src/cpu/x86/vm/sharedRuntime_x86_64.cpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

     1 /*
     2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "code/debugInfoRec.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "oops/compiledICHolder.hpp"
    33 #include "prims/jvmtiRedefineClassesTrace.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/vframeArray.hpp"
    36 #include "vmreg_x86.inline.hpp"
    37 #ifdef COMPILER1
    38 #include "c1/c1_Runtime1.hpp"
    39 #endif
    40 #ifdef COMPILER2
    41 #include "opto/runtime.hpp"
    42 #endif
    44 #define __ masm->
    46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
    48 class SimpleRuntimeFrame {
    50   public:
    52   // Most of the runtime stubs have this simple frame layout.
    53   // This class exists to make the layout shared in one place.
    54   // Offsets are for compiler stack slots, which are jints.
    55   enum layout {
    56     // The frame sender code expects that rbp will be in the "natural" place and
    57     // will override any oopMap setting for it. We must therefore force the layout
    58     // so that it agrees with the frame sender code.
    59     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
    60     rbp_off2,
    61     return_off, return_off2,
    62     framesize
    63   };
    64 };
    66 class RegisterSaver {
    67   // Capture info about frame layout.  Layout offsets are in jint
    68   // units because compiler frame slots are jints.
    69 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
    70   enum layout {
    71     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
    72     xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
    73     DEF_XMM_OFFS(0),
    74     DEF_XMM_OFFS(1),
    75     DEF_XMM_OFFS(2),
    76     DEF_XMM_OFFS(3),
    77     DEF_XMM_OFFS(4),
    78     DEF_XMM_OFFS(5),
    79     DEF_XMM_OFFS(6),
    80     DEF_XMM_OFFS(7),
    81     DEF_XMM_OFFS(8),
    82     DEF_XMM_OFFS(9),
    83     DEF_XMM_OFFS(10),
    84     DEF_XMM_OFFS(11),
    85     DEF_XMM_OFFS(12),
    86     DEF_XMM_OFFS(13),
    87     DEF_XMM_OFFS(14),
    88     DEF_XMM_OFFS(15),
    89     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
    90     fpu_stateH_end,
    91     r15_off, r15H_off,
    92     r14_off, r14H_off,
    93     r13_off, r13H_off,
    94     r12_off, r12H_off,
    95     r11_off, r11H_off,
    96     r10_off, r10H_off,
    97     r9_off,  r9H_off,
    98     r8_off,  r8H_off,
    99     rdi_off, rdiH_off,
   100     rsi_off, rsiH_off,
   101     ignore_off, ignoreH_off,  // extra copy of rbp
   102     rsp_off, rspH_off,
   103     rbx_off, rbxH_off,
   104     rdx_off, rdxH_off,
   105     rcx_off, rcxH_off,
   106     rax_off, raxH_off,
   107     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
   108     align_off, alignH_off,
   109     flags_off, flagsH_off,
   110     // The frame sender code expects that rbp will be in the "natural" place and
   111     // will override any oopMap setting for it. We must therefore force the layout
   112     // so that it agrees with the frame sender code.
   113     rbp_off, rbpH_off,        // copy of rbp we will restore
   114     return_off, returnH_off,  // slot for return address
   115     reg_save_size             // size in compiler stack slots
   116   };
   118  public:
   119   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
   120   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
   122   // Offsets into the register save area
   123   // Used by deoptimization when it is managing result register
   124   // values on its own
   126   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
   127   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
   128   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
   129   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
   130   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
   132   // During deoptimization only the result registers need to be restored,
   133   // all the other values have already been extracted.
   134   static void restore_result_registers(MacroAssembler* masm);
   135 };
   137 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
   138   int vect_words = 0;
   139 #ifdef COMPILER2
   140   if (save_vectors) {
   141     assert(UseAVX > 0, "256bit vectors are supported only with AVX");
   142     assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
   143     // Save upper half of YMM registes
   144     vect_words = 16 * 16 / wordSize;
   145     additional_frame_words += vect_words;
   146   }
   147 #else
   148   assert(!save_vectors, "vectors are generated only by C2");
   149 #endif
   151   // Always make the frame size 16-byte aligned
   152   int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
   153                                      reg_save_size*BytesPerInt, 16);
   154   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
   155   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
   156   // The caller will allocate additional_frame_words
   157   int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
   158   // CodeBlob frame size is in words.
   159   int frame_size_in_words = frame_size_in_bytes / wordSize;
   160   *total_frame_words = frame_size_in_words;
   162   // Save registers, fpu state, and flags.
   163   // We assume caller has already pushed the return address onto the
   164   // stack, so rsp is 8-byte aligned here.
   165   // We push rpb twice in this sequence because we want the real rbp
   166   // to be under the return like a normal enter.
