitions must precede instruction definitions for correct parsing
  3229 // in the ADLC because operands constitute user defined types which are used in
  3230 // instruction definitions.
  3232 //----------Simple Operands----------------------------------------------------
  3233 // Immediate Operands
  3234 // Integer Immediate
  3235 operand immI() %{
  3236   match(ConI);
  3238   op_cost(10);
  3239   format %{ %}
  3240   interface(CONST_INTER);
  3241 %}
  3243 // Constant for test vs zero
  3244 operand immI0() %{
  3245   predicate(n->get_int() == 0);
  3246   match(ConI);
  3248   op_cost(0);
  3249   format %{ %}
  3250   interface(CONST_INTER);
  3251 %}
  3253 // Constant for increment
  3254 operand immI1() %{
  3255   predicate(n->get_int() == 1);
  3256   match(ConI);
  3258   op_cost(0);
  3259   format %{ %}
  3260   interface(CONST_INTER);
  3261 %}
  3263 // Constant for decrement
  3264 operand immI_M1() %{
  3265   predicate(n->get_int() == -1);
  3266   match(ConI);
  3268   op_cost(0);
  3269   format %{ %}
  3270   interface(CONST_INTER);
  3271 %}
  3273 // Valid scale values for addressing modes
  3274 operand immI2() %{
  3275   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  3276   match(ConI);
  3278   format %{ %}
  3279   interface(CONST_INTER);
  3280 %}
  3282 operand immI8() %{
  3283   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  3284   match(ConI);
  3286   op_cost(5);
  3287   format %{ %}
  3288   interface(CONST_INTER);
  3289 %}
  3291 operand immI16() %{
  3292   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  3293   match(ConI);
  3295   op_cost(10);
  3296   format %{ %}
  3297   interface(CONST_INTER);
  3298 %}
  3300 // Int Immediate non-negative
  3301 operand immU31()
  3302 %{
  3303   predicate(n->get_int() >= 0);
  3304   match(ConI);
  3306   op_cost(0);
  3307   format %{ %}
  3308   interface(CONST_INTER);
  3309 %}
  3311 // Constant for long shifts
  3312 operand immI_32() %{
  3313   predicate( n->get_int() == 32 );
  3314   match(ConI);
  3316   op_cost(0);
  3317   format %{ %}
  3318   interface(CONST_INTER);
  3319 %}
  3321 operand immI_1_31() %{
  3322   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  3323   match(ConI);
  3325   op_cost(0);
  3326   format %{ %}
  3327   interface(CONST_INTER);
  3328 %}
  3330 operand immI_32_63() %{
  3331   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  3332   match(ConI);
  3333   op_cost(0);
  3335   format %{ %}
  3336   interface(CONST_INTER);
  3337 %}
  3339 operand immI_1() %{
  3340   predicate( n->get_int() == 1 );
  3341   match(ConI);
  3343   op_cost(0);
  3344   format %{ %}
  3345   interface(CONST_INTER);
  3346 %}
  3348 operand immI_2() %{
  3349   predicate( n->get_int() == 2 );
  3350   match(ConI);
  3352   op_cost(0);
  3353   format %{ %}
  3354   interface(CONST_INTER);
  3355 %}
  3357 operand immI_3() %{
  3358   predicate( n->get_int() == 3 );
  3359   match(ConI);
  3361   op_cost(0);
  3362   format %{ %}
  3363   interface(CONST_INTER);
  3364 %}
  3366 // Pointer Immediate
  3367 operand immP() %{
  3368   match(ConP);
  3370   op_cost(10);
  3371   format %{ %}
  3372   interface(CONST_INTER);
  3373 %}
  3375 // NULL Pointer Immediate
  3376 operand immP0() %{
  3377   predicate( n->get_ptr() == 0 );
  3378   match(ConP);
  3379   op_cost(0);
  3381   format %{ %}
  3382   interface(CONST_INTER);
  3383 %}
  3385 // Long Immediate
  3386 operand immL() %{
  3387   match(ConL);
  3389   op_cost(20);
  3390   format %{ %}
  3391   interface(CONST_INTER);
  3392 %}
  3394 // Long Immediate zero
  3395 operand immL0() %{
  3396   predicate( n->get_long() == 0L );
  3397   match(ConL);
  3398   op_cost(0);
  3400   format %{ %}
  3401   interface(CONST_INTER);
  3402 %}
  3404 // Long Immediate zero
  3405 operand immL_M1() %{
  3406   predicate( n->get_long() == -1L );
  3407   match(ConL);
  3408   op_cost(0);
  3410   format %{ %}
  3411   interface(CONST_INTER);
  3412 %}
  3414 // Long immediate from 0 to 127.
  3415 // Used for a shorter form of long mul by 10.
  3416 operand immL_127() %{
  3417   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  3418   match(ConL);
  3419   op_cost(0);
  3421   format %{ %}
  3422   interface(CONST_INTER);
  3423 %}
  3425 // Long Immediate: low 32-bit mask
  3426 operand immL_32bits() %{
  3427   predicate(n->get_long() == 0xFFFFFFFFL);
  3428   match(ConL);
  3429   op_cost(0);
  3431   format %{ %}
  3432   interface(CONST_INTER);
  3433 %}
  3435 // Long Immediate: low 32-bit mask
  3436 operand immL32() %{
  3437   predicate(n->get_long() == (int)(n->get_long()));
  3438   match(ConL);
  3439   op_cost(20);
  3441   format %{ %}
  3442   interface(CONST_INTER);
  3443 %}
  3445 //Double Immediate zero
  3446 operand immDPR0() %{
  3447   // Do additional (and counter-intuitive) test against NaN to work around VC++
  3448   // bug that generates code such that NaNs compare equal to 0.0
  3449   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  3450   match(ConD);
  3452   op_cost(5);
  3453   format %{ %}
  3454   interface(CONST_INTER);
  3455 %}
  3457 // Double Immediate one
  3458 operand immDPR1() %{
  3459   predicate( UseSSE<=1 && n->getd() == 1.0 );
  3460   match(ConD);
  3462   op_cost(5);
  3463   format %{ %}
  3464   interface(CONST_INTER);
  3465 %}
  3467 // Double Immediate
  3468 operand immDPR() %{
  3469   predicate(UseSSE<=1);
  3470   match(ConD);
  3472   op_cost(5);
  3473   format %{ %}
  3474   interface(CONST_INTER);
  3475 %}
  3477 operand immD() %{
  3478   predicate(UseSSE>=2);
  3479   match(ConD);
  3481   op_cost(5);
  3482   format %{ %}
  3483   interface(CONST_INTER);
  3484 %}
  3486 // Double Immediate zero
  3487 operand immD0() %{
  3488   // Do additional (and counter-intuitive) test against NaN to work around VC++
  3489   // bug that generates code such that NaNs compare equal to 0.0 AND do not
  3490   // compare equal to -0.0.
  3491   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  3492   match(ConD);
  3494   format %{ %}
  3495   interface(CONST_INTER);
  3496 %}
  3498 // Float Immediate zero
  3499 operand immFPR0() %{
  3500   predicate(UseSSE == 0 && n->getf() == 0.0F);
  3501   match(ConF);
  3503   op_cost(5);
  3504   format %{ %}
  3505   interface(CONST_INTER);
  3506 %}
  3508 // Float Immediate one
  3509 operand immFPR1() %{
  3510   predicate(UseSSE == 0 && n->getf() == 1.0F);
  3511   match(ConF);
  3513   op_cost(5);
  3514   format %{ %}
  3515   interface(CONST_INTER);
  3516 %}
  3518 // Float Immediate
  3519 operand immFPR() %{
  3520   predicate( UseSSE == 0 );
  3521   match(ConF);
  3523   op_cost(5);
  3524   format %{ %}
  3525   interface(CONST_INTER);
  3526 %}
  3528 // Float Immediate
  3529 operand immF() %{
  3530   predicate(UseSSE >= 1);
  3531   match(ConF);
  3533   op_cost(5);
  3534   format %{ %}
  3535   interface(CONST_INTER);
  3536 %}
  3538 // Float Immediate zero.  Zero and not -0.0
  3539 operand immF0() %{
  3540   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  3541   match(ConF);
  3543   op_cost(5);
  3544   format %{ %}
  3545   interface(CONST_INTER);
  3546 %}
  3548 // Immediates for special shifts (sign extend)
  3550 // Constants for increment
  3551 operand immI_16() %{
  3552   predicate( n->get_int() == 16 );
  3553   match(ConI);
  3555   format %{ %}
  3556   interface(CONST_INTER);
  3557 %}
  3559 operand immI_24() %{
  3560   predicate( n->get_int() == 24 );
  3561   match(ConI);
  3563   format %{ %}
  3564   interface(CONST_INTER);
  3565 %}
  3567 // Constant for byte-wide masking
  3568 operand immI_255() %{
  3569   predicate( n->get_int() == 255 );
  3570   match(ConI);
  3572   format %{ %}
  3573   interface(CONST_INTER);
  3574 %}
  3576 // Constant for short-wide masking
  3577 operand immI_65535() %{
  3578   predicate(n->get_int() == 65535);
  3579   match(ConI);
  3581   format %{ %}
  3582   interface(CONST_INTER);
  3583 %}
  3585 // Register Operands
  3586 // Integer Register
  3587 operand rRegI() %{
  3588   constraint(ALLOC_IN_RC(int_reg));
  3589   match(RegI);
  3590   match(xRegI);
  3591   match(eAXRegI);
  3592   match(eBXRegI);
  3593   match(eCXRegI);
  3594   match(eDXRegI);
  3595   match(eDIRegI);
  3596   match(eSIRegI);
  3598   format %{ %}
  3599   interface(REG_INTER);
  3600 %}
  3602 // Subset of Integer Register
  3603 operand xRegI(rRegI reg) %{
  3604   constraint(ALLOC_IN_RC(int_x_reg));
  3605   match(reg);
  3606   match(eAXRegI);
  3607   match(eBXRegI);
  3608   match(eCXRegI);
  3609   match(eDXRegI);
  3611   format %{ %}
  3612   interface(REG_INTER);
  3613 %}
  3615 // Special Registers
  3616 operand eAXRegI(xRegI reg) %{
  3617   constraint(ALLOC_IN_RC(eax_reg));
  3618   match(reg);
  3619   match(rRegI);
  3621   format %{ "EAX" %}
  3622   interface(REG_INTER);
  3623 %}
  3625 // Special Registers
  3626 operand eBXRegI(xRegI reg) %{
  3627   constraint(ALLOC_IN_RC(ebx_reg));
  3628   match(reg);
  3629   match(rRegI);
  3631   format %{ "EBX" %}
  3632   interface(REG_INTER);
  3633 %}
  3635 operand eCXRegI(xRegI reg) %{
  3636   constraint(ALLOC_IN_RC(ecx_reg));
  3637   match(reg);
  3638   match(rRegI);
  3640   format %{ "ECX" %}
  3641   interface(REG_INTER);
  3642 %}
  3644 operand eDXRegI(xRegI reg) %{
  3645   constraint(ALLOC_IN_RC(edx_reg));
  3646   match(reg);
  3647   match(rRegI);
  3649   format %{ "EDX" %}
  3650   interface(REG_INTER);
  3651 %}
  3653 operand eDIRegI(xRegI reg) %{
  3654   constraint(ALLOC_IN_RC(edi_reg));
  3655   match(reg);
  3656   match(rRegI);
  3658   format %{ "EDI" %}
  3659   interface(REG_INTER);
  3660 %}
  3662 operand naxRegI() %{
  3663   constraint(ALLOC_IN_RC(nax_reg));
  3664   match(RegI);
  3665   match(eCXRegI);
  3666   match(eDXRegI);
  3667   match(eSIRegI);
  3668   match(eDIRegI);
  3670   format %{ %}
  3671   interface(REG_INTER);
  3672 %}
  3674 operand nadxRegI() %{
  3675   constraint(ALLOC_IN_RC(nadx_reg));
  3676   match(RegI);
  3677   match(eBXRegI);
  3678   match(eCXRegI);
  3679   match(eSIRegI);
  3680   match(eDIRegI);
  3682   format %{ %}
  3683   interface(REG_INTER);
  3684 %}
  3686 operand ncxRegI() %{
  3687   constraint(ALLOC_IN_RC(ncx_reg));
  3688   match(RegI);
  3689   match(eAXRegI);
  3690   match(eDXRegI);
  3691   match(eSIRegI);
  3692   match(eDIRegI);
  3694   format %{ %}
  3695   interface(REG_INTER);
  3696 %}
  3698 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
  3699 // //
  3700 operand eSIRegI(xRegI reg) %{
  3701    constraint(ALLOC_IN_RC(esi_reg));
  3702    match(reg);
  3703    match(rRegI);
  3705    format %{ "ESI" %}
  3706    interface(REG_INTER);
  3707 %}
  3709 // Pointer Register
  3710 operand anyRegP() %{
  3711   constraint(ALLOC_IN_RC(any_reg));
  3712   match(RegP);
  3713   match(eAXRegP);
  3714   match(eBXRegP);
  3715   match(eCXRegP);
  3716   match(eDIRegP);
  3717   match(eRegP);
  3719   format %{ %}
  3720   interface(REG_INTER);
  3721 %}
  3723 operand eRegP() %{
  3724   constraint(ALLOC_IN_RC(int_reg));
  3725   match(RegP);
  3726   match(eAXRegP);
  3727   match(eBXRegP);
  3728   match(eCXRegP);
  3729   match(eDIRegP);
  3731   format %{ %}
  3732   interface(REG_INTER);
  3733 %}
  3735 // On windows95, EBP is not safe to use for implicit null tests.
  3736 operand eRegP_no_EBP() %{
  3737   constraint(ALLOC_IN_RC(int_reg_no_rbp));
  3738   match(RegP);
  3739   match(eAXRegP);
  3740   match(eBXRegP);
  3741   match(eCXRegP);
  3742   match(eDIRegP);
  3744   op_cost(100);
  3745   format %{ %}
  3746   interface(REG_INTER);
  3747 %}
  3749 operand naxRegP() %{
  3750   constraint(ALLOC_IN_RC(nax_reg));
  3751   match(RegP);
  3752   match(eBXRegP);
  3753   match(eDXRegP);
  3754   match(eCXRegP);
  3755   match(eSIRegP);
  3756   match(eDIRegP);
  3758   format %{ %}
  3759   interface(REG_INTER);
  3760 %}
  3762 operand nabxRegP() %{
  3763   constraint(ALLOC_IN_RC(nabx_reg));
  3764   match(RegP);
  3765   match(eCXRegP);
  3766   match(eDXRegP);
  3767   match(eSIRegP);
  3768   match(eDIRegP);
  3770   format %{ %}
  3771   interface(REG_INTER);
  3772 %}
  3774 operand pRegP() %{
  3775   constraint(ALLOC_IN_RC(p_reg));
  3776   match(RegP);
  3777   match(eBXRegP);
  3778   match(eDXRegP);
  3779   match(eSIRegP);
  3780   match(eDIRegP);
  3782   format %{ %}
  3783   interface(REG_INTER);
  3784 %}
  3786 // Special Registers
  3787 // Return a pointer value
  3788 operand eAXRegP(eRegP reg) %{
  3789   constraint(ALLOC_IN_RC(eax_reg));
  3790   match(reg);
  3791   format %{ "EAX" %}
  3792   interface(REG_INTER);
  3793 %}
  3795 // Used in AtomicAdd
  3796 operand eBXRegP(eRegP reg) %{
  3797   constraint(ALLOC_IN_RC(ebx_reg));
  3798   match(reg);
  3799   format %{ "EBX" %}
  3800   interface(REG_INTER);
  3801 %}
  3803 // Tail-call (interprocedural jump) to interpreter
  3804 operand eCXRegP(eRegP reg) %{
  3805   constraint(ALLOC_IN_RC(ecx_reg));
  3806   match(reg);
  3807   format %{ "ECX" %}
  3808   interface(REG_INTER);
  3809 %}
  3811 operand eSIRegP(eRegP reg) %{
  3812   constraint(ALLOC_IN_RC(esi_reg));
  3813   match(reg);
  3814   format %{ "ESI" %}
  3815   interface(REG_INTER);
  3816 %}
  3818 // Used in rep stosw
  3819 operand eDIRegP(eRegP reg) %{
  3820   constraint(ALLOC_IN_RC(edi_reg));
  3821   match(reg);
  3822   format %{ "EDI" %}
  3823   interface(REG_INTER);
  3824 %}
  3826 operand eBPRegP() %{
  3827   constraint(ALLOC_IN_RC(ebp_reg));
  3828   match(RegP);
  3829   format %{ "EBP" %}
  3830   interface(REG_INTER);
  3831 %}
  3833 operand eRegL() %{
  3834   constraint(ALLOC_IN_RC(long_reg));
  3835   match(RegL);
  3836   match(eADXRegL);
  3838   format %{ %}
  3839   interface(REG_INTER);
  3840 %}
  3842 operand eADXRegL( eRegL reg ) %{
  3843   constraint(ALLOC_IN_RC(eadx_reg));
  3844   match(reg);
  3846   format %{ "EDX:EAX" %}
  3847   interface(REG_INTER);
  3848 %}
  3850 operand eBCXRegL( eRegL reg ) %{
  3851   constraint(ALLOC_IN_RC(ebcx_reg));
  3852   match(reg);
  3854   format %{ "EBX:ECX" %}
  3855   interface(REG_INTER);
  3856 %}
  3858 // Special case for integer high multiply
  3859 operand eADXRegL_low_only() %{
  3860   constraint(ALLOC_IN_RC(eadx_reg));
  3861   match(RegL);
  3863   format %{ "EAX" %}
  3864   interface(REG_INTER);
  3865 %}
  3867 // Flags register, used as output of compare instructions
  3868 operand eFlagsReg() %{
  3869   constraint(ALLOC_IN_RC(int_flags));
  3870   match(RegFlags);
  3872   format %{ "EFLAGS" %}
  3873   interface(REG_INTER);
  3874 %}
  3876 // Flags register, used as output of FLOATING POINT compare instructions
  3877 operand eFlagsRegU() %{
  3878   constraint(ALLOC_IN_RC(int_flags));
  3879   match(RegFlags);
  3881   format %{ "EFLAGS_U" %}
  3882   interface(REG_INTER);
  3883 %}
  3885 operand eFlagsRegUCF() %{
  3886   constraint(ALLOC_IN_RC(int_flags));
  3887   match(RegFlags);
  3888   predicate(false);
  3890   format %{ "EFLAGS_U_CF" %}
  3891   interface(REG_INTER);
  3892 %}
  3894 // Condition Code Register used by long compare
  3895 operand flagsReg_long_LTGE() %{
  3896   constraint(ALLOC_IN_RC(int_flags));
  3897   match(RegFlags);
  3898   format %{ "FLAGS_LTGE" %}
  3899   interface(REG_INTER);
  3900 %}
  3901 operand flagsReg_long_EQNE() %{
  3902   constraint(ALLOC_IN_RC(int_flags));
  3903   match(RegFlags);
  3904   format %{ "FLAGS_EQNE" %}
  3905   interface(REG_INTER);
  3906 %}
  3907 operand flagsReg_long_LEGT() %{
  3908   constraint(ALLOC_IN_RC(int_flags));
  3909   match(RegFlags);
  3910   format %{ "FLAGS_LEGT" %}
  3911   interface(REG_INTER);
  3912 %}
  3914 // Float register operands
  3915 operand regDPR() %{
  3916   predicate( UseSSE < 2 );
  3917   constraint(ALLOC_IN_RC(fp_dbl_reg));
  3918   match(RegD);
  3919   match(regDPR1);
  3920   match(regDPR2);
  3921   format %{ %}
  3922   interface(REG_INTER);
  3923 %}
  3925 operand regDPR1(regDPR reg) %{
  3926   predicate( UseSSE < 2 );
  3927   constraint(ALLOC_IN_RC(fp_dbl_reg0));
  3928   match(reg);
  3929   format %{ "FPR1" %}
  3930   interface(REG_INTER);
  3931 %}
  3933 operand regDPR2(regDPR reg) %{
  3934   predicate( UseSSE < 2 );
  3935   constraint(ALLOC_IN_RC(fp_dbl_reg1));
  3936   match(reg);
  3937   format %{ "FPR2" %}
  3938   interface(REG_INTER);
  3939 %}
  3941 operand regnotDPR1(regDPR reg) %{
  3942   predicate( UseSSE < 2 );
  3943   constraint(ALLOC_IN_RC(fp_dbl_notreg0));
  3944   match(reg);
  3945   format %{ %}
  3946   interface(REG_INTER);
  3947 %}
  3949 // Float register operands
  3950 operand regFPR() %{
  3951   predicate( UseSSE < 2 );
  3952   constraint(ALLOC_IN_RC(fp_flt_reg));
  3953   match(RegF);
  3954   match(regFPR1);
  3955   format %{ %}
  3956   interface(REG_INTER);
  3957 %}
  3959 // Float register operands
  3960 operand regFPR1(regFPR reg) %{
  3961   predicate( UseSSE < 2 );
  3962   constraint(ALLOC_IN_RC(fp_flt_reg0));
  3963   match(reg);
  3964   format %{ "FPR1" %}
  3965   interface(REG_INTER);
  3966 %}
  3968 // XMM Float register operands
  3969 operand regF() %{
  3970   predicate( UseSSE>=1 );
  3971   constraint(ALLOC_IN_RC(float_reg));
  3972   match(RegF);
  3973   format %{ %}
  3974   interface(REG_INTER);
  3975 %}
  3977 // XMM Double register operands
  3978 operand regD() %{
  3979   predicate( UseSSE>=2 );
  3980   constraint(ALLOC_IN_RC(double_reg));
  3981   match(RegD);
  3982   format %{ %}
  3983   interface(REG_INTER);
  3984 %}
  3987 //----------Memory Operands----------------------------------------------------
  3988 // Direct Memory Operand
  3989 operand direct(immP addr) %{
  3990   match(addr);
  3992   format %{ "[$addr]" %}
  3993   interface(MEMORY_INTER) %{
  3994     base(0xFFFFFFFF);
  3995     index(0x4);
  3996     scale(0x0);
  3997     disp($addr);
  3998   %}
  3999 %}
  4001 // Indirect Memory Operand
  4002 operand indirect(eRegP reg) %{
  4003   constraint(ALLOC_IN_RC(int_reg));
  4004   match(reg);
  4006   format %{ "[$reg]" %}
  4007   interface(MEMORY_INTER) %{
  4008     base($reg);
  4009     index(0x4);
  4010     scale(0x0);
  4011     disp(0x0);
  4012   %}
  4013 %}
  4015 // Indirect Memory Plus Short Offset Operand
  4016 operand indOffset8(eRegP reg, immI8 off) %{
  4017   match(AddP reg off);
  4019   format %{ "[$reg + $off]" %}
  4020   interface(MEMORY_INTER) %{
  4021     base($reg);
  4022     index(0x4);
  4023     scale(0x0);
  4024     disp($off);
  4025   %}
  4026 %}
  4028 // Indirect Memory Plus Long Offset Operand
  4029 operand indOffset32(eRegP reg, immI off) %{
  4030   match(AddP reg off);
  4032   format %{ "[$reg + $off]" %}
  4033   interface(MEMORY_INTER) %{
  4034     base($reg);
  4035     index(0x4);
  4036     scale(0x0);
  4037     disp($off);
  4038   %}
  4039 %}
  4041 // Indirect Memory Plus Long Offset Operand
  4042 operand indOffset32X(rRegI reg, immP off) %{
  4043   match(AddP off reg);
  4045   format %{ "[$reg + $off]" %}
  4046   interface(MEMORY_INTER) %{
  4047     base($reg);
  4048     index(0x4);
  4049     scale(0x0);
  4050     disp($off);
  4051   %}
  4052 %}
  4054 // Indirect Memory Plus Index Register Plus Offset Operand
  4055 operand indIndexOffset(eRegP reg, rRegI ireg, immI off) %{
  4056   match(AddP (AddP reg ireg) off);
  4058   op_cost(10);
  4059   format %{"[$reg + $off + $ireg]" %}
  4060   interface(MEMORY_INTER) %{
  4061     base($reg);
  4062     index($ireg);
  4063     scale(0x0);
  4064     disp($off);
  4065   %}
  4066 %}
  4068 // Indirect Memory Plus Index Register Plus Offset Operand
  4069 operand indIndex(eRegP reg, rRegI ireg) %{
  4070   match(AddP reg ireg);
  4072   op_cost(10);
  4073   format %{"[$reg + $ireg]" %}
  4074   interface(MEMORY_INTER) %{
  4075     base($reg);
  4076     index($ireg);
  4077     scale(0x0);
  4078     disp(0x0);
  4079   %}
  4080 %}
  4082 // // -------------------------------------------------------------------------
  4083 // // 486 architecture doesn't support "scale * index + offset" with out a base
  4084 // // -------------------------------------------------------------------------
  4085 // // Scaled Memory Operands
  4086 // // Indirect Memory Times Scale Plus Offset Operand
  4087 // operand indScaleOffset(immP off, rRegI ireg, immI2 scale) %{
  4088 //   match(AddP off (LShiftI ireg scale));
  4089 //
  4090 //   op_cost(10);
  4091 //   format %{"[$off + $ireg << $scale]" %}
  4092 //   interface(MEMORY_INTER) %{
  4093 //     base(0x4);
  4094 //     index($ireg);
  4095 //     scale($scale);
  4096 //     disp($off);
  4097 //   %}
  4098 // %}
  4100 // Indirect Memory Times Scale Plus Index Register
  4101 operand indIndexScale(eRegP reg, rRegI ireg, immI2 scale) %{
  4102   match(AddP reg (LShiftI ireg scale));
  4104   op_cost(10);
  4105   format %{"[$reg + $ireg << $scale]" %}
  4106   interface(MEMORY_INTER) %{
  4107     base($reg);
  4108     index($ireg);
  4109     scale($scale);
  4110     disp(0x0);
  4111   %}
  4112 %}
  4114 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4115 operand indIndexScaleOffset(eRegP reg, immI off, rRegI ireg, immI2 scale) %{
  4116   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4118   op_cost(10);
  4119   format %{"[$reg + $off + $ireg << $scale]" %}
  4120   interface(MEMORY_INTER) %{
  4121     base($reg);
  4122     index($ireg);
  4123     scale($scale);
  4124     disp($off);
  4125   %}
  4126 %}
  4128 //----------Load Long Memory Operands------------------------------------------
  4129 // The load-long idiom will use it's address expression again after loading
  4130 // the first word of the long.  If the load-long destination overlaps with
  4131 // registers used in the addressing expression, the 2nd half will be loaded
  4132 // from a clobbered address.  Fix this by requiring that load-long use
  4133 // address registers that do not overlap with the load-long target.
  4135 // load-long support
  4136 operand load_long_RegP() %{
  4137   constraint(ALLOC_IN_RC(esi_reg));
  4138   match(RegP);
  4139   match(eSIRegP);
  4140   op_cost(100);
  4141   format %{  %}
  4142   interface(REG_INTER);
  4143 %}
  4145 // Indirect Memory Operand Long
  4146 operand load_long_indirect(load_long_RegP reg) %{
  4147   constraint(ALLOC_IN_RC(esi_reg));
  4148   match(reg);
  4150   format %{ "[$reg]" %}
  4151   interface(MEMORY_INTER) %{
  4152     base($reg);
  4153     index(0x4);
  4154     scale(0x0);
  4155     disp(0x0);
  4156   %}
  4157 %}
  4159 // Indirect Memory Plus Long Offset Operand
  4160 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  4161   match(AddP reg off);
  4163   format %{ "[$reg + $off]" %}
  4164   interface(MEMORY_INTER) %{
  4165     base($reg);
  4166     index(0x4);
  4167     scale(0x0);
  4168     disp($off);
  4169   %}
  4170 %}
  4172 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
  4175 //----------Special Memory Operands--------------------------------------------
  4176 // Stack Slot Operand - This operand is used for loading and storing temporary
  4177 //                      values on the stack where a match requires a value to
  4178 //                      flow through memory.
  4179 operand stackSlotP(sRegP reg) %{
  4180   constraint(ALLOC_IN_RC(stack_slots));
  4181   // No match rule because this operand is only generated in matching
  4182   format %{ "[$reg]" %}
  4183   interface(MEMORY_INTER) %{
  4184     base(0x4);   // ESP
  4185     index(0x4);  // No Index
  4186     scale(0x0);  // No Scale
  4187     disp($reg);  // Stack Offset
  4188   %}
  4189 %}
  4191 operand stackSlotI(sRegI reg) %{
  4192   constraint(ALLOC_IN_RC(stack_slots));
  4193   // No match rule because this operand is only generated in matching
  4194   format %{ "[$reg]" %}
  4195   interface(MEMORY_INTER) %{
  4196     base(0x4);   // ESP
  4197     index(0x4);  // No Index
  4198     scale(0x0);  // No Scale
  4199     disp($reg);  // Stack Offset
  4200   %}
  4201 %}
  4203 operand stackSlotF(sRegF reg) %{
  4204   constraint(ALLOC_IN_RC(stack_slots));
  4205   // No match rule because this operand is only generated in matching
  4206   format %{ "[$reg]" %}
  4207   interface(MEMORY_INTER) %{
  4208     base(0x4);   // ESP
  4209     index(0x4);  // No Index
  4210     scale(0x0);  // No Scale
  4211     disp($reg);  // Stack Offset
  4212   %}
  4213 %}
  4215 operand stackSlotD(sRegD reg) %{
  4216   constraint(ALLOC_IN_RC(stack_slots));
  4217   // No match rule because this operand is only generated in matching
  4218   format %{ "[$reg]" %}
  4219   interface(MEMORY_INTER) %{
  4220     base(0x4);   // ESP
  4221     index(0x4);  // No Index
  4222     scale(0x0);  // No Scale
  4223     disp($reg);  // Stack Offset
  4224   %}
  4225 %}
  4227 operand stackSlotL(sRegL reg) %{
  4228   constraint(ALLOC_IN_RC(stack_slots));
  4229   // No match rule because this operand is only generated in matching
  4230   format %{ "[$reg]" %}
  4231   interface(MEMORY_INTER) %{
  4232     base(0x4);   // ESP
  4233     index(0x4);  // No Index
  4234     scale(0x0);  // No Scale
  4235     disp($reg);  // Stack Offset
  4236   %}
  4237 %}
  4239 //----------Memory Operands - Win95 Implicit Null Variants----------------
  4240 // Indirect Memory Operand
  4241 operand indirect_win95_safe(eRegP_no_EBP reg)
  4242 %{
  4243   constraint(ALLOC_IN_RC(int_reg));
  4244   match(reg);
  4246   op_cost(100);
  4247   format %{ "[$reg]" %}
  4248   interface(MEMORY_INTER) %{
  4249     base($reg);
  4250     index(0x4);
  4251     scale(0x0);
  4252     disp(0x0);
  4253   %}
  4254 %}
  4256 // Indirect Memory Plus Short Offset Operand
  4257 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
  4258 %{
  4259   match(AddP reg off);
  4261   op_cost(100);
  4262   format %{ "[$reg + $off]" %}
  4263   interface(MEMORY_INTER) %{
  4264     base($reg);
  4265     index(0x4);
  4266     scale(0x0);
  4267     disp($off);
  4268   %}
  4269 %}
  4271 // Indirect Memory Plus Long Offset Operand
  4272 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
  4273 %{
  4274   match(AddP reg off);
  4276   op_cost(100);
  4277   format %{ "[$reg + $off]" %}
  4278   interface(MEMORY_INTER) %{
  4279     base($reg);
  4280     index(0x4);
  4281     scale(0x0);
  4282     disp($off);
  4283   %}
  4284 %}
  4286 // Indirect Memory Plus Index Register Plus Offset Operand
  4287 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI off)
  4288 %{
  4289   match(AddP (AddP reg ireg) off);
  4291   op_cost(100);
  4292   format %{"[$reg + $off + $ireg]" %}
  4293   interface(MEMORY_INTER) %{
  4294     base($reg);
  4295     index($ireg);
  4296     scale(0x0);
  4297     disp($off);
  4298   %}
  4299 %}
  4301 // Indirect Memory Times Scale Plus Index Register
  4302 operand indIndexScale_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI2 scale)
  4303 %{
  4304   match(AddP reg (LShiftI ireg scale));
  4306   op_cost(100);
  4307   format %{"[$reg + $ireg << $scale]" %}
  4308   interface(MEMORY_INTER) %{
  4309     base($reg);
  4310     index($ireg);
  4311     scale($scale);
  4312     disp(0x0);
  4313   %}
  4314 %}
  4316 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4317 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, rRegI ireg, immI2 scale)
  4318 %{
  4319   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4321   op_cost(100);
  4322   format %{"[$reg + $off + $ireg << $scale]" %}
  4323   interface(MEMORY_INTER) %{
  4324     base($reg);
  4325     index($ireg);
  4326     scale($scale);
  4327     disp($off);
  4328   %}
  4329 %}
  4331 //----------Conditional Branch Operands----------------------------------------
  4332 // Comparison Op  - This is the operation of the comparison, and is limited to
  4333 //                  the following set of codes:
  4334 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4335 //
  4336 // Other attributes of the comparison, such as unsignedness, are specified
  4337 // by the comparison instruction that sets a condition code flags register.
  4338 // That result is represented by a flags operand whose subtype is appropriate
  4339 // to the unsignedness (etc.) of the comparison.
  4340 //
  4341 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4342 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4343 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4345 // Comparision Code
  4346 operand cmpOp() %{
  4347   match(Bool);
  4349   format %{ "" %}
  4350   interface(COND_INTER) %{
  4351     equal(0x4, "e");
  4352     not_equal(0x5, "ne");
  4353     less(0xC, "l");
  4354     greater_equal(0xD, "ge");
  4355     less_equal(0xE, "le");
  4356     greater(0xF, "g");
  4357     overflow(0x0, "o");
  4358     no_overflow(0x1, "no");
  4359   %}
  4360 %}
  4362 // Comparison Code, unsigned compare.  Used by FP also, with
  4363 // C2 (unordered) turned into GT or LT already.  The other bits
  4364 // C0 and C3 are turned into Carry & Zero flags.
  4365 operand cmpOpU() %{
  4366   match(Bool);
  4368   format %{ "" %}
  4369   interface(COND_INTER) %{
  4370     equal(0x4, "e");
  4371     not_equal(0x5, "ne");
  4372     less(0x2, "b");
  4373     greater_equal(0x3, "nb");
  4374     less_equal(0x6, "be");
  4375     greater(0x7, "nbe");
  4376     overflow(0x0, "o");
  4377     no_overflow(0x1, "no");
  4378   %}
  4379 %}
  4381 // Floating comparisons that don't require any fixup for the unordered case
  4382 operand cmpOpUCF() %{
  4383   match(Bool);
  4384   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  4385             n->as_Bool()->_test._test == BoolTest::ge ||
  4386             n->as_Bool()->_test._test == BoolTest::le ||
  4387             n->as_Bool()->_test._test == BoolTest::gt);
  4388   format %{ "" %}
  4389   interface(COND_INTER) %{
  4390     equal(0x4, "e");
  4391     not_equal(0x5, "ne");
  4392     less(0x2, "b");
  4393     greater_equal(0x3, "nb");
  4394     less_equal(0x6, "be");
  4395     greater(0x7, "nbe");
  4396     overflow(0x0, "o");
  4397     no_overflow(0x1, "no");
  4398   %}
  4399 %}
  4402 // Floating comparisons that can be fixed up with extra conditional jumps
  4403 operand cmpOpUCF2() %{
  4404   match(Bool);
  4405   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  4406             n->as_Bool()->_test._test == BoolTest::eq);
  4407   format %{ "" %}
  4408   interface(COND_INTER) %{
  4409     equal(0x4, "e");
  4410     not_equal(0x5, "ne");
  4411     less(0x2, "b");
  4412     greater_equal(0x3, "nb");
  4413     less_equal(0x6, "be");
  4414     greater(0x7, "nbe");
  4415     overflow(0x0, "o");
  4416     no_overflow(0x1, "no");
  4417   %}
  4418 %}
  4420 // Comparison Code for FP conditional move
  4421 operand cmpOp_fcmov() %{
  4422   match(Bool);
  4424   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4425             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4426   format %{ "" %}
  4427   interface(COND_INTER) %{
  4428     equal        (0x0C8);
  4429     not_equal    (0x1C8);
  4430     less         (0x0C0);
  4431     greater_equal(0x1C0);
  4432     less_equal   (0x0D0);
  4433     greater      (0x1D0);
  4434     overflow(0x0, "o"); // not really supported by the instruction
  4435     no_overflow(0x1, "no"); // not really supported by the instruction
  4436   %}
  4437 %}
  4439 // Comparision Code used in long compares
  4440 operand cmpOp_commute() %{
  4441   match(Bool);
  4443   format %{ "" %}
  4444   interface(COND_INTER) %{
  4445     equal(0x4, "e");
  4446     not_equal(0x5, "ne");
  4447     less(0xF, "g");
  4448     greater_equal(0xE, "le");
  4449     less_equal(0xD, "ge");
  4450     greater(0xC, "l");
  4451     overflow(0x0, "o");
  4452     no_overflow(0x1, "no");
  4453   %}
  4454 %}
  4456 //----------OPERAND CLASSES----------------------------------------------------
  4457 // Operand Classes are groups of operands that are used as to simplify
  4458 // instruction definitions by not requiring the AD writer to specify separate
  4459 // instructions for every form of operand when the instruction accepts
  4460 // multiple operand types with the same basic encoding and format.  The classic
  4461 // case of this is memory operands.
  4463 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
  4464                indIndex, indIndexScale, indIndexScaleOffset);
  4466 // Long memory operations are encoded in 2 instructions and a +4 offset.
  4467 // This means some kind of offset is always required and you cannot use
  4468 // an oop as the offset (done when working on static globals).
  4469 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
  4470                     indIndex, indIndexScale, indIndexScaleOffset);
  4473 //----------PIPELINE-----------------------------------------------------------
  4474 // Rules which define the behavior of the target architectures pipeline.
  4475 pipeline %{
  4477 //----------ATTRIBUTES---------------------------------------------------------
  4478 attributes %{
  4479   variable_size_instructions;        // Fixed size instructions
  4480   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  4481   instruction_unit_size = 1;         // An instruction is 1 bytes long
  4482   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4483   instruction_fetch_units = 1;       // of 16 bytes
  4485   // List of nop instructions
  4486   nops( MachNop );
  4487 %}
  4489 //----------RESOURCES----------------------------------------------------------
  4490 // Resources are the functional units available to the machine
  4492 // Generic P2/P3 pipeline
  4493 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  4494 // 3 instructions decoded per cycle.
  4495 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  4496 // 2 ALU op, only ALU0 handles mul/div instructions.
  4497 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  4498            MS0, MS1, MEM = MS0 | MS1,
  4499            BR, FPU,
  4500            ALU0, ALU1, ALU = ALU0 | ALU1 );
  4502 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4503 // Pipeline Description specifies the stages in the machine's pipeline
  4505 // Generic P2/P3 pipeline
  4506 pipe_desc(S0, S1, S2, S3, S4, S5);
  4508 //----------PIPELINE CLASSES---------------------------------------------------
  4509 // Pipeline Classes describe the stages in which input and output are
  4510 // referenced by the hardware pipeline.
  4512 // Naming convention: ialu or fpu
  4513 // Then: _reg
  4514 // Then: _reg if there is a 2nd register
  4515 // Then: _long if it's a pair of instructions implementing a long
  4516 // Then: _fat if it requires the big decoder
  4517 //   Or: _mem if it requires the big decoder and a memory unit.
  4519 // Integer ALU reg operation
  4520 pipe_class ialu_reg(rRegI dst) %{
  4521     single_instruction;
  4522     dst    : S4(write);
  4523     dst    : S3(read);
  4524     DECODE : S0;        // any decoder
  4525     ALU    : S3;        // any alu
  4526 %}
  4528 // Long ALU reg operation
  4529 pipe_class ialu_reg_long(eRegL dst) %{
  4530     instruction_count(2);
  4531     dst    : S4(write);
  4532     dst    : S3(read);
  4533     DECODE : S0(2);     // any 2 decoders
  4534     ALU    : S3(2);     // both alus
  4535 %}
  4537 // Integer ALU reg operation using big decoder
  4538 pipe_class ialu_reg_fat(rRegI dst) %{
  4539     single_instruction;
  4540     dst    : S4(write);
  4541     dst    : S3(read);
  4542     D0     : S0;        // big decoder only
  4543     ALU    : S3;        // any alu
  4544 %}
  4546 // Long ALU reg operation using big decoder
  4547 pipe_class ialu_reg_long_fat(eRegL dst) %{
  4548     instruction_count(2);
  4549     dst    : S4(write);
  4550     dst    : S3(read);
  4551     D0     : S0(2);     // big decoder only; twice
  4552     ALU    : S3(2);     // any 2 alus
  4553 %}
  4555 // Integer ALU reg-reg operation
  4556 pipe_class ialu_reg_reg(rRegI dst, rRegI src) %{
  4557     single_instruction;
  4558     dst    : S4(write);
  4559     src    : S3(read);
  4560     DECODE : S0;        // any decoder
  4561     ALU    : S3;        // any alu
  4562 %}
  4564 // Long ALU reg-reg operation
  4565 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
  4566     instruction_count(2);
  4567     dst    : S4(write);
  4568     src    : S3(read);
  4569     DECODE : S0(2);     // any 2 decoders
  4570     ALU    : S3(2);     // both alus
  4571 %}
  4573 // Integer ALU reg-reg operation
  4574 pipe_class ialu_reg_reg_fat(rRegI dst, memory src) %{
  4575     single_instruction;
  4576     dst    : S4(write);
  4577     src    : S3(read);
  4578     D0     : S0;        // big decoder only
  4579     ALU    : S3;        // any alu
  4580 %}
  4582 // Long ALU reg-reg operation
  4583 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
  4584     instruction_count(2);
  4585     dst    : S4(write);
  4586     src    : S3(read);
  4587     D0     : S0(2);     // big decoder only; twice
  4588     ALU    : S3(2);     // both alus
  4589 %}
  4591 // Integer ALU reg-mem operation
  4592 pipe_class ialu_reg_mem(rRegI dst, memory mem) %{
  4593     single_instruction;
  4594     dst    : S5(write);
  4595     mem    : S3(read);
  4596     D0     : S0;        // big decoder only
  4597     ALU    : S4;        // any alu
  4598     MEM    : S3;        // any mem
  4599 %}
  4601 // Long ALU reg-mem operation
  4602 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
  4603     instruction_count(2);
  4604     dst    : S5(write);
  4605     mem    : S3(read);
  4606     D0     : S0(2);     // big decoder only; twice
  4607     ALU    : S4(2);     // any 2 alus
  4608     MEM    : S3(2);     // both mems
  4609 %}
  4611 // Integer mem operation (prefetch)
  4612 pipe_class ialu_mem(memory mem)
  4613 %{
  4614     single_instruction;
  4615     mem    : S3(read);
  4616     D0     : S0;        // big decoder only
  4617     MEM    : S3;        // any mem
  4618 %}
  4620 // Integer Store to Memory
  4621 pipe_class ialu_mem_reg(memory mem, rRegI src) %{
  4622     single_instruction;
  4623     mem    : S3(read);
  4624     src    : S5(read);
  4625     D0     : S0;        // big decoder only
  4626     ALU    : S4;        // any alu
  4627     MEM    : S3;
  4628 %}
  4630 // Long Store to Memory
  4631 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
  4632     instruction_count(2);
  4633     mem    : S3(read);
  4634     src    : S5(read);
  4635     D0     : S0(2);     // big decoder only; twice
  4636     ALU    : S4(2);     // any 2 alus
  4637     MEM    : S3(2);     // Both mems
  4638 %}
  4640 // Integer Store to Memory
  4641 pipe_class ialu_mem_imm(memory mem) %{
  4642     single_instruction;
  4643     mem    : S3(read);
  4644     D0     : S0;        // big decoder only
  4645     ALU    : S4;        // any alu
  4646     MEM    : S3;
  4647 %}
  4649 // Integer ALU0 reg-reg operation
  4650 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src) %{
  4651     single_instruction;
  4652     dst    : S4(write);
  4653     src    : S3(read);
  4654     D0     : S0;        // Big decoder only
  4655     ALU0   : S3;        // only alu0
  4656 %}
  4658 // Integer ALU0 reg-mem operation
  4659 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem) %{
  4660     single_instruction;
  4661     dst    : S5(write);
  4662     mem    : S3(read);
  4663     D0     : S0;        // big decoder only
  4664     ALU0   : S4;        // ALU0 only
  4665     MEM    : S3;        // any mem
  4666 %}
  4668 // Integer ALU reg-reg operation
  4669 pipe_class ialu_cr_reg_reg(eFlagsReg cr, rRegI src1, rRegI src2) %{
  4670     single_instruction;
  4671     cr     : S4(write);
  4672     src1   : S3(read);
  4673     src2   : S3(read);
  4674     DECODE : S0;        // any decoder
  4675     ALU    : S3;        // any alu
  4676 %}
  4678 // Integer ALU reg-imm operation
  4679 pipe_class ialu_cr_reg_imm(eFlagsReg cr, rRegI src1) %{
  4680     single_instruction;
  4681     cr     : S4(write);
  4682     src1   : S3(read);
  4683     DECODE : S0;        // any decoder
  4684     ALU    : S3;        // any alu
  4685 %}
  4687 // Integer ALU reg-mem operation
  4688 pipe_class ialu_cr_reg_mem(eFlagsReg cr, rRegI src1, memory src2) %{
  4689     single_instruction;
  4690     cr     : S4(write);
  4691     src1   : S3(read);
  4692     src2   : S3(read);
  4693     D0     : S0;        // big decoder only
  4694     ALU    : S4;        // any alu
  4695     MEM    : S3;
  4696 %}
  4698 // Conditional move reg-reg
  4699 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y ) %{
  4700     instruction_count(4);
  4701     y      : S4(read);
  4702     q      : S3(read);
  4703     p      : S3(read);
  4704     DECODE : S0(4);     // any decoder
  4705 %}
  4707 // Conditional move reg-reg
  4708 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, eFlagsReg cr ) %{
  4709     single_instruction;
  4710     dst    : S4(write);
  4711     src    : S3(read);
  4712     cr     : S3(read);
  4713     DECODE : S0;        // any decoder
  4714 %}
  4716 // Conditional move reg-mem
  4717 pipe_class pipe_cmov_mem( eFlagsReg cr, rRegI dst, memory src) %{
  4718     single_instruction;
  4719     dst    : S4(write);
  4720     src    : S3(read);
  4721     cr     : S3(read);
  4722     DECODE : S0;        // any decoder
  4723     MEM    : S3;
  4724 %}
  4726 // Conditional move reg-reg long
  4727 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
  4728     single_instruction;
  4729     dst    : S4(write);
  4730     src    : S3(read);
  4731     cr     : S3(read);
  4732     DECODE : S0(2);     // any 2 decoders
  4733 %}
  4735 // Conditional move double reg-reg
  4736 pipe_class pipe_cmovDPR_reg( eFlagsReg cr, regDPR1 dst, regDPR src) %{
  4737     single_instruction;
  4738     dst    : S4(write);
  4739     src    : S3(read);
  4740     cr     : S3(read);
  4741     DECODE : S0;        // any decoder
  4742 %}
  4744 // Float reg-reg operation
  4745 pipe_class fpu_reg(regDPR dst) %{
  4746     instruction_count(2);
  4747     dst    : S3(read);
  4748     DECODE : S0(2);     // any 2 decoders
  4749     FPU    : S3;
  4750 %}
  4752 // Float reg-reg operation
  4753 pipe_class fpu_reg_reg(regDPR dst, regDPR src) %{
  4754     instruction_count(2);
  4755     dst    : S4(write);
  4756     src    : S3(read);
  4757     DECODE : S0(2);     // any 2 decoders
  4758     FPU    : S3;
  4759 %}
  4761 // Float reg-reg operation
  4762 pipe_class fpu_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2) %{
  4763     instruction_count(3);
  4764     dst    : S4(write);
  4765     src1   : S3(read);
  4766     src2   : S3(read);
  4767     DECODE : S0(3);     // any 3 decoders
  4768     FPU    : S3(2);
  4769 %}
  4771 // Float reg-reg operation
  4772 pipe_class fpu_reg_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2, regDPR src3) %{
  4773     instruction_count(4);
  4774     dst    : S4(write);
  4775     src1   : S3(read);
  4776     src2   : S3(read);
  4777     src3   : S3(read);
  4778     DECODE : S0(4);     // any 3 decoders
  4779     FPU    : S3(2);
  4780 %}
  4782 // Float reg-reg operation
  4783 pipe_class fpu_reg_mem_reg_reg(regDPR dst, memory src1, regDPR src2, regDPR src3) %{
  4784     instruction_count(4);
  4785     dst    : S4(write);
  4786     src1   : S3(read);
  4787     src2   : S3(read);
  4788     src3   : S3(read);
  4789     DECODE : S1(3);     // any 3 decoders
  4790     D0     : S0;        // Big decoder only
  4791     FPU    : S3(2);
  4792     MEM    : S3;
  4793 %}
  4795 // Float reg-mem operation
  4796 pipe_class fpu_reg_mem(regDPR dst, memory mem) %{
  4797     instruction_count(2);
  4798     dst    : S5(write);
  4799     mem    : S3(read);
  4800     D0     : S0;        // big decoder only
  4801     DECODE : S1;        // any decoder for FPU POP
  4802     FPU    : S4;
  4803     MEM    : S3;        // any mem
  4804 %}
  4806 // Float reg-mem operation
  4807 pipe_class fpu_reg_reg_mem(regDPR dst, regDPR src1, memory mem) %{
  4808     instruction_count(3);
  4809     dst    : S5(write);
  4810     src1   : S3(read);
  4811     mem    : S3(read);
  4812     D0     : S0;        // big decoder only
  4813     DECODE : S1(2);     // any decoder for FPU POP
  4814     FPU    : S4;
  4815     MEM    : S3;        // any mem
  4816 %}
  4818 // Float mem-reg operation
  4819 pipe_class fpu_mem_reg(memory mem, regDPR src) %{
  4820     instruction_count(2);
  4821     src    : S5(read);
  4822     mem    : S3(read);
  4823     DECODE : S0;        // any decoder for FPU PUSH
  4824     D0     : S1;        // big decoder only
  4825     FPU    : S4;
  4826     MEM    : S3;        // any mem
  4827 %}
  4829 pipe_class fpu_mem_reg_reg(memory mem, regDPR src1, regDPR src2) %{
  4830     instruction_count(3);
  4831     src1   : S3(read);
  4832     src2   : S3(read);
  4833     mem    : S3(read);
  4834     DECODE : S0(2);     // any decoder for FPU PUSH
  4835     D0     : S1;        // big decoder only
  4836     FPU    : S4;
  4837     MEM    : S3;        // any mem
  4838 %}
  4840 pipe_class fpu_mem_reg_mem(memory mem, regDPR src1, memory src2) %{
  4841     instruction_count(3);
  4842     src1   : S3(read);
  4843     src2   : S3(read);
  4844     mem    : S4(read);
  4845     DECODE : S0;        // any decoder for FPU PUSH
  4846     D0     : S0(2);     // big decoder only
  4847     FPU    : S4;
  4848     MEM    : S3(2);     // any mem
  4849 %}
  4851 pipe_class fpu_mem_mem(memory dst, memory src1) %{
  4852     instruction_count(2);
  4853     src1   : S3(read);
  4854     dst    : S4(read);
  4855     D0     : S0(2);     // big decoder only
  4856     MEM    : S3(2);     // any mem
  4857 %}
  4859 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
  4860     instruction_count(3);
  4861     src1   : S3(read);
  4862     src2   : S3(read);
  4863     dst    : S4(read);
  4864     D0     : S0(3);     // big decoder only
  4865     FPU    : S4;
  4866     MEM    : S3(3);     // any mem
  4867 %}
  4869 pipe_class fpu_mem_reg_con(memory mem, regDPR src1) %{
  4870     instruction_count(3);
  4871     src1   : S4(read);
  4872     mem    : S4(read);
  4873     DECODE : S0;        // any decoder for FPU PUSH
  4874     D0     : S0(2);     // big decoder only
  4875     FPU    : S4;
  4876     MEM    : S3(2);     // any mem
  4877 %}
  4879 // Float load constant
  4880 pipe_class fpu_reg_con(regDPR dst) %{
  4881     instruction_count(2);
  4882     dst    : S5(write);
  4883     D0     : S0;        // big decoder only for the load
  4884     DECODE : S1;        // any decoder for FPU POP
  4885     FPU    : S4;
  4886     MEM    : S3;        // any mem
  4887 %}
  4889 // Float load constant
  4890 pipe_class fpu_reg_reg_con(regDPR dst, regDPR src) %{
  4891     instruction_count(3);
  4892     dst    : S5(write);
  4893     src    : S3(read);
  4894     D0     : S0;        // big decoder only for the load
  4895     DECODE : S1(2);     // any decoder for FPU POP
  4896     FPU    : S4;
  4897     MEM    : S3;        // any mem
  4898 %}
  4900 // UnConditional branch
  4901 pipe_class pipe_jmp( label labl ) %{
  4902     single_instruction;
  4903     BR   : S3;
  4904 %}
  4906 // Conditional branch
  4907 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
  4908     single_instruction;
  4909     cr    : S1(read);
  4910     BR    : S3;
  4911 %}
  4913 // Allocation idiom
  4914 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
  4915     instruction_count(1); force_serialization;
  4916     fixed_latency(6);
  4917     heap_ptr : S3(read);
  4918     DECODE   : S0(3);
  4919     D0       : S2;
  4920     MEM      : S3;
  4921     ALU      : S3(2);
  4922     dst      : S5(write);
  4923     BR       : S5;
  4924 %}
  4926 // Generic big/slow expanded idiom
  4927 pipe_class pipe_slow(  ) %{
  4928     instruction_count(10); multiple_bundles; force_serialization;
  4929     fixed_latency(100);
  4930     D0  : S0(2);
  4931     MEM : S3(2);
  4932 %}
  4934 // The real do-nothing guy
  4935 pipe_class empty( ) %{
  4936     instruction_count(0);
  4937 %}
  4939 // Define the class for the Nop node
  4940 define %{
  4941    MachNop = empty;
  4942 %}
  4944 %}
  4946 //----------INSTRUCTIONS-------------------------------------------------------
  4947 //
  4948 // match      -- States which machine-independent subtree may be replaced
  4949 //               by this instruction.
  4950 // ins_cost   -- The estimated cost of this instruction is used by instruction
  4951 //               selection to identify a minimum cost tree of machine
  4952 //               instructions that matches a tree of machine-independent
  4953 //               instructions.
  4954 // format     -- A string providing the disassembly for this instruction.
  4955 //               The value of an instruction's operand may be inserted
  4956 //               by referring to it with a '$' prefix.
  4957 // opcode     -- Three instruction opcodes may be provided.  These are referred
  4958 //               to within an encode class as $primary, $secondary, and $tertiary
  4959 //               respectively.  The primary opcode is commonly used to
  4960 //               indicate the type of machine instruction, while secondary
  4961 //               and tertiary are often used for prefix options or addressing
  4962 //               modes.
  4963 // ins_encode -- A list of encode classes with parameters. The encode class
  4964 //               name must have been defined in an 'enc_class' specification
  4965 //               in the encode section of the architecture description.
  4967 //----------BSWAP-Instruction--------------------------------------------------
  4968 instruct bytes_reverse_int(rRegI dst) %{
  4969   match(Set dst (ReverseBytesI dst));
  4971   format %{ "BSWAP  $dst" %}
  4972   opcode(0x0F, 0xC8);
  4973   ins_encode( OpcP, OpcSReg(dst) );
  4974   ins_pipe( ialu_reg );
  4975 %}
  4977 instruct bytes_reverse_long(eRegL dst) %{
  4978   match(Set dst (ReverseBytesL dst));
  4980   format %{ "BSWAP  $dst.lo\n\t"
  4981             "BSWAP  $dst.hi\n\t"
  4982             "XCHG   $dst.lo $dst.hi" %}
  4984   ins_cost(125);
  4985   ins_encode( bswap_long_bytes(dst) );
  4986   ins_pipe( ialu_reg_reg);
  4987 %}
  4989 instruct bytes_reverse_unsigned_short(rRegI dst, eFlagsReg cr) %{
  4990   match(Set dst (ReverseBytesUS dst));
  4991   effect(KILL cr);
  4993   format %{ "BSWAP  $dst\n\t" 
  4994             "SHR    $dst,16\n\t" %}
  4995   ins_encode %{
  4996     __ bswapl($dst$$Register);
  4997     __ shrl($dst$$Register, 16); 
  4998   %}
  4999   ins_pipe( ialu_reg );
  5000 %}
  5002 instruct bytes_reverse_short(rRegI dst, eFlagsReg cr) %{
  5003   match(Set dst (ReverseBytesS dst));
  5004   effect(KILL cr);
  5006   format %{ "BSWAP  $dst\n\t" 
  5007             "SAR    $dst,16\n\t" %}
  5008   ins_encode %{
  5009     __ bswapl($dst$$Register);
  5010     __ sarl($dst$$Register, 16); 
  5011   %}
  5012   ins_pipe( ialu_reg );
  5013 %}
  5016 //---------- Zeros Count Instructions ------------------------------------------
  5018 instruct countLeadingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5019   predicate(UseCountLeadingZerosInstruction);
  5020   match(Set dst (CountLeadingZerosI src));
  5021   effect(KILL cr);
  5023   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
  5024   ins_encode %{
  5025     __ lzcntl($dst$$Register, $src$$Register);
  5026   %}
  5027   ins_pipe(ialu_reg);
  5028 %}
  5030 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, eFlagsReg cr) %{
  5031   predicate(!UseCountLeadingZerosInstruction);
  5032   match(Set dst (CountLeadingZerosI src));
  5033   effect(KILL cr);
  5035   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
  5036             "JNZ    skip\n\t"
  5037             "MOV    $dst, -1\n"
  5038       "skip:\n\t"
  5039             "NEG    $dst\n\t"
  5040             "ADD    $dst, 31" %}
  5041   ins_encode %{
  5042     Register Rdst = $dst$$Register;
  5043     Register Rsrc = $src$$Register;
  5044     Label skip;
  5045     __ bsrl(Rdst, Rsrc);
  5046     __ jccb(Assembler::notZero, skip);
  5047     __ movl(Rdst, -1);
  5048     __ bind(skip);
  5049     __ negl(Rdst);
  5050     __ addl(Rdst, BitsPerInt - 1);
  5051   %}
  5052   ins_pipe(ialu_reg);
  5053 %}
  5055 instruct countLeadingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
  5056   predicate(UseCountLeadingZerosInstruction);
  5057   match(Set dst (CountLeadingZerosL src));
  5058   effect(TEMP dst, KILL cr);
  5060   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
  5061             "JNC    done\n\t"
  5062             "LZCNT  $dst, $src.lo\n\t"
  5063             "ADD    $dst, 32\n"
  5064       "done:" %}
  5065   ins_encode %{
  5066     Register Rdst = $dst$$Register;
  5067     Register Rsrc = $src$$Register;
  5068     Label done;
  5069     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  5070     __ jccb(Assembler::carryClear, done);
  5071     __ lzcntl(Rdst, Rsrc);
  5072     __ addl(Rdst, BitsPerInt);
  5073     __ bind(done);
  5074   %}
  5075   ins_pipe(ialu_reg);
  5076 %}
  5078 instruct countLeadingZerosL_bsr(rRegI dst, eRegL src, eFlagsReg cr) %{
  5079   predicate(!UseCountLeadingZerosInstruction);
  5080   match(Set dst (CountLeadingZerosL src));
  5081   effect(TEMP dst, KILL cr);
  5083   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
  5084             "JZ     msw_is_zero\n\t"
  5085             "ADD    $dst, 32\n\t"
  5086             "JMP    not_zero\n"
  5087       "msw_is_zero:\n\t"
  5088             "BSR    $dst, $src.lo\n\t"
  5089             "JNZ    not_zero\n\t"
  5090             "MOV    $dst, -1\n"
  5091       "not_zero:\n\t"
  5092             "NEG    $dst\n\t"
  5093             "ADD    $dst, 63\n" %}
  5094  ins_encode %{
  5095     Register Rdst = $dst$$Register;
  5096     Register Rsrc = $src$$Register;
  5097     Label msw_is_zero;
  5098     Label not_zero;
  5099     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
  5100     __ jccb(Assembler::zero, msw_is_zero);
  5101     __ addl(Rdst, BitsPerInt);
  5102     __ jmpb(not_zero);
  5103     __ bind(msw_is_zero);
  5104     __ bsrl(Rdst, Rsrc);
  5105     __ jccb(Assembler::notZero, not_zero);
  5106     __ movl(Rdst, -1);
  5107     __ bind(not_zero);
  5108     __ negl(Rdst);
  5109     __ addl(Rdst, BitsPerLong - 1);
  5110   %}
  5111   ins_pipe(ialu_reg);
  5112 %}
  5114 instruct countTrailingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5115   predicate(UseCountTrailingZerosInstruction);
  5116   match(Set dst (CountTrailingZerosI src));
  5117   effect(KILL cr);
  5119   format %{ "TZCNT    $dst, $src\t# count trailing zeros (int)" %}
  5120   ins_encode %{
  5121     __ tzcntl($dst$$Register, $src$$Register);
  5122   %}
  5123   ins_pipe(ialu_reg);
  5124 %}
  5126 instruct countTrailingZerosI_bsf(rRegI dst, rRegI src, eFlagsReg cr) %{
  5127   predicate(!UseCountTrailingZerosInstruction);
  5128   match(Set dst (CountTrailingZerosI src));
  5129   effect(KILL cr);
  5131   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
  5132             "JNZ    done\n\t"
  5133             "MOV    $dst, 32\n"
  5134       "done:" %}
  5135   ins_encode %{
  5136     Register Rdst = $dst$$Register;
  5137     Label done;
  5138     __ bsfl(Rdst, $src$$Register);
  5139     __ jccb(Assembler::notZero, done);
  5140     __ movl(Rdst, BitsPerInt);
  5141     __ bind(done);
  5142   %}
  5143   ins_pipe(ialu_reg);
  5144 %}
  5146 instruct countTrailingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
  5147   predicate(UseCountTrailingZerosInstruction);
  5148   match(Set dst (CountTrailingZerosL src));
  5149   effect(TEMP dst, KILL cr);
  5151   format %{ "TZCNT  $dst, $src.lo\t# count trailing zeros (long) \n\t"
  5152             "JNC    done\n\t"
  5153             "TZCNT  $dst, $src.hi\n\t"
  5154             "ADD    $dst, 32\n"
  5155             "done:" %}
  5156   ins_encode %{
  5157     Register Rdst = $dst$$Register;
  5158     Register Rsrc = $src$$Register;
  5159     Label done;
  5160     __ tzcntl(Rdst, Rsrc);
  5161     __ jccb(Assembler::carryClear, done);
  5162     __ tzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  5163     __ addl(Rdst, BitsPerInt);
  5164     __ bind(done);
  5165   %}
  5166   ins_pipe(ialu_reg);
  5167 %}
  5169 instruct countTrailingZerosL_bsf(rRegI dst, eRegL src, eFlagsReg cr) %{
  5170   predicate(!UseCountTrailingZerosInstruction);
  5171   match(Set dst (CountTrailingZerosL src));
  5172   effect(TEMP dst, KILL cr);
  5174   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
  5175             "JNZ    done\n\t"
  5176             "BSF    $dst, $src.hi\n\t"
  5177             "JNZ    msw_not_zero\n\t"
  5178             "MOV    $dst, 32\n"
  5179       "msw_not_zero:\n\t"
  5180             "ADD    $dst, 32\n"
  5181       "done:" %}
  5182   ins_encode %{
  5183     Register Rdst = $dst$$Register;
  5184     Register Rsrc = $src$$Register;
  5185     Label msw_not_zero;
  5186     Label done;
  5187     __ bsfl(Rdst, Rsrc);
  5188     __ jccb(Assembler::notZero, done);
  5189     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
  5190     __ jccb(Assembler::notZero, msw_not_zero);
  5191     __ movl(Rdst, BitsPerInt);
  5192     __ bind(msw_not_zero);
  5193     __ addl(Rdst, BitsPerInt);
  5194     __ bind(done);
  5195   %}
  5196   ins_pipe(ialu_reg);
  5197 %}
  5200 //---------- Population Count Instructions -------------------------------------
  5202 instruct popCountI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5203   predicate(UsePopCountInstruction);
  5204   match(Set dst (PopCountI src));
  5205   effect(KILL cr);
  5207   format %{ "POPCNT $dst, $src" %}
  5208   ins_encode %{
  5209     __ popcntl($dst$$Register, $src$$Register);
  5210   %}
  5211   ins_pipe(ialu_reg);
  5212 %}
  5214 instruct popCountI_mem(rRegI dst, memory mem, eFlagsReg cr) %{
  5215   predicate(UsePopCountInstruction);
  5216   match(Set dst (PopCountI (LoadI mem)));
  5217   effect(KILL cr);
  5219   format %{ "POPCNT $dst, $mem" %}
  5220   ins_encode %{
  5221     __ popcntl($dst$$Register, $mem$$Address);
  5222   %}
  5223   ins_pipe(ialu_reg);
  5224 %}
  5226 // Note: Long.bitCount(long) returns an int.
  5227 instruct popCountL(rRegI dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  5228   predicate(UsePopCountInstruction);
  5229   match(Set dst (PopCountL src));
  5230   effect(KILL cr, TEMP tmp, TEMP dst);
  5232   format %{ "POPCNT $dst, $src.lo\n\t"
  5233             "POPCNT $tmp, $src.hi\n\t"
  5234             "ADD    $dst, $tmp" %}
  5235   ins_encode %{
  5236     __ popcntl($dst$$Register, $src$$Register);
  5237     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  5238     __ addl($dst$$Register, $tmp$$Register);
  5239   %}
  5240   ins_pipe(ialu_reg);
  5241 %}
  5243 // Note: Long.bitCount(long) returns an int.
  5244 instruct popCountL_mem(rRegI dst, memory mem, rRegI tmp, eFlagsReg cr) %{
  5245   predicate(UsePopCountInstruction);
  5246   match(Set dst (PopCountL (LoadL mem)));
  5247   effect(KILL cr, TEMP tmp, TEMP dst);
  5249   format %{ "POPCNT $dst, $mem\n\t"
  5250             "POPCNT $tmp, $mem+4\n\t"
  5251             "ADD    $dst, $tmp" %}
  5252   ins_encode %{
  5253     //__ popcntl($dst$$Register, $mem$$Address$$first);
  5254     //__ popcntl($tmp$$Register, $mem$$Address$$second);
  5255     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none));
  5256     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none));
  5257     __ addl($dst$$Register, $tmp$$Register);
  5258   %}
  5259   ins_pipe(ialu_reg);
  5260 %}
  5263 //----------Load/Store/Move Instructions---------------------------------------
  5264 //----------Load Instructions--------------------------------------------------
  5265 // Load Byte (8bit signed)
  5266 instruct loadB(xRegI dst, memory mem) %{
  5267   match(Set dst (LoadB mem));
  5269   ins_cost(125);
  5270   format %{ "MOVSX8 $dst,$mem\t# byte" %}
  5272   ins_encode %{
  5273     __ movsbl($dst$$Register, $mem$$Address);
  5274   %}
  5276   ins_pipe(ialu_reg_mem);
  5277 %}
  5279 // Load Byte (8bit signed) into Long Register
  5280 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5281   match(Set dst (ConvI2L (LoadB mem)));
  5282   effect(KILL cr);
  5284   ins_cost(375);
  5285   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
  5286             "MOV    $dst.hi,$dst.lo\n\t"
  5287             "SAR    $dst.hi,7" %}
  5289   ins_encode %{
  5290     __ movsbl($dst$$Register, $mem$$Address);
  5291     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5292     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  5293   %}
  5295   ins_pipe(ialu_reg_mem);
  5296 %}
  5298 // Load Unsigned Byte (8bit UNsigned)
  5299 instruct loadUB(xRegI dst, memory mem) %{
  5300   match(Set dst (LoadUB mem));
  5302   ins_cost(125);
  5303   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
  5305   ins_encode %{
  5306     __ movzbl($dst$$Register, $mem$$Address);
  5307   %}
  5309   ins_pipe(ialu_reg_mem);
  5310 %}
  5312 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  5313 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5314   match(Set dst (ConvI2L (LoadUB mem)));
  5315   effect(KILL cr);
  5317   ins_cost(250);
  5318   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
  5319             "XOR    $dst.hi,$dst.hi" %}
  5321   ins_encode %{
  5322     Register Rdst = $dst$$Register;
  5323     __ movzbl(Rdst, $mem$$Address);
  5324     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5325   %}
  5327   ins_pipe(ialu_reg_mem);
  5328 %}
  5330 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
  5331 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
  5332   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5333   effect(KILL cr);
  5335   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
  5336             "XOR    $dst.hi,$dst.hi\n\t"
  5337             "AND    $dst.lo,$mask" %}
  5338   ins_encode %{
  5339     Register Rdst = $dst$$Register;
  5340     __ movzbl(Rdst, $mem$$Address);
  5341     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5342     __ andl(Rdst, $mask$$constant);
  5343   %}
  5344   ins_pipe(ialu_reg_mem);
  5345 %}
  5347 // Load Short (16bit signed)
  5348 instruct loadS(rRegI dst, memory mem) %{
  5349   match(Set dst (LoadS mem));
  5351   ins_cost(125);
  5352   format %{ "MOVSX  $dst,$mem\t# short" %}
  5354   ins_encode %{
  5355     __ movswl($dst$$Register, $mem$$Address);
  5356   %}
  5358   ins_pipe(ialu_reg_mem);
  5359 %}
  5361 // Load Short (16 bit signed) to Byte (8 bit signed)
  5362 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  5363   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5365   ins_cost(125);
  5366   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
  5367   ins_encode %{
  5368     __ movsbl($dst$$Register, $mem$$Address);
  5369   %}
  5370   ins_pipe(ialu_reg_mem);
  5371 %}
  5373 // Load Short (16bit signed) into Long Register
  5374 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5375   match(Set dst (ConvI2L (LoadS mem)));
  5376   effect(KILL cr);
  5378   ins_cost(375);
  5379   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
  5380             "MOV    $dst.hi,$dst.lo\n\t"
  5381             "SAR    $dst.hi,15" %}
  5383   ins_encode %{
  5384     __ movswl($dst$$Register, $mem$$Address);
  5385     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5386     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  5387   %}
  5389   ins_pipe(ialu_reg_mem);
  5390 %}
  5392 // Load Unsigned Short/Char (16bit unsigned)
  5393 instruct loadUS(rRegI dst, memory mem) %{
  5394   match(Set dst (LoadUS mem));
  5396   ins_cost(125);
  5397   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
  5399   ins_encode %{
  5400     __ movzwl($dst$$Register, $mem$$Address);
  5401   %}
  5403   ins_pipe(ialu_reg_mem);
  5404 %}
  5406 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5407 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  5408   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5410   ins_cost(125);
  5411   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
  5412   ins_encode %{
  5413     __ movsbl($dst$$Register, $mem$$Address);
  5414   %}
  5415   ins_pipe(ialu_reg_mem);
  5416 %}
  5418 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  5419 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5420   match(Set dst (ConvI2L (LoadUS mem)));
  5421   effect(KILL cr);
  5423   ins_cost(250);
  5424   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
  5425             "XOR    $dst.hi,$dst.hi" %}
  5427   ins_encode %{
  5428     __ movzwl($dst$$Register, $mem$$Address);
  5429     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  5430   %}
  5432   ins_pipe(ialu_reg_mem);
  5433 %}
  5435 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
  5436 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  5437   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5438   effect(KILL cr);
  5440   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
  5441             "XOR    $dst.hi,$dst.hi" %}
  5442   ins_encode %{
  5443     Register Rdst = $dst$$Register;
  5444     __ movzbl(Rdst, $mem$$Address);
  5445     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5446   %}
  5447   ins_pipe(ialu_reg_mem);
  5448 %}
  5450 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
  5451 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
  5452   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5453   effect(KILL cr);
  5455   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
  5456             "XOR    $dst.hi,$dst.hi\n\t"
  5457             "AND    $dst.lo,$mask" %}
  5458   ins_encode %{
  5459     Register Rdst = $dst$$Register;
  5460     __ movzwl(Rdst, $mem$$Address);
  5461     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5462     __ andl(Rdst, $mask$$constant);
  5463   %}
  5464   ins_pipe(ialu_reg_mem);
  5465 %}
  5467 // Load Integer
  5468 instruct loadI(rRegI dst, memory mem) %{
  5469   match(Set dst (LoadI mem));
  5471   ins_cost(125);
  5472   format %{ "MOV    $dst,$mem\t# int" %}
  5474   ins_encode %{
  5475     __ movl($dst$$Register, $mem$$Address);
  5476   %}
  5478   ins_pipe(ialu_reg_mem);
  5479 %}
  5481 // Load Integer (32 bit signed) to Byte (8 bit signed)
  5482 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  5483   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5485   ins_cost(125);
  5486   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
  5487   ins_encode %{
  5488     __ movsbl($dst$$Register, $mem$$Address);
  5489   %}
  5490   ins_pipe(ialu_reg_mem);
  5491 %}
  5493 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  5494 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
  5495   match(Set dst (AndI (LoadI mem) mask));
  5497   ins_cost(125);
  5498   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
  5499   ins_encode %{
  5500     __ movzbl($dst$$Register, $mem$$Address);
  5501   %}
  5502   ins_pipe(ialu_reg_mem);
  5503 %}
  5505 // Load Integer (32 bit signed) to Short (16 bit signed)
  5506 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
  5507   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5509   ins_cost(125);
  5510   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
  5511   ins_encode %{
  5512     __ movswl($dst$$Register, $mem$$Address);
  5513   %}
  5514   ins_pipe(ialu_reg_mem);
  5515 %}
  5517 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  5518 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
  5519   match(Set dst (AndI (LoadI mem) mask));
  5521   ins_cost(125);
  5522   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
  5523   ins_encode %{
  5524     __ movzwl($dst$$Register, $mem$$Address);
  5525   %}
  5526   ins_pipe(ialu_reg_mem);
  5527 %}
  5529 // Load Integer into Long Register
  5530 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5531   match(Set dst (ConvI2L (LoadI mem)));
  5532   effect(KILL cr);
  5534   ins_cost(375);
  5535   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
  5536             "MOV    $dst.hi,$dst.lo\n\t"
  5537             "SAR    $dst.hi,31" %}
  5539   ins_encode %{
  5540     __ movl($dst$$Register, $mem$$Address);
  5541     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5542     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  5543   %}
  5545   ins_pipe(ialu_reg_mem);
  5546 %}
  5548 // Load Integer with mask 0xFF into Long Register
  5549 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  5550   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5551   effect(KILL cr);
  5553   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
  5554             "XOR    $dst.hi,$dst.hi" %}
  5555   ins_encode %{
  5556     Register Rdst = $dst$$Register;
  5557     __ movzbl(Rdst, $mem$$Address);
  5558     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5559   %}
  5560   ins_pipe(ialu_reg_mem);
  5561 %}
  5563 // Load Integer with mask 0xFFFF into Long Register
  5564 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
  5565   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5566   effect(KILL cr);
  5568   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
  5569             "XOR    $dst.hi,$dst.hi" %}
  5570   ins_encode %{
  5571     Register Rdst = $dst$$Register;
  5572     __ movzwl(Rdst, $mem$$Address);
  5573     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5574   %}
  5575   ins_pipe(ialu_reg_mem);
  5576 %}
  5578 // Load Integer with 31-bit mask into Long Register
  5579 instruct loadI2L_immU31(eRegL dst, memory mem, immU31 mask, eFlagsReg cr) %{
  5580   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5581   effect(KILL cr);
  5583   format %{ "MOV    $dst.lo,$mem\t# int & 31-bit mask -> long\n\t"
  5584             "XOR    $dst.hi,$dst.hi\n\t"
  5585             "AND    $dst.lo,$mask" %}
  5586   ins_encode %{
  5587     Register Rdst = $dst$$Register;
  5588     __ movl(Rdst, $mem$$Address);
  5589     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5590     __ andl(Rdst, $mask$$constant);
  5591   %}
  5592   ins_pipe(ialu_reg_mem);
  5593 %}
  5595 // Load Unsigned Integer into Long Register
  5596 instruct loadUI2L(eRegL dst, memory mem, immL_32bits mask, eFlagsReg cr) %{
  5597   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  5598   effect(KILL cr);
  5600   ins_cost(250);
  5601   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
  5602             "XOR    $dst.hi,$dst.hi" %}
  5604   ins_encode %{
  5605     __ movl($dst$$Register, $mem$$Address);
  5606     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  5607   %}
  5609   ins_pipe(ialu_reg_mem);
  5610 %}
  5612 // Load Long.  Cannot clobber address while loading, so restrict address
  5613 // register to ESI
  5614 instruct loadL(eRegL dst, load_long_memory mem) %{
  5615   predicate(!((LoadLNode*)n)->require_atomic_access());
  5616   match(Set dst (LoadL mem));
  5618   ins_cost(250);
  5619   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
  5620             "MOV    $dst.hi,$mem+4" %}
  5622   ins_encode %{
  5623     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none);
  5624     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none);
  5625     __ movl($dst$$Register, Amemlo);
  5626     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  5627   %}
  5629   ins_pipe(ialu_reg_long_mem);
  5630 %}
  5632 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
  5633 // then store it down to the stack and reload on the int
  5634 // side.
  5635 instruct loadL_volatile(stackSlotL dst, memory mem) %{
  5636   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  5637   match(Set dst (LoadL mem));
  5639   ins_cost(200);
  5640   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  5641             "FISTp  $dst" %}
  5642   ins_encode(enc_loadL_volatile(mem,dst));
  5643   ins_pipe( fpu_reg_mem );
  5644 %}
  5646 instruct loadLX_volatile(stackSlotL dst, memory mem, regD tmp) %{
  5647   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  5648   match(Set dst (LoadL mem));
  5649   effect(TEMP tmp);
  5650   ins_cost(180);
  5651   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  5652             "MOVSD  $dst,$tmp" %}
  5653   ins_encode %{
  5654     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  5655     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
  5656   %}
  5657   ins_pipe( pipe_slow );
  5658 %}
  5660 instruct loadLX_reg_volatile(eRegL dst, memory mem, regD tmp) %{
  5661   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  5662   match(Set dst (LoadL mem));
  5663   effect(TEMP tmp);
  5664   ins_cost(160);
  5665   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  5666             "MOVD   $dst.lo,$tmp\n\t"
  5667             "PSRLQ  $tmp,32\n\t"
  5668             "MOVD   $dst.hi,$tmp" %}
  5669   ins_encode %{
  5670     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  5671     __ movdl($dst$$Register, $tmp$$XMMRegister);
  5672     __ psrlq($tmp$$XMMRegister, 32);
  5673     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
  5674   %}
  5675   ins_pipe( pipe_slow );
  5676 %}
  5678 // Load Range
  5679 instruct loadRange(rRegI dst, memory mem) %{
  5680   match(Set dst (LoadRange mem));
  5682   ins_cost(125);
  5683   format %{ "MOV    $dst,$mem" %}
  5684   opcode(0x8B);
  5685   ins_encode( OpcP, RegMem(dst,mem));
  5686   ins_pipe( ialu_reg_mem );
  5687 %}
  5690 // Load Pointer
  5691 instruct loadP(eRegP dst, memory mem) %{
  5692   match(Set dst (LoadP mem));
  5694   ins_cost(125);
  5695   format %{ "MOV    $dst,$mem" %}
  5696   opcode(0x8B);
  5697   ins_encode( OpcP, RegMem(dst,mem));
  5698   ins_pipe( ialu_reg_mem );
  5699 %}
  5701 // Load Klass Pointer
  5702 instruct loadKlass(eRegP dst, memory mem) %{
  5703   match(Set dst (LoadKlass mem));
  5705   ins_cost(125);
  5706   format %{ "MOV    $dst,$mem" %}
  5707   opcode(0x8B);
  5708   ins_encode( OpcP, RegMem(dst,mem));
  5709   ins_pipe( ialu_reg_mem );
  5710 %}
  5712 // Load Double
  5713 instruct loadDPR(regDPR dst, memory mem) %{
  5714   predicate(UseSSE<=1);
  5715   match(Set dst (LoadD mem));
  5717   ins_cost(150);
  5718   format %{ "FLD_D  ST,$mem\n\t"
  5719             "FSTP   $dst" %}
  5720   opcode(0xDD);               /* DD /0 */
  5721   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  5722               Pop_Reg_DPR(dst) );
  5723   ins_pipe( fpu_reg_mem );
  5724 %}
  5726 // Load Double to XMM
  5727 instruct loadD(regD dst, memory mem) %{
  5728   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  5729   match(Set dst (LoadD mem));
  5730   ins_cost(145);
  5731   format %{ "MOVSD  $dst,$mem" %}
  5732   ins_encode %{
  5733     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  5734   %}
  5735   ins_pipe( pipe_slow );
  5736 %}
  5738 instruct loadD_partial(regD dst, memory mem) %{
  5739   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  5740   match(Set dst (LoadD mem));
  5741   ins_cost(145);
  5742   format %{ "MOVLPD $dst,$mem" %}
  5743   ins_encode %{
  5744     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  5745   %}
  5746   ins_pipe( pipe_slow );
  5747 %}
  5749 // Load to XMM register (single-precision floating point)
  5750 // MOVSS instruction
  5751 instruct loadF(regF dst, memory mem) %{
  5752   predicate(UseSSE>=1);
  5753   match(Set dst (LoadF mem));
  5754   ins_cost(145);
  5755   format %{ "MOVSS  $dst,$mem" %}
  5756   ins_encode %{
  5757     __ movflt ($dst$$XMMRegister, $mem$$Address);
  5758   %}
  5759   ins_pipe( pipe_slow );
  5760 %}
  5762 // Load Float
  5763 instruct loadFPR(regFPR dst, memory mem) %{
  5764   predicate(UseSSE==0);
  5765   match(Set dst (LoadF mem));
  5767   ins_cost(150);
  5768   format %{ "FLD_S  ST,$mem\n\t"
  5769             "FSTP   $dst" %}
  5770   opcode(0xD9);               /* D9 /0 */
  5771   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  5772               Pop_Reg_FPR(dst) );
  5773   ins_pipe( fpu_reg_mem );
  5774 %}
  5776 // Load Effective Address
  5777 instruct leaP8(eRegP dst, indOffset8 mem) %{
  5778   match(Set dst mem);
  5780   ins_cost(110);
  5781   format %{ "LEA    $dst,$mem" %}
  5782   opcode(0x8D);
  5783   ins_encode( OpcP, RegMem(dst,mem));
  5784   ins_pipe( ialu_reg_reg_fat );
  5785 %}
  5787 instruct leaP32(eRegP dst, indOffset32 mem) %{
  5788   match(Set dst mem);
  5790   ins_cost(110);
  5791   format %{ "LEA    $dst,$mem" %}
  5792   opcode(0x8D);
  5793   ins_encode( OpcP, RegMem(dst,mem));
  5794   ins_pipe( ialu_reg_reg_fat );
  5795 %}
  5797 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  5798   match(Set dst mem);
  5800   ins_cost(110);
  5801   format %{ "LEA    $dst,$mem" %}
  5802   opcode(0x8D);
  5803   ins_encode( OpcP, RegMem(dst,mem));
  5804   ins_pipe( ialu_reg_reg_fat );
  5805 %}
  5807 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  5808   match(Set dst mem);
  5810   ins_cost(110);
  5811   format %{ "LEA    $dst,$mem" %}
  5812   opcode(0x8D);
  5813   ins_encode( OpcP, RegMem(dst,mem));
  5814   ins_pipe( ialu_reg_reg_fat );
  5815 %}
  5817 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  5818   match(Set dst mem);
  5820   ins_cost(110);
  5821   format %{ "LEA    $dst,$mem" %}
  5822   opcode(0x8D);
  5823   ins_encode( OpcP, RegMem(dst,mem));
  5824   ins_pipe( ialu_reg_reg_fat );
  5825 %}
  5827 // Load Constant
  5828 instruct loadConI(rRegI dst, immI src) %{
  5829   match(Set dst src);
  5831   format %{ "MOV    $dst,$src" %}
  5832   ins_encode( LdImmI(dst, src) );
  5833   ins_pipe( ialu_reg_fat );
  5834 %}
  5836 // Load Constant zero
  5837 instruct loadConI0(rRegI dst, immI0 src, eFlagsReg cr) %{
  5838   match(Set dst src);
  5839   effect(KILL cr);
  5841   ins_cost(50);
  5842   format %{ "XOR    $dst,$dst" %}
  5843   opcode(0x33);  /* + rd */
  5844   ins_encode( OpcP, RegReg( dst, dst ) );
  5845   ins_pipe( ialu_reg );
  5846 %}
  5848 instruct loadConP(eRegP dst, immP src) %{
  5849   match(Set dst src);
  5851   format %{ "MOV    $dst,$src" %}
  5852   opcode(0xB8);  /* + rd */
  5853   ins_encode( LdImmP(dst, src) );
  5854   ins_pipe( ialu_reg_fat );
  5855 %}
  5857 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  5858   match(Set dst src);
  5859   effect(KILL cr);
  5860   ins_cost(200);
  5861   format %{ "MOV    $dst.lo,$src.lo\n\t"
  5862             "MOV    $dst.hi,$src.hi" %}
  5863   opcode(0xB8);
  5864   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  5865   ins_pipe( ialu_reg_long_fat );
  5866 %}
  5868 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  5869   match(Set dst src);
  5870   effect(KILL cr);
  5871   ins_cost(150);
  5872   format %{ "XOR    $dst.lo,$dst.lo\n\t"
  5873             "XOR    $dst.hi,$dst.hi" %}
  5874   opcode(0x33,0x33);
  5875   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  5876   ins_pipe( ialu_reg_long );
  5877 %}
  5879 // The instruction usage is guarded by predicate in operand immFPR().
  5880 instruct loadConFPR(regFPR dst, immFPR con) %{
  5881   match(Set dst con);
  5882   ins_cost(125);
  5883   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
  5884             "FSTP   $dst" %}
  5885   ins_encode %{
  5886     __ fld_s($constantaddress($con));
  5887     __ fstp_d($dst$$reg);
  5888   %}
  5889   ins_pipe(fpu_reg_con);
  5890 %}
  5892 // The instruction usage is guarded by predicate in operand immFPR0().