   168   __ enter();          // rsp becomes 16-byte aligned here
   169   __ push_CPU_state(); // Push a multiple of 16 bytes
   171   if (vect_words > 0) {
   172     assert(vect_words*wordSize == 256, "");
   173     __ subptr(rsp, 256); // Save upper half of YMM registes
   174     __ vextractf128h(Address(rsp,  0),xmm0);
   175     __ vextractf128h(Address(rsp, 16),xmm1);
   176     __ vextractf128h(Address(rsp, 32),xmm2);
   177     __ vextractf128h(Address(rsp, 48),xmm3);
   178     __ vextractf128h(Address(rsp, 64),xmm4);
   179     __ vextractf128h(Address(rsp, 80),xmm5);
   180     __ vextractf128h(Address(rsp, 96),xmm6);
   181     __ vextractf128h(Address(rsp,112),xmm7);
   182     __ vextractf128h(Address(rsp,128),xmm8);
   183     __ vextractf128h(Address(rsp,144),xmm9);
   184     __ vextractf128h(Address(rsp,160),xmm10);
   185     __ vextractf128h(Address(rsp,176),xmm11);
   186     __ vextractf128h(Address(rsp,192),xmm12);
   187     __ vextractf128h(Address(rsp,208),xmm13);
   188     __ vextractf128h(Address(rsp,224),xmm14);
   189     __ vextractf128h(Address(rsp,240),xmm15);
   190   }
   191   if (frame::arg_reg_save_area_bytes != 0) {
   192     // Allocate argument register save area
   193     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   194   }
   196   // Set an oopmap for the call site.  This oopmap will map all
   197   // oop-registers and debug-info registers as callee-saved.  This
   198   // will allow deoptimization at this safepoint to find all possible
   199   // debug-info recordings, as well as let GC find all oops.
   201   OopMapSet *oop_maps = new OopMapSet();
   202   OopMap* map = new OopMap(frame_size_in_slots, 0);
   204 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_slots)
   206   map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
   207   map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
   208   map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
   209   map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
   210   // rbp location is known implicitly by the frame sender code, needs no oopmap
   211   // and the location where rbp was saved by is ignored
   212   map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
   213   map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
   214   map->set_callee_saved(STACK_OFFSET( r8_off  ), r8->as_VMReg());
   215   map->set_callee_saved(STACK_OFFSET( r9_off  ), r9->as_VMReg());
   216   map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
   217   map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
   218   map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
   219   map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
   220   map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
   221   map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
   222   map->set_callee_saved(STACK_OFFSET(xmm0_off ), xmm0->as_VMReg());
   223   map->set_callee_saved(STACK_OFFSET(xmm1_off ), xmm1->as_VMReg());
   224   map->set_callee_saved(STACK_OFFSET(xmm2_off ), xmm2->as_VMReg());
   225   map->set_callee_saved(STACK_OFFSET(xmm3_off ), xmm3->as_VMReg());
   226   map->set_callee_saved(STACK_OFFSET(xmm4_off ), xmm4->as_VMReg());
   227   map->set_callee_saved(STACK_OFFSET(xmm5_off ), xmm5->as_VMReg());
   228   map->set_callee_saved(STACK_OFFSET(xmm6_off ), xmm6->as_VMReg());
   229   map->set_callee_saved(STACK_OFFSET(xmm7_off ), xmm7->as_VMReg());
   230   map->set_callee_saved(STACK_OFFSET(xmm8_off ), xmm8->as_VMReg());
   231   map->set_callee_saved(STACK_OFFSET(xmm9_off ), xmm9->as_VMReg());
   232   map->set_callee_saved(STACK_OFFSET(xmm10_off), xmm10->as_VMReg());
   233   map->set_callee_saved(STACK_OFFSET(xmm11_off), xmm11->as_VMReg());
   234   map->set_callee_saved(STACK_OFFSET(xmm12_off), xmm12->as_VMReg());
   235   map->set_callee_saved(STACK_OFFSET(xmm13_off), xmm13->as_VMReg());
   236   map->set_callee_saved(STACK_OFFSET(xmm14_off), xmm14->as_VMReg());
   237   map->set_callee_saved(STACK_OFFSET(xmm15_off), xmm15->as_VMReg());
   239   // %%% These should all be a waste but we'll keep things as they were for now
   240   if (true) {
   241     map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
   242     map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
   243     map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
   244     map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
   245     // rbp location is known implicitly by the frame sender code, needs no oopmap
   246     map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
   247     map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
   248     map->set_callee_saved(STACK_OFFSET( r8H_off  ), r8->as_VMReg()->next());
   249     map->set_callee_saved(STACK_OFFSET( r9H_off  ), r9->as_VMReg()->next());
   250     map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
   251     map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
   252     map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
   253     map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
   254     map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
   255     map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
   256     map->set_callee_saved(STACK_OFFSET(xmm0H_off ), xmm0->as_VMReg()->next());
   257     map->set_callee_saved(STACK_OFFSET(xmm1H_off ), xmm1->as_VMReg()->next());
   258     map->set_callee_saved(STACK_OFFSET(xmm2H_off ), xmm2->as_VMReg()->next());
   259     map->set_callee_saved(STACK_OFFSET(xmm3H_off ), xmm3->as_VMReg()->next());
   260     map->set_callee_saved(STACK_OFFSET(xmm4H_off ), xmm4->as_VMReg()->next());
   261     map->set_callee_saved(STACK_OFFSET(xmm5H_off ), xmm5->as_VMReg()->next());
   262     map->set_callee_saved(STACK_OFFSET(xmm6H_off ), xmm6->as_VMReg()->next());
   263     map->set_callee_saved(STACK_OFFSET(xmm7H_off ), xmm7->as_VMReg()->next());
   264     map->set_callee_saved(STACK_OFFSET(xmm8H_off ), xmm8->as_VMReg()->next());
   265     map->set_callee_saved(STACK_OFFSET(xmm9H_off ), xmm9->as_VMReg()->next());
   266     map->set_callee_saved(STACK_OFFSET(xmm10H_off), xmm10->as_VMReg()->next());
   267     map->set_callee_saved(STACK_OFFSET(xmm11H_off), xmm11->as_VMReg()->next());
   268     map->set_callee_saved(STACK_OFFSET(xmm12H_off), xmm12->as_VMReg()->next());
   269     map->set_callee_saved(STACK_OFFSET(xmm13H_off), xmm13->as_VMReg()->next());
   270     map->set_callee_saved(STACK_OFFSET(xmm14H_off), xmm14->as_VMReg()->next());
   271     map->set_callee_saved(STACK_OFFSET(xmm15H_off), xmm15->as_VMReg()->next());
   272   }
   274   return map;
   275 }
   277 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
   278   if (frame::arg_reg_save_area_bytes != 0) {
   279     // Pop arg register save area
   280     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   281   }
   282 #ifdef COMPILER2
   283   if (restore_vectors) {
   284     // Restore upper half of YMM registes.