  5893 instruct loadConFPR0(regFPR dst, immFPR0 con) %{
  5894   match(Set dst con);
  5895   ins_cost(125);
  5896   format %{ "FLDZ   ST\n\t"
  5897             "FSTP   $dst" %}
  5898   ins_encode %{
  5899     __ fldz();
  5900     __ fstp_d($dst$$reg);
  5901   %}
  5902   ins_pipe(fpu_reg_con);
  5903 %}
  5905 // The instruction usage is guarded by predicate in operand immFPR1().
  5906 instruct loadConFPR1(regFPR dst, immFPR1 con) %{
  5907   match(Set dst con);
  5908   ins_cost(125);
  5909   format %{ "FLD1   ST\n\t"
  5910             "FSTP   $dst" %}
  5911   ins_encode %{
  5912     __ fld1();
  5913     __ fstp_d($dst$$reg);
  5914   %}
  5915   ins_pipe(fpu_reg_con);
  5916 %}
  5918 // The instruction usage is guarded by predicate in operand immF().
  5919 instruct loadConF(regF dst, immF con) %{
  5920   match(Set dst con);
  5921   ins_cost(125);
  5922   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
  5923   ins_encode %{
  5924     __ movflt($dst$$XMMRegister, $constantaddress($con));
  5925   %}
  5926   ins_pipe(pipe_slow);
  5927 %}
  5929 // The instruction usage is guarded by predicate in operand immF0().
  5930 instruct loadConF0(regF dst, immF0 src) %{
  5931   match(Set dst src);
  5932   ins_cost(100);
  5933   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  5934   ins_encode %{
  5935     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
  5936   %}
  5937   ins_pipe(pipe_slow);
  5938 %}
  5940 // The instruction usage is guarded by predicate in operand immDPR().
  5941 instruct loadConDPR(regDPR dst, immDPR con) %{
  5942   match(Set dst con);
  5943   ins_cost(125);
  5945   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
  5946             "FSTP   $dst" %}
  5947   ins_encode %{
  5948     __ fld_d($constantaddress($con));
  5949     __ fstp_d($dst$$reg);
  5950   %}
  5951   ins_pipe(fpu_reg_con);
  5952 %}
  5954 // The instruction usage is guarded by predicate in operand immDPR0().
  5955 instruct loadConDPR0(regDPR dst, immDPR0 con) %{
  5956   match(Set dst con);
  5957   ins_cost(125);
  5959   format %{ "FLDZ   ST\n\t"
  5960             "FSTP   $dst" %}
  5961   ins_encode %{
  5962     __ fldz();
  5963     __ fstp_d($dst$$reg);
  5964   %}
  5965   ins_pipe(fpu_reg_con);
  5966 %}
  5968 // The instruction usage is guarded by predicate in operand immDPR1().
  5969 instruct loadConDPR1(regDPR dst, immDPR1 con) %{
  5970   match(Set dst con);
  5971   ins_cost(125);
  5973   format %{ "FLD1   ST\n\t"
  5974             "FSTP   $dst" %}
  5975   ins_encode %{
  5976     __ fld1();
  5977     __ fstp_d($dst$$reg);
  5978   %}
  5979   ins_pipe(fpu_reg_con);
  5980 %}
  5982 // The instruction usage is guarded by predicate in operand immD().
  5983 instruct loadConD(regD dst, immD con) %{
  5984   match(Set dst con);
  5985   ins_cost(125);
  5986   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
  5987   ins_encode %{
  5988     __ movdbl($dst$$XMMRegister, $constantaddress($con));
  5989   %}
  5990   ins_pipe(pipe_slow);
  5991 %}
  5993 // The instruction usage is guarded by predicate in operand immD0().
  5994 instruct loadConD0(regD dst, immD0 src) %{
  5995   match(Set dst src);
  5996   ins_cost(100);
  5997   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  5998   ins_encode %{
  5999     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
  6000   %}
  6001   ins_pipe( pipe_slow );
  6002 %}
  6004 // Load Stack Slot
  6005 instruct loadSSI(rRegI dst, stackSlotI src) %{
  6006   match(Set dst src);
  6007   ins_cost(125);
  6009   format %{ "MOV    $dst,$src" %}
  6010   opcode(0x8B);
  6011   ins_encode( OpcP, RegMem(dst,src));
  6012   ins_pipe( ialu_reg_mem );
  6013 %}
  6015 instruct loadSSL(eRegL dst, stackSlotL src) %{
  6016   match(Set dst src);
  6018   ins_cost(200);
  6019   format %{ "MOV    $dst,$src.lo\n\t"
  6020             "MOV    $dst+4,$src.hi" %}
  6021   opcode(0x8B, 0x8B);
  6022   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  6023   ins_pipe( ialu_mem_long_reg );
  6024 %}
  6026 // Load Stack Slot
  6027 instruct loadSSP(eRegP dst, stackSlotP src) %{
  6028   match(Set dst src);
  6029   ins_cost(125);
  6031   format %{ "MOV    $dst,$src" %}
  6032   opcode(0x8B);
  6033   ins_encode( OpcP, RegMem(dst,src));
  6034   ins_pipe( ialu_reg_mem );
  6035 %}
  6037 // Load Stack Slot
  6038 instruct loadSSF(regFPR dst, stackSlotF src) %{
  6039   match(Set dst src);
  6040   ins_cost(125);
  6042   format %{ "FLD_S  $src\n\t"
  6043             "FSTP   $dst" %}
  6044   opcode(0xD9);               /* D9 /0, FLD m32real */
  6045   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6046               Pop_Reg_FPR(dst) );
  6047   ins_pipe( fpu_reg_mem );
  6048 %}
  6050 // Load Stack Slot
  6051 instruct loadSSD(regDPR dst, stackSlotD src) %{
  6052   match(Set dst src);
  6053   ins_cost(125);
  6055   format %{ "FLD_D  $src\n\t"
  6056             "FSTP   $dst" %}
  6057   opcode(0xDD);               /* DD /0, FLD m64real */
  6058   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6059               Pop_Reg_DPR(dst) );
  6060   ins_pipe( fpu_reg_mem );
  6061 %}
  6063 // Prefetch instructions.
  6064 // Must be safe to execute with invalid address (cannot fault).
  6066 instruct prefetchr0( memory mem ) %{
  6067   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6068   match(PrefetchRead mem);
  6069   ins_cost(0);
  6070   size(0);
  6071   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  6072   ins_encode();
  6073   ins_pipe(empty);
  6074 %}
  6076 instruct prefetchr( memory mem ) %{
  6077   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
  6078   match(PrefetchRead mem);
  6079   ins_cost(100);
  6081   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  6082   ins_encode %{
  6083     __ prefetchr($mem$$Address);
  6084   %}
  6085   ins_pipe(ialu_mem);
  6086 %}
  6088 instruct prefetchrNTA( memory mem ) %{
  6089   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  6090   match(PrefetchRead mem);
  6091   ins_cost(100);
  6093   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  6094   ins_encode %{
  6095     __ prefetchnta($mem$$Address);
  6096   %}
  6097   ins_pipe(ialu_mem);
  6098 %}
  6100 instruct prefetchrT0( memory mem ) %{
  6101   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  6102   match(PrefetchRead mem);
  6103   ins_cost(100);
  6105   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  6106   ins_encode %{
  6107     __ prefetcht0($mem$$Address);
  6108   %}
  6109   ins_pipe(ialu_mem);
  6110 %}
  6112 instruct prefetchrT2( memory mem ) %{
  6113   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  6114   match(PrefetchRead mem);
  6115   ins_cost(100);
  6117   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  6118   ins_encode %{
  6119     __ prefetcht2($mem$$Address);
  6120   %}
  6121   ins_pipe(ialu_mem);
  6122 %}
  6124 instruct prefetchw0( memory mem ) %{
  6125   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6126   match(PrefetchWrite mem);
  6127   ins_cost(0);
  6128   size(0);
  6129   format %{ "Prefetch (non-SSE is empty encoding)" %}
  6130   ins_encode();
  6131   ins_pipe(empty);
  6132 %}
  6134 instruct prefetchw( memory mem ) %{
  6135   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch());
  6136   match( PrefetchWrite mem );
  6137   ins_cost(100);
  6139   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  6140   ins_encode %{
  6141     __ prefetchw($mem$$Address);
  6142   %}
  6143   ins_pipe(ialu_mem);
  6144 %}
  6146 instruct prefetchwNTA( memory mem ) %{
  6147   predicate(UseSSE>=1);
  6148   match(PrefetchWrite mem);
  6149   ins_cost(100);
  6151   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  6152   ins_encode %{
  6153     __ prefetchnta($mem$$Address);
  6154   %}
  6155   ins_pipe(ialu_mem);
  6156 %}
  6158 // Prefetch instructions for allocation.
  6160 instruct prefetchAlloc0( memory mem ) %{
  6161   predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
  6162   match(PrefetchAllocation mem);
  6163   ins_cost(0);
  6164   size(0);
  6165   format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
  6166   ins_encode();
  6167   ins_pipe(empty);
  6168 %}
  6170 instruct prefetchAlloc( memory mem ) %{
  6171   predicate(AllocatePrefetchInstr==3);
  6172   match( PrefetchAllocation mem );
  6173   ins_cost(100);
  6175   format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
  6176   ins_encode %{
  6177     __ prefetchw($mem$$Address);
  6178   %}
  6179   ins_pipe(ialu_mem);
  6180 %}
  6182 instruct prefetchAllocNTA( memory mem ) %{
  6183   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  6184   match(PrefetchAllocation mem);
  6185   ins_cost(100);
  6187   format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
  6188   ins_encode %{
  6189     __ prefetchnta($mem$$Address);
  6190   %}
  6191   ins_pipe(ialu_mem);
  6192 %}
  6194 instruct prefetchAllocT0( memory mem ) %{
  6195   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  6196   match(PrefetchAllocation mem);
  6197   ins_cost(100);
  6199   format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
  6200   ins_encode %{
  6201     __ prefetcht0($mem$$Address);
  6202   %}
  6203   ins_pipe(ialu_mem);
  6204 %}
  6206 instruct prefetchAllocT2( memory mem ) %{
  6207   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  6208   match(PrefetchAllocation mem);
  6209   ins_cost(100);
  6211   format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
  6212   ins_encode %{
  6213     __ prefetcht2($mem$$Address);
  6214   %}
  6215   ins_pipe(ialu_mem);
  6216 %}
  6218 //----------Store Instructions-------------------------------------------------
  6220 // Store Byte
  6221 instruct storeB(memory mem, xRegI src) %{
  6222   match(Set mem (StoreB mem src));
  6224   ins_cost(125);
  6225   format %{ "MOV8   $mem,$src" %}
  6226   opcode(0x88);
  6227   ins_encode( OpcP, RegMem( src, mem ) );
  6228   ins_pipe( ialu_mem_reg );
  6229 %}
  6231 // Store Char/Short
  6232 instruct storeC(memory mem, rRegI src) %{
  6233   match(Set mem (StoreC mem src));
  6235   ins_cost(125);
  6236   format %{ "MOV16  $mem,$src" %}
  6237   opcode(0x89, 0x66);
  6238   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  6239   ins_pipe( ialu_mem_reg );
  6240 %}
  6242 // Store Integer
  6243 instruct storeI(memory mem, rRegI src) %{
  6244   match(Set mem (StoreI mem src));
  6246   ins_cost(125);
  6247   format %{ "MOV    $mem,$src" %}
  6248   opcode(0x89);
  6249   ins_encode( OpcP, RegMem( src, mem ) );
  6250   ins_pipe( ialu_mem_reg );
  6251 %}
  6253 // Store Long
  6254 instruct storeL(long_memory mem, eRegL src) %{
  6255   predicate(!((StoreLNode*)n)->require_atomic_access());
  6256   match(Set mem (StoreL mem src));
  6258   ins_cost(200);
  6259   format %{ "MOV    $mem,$src.lo\n\t"
  6260             "MOV    $mem+4,$src.hi" %}
  6261   opcode(0x89, 0x89);
  6262   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  6263   ins_pipe( ialu_mem_long_reg );
  6264 %}
  6266 // Store Long to Integer
  6267 instruct storeL2I(memory mem, eRegL src) %{
  6268   match(Set mem (StoreI mem (ConvL2I src)));
  6270   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
  6271   ins_encode %{
  6272     __ movl($mem$$Address, $src$$Register);
  6273   %}
  6274   ins_pipe(ialu_mem_reg);
  6275 %}
  6277 // Volatile Store Long.  Must be atomic, so move it into
  6278 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  6279 // target address before the store (for null-ptr checks)
  6280 // so the memory operand is used twice in the encoding.
  6281 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  6282   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  6283   match(Set mem (StoreL mem src));
  6284   effect( KILL cr );
  6285   ins_cost(400);
  6286   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6287             "FILD   $src\n\t"
  6288             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  6289   opcode(0x3B);
  6290   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  6291   ins_pipe( fpu_reg_mem );
  6292 %}
  6294 instruct storeLX_volatile(memory mem, stackSlotL src, regD tmp, eFlagsReg cr) %{
  6295   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  6296   match(Set mem (StoreL mem src));
  6297   effect( TEMP tmp, KILL cr );
  6298   ins_cost(380);
  6299   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6300             "MOVSD  $tmp,$src\n\t"
  6301             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  6302   ins_encode %{
  6303     __ cmpl(rax, $mem$$Address);
  6304     __ movdbl($tmp$$XMMRegister, Address(rsp, $src$$disp));
  6305     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  6306   %}
  6307   ins_pipe( pipe_slow );
  6308 %}
  6310 instruct storeLX_reg_volatile(memory mem, eRegL src, regD tmp2, regD tmp, eFlagsReg cr) %{
  6311   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  6312   match(Set mem (StoreL mem src));
  6313   effect( TEMP tmp2 , TEMP tmp, KILL cr );
  6314   ins_cost(360);
  6315   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6316             "MOVD   $tmp,$src.lo\n\t"
  6317             "MOVD   $tmp2,$src.hi\n\t"
  6318             "PUNPCKLDQ $tmp,$tmp2\n\t"
  6319             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  6320   ins_encode %{
  6321     __ cmpl(rax, $mem$$Address);
  6322     __ movdl($tmp$$XMMRegister, $src$$Register);
  6323     __ movdl($tmp2$$XMMRegister, HIGH_FROM_LOW($src$$Register));
  6324     __ punpckldq($tmp$$XMMRegister, $tmp2$$XMMRegister);
  6325     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  6326   %}
  6327   ins_pipe( pipe_slow );
  6328 %}
  6330 // Store Pointer; for storing unknown oops and raw pointers
  6331 instruct storeP(memory mem, anyRegP src) %{
  6332   match(Set mem (StoreP mem src));
  6334   ins_cost(125);
  6335   format %{ "MOV    $mem,$src" %}
  6336   opcode(0x89);
  6337   ins_encode( OpcP, RegMem( src, mem ) );
  6338   ins_pipe( ialu_mem_reg );
  6339 %}
  6341 // Store Integer Immediate
  6342 instruct storeImmI(memory mem, immI src) %{
  6343   match(Set mem (StoreI mem src));
  6345   ins_cost(150);
  6346   format %{ "MOV    $mem,$src" %}
  6347   opcode(0xC7);               /* C7 /0 */
  6348   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  6349   ins_pipe( ialu_mem_imm );
  6350 %}
  6352 // Store Short/Char Immediate
  6353 instruct storeImmI16(memory mem, immI16 src) %{
  6354   predicate(UseStoreImmI16);
  6355   match(Set mem (StoreC mem src));
  6357   ins_cost(150);
  6358   format %{ "MOV16  $mem,$src" %}
  6359   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  6360   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  6361   ins_pipe( ialu_mem_imm );
  6362 %}
  6364 // Store Pointer Immediate; null pointers or constant oops that do not
  6365 // need card-mark barriers.
  6366 instruct storeImmP(memory mem, immP src) %{
  6367   match(Set mem (StoreP mem src));
  6369   ins_cost(150);
  6370   format %{ "MOV    $mem,$src" %}
  6371   opcode(0xC7);               /* C7 /0 */
  6372   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  6373   ins_pipe( ialu_mem_imm );
  6374 %}
  6376 // Store Byte Immediate
  6377 instruct storeImmB(memory mem, immI8 src) %{
  6378   match(Set mem (StoreB mem src));
  6380   ins_cost(150);
  6381   format %{ "MOV8   $mem,$src" %}
  6382   opcode(0xC6);               /* C6 /0 */
  6383   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  6384   ins_pipe( ialu_mem_imm );
  6385 %}
  6387 // Store CMS card-mark Immediate
  6388 instruct storeImmCM(memory mem, immI8 src) %{
  6389   match(Set mem (StoreCM mem src));
  6391   ins_cost(150);
  6392   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  6393   opcode(0xC6);               /* C6 /0 */
  6394   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  6395   ins_pipe( ialu_mem_imm );
  6396 %}
  6398 // Store Double
  6399 instruct storeDPR( memory mem, regDPR1 src) %{
  6400   predicate(UseSSE<=1);
  6401   match(Set mem (StoreD mem src));
  6403   ins_cost(100);
  6404   format %{ "FST_D  $mem,$src" %}
  6405   opcode(0xDD);       /* DD /2 */
  6406   ins_encode( enc_FPR_store(mem,src) );
  6407   ins_pipe( fpu_mem_reg );
  6408 %}
  6410 // Store double does rounding on x86
  6411 instruct storeDPR_rounded( memory mem, regDPR1 src) %{
  6412   predicate(UseSSE<=1);
  6413   match(Set mem (StoreD mem (RoundDouble src)));
  6415   ins_cost(100);
  6416   format %{ "FST_D  $mem,$src\t# round" %}
  6417   opcode(0xDD);       /* DD /2 */
  6418   ins_encode( enc_FPR_store(mem,src) );
  6419   ins_pipe( fpu_mem_reg );
  6420 %}
  6422 // Store XMM register to memory (double-precision floating points)
  6423 // MOVSD instruction
  6424 instruct storeD(memory mem, regD src) %{
  6425   predicate(UseSSE>=2);
  6426   match(Set mem (StoreD mem src));
  6427   ins_cost(95);
  6428   format %{ "MOVSD  $mem,$src" %}
  6429   ins_encode %{
  6430     __ movdbl($mem$$Address, $src$$XMMRegister);
  6431   %}
  6432   ins_pipe( pipe_slow );
  6433 %}
  6435 // Store XMM register to memory (single-precision floating point)
  6436 // MOVSS instruction
  6437 instruct storeF(memory mem, regF src) %{
  6438   predicate(UseSSE>=1);
  6439   match(Set mem (StoreF mem src));
  6440   ins_cost(95);
  6441   format %{ "MOVSS  $mem,$src" %}
  6442   ins_encode %{
  6443     __ movflt($mem$$Address, $src$$XMMRegister);
  6444   %}
  6445   ins_pipe( pipe_slow );
  6446 %}
  6448 // Store Float
  6449 instruct storeFPR( memory mem, regFPR1 src) %{
  6450   predicate(UseSSE==0);
  6451   match(Set mem (StoreF mem src));
  6453   ins_cost(100);
  6454   format %{ "FST_S  $mem,$src" %}
  6455   opcode(0xD9);       /* D9 /2 */
  6456   ins_encode( enc_FPR_store(mem,src) );
  6457   ins_pipe( fpu_mem_reg );
  6458 %}
  6460 // Store Float does rounding on x86
  6461 instruct storeFPR_rounded( memory mem, regFPR1 src) %{
  6462   predicate(UseSSE==0);
  6463   match(Set mem (StoreF mem (RoundFloat src)));
  6465   ins_cost(100);
  6466   format %{ "FST_S  $mem,$src\t# round" %}
  6467   opcode(0xD9);       /* D9 /2 */
  6468   ins_encode( enc_FPR_store(mem,src) );
  6469   ins_pipe( fpu_mem_reg );
  6470 %}
  6472 // Store Float does rounding on x86
  6473 instruct storeFPR_Drounded( memory mem, regDPR1 src) %{
  6474   predicate(UseSSE<=1);
  6475   match(Set mem (StoreF mem (ConvD2F src)));
  6477   ins_cost(100);
  6478   format %{ "FST_S  $mem,$src\t# D-round" %}
  6479   opcode(0xD9);       /* D9 /2 */
  6480   ins_encode( enc_FPR_store(mem,src) );
  6481   ins_pipe( fpu_mem_reg );
  6482 %}
  6484 // Store immediate Float value (it is faster than store from FPU register)
  6485 // The instruction usage is guarded by predicate in operand immFPR().
  6486 instruct storeFPR_imm( memory mem, immFPR src) %{
  6487   match(Set mem (StoreF mem src));
  6489   ins_cost(50);
  6490   format %{ "MOV    $mem,$src\t# store float" %}
  6491   opcode(0xC7);               /* C7 /0 */
  6492   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32FPR_as_bits( src ));
  6493   ins_pipe( ialu_mem_imm );
  6494 %}
  6496 // Store immediate Float value (it is faster than store from XMM register)
  6497 // The instruction usage is guarded by predicate in operand immF().
  6498 instruct storeF_imm( memory mem, immF src) %{
  6499   match(Set mem (StoreF mem src));
  6501   ins_cost(50);
  6502   format %{ "MOV    $mem,$src\t# store float" %}
  6503   opcode(0xC7);               /* C7 /0 */
  6504   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  6505   ins_pipe( ialu_mem_imm );
  6506 %}
  6508 // Store Integer to stack slot
  6509 instruct storeSSI(stackSlotI dst, rRegI src) %{
  6510   match(Set dst src);
  6512   ins_cost(100);
  6513   format %{ "MOV    $dst,$src" %}
  6514   opcode(0x89);
  6515   ins_encode( OpcPRegSS( dst, src ) );
  6516   ins_pipe( ialu_mem_reg );
  6517 %}
  6519 // Store Integer to stack slot
  6520 instruct storeSSP(stackSlotP dst, eRegP src) %{
  6521   match(Set dst src);
  6523   ins_cost(100);
  6524   format %{ "MOV    $dst,$src" %}
  6525   opcode(0x89);
  6526   ins_encode( OpcPRegSS( dst, src ) );
  6527   ins_pipe( ialu_mem_reg );
  6528 %}
  6530 // Store Long to stack slot
  6531 instruct storeSSL(stackSlotL dst, eRegL src) %{
  6532   match(Set dst src);
  6534   ins_cost(200);
  6535   format %{ "MOV    $dst,$src.lo\n\t"
  6536             "MOV    $dst+4,$src.hi" %}
  6537   opcode(0x89, 0x89);
  6538   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  6539   ins_pipe( ialu_mem_long_reg );
  6540 %}
  6542 //----------MemBar Instructions-----------------------------------------------
  6543 // Memory barrier flavors
  6545 instruct membar_acquire() %{
  6546   match(MemBarAcquire);
  6547   match(LoadFence);
  6548   ins_cost(400);
  6550   size(0);
  6551   format %{ "MEMBAR-acquire ! (empty encoding)" %}
  6552   ins_encode();
  6553   ins_pipe(empty);
  6554 %}
  6556 instruct membar_acquire_lock() %{
  6557   match(MemBarAcquireLock);
  6558   ins_cost(0);
  6560   size(0);
  6561   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  6562   ins_encode( );
  6563   ins_pipe(empty);
  6564 %}
  6566 instruct membar_release() %{
  6567   match(MemBarRelease);
  6568   match(StoreFence);
  6569   ins_cost(400);
  6571   size(0);
  6572   format %{ "MEMBAR-release ! (empty encoding)" %}
  6573   ins_encode( );
  6574   ins_pipe(empty);
  6575 %}
  6577 instruct membar_release_lock() %{
  6578   match(MemBarReleaseLock);
  6579   ins_cost(0);
  6581   size(0);
  6582   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  6583   ins_encode( );
  6584   ins_pipe(empty);
  6585 %}
  6587 instruct membar_volatile(eFlagsReg cr) %{
  6588   match(MemBarVolatile);
  6589   effect(KILL cr);
  6590   ins_cost(400);
  6592   format %{ 
  6593     $$template
  6594     if (os::is_MP()) {
  6595       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
  6596     } else {
  6597       $$emit$$"MEMBAR-volatile ! (empty encoding)"
  6599   %}
  6600   ins_encode %{
  6601     __ membar(Assembler::StoreLoad);
  6602   %}
  6603   ins_pipe(pipe_slow);
  6604 %}
  6606 instruct unnecessary_membar_volatile() %{
  6607   match(MemBarVolatile);
  6608   predicate(Matcher::post_store_load_barrier(n));
  6609   ins_cost(0);
  6611   size(0);
  6612   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  6613   ins_encode( );
  6614   ins_pipe(empty);
  6615 %}
  6617 instruct membar_storestore() %{
  6618   match(MemBarStoreStore);
  6619   ins_cost(0);
  6621   size(0);
  6622   format %{ "MEMBAR-storestore (empty encoding)" %}
  6623   ins_encode( );
  6624   ins_pipe(empty);
  6625 %}
  6627 //----------Move Instructions--------------------------------------------------
  6628 instruct castX2P(eAXRegP dst, eAXRegI src) %{
  6629   match(Set dst (CastX2P src));
  6630   format %{ "# X2P  $dst, $src" %}
  6631   ins_encode( /*empty encoding*/ );
  6632   ins_cost(0);
  6633   ins_pipe(empty);
  6634 %}
  6636 instruct castP2X(rRegI dst, eRegP src ) %{
  6637   match(Set dst (CastP2X src));
  6638   ins_cost(50);
  6639   format %{ "MOV    $dst, $src\t# CastP2X" %}
  6640   ins_encode( enc_Copy( dst, src) );
  6641   ins_pipe( ialu_reg_reg );
  6642 %}
  6644 //----------Conditional Move---------------------------------------------------
  6645 // Conditional move
  6646 instruct jmovI_reg(cmpOp cop, eFlagsReg cr, rRegI dst, rRegI src) %{
  6647   predicate(!VM_Version::supports_cmov() );
  6648   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  6649   ins_cost(200);
  6650   format %{ "J$cop,us skip\t# signed cmove\n\t"
  6651             "MOV    $dst,$src\n"
  6652       "skip:" %}
  6653   ins_encode %{
  6654     Label Lskip;
  6655     // Invert sense of branch from sense of CMOV
  6656     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  6657     __ movl($dst$$Register, $src$$Register);
  6658     __ bind(Lskip);
  6659   %}
  6660   ins_pipe( pipe_cmov_reg );
  6661 %}
  6663 instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src) %{
  6664   predicate(!VM_Version::supports_cmov() );
  6665   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  6666   ins_cost(200);
  6667   format %{ "J$cop,us skip\t# unsigned cmove\n\t"
  6668             "MOV    $dst,$src\n"
  6669       "skip:" %}
  6670   ins_encode %{
  6671     Label Lskip;
  6672     // Invert sense of branch from sense of CMOV
  6673     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  6674     __ movl($dst$$Register, $src$$Register);
  6675     __ bind(Lskip);
  6676   %}
  6677   ins_pipe( pipe_cmov_reg );
  6678 %}
  6680 instruct cmovI_reg(rRegI dst, rRegI src, eFlagsReg cr, cmpOp cop ) %{
  6681   predicate(VM_Version::supports_cmov() );
  6682   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  6683   ins_cost(200);
  6684   format %{ "CMOV$cop $dst,$src" %}
  6685   opcode(0x0F,0x40);
  6686   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  6687   ins_pipe( pipe_cmov_reg );
  6688 %}
  6690 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src ) %{
  6691   predicate(VM_Version::supports_cmov() );
  6692   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  6693   ins_cost(200);
  6694   format %{ "CMOV$cop $dst,$src" %}
  6695   opcode(0x0F,0x40);
  6696   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  6697   ins_pipe( pipe_cmov_reg );
  6698 %}
  6700 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, rRegI src ) %{
  6701   predicate(VM_Version::supports_cmov() );
  6702   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  6703   ins_cost(200);
  6704   expand %{
  6705     cmovI_regU(cop, cr, dst, src);
  6706   %}
  6707 %}
  6709 // Conditional move
  6710 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, rRegI dst, memory src) %{
  6711   predicate(VM_Version::supports_cmov() );
  6712   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  6713   ins_cost(250);
  6714   format %{ "CMOV$cop $dst,$src" %}
  6715   opcode(0x0F,0x40);
  6716   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  6717   ins_pipe( pipe_cmov_mem );
  6718 %}
  6720 // Conditional move
  6721 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, rRegI dst, memory src) %{
  6722   predicate(VM_Version::supports_cmov() );
  6723   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  6724   ins_cost(250);
  6725   format %{ "CMOV$cop $dst,$src" %}
  6726   opcode(0x0F,0x40);
  6727   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  6728   ins_pipe( pipe_cmov_mem );
  6729 %}
  6731 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, memory src) %{
  6732   predicate(VM_Version::supports_cmov() );
  6733   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  6734   ins_cost(250);
  6735   expand %{
  6736     cmovI_memU(cop, cr, dst, src);
  6737   %}
  6738 %}
  6740 // Conditional move
  6741 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  6742   predicate(VM_Version::supports_cmov() );
  6743   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  6744   ins_cost(200);
  6745   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  6746   opcode(0x0F,0x40);
  6747   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  6748   ins_pipe( pipe_cmov_reg );
  6749 %}
  6751 // Conditional move (non-P6 version)
  6752 // Note:  a CMoveP is generated for  stubs and native wrappers
  6753 //        regardless of whether we are on a P6, so we
  6754 //        emulate a cmov here
  6755 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  6756   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  6757   ins_cost(300);
  6758   format %{ "Jn$cop   skip\n\t"
  6759           "MOV    $dst,$src\t# pointer\n"
  6760       "skip:" %}
  6761   opcode(0x8b);
  6762   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  6763   ins_pipe( pipe_cmov_reg );
  6764 %}
  6766 // Conditional move
  6767 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
  6768   predicate(VM_Version::supports_cmov() );
  6769   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  6770   ins_cost(200);
  6771   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  6772   opcode(0x0F,0x40);
  6773   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  6774   ins_pipe( pipe_cmov_reg );
  6775 %}
  6777 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  6778   predicate(VM_Version::supports_cmov() );
  6779   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  6780   ins_cost(200);
  6781   expand %{
  6782     cmovP_regU(cop, cr, dst, src);
  6783   %}
  6784 %}
  6786 // DISABLED: Requires the ADLC to emit a bottom_type call that
  6787 // correctly meets the two pointer arguments; one is an incoming
  6788 // register but the other is a memory operand.  ALSO appears to
  6789 // be buggy with implicit null checks.
  6790 //
  6791 //// Conditional move
  6792 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
  6793 //  predicate(VM_Version::supports_cmov() );
  6794 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  6795 //  ins_cost(250);
  6796 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  6797 //  opcode(0x0F,0x40);
  6798 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  6799 //  ins_pipe( pipe_cmov_mem );
  6800 //%}
  6801 //
  6802 //// Conditional move
  6803 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
  6804 //  predicate(VM_Version::supports_cmov() );
  6805 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  6806 //  ins_cost(250);
  6807 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  6808 //  opcode(0x0F,0x40);
  6809 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  6810 //  ins_pipe( pipe_cmov_mem );
  6811 //%}
  6813 // Conditional move
  6814 instruct fcmovDPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regDPR src) %{
  6815   predicate(UseSSE<=1);
  6816   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  6817   ins_cost(200);
  6818   format %{ "FCMOV$cop $dst,$src\t# double" %}
  6819   opcode(0xDA);
  6820   ins_encode( enc_cmov_dpr(cop,src) );
  6821   ins_pipe( pipe_cmovDPR_reg );
  6822 %}
  6824 // Conditional move
  6825 instruct fcmovFPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regFPR src) %{
  6826   predicate(UseSSE==0);
  6827   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  6828   ins_cost(200);
  6829   format %{ "FCMOV$cop $dst,$src\t# float" %}
  6830   opcode(0xDA);
  6831   ins_encode( enc_cmov_dpr(cop,src) );
  6832   ins_pipe( pipe_cmovDPR_reg );
  6833 %}
  6835 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  6836 instruct fcmovDPR_regS(cmpOp cop, eFlagsReg cr, regDPR dst, regDPR src) %{
  6837   predicate(UseSSE<=1);
  6838   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  6839   ins_cost(200);
  6840   format %{ "Jn$cop   skip\n\t"
  6841             "MOV    $dst,$src\t# double\n"
  6842       "skip:" %}
  6843   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  6844   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_DPR(src), OpcP, RegOpc(dst) );
  6845   ins_pipe( pipe_cmovDPR_reg );
  6846 %}
  6848 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  6849 instruct fcmovFPR_regS(cmpOp cop, eFlagsReg cr, regFPR dst, regFPR src) %{
  6850   predicate(UseSSE==0);
  6851   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  6852   ins_cost(200);
  6853   format %{ "Jn$cop    skip\n\t"
  6854             "MOV    $dst,$src\t# float\n"
  6855       "skip:" %}
  6856   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  6857   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_FPR(src), OpcP, RegOpc(dst) );
  6858   ins_pipe( pipe_cmovDPR_reg );
  6859 %}
  6861 // No CMOVE with SSE/SSE2
  6862 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  6863   predicate (UseSSE>=1);
  6864   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  6865   ins_cost(200);
  6866   format %{ "Jn$cop   skip\n\t"
  6867             "MOVSS  $dst,$src\t# float\n"
  6868       "skip:" %}
  6869   ins_encode %{
  6870     Label skip;
  6871     // Invert sense of branch from sense of CMOV
  6872     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  6873     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  6874     __ bind(skip);
  6875   %}
  6876   ins_pipe( pipe_slow );
  6877 %}
  6879 // No CMOVE with SSE/SSE2
  6880 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  6881   predicate (UseSSE>=2);
  6882   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  6883   ins_cost(200);
  6884   format %{ "Jn$cop   skip\n\t"
  6885             "MOVSD  $dst,$src\t# float\n"
  6886       "skip:" %}
  6887   ins_encode %{
  6888     Label skip;
  6889     // Invert sense of branch from sense of CMOV
  6890     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  6891     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  6892     __ bind(skip);
  6893   %}
  6894   ins_pipe( pipe_slow );
  6895 %}
  6897 // unsigned version
  6898 instruct fcmovF_regU(cmpOpU cop, eFlagsRegU cr, regF dst, regF src) %{
  6899   predicate (UseSSE>=1);
  6900   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  6901   ins_cost(200);
  6902   format %{ "Jn$cop   skip\n\t"
  6903             "MOVSS  $dst,$src\t# float\n"
  6904       "skip:" %}
  6905   ins_encode %{
  6906     Label skip;
  6907     // Invert sense of branch from sense of CMOV
  6908     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  6909     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  6910     __ bind(skip);
  6911   %}
  6912   ins_pipe( pipe_slow );
  6913 %}
  6915 instruct fcmovF_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regF dst, regF src) %{
  6916   predicate (UseSSE>=1);
  6917   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  6918   ins_cost(200);
  6919   expand %{
  6920     fcmovF_regU(cop, cr, dst, src);
  6921   %}
  6922 %}
  6924 // unsigned version
  6925 instruct fcmovD_regU(cmpOpU cop, eFlagsRegU cr, regD dst, regD src) %{
  6926   predicate (UseSSE>=2);
  6927   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  6928   ins_cost(200);
  6929   format %{ "Jn$cop   skip\n\t"
  6930             "MOVSD  $dst,$src\t# float\n"
  6931       "skip:" %}
  6932   ins_encode %{
  6933     Label skip;
  6934     // Invert sense of branch from sense of CMOV
  6935     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  6936     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  6937     __ bind(skip);
  6938   %}
  6939   ins_pipe( pipe_slow );
  6940 %}
  6942 instruct fcmovD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regD dst, regD src) %{
  6943   predicate (UseSSE>=2);
  6944   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  6945   ins_cost(200);
  6946   expand %{
  6947     fcmovD_regU(cop, cr, dst, src);
  6948   %}
  6949 %}
  6951 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  6952   predicate(VM_Version::supports_cmov() );
  6953   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  6954   ins_cost(200);
  6955   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  6956             "CMOV$cop $dst.hi,$src.hi" %}
  6957   opcode(0x0F,0x40);
  6958   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  6959   ins_pipe( pipe_cmov_reg_long );
  6960 %}
  6962 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  6963   predicate(VM_Version::supports_cmov() );
  6964   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  6965   ins_cost(200);
  6966   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  6967             "CMOV$cop $dst.hi,$src.hi" %}
  6968   opcode(0x0F,0x40);
  6969   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  6970   ins_pipe( pipe_cmov_reg_long );
  6971 %}
  6973 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  6974   predicate(VM_Version::supports_cmov() );
  6975   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  6976   ins_cost(200);
  6977   expand %{
  6978     cmovL_regU(cop, cr, dst, src);
  6979   %}
  6980 %}
  6982 //----------Arithmetic Instructions--------------------------------------------
  6983 //----------Addition Instructions----------------------------------------------
  6985 // Integer Addition Instructions
  6986 instruct addI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  6987   match(Set dst (AddI dst src));
  6988   effect(KILL cr);
  6990   size(2);
  6991   format %{ "ADD    $dst,$src" %}
  6992   opcode(0x03);
  6993   ins_encode( OpcP, RegReg( dst, src) );
  6994   ins_pipe( ialu_reg_reg );
  6995 %}
  6997 instruct addI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  6998   match(Set dst (AddI dst src));
  6999   effect(KILL cr);
  7001   format %{ "ADD    $dst,$src" %}
  7002   opcode(0x81, 0x00); /* /0 id */
  7003   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7004   ins_pipe( ialu_reg );
  7005 %}
  7007 instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
  7008   predicate(UseIncDec);
  7009   match(Set dst (AddI dst src));
  7010   effect(KILL cr);
  7012   size(1);
  7013   format %{ "INC    $dst" %}
  7014   opcode(0x40); /*  */
  7015   ins_encode( Opc_plus( primary, dst ) );
  7016   ins_pipe( ialu_reg );
  7017 %}
  7019 instruct leaI_eReg_immI(rRegI dst, rRegI src0, immI src1) %{
  7020   match(Set dst (AddI src0 src1));
  7021   ins_cost(110);
  7023   format %{ "LEA    $dst,[$src0 + $src1]" %}
  7024   opcode(0x8D); /* 0x8D /r */
  7025   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7026   ins_pipe( ialu_reg_reg );
  7027 %}
  7029 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  7030   match(Set dst (AddP src0 src1));
  7031   ins_cost(110);
  7033   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  7034   opcode(0x8D); /* 0x8D /r */
  7035   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7036   ins_pipe( ialu_reg_reg );
  7037 %}
  7039 instruct decI_eReg(rRegI dst, immI_M1 src, eFlagsReg cr) %{
  7040   predicate(UseIncDec);
  7041   match(Set dst (AddI dst src));
  7042   effect(KILL cr);
  7044   size(1);
  7045   format %{ "DEC    $dst" %}
  7046   opcode(0x48); /*  */
  7047   ins_encode( Opc_plus( primary, dst ) );
  7048   ins_pipe( ialu_reg );
  7049 %}
  7051 instruct addP_eReg(eRegP dst, rRegI src, eFlagsReg cr) %{
  7052   match(Set dst (AddP dst src));
  7053   effect(KILL cr);
  7055   size(2);
  7056   format %{ "ADD    $dst,$src" %}
  7057   opcode(0x03);
  7058   ins_encode( OpcP, RegReg( dst, src) );
  7059   ins_pipe( ialu_reg_reg );
  7060 %}
  7062 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  7063   match(Set dst (AddP dst src));
  7064   effect(KILL cr);
  7066   format %{ "ADD    $dst,$src" %}
  7067   opcode(0x81,0x00); /* Opcode 81 /0 id */
  7068   // ins_encode( RegImm( dst, src) );
  7069   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7070   ins_pipe( ialu_reg );
  7071 %}
  7073 instruct addI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  7074   match(Set dst (AddI dst (LoadI src)));
  7075   effect(KILL cr);
  7077   ins_cost(125);
  7078   format %{ "ADD    $dst,$src" %}
  7079   opcode(0x03);
  7080   ins_encode( OpcP, RegMem( dst, src) );
  7081   ins_pipe( ialu_reg_mem );
  7082 %}
  7084 instruct addI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  7085   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7086   effect(KILL cr);
  7088   ins_cost(150);
  7089   format %{ "ADD    $dst,$src" %}
  7090   opcode(0x01);  /* Opcode 01 /r */
  7091   ins_encode( OpcP, RegMem( src, dst ) );
  7092   ins_pipe( ialu_mem_reg );
  7093 %}
  7095 // Add Memory with Immediate
  7096 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  7097   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7098   effect(KILL cr);
  7100   ins_cost(125);
  7101   format %{ "ADD    $dst,$src" %}
  7102   opcode(0x81);               /* Opcode 81 /0 id */
  7103   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  7104   ins_pipe( ialu_mem_imm );
  7105 %}
  7107 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  7108   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7109   effect(KILL cr);
  7111   ins_cost(125);
  7112   format %{ "INC    $dst" %}
  7113   opcode(0xFF);               /* Opcode FF /0 */
  7114   ins_encode( OpcP, RMopc_Mem(0x00,dst));
  7115   ins_pipe( ialu_mem_imm );
  7116 %}
  7118 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  7119   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7120   effect(KILL cr);
  7122   ins_cost(125);
  7123   format %{ "DEC    $dst" %}
  7124   opcode(0xFF);               /* Opcode FF /1 */
  7125   ins_encode( OpcP, RMopc_Mem(0x01,dst));
  7126   ins_pipe( ialu_mem_imm );
  7127 %}
  7130 instruct checkCastPP( eRegP dst ) %{
  7131   match(Set dst (CheckCastPP dst));
  7133   size(0);
  7134   format %{ "#checkcastPP of $dst" %}
  7135   ins_encode( /*empty encoding*/ );
  7136   ins_pipe( empty );
  7137 %}
  7139 instruct castPP( eRegP dst ) %{
  7140   match(Set dst (CastPP dst));
  7141   format %{ "#castPP of $dst" %}
  7142   ins_encode( /*empty encoding*/ );
  7143   ins_pipe( empty );
  7144 %}
  7146 instruct castII( rRegI dst ) %{
  7147   match(Set dst (CastII dst));
  7148   format %{ "#castII of $dst" %}
  7149   ins_encode( /*empty encoding*/ );
  7150   ins_cost(0);
  7151   ins_pipe( empty );
  7152 %}
  7155 // Load-locked - same as a regular pointer load when used with compare-swap
  7156 instruct loadPLocked(eRegP dst, memory mem) %{
  7157   match(Set dst (LoadPLocked mem));
  7159   ins_cost(125);
  7160   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  7161   opcode(0x8B);
  7162   ins_encode( OpcP, RegMem(dst,mem));
  7163   ins_pipe( ialu_reg_mem );
  7164 %}
  7166 // Conditional-store of the updated heap-top.
  7167 // Used during allocation of the shared heap.
  7168 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  7169 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  7170   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  7171   // EAX is killed if there is contention, but then it's also unused.
  7172   // In the common case of no contention, EAX holds the new oop address.
  7173   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  7174   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  7175   ins_pipe( pipe_cmpxchg );
  7176 %}
  7178 // Conditional-store of an int value.
  7179 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
  7180 instruct storeIConditional( memory mem, eAXRegI oldval, rRegI newval, eFlagsReg cr ) %{
  7181   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  7182   effect(KILL oldval);
  7183   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  7184   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
  7185   ins_pipe( pipe_cmpxchg );
  7186 %}
  7188 // Conditional-store of a long value.
  7189 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
  7190 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7191   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  7192   effect(KILL oldval);
  7193   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
  7194             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
  7195             "XCHG   EBX,ECX"
  7196   %}
  7197   ins_encode %{
  7198     // Note: we need to swap rbx, and rcx before and after the
  7199     //       cmpxchg8 instruction because the instruction uses
  7200     //       rcx as the high order word of the new value to store but
  7201     //       our register encoding uses rbx.
  7202     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  7203     if( os::is_MP() )
  7204       __ lock();
  7205     __ cmpxchg8($mem$$Address);
  7206     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  7207   %}
  7208   ins_pipe( pipe_cmpxchg );
  7209 %}
  7211 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7213 instruct compareAndSwapL( rRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7214   predicate(VM_Version::supports_cx8());
  7215   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7216   effect(KILL cr, KILL oldval);
  7217   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7218             "MOV    $res,0\n\t"
  7219             "JNE,s  fail\n\t"
  7220             "MOV    $res,1\n"
  7221           "fail:" %}
  7222   ins_encode( enc_cmpxchg8(mem_ptr),
  7223               enc_flags_ne_to_boolean(res) );
  7224   ins_pipe( pipe_cmpxchg );
  7225 %}
  7227 instruct compareAndSwapP( rRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  7228   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7229   effect(KILL cr, KILL oldval);
  7230   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7231             "MOV    $res,0\n\t"
  7232             "JNE,s  fail\n\t"
  7233             "MOV    $res,1\n"
  7234           "fail:" %}
  7235   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  7236   ins_pipe( pipe_cmpxchg );
  7237 %}
  7239 instruct compareAndSwapI( rRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  7240   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7241   effect(KILL cr, KILL oldval);
  7242   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7243             "MOV    $res,0\n\t"
  7244             "JNE,s  fail\n\t"
  7245             "MOV    $res,1\n"
  7246           "fail:" %}
  7247   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  7248   ins_pipe( pipe_cmpxchg );
  7249 %}
  7251 instruct xaddI_no_res( memory mem, Universe dummy, immI add, eFlagsReg cr) %{
  7252   predicate(n->as_LoadStore()->result_not_used());
  7253   match(Set dummy (GetAndAddI mem add));
  7254   effect(KILL cr);
  7255   format %{ "ADDL  [$mem],$add" %}
  7256   ins_encode %{
  7257     if (os::is_MP()) { __ lock(); }
  7258     __ addl($mem$$Address, $add$$constant);
  7259   %}
  7260   ins_pipe( pipe_cmpxchg );
  7261 %}
  7263 instruct xaddI( memory mem, rRegI newval, eFlagsReg cr) %{
  7264   match(Set newval (GetAndAddI mem newval));
  7265   effect(KILL cr);
  7266   format %{ "XADDL  [$mem],$newval" %}
  7267   ins_encode %{
  7268     if (os::is_MP()) { __ lock(); }
  7269     __ xaddl($mem$$Address, $newval$$Register);
  7270   %}
  7271   ins_pipe( pipe_cmpxchg );
  7272 %}
  7274 instruct xchgI( memory mem, rRegI newval) %{
  7275   match(Set newval (GetAndSetI mem newval));
  7276   format %{ "XCHGL  $newval,[$mem]" %}
  7277   ins_encode %{
  7278     __ xchgl($newval$$Register, $mem$$Address);
  7279   %}
  7280   ins_pipe( pipe_cmpxchg );
  7281 %}
  7283 instruct xchgP( memory mem, pRegP newval) %{
  7284   match(Set newval (GetAndSetP mem newval));
  7285   format %{ "XCHGL  $newval,[$mem]" %}
  7286   ins_encode %{
  7287     __ xchgl($newval$$Register, $mem$$Address);
  7288   %}
  7289   ins_pipe( pipe_cmpxchg );
  7290 %}
  7292 //----------Subtraction Instructions-------------------------------------------
  7294 // Integer Subtraction Instructions
  7295 instruct subI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7296   match(Set dst (SubI dst src));
  7297   effect(KILL cr);
  7299   size(2);
  7300   format %{ "SUB    $dst,$src" %}
  7301   opcode(0x2B);
  7302   ins_encode( OpcP, RegReg( dst, src) );
  7303   ins_pipe( ialu_reg_reg );
  7304 %}
  7306 instruct subI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  7307   match(Set dst (SubI dst src));
  7308   effect(KILL cr);
  7310   format %{ "SUB    $dst,$src" %}
  7311   opcode(0x81,0x05);  /* Opcode 81 /5 */
  7312   // ins_encode( RegImm( dst, src) );
  7313   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7314   ins_pipe( ialu_reg );
  7315 %}
  7317 instruct subI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  7318   match(Set dst (SubI dst (LoadI src)));
  7319   effect(KILL cr);
  7321   ins_cost(125);
  7322   format %{ "SUB    $dst,$src" %}
  7323   opcode(0x2B);
  7324   ins_encode( OpcP, RegMem( dst, src) );
  7325   ins_pipe( ialu_reg_mem );
  7326 %}
  7328 instruct subI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  7329   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  7330   effect(KILL cr);
  7332   ins_cost(150);
  7333   format %{ "SUB    $dst,$src" %}
  7334   opcode(0x29);  /* Opcode 29 /r */
  7335   ins_encode( OpcP, RegMem( src, dst ) );
  7336   ins_pipe( ialu_mem_reg );
  7337 %}
  7339 // Subtract from a pointer
  7340 instruct subP_eReg(eRegP dst, rRegI src, immI0 zero, eFlagsReg cr) %{
  7341   match(Set dst (AddP dst (SubI zero src)));
  7342   effect(KILL cr);
  7344   size(2);
  7345   format %{ "SUB    $dst,$src" %}
  7346   opcode(0x2B);
  7347   ins_encode( OpcP, RegReg( dst, src) );
  7348   ins_pipe( ialu_reg_reg );
  7349 %}
  7351 instruct negI_eReg(rRegI dst, immI0 zero, eFlagsReg cr) %{
  7352   match(Set dst (SubI zero dst));
  7353   effect(KILL cr);
  7355   size(2);
  7356   format %{ "NEG    $dst" %}
  7357   opcode(0xF7,0x03);  // Opcode F7 /3
  7358   ins_encode( OpcP, RegOpc( dst ) );
  7359   ins_pipe( ialu_reg );
  7360 %}
  7362 //----------Multiplication/Division Instructions-------------------------------
  7363 // Integer Multiplication Instructions
  7364 // Multiply Register
  7365 instruct mulI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7366   match(Set dst (MulI dst src));
  7367   effect(KILL cr);
  7369   size(3);
  7370   ins_cost(300);
  7371   format %{ "IMUL   $dst,$src" %}
  7372   opcode(0xAF, 0x0F);
  7373   ins_encode( OpcS, OpcP, RegReg( dst, src) );
  7374   ins_pipe( ialu_reg_reg_alu0 );
  7375 %}
  7377 // Multiply 32-bit Immediate
  7378 instruct mulI_eReg_imm(rRegI dst, rRegI src, immI imm, eFlagsReg cr) %{
  7379   match(Set dst (MulI src imm));
  7380   effect(KILL cr);
  7382   ins_cost(300);
  7383   format %{ "IMUL   $dst,$src,$imm" %}
  7384   opcode(0x69);  /* 69 /r id */
  7385   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  7386   ins_pipe( ialu_reg_reg_alu0 );
  7387 %}
  7389 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  7390   match(Set dst src);
  7391   effect(KILL cr);
  7393   // Note that this is artificially increased to make it more expensive than loadConL
  7394   ins_cost(250);
  7395   format %{ "MOV    EAX,$src\t// low word only" %}
  7396   opcode(0xB8);
  7397   ins_encode( LdImmL_Lo(dst, src) );
  7398   ins_pipe( ialu_reg_fat );
  7399 %}
  7401 // Multiply by 32-bit Immediate, taking the shifted high order results
  7402 //  (special case for shift by 32)
  7403 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  7404   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  7405   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  7406              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  7407              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  7408   effect(USE src1, KILL cr);
  7410   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  7411   ins_cost(0*100 + 1*400 - 150);
  7412   format %{ "IMUL   EDX:EAX,$src1" %}
  7413   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  7414   ins_pipe( pipe_slow );
  7415 %}
  7417 // Multiply by 32-bit Immediate, taking the shifted high order results
  7418 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  7419   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  7420   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  7421              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  7422              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  7423   effect(USE src1, KILL cr);
  7425   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  7426   ins_cost(1*100 + 1*400 - 150);
  7427   format %{ "IMUL   EDX:EAX,$src1\n\t"
  7428             "SAR    EDX,$cnt-32" %}
  7429   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  7430   ins_pipe( pipe_slow );
  7431 %}
  7433 // Multiply Memory 32-bit Immediate
  7434 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, eFlagsReg cr) %{
  7435   match(Set dst (MulI (LoadI src) imm));
  7436   effect(KILL cr);
  7438   ins_cost(300);
  7439   format %{ "IMUL   $dst,$src,$imm" %}
  7440   opcode(0x69);  /* 69 /r id */
  7441   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  7442   ins_pipe( ialu_reg_mem_alu0 );
  7443 %}
  7445 // Multiply Memory
  7446 instruct mulI(rRegI dst, memory src, eFlagsReg cr) %{
  7447   match(Set dst (MulI dst (LoadI src)));
  7448   effect(KILL cr);
  7450   ins_cost(350);
  7451   format %{ "IMUL   $dst,$src" %}
  7452   opcode(0xAF, 0x0F);
  7453   ins_encode( OpcS, OpcP, RegMem( dst, src) );
  7454   ins_pipe( ialu_reg_mem_alu0 );
  7455 %}
  7457 // Multiply Register Int to Long
  7458 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  7459   // Basic Idea: long = (long)int * (long)int
  7460   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  7461   effect(DEF dst, USE src, USE src1, KILL flags);
  7463   ins_cost(300);
  7464   format %{ "IMUL   $dst,$src1" %}
  7466   ins_encode( long_int_multiply( dst, src1 ) );
  7467   ins_pipe( ialu_reg_reg_alu0 );
  7468 %}
  7470 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  7471   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  7472   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  7473   effect(KILL flags);
  7475   ins_cost(300);
  7476   format %{ "MUL    $dst,$src1" %}
  7478   ins_encode( long_uint_multiply(dst, src1) );
  7479   ins_pipe( ialu_reg_reg_alu0 );
  7480 %}
  7482 // Multiply Register Long
  7483 instruct mulL_eReg(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  7484   match(Set dst (MulL dst src));
  7485   effect(KILL cr, TEMP tmp);
  7486   ins_cost(4*100+3*400);
  7487 // Basic idea: lo(result) = lo(x_lo * y_lo)
  7488 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  7489   format %{ "MOV    $tmp,$src.lo\n\t"
  7490             "IMUL   $tmp,EDX\n\t"
  7491             "MOV    EDX,$src.hi\n\t"
  7492             "IMUL   EDX,EAX\n\t"
  7493             "ADD    $tmp,EDX\n\t"
  7494             "MUL    EDX:EAX,$src.lo\n\t"
  7495             "ADD    EDX,$tmp" %}
  7496   ins_encode( long_multiply( dst, src, tmp ) );
  7497   ins_pipe( pipe_slow );
  7498 %}
  7500 // Multiply Register Long where the left operand's high 32 bits are zero
  7501 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  7502   predicate(is_operand_hi32_zero(n->in(1)));
  7503   match(Set dst (MulL dst src));
  7504   effect(KILL cr, TEMP tmp);
  7505   ins_cost(2*100+2*400);
  7506 // Basic idea: lo(result) = lo(x_lo * y_lo)
  7507 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
  7508   format %{ "MOV    $tmp,$src.hi\n\t"
  7509             "IMUL   $tmp,EAX\n\t"
  7510             "MUL    EDX:EAX,$src.lo\n\t"
  7511             "ADD    EDX,$tmp" %}
  7512   ins_encode %{
  7513     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  7514     __ imull($tmp$$Register, rax);
  7515     __ mull($src$$Register);
  7516     __ addl(rdx, $tmp$$Register);
  7517   %}
  7518   ins_pipe( pipe_slow );
  7519 %}
  7521 // Multiply Register Long where the right operand's high 32 bits are zero
  7522 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  7523   predicate(is_operand_hi32_zero(n->in(2)));
  7524   match(Set dst (MulL dst src));
  7525   effect(KILL cr, TEMP tmp);
  7526   ins_cost(2*100+2*400);
  7527 // Basic idea: lo(result) = lo(x_lo * y_lo)
  7528 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
  7529   format %{ "MOV    $tmp,$src.lo\n\t"
  7530             "IMUL   $tmp,EDX\n\t"
  7531             "MUL    EDX:EAX,$src.lo\n\t"
  7532             "ADD    EDX,$tmp" %}
  7533   ins_encode %{
  7534     __ movl($tmp$$Register, $src$$Register);
  7535     __ imull($tmp$$Register, rdx);
  7536     __ mull($src$$Register);
  7537     __ addl(rdx, $tmp$$Register);
  7538   %}
  7539   ins_pipe( pipe_slow );
  7540 %}
  7542 // Multiply Register Long where the left and the right operands' high 32 bits are zero
  7543 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
  7544   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
  7545   match(Set dst (MulL dst src));
  7546   effect(KILL cr);
  7547   ins_cost(1*400);
  7548 // Basic idea: lo(result) = lo(x_lo * y_lo)
  7549 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
  7550   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
  7551   ins_encode %{
  7552     __ mull($src$$Register);
  7553   %}
  7554   ins_pipe( pipe_slow );
  7555 %}
  7557 // Multiply Register Long by small constant
  7558 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, rRegI tmp, eFlagsReg cr) %{
  7559   match(Set dst (MulL dst src));
  7560   effect(KILL cr, TEMP tmp);
  7561   ins_cost(2*100+2*400);
  7562   size(12);
  7563 // Basic idea: lo(result) = lo(src * EAX)
  7564 //             hi(result) = hi(src * EAX) + lo(src * EDX)
  7565   format %{ "IMUL   $tmp,EDX,$src\n\t"
  7566             "MOV    EDX,$src\n\t"
  7567             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
  7568             "ADD    EDX,$tmp" %}
  7569   ins_encode( long_multiply_con( dst, src, tmp ) );
  7570   ins_pipe( pipe_slow );
  7571 %}
  7573 // Integer DIV with Register
  7574 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  7575   match(Set rax (DivI rax div));
  7576   effect(KILL rdx, KILL cr);
  7577   size(26);
  7578   ins_cost(30*100+10*100);
  7579   format %{ "CMP    EAX,0x80000000\n\t"
  7580             "JNE,s  normal\n\t"
  7581             "XOR    EDX,EDX\n\t"
  7582             "CMP    ECX,-1\n\t"
  7583             "JE,s   done\n"
  7584     "normal: CDQ\n\t"
  7585             "IDIV   $div\n\t"
  7586     "done:"        %}
  7587   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  7588   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  7589   ins_pipe( ialu_reg_reg_alu0 );
  7590 %}
  7592 // Divide Register Long
  7593 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  7594   match(Set dst (DivL src1 src2));
  7595   effect( KILL cr, KILL cx, KILL bx );
  7596   ins_cost(10000);
  7597   format %{ "PUSH   $src1.hi\n\t"
  7598             "PUSH   $src1.lo\n\t"
  7599             "PUSH   $src2.hi\n\t"
  7600             "PUSH   $src2.lo\n\t"
  7601             "CALL   SharedRuntime::ldiv\n\t"
  7602             "ADD    ESP,16" %}
  7603   ins_encode( long_div(src1,src2) );
  7604   ins_pipe( pipe_slow );
  7605 %}
  7607 // Integer DIVMOD with Register, both quotient and mod results
  7608 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  7609   match(DivModI rax div);
  7610   effect(KILL cr);
  7611   size(26);
  7612   ins_cost(30*100+10*100);
  7613   format %{ "CMP    EAX,0x80000000\n\t"
  7614             "JNE,s  normal\n\t"
  7615             "XOR    EDX,EDX\n\t"
  7616             "CMP    ECX,-1\n\t"
  7617             "JE,s   done\n"
  7618     "normal: CDQ\n\t"
  7619             "IDIV   $div\n\t"
  7620     "done:"        %}
  7621   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  7622   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  7623   ins_pipe( pipe_slow );
  7624 %}
  7626 // Integer MOD with Register
  7627 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  7628   match(Set rdx (ModI rax div));
  7629   effect(KILL rax, KILL cr);
  7631   size(26);
  7632   ins_cost(300);
  7633   format %{ "CDQ\n\t"
  7634             "IDIV   $div" %}
  7635   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  7636   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  7637   ins_pipe( ialu_reg_reg_alu0 );
  7638 %}
  7640 // Remainder Register Long
  7641 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  7642   match(Set dst (ModL src1 src2));
  7643   effect( KILL cr, KILL cx, KILL bx );
  7644   ins_cost(10000);
  7645   format %{ "PUSH   $src1.hi\n\t"
  7646             "PUSH   $src1.lo\n\t"
  7647             "PUSH   $src2.hi\n\t"
  7648             "PUSH   $src2.lo\n\t"
  7649             "CALL   SharedRuntime::lrem\n\t"
  7650             "ADD    ESP,16" %}
  7651   ins_encode( long_mod(src1,src2) );
  7652   ins_pipe( pipe_slow );
  7653 %}
  7655 // Divide Register Long (no special case since divisor != -1)
  7656 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
  7657   match(Set dst (DivL dst imm));
  7658   effect( TEMP tmp, TEMP tmp2, KILL cr );
  7659   ins_cost(1000);
  7660   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
  7661             "XOR    $tmp2,$tmp2\n\t"
  7662             "CMP    $tmp,EDX\n\t"
  7663             "JA,s   fast\n\t"
  7664             "MOV    $tmp2,EAX\n\t"
  7665             "MOV    EAX,EDX\n\t"
  7666             "MOV    EDX,0\n\t"
  7667             "JLE,s  pos\n\t"
  7668             "LNEG   EAX : $tmp2\n\t"
  7669             "DIV    $tmp # unsigned division\n\t"
  7670             "XCHG   EAX,$tmp2\n\t"
  7671             "DIV    $tmp\n\t"
  7672             "LNEG   $tmp2 : EAX\n\t"
  7673             "JMP,s  done\n"
  7674     "pos:\n\t"
  7675             "DIV    $tmp\n\t"
  7676             "XCHG   EAX,$tmp2\n"
  7677     "fast:\n\t"
  7678             "DIV    $tmp\n"
  7679     "done:\n\t"
  7680             "MOV    EDX,$tmp2\n\t"
  7681             "NEG    EDX:EAX # if $imm < 0" %}
  7682   ins_encode %{
  7683     int con = (int)$imm$$constant;
  7684     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  7685     int pcon = (con > 0) ? con : -con;
  7686     Label Lfast, Lpos, Ldone;
  7688     __ movl($tmp$$Register, pcon);
  7689     __ xorl($tmp2$$Register,$tmp2$$Register);
  7690     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  7691     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
  7693     __ movl($tmp2$$Register, $dst$$Register); // save
  7694     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  7695     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  7696     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  7698     // Negative dividend.
  7699     // convert value to positive to use unsigned division
  7700     __ lneg($dst$$Register, $tmp2$$Register);
  7701     __ divl($tmp$$Register);
  7702     __ xchgl($dst$$Register, $tmp2$$Register);
  7703     __ divl($tmp$$Register);
  7704     // revert result back to negative
  7705     __ lneg($tmp2$$Register, $dst$$Register);
  7706     __ jmpb(Ldone);
  7708     __ bind(Lpos);
  7709     __ divl($tmp$$Register); // Use unsigned division
  7710     __ xchgl($dst$$Register, $tmp2$$Register);
  7711     // Fallthrow for final divide, tmp2 has 32 bit hi result
  7713     __ bind(Lfast);
  7714     // fast path: src is positive
  7715     __ divl($tmp$$Register); // Use unsigned division
  7717     __ bind(Ldone);
  7718     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
  7719     if (con < 0) {
  7720       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
  7722   %}
  7723   ins_pipe( pipe_slow );
  7724 %}
  7726 // Remainder Register Long (remainder fit into 32 bits)
  7727 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
  7728   match(Set dst (ModL dst imm));
  7729   effect( TEMP tmp, TEMP tmp2, KILL cr );
  7730   ins_cost(1000);
  7731   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
  7732             "CMP    $tmp,EDX\n\t"
  7733             "JA,s   fast\n\t"
  7734             "MOV    $tmp2,EAX\n\t"
  7735             "MOV    EAX,EDX\n\t"
  7736             "MOV    EDX,0\n\t"
  7737             "JLE,s  pos\n\t"
  7738             "LNEG   EAX : $tmp2\n\t"
  7739             "DIV    $tmp # unsigned division\n\t"
  7740             "MOV    EAX,$tmp2\n\t"
  7741             "DIV    $tmp\n\t"
  7742             "NEG    EDX\n\t"
  7743             "JMP,s  done\n"
  7744     "pos:\n\t"
  7745             "DIV    $tmp\n\t"
  7746             "MOV    EAX,$tmp2\n"
  7747     "fast:\n\t"
  7748             "DIV    $tmp\n"
  7749     "done:\n\t"
  7750             "MOV    EAX,EDX\n\t"
  7751             "SAR    EDX,31\n\t" %}
  7752   ins_encode %{
  7753     int con = (int)$imm$$constant;
  7754     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  7755     int pcon = (con > 0) ? con : -con;
  7756     Label  Lfast, Lpos, Ldone;
  7758     __ movl($tmp$$Register, pcon);
  7759     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  7760     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
  7762     __ movl($tmp2$$Register, $dst$$Register); // save
  7763     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  7764     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  7765     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  7767     // Negative dividend.
  7768     // convert value to positive to use unsigned division
  7769     __ lneg($dst$$Register, $tmp2$$Register);
  7770     __ divl($tmp$$Register);
  7771     __ movl($dst$$Register, $tmp2$$Register);
  7772     __ divl($tmp$$Register);
  7773     // revert remainder back to negative
  7774     __ negl(HIGH_FROM_LOW($dst$$Register));
  7775     __ jmpb(Ldone);
  7777     __ bind(Lpos);
  7778     __ divl($tmp$$Register);
  7779     __ movl($dst$$Register, $tmp2$$Register);
  7781     __ bind(Lfast);
  7782     // fast path: src is positive
  7783     __ divl($tmp$$Register);
  7785     __ bind(Ldone);
  7786     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  7787     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
  7789   %}
  7790   ins_pipe( pipe_slow );
  7791 %}
  7793 // Integer Shift Instructions
  7794 // Shift Left by one
  7795 instruct shlI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  7796   match(Set dst (LShiftI dst shift));
  7797   effect(KILL cr);
  7799   size(2);
  7800   format %{ "SHL    $dst,$shift" %}
  7801   opcode(0xD1, 0x4);  /* D1 /4 */
  7802   ins_encode( OpcP, RegOpc( dst ) );
  7803   ins_pipe( ialu_reg );
  7804 %}
  7806 // Shift Left by 8-bit immediate
  7807 instruct salI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  7808   match(Set dst (LShiftI dst shift));
  7809   effect(KILL cr);
  7811   size(3);
  7812   format %{ "SHL    $dst,$shift" %}
  7813   opcode(0xC1, 0x4);  /* C1 /4 ib */
  7814   ins_encode( RegOpcImm( dst, shift) );
  7815   ins_pipe( ialu_reg );
  7816 %}
  7818 // Shift Left by variable
  7819 instruct salI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  7820   match(Set dst (LShiftI dst shift));
  7821   effect(KILL cr);
  7823   size(2);
  7824   format %{ "SHL    $dst,$shift" %}
  7825   opcode(0xD3, 0x4);  /* D3 /4 */
  7826   ins_encode( OpcP, RegOpc( dst ) );
  7827   ins_pipe( ialu_reg_reg );
  7828 %}
  7830 // Arithmetic shift right by one
  7831 instruct sarI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  7832   match(Set dst (RShiftI dst shift));
  7833   effect(KILL cr);
  7835   size(2);
  7836   format %{ "SAR    $dst,$shift" %}
  7837   opcode(0xD1, 0x7);  /* D1 /7 */
  7838   ins_encode( OpcP, RegOpc( dst ) );
  7839   ins_pipe( ialu_reg );
  7840 %}
  7842 // Arithmetic shift right by one
  7843 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  7844   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  7845   effect(KILL cr);
  7846   format %{ "SAR    $dst,$shift" %}
  7847   opcode(0xD1, 0x7);  /* D1 /7 */
  7848   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  7849   ins_pipe( ialu_mem_imm );
  7850 %}
  7852 // Arithmetic Shift Right by 8-bit immediate
  7853 instruct sarI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  7854   match(Set dst (RShiftI dst shift));
  7855   effect(KILL cr);
  7857   size(3);
  7858   format %{ "SAR    $dst,$shift" %}
  7859   opcode(0xC1, 0x7);  /* C1 /7 ib */
  7860   ins_encode( RegOpcImm( dst, shift ) );
  7861   ins_pipe( ialu_mem_imm );
  7862 %}
  7864 // Arithmetic Shift Right by 8-bit immediate
  7865 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  7866   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  7867   effect(KILL cr);
  7869   format %{ "SAR    $dst,$shift" %}
  7870   opcode(0xC1, 0x7);  /* C1 /7 ib */
  7871   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  7872   ins_pipe( ialu_mem_imm );
  7873 %}
  7875 // Arithmetic Shift Right by variable
  7876 instruct sarI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  7877   match(Set dst (RShiftI dst shift));
  7878   effect(KILL cr);
  7880   size(2);
  7881   format %{ "SAR    $dst,$shift" %}
  7882   opcode(0xD3, 0x7);  /* D3 /7 */
  7883   ins_encode( OpcP, RegOpc( dst ) );
  7884   ins_pipe( ialu_reg_reg );
  7885 %}
  7887 // Logical shift right by one
  7888 instruct shrI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  7889   match(Set dst (URShiftI dst shift));
  7890   effect(KILL cr);
  7892   size(2);
  7893   format %{ "SHR    $dst,$shift" %}
  7894   opcode(0xD1, 0x5);  /* D1 /5 */
  7895   ins_encode( OpcP, RegOpc( dst ) );
  7896   ins_pipe( ialu_reg );
  7897 %}
  7899 // Logical Shift Right by 8-bit immediate
  7900 instruct shrI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  7901   match(Set dst (URShiftI dst shift));
  7902   effect(KILL cr);
  7904   size(3);
  7905   format %{ "SHR    $dst,$shift" %}
  7906   opcode(0xC1, 0x5);  /* C1 /5 ib */
  7907   ins_encode( RegOpcImm( dst, shift) );
  7908   ins_pipe( ialu_reg );
  7909 %}
  7912 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  7913 // This idiom is used by the compiler for the i2b bytecode.
  7914 instruct i2b(rRegI dst, xRegI src, immI_24 twentyfour) %{
  7915   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  7917   size(3);
  7918   format %{ "MOVSX  $dst,$src :8" %}
  7919   ins_encode %{
  7920     __ movsbl($dst$$Register, $src$$Register);
  7921   %}
  7922   ins_pipe(ialu_reg_reg);
  7923 %}
  7925 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  7926 // This idiom is used by the compiler the i2s bytecode.
  7927 instruct i2s(rRegI dst, xRegI src, immI_16 sixteen) %{
  7928   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  7930   size(3);
  7931   format %{ "MOVSX  $dst,$src :16" %}
  7932   ins_encode %{
  7933     __ movswl($dst$$Register, $src$$Register);
  7934   %}
  7935   ins_pipe(ialu_reg_reg);
  7936 %}
  7939 // Logical Shift Right by variable
  7940 instruct shrI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  7941   match(Set dst (URShiftI dst shift));
  7942   effect(KILL cr);
  7944   size(2);
  7945   format %{ "SHR    $dst,$shift" %}
  7946   opcode(0xD3, 0x5);  /* D3 /5 */
  7947   ins_encode( OpcP, RegOpc( dst ) );
  7948   ins_pipe( ialu_reg_reg );
  7949 %}
  7952 //----------Logical Instructions-----------------------------------------------
  7953 //----------Integer Logical Instructions---------------------------------------
  7954 // And Instructions
  7955 // And Register with Register
  7956 instruct andI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7957   match(Set dst (AndI dst src));
  7958   effect(KILL cr);
  7960   size(2);
  7961   format %{ "AND    $dst,$src" %}
  7962   opcode(0x23);
  7963   ins_encode( OpcP, RegReg( dst, src) );
  7964   ins_pipe( ialu_reg_reg );
  7965 %}
  7967 // And Register with Immediate
  7968 instruct andI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  7969   match(Set dst (AndI dst src));
  7970   effect(KILL cr);
  7972   format %{ "AND    $dst,$src" %}
  7973   opcode(0x81,0x04);  /* Opcode 81 /4 */
  7974   // ins_encode( RegImm( dst, src) );
  7975   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7976   ins_pipe( ialu_reg );
  7977 %}
  7979 // And Register with Memory
  7980 instruct andI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  7981   match(Set dst (AndI dst (LoadI src)));
  7982   effect(KILL cr);
  7984   ins_cost(125);
  7985   format %{ "AND    $dst,$src" %}
  7986   opcode(0x23);
  7987   ins_encode( OpcP, RegMem( dst, src) );
  7988   ins_pipe( ialu_reg_mem );
  7989 %}
  7991 // And Memory with Register
  7992 instruct andI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  7993   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  7994   effect(KILL cr);
  7996   ins_cost(150);
  7997   format %{ "AND    $dst,$src" %}
  7998   opcode(0x21);  /* Opcode 21 /r */
  7999   ins_encode( OpcP, RegMem( src, dst ) );
  8000   ins_pipe( ialu_mem_reg );
  8001 %}
  8003 // And Memory with Immediate
  8004 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8005   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8006   effect(KILL cr);
  8008   ins_cost(125);
  8009   format %{ "AND    $dst,$src" %}
  8010   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  8011   // ins_encode( MemImm( dst, src) );
  8012   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8013   ins_pipe( ialu_mem_imm );
  8014 %}
  8016 // BMI1 instructions
  8017 instruct andnI_rReg_rReg_rReg(rRegI dst, rRegI src1, rRegI src2, immI_M1 minus_1, eFlagsReg cr) %{
  8018   match(Set dst (AndI (XorI src1 minus_1) src2));
  8019   predicate(UseBMI1Instructions);
  8020   effect(KILL cr);
  8022   format %{ "ANDNL  $dst, $src1, $src2" %}
  8024   ins_encode %{
  8025     __ andnl($dst$$Register, $src1$$Register, $src2$$Register);
  8026   %}
  8027   ins_pipe(ialu_reg);
  8028 %}
  8030 instruct andnI_rReg_rReg_mem(rRegI dst, rRegI src1, memory src2, immI_M1 minus_1, eFlagsReg cr) %{
  8031   match(Set dst (AndI (XorI src1 minus_1) (LoadI src2) ));
  8032   predicate(UseBMI1Instructions);
  8033   effect(KILL cr);
  8035   ins_cost(125);
  8036   format %{ "ANDNL  $dst, $src1, $src2" %}
  8038   ins_encode %{
  8039     __ andnl($dst$$Register, $src1$$Register, $src2$$Address);
  8040   %}
  8041   ins_pipe(ialu_reg_mem);
  8042 %}
  8044 instruct blsiI_rReg_rReg(rRegI dst, rRegI src, immI0 imm_zero, eFlagsReg cr) %{
  8045   match(Set dst (AndI (SubI imm_zero src) src));
  8046   predicate(UseBMI1Instructions);
  8047   effect(KILL cr);
  8049   format %{ "BLSIL  $dst, $src" %}
  8051   ins_encode %{
  8052     __ blsil($dst$$Register, $src$$Register);
  8053   %}
  8054   ins_pipe(ialu_reg);
  8055 %}
  8057 instruct blsiI_rReg_mem(rRegI dst, memory src, immI0 imm_zero, eFlagsReg cr) %{
  8058   match(Set dst (AndI (SubI imm_zero (LoadI src) ) (LoadI src) ));
  8059   predicate(UseBMI1Instructions);
  8060   effect(KILL cr);
  8062   ins_cost(125);
  8063   format %{ "BLSIL  $dst, $src" %}
  8065   ins_encode %{
  8066     __ blsil($dst$$Register, $src$$Address);
  8067   %}
  8068   ins_pipe(ialu_reg_mem);
  8069 %}
  8071 instruct blsmskI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, eFlagsReg cr)
  8072 %{
  8073   match(Set dst (XorI (AddI src minus_1) src));
  8074   predicate(UseBMI1Instructions);
  8075   effect(KILL cr);
  8077   format %{ "BLSMSKL $dst, $src" %}
  8079   ins_encode %{
  8080     __ blsmskl($dst$$Register, $src$$Register);
  8081   %}
  8083   ins_pipe(ialu_reg);
  8084 %}
  8086 instruct blsmskI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, eFlagsReg cr)
  8087 %{
  8088   match(Set dst (XorI (AddI (LoadI src) minus_1) (LoadI src) ));
  8089   predicate(UseBMI1Instructions);
  8090   effect(KILL cr);
  8092   ins_cost(125);
  8093   format %{ "BLSMSKL $dst, $src" %}
  8095   ins_encode %{
  8096     __ blsmskl($dst$$Register, $src$$Address);
  8097   %}
  8099   ins_pipe(ialu_reg_mem);
  8100 %}
  8102 instruct blsrI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, eFlagsReg cr)
  8103 %{
  8104   match(Set dst (AndI (AddI src minus_1) src) );
  8105   predicate(UseBMI1Instructions);
  8106   effect(KILL cr);
  8108   format %{ "BLSRL  $dst, $src" %}
  8110   ins_encode %{
  8111     __ blsrl($dst$$Register, $src$$Register);
  8112   %}
  8114   ins_pipe(ialu_reg);
  8115 %}
  8117 instruct blsrI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, eFlagsReg cr)
  8118 %{
  8119   match(Set dst (AndI (AddI (LoadI src) minus_1) (LoadI src) ));
  8120   predicate(UseBMI1Instructions);
  8121   effect(KILL cr);
  8123   ins_cost(125);
  8124   format %{ "BLSRL  $dst, $src" %}
  8126   ins_encode %{
  8127     __ blsrl($dst$$Register, $src$$Address);
  8128   %}
  8130   ins_pipe(ialu_reg_mem);
  8131 %}
  8133 // Or Instructions
  8134 // Or Register with Register
  8135 instruct orI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  8136   match(Set dst (OrI dst src));
  8137   effect(KILL cr);
  8139   size(2);
  8140   format %{ "OR     $dst,$src" %}
  8141   opcode(0x0B);
  8142   ins_encode( OpcP, RegReg( dst, src) );
  8143   ins_pipe( ialu_reg_reg );
  8144 %}
  8146 instruct orI_eReg_castP2X(rRegI dst, eRegP src, eFlagsReg cr) %{
  8147   match(Set dst (OrI dst (CastP2X src)));
  8148   effect(KILL cr);
  8150   size(2);
  8151   format %{ "OR     $dst,$src" %}
  8152   opcode(0x0B);
  8153   ins_encode( OpcP, RegReg( dst, src) );
  8154   ins_pipe( ialu_reg_reg );
  8155 %}
  8158 // Or Register with Immediate
  8159 instruct orI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  8160   match(Set dst (OrI dst src));
  8161   effect(KILL cr);
  8163   format %{ "OR     $dst,$src" %}
  8164   opcode(0x81,0x01);  /* Opcode 81 /1 id */
  8165   // ins_encode( RegImm( dst, src) );
  8166   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8167   ins_pipe( ialu_reg );
  8168 %}
  8170 // Or Register with Memory
  8171 instruct orI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  8172   match(Set dst (OrI dst (LoadI src)));
  8173   effect(KILL cr);
  8175   ins_cost(125);
  8176   format %{ "OR     $dst,$src" %}
  8177   opcode(0x0B);
  8178   ins_encode( OpcP, RegMem( dst, src) );
  8179   ins_pipe( ialu_reg_mem );
  8180 %}
  8182 // Or Memory with Register
  8183 instruct orI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  8184   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8185   effect(KILL cr);
  8187   ins_cost(150);
  8188   format %{ "OR     $dst,$src" %}
  8189   opcode(0x09);  /* Opcode 09 /r */
  8190   ins_encode( OpcP, RegMem( src, dst ) );
  8191   ins_pipe( ialu_mem_reg );
  8192 %}
  8194 // Or Memory with Immediate
  8195 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8196   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8197   effect(KILL cr);
  8199   ins_cost(125);
  8200   format %{ "OR     $dst,$src" %}
  8201   opcode(0x81,0x1);  /* Opcode 81 /1 id */
  8202   // ins_encode( MemImm( dst, src) );
  8203   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8204   ins_pipe( ialu_mem_imm );
  8205 %}
  8207 // ROL/ROR
  8208 // ROL expand
  8209 instruct rolI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8210   effect(USE_DEF dst, USE shift, KILL cr);
  8212   format %{ "ROL    $dst, $shift" %}
  8213   opcode(0xD1, 0x0); /* Opcode D1 /0 */
  8214   ins_encode( OpcP, RegOpc( dst ));
  8215   ins_pipe( ialu_reg );
  8216 %}
  8218 instruct rolI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8219   effect(USE_DEF dst, USE shift, KILL cr);
  8221   format %{ "ROL    $dst, $shift" %}
  8222   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  8223   ins_encode( RegOpcImm(dst, shift) );
  8224   ins_pipe(ialu_reg);
  8225 %}
  8227 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8228   effect(USE_DEF dst, USE shift, KILL cr);
  8230   format %{ "ROL    $dst, $shift" %}
  8231   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  8232   ins_encode(OpcP, RegOpc(dst));
  8233   ins_pipe( ialu_reg_reg );
  8234 %}
  8235 // end of ROL expand
  8237 // ROL 32bit by one once
  8238 instruct rolI_eReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  8239   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8241   expand %{
  8242     rolI_eReg_imm1(dst, lshift, cr);
  8243   %}
  8244 %}
  8246 // ROL 32bit var by imm8 once
  8247 instruct rolI_eReg_i8(rRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  8248   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8249   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8251   expand %{
  8252     rolI_eReg_imm8(dst, lshift, cr);
  8253   %}
  8254 %}
  8256 // ROL 32bit var by var once
  8257 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8258   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  8260   expand %{
  8261     rolI_eReg_CL(dst, shift, cr);
  8262   %}
  8263 %}
  8265 // ROL 32bit var by var once
  8266 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8267   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  8269   expand %{
  8270     rolI_eReg_CL(dst, shift, cr);
  8271   %}
  8272 %}
  8274 // ROR expand
  8275 instruct rorI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8276   effect(USE_DEF dst, USE shift, KILL cr);
  8278   format %{ "ROR    $dst, $shift" %}
  8279   opcode(0xD1,0x1);  /* Opcode D1 /1 */
  8280   ins_encode( OpcP, RegOpc( dst ) );
  8281   ins_pipe( ialu_reg );
  8282 %}
  8284 instruct rorI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8285   effect (USE_DEF dst, USE shift, KILL cr);
  8287   format %{ "ROR    $dst, $shift" %}
  8288   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  8289   ins_encode( RegOpcImm(dst, shift) );
  8290   ins_pipe( ialu_reg );
  8291 %}
  8293 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  8294   effect(USE_DEF dst, USE shift, KILL cr);
  8296   format %{ "ROR    $dst, $shift" %}
  8297   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  8298   ins_encode(OpcP, RegOpc(dst));
  8299   ins_pipe( ialu_reg_reg );
  8300 %}
  8301 // end of ROR expand
  8303 // ROR right once
  8304 instruct rorI_eReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  8305   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8307   expand %{
  8308     rorI_eReg_imm1(dst, rshift, cr);
  8309   %}
  8310 %}
  8312 // ROR 32bit by immI8 once
  8313 instruct rorI_eReg_i8(rRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  8314   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8315   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8317   expand %{
  8318     rorI_eReg_imm8(dst, rshift, cr);
  8319   %}
  8320 %}
  8322 // ROR 32bit var by var once
  8323 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8324   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  8326   expand %{
  8327     rorI_eReg_CL(dst, shift, cr);
  8328   %}
  8329 %}
  8331 // ROR 32bit var by var once
  8332 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8333   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  8335   expand %{
  8336     rorI_eReg_CL(dst, shift, cr);
  8337   %}
  8338 %}
  8340 // Xor Instructions
  8341 // Xor Register with Register
  8342 instruct xorI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  8343   match(Set dst (XorI dst src));
  8344   effect(KILL cr);
  8346   size(2);
  8347   format %{ "XOR    $dst,$src" %}
  8348   opcode(0x33);
  8349   ins_encode( OpcP, RegReg( dst, src) );
  8350   ins_pipe( ialu_reg_reg );
  8351 %}
  8353 // Xor Register with Immediate -1
  8354 instruct xorI_eReg_im1(rRegI dst, immI_M1 imm) %{
  8355   match(Set dst (XorI dst imm));  
  8357   size(2);
  8358   format %{ "NOT    $dst" %}  
  8359   ins_encode %{
  8360      __ notl($dst$$Register);
  8361   %}
  8362   ins_pipe( ialu_reg );
  8363 %}
  8365 // Xor Register with Immediate
  8366 instruct xorI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  8367   match(Set dst (XorI dst src));
  8368   effect(KILL cr);
  8370   format %{ "XOR    $dst,$src" %}
  8371   opcode(0x81,0x06);  /* Opcode 81 /6 id */
  8372   // ins_encode( RegImm( dst, src) );
  8373   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8374   ins_pipe( ialu_reg );
  8375 %}
  8377 // Xor Register with Memory
  8378 instruct xorI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  8379   match(Set dst (XorI dst (LoadI src)));
  8380   effect(KILL cr);
  8382   ins_cost(125);
  8383   format %{ "XOR    $dst,$src" %}
  8384   opcode(0x33);
  8385   ins_encode( OpcP, RegMem(dst, src) );
  8386   ins_pipe( ialu_reg_mem );
  8387 %}
  8389 // Xor Memory with Register
  8390 instruct xorI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  8391   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8392   effect(KILL cr);
  8394   ins_cost(150);
  8395   format %{ "XOR    $dst,$src" %}
  8396   opcode(0x31);  /* Opcode 31 /r */
  8397   ins_encode( OpcP, RegMem( src, dst ) );
  8398   ins_pipe( ialu_mem_reg );
  8399 %}
  8401 // Xor Memory with Immediate
  8402 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8403   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8404   effect(KILL cr);
  8406   ins_cost(125);
  8407   format %{ "XOR    $dst,$src" %}
  8408   opcode(0x81,0x6);  /* Opcode 81 /6 id */
  8409   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8410   ins_pipe( ialu_mem_imm );
  8411 %}
  8413 //----------Convert Int to Boolean---------------------------------------------
  8415 instruct movI_nocopy(rRegI dst, rRegI src) %{
  8416   effect( DEF dst, USE src );
  8417   format %{ "MOV    $dst,$src" %}
  8418   ins_encode( enc_Copy( dst, src) );
  8419   ins_pipe( ialu_reg_reg );
  8420 %}
  8422 instruct ci2b( rRegI dst, rRegI src, eFlagsReg cr ) %{
  8423   effect( USE_DEF dst, USE src, KILL cr );
  8425   size(4);
  8426   format %{ "NEG    $dst\n\t"
  8427             "ADC    $dst,$src" %}
  8428   ins_encode( neg_reg(dst),
  8429               OpcRegReg(0x13,dst,src) );
  8430   ins_pipe( ialu_reg_reg_long );
  8431 %}
  8433 instruct convI2B( rRegI dst, rRegI src, eFlagsReg cr ) %{
  8434   match(Set dst (Conv2B src));
  8436   expand %{
  8437     movI_nocopy(dst,src);
  8438     ci2b(dst,src,cr);
  8439   %}
  8440 %}
  8442 instruct movP_nocopy(rRegI dst, eRegP src) %{
  8443   effect( DEF dst, USE src );
  8444   format %{ "MOV    $dst,$src" %}
  8445   ins_encode( enc_Copy( dst, src) );
  8446   ins_pipe( ialu_reg_reg );
  8447 %}
  8449 instruct cp2b( rRegI dst, eRegP src, eFlagsReg cr ) %{
  8450   effect( USE_DEF dst, USE src, KILL cr );
  8451   format %{ "NEG    $dst\n\t"
  8452             "ADC    $dst,$src" %}
  8453   ins_encode( neg_reg(dst),
  8454               OpcRegReg(0x13,dst,src) );
  8455   ins_pipe( ialu_reg_reg_long );
  8456 %}
  8458 instruct convP2B( rRegI dst, eRegP src, eFlagsReg cr ) %{
  8459   match(Set dst (Conv2B src));
  8461   expand %{
  8462     movP_nocopy(dst,src);
  8463     cp2b(dst,src,cr);
  8464   %}
  8465 %}
  8467 instruct cmpLTMask(eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr) %{
  8468   match(Set dst (CmpLTMask p q));
  8469   effect(KILL cr);
  8470   ins_cost(400);
  8472   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  8473   format %{ "XOR    $dst,$dst\n\t"
  8474             "CMP    $p,$q\n\t"
  8475             "SETlt  $dst\n\t"
  8476             "NEG    $dst" %}
  8477   ins_encode %{
  8478     Register Rp = $p$$Register;
  8479     Register Rq = $q$$Register;
  8480     Register Rd = $dst$$Register;
  8481     Label done;
  8482     __ xorl(Rd, Rd);
  8483     __ cmpl(Rp, Rq);
  8484     __ setb(Assembler::less, Rd);
  8485     __ negl(Rd);
  8486   %}
  8488   ins_pipe(pipe_slow);
  8489 %}
  8491 instruct cmpLTMask0(rRegI dst, immI0 zero, eFlagsReg cr) %{
  8492   match(Set dst (CmpLTMask dst zero));
  8493   effect(DEF dst, KILL cr);
  8494   ins_cost(100);
  8496   format %{ "SAR    $dst,31\t# cmpLTMask0" %}
  8497   ins_encode %{
  8498   __ sarl($dst$$Register, 31);
  8499   %}
  8500   ins_pipe(ialu_reg);
  8501 %}
  8503 /* better to save a register than avoid a branch */
  8504 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
  8505   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8506   effect(KILL cr);
  8507   ins_cost(400);
  8508   format %{ "SUB    $p,$q\t# cadd_cmpLTMask\n\t"
  8509             "JGE    done\n\t"
  8510             "ADD    $p,$y\n"
  8511             "done:  " %}
  8512   ins_encode %{
  8513     Register Rp = $p$$Register;
  8514     Register Rq = $q$$Register;
  8515     Register Ry = $y$$Register;
  8516     Label done;
  8517     __ subl(Rp, Rq);
  8518     __ jccb(Assembler::greaterEqual, done);
  8519     __ addl(Rp, Ry);
  8520     __ bind(done);
  8521   %}
  8523   ins_pipe(pipe_cmplt);
  8524 %}
  8526 /* better to save a register than avoid a branch */
  8527 instruct and_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
  8528   match(Set y (AndI (CmpLTMask p q) y));
  8529   effect(KILL cr);
  8531   ins_cost(300);
  8533   format %{ "CMPL     $p, $q\t# and_cmpLTMask\n\t"
  8534             "JLT      done\n\t"
  8535             "XORL     $y, $y\n"
  8536             "done:  " %}
  8537   ins_encode %{
  8538     Register Rp = $p$$Register;
  8539     Register Rq = $q$$Register;
  8540     Register Ry = $y$$Register;
  8541     Label done;
  8542     __ cmpl(Rp, Rq);
  8543     __ jccb(Assembler::less, done);
  8544     __ xorl(Ry, Ry);
  8545     __ bind(done);
  8546   %}
  8548   ins_pipe(pipe_cmplt);
  8549 %}
  8551 /* If I enable this, I encourage spilling in the inner loop of compress.