   285     assert(UseAVX > 0, "256bit vectors are supported only with AVX");
   286     assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
   287     __ vinsertf128h(xmm0, Address(rsp,  0));
   288     __ vinsertf128h(xmm1, Address(rsp, 16));
   289     __ vinsertf128h(xmm2, Address(rsp, 32));
   290     __ vinsertf128h(xmm3, Address(rsp, 48));
   291     __ vinsertf128h(xmm4, Address(rsp, 64));
   292     __ vinsertf128h(xmm5, Address(rsp, 80));
   293     __ vinsertf128h(xmm6, Address(rsp, 96));
   294     __ vinsertf128h(xmm7, Address(rsp,112));
   295     __ vinsertf128h(xmm8, Address(rsp,128));
   296     __ vinsertf128h(xmm9, Address(rsp,144));
   297     __ vinsertf128h(xmm10, Address(rsp,160));
   298     __ vinsertf128h(xmm11, Address(rsp,176));
   299     __ vinsertf128h(xmm12, Address(rsp,192));
   300     __ vinsertf128h(xmm13, Address(rsp,208));
   301     __ vinsertf128h(xmm14, Address(rsp,224));
   302     __ vinsertf128h(xmm15, Address(rsp,240));
   303     __ addptr(rsp, 256);
   304   }
   305 #else
   306   assert(!restore_vectors, "vectors are generated only by C2");
   307 #endif
   308   // Recover CPU state
   309   __ pop_CPU_state();
   310   // Get the rbp described implicitly by the calling convention (no oopMap)
   311   __ pop(rbp);
   312 }
   314 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   316   // Just restore result register. Only used by deoptimization. By
   317   // now any callee save register that needs to be restored to a c2
   318   // caller of the deoptee has been extracted into the vframeArray
   319   // and will be stuffed into the c2i adapter we create for later
   320   // restoration so only result registers need to be restored here.
   322   // Restore fp result register
   323   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
   324   // Restore integer result register
   325   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
   326   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
   328   // Pop all of the register save are off the stack except the return address
   329   __ addptr(rsp, return_offset_in_bytes());
   330 }
   332 // Is vector's size (in bytes) bigger than a size saved by default?
   333 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
   334 bool SharedRuntime::is_wide_vector(int size) {
   335   return size > 16;
   336 }
   338 // The java_calling_convention describes stack locations as ideal slots on
   339 // a frame with no abi restrictions. Since we must observe abi restrictions
   340 // (like the placement of the register window) the slots must be biased by
   341 // the following value.
   342 static int reg2offset_in(VMReg r) {
   343   // Account for saved rbp and return address
   344   // This should really be in_preserve_stack_slots
   345   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
   346 }
   348 static int reg2offset_out(VMReg r) {
   349   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   350 }
   352 // ---------------------------------------------------------------------------
   353 // Read the array of BasicTypes from a signature, and compute where the
   354 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
   355 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
   356 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
   357 // as framesizes are fixed.
   358 // VMRegImpl::stack0 refers to the first slot 0(sp).
   359 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   360 // up to RegisterImpl::number_of_registers) are the 64-bit
   361 // integer registers.
   363 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   364 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   365 // units regardless of build. Of course for i486 there is no 64 bit build
   367 // The Java calling convention is a "shifted" version of the C ABI.
   368 // By skipping the first C ABI register we can call non-static jni methods
   369 // with small numbers of arguments without having to shuffle the arguments
   370 // at all. Since we control the java ABI we ought to at least get some
   371 // advantage out of it.
   373 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   374                                            VMRegPair *regs,
   375                                            int total_args_passed,
   376                                            int is_outgoing) {
   378   // Create the mapping between argument positions and
   379   // registers.
   380   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
   381     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
   382   };
   383   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
   384     j_farg0, j_farg1, j_farg2, j_farg3,
   385     j_farg4, j_farg5, j_farg6, j_farg7
   386   };
   389   uint int_args = 0;
   390   uint fp_args = 0;
   391   uint stk_args = 0; // inc by 2 each time
   393   for (int i = 0; i < total_args_passed; i++) {
   394     switch (sig_bt[i]) {
   395     case T_BOOLEAN:
   396     case T_CHAR:
   397     case T_BYTE:
   398     case T_SHORT:
   399     case T_INT:
   400       if (int_args < Argument::n_int_register_parameters_j) {
   401         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
   402       } else {
   403         regs[i].set1(VMRegImpl::stack2reg(stk_args));
   404         stk_args += 2;
   405       }
   406       break;
   407     case T_VOID:
   408       // halves of T_LONG or T_DOUBLE
   409       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
   410       regs[i].set_bad();
   411       break;
   412     case T_LONG:
   413       assert(sig_bt[i + 1] == T_VOID, "expecting half");
   414       // fall through
   415     case T_OBJECT:
   416     case T_ARRAY:
   417     case T_ADDRESS:
   418       if (int_args < Argument::n_int_register_parameters_j) {
   419         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
   420       } else {
   421         regs[i].set2(VMRegImpl::stack2reg(stk_args));
   422         stk_args += 2;
   423       }
   424       break;
   425     case T_FLOAT:
   426       if (fp_args < Argument::n_float_register_parameters_j) {
   427         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
   428       } else {
   429         regs[i].set1(VMRegImpl::stack2reg(stk_args));
   430         stk_args += 2;
   431       }
   432       break;
   433     case T_DOUBLE:
   434       assert(sig_bt[i + 1] == T_VOID, "expecting half");
   435       if (fp_args < Argument::n_float_register_parameters_j) {
   436         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
   437       } else {
   438         regs[i].set2(VMRegImpl::stack2reg(stk_args));
   439         stk_args += 2;
   440       }
   441       break;
   442     default:
   443       ShouldNotReachHere();
   444       break;
   445     }
   446   }
   448   return round_to(stk_args, 2);
   449 }
   451 // Patch the callers callsite with entry to compiled code if it exists.