  8552 instruct cadd_cmpLTMask_mem(ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr) %{
  8553   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  8554 */
  8555 //----------Overflow Math Instructions-----------------------------------------
  8557 instruct overflowAddI_eReg(eFlagsReg cr, eAXRegI op1, rRegI op2)
  8558 %{
  8559   match(Set cr (OverflowAddI op1 op2));
  8560   effect(DEF cr, USE_KILL op1, USE op2);
  8562   format %{ "ADD    $op1, $op2\t# overflow check int" %}
  8564   ins_encode %{
  8565     __ addl($op1$$Register, $op2$$Register);
  8566   %}
  8567   ins_pipe(ialu_reg_reg);
  8568 %}
  8570 instruct overflowAddI_rReg_imm(eFlagsReg cr, eAXRegI op1, immI op2)
  8571 %{
  8572   match(Set cr (OverflowAddI op1 op2));
  8573   effect(DEF cr, USE_KILL op1, USE op2);
  8575   format %{ "ADD    $op1, $op2\t# overflow check int" %}
  8577   ins_encode %{
  8578     __ addl($op1$$Register, $op2$$constant);
  8579   %}
  8580   ins_pipe(ialu_reg_reg);
  8581 %}
  8583 instruct overflowSubI_rReg(eFlagsReg cr, rRegI op1, rRegI op2)
  8584 %{
  8585   match(Set cr (OverflowSubI op1 op2));
  8587   format %{ "CMP    $op1, $op2\t# overflow check int" %}
  8588   ins_encode %{
  8589     __ cmpl($op1$$Register, $op2$$Register);
  8590   %}
  8591   ins_pipe(ialu_reg_reg);
  8592 %}
  8594 instruct overflowSubI_rReg_imm(eFlagsReg cr, rRegI op1, immI op2)
  8595 %{
  8596   match(Set cr (OverflowSubI op1 op2));
  8598   format %{ "CMP    $op1, $op2\t# overflow check int" %}
  8599   ins_encode %{
  8600     __ cmpl($op1$$Register, $op2$$constant);
  8601   %}
  8602   ins_pipe(ialu_reg_reg);
  8603 %}
  8605 instruct overflowNegI_rReg(eFlagsReg cr, immI0 zero, eAXRegI op2)
  8606 %{
  8607   match(Set cr (OverflowSubI zero op2));
  8608   effect(DEF cr, USE_KILL op2);
  8610   format %{ "NEG    $op2\t# overflow check int" %}
  8611   ins_encode %{
  8612     __ negl($op2$$Register);
  8613   %}
  8614   ins_pipe(ialu_reg_reg);
  8615 %}
  8617 instruct overflowMulI_rReg(eFlagsReg cr, eAXRegI op1, rRegI op2)
  8618 %{
  8619   match(Set cr (OverflowMulI op1 op2));
  8620   effect(DEF cr, USE_KILL op1, USE op2);
  8622   format %{ "IMUL    $op1, $op2\t# overflow check int" %}
  8623   ins_encode %{
  8624     __ imull($op1$$Register, $op2$$Register);
  8625   %}
  8626   ins_pipe(ialu_reg_reg_alu0);
  8627 %}
  8629 instruct overflowMulI_rReg_imm(eFlagsReg cr, rRegI op1, immI op2, rRegI tmp)
  8630 %{
  8631   match(Set cr (OverflowMulI op1 op2));
  8632   effect(DEF cr, TEMP tmp, USE op1, USE op2);
  8634   format %{ "IMUL    $tmp, $op1, $op2\t# overflow check int" %}
  8635   ins_encode %{
  8636     __ imull($tmp$$Register, $op1$$Register, $op2$$constant);
  8637   %}
  8638   ins_pipe(ialu_reg_reg_alu0);
  8639 %}
  8641 //----------Long Instructions------------------------------------------------
  8642 // Add Long Register with Register
  8643 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  8644   match(Set dst (AddL dst src));
  8645   effect(KILL cr);
  8646   ins_cost(200);
  8647   format %{ "ADD    $dst.lo,$src.lo\n\t"
  8648             "ADC    $dst.hi,$src.hi" %}
  8649   opcode(0x03, 0x13);
  8650   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  8651   ins_pipe( ialu_reg_reg_long );
  8652 %}
  8654 // Add Long Register with Immediate
  8655 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  8656   match(Set dst (AddL dst src));
  8657   effect(KILL cr);
  8658   format %{ "ADD    $dst.lo,$src.lo\n\t"
  8659             "ADC    $dst.hi,$src.hi" %}
  8660   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  8661   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  8662   ins_pipe( ialu_reg_long );
  8663 %}
  8665 // Add Long Register with Memory
  8666 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  8667   match(Set dst (AddL dst (LoadL mem)));
  8668   effect(KILL cr);
  8669   ins_cost(125);
  8670   format %{ "ADD    $dst.lo,$mem\n\t"
  8671             "ADC    $dst.hi,$mem+4" %}
  8672   opcode(0x03, 0x13);
  8673   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  8674   ins_pipe( ialu_reg_long_mem );
  8675 %}
  8677 // Subtract Long Register with Register.
  8678 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  8679   match(Set dst (SubL dst src));
  8680   effect(KILL cr);
  8681   ins_cost(200);
  8682   format %{ "SUB    $dst.lo,$src.lo\n\t"
  8683             "SBB    $dst.hi,$src.hi" %}
  8684   opcode(0x2B, 0x1B);
  8685   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  8686   ins_pipe( ialu_reg_reg_long );
  8687 %}
  8689 // Subtract Long Register with Immediate
  8690 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  8691   match(Set dst (SubL dst src));
  8692   effect(KILL cr);
  8693   format %{ "SUB    $dst.lo,$src.lo\n\t"
  8694             "SBB    $dst.hi,$src.hi" %}
  8695   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  8696   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  8697   ins_pipe( ialu_reg_long );
  8698 %}
  8700 // Subtract Long Register with Memory
  8701 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  8702   match(Set dst (SubL dst (LoadL mem)));
  8703   effect(KILL cr);
  8704   ins_cost(125);
  8705   format %{ "SUB    $dst.lo,$mem\n\t"
  8706             "SBB    $dst.hi,$mem+4" %}
  8707   opcode(0x2B, 0x1B);
  8708   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  8709   ins_pipe( ialu_reg_long_mem );
  8710 %}
  8712 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  8713   match(Set dst (SubL zero dst));
  8714   effect(KILL cr);
  8715   ins_cost(300);
  8716   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  8717   ins_encode( neg_long(dst) );
  8718   ins_pipe( ialu_reg_reg_long );
  8719 %}
  8721 // And Long Register with Register
  8722 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  8723   match(Set dst (AndL dst src));
  8724   effect(KILL cr);
  8725   format %{ "AND    $dst.lo,$src.lo\n\t"
  8726             "AND    $dst.hi,$src.hi" %}
  8727   opcode(0x23,0x23);
  8728   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  8729   ins_pipe( ialu_reg_reg_long );
  8730 %}
  8732 // And Long Register with Immediate
  8733 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  8734   match(Set dst (AndL dst src));
  8735   effect(KILL cr);
  8736   format %{ "AND    $dst.lo,$src.lo\n\t"
  8737             "AND    $dst.hi,$src.hi" %}
  8738   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  8739   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  8740   ins_pipe( ialu_reg_long );
  8741 %}
  8743 // And Long Register with Memory
  8744 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  8745   match(Set dst (AndL dst (LoadL mem)));
  8746   effect(KILL cr);
  8747   ins_cost(125);
  8748   format %{ "AND    $dst.lo,$mem\n\t"
  8749             "AND    $dst.hi,$mem+4" %}
  8750   opcode(0x23, 0x23);
  8751   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  8752   ins_pipe( ialu_reg_long_mem );
  8753 %}
  8755 // BMI1 instructions
  8756 instruct andnL_eReg_eReg_eReg(eRegL dst, eRegL src1, eRegL src2, immL_M1 minus_1, eFlagsReg cr) %{
  8757   match(Set dst (AndL (XorL src1 minus_1) src2));
  8758   predicate(UseBMI1Instructions);
  8759   effect(KILL cr, TEMP dst);
  8761   format %{ "ANDNL  $dst.lo, $src1.lo, $src2.lo\n\t"
  8762             "ANDNL  $dst.hi, $src1.hi, $src2.hi"
  8763          %}
  8765   ins_encode %{
  8766     Register Rdst = $dst$$Register;
  8767     Register Rsrc1 = $src1$$Register;
  8768     Register Rsrc2 = $src2$$Register;
  8769     __ andnl(Rdst, Rsrc1, Rsrc2);
  8770     __ andnl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc1), HIGH_FROM_LOW(Rsrc2));
  8771   %}
  8772   ins_pipe(ialu_reg_reg_long);
  8773 %}
  8775 instruct andnL_eReg_eReg_mem(eRegL dst, eRegL src1, memory src2, immL_M1 minus_1, eFlagsReg cr) %{
  8776   match(Set dst (AndL (XorL src1 minus_1) (LoadL src2) ));
  8777   predicate(UseBMI1Instructions);
  8778   effect(KILL cr, TEMP dst);
  8780   ins_cost(125);
  8781   format %{ "ANDNL  $dst.lo, $src1.lo, $src2\n\t"
  8782             "ANDNL  $dst.hi, $src1.hi, $src2+4"
  8783          %}
  8785   ins_encode %{
  8786     Register Rdst = $dst$$Register;
  8787     Register Rsrc1 = $src1$$Register;
  8788     Address src2_hi = Address::make_raw($src2$$base, $src2$$index, $src2$$scale, $src2$$disp + 4, relocInfo::none);
  8790     __ andnl(Rdst, Rsrc1, $src2$$Address);
  8791     __ andnl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc1), src2_hi);
  8792   %}
  8793   ins_pipe(ialu_reg_mem);
  8794 %}
  8796 instruct blsiL_eReg_eReg(eRegL dst, eRegL src, immL0 imm_zero, eFlagsReg cr) %{
  8797   match(Set dst (AndL (SubL imm_zero src) src));
  8798   predicate(UseBMI1Instructions);
  8799   effect(KILL cr, TEMP dst);
  8801   format %{ "MOVL   $dst.hi, 0\n\t"
  8802             "BLSIL  $dst.lo, $src.lo\n\t"
  8803             "JNZ    done\n\t"
  8804             "BLSIL  $dst.hi, $src.hi\n"
  8805             "done:"
  8806          %}
  8808   ins_encode %{
  8809     Label done;
  8810     Register Rdst = $dst$$Register;
  8811     Register Rsrc = $src$$Register;
  8812     __ movl(HIGH_FROM_LOW(Rdst), 0);
  8813     __ blsil(Rdst, Rsrc);
  8814     __ jccb(Assembler::notZero, done);
  8815     __ blsil(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
  8816     __ bind(done);
  8817   %}
  8818   ins_pipe(ialu_reg);
  8819 %}
  8821 instruct blsiL_eReg_mem(eRegL dst, memory src, immL0 imm_zero, eFlagsReg cr) %{
  8822   match(Set dst (AndL (SubL imm_zero (LoadL src) ) (LoadL src) ));
  8823   predicate(UseBMI1Instructions);
  8824   effect(KILL cr, TEMP dst);
  8826   ins_cost(125);
  8827   format %{ "MOVL   $dst.hi, 0\n\t"
  8828             "BLSIL  $dst.lo, $src\n\t"
  8829             "JNZ    done\n\t"
  8830             "BLSIL  $dst.hi, $src+4\n"
  8831             "done:"
  8832          %}
  8834   ins_encode %{
  8835     Label done;
  8836     Register Rdst = $dst$$Register;
  8837     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
  8839     __ movl(HIGH_FROM_LOW(Rdst), 0);
  8840     __ blsil(Rdst, $src$$Address);
  8841     __ jccb(Assembler::notZero, done);
  8842     __ blsil(HIGH_FROM_LOW(Rdst), src_hi);
  8843     __ bind(done);
  8844   %}
  8845   ins_pipe(ialu_reg_mem);
  8846 %}
  8848 instruct blsmskL_eReg_eReg(eRegL dst, eRegL src, immL_M1 minus_1, eFlagsReg cr)
  8849 %{
  8850   match(Set dst (XorL (AddL src minus_1) src));
  8851   predicate(UseBMI1Instructions);
  8852   effect(KILL cr, TEMP dst);
  8854   format %{ "MOVL    $dst.hi, 0\n\t"
  8855             "BLSMSKL $dst.lo, $src.lo\n\t"
  8856             "JNC     done\n\t"
  8857             "BLSMSKL $dst.hi, $src.hi\n"
  8858             "done:"
  8859          %}
  8861   ins_encode %{
  8862     Label done;
  8863     Register Rdst = $dst$$Register;
  8864     Register Rsrc = $src$$Register;
  8865     __ movl(HIGH_FROM_LOW(Rdst), 0);
  8866     __ blsmskl(Rdst, Rsrc);
  8867     __ jccb(Assembler::carryClear, done);
  8868     __ blsmskl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
  8869     __ bind(done);
  8870   %}
  8872   ins_pipe(ialu_reg);
  8873 %}
  8875 instruct blsmskL_eReg_mem(eRegL dst, memory src, immL_M1 minus_1, eFlagsReg cr)
  8876 %{
  8877   match(Set dst (XorL (AddL (LoadL src) minus_1) (LoadL src) ));
  8878   predicate(UseBMI1Instructions);
  8879   effect(KILL cr, TEMP dst);
  8881   ins_cost(125);
  8882   format %{ "MOVL    $dst.hi, 0\n\t"
  8883             "BLSMSKL $dst.lo, $src\n\t"
  8884             "JNC     done\n\t"
  8885             "BLSMSKL $dst.hi, $src+4\n"
  8886             "done:"
  8887          %}
  8889   ins_encode %{
  8890     Label done;
  8891     Register Rdst = $dst$$Register;
  8892     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
  8894     __ movl(HIGH_FROM_LOW(Rdst), 0);
  8895     __ blsmskl(Rdst, $src$$Address);
  8896     __ jccb(Assembler::carryClear, done);
  8897     __ blsmskl(HIGH_FROM_LOW(Rdst), src_hi);
  8898     __ bind(done);
  8899   %}
  8901   ins_pipe(ialu_reg_mem);
  8902 %}
  8904 instruct blsrL_eReg_eReg(eRegL dst, eRegL src, immL_M1 minus_1, eFlagsReg cr)
  8905 %{
  8906   match(Set dst (AndL (AddL src minus_1) src) );
  8907   predicate(UseBMI1Instructions);
  8908   effect(KILL cr, TEMP dst);
  8910   format %{ "MOVL   $dst.hi, $src.hi\n\t"
  8911             "BLSRL  $dst.lo, $src.lo\n\t"
  8912             "JNC    done\n\t"
  8913             "BLSRL  $dst.hi, $src.hi\n"
  8914             "done:"
  8915   %}
  8917   ins_encode %{
  8918     Label done;
  8919     Register Rdst = $dst$$Register;
  8920     Register Rsrc = $src$$Register;
  8921     __ movl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
  8922     __ blsrl(Rdst, Rsrc);
  8923     __ jccb(Assembler::carryClear, done);
  8924     __ blsrl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
  8925     __ bind(done);
  8926   %}
  8928   ins_pipe(ialu_reg);
  8929 %}
  8931 instruct blsrL_eReg_mem(eRegL dst, memory src, immL_M1 minus_1, eFlagsReg cr)
  8932 %{
  8933   match(Set dst (AndL (AddL (LoadL src) minus_1) (LoadL src) ));
  8934   predicate(UseBMI1Instructions);
  8935   effect(KILL cr, TEMP dst);
  8937   ins_cost(125);
  8938   format %{ "MOVL   $dst.hi, $src+4\n\t"
  8939             "BLSRL  $dst.lo, $src\n\t"
  8940             "JNC    done\n\t"
  8941             "BLSRL  $dst.hi, $src+4\n"
  8942             "done:"
  8943   %}
  8945   ins_encode %{
  8946     Label done;
  8947     Register Rdst = $dst$$Register;
  8948     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
  8949     __ movl(HIGH_FROM_LOW(Rdst), src_hi);
  8950     __ blsrl(Rdst, $src$$Address);
  8951     __ jccb(Assembler::carryClear, done);
  8952     __ blsrl(HIGH_FROM_LOW(Rdst), src_hi);
  8953     __ bind(done);
  8954   %}
  8956   ins_pipe(ialu_reg_mem);
  8957 %}
  8959 // Or Long Register with Register
  8960 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  8961   match(Set dst (OrL dst src));
  8962   effect(KILL cr);
  8963   format %{ "OR     $dst.lo,$src.lo\n\t"
  8964             "OR     $dst.hi,$src.hi" %}
  8965   opcode(0x0B,0x0B);
  8966   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  8967   ins_pipe( ialu_reg_reg_long );
  8968 %}
  8970 // Or Long Register with Immediate
  8971 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  8972   match(Set dst (OrL dst src));
  8973   effect(KILL cr);
  8974   format %{ "OR     $dst.lo,$src.lo\n\t"
  8975             "OR     $dst.hi,$src.hi" %}
  8976   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  8977   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  8978   ins_pipe( ialu_reg_long );
  8979 %}
  8981 // Or Long Register with Memory
  8982 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  8983   match(Set dst (OrL dst (LoadL mem)));
  8984   effect(KILL cr);
  8985   ins_cost(125);
  8986   format %{ "OR     $dst.lo,$mem\n\t"
  8987             "OR     $dst.hi,$mem+4" %}
  8988   opcode(0x0B,0x0B);
  8989   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  8990   ins_pipe( ialu_reg_long_mem );
  8991 %}
  8993 // Xor Long Register with Register
  8994 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  8995   match(Set dst (XorL dst src));
  8996   effect(KILL cr);
  8997   format %{ "XOR    $dst.lo,$src.lo\n\t"
  8998             "XOR    $dst.hi,$src.hi" %}
  8999   opcode(0x33,0x33);
  9000   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9001   ins_pipe( ialu_reg_reg_long );
  9002 %}
  9004 // Xor Long Register with Immediate -1
  9005 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  9006   match(Set dst (XorL dst imm));  
  9007   format %{ "NOT    $dst.lo\n\t"
  9008             "NOT    $dst.hi" %}
  9009   ins_encode %{
  9010      __ notl($dst$$Register);
  9011      __ notl(HIGH_FROM_LOW($dst$$Register));
  9012   %}
  9013   ins_pipe( ialu_reg_long );
  9014 %}
  9016 // Xor Long Register with Immediate
  9017 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9018   match(Set dst (XorL dst src));
  9019   effect(KILL cr);
  9020   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9021             "XOR    $dst.hi,$src.hi" %}
  9022   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  9023   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9024   ins_pipe( ialu_reg_long );
  9025 %}
  9027 // Xor Long Register with Memory
  9028 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9029   match(Set dst (XorL dst (LoadL mem)));
  9030   effect(KILL cr);
  9031   ins_cost(125);
  9032   format %{ "XOR    $dst.lo,$mem\n\t"
  9033             "XOR    $dst.hi,$mem+4" %}
  9034   opcode(0x33,0x33);
  9035   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9036   ins_pipe( ialu_reg_long_mem );
  9037 %}
  9039 // Shift Left Long by 1
  9040 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  9041   predicate(UseNewLongLShift);
  9042   match(Set dst (LShiftL dst cnt));
  9043   effect(KILL cr);
  9044   ins_cost(100);
  9045   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9046             "ADC    $dst.hi,$dst.hi" %}
  9047   ins_encode %{
  9048     __ addl($dst$$Register,$dst$$Register);
  9049     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9050   %}
  9051   ins_pipe( ialu_reg_long );
  9052 %}
  9054 // Shift Left Long by 2
  9055 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  9056   predicate(UseNewLongLShift);
  9057   match(Set dst (LShiftL dst cnt));
  9058   effect(KILL cr);
  9059   ins_cost(100);
  9060   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9061             "ADC    $dst.hi,$dst.hi\n\t" 
  9062             "ADD    $dst.lo,$dst.lo\n\t"
  9063             "ADC    $dst.hi,$dst.hi" %}
  9064   ins_encode %{
  9065     __ addl($dst$$Register,$dst$$Register);
  9066     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9067     __ addl($dst$$Register,$dst$$Register);
  9068     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9069   %}
  9070   ins_pipe( ialu_reg_long );
  9071 %}
  9073 // Shift Left Long by 3
  9074 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  9075   predicate(UseNewLongLShift);
  9076   match(Set dst (LShiftL dst cnt));
  9077   effect(KILL cr);
  9078   ins_cost(100);
  9079   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9080             "ADC    $dst.hi,$dst.hi\n\t" 
  9081             "ADD    $dst.lo,$dst.lo\n\t"
  9082             "ADC    $dst.hi,$dst.hi\n\t" 
  9083             "ADD    $dst.lo,$dst.lo\n\t"
  9084             "ADC    $dst.hi,$dst.hi" %}
  9085   ins_encode %{
  9086     __ addl($dst$$Register,$dst$$Register);
  9087     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9088     __ addl($dst$$Register,$dst$$Register);
  9089     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9090     __ addl($dst$$Register,$dst$$Register);
  9091     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9092   %}
  9093   ins_pipe( ialu_reg_long );
  9094 %}
  9096 // Shift Left Long by 1-31
  9097 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9098   match(Set dst (LShiftL dst cnt));
  9099   effect(KILL cr);
  9100   ins_cost(200);
  9101   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
  9102             "SHL    $dst.lo,$cnt" %}
  9103   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  9104   ins_encode( move_long_small_shift(dst,cnt) );
  9105   ins_pipe( ialu_reg_long );
  9106 %}
  9108 // Shift Left Long by 32-63
  9109 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9110   match(Set dst (LShiftL dst cnt));
  9111   effect(KILL cr);
  9112   ins_cost(300);
  9113   format %{ "MOV    $dst.hi,$dst.lo\n"
  9114           "\tSHL    $dst.hi,$cnt-32\n"
  9115           "\tXOR    $dst.lo,$dst.lo" %}
  9116   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9117   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9118   ins_pipe( ialu_reg_long );
  9119 %}
  9121 // Shift Left Long by variable
  9122 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9123   match(Set dst (LShiftL dst shift));
  9124   effect(KILL cr);
  9125   ins_cost(500+200);
  9126   size(17);
  9127   format %{ "TEST   $shift,32\n\t"
  9128             "JEQ,s  small\n\t"
  9129             "MOV    $dst.hi,$dst.lo\n\t"
  9130             "XOR    $dst.lo,$dst.lo\n"
  9131     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
  9132             "SHL    $dst.lo,$shift" %}
  9133   ins_encode( shift_left_long( dst, shift ) );
  9134   ins_pipe( pipe_slow );
  9135 %}
  9137 // Shift Right Long by 1-31
  9138 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9139   match(Set dst (URShiftL dst cnt));
  9140   effect(KILL cr);
  9141   ins_cost(200);
  9142   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9143             "SHR    $dst.hi,$cnt" %}
  9144   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  9145   ins_encode( move_long_small_shift(dst,cnt) );
  9146   ins_pipe( ialu_reg_long );
  9147 %}
  9149 // Shift Right Long by 32-63
  9150 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9151   match(Set dst (URShiftL dst cnt));
  9152   effect(KILL cr);
  9153   ins_cost(300);
  9154   format %{ "MOV    $dst.lo,$dst.hi\n"
  9155           "\tSHR    $dst.lo,$cnt-32\n"
  9156           "\tXOR    $dst.hi,$dst.hi" %}
  9157   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9158   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9159   ins_pipe( ialu_reg_long );
  9160 %}
  9162 // Shift Right Long by variable
  9163 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9164   match(Set dst (URShiftL dst shift));
  9165   effect(KILL cr);
  9166   ins_cost(600);
  9167   size(17);
  9168   format %{ "TEST   $shift,32\n\t"
  9169             "JEQ,s  small\n\t"
  9170             "MOV    $dst.lo,$dst.hi\n\t"
  9171             "XOR    $dst.hi,$dst.hi\n"
  9172     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9173             "SHR    $dst.hi,$shift" %}
  9174   ins_encode( shift_right_long( dst, shift ) );
  9175   ins_pipe( pipe_slow );
  9176 %}
  9178 // Shift Right Long by 1-31
  9179 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9180   match(Set dst (RShiftL dst cnt));
  9181   effect(KILL cr);
  9182   ins_cost(200);
  9183   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9184             "SAR    $dst.hi,$cnt" %}
  9185   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  9186   ins_encode( move_long_small_shift(dst,cnt) );
  9187   ins_pipe( ialu_reg_long );
  9188 %}
  9190 // Shift Right Long by 32-63
  9191 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9192   match(Set dst (RShiftL dst cnt));
  9193   effect(KILL cr);
  9194   ins_cost(300);
  9195   format %{ "MOV    $dst.lo,$dst.hi\n"
  9196           "\tSAR    $dst.lo,$cnt-32\n"
  9197           "\tSAR    $dst.hi,31" %}
  9198   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9199   ins_encode( move_long_big_shift_sign(dst,cnt) );
  9200   ins_pipe( ialu_reg_long );
  9201 %}
  9203 // Shift Right arithmetic Long by variable
  9204 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9205   match(Set dst (RShiftL dst shift));
  9206   effect(KILL cr);
  9207   ins_cost(600);
  9208   size(18);
  9209   format %{ "TEST   $shift,32\n\t"
  9210             "JEQ,s  small\n\t"
  9211             "MOV    $dst.lo,$dst.hi\n\t"
  9212             "SAR    $dst.hi,31\n"
  9213     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9214             "SAR    $dst.hi,$shift" %}
  9215   ins_encode( shift_right_arith_long( dst, shift ) );
  9216   ins_pipe( pipe_slow );
  9217 %}
  9220 //----------Double Instructions------------------------------------------------
  9221 // Double Math
  9223 // Compare & branch
  9225 // P6 version of float compare, sets condition codes in EFLAGS
  9226 instruct cmpDPR_cc_P6(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9227   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9228   match(Set cr (CmpD src1 src2));
  9229   effect(KILL rax);
  9230   ins_cost(150);
  9231   format %{ "FLD    $src1\n\t"
  9232             "FUCOMIP ST,$src2  // P6 instruction\n\t"
  9233             "JNP    exit\n\t"
  9234             "MOV    ah,1       // saw a NaN, set CF\n\t"
  9235             "SAHF\n"
  9236      "exit:\tNOP               // avoid branch to branch" %}
  9237   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9238   ins_encode( Push_Reg_DPR(src1),
  9239               OpcP, RegOpc(src2),
  9240               cmpF_P6_fixup );
  9241   ins_pipe( pipe_slow );
  9242 %}
  9244 instruct cmpDPR_cc_P6CF(eFlagsRegUCF cr, regDPR src1, regDPR src2) %{
  9245   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9246   match(Set cr (CmpD src1 src2));
  9247   ins_cost(150);
  9248   format %{ "FLD    $src1\n\t"
  9249             "FUCOMIP ST,$src2  // P6 instruction" %}
  9250   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9251   ins_encode( Push_Reg_DPR(src1),
  9252               OpcP, RegOpc(src2));
  9253   ins_pipe( pipe_slow );
  9254 %}
  9256 // Compare & branch
  9257 instruct cmpDPR_cc(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9258   predicate(UseSSE<=1);
  9259   match(Set cr (CmpD src1 src2));
  9260   effect(KILL rax);
  9261   ins_cost(200);
  9262   format %{ "FLD    $src1\n\t"
  9263             "FCOMp  $src2\n\t"
  9264             "FNSTSW AX\n\t"
  9265             "TEST   AX,0x400\n\t"
  9266             "JZ,s   flags\n\t"
  9267             "MOV    AH,1\t# unordered treat as LT\n"
  9268     "flags:\tSAHF" %}
  9269   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9270   ins_encode( Push_Reg_DPR(src1),
  9271               OpcP, RegOpc(src2),
  9272               fpu_flags);
  9273   ins_pipe( pipe_slow );
  9274 %}
  9276 // Compare vs zero into -1,0,1
  9277 instruct cmpDPR_0(rRegI dst, regDPR src1, immDPR0 zero, eAXRegI rax, eFlagsReg cr) %{
  9278   predicate(UseSSE<=1);
  9279   match(Set dst (CmpD3 src1 zero));
  9280   effect(KILL cr, KILL rax);
  9281   ins_cost(280);
  9282   format %{ "FTSTD  $dst,$src1" %}
  9283   opcode(0xE4, 0xD9);
  9284   ins_encode( Push_Reg_DPR(src1),
  9285               OpcS, OpcP, PopFPU,
  9286               CmpF_Result(dst));
  9287   ins_pipe( pipe_slow );
  9288 %}
  9290 // Compare into -1,0,1
  9291 instruct cmpDPR_reg(rRegI dst, regDPR src1, regDPR src2, eAXRegI rax, eFlagsReg cr) %{
  9292   predicate(UseSSE<=1);
  9293   match(Set dst (CmpD3 src1 src2));
  9294   effect(KILL cr, KILL rax);
  9295   ins_cost(300);
  9296   format %{ "FCMPD  $dst,$src1,$src2" %}
  9297   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9298   ins_encode( Push_Reg_DPR(src1),
  9299               OpcP, RegOpc(src2),
  9300               CmpF_Result(dst));
  9301   ins_pipe( pipe_slow );
  9302 %}
  9304 // float compare and set condition codes in EFLAGS by XMM regs
  9305 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2) %{
  9306   predicate(UseSSE>=2);
  9307   match(Set cr (CmpD src1 src2));
  9308   ins_cost(145);
  9309   format %{ "UCOMISD $src1,$src2\n\t"
  9310             "JNP,s   exit\n\t"
  9311             "PUSHF\t# saw NaN, set CF\n\t"
  9312             "AND     [rsp], #0xffffff2b\n\t"
  9313             "POPF\n"
  9314     "exit:" %}
  9315   ins_encode %{
  9316     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9317     emit_cmpfp_fixup(_masm);
  9318   %}
  9319   ins_pipe( pipe_slow );
  9320 %}
  9322 instruct cmpD_ccCF(eFlagsRegUCF cr, regD src1, regD src2) %{
  9323   predicate(UseSSE>=2);
  9324   match(Set cr (CmpD src1 src2));
  9325   ins_cost(100);
  9326   format %{ "UCOMISD $src1,$src2" %}
  9327   ins_encode %{
  9328     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9329   %}
  9330   ins_pipe( pipe_slow );
  9331 %}
  9333 // float compare and set condition codes in EFLAGS by XMM regs
  9334 instruct cmpD_ccmem(eFlagsRegU cr, regD src1, memory src2) %{
  9335   predicate(UseSSE>=2);
  9336   match(Set cr (CmpD src1 (LoadD src2)));
  9337   ins_cost(145);
  9338   format %{ "UCOMISD $src1,$src2\n\t"
  9339             "JNP,s   exit\n\t"
  9340             "PUSHF\t# saw NaN, set CF\n\t"
  9341             "AND     [rsp], #0xffffff2b\n\t"
  9342             "POPF\n"
  9343     "exit:" %}
  9344   ins_encode %{
  9345     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9346     emit_cmpfp_fixup(_masm);
  9347   %}
  9348   ins_pipe( pipe_slow );
  9349 %}
  9351 instruct cmpD_ccmemCF(eFlagsRegUCF cr, regD src1, memory src2) %{
  9352   predicate(UseSSE>=2);
  9353   match(Set cr (CmpD src1 (LoadD src2)));
  9354   ins_cost(100);
  9355   format %{ "UCOMISD $src1,$src2" %}
  9356   ins_encode %{
  9357     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9358   %}
  9359   ins_pipe( pipe_slow );
  9360 %}
  9362 // Compare into -1,0,1 in XMM
  9363 instruct cmpD_reg(xRegI dst, regD src1, regD src2, eFlagsReg cr) %{
  9364   predicate(UseSSE>=2);
  9365   match(Set dst (CmpD3 src1 src2));
  9366   effect(KILL cr);
  9367   ins_cost(255);
  9368   format %{ "UCOMISD $src1, $src2\n\t"
  9369             "MOV     $dst, #-1\n\t"
  9370             "JP,s    done\n\t"
  9371             "JB,s    done\n\t"
  9372             "SETNE   $dst\n\t"
  9373             "MOVZB   $dst, $dst\n"
  9374     "done:" %}
  9375   ins_encode %{
  9376     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9377     emit_cmpfp3(_masm, $dst$$Register);
  9378   %}
  9379   ins_pipe( pipe_slow );
  9380 %}
  9382 // Compare into -1,0,1 in XMM and memory
  9383 instruct cmpD_regmem(xRegI dst, regD src1, memory src2, eFlagsReg cr) %{
  9384   predicate(UseSSE>=2);
  9385   match(Set dst (CmpD3 src1 (LoadD src2)));
  9386   effect(KILL cr);
  9387   ins_cost(275);
  9388   format %{ "UCOMISD $src1, $src2\n\t"
  9389             "MOV     $dst, #-1\n\t"
  9390             "JP,s    done\n\t"
  9391             "JB,s    done\n\t"
  9392             "SETNE   $dst\n\t"
  9393             "MOVZB   $dst, $dst\n"
  9394     "done:" %}
  9395   ins_encode %{
  9396     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9397     emit_cmpfp3(_masm, $dst$$Register);
  9398   %}
  9399   ins_pipe( pipe_slow );
  9400 %}
  9403 instruct subDPR_reg(regDPR dst, regDPR src) %{
  9404   predicate (UseSSE <=1);
  9405   match(Set dst (SubD dst src));
  9407   format %{ "FLD    $src\n\t"
  9408             "DSUBp  $dst,ST" %}
  9409   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
  9410   ins_cost(150);
  9411   ins_encode( Push_Reg_DPR(src),
  9412               OpcP, RegOpc(dst) );
  9413   ins_pipe( fpu_reg_reg );
  9414 %}
  9416 instruct subDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9417   predicate (UseSSE <=1);
  9418   match(Set dst (RoundDouble (SubD src1 src2)));
  9419   ins_cost(250);
  9421   format %{ "FLD    $src2\n\t"
  9422             "DSUB   ST,$src1\n\t"
  9423             "FSTP_D $dst\t# D-round" %}
  9424   opcode(0xD8, 0x5);
  9425   ins_encode( Push_Reg_DPR(src2),
  9426               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9427   ins_pipe( fpu_mem_reg_reg );
  9428 %}
  9431 instruct subDPR_reg_mem(regDPR dst, memory src) %{
  9432   predicate (UseSSE <=1);
  9433   match(Set dst (SubD dst (LoadD src)));
  9434   ins_cost(150);
  9436   format %{ "FLD    $src\n\t"
  9437             "DSUBp  $dst,ST" %}
  9438   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9439   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9440               OpcP, RegOpc(dst) );
  9441   ins_pipe( fpu_reg_mem );
  9442 %}
  9444 instruct absDPR_reg(regDPR1 dst, regDPR1 src) %{
  9445   predicate (UseSSE<=1);
  9446   match(Set dst (AbsD src));
  9447   ins_cost(100);
  9448   format %{ "FABS" %}
  9449   opcode(0xE1, 0xD9);
  9450   ins_encode( OpcS, OpcP );
  9451   ins_pipe( fpu_reg_reg );
  9452 %}
  9454 instruct negDPR_reg(regDPR1 dst, regDPR1 src) %{
  9455   predicate(UseSSE<=1);
  9456   match(Set dst (NegD src));
  9457   ins_cost(100);
  9458   format %{ "FCHS" %}
  9459   opcode(0xE0, 0xD9);
  9460   ins_encode( OpcS, OpcP );
  9461   ins_pipe( fpu_reg_reg );
  9462 %}
  9464 instruct addDPR_reg(regDPR dst, regDPR src) %{
  9465   predicate(UseSSE<=1);
  9466   match(Set dst (AddD dst src));
  9467   format %{ "FLD    $src\n\t"
  9468             "DADD   $dst,ST" %}
  9469   size(4);
  9470   ins_cost(150);
  9471   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
  9472   ins_encode( Push_Reg_DPR(src),
  9473               OpcP, RegOpc(dst) );
  9474   ins_pipe( fpu_reg_reg );
  9475 %}
  9478 instruct addDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9479   predicate(UseSSE<=1);
  9480   match(Set dst (RoundDouble (AddD src1 src2)));
  9481   ins_cost(250);
  9483   format %{ "FLD    $src2\n\t"
  9484             "DADD   ST,$src1\n\t"
  9485             "FSTP_D $dst\t# D-round" %}
  9486   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
  9487   ins_encode( Push_Reg_DPR(src2),
  9488               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9489   ins_pipe( fpu_mem_reg_reg );
  9490 %}
  9493 instruct addDPR_reg_mem(regDPR dst, memory src) %{
  9494   predicate(UseSSE<=1);
  9495   match(Set dst (AddD dst (LoadD src)));
  9496   ins_cost(150);
  9498   format %{ "FLD    $src\n\t"
  9499             "DADDp  $dst,ST" %}
  9500   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9501   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9502               OpcP, RegOpc(dst) );
  9503   ins_pipe( fpu_reg_mem );
  9504 %}
  9506 // add-to-memory
  9507 instruct addDPR_mem_reg(memory dst, regDPR src) %{
  9508   predicate(UseSSE<=1);
  9509   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
  9510   ins_cost(150);
  9512   format %{ "FLD_D  $dst\n\t"
  9513             "DADD   ST,$src\n\t"
  9514             "FST_D  $dst" %}
  9515   opcode(0xDD, 0x0);
  9516   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
  9517               Opcode(0xD8), RegOpc(src),
  9518               set_instruction_start,
  9519               Opcode(0xDD), RMopc_Mem(0x03,dst) );
  9520   ins_pipe( fpu_reg_mem );
  9521 %}
  9523 instruct addDPR_reg_imm1(regDPR dst, immDPR1 con) %{
  9524   predicate(UseSSE<=1);
  9525   match(Set dst (AddD dst con));
  9526   ins_cost(125);
  9527   format %{ "FLD1\n\t"
  9528             "DADDp  $dst,ST" %}
  9529   ins_encode %{
  9530     __ fld1();
  9531     __ faddp($dst$$reg);
  9532   %}
  9533   ins_pipe(fpu_reg);
  9534 %}
  9536 instruct addDPR_reg_imm(regDPR dst, immDPR con) %{
  9537   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9538   match(Set dst (AddD dst con));
  9539   ins_cost(200);
  9540   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9541             "DADDp  $dst,ST" %}
  9542   ins_encode %{
  9543     __ fld_d($constantaddress($con));
  9544     __ faddp($dst$$reg);
  9545   %}
  9546   ins_pipe(fpu_reg_mem);
  9547 %}
  9549 instruct addDPR_reg_imm_round(stackSlotD dst, regDPR src, immDPR con) %{
  9550   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
  9551   match(Set dst (RoundDouble (AddD src con)));
  9552   ins_cost(200);
  9553   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9554             "DADD   ST,$src\n\t"
  9555             "FSTP_D $dst\t# D-round" %}
  9556   ins_encode %{
  9557     __ fld_d($constantaddress($con));
  9558     __ fadd($src$$reg);
  9559     __ fstp_d(Address(rsp, $dst$$disp));
  9560   %}
  9561   ins_pipe(fpu_mem_reg_con);
  9562 %}
  9564 instruct mulDPR_reg(regDPR dst, regDPR src) %{
  9565   predicate(UseSSE<=1);
  9566   match(Set dst (MulD dst src));
  9567   format %{ "FLD    $src\n\t"
  9568             "DMULp  $dst,ST" %}
  9569   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9570   ins_cost(150);
  9571   ins_encode( Push_Reg_DPR(src),
  9572               OpcP, RegOpc(dst) );
  9573   ins_pipe( fpu_reg_reg );
  9574 %}
  9576 // Strict FP instruction biases argument before multiply then
  9577 // biases result to avoid double rounding of subnormals.
  9578 //
  9579 // scale arg1 by multiplying arg1 by 2^(-15360)
  9580 // load arg2
  9581 // multiply scaled arg1 by arg2
  9582 // rescale product by 2^(15360)
  9583 //
  9584 instruct strictfp_mulDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9585   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9586   match(Set dst (MulD dst src));
  9587   ins_cost(1);   // Select this instruction for all strict FP double multiplies
  9589   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9590             "DMULp  $dst,ST\n\t"
  9591             "FLD    $src\n\t"
  9592             "DMULp  $dst,ST\n\t"
  9593             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9594             "DMULp  $dst,ST\n\t" %}
  9595   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9596   ins_encode( strictfp_bias1(dst),
  9597               Push_Reg_DPR(src),
  9598               OpcP, RegOpc(dst),
  9599               strictfp_bias2(dst) );
  9600   ins_pipe( fpu_reg_reg );
  9601 %}
  9603 instruct mulDPR_reg_imm(regDPR dst, immDPR con) %{
  9604   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9605   match(Set dst (MulD dst con));
  9606   ins_cost(200);
  9607   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9608             "DMULp  $dst,ST" %}
  9609   ins_encode %{
  9610     __ fld_d($constantaddress($con));
  9611     __ fmulp($dst$$reg);
  9612   %}
  9613   ins_pipe(fpu_reg_mem);
  9614 %}
  9617 instruct mulDPR_reg_mem(regDPR dst, memory src) %{
  9618   predicate( UseSSE<=1 );
  9619   match(Set dst (MulD dst (LoadD src)));
  9620   ins_cost(200);
  9621   format %{ "FLD_D  $src\n\t"
  9622             "DMULp  $dst,ST" %}
  9623   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
  9624   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9625               OpcP, RegOpc(dst) );
  9626   ins_pipe( fpu_reg_mem );
  9627 %}
  9629 //
  9630 // Cisc-alternate to reg-reg multiply
  9631 instruct mulDPR_reg_mem_cisc(regDPR dst, regDPR src, memory mem) %{
  9632   predicate( UseSSE<=1 );
  9633   match(Set dst (MulD src (LoadD mem)));
  9634   ins_cost(250);
  9635   format %{ "FLD_D  $mem\n\t"
  9636             "DMUL   ST,$src\n\t"
  9637             "FSTP_D $dst" %}
  9638   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
  9639   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
  9640               OpcReg_FPR(src),
  9641               Pop_Reg_DPR(dst) );
  9642   ins_pipe( fpu_reg_reg_mem );
  9643 %}
  9646 // MACRO3 -- addDPR a mulDPR
  9647 // This instruction is a '2-address' instruction in that the result goes
  9648 // back to src2.  This eliminates a move from the macro; possibly the
  9649 // register allocator will have to add it back (and maybe not).
  9650 instruct addDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9651   predicate( UseSSE<=1 );
  9652   match(Set src2 (AddD (MulD src0 src1) src2));
  9653   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9654             "DMUL   ST,$src1\n\t"
  9655             "DADDp  $src2,ST" %}
  9656   ins_cost(250);
  9657   opcode(0xDD); /* LoadD DD /0 */
  9658   ins_encode( Push_Reg_FPR(src0),
  9659               FMul_ST_reg(src1),
  9660               FAddP_reg_ST(src2) );
  9661   ins_pipe( fpu_reg_reg_reg );
  9662 %}
  9665 // MACRO3 -- subDPR a mulDPR
  9666 instruct subDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9667   predicate( UseSSE<=1 );
  9668   match(Set src2 (SubD (MulD src0 src1) src2));
  9669   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9670             "DMUL   ST,$src1\n\t"
  9671             "DSUBRp $src2,ST" %}
  9672   ins_cost(250);
  9673   ins_encode( Push_Reg_FPR(src0),
  9674               FMul_ST_reg(src1),
  9675               Opcode(0xDE), Opc_plus(0xE0,src2));
  9676   ins_pipe( fpu_reg_reg_reg );
  9677 %}
  9680 instruct divDPR_reg(regDPR dst, regDPR src) %{
  9681   predicate( UseSSE<=1 );
  9682   match(Set dst (DivD dst src));
  9684   format %{ "FLD    $src\n\t"
  9685             "FDIVp  $dst,ST" %}
  9686   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  9687   ins_cost(150);
  9688   ins_encode( Push_Reg_DPR(src),
  9689               OpcP, RegOpc(dst) );
  9690   ins_pipe( fpu_reg_reg );
  9691 %}
  9693 // Strict FP instruction biases argument before division then
  9694 // biases result, to avoid double rounding of subnormals.
  9695 //
  9696 // scale dividend by multiplying dividend by 2^(-15360)
  9697 // load divisor
  9698 // divide scaled dividend by divisor
  9699 // rescale quotient by 2^(15360)
  9700 //
  9701 instruct strictfp_divDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9702   predicate (UseSSE<=1);
  9703   match(Set dst (DivD dst src));
  9704   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9705   ins_cost(01);
  9707   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9708             "DMULp  $dst,ST\n\t"
  9709             "FLD    $src\n\t"
  9710             "FDIVp  $dst,ST\n\t"
  9711             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9712             "DMULp  $dst,ST\n\t" %}
  9713   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  9714   ins_encode( strictfp_bias1(dst),
  9715               Push_Reg_DPR(src),
  9716               OpcP, RegOpc(dst),
  9717               strictfp_bias2(dst) );
  9718   ins_pipe( fpu_reg_reg );
  9719 %}
  9721 instruct divDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9722   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
  9723   match(Set dst (RoundDouble (DivD src1 src2)));
  9725   format %{ "FLD    $src1\n\t"
  9726             "FDIV   ST,$src2\n\t"
  9727             "FSTP_D $dst\t# D-round" %}
  9728   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
  9729   ins_encode( Push_Reg_DPR(src1),
  9730               OpcP, RegOpc(src2), Pop_Mem_DPR(dst) );
  9731   ins_pipe( fpu_mem_reg_reg );
  9732 %}
  9735 instruct modDPR_reg(regDPR dst, regDPR src, eAXRegI rax, eFlagsReg cr) %{
  9736   predicate(UseSSE<=1);
  9737   match(Set dst (ModD dst src));
  9738   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
  9740   format %{ "DMOD   $dst,$src" %}
  9741   ins_cost(250);
  9742   ins_encode(Push_Reg_Mod_DPR(dst, src),
  9743               emitModDPR(),
  9744               Push_Result_Mod_DPR(src),
  9745               Pop_Reg_DPR(dst));
  9746   ins_pipe( pipe_slow );
  9747 %}
  9749 instruct modD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eFlagsReg cr) %{
  9750   predicate(UseSSE>=2);
  9751   match(Set dst (ModD src0 src1));
  9752   effect(KILL rax, KILL cr);
  9754   format %{ "SUB    ESP,8\t # DMOD\n"
  9755           "\tMOVSD  [ESP+0],$src1\n"
  9756           "\tFLD_D  [ESP+0]\n"
  9757           "\tMOVSD  [ESP+0],$src0\n"
  9758           "\tFLD_D  [ESP+0]\n"
  9759      "loop:\tFPREM\n"
  9760           "\tFWAIT\n"
  9761           "\tFNSTSW AX\n"
  9762           "\tSAHF\n"
  9763           "\tJP     loop\n"
  9764           "\tFSTP_D [ESP+0]\n"
  9765           "\tMOVSD  $dst,[ESP+0]\n"
  9766           "\tADD    ESP,8\n"
  9767           "\tFSTP   ST0\t # Restore FPU Stack"
  9768     %}
  9769   ins_cost(250);
  9770   ins_encode( Push_ModD_encoding(src0, src1), emitModDPR(), Push_ResultD(dst), PopFPU);
  9771   ins_pipe( pipe_slow );
  9772 %}
  9774 instruct sinDPR_reg(regDPR1 dst, regDPR1 src) %{
  9775   predicate (UseSSE<=1);
  9776   match(Set dst (SinD src));
  9777   ins_cost(1800);
  9778   format %{ "DSIN   $dst" %}
  9779   opcode(0xD9, 0xFE);
  9780   ins_encode( OpcP, OpcS );
  9781   ins_pipe( pipe_slow );
  9782 %}
  9784 instruct sinD_reg(regD dst, eFlagsReg cr) %{
  9785   predicate (UseSSE>=2);
  9786   match(Set dst (SinD dst));
  9787   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9788   ins_cost(1800);
  9789   format %{ "DSIN   $dst" %}
  9790   opcode(0xD9, 0xFE);
  9791   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
  9792   ins_pipe( pipe_slow );
  9793 %}
  9795 instruct cosDPR_reg(regDPR1 dst, regDPR1 src) %{
  9796   predicate (UseSSE<=1);
  9797   match(Set dst (CosD src));
  9798   ins_cost(1800);
  9799   format %{ "DCOS   $dst" %}
  9800   opcode(0xD9, 0xFF);
  9801   ins_encode( OpcP, OpcS );
  9802   ins_pipe( pipe_slow );
  9803 %}
  9805 instruct cosD_reg(regD dst, eFlagsReg cr) %{
  9806   predicate (UseSSE>=2);
  9807   match(Set dst (CosD dst));
  9808   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9809   ins_cost(1800);
  9810   format %{ "DCOS   $dst" %}
  9811   opcode(0xD9, 0xFF);
  9812   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
  9813   ins_pipe( pipe_slow );
  9814 %}
  9816 instruct tanDPR_reg(regDPR1 dst, regDPR1 src) %{
  9817   predicate (UseSSE<=1);
  9818   match(Set dst(TanD src));
  9819   format %{ "DTAN   $dst" %}
  9820   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
  9821               Opcode(0xDD), Opcode(0xD8));   // fstp st
  9822   ins_pipe( pipe_slow );
  9823 %}
  9825 instruct tanD_reg(regD dst, eFlagsReg cr) %{
  9826   predicate (UseSSE>=2);
  9827   match(Set dst(TanD dst));
  9828   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9829   format %{ "DTAN   $dst" %}
  9830   ins_encode( Push_SrcD(dst),
  9831               Opcode(0xD9), Opcode(0xF2),    // fptan
  9832               Opcode(0xDD), Opcode(0xD8),   // fstp st
  9833               Push_ResultD(dst) );
  9834   ins_pipe( pipe_slow );
  9835 %}
  9837 instruct atanDPR_reg(regDPR dst, regDPR src) %{
  9838   predicate (UseSSE<=1);
  9839   match(Set dst(AtanD dst src));
  9840   format %{ "DATA   $dst,$src" %}
  9841   opcode(0xD9, 0xF3);
  9842   ins_encode( Push_Reg_DPR(src),
  9843               OpcP, OpcS, RegOpc(dst) );
  9844   ins_pipe( pipe_slow );
  9845 %}
  9847 instruct atanD_reg(regD dst, regD src, eFlagsReg cr) %{
  9848   predicate (UseSSE>=2);
  9849   match(Set dst(AtanD dst src));
  9850   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9851   format %{ "DATA   $dst,$src" %}
  9852   opcode(0xD9, 0xF3);
  9853   ins_encode( Push_SrcD(src),
  9854               OpcP, OpcS, Push_ResultD(dst) );
  9855   ins_pipe( pipe_slow );
  9856 %}
  9858 instruct sqrtDPR_reg(regDPR dst, regDPR src) %{
  9859   predicate (UseSSE<=1);
  9860   match(Set dst (SqrtD src));
  9861   format %{ "DSQRT  $dst,$src" %}
  9862   opcode(0xFA, 0xD9);
  9863   ins_encode( Push_Reg_DPR(src),
  9864               OpcS, OpcP, Pop_Reg_DPR(dst) );
  9865   ins_pipe( pipe_slow );
  9866 %}
  9868 instruct powDPR_reg(regDPR X, regDPR1 Y, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
  9869   predicate (UseSSE<=1);
  9870   match(Set Y (PowD X Y));  // Raise X to the Yth power
  9871   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
  9872   format %{ "fast_pow $X $Y -> $Y  // KILL $rax, $rcx, $rdx" %}
  9873   ins_encode %{
  9874     __ subptr(rsp, 8);
  9875     __ fld_s($X$$reg - 1);
  9876     __ fast_pow();
  9877     __ addptr(rsp, 8);
  9878   %}
  9879   ins_pipe( pipe_slow );
  9880 %}
  9882 instruct powD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
  9883   predicate (UseSSE>=2);
  9884   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
  9885   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
  9886   format %{ "fast_pow $src0 $src1 -> $dst  // KILL $rax, $rcx, $rdx" %}
  9887   ins_encode %{
  9888     __ subptr(rsp, 8);
  9889     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
  9890     __ fld_d(Address(rsp, 0));
  9891     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
  9892     __ fld_d(Address(rsp, 0));
  9893     __ fast_pow();
  9894     __ fstp_d(Address(rsp, 0));
  9895     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
  9896     __ addptr(rsp, 8);
  9897   %}
  9898   ins_pipe( pipe_slow );
  9899 %}
  9902 instruct expDPR_reg(regDPR1 dpr1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
  9903   predicate (UseSSE<=1);
  9904   match(Set dpr1 (ExpD dpr1));
  9905   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
  9906   format %{ "fast_exp $dpr1 -> $dpr1  // KILL $rax, $rcx, $rdx" %}
  9907   ins_encode %{
  9908     __ fast_exp();
  9909   %}
  9910   ins_pipe( pipe_slow );
  9911 %}
  9913 instruct expD_reg(regD dst, regD src, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
  9914   predicate (UseSSE>=2);
  9915   match(Set dst (ExpD src));
  9916   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
  9917   format %{ "fast_exp $dst -> $src  // KILL $rax, $rcx, $rdx" %}
  9918   ins_encode %{
  9919     __ subptr(rsp, 8);
  9920     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  9921     __ fld_d(Address(rsp, 0));
  9922     __ fast_exp();
  9923     __ fstp_d(Address(rsp, 0));
  9924     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
  9925     __ addptr(rsp, 8);
  9926   %}
  9927   ins_pipe( pipe_slow );
  9928 %}
  9930 instruct log10DPR_reg(regDPR1 dst, regDPR1 src) %{
  9931   predicate (UseSSE<=1);
  9932   // The source Double operand on FPU stack
  9933   match(Set dst (Log10D src));
  9934   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
  9935   // fxch         ; swap ST(0) with ST(1)
  9936   // fyl2x        ; compute log_10(2) * log_2(x)
  9937   format %{ "FLDLG2 \t\t\t#Log10\n\t"
  9938             "FXCH   \n\t"
  9939             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
  9940          %}
  9941   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
  9942               Opcode(0xD9), Opcode(0xC9),   // fxch
  9943               Opcode(0xD9), Opcode(0xF1));  // fyl2x
  9945   ins_pipe( pipe_slow );
  9946 %}
  9948 instruct log10D_reg(regD dst, regD src, eFlagsReg cr) %{
  9949   predicate (UseSSE>=2);
  9950   effect(KILL cr);
  9951   match(Set dst (Log10D src));
  9952   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
  9953   // fyl2x        ; compute log_10(2) * log_2(x)
  9954   format %{ "FLDLG2 \t\t\t#Log10\n\t"
  9955             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
  9956          %}
  9957   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
  9958               Push_SrcD(src),
  9959               Opcode(0xD9), Opcode(0xF1),   // fyl2x
  9960               Push_ResultD(dst));
  9962   ins_pipe( pipe_slow );
  9963 %}
  9965 instruct logDPR_reg(regDPR1 dst, regDPR1 src) %{
  9966   predicate (UseSSE<=1);
  9967   // The source Double operand on FPU stack
  9968   match(Set dst (LogD src));
  9969   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
  9970   // fxch         ; swap ST(0) with ST(1)
  9971   // fyl2x        ; compute log_e(2) * log_2(x)
  9972   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
  9973             "FXCH   \n\t"
  9974             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
  9975          %}
  9976   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
  9977               Opcode(0xD9), Opcode(0xC9),   // fxch
  9978               Opcode(0xD9), Opcode(0xF1));  // fyl2x
  9980   ins_pipe( pipe_slow );
  9981 %}
  9983 instruct logD_reg(regD dst, regD src, eFlagsReg cr) %{
  9984   predicate (UseSSE>=2);
  9985   effect(KILL cr);
  9986   // The source and result Double operands in XMM registers
  9987   match(Set dst (LogD src));
  9988   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
  9989   // fyl2x        ; compute log_e(2) * log_2(x)
  9990   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
  9991             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
  9992          %}
  9993   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
  9994               Push_SrcD(src),
  9995               Opcode(0xD9), Opcode(0xF1),   // fyl2x
  9996               Push_ResultD(dst));
  9997   ins_pipe( pipe_slow );
  9998 %}
 10000 //-------------Float Instructions-------------------------------
 10001 // Float Math
 10003 // Code for float compare:
 10004 //     fcompp();
 10005 //     fwait(); fnstsw_ax();
 10006 //     sahf();
 10007 //     movl(dst, unordered_result);
 10008 //     jcc(Assembler::parity, exit);
 10009 //     movl(dst, less_result);
 10010 //     jcc(Assembler::below, exit);
 10011 //     movl(dst, equal_result);
 10012 //     jcc(Assembler::equal, exit);
 10013 //     movl(dst, greater_result);
 10014 //   exit:
 10016 // P6 version of float compare, sets condition codes in EFLAGS
 10017 instruct cmpFPR_cc_P6(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10018   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10019   match(Set cr (CmpF src1 src2));
 10020   effect(KILL rax);
 10021   ins_cost(150);
 10022   format %{ "FLD    $src1\n\t"
 10023             "FUCOMIP ST,$src2  // P6 instruction\n\t"
 10024             "JNP    exit\n\t"
 10025             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
 10026             "SAHF\n"
 10027      "exit:\tNOP               // avoid branch to branch" %}
 10028   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10029   ins_encode( Push_Reg_DPR(src1),
 10030               OpcP, RegOpc(src2),
 10031               cmpF_P6_fixup );
 10032   ins_pipe( pipe_slow );
 10033 %}
 10035 instruct cmpFPR_cc_P6CF(eFlagsRegUCF cr, regFPR src1, regFPR src2) %{
 10036   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10037   match(Set cr (CmpF src1 src2));
 10038   ins_cost(100);
 10039   format %{ "FLD    $src1\n\t"
 10040             "FUCOMIP ST,$src2  // P6 instruction" %}
 10041   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10042   ins_encode( Push_Reg_DPR(src1),
 10043               OpcP, RegOpc(src2));
 10044   ins_pipe( pipe_slow );
 10045 %}
 10048 // Compare & branch
 10049 instruct cmpFPR_cc(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10050   predicate(UseSSE == 0);
 10051   match(Set cr (CmpF src1 src2));
 10052   effect(KILL rax);
 10053   ins_cost(200);
 10054   format %{ "FLD    $src1\n\t"
 10055             "FCOMp  $src2\n\t"
 10056             "FNSTSW AX\n\t"
 10057             "TEST   AX,0x400\n\t"
 10058             "JZ,s   flags\n\t"
 10059             "MOV    AH,1\t# unordered treat as LT\n"
 10060     "flags:\tSAHF" %}
 10061   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10062   ins_encode( Push_Reg_DPR(src1),
 10063               OpcP, RegOpc(src2),
 10064               fpu_flags);
 10065   ins_pipe( pipe_slow );
 10066 %}
 10068 // Compare vs zero into -1,0,1
 10069 instruct cmpFPR_0(rRegI dst, regFPR src1, immFPR0 zero, eAXRegI rax, eFlagsReg cr) %{
 10070   predicate(UseSSE == 0);
 10071   match(Set dst (CmpF3 src1 zero));
 10072   effect(KILL cr, KILL rax);
 10073   ins_cost(280);
 10074   format %{ "FTSTF  $dst,$src1" %}
 10075   opcode(0xE4, 0xD9);
 10076   ins_encode( Push_Reg_DPR(src1),
 10077               OpcS, OpcP, PopFPU,
 10078               CmpF_Result(dst));
 10079   ins_pipe( pipe_slow );
 10080 %}
 10082 // Compare into -1,0,1
 10083 instruct cmpFPR_reg(rRegI dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10084   predicate(UseSSE == 0);
 10085   match(Set dst (CmpF3 src1 src2));
 10086   effect(KILL cr, KILL rax);
 10087   ins_cost(300);
 10088   format %{ "FCMPF  $dst,$src1,$src2" %}
 10089   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10090   ins_encode( Push_Reg_DPR(src1),
 10091               OpcP, RegOpc(src2),
 10092               CmpF_Result(dst));
 10093   ins_pipe( pipe_slow );
 10094 %}
 10096 // float compare and set condition codes in EFLAGS by XMM regs
 10097 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2) %{
 10098   predicate(UseSSE>=1);
 10099   match(Set cr (CmpF src1 src2));
 10100   ins_cost(145);
 10101   format %{ "UCOMISS $src1,$src2\n\t"
 10102             "JNP,s   exit\n\t"
 10103             "PUSHF\t# saw NaN, set CF\n\t"
 10104             "AND     [rsp], #0xffffff2b\n\t"
 10105             "POPF\n"
 10106     "exit:" %}
 10107   ins_encode %{
 10108     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10109     emit_cmpfp_fixup(_masm);
 10110   %}
 10111   ins_pipe( pipe_slow );
 10112 %}
 10114 instruct cmpF_ccCF(eFlagsRegUCF cr, regF src1, regF src2) %{
 10115   predicate(UseSSE>=1);
 10116   match(Set cr (CmpF src1 src2));
 10117   ins_cost(100);
 10118   format %{ "UCOMISS $src1,$src2" %}
 10119   ins_encode %{
 10120     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10121   %}
 10122   ins_pipe( pipe_slow );
 10123 %}
 10125 // float compare and set condition codes in EFLAGS by XMM regs
 10126 instruct cmpF_ccmem(eFlagsRegU cr, regF src1, memory src2) %{
 10127   predicate(UseSSE>=1);
 10128   match(Set cr (CmpF src1 (LoadF src2)));
 10129   ins_cost(165);
 10130   format %{ "UCOMISS $src1,$src2\n\t"
 10131             "JNP,s   exit\n\t"
 10132             "PUSHF\t# saw NaN, set CF\n\t"
 10133             "AND     [rsp], #0xffffff2b\n\t"
 10134             "POPF\n"
 10135     "exit:" %}
 10136   ins_encode %{
 10137     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10138     emit_cmpfp_fixup(_masm);
 10139   %}
 10140   ins_pipe( pipe_slow );
 10141 %}
 10143 instruct cmpF_ccmemCF(eFlagsRegUCF cr, regF src1, memory src2) %{
 10144   predicate(UseSSE>=1);
 10145   match(Set cr (CmpF src1 (LoadF src2)));
 10146   ins_cost(100);
 10147   format %{ "UCOMISS $src1,$src2" %}
 10148   ins_encode %{
 10149     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10150   %}
 10151   ins_pipe( pipe_slow );
 10152 %}
 10154 // Compare into -1,0,1 in XMM
 10155 instruct cmpF_reg(xRegI dst, regF src1, regF src2, eFlagsReg cr) %{
 10156   predicate(UseSSE>=1);
 10157   match(Set dst (CmpF3 src1 src2));
 10158   effect(KILL cr);
 10159   ins_cost(255);
 10160   format %{ "UCOMISS $src1, $src2\n\t"
 10161             "MOV     $dst, #-1\n\t"
 10162             "JP,s    done\n\t"
 10163             "JB,s    done\n\t"
 10164             "SETNE   $dst\n\t"
 10165             "MOVZB   $dst, $dst\n"
 10166     "done:" %}
 10167   ins_encode %{
 10168     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10169     emit_cmpfp3(_masm, $dst$$Register);
 10170   %}
 10171   ins_pipe( pipe_slow );
 10172 %}
 10174 // Compare into -1,0,1 in XMM and memory
 10175 instruct cmpF_regmem(xRegI dst, regF src1, memory src2, eFlagsReg cr) %{
 10176   predicate(UseSSE>=1);
 10177   match(Set dst (CmpF3 src1 (LoadF src2)));
 10178   effect(KILL cr);
 10179   ins_cost(275);
 10180   format %{ "UCOMISS $src1, $src2\n\t"
 10181             "MOV     $dst, #-1\n\t"
 10182             "JP,s    done\n\t"
 10183             "JB,s    done\n\t"
 10184             "SETNE   $dst\n\t"
 10185             "MOVZB   $dst, $dst\n"
 10186     "done:" %}
 10187   ins_encode %{
 10188     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10189     emit_cmpfp3(_masm, $dst$$Register);
 10190   %}
 10191   ins_pipe( pipe_slow );
 10192 %}
 10194 // Spill to obtain 24-bit precision
 10195 instruct subFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10196   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10197   match(Set dst (SubF src1 src2));
 10199   format %{ "FSUB   $dst,$src1 - $src2" %}
 10200   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
 10201   ins_encode( Push_Reg_FPR(src1),
 10202               OpcReg_FPR(src2),
 10203               Pop_Mem_FPR(dst) );
 10204   ins_pipe( fpu_mem_reg_reg );
 10205 %}
 10206 //
 10207 // This instruction does not round to 24-bits
 10208 instruct subFPR_reg(regFPR dst, regFPR src) %{
 10209   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10210   match(Set dst (SubF dst src));
 10212   format %{ "FSUB   $dst,$src" %}
 10213   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 10214   ins_encode( Push_Reg_FPR(src),
 10215               OpcP, RegOpc(dst) );
 10216   ins_pipe( fpu_reg_reg );
 10217 %}
 10219 // Spill to obtain 24-bit precision
 10220 instruct addFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10221   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10222   match(Set dst (AddF src1 src2));
 10224   format %{ "FADD   $dst,$src1,$src2" %}
 10225   opcode(0xD8, 0x0); /* D8 C0+i */
 10226   ins_encode( Push_Reg_FPR(src2),
 10227               OpcReg_FPR(src1),
 10228               Pop_Mem_FPR(dst) );
 10229   ins_pipe( fpu_mem_reg_reg );
 10230 %}
 10231 //
 10232 // This instruction does not round to 24-bits
 10233 instruct addFPR_reg(regFPR dst, regFPR src) %{
 10234   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10235   match(Set dst (AddF dst src));
 10237   format %{ "FLD    $src\n\t"
 10238             "FADDp  $dst,ST" %}
 10239   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10240   ins_encode( Push_Reg_FPR(src),
 10241               OpcP, RegOpc(dst) );
 10242   ins_pipe( fpu_reg_reg );
 10243 %}
 10245 instruct absFPR_reg(regFPR1 dst, regFPR1 src) %{
 10246   predicate(UseSSE==0);
 10247   match(Set dst (AbsF src));
 10248   ins_cost(100);
 10249   format %{ "FABS" %}
 10250   opcode(0xE1, 0xD9);
 10251   ins_encode( OpcS, OpcP );
 10252   ins_pipe( fpu_reg_reg );
 10253 %}
 10255 instruct negFPR_reg(regFPR1 dst, regFPR1 src) %{
 10256   predicate(UseSSE==0);
 10257   match(Set dst (NegF src));
 10258   ins_cost(100);
 10259   format %{ "FCHS" %}
 10260   opcode(0xE0, 0xD9);
 10261   ins_encode( OpcS, OpcP );
 10262   ins_pipe( fpu_reg_reg );
 10263 %}
 10265 // Cisc-alternate to addFPR_reg
 10266 // Spill to obtain 24-bit precision
 10267 instruct addFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10268   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10269   match(Set dst (AddF src1 (LoadF src2)));
 10271   format %{ "FLD    $src2\n\t"
 10272             "FADD   ST,$src1\n\t"
 10273             "FSTP_S $dst" %}
 10274   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10275   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10276               OpcReg_FPR(src1),
 10277               Pop_Mem_FPR(dst) );
 10278   ins_pipe( fpu_mem_reg_mem );
 10279 %}
 10280 //
 10281 // Cisc-alternate to addFPR_reg
 10282 // This instruction does not round to 24-bits
 10283 instruct addFPR_reg_mem(regFPR dst, memory src) %{
 10284   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10285   match(Set dst (AddF dst (LoadF src)));
 10287   format %{ "FADD   $dst,$src" %}
 10288   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
 10289   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10290               OpcP, RegOpc(dst) );
 10291   ins_pipe( fpu_reg_mem );
 10292 %}
 10294 // // Following two instructions for _222_mpegaudio
 10295 // Spill to obtain 24-bit precision
 10296 instruct addFPR24_mem_reg(stackSlotF dst, regFPR src2, memory src1 ) %{
 10297   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10298   match(Set dst (AddF src1 src2));
 10300   format %{ "FADD   $dst,$src1,$src2" %}
 10301   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10302   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
 10303               OpcReg_FPR(src2),
 10304               Pop_Mem_FPR(dst) );
 10305   ins_pipe( fpu_mem_reg_mem );
 10306 %}
 10308 // Cisc-spill variant
 10309 // Spill to obtain 24-bit precision
 10310 instruct addFPR24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
 10311   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10312   match(Set dst (AddF src1 (LoadF src2)));
 10314   format %{ "FADD   $dst,$src1,$src2 cisc" %}
 10315   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10316   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10317               set_instruction_start,
 10318               OpcP, RMopc_Mem(secondary,src1),
 10319               Pop_Mem_FPR(dst) );
 10320   ins_pipe( fpu_mem_mem_mem );
 10321 %}
 10323 // Spill to obtain 24-bit precision
 10324 instruct addFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10325   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10326   match(Set dst (AddF src1 src2));
 10328   format %{ "FADD   $dst,$src1,$src2" %}
 10329   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
 10330   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10331               set_instruction_start,
 10332               OpcP, RMopc_Mem(secondary,src1),
 10333               Pop_Mem_FPR(dst) );
 10334   ins_pipe( fpu_mem_mem_mem );
 10335 %}
 10338 // Spill to obtain 24-bit precision
 10339 instruct addFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10340   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10341   match(Set dst (AddF src con));
 10342   format %{ "FLD    $src\n\t"
 10343             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10344             "FSTP_S $dst"  %}
 10345   ins_encode %{
 10346     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10347     __ fadd_s($constantaddress($con));
 10348     __ fstp_s(Address(rsp, $dst$$disp));
 10349   %}
 10350   ins_pipe(fpu_mem_reg_con);
 10351 %}
 10352 //
 10353 // This instruction does not round to 24-bits
 10354 instruct addFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10355   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10356   match(Set dst (AddF src con));
 10357   format %{ "FLD    $src\n\t"
 10358             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10359             "FSTP   $dst"  %}
 10360   ins_encode %{
 10361     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10362     __ fadd_s($constantaddress($con));
 10363     __ fstp_d($dst$$reg);
 10364   %}
 10365   ins_pipe(fpu_reg_reg_con);
 10366 %}
 10368 // Spill to obtain 24-bit precision
 10369 instruct mulFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10370   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10371   match(Set dst (MulF src1 src2));
 10373   format %{ "FLD    $src1\n\t"
 10374             "FMUL   $src2\n\t"
 10375             "FSTP_S $dst"  %}
 10376   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
 10377   ins_encode( Push_Reg_FPR(src1),
 10378               OpcReg_FPR(src2),
 10379               Pop_Mem_FPR(dst) );
 10380   ins_pipe( fpu_mem_reg_reg );
 10381 %}
 10382 //
 10383 // This instruction does not round to 24-bits
 10384 instruct mulFPR_reg(regFPR dst, regFPR src1, regFPR src2) %{
 10385   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10386   match(Set dst (MulF src1 src2));
 10388   format %{ "FLD    $src1\n\t"
 10389             "FMUL   $src2\n\t"
 10390             "FSTP_S $dst"  %}
 10391   opcode(0xD8, 0x1); /* D8 C8+i */
 10392   ins_encode( Push_Reg_FPR(src2),
 10393               OpcReg_FPR(src1),
 10394               Pop_Reg_FPR(dst) );
 10395   ins_pipe( fpu_reg_reg_reg );
 10396 %}
 10399 // Spill to obtain 24-bit precision
 10400 // Cisc-alternate to reg-reg multiply
 10401 instruct mulFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10402   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10403   match(Set dst (MulF src1 (LoadF src2)));
 10405   format %{ "FLD_S  $src2\n\t"
 10406             "FMUL   $src1\n\t"
 10407             "FSTP_S $dst"  %}
 10408   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
 10409   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10410               OpcReg_FPR(src1),
 10411               Pop_Mem_FPR(dst) );
 10412   ins_pipe( fpu_mem_reg_mem );
 10413 %}
 10414 //
 10415 // This instruction does not round to 24-bits
 10416 // Cisc-alternate to reg-reg multiply
 10417 instruct mulFPR_reg_mem(regFPR dst, regFPR src1, memory src2) %{
 10418   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10419   match(Set dst (MulF src1 (LoadF src2)));
 10421   format %{ "FMUL   $dst,$src1,$src2" %}
 10422   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
 10423   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10424               OpcReg_FPR(src1),
 10425               Pop_Reg_FPR(dst) );
 10426   ins_pipe( fpu_reg_reg_mem );
 10427 %}
 10429 // Spill to obtain 24-bit precision
 10430 instruct mulFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10431   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10432   match(Set dst (MulF src1 src2));
 10434   format %{ "FMUL   $dst,$src1,$src2" %}
 10435   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
 10436   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10437               set_instruction_start,
 10438               OpcP, RMopc_Mem(secondary,src1),
 10439               Pop_Mem_FPR(dst) );
 10440   ins_pipe( fpu_mem_mem_mem );
 10441 %}
 10443 // Spill to obtain 24-bit precision
 10444 instruct mulFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10445   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10446   match(Set dst (MulF src con));
 10448   format %{ "FLD    $src\n\t"
 10449             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10450             "FSTP_S $dst"  %}
 10451   ins_encode %{
 10452     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10453     __ fmul_s($constantaddress($con));
 10454     __ fstp_s(Address(rsp, $dst$$disp));
 10455   %}
 10456   ins_pipe(fpu_mem_reg_con);
 10457 %}
 10458 //
 10459 // This instruction does not round to 24-bits
 10460 instruct mulFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10461   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10462   match(Set dst (MulF src con));
 10464   format %{ "FLD    $src\n\t"
 10465             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10466             "FSTP   $dst"  %}
 10467   ins_encode %{
 10468     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10469     __ fmul_s($constantaddress($con));
 10470     __ fstp_d($dst$$reg);
 10471   %}
 10472   ins_pipe(fpu_reg_reg_con);
 10473 %}
 10476 //
 10477 // MACRO1 -- subsume unshared load into mulFPR
 10478 // This instruction does not round to 24-bits
 10479 instruct mulFPR_reg_load1(regFPR dst, regFPR src, memory mem1 ) %{
 10480   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10481   match(Set dst (MulF (LoadF mem1) src));
 10483   format %{ "FLD    $mem1    ===MACRO1===\n\t"
 10484             "FMUL   ST,$src\n\t"
 10485             "FSTP   $dst" %}
 10486   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
 10487   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
 10488               OpcReg_FPR(src),
 10489               Pop_Reg_FPR(dst) );
 10490   ins_pipe( fpu_reg_reg_mem );
 10491 %}
 10492 //
 10493 // MACRO2 -- addFPR a mulFPR which subsumed an unshared load
 10494 // This instruction does not round to 24-bits
 10495 instruct addFPR_mulFPR_reg_load1(regFPR dst, memory mem1, regFPR src1, regFPR src2) %{
 10496   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10497   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
 10498   ins_cost(95);
 10500   format %{ "FLD    $mem1     ===MACRO2===\n\t"
 10501             "FMUL   ST,$src1  subsume mulFPR left load\n\t"
 10502             "FADD   ST,$src2\n\t"
 10503             "FSTP   $dst" %}
 10504   opcode(0xD9); /* LoadF D9 /0 */
 10505   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
 10506               FMul_ST_reg(src1),
 10507               FAdd_ST_reg(src2),
 10508               Pop_Reg_FPR(dst) );
 10509   ins_pipe( fpu_reg_mem_reg_reg );
 10510 %}
 10512 // MACRO3 -- addFPR a mulFPR
 10513 // This instruction does not round to 24-bits.  It is a '2-address'
 10514 // instruction in that the result goes back to src2.  This eliminates
 10515 // a move from the macro; possibly the register allocator will have
 10516 // to add it back (and maybe not).
 10517 instruct addFPR_mulFPR_reg(regFPR src2, regFPR src1, regFPR src0) %{
 10518   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10519   match(Set src2 (AddF (MulF src0 src1) src2));
 10521   format %{ "FLD    $src0     ===MACRO3===\n\t"
 10522             "FMUL   ST,$src1\n\t"
 10523             "FADDP  $src2,ST" %}
 10524   opcode(0xD9); /* LoadF D9 /0 */
 10525   ins_encode( Push_Reg_FPR(src0),
 10526               FMul_ST_reg(src1),
 10527               FAddP_reg_ST(src2) );
 10528   ins_pipe( fpu_reg_reg_reg );
 10529 %}
 10531 // MACRO4 -- divFPR subFPR
 10532 // This instruction does not round to 24-bits
 10533 instruct subFPR_divFPR_reg(regFPR dst, regFPR src1, regFPR src2, regFPR src3) %{
 10534   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10535   match(Set dst (DivF (SubF src2 src1) src3));
 10537   format %{ "FLD    $src2   ===MACRO4===\n\t"
 10538             "FSUB   ST,$src1\n\t"
 10539             "FDIV   ST,$src3\n\t"
 10540             "FSTP  $dst" %}
 10541   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10542   ins_encode( Push_Reg_FPR(src2),
 10543               subFPR_divFPR_encode(src1,src3),
 10544               Pop_Reg_FPR(dst) );
 10545   ins_pipe( fpu_reg_reg_reg_reg );
 10546 %}
 10548 // Spill to obtain 24-bit precision
 10549 instruct divFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10550   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10551   match(Set dst (DivF src1 src2));
 10553   format %{ "FDIV   $dst,$src1,$src2" %}
 10554   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
 10555   ins_encode( Push_Reg_FPR(src1),
 10556               OpcReg_FPR(src2),
 10557               Pop_Mem_FPR(dst) );
 10558   ins_pipe( fpu_mem_reg_reg );
 10559 %}
 10560 //
 10561 // This instruction does not round to 24-bits
 10562 instruct divFPR_reg(regFPR dst, regFPR src) %{
 10563   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10564   match(Set dst (DivF dst src));
 10566   format %{ "FDIV   $dst,$src" %}
 10567   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10568   ins_encode( Push_Reg_FPR(src),
 10569               OpcP, RegOpc(dst) );
 10570   ins_pipe( fpu_reg_reg );
 10571 %}
 10574 // Spill to obtain 24-bit precision
 10575 instruct modFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10576   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 10577   match(Set dst (ModF src1 src2));
 10578   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10580   format %{ "FMOD   $dst,$src1,$src2" %}
 10581   ins_encode( Push_Reg_Mod_DPR(src1, src2),
 10582               emitModDPR(),
 10583               Push_Result_Mod_DPR(src2),
 10584               Pop_Mem_FPR(dst));
 10585   ins_pipe( pipe_slow );
 10586 %}
 10587 //
 10588 // This instruction does not round to 24-bits
 10589 instruct modFPR_reg(regFPR dst, regFPR src, eAXRegI rax, eFlagsReg cr) %{
 10590   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10591   match(Set dst (ModF dst src));
 10592   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10594   format %{ "FMOD   $dst,$src" %}
 10595   ins_encode(Push_Reg_Mod_DPR(dst, src),
 10596               emitModDPR(),
 10597               Push_Result_Mod_DPR(src),
 10598               Pop_Reg_FPR(dst));
 10599   ins_pipe( pipe_slow );
 10600 %}
 10602 instruct modF_reg(regF dst, regF src0, regF src1, eAXRegI rax, eFlagsReg cr) %{
 10603   predicate(UseSSE>=1);
 10604   match(Set dst (ModF src0 src1));
 10605   effect(KILL rax, KILL cr);
 10606   format %{ "SUB    ESP,4\t # FMOD\n"
 10607           "\tMOVSS  [ESP+0],$src1\n"
 10608           "\tFLD_S  [ESP+0]\n"
 10609           "\tMOVSS  [ESP+0],$src0\n"
 10610           "\tFLD_S  [ESP+0]\n"
 10611      "loop:\tFPREM\n"
 10612           "\tFWAIT\n"
 10613           "\tFNSTSW AX\n"
 10614           "\tSAHF\n"
 10615           "\tJP     loop\n"
 10616           "\tFSTP_S [ESP+0]\n"
 10617           "\tMOVSS  $dst,[ESP+0]\n"
 10618           "\tADD    ESP,4\n"
 10619           "\tFSTP   ST0\t # Restore FPU Stack"
 10620     %}
 10621   ins_cost(250);
 10622   ins_encode( Push_ModF_encoding(src0, src1), emitModDPR(), Push_ResultF(dst,0x4), PopFPU);
 10623   ins_pipe( pipe_slow );
 10624 %}
 10627 //----------Arithmetic Conversion Instructions---------------------------------
 10628 // The conversions operations are all Alpha sorted.  Please keep it that way!