   452 static void patch_callers_callsite(MacroAssembler *masm) {
   453   Label L;
   454   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
   455   __ jcc(Assembler::equal, L);
   457   // Save the current stack pointer
   458   __ mov(r13, rsp);
   459   // Schedule the branch target address early.
   460   // Call into the VM to patch the caller, then jump to compiled callee
   461   // rax isn't live so capture return address while we easily can
   462   __ movptr(rax, Address(rsp, 0));
   464   // align stack so push_CPU_state doesn't fault
   465   __ andptr(rsp, -(StackAlignmentInBytes));
   466   __ push_CPU_state();
   468   // VM needs caller's callsite
   469   // VM needs target method
   470   // This needs to be a long call since we will relocate this adapter to
   471   // the codeBuffer and it may not reach
   473   // Allocate argument register save area
   474   if (frame::arg_reg_save_area_bytes != 0) {
   475     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   476   }
   477   __ mov(c_rarg0, rbx);
   478   __ mov(c_rarg1, rax);
   479   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
   481   // De-allocate argument register save area
   482   if (frame::arg_reg_save_area_bytes != 0) {
   483     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   484   }
   486   __ pop_CPU_state();
   487   // restore sp
   488   __ mov(rsp, r13);
   489   __ bind(L);
   490 }
   493 static void gen_c2i_adapter(MacroAssembler *masm,
   494                             int total_args_passed,
   495                             int comp_args_on_stack,
   496                             const BasicType *sig_bt,
   497                             const VMRegPair *regs,
   498                             Label& skip_fixup) {
   499   // Before we get into the guts of the C2I adapter, see if we should be here
   500   // at all.  We've come from compiled code and are attempting to jump to the
   501   // interpreter, which means the caller made a static call to get here
   502   // (vcalls always get a compiled target if there is one).  Check for a
   503   // compiled target.  If there is one, we need to patch the caller's call.
   504   patch_callers_callsite(masm);
   506   __ bind(skip_fixup);
   508   // Since all args are passed on the stack, total_args_passed *
   509   // Interpreter::stackElementSize is the space we need. Plus 1 because
   510   // we also account for the return address location since
   511   // we store it first rather than hold it in rax across all the shuffling
   513   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
   515   // stack is aligned, keep it that way
   516   extraspace = round_to(extraspace, 2*wordSize);
   518   // Get return address
   519   __ pop(rax);
   521   // set senderSP value
   522   __ mov(r13, rsp);
   524   __ subptr(rsp, extraspace);
   526   // Store the return address in the expected location
   527   __ movptr(Address(rsp, 0), rax);
   529   // Now write the args into the outgoing interpreter space
   530   for (int i = 0; i < total_args_passed; i++) {
   531     if (sig_bt[i] == T_VOID) {
   532       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   533       continue;
   534     }
   536     // offset to start parameters
   537     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
   538     int next_off = st_off - Interpreter::stackElementSize;
   540     // Say 4 args:
   541     // i   st_off
   542     // 0   32 T_LONG
   543     // 1   24 T_VOID
   544     // 2   16 T_OBJECT
   545     // 3    8 T_BOOL
   546     // -    0 return address
   547     //
   548     // However to make thing extra confusing. Because we can fit a long/double in
   549     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
   550     // leaves one slot empty and only stores to a single slot. In this case the
   551     // slot that is occupied is the T_VOID slot. See I said it was confusing.
   553     VMReg r_1 = regs[i].first();
   554     VMReg r_2 = regs[i].second();
   555     if (!r_1->is_valid()) {
   556       assert(!r_2->is_valid(), "");
   557       continue;
   558     }
   559     if (r_1->is_stack()) {
   560       // memory to memory use rax
   561       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
   562       if (!r_2->is_valid()) {
   563         // sign extend??
   564         __ movl(rax, Address(rsp, ld_off));
   565         __ movptr(Address(rsp, st_off), rax);
   567       } else {
   569         __ movq(rax, Address(rsp, ld_off));
   571         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   572         // T_DOUBLE and T_LONG use two slots in the interpreter
   573         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   574           // ld_off == LSW, ld_off+wordSize == MSW
   575           // st_off == MSW, next_off == LSW
   576           __ movq(Address(rsp, next_off), rax);
   577 #ifdef ASSERT
   578           // Overwrite the unused slot with known junk
   579           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
   580           __ movptr(Address(rsp, st_off), rax);
   581 #endif /* ASSERT */
   582         } else {
   583           __ movq(Address(rsp, st_off), rax);
   584         }
   585       }
   586     } else if (r_1->is_Register()) {
   587       Register r = r_1->as_Register();
   588       if (!r_2->is_valid()) {
   589         // must be only an int (or less ) so move only 32bits to slot
   590         // why not sign extend??