 10630 instruct roundFloat_mem_reg(stackSlotF dst, regFPR src) %{
 10631   predicate(UseSSE==0);
 10632   match(Set dst (RoundFloat src));
 10633   ins_cost(125);
 10634   format %{ "FST_S  $dst,$src\t# F-round" %}
 10635   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 10636   ins_pipe( fpu_mem_reg );
 10637 %}
 10639 instruct roundDouble_mem_reg(stackSlotD dst, regDPR src) %{
 10640   predicate(UseSSE<=1);
 10641   match(Set dst (RoundDouble src));
 10642   ins_cost(125);
 10643   format %{ "FST_D  $dst,$src\t# D-round" %}
 10644   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 10645   ins_pipe( fpu_mem_reg );
 10646 %}
 10648 // Force rounding to 24-bit precision and 6-bit exponent
 10649 instruct convDPR2FPR_reg(stackSlotF dst, regDPR src) %{
 10650   predicate(UseSSE==0);
 10651   match(Set dst (ConvD2F src));
 10652   format %{ "FST_S  $dst,$src\t# F-round" %}
 10653   expand %{
 10654     roundFloat_mem_reg(dst,src);
 10655   %}
 10656 %}
 10658 // Force rounding to 24-bit precision and 6-bit exponent
 10659 instruct convDPR2F_reg(regF dst, regDPR src, eFlagsReg cr) %{
 10660   predicate(UseSSE==1);
 10661   match(Set dst (ConvD2F src));
 10662   effect( KILL cr );
 10663   format %{ "SUB    ESP,4\n\t"
 10664             "FST_S  [ESP],$src\t# F-round\n\t"
 10665             "MOVSS  $dst,[ESP]\n\t"
 10666             "ADD ESP,4" %}
 10667   ins_encode %{
 10668     __ subptr(rsp, 4);
 10669     if ($src$$reg != FPR1L_enc) {
 10670       __ fld_s($src$$reg-1);
 10671       __ fstp_s(Address(rsp, 0));
 10672     } else {
 10673       __ fst_s(Address(rsp, 0));
 10675     __ movflt($dst$$XMMRegister, Address(rsp, 0));
 10676     __ addptr(rsp, 4);
 10677   %}
 10678   ins_pipe( pipe_slow );
 10679 %}
 10681 // Force rounding double precision to single precision
 10682 instruct convD2F_reg(regF dst, regD src) %{
 10683   predicate(UseSSE>=2);
 10684   match(Set dst (ConvD2F src));
 10685   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
 10686   ins_encode %{
 10687     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
 10688   %}
 10689   ins_pipe( pipe_slow );
 10690 %}
 10692 instruct convFPR2DPR_reg_reg(regDPR dst, regFPR src) %{
 10693   predicate(UseSSE==0);
 10694   match(Set dst (ConvF2D src));
 10695   format %{ "FST_S  $dst,$src\t# D-round" %}
 10696   ins_encode( Pop_Reg_Reg_DPR(dst, src));
 10697   ins_pipe( fpu_reg_reg );
 10698 %}
 10700 instruct convFPR2D_reg(stackSlotD dst, regFPR src) %{
 10701   predicate(UseSSE==1);
 10702   match(Set dst (ConvF2D src));
 10703   format %{ "FST_D  $dst,$src\t# D-round" %}
 10704   expand %{
 10705     roundDouble_mem_reg(dst,src);
 10706   %}
 10707 %}
 10709 instruct convF2DPR_reg(regDPR dst, regF src, eFlagsReg cr) %{
 10710   predicate(UseSSE==1);
 10711   match(Set dst (ConvF2D src));
 10712   effect( KILL cr );
 10713   format %{ "SUB    ESP,4\n\t"
 10714             "MOVSS  [ESP] $src\n\t"
 10715             "FLD_S  [ESP]\n\t"
 10716             "ADD    ESP,4\n\t"
 10717             "FSTP   $dst\t# D-round" %}
 10718   ins_encode %{
 10719     __ subptr(rsp, 4);
 10720     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 10721     __ fld_s(Address(rsp, 0));
 10722     __ addptr(rsp, 4);
 10723     __ fstp_d($dst$$reg);
 10724   %}
 10725   ins_pipe( pipe_slow );
 10726 %}
 10728 instruct convF2D_reg(regD dst, regF src) %{
 10729   predicate(UseSSE>=2);
 10730   match(Set dst (ConvF2D src));
 10731   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
 10732   ins_encode %{
 10733     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
 10734   %}
 10735   ins_pipe( pipe_slow );
 10736 %}
 10738 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 10739 instruct convDPR2I_reg_reg( eAXRegI dst, eDXRegI tmp, regDPR src, eFlagsReg cr ) %{
 10740   predicate(UseSSE<=1);
 10741   match(Set dst (ConvD2I src));
 10742   effect( KILL tmp, KILL cr );
 10743   format %{ "FLD    $src\t# Convert double to int \n\t"
 10744             "FLDCW  trunc mode\n\t"
 10745             "SUB    ESP,4\n\t"
 10746             "FISTp  [ESP + #0]\n\t"
 10747             "FLDCW  std/24-bit mode\n\t"
 10748             "POP    EAX\n\t"
 10749             "CMP    EAX,0x80000000\n\t"
 10750             "JNE,s  fast\n\t"
 10751             "FLD_D  $src\n\t"
 10752             "CALL   d2i_wrapper\n"
 10753       "fast:" %}
 10754   ins_encode( Push_Reg_DPR(src), DPR2I_encoding(src) );
 10755   ins_pipe( pipe_slow );
 10756 %}
 10758 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 10759 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
 10760   predicate(UseSSE>=2);
 10761   match(Set dst (ConvD2I src));
 10762   effect( KILL tmp, KILL cr );
 10763   format %{ "CVTTSD2SI $dst, $src\n\t"
 10764             "CMP    $dst,0x80000000\n\t"
 10765             "JNE,s  fast\n\t"
 10766             "SUB    ESP, 8\n\t"
 10767             "MOVSD  [ESP], $src\n\t"
 10768             "FLD_D  [ESP]\n\t"
 10769             "ADD    ESP, 8\n\t"
 10770             "CALL   d2i_wrapper\n"
 10771       "fast:" %}
 10772   ins_encode %{
 10773     Label fast;
 10774     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
 10775     __ cmpl($dst$$Register, 0x80000000);
 10776     __ jccb(Assembler::notEqual, fast);
 10777     __ subptr(rsp, 8);
 10778     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10779     __ fld_d(Address(rsp, 0));
 10780     __ addptr(rsp, 8);
 10781     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 10782     __ bind(fast);
 10783   %}
 10784   ins_pipe( pipe_slow );
 10785 %}
 10787 instruct convDPR2L_reg_reg( eADXRegL dst, regDPR src, eFlagsReg cr ) %{
 10788   predicate(UseSSE<=1);
 10789   match(Set dst (ConvD2L src));
 10790   effect( KILL cr );
 10791   format %{ "FLD    $src\t# Convert double to long\n\t"
 10792             "FLDCW  trunc mode\n\t"
 10793             "SUB    ESP,8\n\t"
 10794             "FISTp  [ESP + #0]\n\t"
 10795             "FLDCW  std/24-bit mode\n\t"
 10796             "POP    EAX\n\t"
 10797             "POP    EDX\n\t"
 10798             "CMP    EDX,0x80000000\n\t"
 10799             "JNE,s  fast\n\t"
 10800             "TEST   EAX,EAX\n\t"
 10801             "JNE,s  fast\n\t"
 10802             "FLD    $src\n\t"
 10803             "CALL   d2l_wrapper\n"
 10804       "fast:" %}
 10805   ins_encode( Push_Reg_DPR(src),  DPR2L_encoding(src) );
 10806   ins_pipe( pipe_slow );
 10807 %}
 10809 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 10810 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
 10811   predicate (UseSSE>=2);
 10812   match(Set dst (ConvD2L src));
 10813   effect( KILL cr );
 10814   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
 10815             "MOVSD  [ESP],$src\n\t"
 10816             "FLD_D  [ESP]\n\t"
 10817             "FLDCW  trunc mode\n\t"
 10818             "FISTp  [ESP + #0]\n\t"
 10819             "FLDCW  std/24-bit mode\n\t"
 10820             "POP    EAX\n\t"
 10821             "POP    EDX\n\t"
 10822             "CMP    EDX,0x80000000\n\t"
 10823             "JNE,s  fast\n\t"
 10824             "TEST   EAX,EAX\n\t"
 10825             "JNE,s  fast\n\t"
 10826             "SUB    ESP,8\n\t"
 10827             "MOVSD  [ESP],$src\n\t"
 10828             "FLD_D  [ESP]\n\t"
 10829             "ADD    ESP,8\n\t"
 10830             "CALL   d2l_wrapper\n"
 10831       "fast:" %}
 10832   ins_encode %{
 10833     Label fast;
 10834     __ subptr(rsp, 8);
 10835     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10836     __ fld_d(Address(rsp, 0));
 10837     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 10838     __ fistp_d(Address(rsp, 0));
 10839     // Restore the rounding mode, mask the exception
 10840     if (Compile::current()->in_24_bit_fp_mode()) {
 10841       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 10842     } else {
 10843       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 10845     // Load the converted long, adjust CPU stack
 10846     __ pop(rax);
 10847     __ pop(rdx);
 10848     __ cmpl(rdx, 0x80000000);
 10849     __ jccb(Assembler::notEqual, fast);
 10850     __ testl(rax, rax);
 10851     __ jccb(Assembler::notEqual, fast);
 10852     __ subptr(rsp, 8);
 10853     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10854     __ fld_d(Address(rsp, 0));
 10855     __ addptr(rsp, 8);
 10856     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 10857     __ bind(fast);
 10858   %}
 10859   ins_pipe( pipe_slow );
 10860 %}
 10862 // Convert a double to an int.  Java semantics require we do complex
 10863 // manglations in the corner cases.  So we set the rounding mode to
 10864 // 'zero', store the darned double down as an int, and reset the
 10865 // rounding mode to 'nearest'.  The hardware stores a flag value down
 10866 // if we would overflow or converted a NAN; we check for this and
 10867 // and go the slow path if needed.
 10868 instruct convFPR2I_reg_reg(eAXRegI dst, eDXRegI tmp, regFPR src, eFlagsReg cr ) %{
 10869   predicate(UseSSE==0);
 10870   match(Set dst (ConvF2I src));
 10871   effect( KILL tmp, KILL cr );
 10872   format %{ "FLD    $src\t# Convert float to int \n\t"
 10873             "FLDCW  trunc mode\n\t"
 10874             "SUB    ESP,4\n\t"
 10875             "FISTp  [ESP + #0]\n\t"
 10876             "FLDCW  std/24-bit mode\n\t"
 10877             "POP    EAX\n\t"
 10878             "CMP    EAX,0x80000000\n\t"
 10879             "JNE,s  fast\n\t"
 10880             "FLD    $src\n\t"
 10881             "CALL   d2i_wrapper\n"
 10882       "fast:" %}
 10883   // DPR2I_encoding works for FPR2I
 10884   ins_encode( Push_Reg_FPR(src), DPR2I_encoding(src) );
 10885   ins_pipe( pipe_slow );
 10886 %}
 10888 // Convert a float in xmm to an int reg.
 10889 instruct convF2I_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
 10890   predicate(UseSSE>=1);
 10891   match(Set dst (ConvF2I src));
 10892   effect( KILL tmp, KILL cr );
 10893   format %{ "CVTTSS2SI $dst, $src\n\t"
 10894             "CMP    $dst,0x80000000\n\t"
 10895             "JNE,s  fast\n\t"
 10896             "SUB    ESP, 4\n\t"
 10897             "MOVSS  [ESP], $src\n\t"
 10898             "FLD    [ESP]\n\t"
 10899             "ADD    ESP, 4\n\t"
 10900             "CALL   d2i_wrapper\n"
 10901       "fast:" %}
 10902   ins_encode %{
 10903     Label fast;
 10904     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
 10905     __ cmpl($dst$$Register, 0x80000000);
 10906     __ jccb(Assembler::notEqual, fast);
 10907     __ subptr(rsp, 4);
 10908     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 10909     __ fld_s(Address(rsp, 0));
 10910     __ addptr(rsp, 4);
 10911     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 10912     __ bind(fast);
 10913   %}
 10914   ins_pipe( pipe_slow );
 10915 %}
 10917 instruct convFPR2L_reg_reg( eADXRegL dst, regFPR src, eFlagsReg cr ) %{
 10918   predicate(UseSSE==0);
 10919   match(Set dst (ConvF2L src));
 10920   effect( KILL cr );
 10921   format %{ "FLD    $src\t# Convert float to long\n\t"
 10922             "FLDCW  trunc mode\n\t"
 10923             "SUB    ESP,8\n\t"
 10924             "FISTp  [ESP + #0]\n\t"
 10925             "FLDCW  std/24-bit mode\n\t"
 10926             "POP    EAX\n\t"
 10927             "POP    EDX\n\t"
 10928             "CMP    EDX,0x80000000\n\t"
 10929             "JNE,s  fast\n\t"
 10930             "TEST   EAX,EAX\n\t"
 10931             "JNE,s  fast\n\t"
 10932             "FLD    $src\n\t"
 10933             "CALL   d2l_wrapper\n"
 10934       "fast:" %}
 10935   // DPR2L_encoding works for FPR2L
 10936   ins_encode( Push_Reg_FPR(src), DPR2L_encoding(src) );
 10937   ins_pipe( pipe_slow );
 10938 %}
 10940 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 10941 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
 10942   predicate (UseSSE>=1);
 10943   match(Set dst (ConvF2L src));
 10944   effect( KILL cr );
 10945   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
 10946             "MOVSS  [ESP],$src\n\t"
 10947             "FLD_S  [ESP]\n\t"
 10948             "FLDCW  trunc mode\n\t"
 10949             "FISTp  [ESP + #0]\n\t"
 10950             "FLDCW  std/24-bit mode\n\t"
 10951             "POP    EAX\n\t"
 10952             "POP    EDX\n\t"
 10953             "CMP    EDX,0x80000000\n\t"
 10954             "JNE,s  fast\n\t"
 10955             "TEST   EAX,EAX\n\t"
 10956             "JNE,s  fast\n\t"
 10957             "SUB    ESP,4\t# Convert float to long\n\t"
 10958             "MOVSS  [ESP],$src\n\t"
 10959             "FLD_S  [ESP]\n\t"
 10960             "ADD    ESP,4\n\t"
 10961             "CALL   d2l_wrapper\n"
 10962       "fast:" %}
 10963   ins_encode %{
 10964     Label fast;
 10965     __ subptr(rsp, 8);
 10966     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 10967     __ fld_s(Address(rsp, 0));
 10968     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 10969     __ fistp_d(Address(rsp, 0));
 10970     // Restore the rounding mode, mask the exception
 10971     if (Compile::current()->in_24_bit_fp_mode()) {
 10972       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 10973     } else {
 10974       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 10976     // Load the converted long, adjust CPU stack
 10977     __ pop(rax);
 10978     __ pop(rdx);
 10979     __ cmpl(rdx, 0x80000000);
 10980     __ jccb(Assembler::notEqual, fast);
 10981     __ testl(rax, rax);
 10982     __ jccb(Assembler::notEqual, fast);
 10983     __ subptr(rsp, 4);
 10984     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 10985     __ fld_s(Address(rsp, 0));
 10986     __ addptr(rsp, 4);
 10987     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 10988     __ bind(fast);
 10989   %}
 10990   ins_pipe( pipe_slow );
 10991 %}
 10993 instruct convI2DPR_reg(regDPR dst, stackSlotI src) %{
 10994   predicate( UseSSE<=1 );
 10995   match(Set dst (ConvI2D src));
 10996   format %{ "FILD   $src\n\t"
 10997             "FSTP   $dst" %}
 10998   opcode(0xDB, 0x0);  /* DB /0 */
 10999   ins_encode(Push_Mem_I(src), Pop_Reg_DPR(dst));
 11000   ins_pipe( fpu_reg_mem );
 11001 %}
 11003 instruct convI2D_reg(regD dst, rRegI src) %{
 11004   predicate( UseSSE>=2 && !UseXmmI2D );
 11005   match(Set dst (ConvI2D src));
 11006   format %{ "CVTSI2SD $dst,$src" %}
 11007   ins_encode %{
 11008     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
 11009   %}
 11010   ins_pipe( pipe_slow );
 11011 %}
 11013 instruct convI2D_mem(regD dst, memory mem) %{
 11014   predicate( UseSSE>=2 );
 11015   match(Set dst (ConvI2D (LoadI mem)));
 11016   format %{ "CVTSI2SD $dst,$mem" %}
 11017   ins_encode %{
 11018     __ cvtsi2sdl ($dst$$XMMRegister, $mem$$Address);
 11019   %}
 11020   ins_pipe( pipe_slow );
 11021 %}
 11023 instruct convXI2D_reg(regD dst, rRegI src)
 11024 %{
 11025   predicate( UseSSE>=2 && UseXmmI2D );
 11026   match(Set dst (ConvI2D src));
 11028   format %{ "MOVD  $dst,$src\n\t"
 11029             "CVTDQ2PD $dst,$dst\t# i2d" %}
 11030   ins_encode %{
 11031     __ movdl($dst$$XMMRegister, $src$$Register);
 11032     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 11033   %}
 11034   ins_pipe(pipe_slow); // XXX
 11035 %}
 11037 instruct convI2DPR_mem(regDPR dst, memory mem) %{
 11038   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
 11039   match(Set dst (ConvI2D (LoadI mem)));
 11040   format %{ "FILD   $mem\n\t"
 11041             "FSTP   $dst" %}
 11042   opcode(0xDB);      /* DB /0 */
 11043   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11044               Pop_Reg_DPR(dst));
 11045   ins_pipe( fpu_reg_mem );
 11046 %}
 11048 // Convert a byte to a float; no rounding step needed.
 11049 instruct conv24I2FPR_reg(regFPR dst, stackSlotI src) %{
 11050   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
 11051   match(Set dst (ConvI2F src));
 11052   format %{ "FILD   $src\n\t"
 11053             "FSTP   $dst" %}
 11055   opcode(0xDB, 0x0);  /* DB /0 */
 11056   ins_encode(Push_Mem_I(src), Pop_Reg_FPR(dst));
 11057   ins_pipe( fpu_reg_mem );
 11058 %}
 11060 // In 24-bit mode, force exponent rounding by storing back out
 11061 instruct convI2FPR_SSF(stackSlotF dst, stackSlotI src) %{
 11062   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11063   match(Set dst (ConvI2F src));
 11064   ins_cost(200);
 11065   format %{ "FILD   $src\n\t"
 11066             "FSTP_S $dst" %}
 11067   opcode(0xDB, 0x0);  /* DB /0 */
 11068   ins_encode( Push_Mem_I(src),
 11069               Pop_Mem_FPR(dst));
 11070   ins_pipe( fpu_mem_mem );
 11071 %}
 11073 // In 24-bit mode, force exponent rounding by storing back out
 11074 instruct convI2FPR_SSF_mem(stackSlotF dst, memory mem) %{
 11075   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11076   match(Set dst (ConvI2F (LoadI mem)));
 11077   ins_cost(200);
 11078   format %{ "FILD   $mem\n\t"
 11079             "FSTP_S $dst" %}
 11080   opcode(0xDB);  /* DB /0 */
 11081   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11082               Pop_Mem_FPR(dst));
 11083   ins_pipe( fpu_mem_mem );
 11084 %}
 11086 // This instruction does not round to 24-bits
 11087 instruct convI2FPR_reg(regFPR dst, stackSlotI src) %{
 11088   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11089   match(Set dst (ConvI2F src));
 11090   format %{ "FILD   $src\n\t"
 11091             "FSTP   $dst" %}
 11092   opcode(0xDB, 0x0);  /* DB /0 */
 11093   ins_encode( Push_Mem_I(src),
 11094               Pop_Reg_FPR(dst));
 11095   ins_pipe( fpu_reg_mem );
 11096 %}
 11098 // This instruction does not round to 24-bits
 11099 instruct convI2FPR_mem(regFPR dst, memory mem) %{
 11100   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11101   match(Set dst (ConvI2F (LoadI mem)));
 11102   format %{ "FILD   $mem\n\t"
 11103             "FSTP   $dst" %}
 11104   opcode(0xDB);      /* DB /0 */
 11105   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11106               Pop_Reg_FPR(dst));
 11107   ins_pipe( fpu_reg_mem );
 11108 %}
 11110 // Convert an int to a float in xmm; no rounding step needed.
 11111 instruct convI2F_reg(regF dst, rRegI src) %{
 11112   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
 11113   match(Set dst (ConvI2F src));
 11114   format %{ "CVTSI2SS $dst, $src" %}
 11115   ins_encode %{
 11116     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
 11117   %}
 11118   ins_pipe( pipe_slow );
 11119 %}
 11121  instruct convXI2F_reg(regF dst, rRegI src)
 11122 %{
 11123   predicate( UseSSE>=2 && UseXmmI2F );
 11124   match(Set dst (ConvI2F src));
 11126   format %{ "MOVD  $dst,$src\n\t"
 11127             "CVTDQ2PS $dst,$dst\t# i2f" %}
 11128   ins_encode %{
 11129     __ movdl($dst$$XMMRegister, $src$$Register);
 11130     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 11131   %}
 11132   ins_pipe(pipe_slow); // XXX
 11133 %}
 11135 instruct convI2L_reg( eRegL dst, rRegI src, eFlagsReg cr) %{
 11136   match(Set dst (ConvI2L src));
 11137   effect(KILL cr);
 11138   ins_cost(375);
 11139   format %{ "MOV    $dst.lo,$src\n\t"
 11140             "MOV    $dst.hi,$src\n\t"
 11141             "SAR    $dst.hi,31" %}
 11142   ins_encode(convert_int_long(dst,src));
 11143   ins_pipe( ialu_reg_reg_long );
 11144 %}
 11146 // Zero-extend convert int to long
 11147 instruct convI2L_reg_zex(eRegL dst, rRegI src, immL_32bits mask, eFlagsReg flags ) %{
 11148   match(Set dst (AndL (ConvI2L src) mask) );
 11149   effect( KILL flags );
 11150   ins_cost(250);
 11151   format %{ "MOV    $dst.lo,$src\n\t"
 11152             "XOR    $dst.hi,$dst.hi" %}
 11153   opcode(0x33); // XOR
 11154   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11155   ins_pipe( ialu_reg_reg_long );
 11156 %}
 11158 // Zero-extend long
 11159 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
 11160   match(Set dst (AndL src mask) );
 11161   effect( KILL flags );
 11162   ins_cost(250);
 11163   format %{ "MOV    $dst.lo,$src.lo\n\t"
 11164             "XOR    $dst.hi,$dst.hi\n\t" %}
 11165   opcode(0x33); // XOR
 11166   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11167   ins_pipe( ialu_reg_reg_long );
 11168 %}
 11170 instruct convL2DPR_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
 11171   predicate (UseSSE<=1);
 11172   match(Set dst (ConvL2D src));
 11173   effect( KILL cr );
 11174   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11175             "PUSH   $src.lo\n\t"
 11176             "FILD   ST,[ESP + #0]\n\t"
 11177             "ADD    ESP,8\n\t"
 11178             "FSTP_D $dst\t# D-round" %}
 11179   opcode(0xDF, 0x5);  /* DF /5 */
 11180   ins_encode(convert_long_double(src), Pop_Mem_DPR(dst));
 11181   ins_pipe( pipe_slow );
 11182 %}
 11184 instruct convL2D_reg( regD dst, eRegL src, eFlagsReg cr) %{
 11185   predicate (UseSSE>=2);
 11186   match(Set dst (ConvL2D src));
 11187   effect( KILL cr );
 11188   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11189             "PUSH   $src.lo\n\t"
 11190             "FILD_D [ESP]\n\t"
 11191             "FSTP_D [ESP]\n\t"
 11192             "MOVSD  $dst,[ESP]\n\t"
 11193             "ADD    ESP,8" %}
 11194   opcode(0xDF, 0x5);  /* DF /5 */
 11195   ins_encode(convert_long_double2(src), Push_ResultD(dst));
 11196   ins_pipe( pipe_slow );
 11197 %}
 11199 instruct convL2F_reg( regF dst, eRegL src, eFlagsReg cr) %{
 11200   predicate (UseSSE>=1);
 11201   match(Set dst (ConvL2F src));
 11202   effect( KILL cr );
 11203   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11204             "PUSH   $src.lo\n\t"
 11205             "FILD_D [ESP]\n\t"
 11206             "FSTP_S [ESP]\n\t"
 11207             "MOVSS  $dst,[ESP]\n\t"
 11208             "ADD    ESP,8" %}
 11209   opcode(0xDF, 0x5);  /* DF /5 */
 11210   ins_encode(convert_long_double2(src), Push_ResultF(dst,0x8));
 11211   ins_pipe( pipe_slow );
 11212 %}
 11214 instruct convL2FPR_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
 11215   match(Set dst (ConvL2F src));
 11216   effect( KILL cr );
 11217   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11218             "PUSH   $src.lo\n\t"
 11219             "FILD   ST,[ESP + #0]\n\t"
 11220             "ADD    ESP,8\n\t"
 11221             "FSTP_S $dst\t# F-round" %}
 11222   opcode(0xDF, 0x5);  /* DF /5 */
 11223   ins_encode(convert_long_double(src), Pop_Mem_FPR(dst));
 11224   ins_pipe( pipe_slow );
 11225 %}
 11227 instruct convL2I_reg( rRegI dst, eRegL src ) %{
 11228   match(Set dst (ConvL2I src));
 11229   effect( DEF dst, USE src );
 11230   format %{ "MOV    $dst,$src.lo" %}
 11231   ins_encode(enc_CopyL_Lo(dst,src));
 11232   ins_pipe( ialu_reg_reg );
 11233 %}
 11236 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
 11237   match(Set dst (MoveF2I src));
 11238   effect( DEF dst, USE src );
 11239   ins_cost(100);
 11240   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
 11241   ins_encode %{
 11242     __ movl($dst$$Register, Address(rsp, $src$$disp));
 11243   %}
 11244   ins_pipe( ialu_reg_mem );
 11245 %}
 11247 instruct MoveFPR2I_reg_stack(stackSlotI dst, regFPR src) %{
 11248   predicate(UseSSE==0);
 11249   match(Set dst (MoveF2I src));
 11250   effect( DEF dst, USE src );
 11252   ins_cost(125);
 11253   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
 11254   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 11255   ins_pipe( fpu_mem_reg );
 11256 %}
 11258 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regF src) %{
 11259   predicate(UseSSE>=1);
 11260   match(Set dst (MoveF2I src));
 11261   effect( DEF dst, USE src );
 11263   ins_cost(95);
 11264   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
 11265   ins_encode %{
 11266     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11267   %}
 11268   ins_pipe( pipe_slow );
 11269 %}
 11271 instruct MoveF2I_reg_reg_sse(rRegI dst, regF src) %{
 11272   predicate(UseSSE>=2);
 11273   match(Set dst (MoveF2I src));
 11274   effect( DEF dst, USE src );
 11275   ins_cost(85);
 11276   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
 11277   ins_encode %{
 11278     __ movdl($dst$$Register, $src$$XMMRegister);
 11279   %}
 11280   ins_pipe( pipe_slow );
 11281 %}
 11283 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
 11284   match(Set dst (MoveI2F src));
 11285   effect( DEF dst, USE src );
 11287   ins_cost(100);
 11288   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
 11289   ins_encode %{
 11290     __ movl(Address(rsp, $dst$$disp), $src$$Register);
 11291   %}
 11292   ins_pipe( ialu_mem_reg );
 11293 %}
 11296 instruct MoveI2FPR_stack_reg(regFPR dst, stackSlotI src) %{
 11297   predicate(UseSSE==0);
 11298   match(Set dst (MoveI2F src));
 11299   effect(DEF dst, USE src);
 11301   ins_cost(125);
 11302   format %{ "FLD_S  $src\n\t"
 11303             "FSTP   $dst\t# MoveI2F_stack_reg" %}
 11304   opcode(0xD9);               /* D9 /0, FLD m32real */
 11305   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11306               Pop_Reg_FPR(dst) );
 11307   ins_pipe( fpu_reg_mem );
 11308 %}
 11310 instruct MoveI2F_stack_reg_sse(regF dst, stackSlotI src) %{
 11311   predicate(UseSSE>=1);
 11312   match(Set dst (MoveI2F src));
 11313   effect( DEF dst, USE src );
 11315   ins_cost(95);
 11316   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
 11317   ins_encode %{
 11318     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
 11319   %}
 11320   ins_pipe( pipe_slow );
 11321 %}
 11323 instruct MoveI2F_reg_reg_sse(regF dst, rRegI src) %{
 11324   predicate(UseSSE>=2);
 11325   match(Set dst (MoveI2F src));
 11326   effect( DEF dst, USE src );
 11328   ins_cost(85);
 11329   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
 11330   ins_encode %{
 11331     __ movdl($dst$$XMMRegister, $src$$Register);
 11332   %}
 11333   ins_pipe( pipe_slow );
 11334 %}
 11336 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
 11337   match(Set dst (MoveD2L src));
 11338   effect(DEF dst, USE src);
 11340   ins_cost(250);
 11341   format %{ "MOV    $dst.lo,$src\n\t"
 11342             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
 11343   opcode(0x8B, 0x8B);
 11344   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
 11345   ins_pipe( ialu_mem_long_reg );
 11346 %}
 11348 instruct MoveDPR2L_reg_stack(stackSlotL dst, regDPR src) %{
 11349   predicate(UseSSE<=1);
 11350   match(Set dst (MoveD2L src));
 11351   effect(DEF dst, USE src);
 11353   ins_cost(125);
 11354   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
 11355   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 11356   ins_pipe( fpu_mem_reg );
 11357 %}
 11359 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regD src) %{
 11360   predicate(UseSSE>=2);
 11361   match(Set dst (MoveD2L src));
 11362   effect(DEF dst, USE src);
 11363   ins_cost(95);
 11364   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
 11365   ins_encode %{
 11366     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11367   %}
 11368   ins_pipe( pipe_slow );
 11369 %}
 11371 instruct MoveD2L_reg_reg_sse(eRegL dst, regD src, regD tmp) %{
 11372   predicate(UseSSE>=2);
 11373   match(Set dst (MoveD2L src));
 11374   effect(DEF dst, USE src, TEMP tmp);
 11375   ins_cost(85);
 11376   format %{ "MOVD   $dst.lo,$src\n\t"
 11377             "PSHUFLW $tmp,$src,0x4E\n\t"
 11378             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
 11379   ins_encode %{
 11380     __ movdl($dst$$Register, $src$$XMMRegister);
 11381     __ pshuflw($tmp$$XMMRegister, $src$$XMMRegister, 0x4e);
 11382     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
 11383   %}
 11384   ins_pipe( pipe_slow );
 11385 %}
 11387 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
 11388   match(Set dst (MoveL2D src));
 11389   effect(DEF dst, USE src);
 11391   ins_cost(200);
 11392   format %{ "MOV    $dst,$src.lo\n\t"
 11393             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
 11394   opcode(0x89, 0x89);
 11395   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
 11396   ins_pipe( ialu_mem_long_reg );
 11397 %}
 11400 instruct MoveL2DPR_stack_reg(regDPR dst, stackSlotL src) %{
 11401   predicate(UseSSE<=1);
 11402   match(Set dst (MoveL2D src));
 11403   effect(DEF dst, USE src);
 11404   ins_cost(125);
 11406   format %{ "FLD_D  $src\n\t"
 11407             "FSTP   $dst\t# MoveL2D_stack_reg" %}
 11408   opcode(0xDD);               /* DD /0, FLD m64real */
 11409   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11410               Pop_Reg_DPR(dst) );
 11411   ins_pipe( fpu_reg_mem );
 11412 %}
 11415 instruct MoveL2D_stack_reg_sse(regD dst, stackSlotL src) %{
 11416   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
 11417   match(Set dst (MoveL2D src));
 11418   effect(DEF dst, USE src);
 11420   ins_cost(95);
 11421   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11422   ins_encode %{
 11423     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11424   %}
 11425   ins_pipe( pipe_slow );
 11426 %}
 11428 instruct MoveL2D_stack_reg_sse_partial(regD dst, stackSlotL src) %{
 11429   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
 11430   match(Set dst (MoveL2D src));
 11431   effect(DEF dst, USE src);
 11433   ins_cost(95);
 11434   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11435   ins_encode %{
 11436     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11437   %}
 11438   ins_pipe( pipe_slow );
 11439 %}
 11441 instruct MoveL2D_reg_reg_sse(regD dst, eRegL src, regD tmp) %{
 11442   predicate(UseSSE>=2);
 11443   match(Set dst (MoveL2D src));
 11444   effect(TEMP dst, USE src, TEMP tmp);
 11445   ins_cost(85);
 11446   format %{ "MOVD   $dst,$src.lo\n\t"
 11447             "MOVD   $tmp,$src.hi\n\t"
 11448             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
 11449   ins_encode %{
 11450     __ movdl($dst$$XMMRegister, $src$$Register);
 11451     __ movdl($tmp$$XMMRegister, HIGH_FROM_LOW($src$$Register));
 11452     __ punpckldq($dst$$XMMRegister, $tmp$$XMMRegister);
 11453   %}
 11454   ins_pipe( pipe_slow );
 11455 %}
 11458 // =======================================================================
 11459 // fast clearing of an array
 11460 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 11461   predicate(!UseFastStosb);
 11462   match(Set dummy (ClearArray cnt base));
 11463   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 11464   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
 11465             "SHL    ECX,1\t# Convert doublewords to words\n\t"
 11466             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
 11467   ins_encode %{ 
 11468     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
 11469   %}
 11470   ins_pipe( pipe_slow );
 11471 %}
 11473 instruct rep_fast_stosb(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 11474   predicate(UseFastStosb);
 11475   match(Set dummy (ClearArray cnt base));
 11476   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 11477   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
 11478             "SHL    ECX,3\t# Convert doublewords to bytes\n\t"
 11479             "REP STOSB\t# store EAX into [EDI++] while ECX--" %}
 11480   ins_encode %{ 
 11481     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
 11482   %}
 11483   ins_pipe( pipe_slow );
 11484 %}
 11486 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
 11487                         eAXRegI result, regD tmp1, eFlagsReg cr) %{
 11488   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 11489   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
 11491   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
 11492   ins_encode %{
 11493     __ string_compare($str1$$Register, $str2$$Register,
 11494                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 11495                       $tmp1$$XMMRegister);
 11496   %}
 11497   ins_pipe( pipe_slow );
 11498 %}
 11500 // fast string equals
 11501 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
 11502                        regD tmp1, regD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
 11503   match(Set result (StrEquals (Binary str1 str2) cnt));
 11504   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
 11506   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
 11507   ins_encode %{
 11508     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
 11509                           $cnt$$Register, $result$$Register, $tmp3$$Register,
 11510                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 11511   %}
 11512   ins_pipe( pipe_slow );
 11513 %}
 11515 // fast search of substring with known size.
 11516 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
 11517                             eBXRegI result, regD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
 11518   predicate(UseSSE42Intrinsics);
 11519   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
 11520   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
 11522   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
 11523   ins_encode %{
 11524     int icnt2 = (int)$int_cnt2$$constant;
 11525     if (icnt2 >= 8) {
 11526       // IndexOf for constant substrings with size >= 8 elements
 11527       // which don't need to be loaded through stack.
 11528       __ string_indexofC8($str1$$Register, $str2$$Register,
 11529                           $cnt1$$Register, $cnt2$$Register,
 11530                           icnt2, $result$$Register,
 11531                           $vec$$XMMRegister, $tmp$$Register);
 11532     } else {
 11533       // Small strings are loaded through stack if they cross page boundary.
 11534       __ string_indexof($str1$$Register, $str2$$Register,
 11535                         $cnt1$$Register, $cnt2$$Register,
 11536                         icnt2, $result$$Register,
 11537                         $vec$$XMMRegister, $tmp$$Register);
 11539   %}
 11540   ins_pipe( pipe_slow );
 11541 %}
 11543 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
 11544                         eBXRegI result, regD vec, eCXRegI tmp, eFlagsReg cr) %{
 11545   predicate(UseSSE42Intrinsics);
 11546   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
 11547   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
 11549   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
 11550   ins_encode %{
 11551     __ string_indexof($str1$$Register, $str2$$Register,
 11552                       $cnt1$$Register, $cnt2$$Register,
 11553                       (-1), $result$$Register,
 11554                       $vec$$XMMRegister, $tmp$$Register);
 11555   %}
 11556   ins_pipe( pipe_slow );
 11557 %}
 11559 // fast array equals
 11560 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
 11561                       regD tmp1, regD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
 11562 %{
 11563   match(Set result (AryEq ary1 ary2));
 11564   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
 11565   //ins_cost(300);
 11567   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
 11568   ins_encode %{
 11569     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
 11570                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
 11571                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 11572   %}
 11573   ins_pipe( pipe_slow );
 11574 %}
 11576 // encode char[] to byte[] in ISO_8859_1
 11577 instruct encode_iso_array(eSIRegP src, eDIRegP dst, eDXRegI len,
 11578                           regD tmp1, regD tmp2, regD tmp3, regD tmp4,
 11579                           eCXRegI tmp5, eAXRegI result, eFlagsReg cr) %{
 11580   match(Set result (EncodeISOArray src (Binary dst len)));
 11581   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
 11583   format %{ "Encode array $src,$dst,$len -> $result    // KILL ECX, EDX, $tmp1, $tmp2, $tmp3, $tmp4, ESI, EDI " %}
 11584   ins_encode %{
 11585     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
 11586                         $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
 11587                         $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
 11588   %}
 11589   ins_pipe( pipe_slow );
 11590 %}
 11593 //----------Control Flow Instructions------------------------------------------
 11594 // Signed compare Instructions
 11595 instruct compI_eReg(eFlagsReg cr, rRegI op1, rRegI op2) %{
 11596   match(Set cr (CmpI op1 op2));
 11597   effect( DEF cr, USE op1, USE op2 );
 11598   format %{ "CMP    $op1,$op2" %}
 11599   opcode(0x3B);  /* Opcode 3B /r */
 11600   ins_encode( OpcP, RegReg( op1, op2) );
 11601   ins_pipe( ialu_cr_reg_reg );
 11602 %}
 11604 instruct compI_eReg_imm(eFlagsReg cr, rRegI op1, immI op2) %{
 11605   match(Set cr (CmpI op1 op2));
 11606   effect( DEF cr, USE op1 );
 11607   format %{ "CMP    $op1,$op2" %}
 11608   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11609   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
 11610   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11611   ins_pipe( ialu_cr_reg_imm );
 11612 %}
 11614 // Cisc-spilled version of cmpI_eReg
 11615 instruct compI_eReg_mem(eFlagsReg cr, rRegI op1, memory op2) %{
 11616   match(Set cr (CmpI op1 (LoadI op2)));
 11618   format %{ "CMP    $op1,$op2" %}
 11619   ins_cost(500);
 11620   opcode(0x3B);  /* Opcode 3B /r */
 11621   ins_encode( OpcP, RegMem( op1, op2) );
 11622   ins_pipe( ialu_cr_reg_mem );
 11623 %}
 11625 instruct testI_reg( eFlagsReg cr, rRegI src, immI0 zero ) %{
 11626   match(Set cr (CmpI src zero));
 11627   effect( DEF cr, USE src );
 11629   format %{ "TEST   $src,$src" %}
 11630   opcode(0x85);
 11631   ins_encode( OpcP, RegReg( src, src ) );
 11632   ins_pipe( ialu_cr_reg_imm );
 11633 %}
 11635 instruct testI_reg_imm( eFlagsReg cr, rRegI src, immI con, immI0 zero ) %{
 11636   match(Set cr (CmpI (AndI src con) zero));
 11638   format %{ "TEST   $src,$con" %}
 11639   opcode(0xF7,0x00);
 11640   ins_encode( OpcP, RegOpc(src), Con32(con) );
 11641   ins_pipe( ialu_cr_reg_imm );
 11642 %}
 11644 instruct testI_reg_mem( eFlagsReg cr, rRegI src, memory mem, immI0 zero ) %{
 11645   match(Set cr (CmpI (AndI src mem) zero));
 11647   format %{ "TEST   $src,$mem" %}
 11648   opcode(0x85);
 11649   ins_encode( OpcP, RegMem( src, mem ) );
 11650   ins_pipe( ialu_cr_reg_mem );
 11651 %}
 11653 // Unsigned compare Instructions; really, same as signed except they
 11654 // produce an eFlagsRegU instead of eFlagsReg.
 11655 instruct compU_eReg(eFlagsRegU cr, rRegI op1, rRegI op2) %{
 11656   match(Set cr (CmpU op1 op2));
 11658   format %{ "CMPu   $op1,$op2" %}
 11659   opcode(0x3B);  /* Opcode 3B /r */
 11660   ins_encode( OpcP, RegReg( op1, op2) );
 11661   ins_pipe( ialu_cr_reg_reg );
 11662 %}
 11664 instruct compU_eReg_imm(eFlagsRegU cr, rRegI op1, immI op2) %{
 11665   match(Set cr (CmpU op1 op2));
 11667   format %{ "CMPu   $op1,$op2" %}
 11668   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11669   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11670   ins_pipe( ialu_cr_reg_imm );
 11671 %}
 11673 // // Cisc-spilled version of cmpU_eReg
 11674 instruct compU_eReg_mem(eFlagsRegU cr, rRegI op1, memory op2) %{
 11675   match(Set cr (CmpU op1 (LoadI op2)));
 11677   format %{ "CMPu   $op1,$op2" %}
 11678   ins_cost(500);
 11679   opcode(0x3B);  /* Opcode 3B /r */
 11680   ins_encode( OpcP, RegMem( op1, op2) );
 11681   ins_pipe( ialu_cr_reg_mem );
 11682 %}
 11684 // // Cisc-spilled version of cmpU_eReg
 11685 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, rRegI op2) %{
 11686 //  match(Set cr (CmpU (LoadI op1) op2));
 11687 //
 11688 //  format %{ "CMPu   $op1,$op2" %}
 11689 //  ins_cost(500);
 11690 //  opcode(0x39);  /* Opcode 39 /r */
 11691 //  ins_encode( OpcP, RegMem( op1, op2) );
 11692 //%}
 11694 instruct testU_reg( eFlagsRegU cr, rRegI src, immI0 zero ) %{
 11695   match(Set cr (CmpU src zero));
 11697   format %{ "TESTu  $src,$src" %}
 11698   opcode(0x85);
 11699   ins_encode( OpcP, RegReg( src, src ) );
 11700   ins_pipe( ialu_cr_reg_imm );
 11701 %}
 11703 // Unsigned pointer compare Instructions
 11704 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
 11705   match(Set cr (CmpP op1 op2));
 11707   format %{ "CMPu   $op1,$op2" %}
 11708   opcode(0x3B);  /* Opcode 3B /r */
 11709   ins_encode( OpcP, RegReg( op1, op2) );
 11710   ins_pipe( ialu_cr_reg_reg );
 11711 %}
 11713 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
 11714   match(Set cr (CmpP op1 op2));
 11716   format %{ "CMPu   $op1,$op2" %}
 11717   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11718   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11719   ins_pipe( ialu_cr_reg_imm );
 11720 %}
 11722 // // Cisc-spilled version of cmpP_eReg
 11723 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
 11724   match(Set cr (CmpP op1 (LoadP op2)));
 11726   format %{ "CMPu   $op1,$op2" %}
 11727   ins_cost(500);
 11728   opcode(0x3B);  /* Opcode 3B /r */
 11729   ins_encode( OpcP, RegMem( op1, op2) );
 11730   ins_pipe( ialu_cr_reg_mem );
 11731 %}
 11733 // // Cisc-spilled version of cmpP_eReg
 11734 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
 11735 //  match(Set cr (CmpP (LoadP op1) op2));
 11736 //
 11737 //  format %{ "CMPu   $op1,$op2" %}
 11738 //  ins_cost(500);
 11739 //  opcode(0x39);  /* Opcode 39 /r */
 11740 //  ins_encode( OpcP, RegMem( op1, op2) );
 11741 //%}
 11743 // Compare raw pointer (used in out-of-heap check).