   591         __ movl(Address(rsp, st_off), r);
   592       } else {
   593         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   594         // T_DOUBLE and T_LONG use two slots in the interpreter
   595         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   596           // long/double in gpr
   597 #ifdef ASSERT
   598           // Overwrite the unused slot with known junk
   599           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
   600           __ movptr(Address(rsp, st_off), rax);
   601 #endif /* ASSERT */
   602           __ movq(Address(rsp, next_off), r);
   603         } else {
   604           __ movptr(Address(rsp, st_off), r);
   605         }
   606       }
   607     } else {
   608       assert(r_1->is_XMMRegister(), "");
   609       if (!r_2->is_valid()) {
   610         // only a float use just part of the slot
   611         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
   612       } else {
   613 #ifdef ASSERT
   614         // Overwrite the unused slot with known junk
   615         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
   616         __ movptr(Address(rsp, st_off), rax);
   617 #endif /* ASSERT */
   618         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
   619       }
   620     }
   621   }
   623   // Schedule the branch target address early.
   624   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
   625   __ jmp(rcx);
   626 }
   628 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
   629                         address code_start, address code_end,
   630                         Label& L_ok) {
   631   Label L_fail;
   632   __ lea(temp_reg, ExternalAddress(code_start));
   633   __ cmpptr(pc_reg, temp_reg);
   634   __ jcc(Assembler::belowEqual, L_fail);
   635   __ lea(temp_reg, ExternalAddress(code_end));
   636   __ cmpptr(pc_reg, temp_reg);
   637   __ jcc(Assembler::below, L_ok);
   638   __ bind(L_fail);
   639 }
   641 static void gen_i2c_adapter(MacroAssembler *masm,
   642                             int total_args_passed,
   643                             int comp_args_on_stack,
   644                             const BasicType *sig_bt,
   645                             const VMRegPair *regs) {
   647   // Note: r13 contains the senderSP on entry. We must preserve it since
   648   // we may do a i2c -> c2i transition if we lose a race where compiled
   649   // code goes non-entrant while we get args ready.
   650   // In addition we use r13 to locate all the interpreter args as
   651   // we must align the stack to 16 bytes on an i2c entry else we
   652   // lose alignment we expect in all compiled code and register
   653   // save code can segv when fxsave instructions find improperly
   654   // aligned stack pointer.
   656   // Adapters can be frameless because they do not require the caller
   657   // to perform additional cleanup work, such as correcting the stack pointer.
   658   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
   659   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
   660   // even if a callee has modified the stack pointer.
   661   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
   662   // routinely repairs its caller's stack pointer (from sender_sp, which is set
   663   // up via the senderSP register).
   664   // In other words, if *either* the caller or callee is interpreted, we can
   665   // get the stack pointer repaired after a call.
   666   // This is why c2i and i2c adapters cannot be indefinitely composed.
   667   // In particular, if a c2i adapter were to somehow call an i2c adapter,
   668   // both caller and callee would be compiled methods, and neither would
   669   // clean up the stack pointer changes performed by the two adapters.
   670   // If this happens, control eventually transfers back to the compiled
   671   // caller, but with an uncorrected stack, causing delayed havoc.
   673   // Pick up the return address
   674   __ movptr(rax, Address(rsp, 0));
   676   if (VerifyAdapterCalls &&
   677       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
   678     // So, let's test for cascading c2i/i2c adapters right now.
   679     //  assert(Interpreter::contains($return_addr) ||
   680     //         StubRoutines::contains($return_addr),
   681     //         "i2c adapter must return to an interpreter frame");
   682     __ block_comment("verify_i2c { ");
   683     Label L_ok;
   684     if (Interpreter::code() != NULL)
   685       range_check(masm, rax, r11,
   686                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
   687                   L_ok);
   688     if (StubRoutines::code1() != NULL)
   689       range_check(masm, rax, r11,
   690                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
   691                   L_ok);
   692     if (StubRoutines::code2() != NULL)
   693       range_check(masm, rax, r11,
   694                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
   695                   L_ok);
   696     const char* msg = "i2c adapter must return to an interpreter frame";
   697     __ block_comment(msg);
   698     __ stop(msg);
   699     __ bind(L_ok);
   700     __ block_comment("} verify_i2ce ");
   701   }
   703   // Must preserve original SP for loading incoming arguments because
   704   // we need to align the outgoing SP for compiled code.
   705   __ movptr(r11, rsp);
   707   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
   708   // in registers, we will occasionally have no stack args.
   709   int comp_words_on_stack = 0;
   710   if (comp_args_on_stack) {
   711     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
   712     // registers are below.  By subtracting stack0, we either get a negative
   713     // number (all values in registers) or the maximum stack slot accessed.
   715     // Convert 4-byte c2 stack slots to words.
   716     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
   717     // Round up to miminum stack alignment, in wordSize
   718     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   719     __ subptr(rsp, comp_words_on_stack * wordSize);
   720   }
   723   // Ensure compiled code always sees stack at proper alignment
   724   __ andptr(rsp, -16);
   726   // push the return address and misalign the stack that youngest frame always sees
   727   // as far as the placement of the call instruction
   728   __ push(rax);
   730   // Put saved SP in another register
   731   const Register saved_sp = rax;
   732   __ movptr(saved_sp, r11);
   734   // Will jump to the compiled code just as if compiled code was doing it.
   735   // Pre-load the register-jump target early, to schedule it better.
   736   __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
   738   // Now generate the shuffle code.  Pick up all register args and move the
   739   // rest through the floating point stack top.
   740   for (int i = 0; i < total_args_passed; i++) {
   741     if (sig_bt[i] == T_VOID) {
   742       // Longs and doubles are passed in native word order, but misaligned
   743       // in the 32-bit build.
   744       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   745       continue;
   746     }
   748     // Pick up 0, 1 or 2 words from SP+offset.
   750     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
   751             "scrambled load targets?");
   752     // Load in argument order going down.
   753     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
   754     // Point to interpreter value (vs. tag)
   755     int next_off = ld_off - Interpreter::stackElementSize;
   756     //
   757     //
   758     //
   759     VMReg r_1 = regs[i].first();
   760     VMReg r_2 = regs[i].second();
   761     if (!r_1->is_valid()) {
   762       assert(!r_2->is_valid(), "");
   763       continue;
   764     }
   765     if (r_1->is_stack()) {
   766       // Convert stack slot to an SP offset (+ wordSize to account for return address )
   767       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
   769       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
   770       // and if we end up going thru a c2i because of a miss a reasonable value of r13
   771       // will be generated.
   772       if (!r_2->is_valid()) {
   773         // sign extend???
   774         __ movl(r13, Address(saved_sp, ld_off));
   775         __ movptr(Address(rsp, st_off), r13);
   776       } else {
   777         //
   778         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   779         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   780         // So we must adjust where to pick up the data to match the interpreter.
   781         //
   782         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   783         // are accessed as negative so LSW is at LOW address
   785         // ld_off is MSW so get LSW
   786         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   787                            next_off : ld_off;
   788         __ movq(r13, Address(saved_sp, offset));
   789         // st_off is LSW (i.e. reg.first())
   790         __ movq(Address(rsp, st_off), r13);
   791       }
   792     } else if (r_1->is_Register()) {  // Register argument
   793       Register r = r_1->as_Register();
   794       assert(r != rax, "must be different");
   795       if (r_2->is_valid()) {
   796         //
   797         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   798         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   799         // So we must adjust where to pick up the data to match the interpreter.
   801         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   802                            next_off : ld_off;
   804         // this can be a misaligned move
   805         __ movq(r, Address(saved_sp, offset));
   806       } else {
   807         // sign extend and use a full word?
   808         __ movl(r, Address(saved_sp, ld_off));
   809       }
   810     } else {
   811       if (!r_2->is_valid()) {
   812         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
   813       } else {
   814         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
   815       }
   816     }
   817   }
   819   // 6243940 We might end up in handle_wrong_method if
   820   // the callee is deoptimized as we race thru here. If that
   821   // happens we don't want to take a safepoint because the
   822   // caller frame will look interpreted and arguments are now
   823   // "compiled" so it is much better to make this transition
   824   // invisible to the stack walking code. Unfortunately if
   825   // we try and find the callee by normal means a safepoint
   826   // is possible. So we stash the desired callee in the thread
   827   // and the vm will find there should this case occur.
   829   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
   831   // put Method* where a c2i would expect should we end up there
   832   // only needed becaus eof c2 resolve stubs return Method* as a result in
   833   // rax
   834   __ mov(rax, rbx);
   835   __ jmp(r11);
   836 }
   838 // ---------------------------------------------------------------
   839 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
   840                                                             int total_args_passed,
   841                                                             int comp_args_on_stack,
   842                                                             const BasicType *sig_bt,
   843                                                             const VMRegPair *regs,
   844                                                             AdapterFingerPrint* fingerprint) {
   845   address i2c_entry = __ pc();
   847   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
   849   // -------------------------------------------------------------------------
   850   // Generate a C2I adapter.  On entry we know rbx holds the Method* during calls
   851   // to the interpreter.  The args start out packed in the compiled layout.  They
   852   // need to be unpacked into the interpreter layout.  This will almost always
   853   // require some stack space.  We grow the current (compiled) stack, then repack
   854   // the args.  We  finally end in a jump to the generic interpreter entry point.
   855   // On exit from the interpreter, the interpreter will restore our SP (lest the
   856   // compiled code, which relys solely on SP and not RBP, get sick).
   858   address c2i_unverified_entry = __ pc();
   859   Label skip_fixup;
   860   Label ok;
   862   Register holder = rax;
   863   Register receiver = j_rarg0;
   864   Register temp = rbx;
   866   {
   867     __ load_klass(temp, receiver);
   868     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
   869     __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
   870     __ jcc(Assembler::equal, ok);
   871     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   873     __ bind(ok);
   874     // Method might have been compiled since the call site was patched to
   875     // interpreted if that is the case treat it as a miss so we can get
   876     // the call site corrected.
   877     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
   878     __ jcc(Assembler::equal, skip_fixup);
   879     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   880   }
   882   address c2i_entry = __ pc();
   884   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
   886   __ flush();
   887   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
   888 }
   890 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
   891                                          VMRegPair *regs,
   892                                          VMRegPair *regs2,
   893                                          int total_args_passed) {
   894   assert(regs2 == NULL, "not needed on x86");
   895 // We return the amount of VMRegImpl stack slots we need to reserve for all
   896 // the arguments NOT counting out_preserve_stack_slots.
   898 // NOTE: These arrays will have to change when c1 is ported
   899 #ifdef _WIN64
   900     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
   901       c_rarg0, c_rarg1, c_rarg2, c_rarg3
   902     };
   903     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
   904       c_farg0, c_farg1, c_farg2, c_farg3
   905     };
   906 #else
   907     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
   908       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
   909     };
   910     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
   911       c_farg0, c_farg1, c_farg2, c_farg3,
   912       c_farg4, c_farg5, c_farg6, c_farg7
   913     };
   914 #endif // _WIN64
   917     uint int_args = 0;
   918     uint fp_args = 0;
   919     uint stk_args = 0; // inc by 2 each time
   921     for (int i = 0; i < total_args_passed; i++) {
   922       switch (sig_bt[i]) {
   923       case T_BOOLEAN:
   924       case T_CHAR:
   925       case T_BYTE:
   926       case T_SHORT:
   927       case T_INT:
   928         if (int_args < Argument::n_int_register_parameters_c) {
   929           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
   930 #ifdef _WIN64
   931           fp_args++;
   932           // Allocate slots for callee to stuff register args the stack.