 11744 // Only works because non-oop pointers must be raw pointers
 11745 // and raw pointers have no anti-dependencies.
 11746 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
 11747   predicate( n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none );
 11748   match(Set cr (CmpP op1 (LoadP op2)));
 11750   format %{ "CMPu   $op1,$op2" %}
 11751   opcode(0x3B);  /* Opcode 3B /r */
 11752   ins_encode( OpcP, RegMem( op1, op2) );
 11753   ins_pipe( ialu_cr_reg_mem );
 11754 %}
 11756 //
 11757 // This will generate a signed flags result. This should be ok
 11758 // since any compare to a zero should be eq/neq.
 11759 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
 11760   match(Set cr (CmpP src zero));
 11762   format %{ "TEST   $src,$src" %}
 11763   opcode(0x85);
 11764   ins_encode( OpcP, RegReg( src, src ) );
 11765   ins_pipe( ialu_cr_reg_imm );
 11766 %}
 11768 // Cisc-spilled version of testP_reg
 11769 // This will generate a signed flags result. This should be ok
 11770 // since any compare to a zero should be eq/neq.
 11771 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
 11772   match(Set cr (CmpP (LoadP op) zero));
 11774   format %{ "TEST   $op,0xFFFFFFFF" %}
 11775   ins_cost(500);
 11776   opcode(0xF7);               /* Opcode F7 /0 */
 11777   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
 11778   ins_pipe( ialu_cr_reg_imm );
 11779 %}
 11781 // Yanked all unsigned pointer compare operations.
 11782 // Pointer compares are done with CmpP which is already unsigned.
 11784 //----------Max and Min--------------------------------------------------------
 11785 // Min Instructions
 11786 ////
 11787 //   *** Min and Max using the conditional move are slower than the
 11788 //   *** branch version on a Pentium III.
 11789 // // Conditional move for min
 11790 //instruct cmovI_reg_lt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
 11791 //  effect( USE_DEF op2, USE op1, USE cr );
 11792 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 11793 //  opcode(0x4C,0x0F);
 11794 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 11795 //  ins_pipe( pipe_cmov_reg );
 11796 //%}
 11797 //
 11798 //// Min Register with Register (P6 version)
 11799 //instruct minI_eReg_p6( rRegI op1, rRegI op2 ) %{
 11800 //  predicate(VM_Version::supports_cmov() );
 11801 //  match(Set op2 (MinI op1 op2));
 11802 //  ins_cost(200);
 11803 //  expand %{
 11804 //    eFlagsReg cr;
 11805 //    compI_eReg(cr,op1,op2);
 11806 //    cmovI_reg_lt(op2,op1,cr);
 11807 //  %}
 11808 //%}
 11810 // Min Register with Register (generic version)
 11811 instruct minI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
 11812   match(Set dst (MinI dst src));
 11813   effect(KILL flags);
 11814   ins_cost(300);
 11816   format %{ "MIN    $dst,$src" %}
 11817   opcode(0xCC);
 11818   ins_encode( min_enc(dst,src) );
 11819   ins_pipe( pipe_slow );
 11820 %}
 11822 // Max Register with Register
 11823 //   *** Min and Max using the conditional move are slower than the
 11824 //   *** branch version on a Pentium III.
 11825 // // Conditional move for max
 11826 //instruct cmovI_reg_gt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
 11827 //  effect( USE_DEF op2, USE op1, USE cr );
 11828 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 11829 //  opcode(0x4F,0x0F);
 11830 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 11831 //  ins_pipe( pipe_cmov_reg );
 11832 //%}
 11833 //
 11834 // // Max Register with Register (P6 version)
 11835 //instruct maxI_eReg_p6( rRegI op1, rRegI op2 ) %{
 11836 //  predicate(VM_Version::supports_cmov() );
 11837 //  match(Set op2 (MaxI op1 op2));
 11838 //  ins_cost(200);
 11839 //  expand %{
 11840 //    eFlagsReg cr;
 11841 //    compI_eReg(cr,op1,op2);
 11842 //    cmovI_reg_gt(op2,op1,cr);
 11843 //  %}
 11844 //%}
 11846 // Max Register with Register (generic version)
 11847 instruct maxI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
 11848   match(Set dst (MaxI dst src));
 11849   effect(KILL flags);
 11850   ins_cost(300);
 11852   format %{ "MAX    $dst,$src" %}
 11853   opcode(0xCC);
 11854   ins_encode( max_enc(dst,src) );
 11855   ins_pipe( pipe_slow );
 11856 %}
 11858 // ============================================================================
 11859 // Counted Loop limit node which represents exact final iterator value.
 11860 // Note: the resulting value should fit into integer range since
 11861 // counted loops have limit check on overflow.
 11862 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
 11863   match(Set limit (LoopLimit (Binary init limit) stride));
 11864   effect(TEMP limit_hi, TEMP tmp, KILL flags);
 11865   ins_cost(300);
 11867   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
 11868   ins_encode %{
 11869     int strd = (int)$stride$$constant;
 11870     assert(strd != 1 && strd != -1, "sanity");
 11871     int m1 = (strd > 0) ? 1 : -1;
 11872     // Convert limit to long (EAX:EDX)
 11873     __ cdql();
 11874     // Convert init to long (init:tmp)
 11875     __ movl($tmp$$Register, $init$$Register);
 11876     __ sarl($tmp$$Register, 31);
 11877     // $limit - $init
 11878     __ subl($limit$$Register, $init$$Register);
 11879     __ sbbl($limit_hi$$Register, $tmp$$Register);
 11880     // + ($stride - 1)
 11881     if (strd > 0) {
 11882       __ addl($limit$$Register, (strd - 1));
 11883       __ adcl($limit_hi$$Register, 0);
 11884       __ movl($tmp$$Register, strd);
 11885     } else {
 11886       __ addl($limit$$Register, (strd + 1));
 11887       __ adcl($limit_hi$$Register, -1);
 11888       __ lneg($limit_hi$$Register, $limit$$Register);
 11889       __ movl($tmp$$Register, -strd);
 11891     // signed devision: (EAX:EDX) / pos_stride
 11892     __ idivl($tmp$$Register);
 11893     if (strd < 0) {
 11894       // restore sign
 11895       __ negl($tmp$$Register);
 11897     // (EAX) * stride
 11898     __ mull($tmp$$Register);
 11899     // + init (ignore upper bits)
 11900     __ addl($limit$$Register, $init$$Register);
 11901   %}
 11902   ins_pipe( pipe_slow );
 11903 %}
 11905 // ============================================================================
 11906 // Branch Instructions
 11907 // Jump Table
 11908 instruct jumpXtnd(rRegI switch_val) %{
 11909   match(Jump switch_val);
 11910   ins_cost(350);
 11911   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
 11912   ins_encode %{
 11913     // Jump to Address(table_base + switch_reg)
 11914     Address index(noreg, $switch_val$$Register, Address::times_1);
 11915     __ jump(ArrayAddress($constantaddress, index));
 11916   %}
 11917   ins_pipe(pipe_jmp);
 11918 %}
 11920 // Jump Direct - Label defines a relative address from JMP+1
 11921 instruct jmpDir(label labl) %{
 11922   match(Goto);
 11923   effect(USE labl);
 11925   ins_cost(300);
 11926   format %{ "JMP    $labl" %}
 11927   size(5);
 11928   ins_encode %{
 11929     Label* L = $labl$$label;
 11930     __ jmp(*L, false); // Always long jump
 11931   %}
 11932   ins_pipe( pipe_jmp );
 11933 %}
 11935 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 11936 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
 11937   match(If cop cr);
 11938   effect(USE labl);
 11940   ins_cost(300);
 11941   format %{ "J$cop    $labl" %}
 11942   size(6);
 11943   ins_encode %{
 11944     Label* L = $labl$$label;
 11945     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 11946   %}
 11947   ins_pipe( pipe_jcc );
 11948 %}
 11950 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 11951 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
 11952   match(CountedLoopEnd cop cr);
 11953   effect(USE labl);
 11955   ins_cost(300);
 11956   format %{ "J$cop    $labl\t# Loop end" %}
 11957   size(6);
 11958   ins_encode %{
 11959     Label* L = $labl$$label;
 11960     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 11961   %}
 11962   ins_pipe( pipe_jcc );
 11963 %}
 11965 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 11966 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 11967   match(CountedLoopEnd cop cmp);
 11968   effect(USE labl);
 11970   ins_cost(300);
 11971   format %{ "J$cop,u  $labl\t# Loop end" %}
 11972   size(6);
 11973   ins_encode %{
 11974     Label* L = $labl$$label;
 11975     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 11976   %}
 11977   ins_pipe( pipe_jcc );
 11978 %}
 11980 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 11981   match(CountedLoopEnd cop cmp);
 11982   effect(USE labl);
 11984   ins_cost(200);
 11985   format %{ "J$cop,u  $labl\t# Loop end" %}
 11986   size(6);
 11987   ins_encode %{
 11988     Label* L = $labl$$label;
 11989     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 11990   %}
 11991   ins_pipe( pipe_jcc );
 11992 %}
 11994 // Jump Direct Conditional - using unsigned comparison
 11995 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 11996   match(If cop cmp);
 11997   effect(USE labl);
 11999   ins_cost(300);
 12000   format %{ "J$cop,u  $labl" %}
 12001   size(6);
 12002   ins_encode %{
 12003     Label* L = $labl$$label;
 12004     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12005   %}
 12006   ins_pipe(pipe_jcc);
 12007 %}
 12009 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12010   match(If cop cmp);
 12011   effect(USE labl);
 12013   ins_cost(200);
 12014   format %{ "J$cop,u  $labl" %}
 12015   size(6);
 12016   ins_encode %{
 12017     Label* L = $labl$$label;
 12018     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12019   %}
 12020   ins_pipe(pipe_jcc);
 12021 %}
 12023 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12024   match(If cop cmp);
 12025   effect(USE labl);
 12027   ins_cost(200);
 12028   format %{ $$template
 12029     if ($cop$$cmpcode == Assembler::notEqual) {
 12030       $$emit$$"JP,u   $labl\n\t"
 12031       $$emit$$"J$cop,u   $labl"
 12032     } else {
 12033       $$emit$$"JP,u   done\n\t"
 12034       $$emit$$"J$cop,u   $labl\n\t"
 12035       $$emit$$"done:"
 12037   %}
 12038   ins_encode %{
 12039     Label* l = $labl$$label;
 12040     if ($cop$$cmpcode == Assembler::notEqual) {
 12041       __ jcc(Assembler::parity, *l, false);
 12042       __ jcc(Assembler::notEqual, *l, false);
 12043     } else if ($cop$$cmpcode == Assembler::equal) {
 12044       Label done;
 12045       __ jccb(Assembler::parity, done);
 12046       __ jcc(Assembler::equal, *l, false);
 12047       __ bind(done);
 12048     } else {
 12049        ShouldNotReachHere();
 12051   %}
 12052   ins_pipe(pipe_jcc);
 12053 %}
 12055 // ============================================================================
 12056 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12057 // array for an instance of the superklass.  Set a hidden internal cache on a
 12058 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12059 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12060 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
 12061   match(Set result (PartialSubtypeCheck sub super));
 12062   effect( KILL rcx, KILL cr );
 12064   ins_cost(1100);  // slightly larger than the next version
 12065   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12066             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
 12067             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12068             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12069             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
 12070             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
 12071             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
 12072      "miss:\t" %}
 12074   opcode(0x1); // Force a XOR of EDI
 12075   ins_encode( enc_PartialSubtypeCheck() );
 12076   ins_pipe( pipe_slow );
 12077 %}
 12079 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
 12080   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 12081   effect( KILL rcx, KILL result );
 12083   ins_cost(1000);
 12084   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12085             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
 12086             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12087             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12088             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
 12089             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
 12090      "miss:\t" %}
 12092   opcode(0x0);  // No need to XOR EDI
 12093   ins_encode( enc_PartialSubtypeCheck() );
 12094   ins_pipe( pipe_slow );
 12095 %}
 12097 // ============================================================================
 12098 // Branch Instructions -- short offset versions
 12099 //
 12100 // These instructions are used to replace jumps of a long offset (the default
 12101 // match) with jumps of a shorter offset.  These instructions are all tagged
 12102 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 12103 // match rules in general matching.  Instead, the ADLC generates a conversion
 12104 // method in the MachNode which can be used to do in-place replacement of the
 12105 // long variant with the shorter variant.  The compiler will determine if a
 12106 // branch can be taken by the is_short_branch_offset() predicate in the machine
 12107 // specific code section of the file.
 12109 // Jump Direct - Label defines a relative address from JMP+1
 12110 instruct jmpDir_short(label labl) %{
 12111   match(Goto);
 12112   effect(USE labl);
 12114   ins_cost(300);
 12115   format %{ "JMP,s  $labl" %}
 12116   size(2);
 12117   ins_encode %{
 12118     Label* L = $labl$$label;
 12119     __ jmpb(*L);
 12120   %}
 12121   ins_pipe( pipe_jmp );
 12122   ins_short_branch(1);
 12123 %}
 12125 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12126 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12127   match(If cop cr);
 12128   effect(USE labl);
 12130   ins_cost(300);
 12131   format %{ "J$cop,s  $labl" %}
 12132   size(2);
 12133   ins_encode %{
 12134     Label* L = $labl$$label;
 12135     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12136   %}
 12137   ins_pipe( pipe_jcc );
 12138   ins_short_branch(1);
 12139 %}
 12141 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12142 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12143   match(CountedLoopEnd cop cr);
 12144   effect(USE labl);
 12146   ins_cost(300);
 12147   format %{ "J$cop,s  $labl\t# Loop end" %}
 12148   size(2);
 12149   ins_encode %{
 12150     Label* L = $labl$$label;
 12151     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12152   %}
 12153   ins_pipe( pipe_jcc );
 12154   ins_short_branch(1);
 12155 %}
 12157 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12158 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12159   match(CountedLoopEnd cop cmp);
 12160   effect(USE labl);
 12162   ins_cost(300);
 12163   format %{ "J$cop,us $labl\t# Loop end" %}
 12164   size(2);
 12165   ins_encode %{
 12166     Label* L = $labl$$label;
 12167     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12168   %}
 12169   ins_pipe( pipe_jcc );
 12170   ins_short_branch(1);
 12171 %}
 12173 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12174   match(CountedLoopEnd cop cmp);
 12175   effect(USE labl);
 12177   ins_cost(300);
 12178   format %{ "J$cop,us $labl\t# Loop end" %}
 12179   size(2);
 12180   ins_encode %{
 12181     Label* L = $labl$$label;
 12182     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12183   %}
 12184   ins_pipe( pipe_jcc );
 12185   ins_short_branch(1);
 12186 %}
 12188 // Jump Direct Conditional - using unsigned comparison
 12189 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12190   match(If cop cmp);
 12191   effect(USE labl);
 12193   ins_cost(300);
 12194   format %{ "J$cop,us $labl" %}
 12195   size(2);
 12196   ins_encode %{
 12197     Label* L = $labl$$label;
 12198     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12199   %}
 12200   ins_pipe( pipe_jcc );
 12201   ins_short_branch(1);
 12202 %}
 12204 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12205   match(If cop cmp);
 12206   effect(USE labl);
 12208   ins_cost(300);
 12209   format %{ "J$cop,us $labl" %}
 12210   size(2);
 12211   ins_encode %{
 12212     Label* L = $labl$$label;
 12213     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12214   %}
 12215   ins_pipe( pipe_jcc );
 12216   ins_short_branch(1);
 12217 %}
 12219 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12220   match(If cop cmp);
 12221   effect(USE labl);
 12223   ins_cost(300);
 12224   format %{ $$template
 12225     if ($cop$$cmpcode == Assembler::notEqual) {
 12226       $$emit$$"JP,u,s   $labl\n\t"
 12227       $$emit$$"J$cop,u,s   $labl"
 12228     } else {
 12229       $$emit$$"JP,u,s   done\n\t"
 12230       $$emit$$"J$cop,u,s  $labl\n\t"
 12231       $$emit$$"done:"
 12233   %}
 12234   size(4);
 12235   ins_encode %{
 12236     Label* l = $labl$$label;
 12237     if ($cop$$cmpcode == Assembler::notEqual) {
 12238       __ jccb(Assembler::parity, *l);
 12239       __ jccb(Assembler::notEqual, *l);
 12240     } else if ($cop$$cmpcode == Assembler::equal) {
 12241       Label done;
 12242       __ jccb(Assembler::parity, done);
 12243       __ jccb(Assembler::equal, *l);
 12244       __ bind(done);
 12245     } else {
 12246        ShouldNotReachHere();
 12248   %}
 12249   ins_pipe(pipe_jcc);
 12250   ins_short_branch(1);
 12251 %}
 12253 // ============================================================================
 12254 // Long Compare
 12255 //
 12256 // Currently we hold longs in 2 registers.  Comparing such values efficiently
 12257 // is tricky.  The flavor of compare used depends on whether we are testing
 12258 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
 12259 // The GE test is the negated LT test.  The LE test can be had by commuting
 12260 // the operands (yielding a GE test) and then negating; negate again for the
 12261 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
 12262 // NE test is negated from that.
 12264 // Due to a shortcoming in the ADLC, it mixes up expressions like:
 12265 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
 12266 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
 12267 // are collapsed internally in the ADLC's dfa-gen code.  The match for
 12268 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
 12269 // foo match ends up with the wrong leaf.  One fix is to not match both
 12270 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
 12271 // both forms beat the trinary form of long-compare and both are very useful
 12272 // on Intel which has so few registers.
 12274 // Manifest a CmpL result in an integer register.  Very painful.
 12275 // This is the test to avoid.
 12276 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
 12277   match(Set dst (CmpL3 src1 src2));
 12278   effect( KILL flags );
 12279   ins_cost(1000);
 12280   format %{ "XOR    $dst,$dst\n\t"
 12281             "CMP    $src1.hi,$src2.hi\n\t"
 12282             "JLT,s  m_one\n\t"
 12283             "JGT,s  p_one\n\t"
 12284             "CMP    $src1.lo,$src2.lo\n\t"
 12285             "JB,s   m_one\n\t"
 12286             "JEQ,s  done\n"
 12287     "p_one:\tINC    $dst\n\t"
 12288             "JMP,s  done\n"
 12289     "m_one:\tDEC    $dst\n"
 12290      "done:" %}
 12291   ins_encode %{
 12292     Label p_one, m_one, done;
 12293     __ xorptr($dst$$Register, $dst$$Register);
 12294     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
 12295     __ jccb(Assembler::less,    m_one);
 12296     __ jccb(Assembler::greater, p_one);
 12297     __ cmpl($src1$$Register, $src2$$Register);
 12298     __ jccb(Assembler::below,   m_one);
 12299     __ jccb(Assembler::equal,   done);
 12300     __ bind(p_one);
 12301     __ incrementl($dst$$Register);
 12302     __ jmpb(done);
 12303     __ bind(m_one);
 12304     __ decrementl($dst$$Register);
 12305     __ bind(done);
 12306   %}
 12307   ins_pipe( pipe_slow );
 12308 %}
 12310 //======
 12311 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12312 // compares.  Can be used for LE or GT compares by reversing arguments.
 12313 // NOT GOOD FOR EQ/NE tests.
 12314 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
 12315   match( Set flags (CmpL src zero ));
 12316   ins_cost(100);
 12317   format %{ "TEST   $src.hi,$src.hi" %}
 12318   opcode(0x85);
 12319   ins_encode( OpcP, RegReg_Hi2( src, src ) );
 12320   ins_pipe( ialu_cr_reg_reg );
 12321 %}
 12323 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12324 // compares.  Can be used for LE or GT compares by reversing arguments.
 12325 // NOT GOOD FOR EQ/NE tests.
 12326 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, rRegI tmp ) %{
 12327   match( Set flags (CmpL src1 src2 ));
 12328   effect( TEMP tmp );
 12329   ins_cost(300);
 12330   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12331             "MOV    $tmp,$src1.hi\n\t"
 12332             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
 12333   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
 12334   ins_pipe( ialu_cr_reg_reg );
 12335 %}
 12337 // Long compares reg < zero/req OR reg >= zero/req.
 12338 // Just a wrapper for a normal branch, plus the predicate test.
 12339 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
 12340   match(If cmp flags);
 12341   effect(USE labl);
 12342   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12343   expand %{
 12344     jmpCon(cmp,flags,labl);    // JLT or JGE...
 12345   %}
 12346 %}
 12348 // Compare 2 longs and CMOVE longs.
 12349 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
 12350   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12351   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12352   ins_cost(400);
 12353   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12354             "CMOV$cmp $dst.hi,$src.hi" %}
 12355   opcode(0x0F,0x40);
 12356   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12357   ins_pipe( pipe_cmov_reg_long );
 12358 %}
 12360 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
 12361   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12362   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12363   ins_cost(500);
 12364   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12365             "CMOV$cmp $dst.hi,$src.hi" %}
 12366   opcode(0x0F,0x40);
 12367   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12368   ins_pipe( pipe_cmov_reg_long );
 12369 %}
 12371 // Compare 2 longs and CMOVE ints.
 12372 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, rRegI src) %{
 12373   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12374   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12375   ins_cost(200);
 12376   format %{ "CMOV$cmp $dst,$src" %}
 12377   opcode(0x0F,0x40);
 12378   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12379   ins_pipe( pipe_cmov_reg );
 12380 %}
 12382 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, memory src) %{
 12383   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12384   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12385   ins_cost(250);
 12386   format %{ "CMOV$cmp $dst,$src" %}
 12387   opcode(0x0F,0x40);
 12388   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12389   ins_pipe( pipe_cmov_mem );
 12390 %}
 12392 // Compare 2 longs and CMOVE ints.
 12393 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
 12394   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12395   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12396   ins_cost(200);
 12397   format %{ "CMOV$cmp $dst,$src" %}
 12398   opcode(0x0F,0x40);
 12399   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12400   ins_pipe( pipe_cmov_reg );
 12401 %}
 12403 // Compare 2 longs and CMOVE doubles
 12404 instruct cmovDDPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regDPR dst, regDPR src) %{
 12405   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12406   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12407   ins_cost(200);
 12408   expand %{
 12409     fcmovDPR_regS(cmp,flags,dst,src);
 12410   %}
 12411 %}
 12413 // Compare 2 longs and CMOVE doubles
 12414 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
 12415   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12416   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12417   ins_cost(200);
 12418   expand %{
 12419     fcmovD_regS(cmp,flags,dst,src);
 12420   %}
 12421 %}
 12423 instruct cmovFFPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regFPR dst, regFPR src) %{
 12424   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12425   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12426   ins_cost(200);
 12427   expand %{
 12428     fcmovFPR_regS(cmp,flags,dst,src);
 12429   %}
 12430 %}
 12432 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
 12433   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12434   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12435   ins_cost(200);
 12436   expand %{
 12437     fcmovF_regS(cmp,flags,dst,src);
 12438   %}
 12439 %}
 12441 //======
 12442 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12443 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, rRegI tmp ) %{
 12444   match( Set flags (CmpL src zero ));
 12445   effect(TEMP tmp);
 12446   ins_cost(200);
 12447   format %{ "MOV    $tmp,$src.lo\n\t"
 12448             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
 12449   ins_encode( long_cmp_flags0( src, tmp ) );
 12450   ins_pipe( ialu_reg_reg_long );
 12451 %}
 12453 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12454 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
 12455   match( Set flags (CmpL src1 src2 ));
 12456   ins_cost(200+300);
 12457   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12458             "JNE,s  skip\n\t"
 12459             "CMP    $src1.hi,$src2.hi\n\t"
 12460      "skip:\t" %}
 12461   ins_encode( long_cmp_flags1( src1, src2 ) );
 12462   ins_pipe( ialu_cr_reg_reg );
 12463 %}
 12465 // Long compare reg == zero/reg OR reg != zero/reg
 12466 // Just a wrapper for a normal branch, plus the predicate test.
 12467 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
 12468   match(If cmp flags);
 12469   effect(USE labl);
 12470   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12471   expand %{
 12472     jmpCon(cmp,flags,labl);    // JEQ or JNE...
 12473   %}
 12474 %}
 12476 // Compare 2 longs and CMOVE longs.
 12477 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
 12478   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12479   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12480   ins_cost(400);
 12481   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12482             "CMOV$cmp $dst.hi,$src.hi" %}
 12483   opcode(0x0F,0x40);
 12484   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12485   ins_pipe( pipe_cmov_reg_long );
 12486 %}
 12488 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
 12489   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12490   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12491   ins_cost(500);
 12492   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12493             "CMOV$cmp $dst.hi,$src.hi" %}
 12494   opcode(0x0F,0x40);
 12495   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12496   ins_pipe( pipe_cmov_reg_long );
 12497 %}
 12499 // Compare 2 longs and CMOVE ints.
 12500 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, rRegI src) %{
 12501   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12502   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12503   ins_cost(200);
 12504   format %{ "CMOV$cmp $dst,$src" %}
 12505   opcode(0x0F,0x40);
 12506   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12507   ins_pipe( pipe_cmov_reg );
 12508 %}
 12510 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, memory src) %{
 12511   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12512   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12513   ins_cost(250);
 12514   format %{ "CMOV$cmp $dst,$src" %}
 12515   opcode(0x0F,0x40);
 12516   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12517   ins_pipe( pipe_cmov_mem );
 12518 %}
 12520 // Compare 2 longs and CMOVE ints.
 12521 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
 12522   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12523   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12524   ins_cost(200);
 12525   format %{ "CMOV$cmp $dst,$src" %}
 12526   opcode(0x0F,0x40);
 12527   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12528   ins_pipe( pipe_cmov_reg );
 12529 %}
 12531 // Compare 2 longs and CMOVE doubles
 12532 instruct cmovDDPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regDPR dst, regDPR src) %{
 12533   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12534   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12535   ins_cost(200);
 12536   expand %{
 12537     fcmovDPR_regS(cmp,flags,dst,src);
 12538   %}
 12539 %}
 12541 // Compare 2 longs and CMOVE doubles
 12542 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
 12543   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12544   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12545   ins_cost(200);
 12546   expand %{
 12547     fcmovD_regS(cmp,flags,dst,src);
 12548   %}
 12549 %}
 12551 instruct cmovFFPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regFPR dst, regFPR src) %{
 12552   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12553   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12554   ins_cost(200);
 12555   expand %{
 12556     fcmovFPR_regS(cmp,flags,dst,src);
 12557   %}
 12558 %}
 12560 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
 12561   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12562   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12563   ins_cost(200);
 12564   expand %{
 12565     fcmovF_regS(cmp,flags,dst,src);
 12566   %}
 12567 %}
 12569 //======
 12570 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 12571 // Same as cmpL_reg_flags_LEGT except must negate src
 12572 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, rRegI tmp ) %{
 12573   match( Set flags (CmpL src zero ));
 12574   effect( TEMP tmp );
 12575   ins_cost(300);
 12576   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
 12577             "CMP    $tmp,$src.lo\n\t"
 12578             "SBB    $tmp,$src.hi\n\t" %}
 12579   ins_encode( long_cmp_flags3(src, tmp) );
 12580   ins_pipe( ialu_reg_reg_long );
 12581 %}
 12583 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 12584 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
 12585 // requires a commuted test to get the same result.
 12586 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, rRegI tmp ) %{
 12587   match( Set flags (CmpL src1 src2 ));
 12588   effect( TEMP tmp );
 12589   ins_cost(300);
 12590   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
 12591             "MOV    $tmp,$src2.hi\n\t"
 12592             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
 12593   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
 12594   ins_pipe( ialu_cr_reg_reg );
 12595 %}
 12597 // Long compares reg < zero/req OR reg >= zero/req.
 12598 // Just a wrapper for a normal branch, plus the predicate test
 12599 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
 12600   match(If cmp flags);
 12601   effect(USE labl);
 12602   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
 12603   ins_cost(300);
 12604   expand %{
 12605     jmpCon(cmp,flags,labl);    // JGT or JLE...
 12606   %}
 12607 %}
 12609 // Compare 2 longs and CMOVE longs.
 12610 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
 12611   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12612   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12613   ins_cost(400);
 12614   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12615             "CMOV$cmp $dst.hi,$src.hi" %}
 12616   opcode(0x0F,0x40);
 12617   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12618   ins_pipe( pipe_cmov_reg_long );
 12619 %}
 12621 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
 12622   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12623   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12624   ins_cost(500);
 12625   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12626             "CMOV$cmp $dst.hi,$src.hi+4" %}
 12627   opcode(0x0F,0x40);
 12628   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12629   ins_pipe( pipe_cmov_reg_long );
 12630 %}
 12632 // Compare 2 longs and CMOVE ints.
 12633 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, rRegI src) %{
 12634   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12635   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12636   ins_cost(200);
 12637   format %{ "CMOV$cmp $dst,$src" %}
 12638   opcode(0x0F,0x40);
 12639   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12640   ins_pipe( pipe_cmov_reg );
 12641 %}
 12643 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, memory src) %{
 12644   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12645   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12646   ins_cost(250);
 12647   format %{ "CMOV$cmp $dst,$src" %}
 12648   opcode(0x0F,0x40);
 12649   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12650   ins_pipe( pipe_cmov_mem );
 12651 %}
 12653 // Compare 2 longs and CMOVE ptrs.
 12654 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
 12655   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12656   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12657   ins_cost(200);
 12658   format %{ "CMOV$cmp $dst,$src" %}
 12659   opcode(0x0F,0x40);
 12660   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12661   ins_pipe( pipe_cmov_reg );
 12662 %}
 12664 // Compare 2 longs and CMOVE doubles
 12665 instruct cmovDDPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regDPR dst, regDPR src) %{
 12666   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12667   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12668   ins_cost(200);
 12669   expand %{
 12670     fcmovDPR_regS(cmp,flags,dst,src);
 12671   %}
 12672 %}
 12674 // Compare 2 longs and CMOVE doubles
 12675 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
 12676   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12677   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12678   ins_cost(200);
 12679   expand %{
 12680     fcmovD_regS(cmp,flags,dst,src);
 12681   %}
 12682 %}
 12684 instruct cmovFFPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regFPR dst, regFPR src) %{
 12685   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12686   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12687   ins_cost(200);
 12688   expand %{
 12689     fcmovFPR_regS(cmp,flags,dst,src);
 12690   %}
 12691 %}
 12694 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
 12695   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12696   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12697   ins_cost(200);
 12698   expand %{
 12699     fcmovF_regS(cmp,flags,dst,src);
 12700   %}
 12701 %}
 12704 // ============================================================================
 12705 // Procedure Call/Return Instructions
 12706 // Call Java Static Instruction
 12707 // Note: If this code changes, the corresponding ret_addr_offset() and
 12708 //       compute_padding() functions will have to be adjusted.
 12709 instruct CallStaticJavaDirect(method meth) %{
 12710   match(CallStaticJava);
 12711   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 12712   effect(USE meth);
 12714   ins_cost(300);
 12715   format %{ "CALL,static " %}
 12716   opcode(0xE8); /* E8 cd */
 12717   ins_encode( pre_call_resets,
 12718               Java_Static_Call( meth ),
 12719               call_epilog,
 12720               post_call_FPU );
 12721   ins_pipe( pipe_slow );
 12722   ins_alignment(4);
 12723 %}
 12725 // Call Java Static Instruction (method handle version)
 12726 // Note: If this code changes, the corresponding ret_addr_offset() and
 12727 //       compute_padding() functions will have to be adjusted.
 12728 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
 12729   match(CallStaticJava);
 12730   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 12731   effect(USE meth);
 12732   // EBP is saved by all callees (for interpreter stack correction).
 12733   // We use it here for a similar purpose, in {preserve,restore}_SP.
 12735   ins_cost(300);
 12736   format %{ "CALL,static/MethodHandle " %}
 12737   opcode(0xE8); /* E8 cd */
 12738   ins_encode( pre_call_resets,
 12739               preserve_SP,
 12740               Java_Static_Call( meth ),
 12741               restore_SP,
 12742               call_epilog,
 12743               post_call_FPU );
 12744   ins_pipe( pipe_slow );
 12745   ins_alignment(4);
 12746 %}
 12748 // Call Java Dynamic Instruction
 12749 // Note: If this code changes, the corresponding ret_addr_offset() and
 12750 //       compute_padding() functions will have to be adjusted.
 12751 instruct CallDynamicJavaDirect(method meth) %{
 12752   match(CallDynamicJava);
 12753   effect(USE meth);
 12755   ins_cost(300);
 12756   format %{ "MOV    EAX,(oop)-1\n\t"
 12757             "CALL,dynamic" %}
 12758   opcode(0xE8); /* E8 cd */
 12759   ins_encode( pre_call_resets,
 12760               Java_Dynamic_Call( meth ),
 12761               call_epilog,
 12762               post_call_FPU );
 12763   ins_pipe( pipe_slow );
 12764   ins_alignment(4);
 12765 %}
 12767 // Call Runtime Instruction
 12768 instruct CallRuntimeDirect(method meth) %{
 12769   match(CallRuntime );
 12770   effect(USE meth);
 12772   ins_cost(300);
 12773   format %{ "CALL,runtime " %}
 12774   opcode(0xE8); /* E8 cd */
 12775   // Use FFREEs to clear entries in float stack
 12776   ins_encode( pre_call_resets,
 12777               FFree_Float_Stack_All,
 12778               Java_To_Runtime( meth ),
 12779               post_call_FPU );
 12780   ins_pipe( pipe_slow );
 12781 %}
 12783 // Call runtime without safepoint
 12784 instruct CallLeafDirect(method meth) %{
 12785   match(CallLeaf);
 12786   effect(USE meth);
 12788   ins_cost(300);
 12789   format %{ "CALL_LEAF,runtime " %}
 12790   opcode(0xE8); /* E8 cd */
 12791   ins_encode( pre_call_resets,
 12792               FFree_Float_Stack_All,
 12793               Java_To_Runtime( meth ),
 12794               Verify_FPU_For_Leaf, post_call_FPU );
 12795   ins_pipe( pipe_slow );
 12796 %}
 12798 instruct CallLeafNoFPDirect(method meth) %{
 12799   match(CallLeafNoFP);
 12800   effect(USE meth);
 12802   ins_cost(300);
 12803   format %{ "CALL_LEAF_NOFP,runtime " %}
 12804   opcode(0xE8); /* E8 cd */
 12805   ins_encode(Java_To_Runtime(meth));
 12806   ins_pipe( pipe_slow );
 12807 %}
 12810 // Return Instruction
 12811 // Remove the return address & jump to it.
 12812 instruct Ret() %{
 12813   match(Return);
 12814   format %{ "RET" %}
 12815   opcode(0xC3);
 12816   ins_encode(OpcP);
 12817   ins_pipe( pipe_jmp );
 12818 %}
 12820 // Tail Call; Jump from runtime stub to Java code.
 12821 // Also known as an 'interprocedural jump'.
 12822 // Target of jump will eventually return to caller.
 12823 // TailJump below removes the return address.
 12824 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
 12825   match(TailCall jump_target method_oop );
 12826   ins_cost(300);
 12827   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
 12828   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 12829   ins_encode( OpcP, RegOpc(jump_target) );
 12830   ins_pipe( pipe_jmp );
 12831 %}
 12834 // Tail Jump; remove the return address; jump to target.
 12835 // TailCall above leaves the return address around.
 12836 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
 12837   match( TailJump jump_target ex_oop );
 12838   ins_cost(300);
 12839   format %{ "POP    EDX\t# pop return address into dummy\n\t"
 12840             "JMP    $jump_target " %}
 12841   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 12842   ins_encode( enc_pop_rdx,
 12843               OpcP, RegOpc(jump_target) );
 12844   ins_pipe( pipe_jmp );
 12845 %}
 12847 // Create exception oop: created by stack-crawling runtime code.
 12848 // Created exception is now available to this handler, and is setup
 12849 // just prior to jumping to this handler.  No code emitted.
 12850 instruct CreateException( eAXRegP ex_oop )
 12851 %{
 12852   match(Set ex_oop (CreateEx));
 12854   size(0);
 12855   // use the following format syntax
 12856   format %{ "# exception oop is in EAX; no code emitted" %}
 12857   ins_encode();
 12858   ins_pipe( empty );
 12859 %}
 12862 // Rethrow exception:
 12863 // The exception oop will come in the first argument position.
 12864 // Then JUMP (not call) to the rethrow stub code.
 12865 instruct RethrowException()
 12866 %{
 12867   match(Rethrow);
 12869   // use the following format syntax
 12870   format %{ "JMP    rethrow_stub" %}
 12871   ins_encode(enc_rethrow);
 12872   ins_pipe( pipe_jmp );
 12873 %}
 12875 // inlined locking and unlocking
 12877 instruct cmpFastLockRTM(eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eDXRegI scr, rRegI cx1, rRegI cx2) %{
 12878   predicate(Compile::current()->use_rtm());
 12879   match(Set cr (FastLock object box));
 12880   effect(TEMP tmp, TEMP scr, TEMP cx1, TEMP cx2, USE_KILL box);
 12881   ins_cost(300);
 12882   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr,$cx1,$cx2" %}
 12883   ins_encode %{
 12884     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
 12885                  $scr$$Register, $cx1$$Register, $cx2$$Register,
 12886                  _counters, _rtm_counters, _stack_rtm_counters,
 12887                  ((Method*)(ra_->C->method()->constant_encoding()))->method_data(),
 12888                  true, ra_->C->profile_rtm());
 12889   %}
 12890   ins_pipe(pipe_slow);
 12891 %}
 12893 instruct cmpFastLock(eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eRegP scr) %{
 12894   predicate(!Compile::current()->use_rtm());
 12895   match(Set cr (FastLock object box));
 12896   effect(TEMP tmp, TEMP scr, USE_KILL box);
 12897   ins_cost(300);
 12898   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr" %}
 12899   ins_encode %{
 12900     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
 12901                  $scr$$Register, noreg, noreg, _counters, NULL, NULL, NULL, false, false);
 12902   %}
 12903   ins_pipe(pipe_slow);
 12904 %}
 12906 instruct cmpFastUnlock(eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
 12907   match(Set cr (FastUnlock object box));
 12908   effect(TEMP tmp, USE_KILL box);
 12909   ins_cost(300);
 12910   format %{ "FASTUNLOCK $object,$box\t! kills $box,$tmp" %}
 12911   ins_encode %{
 12912     __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register, ra_->C->use_rtm());
 12913   %}
 12914   ins_pipe(pipe_slow);
 12915 %}
 12919 // ============================================================================
 12920 // Safepoint Instruction
 12921 instruct safePoint_poll(eFlagsReg cr) %{
 12922   match(SafePoint);
 12923   effect(KILL cr);
 12925   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
 12926   // On SPARC that might be acceptable as we can generate the address with
 12927   // just a sethi, saving an or.  By polling at offset 0 we can end up
 12928   // putting additional pressure on the index-0 in the D$.  Because of
 12929   // alignment (just like the situation at hand) the lower indices tend
 12930   // to see more traffic.  It'd be better to change the polling address
 12931   // to offset 0 of the last $line in the polling page.
 12933   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
 12934   ins_cost(125);
 12935   size(6) ;
 12936   ins_encode( Safepoint_Poll() );
 12937   ins_pipe( ialu_reg_mem );
 12938 %}
 12941 // ============================================================================
 12942 // This name is KNOWN by the ADLC and cannot be changed.
 12943 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
 12944 // for this guy.
 12945 instruct tlsLoadP(eRegP dst, eFlagsReg cr) %{
 12946   match(Set dst (ThreadLocal));
 12947   effect(DEF dst, KILL cr);
 12949   format %{ "MOV    $dst, Thread::current()" %}
 12950   ins_encode %{
 12951     Register dstReg = as_Register($dst$$reg);
 12952     __ get_thread(dstReg);
 12953   %}
 12954   ins_pipe( ialu_reg_fat );
 12955 %}
 12959 //----------PEEPHOLE RULES-----------------------------------------------------
 12960 // These must follow all instruction definitions as they use the names
 12961 // defined in the instructions definitions.
 12962 //
 12963 // peepmatch ( root_instr_name [preceding_instruction]* );
 12964 //
 12965 // peepconstraint %{
 12966 // (instruction_number.operand_name relational_op instruction_number.operand_name
 12967 //  [, ...] );
 12968 // // instruction numbers are zero-based using left to right order in peepmatch
 12969 //
 12970 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 12971 // // provide an instruction_number.operand_name for each operand that appears
 12972 // // in the replacement instruction's match rule
 12973 //
 12974 // ---------VM FLAGS---------------------------------------------------------
 12975 //
 12976 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 12977 //
 12978 // Each peephole rule is given an identifying number starting with zero and
 12979 // increasing by one in the order seen by the parser.  An individual peephole
 12980 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 12981 // on the command-line.
 12982 //
 12983 // ---------CURRENT LIMITATIONS----------------------------------------------
 12984 //
 12985 // Only match adjacent instructions in same basic block
 12986 // Only equality constraints
 12987 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 12988 // Only one replacement instruction
 12989 //
 12990 // ---------EXAMPLE----------------------------------------------------------
 12991 //
 12992 // // pertinent parts of existing instructions in architecture description
 12993 // instruct movI(rRegI dst, rRegI src) %{
 12994 //   match(Set dst (CopyI src));
 12995 // %}
 12996 //
 12997 // instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
 12998 //   match(Set dst (AddI dst src));
 12999 //   effect(KILL cr);
 13000 // %}
 13001 //
 13002 // // Change (inc mov) to lea
 13003 // peephole %{
 13004 //   // increment preceeded by register-register move
 13005 //   peepmatch ( incI_eReg movI );
 13006 //   // require that the destination register of the increment
 13007 //   // match the destination register of the move
 13008 //   peepconstraint ( 0.dst == 1.dst );
 13009 //   // construct a replacement instruction that sets
 13010 //   // the destination to ( move's source register + one )
 13011 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13012 // %}
 13013 //
 13014 // Implementation no longer uses movX instructions since
 13015 // machine-independent system no longer uses CopyX nodes.
 13016 //
 13017 // peephole %{
 13018 //   peepmatch ( incI_eReg movI );
 13019 //   peepconstraint ( 0.dst == 1.dst );
 13020 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13021 // %}
 13022 //
 13023 // peephole %{
 13024 //   peepmatch ( decI_eReg movI );
 13025 //   peepconstraint ( 0.dst == 1.dst );
 13026 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13027 // %}
 13028 //
 13029 // peephole %{
 13030 //   peepmatch ( addI_eReg_imm movI );
 13031 //   peepconstraint ( 0.dst == 1.dst );
 13032 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13033 // %}
 13034 //
 13035 // peephole %{
 13036 //   peepmatch ( addP_eReg_imm movP );
 13037 //   peepconstraint ( 0.dst == 1.dst );
 13038 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13039 // %}
 13041 // // Change load of spilled value to only a spill
 13042 // instruct storeI(memory mem, rRegI src) %{
 13043 //   match(Set mem (StoreI mem src));
 13044 // %}
 13045 //
 13046 // instruct loadI(rRegI dst, memory mem) %{
 13047 //   match(Set dst (LoadI mem));
 13048 // %}
 13049 //
 13050 peephole %{
 13051   peepmatch ( loadI storeI );
 13052   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13053   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13054 %}
 13056 //----------SMARTSPILL RULES---------------------------------------------------
 13057 // These must follow all instruction definitions as they use the names
 13058 // defined in the instructions definitions.

mercurial