   933           stk_args += 2;
   934 #endif
   935         } else {
   936           regs[i].set1(VMRegImpl::stack2reg(stk_args));
   937           stk_args += 2;
   938         }
   939         break;
   940       case T_LONG:
   941         assert(sig_bt[i + 1] == T_VOID, "expecting half");
   942         // fall through
   943       case T_OBJECT:
   944       case T_ARRAY:
   945       case T_ADDRESS:
   946       case T_METADATA:
   947         if (int_args < Argument::n_int_register_parameters_c) {
   948           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
   949 #ifdef _WIN64
   950           fp_args++;
   951           stk_args += 2;
   952 #endif
   953         } else {
   954           regs[i].set2(VMRegImpl::stack2reg(stk_args));
   955           stk_args += 2;
   956         }
   957         break;
   958       case T_FLOAT:
   959         if (fp_args < Argument::n_float_register_parameters_c) {
   960           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
   961 #ifdef _WIN64
   962           int_args++;
   963           // Allocate slots for callee to stuff register args the stack.
   964           stk_args += 2;
   965 #endif
   966         } else {
   967           regs[i].set1(VMRegImpl::stack2reg(stk_args));
   968           stk_args += 2;
   969         }
   970         break;
   971       case T_DOUBLE:
   972         assert(sig_bt[i + 1] == T_VOID, "expecting half");
   973         if (fp_args < Argument::n_float_register_parameters_c) {
   974           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
   975 #ifdef _WIN64
   976           int_args++;
   977           // Allocate slots for callee to stuff register args the stack.
   978           stk_args += 2;
   979 #endif
   980         } else {
   981           regs[i].set2(VMRegImpl::stack2reg(stk_args));
   982           stk_args += 2;
   983         }
   984         break;
   985       case T_VOID: // Halves of longs and doubles
   986         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
   987         regs[i].set_bad();
   988         break;
   989       default:
   990         ShouldNotReachHere();
   991         break;
   992       }
   993     }
   994 #ifdef _WIN64
   995   // windows abi requires that we always allocate enough stack space
   996   // for 4 64bit registers to be stored down.
   997   if (stk_args < 8) {
   998     stk_args = 8;
   999   }
  1000 #endif // _WIN64
  1002   return stk_args;
  1005 // On 64 bit we will store integer like items to the stack as
  1006 // 64 bits items (sparc abi) even though java would only store
  1007 // 32bits for a parameter. On 32bit it will simply be 32 bits
  1008 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
  1009 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1010   if (src.first()->is_stack()) {
  1011     if (dst.first()->is_stack()) {
  1012       // stack to stack
  1013       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
  1014       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1015     } else {
  1016       // stack to reg
  1017       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
  1019   } else if (dst.first()->is_stack()) {
  1020     // reg to stack
  1021     // Do we really have to sign extend???
  1022     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
  1023     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  1024   } else {
  1025     // Do we really have to sign extend???
  1026     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
  1027     if (dst.first() != src.first()) {
  1028       __ movq(dst.first()->as_Register(), src.first()->as_Register());
  1033 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1034   if (src.first()->is_stack()) {
  1035     if (dst.first()->is_stack()) {
  1036       // stack to stack
  1037       __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  1038       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1039     } else {
  1040       // stack to reg
  1041       __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
  1043   } else if (dst.first()->is_stack()) {
  1044     // reg to stack
  1045     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  1046   } else {
  1047     if (dst.first() != src.first()) {
  1048       __ movq(dst.first()->as_Register(), src.first()->as_Register());
  1053 // An oop arg. Must pass a handle not the oop itself
  1054 static void object_move(MacroAssembler* masm,
  1055                         OopMap* map,
  1056                         int oop_handle_offset,
  1057                         int framesize_in_slots,
  1058                         VMRegPair src,
  1059                         VMRegPair dst,
  1060                         bool is_receiver,
  1061                         int* receiver_offset) {
  1063   // must pass a handle. First figure out the location we use as a handle
  1065   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
  1067   // See if oop is NULL if it is we need no handle
  1069   if (src.first()->is_stack()) {
  1071     // Oop is already on the stack as an argument
  1072     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1073     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
  1074     if (is_receiver) {
  1075       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
  1078     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
  1079     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
  1080     // conditionally move a NULL
  1081     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
  1082   } else {
  1084     // Oop is in an a register we must store it to the space we reserve
  1085     // on the stack for oop_handles and pass a handle if oop is non-NULL
  1087     const Register rOop = src.first()->as_Register();
  1088     int oop_slot;
  1089     if (rOop == j_rarg0)
  1090       oop_slot = 0;
  1091     else if (rOop == j_rarg1)
  1092       oop_slot = 1;
  1093     else if (rOop == j_rarg2)
  1094       oop_slot = 2;
  1095     else if (rOop == j_rarg3)
  1096       oop_slot = 3;
  1097     else if (rOop == j_rarg4)
  1098       oop_slot = 4;
  1099     else {
  1100       assert(rOop == j_rarg5, "wrong register");
  1101       oop_slot = 5;
  1104     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
  1105     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1107     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1108     // Store oop in handle area, may be NULL
  1109     __ movptr(Address(rsp, offset), rOop);
  1110     if (is_receiver) {
  1111       *receiver_offset = offset;
  1114     __ cmpptr(rOop, (int32_t)NULL_WORD);
  1115     __ lea(rHandle, Address(rsp, offset));
  1116     // conditionally move a NULL from the handle area where it was just stored
  1117     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
  1120   // If arg is on the stack then place it otherwise it is already in correct reg.
  1121   if (dst.first()->is_stack()) {
  1122     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
  1126 // A float arg may have to do float reg int reg conversion
  1127 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1128   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1130   // The calling conventions assures us that each VMregpair is either
  1131   // all really one physical register or adjacent stack slots.
  1132   // This greatly simplifies the cases here compared to sparc.
  1134   if (src.first()->is_stack()) {
  1135     if (dst.first()->is_stack()) {
  1136       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
  1137       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1138     } else {
  1139       // stack to reg
  1140       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  1141       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
  1143   } else if (dst.first()->is_stack()) {
  1144     // reg to stack
  1145     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  1146     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1147   } else {
  1148     // reg to reg
  1149     // In theory these overlap but the ordering is such that this is likely a nop
  1150     if ( src.first() != dst.first()) {
  1151       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
  1156 // A long move
  1157 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1159   // The calling conventions assures us that each VMregpair is either
  1160   // all really one physical register or adjacent stack slots.
  1161   // This greatly simplifies the cases here compared to sparc.
  1163   if (src.is_single_phys_reg() ) {
  1164     if (dst.is_single_phys_reg()) {
  1165       if (dst.first() != src.first()) {
  1166         __ mov(dst.first()->as_Register(), src.first()->as_Register());
  1168     } else {
  1169       assert(dst.is_single_reg(), "not a stack pair");
  1170       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  1172   } else if (dst.is_single_phys_reg()) {
  1173     assert(src.is_single_reg(),  "not a stack pair");
  1174     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
  1175   } else {
  1176     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  1177     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  1178     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1182 // A double move
  1183 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1185   // The calling conventions assures us that each VMregpair is either
  1186   // all really one physical register or adjacent stack slots.
  1187   // This greatly simplifies the cases here compared to sparc.
  1189   if (src.is_single_phys_reg() ) {
  1190     if (dst.is_single_phys_reg()) {
  1191       // In theory these overlap but the ordering is such that this is likely a nop
  1192       if ( src.first() != dst.first()) {
  1193         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
  1195     } else {
  1196       assert(dst.is_single_reg(), "not a stack pair");
  1197       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1199   } else if (dst.is_single_phys_reg()) {
  1200     assert(src.is_single_reg(),  "not a stack pair");
  1201     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
  1202   } else {
  1203     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  1204     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  1205     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1210 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1211   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1212   // which by this time is free to use
  1213   switch (ret_type) {
  1214   case T_FLOAT:
  1215     __ movflt(Address(rbp, -wordSize), xmm0);
  1216     break;
  1217   case T_DOUBLE:
  1218     __ movdbl(Address(rbp, -wordSize), xmm0);
  1219     break;
  1220   case T_VOID:  break;
  1221   default: {
  1222     __ movptr(Address(rbp, -wordSize), rax);
  1227 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1228   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1229   // which by this time is free to use
  1230   switch (ret_type) {
  1231   case T_FLOAT:
  1232     __ movflt(xmm0, Address(rbp, -wordSize));
  1233     break;
  1234   case T_DOUBLE:
  1235     __ movdbl(xmm0, Address(rbp, -wordSize));
  1236     break;
  1237   case T_VOID:  break;
  1238   default: {
  1239     __ movptr(rax, Address(rbp, -wordSize));
  1244 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
  1245     for ( int i = first_arg ; i < arg_count ; i++ ) {
  1246       if (args[i].first()->is_Register()) {
  1247         __ push(args[i].first()->as_Register());
  1248       } else if (args[i].first()->is_XMMRegister()) {
  1249         __ subptr(rsp, 2*wordSize);
  1250         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
  1255 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
  1256     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
  1257       if (args[i].first()->is_Register()) {
  1258         __ pop(args[i].first()->as_Register());
  1259       } else if (args[i].first()->is_XMMRegister()) {
  1260         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
  1261         __ addptr(rsp, 2*wordSize);
  1267 static void save_or_restore_arguments(MacroAssembler* masm,
  1268                                       const int stack_slots,
  1269                                       const int total_in_args,
  1270                                       const int arg_save_area,
  1271                                       OopMap* map,
  1272                                       VMRegPair* in_regs,
  1273                                       BasicType* in_sig_bt) {
  1274   // if map is non-NULL then the code should store the values,
  1275   // otherwise it should load them.
  1276   int slot = arg_save_area;
  1277   // Save down double word first
  1278   for ( int i = 0; i < total_in_args; i++) {
  1279     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
  1280       int offset = slot * VMRegImpl::stack_slot_size;
  1281       slot += VMRegImpl::slots_per_word;
  1282       assert(slot <= stack_slots, "overflow");
  1283       if (map != NULL) {
  1284         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
  1285       } else {
  1286         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
  1289     if (in_regs[i].first()->is_Register() &&
  1290         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
  1291       int offset = slot * VMRegImpl::stack_slot_size;
  1292       if (map != NULL) {
  1293         __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
  1294         if (in_sig_bt[i] == T_ARRAY) {
  1295           map->set_oop(VMRegImpl::stack2reg(slot));;
  1297       } else {
  1298         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
  1300       slot += VMRegImpl::slots_per_word;
  1303   // Save or restore single word registers
  1304   for ( int i = 0; i < total_in_args; i++) {
  1305     if (in_regs[i].first()->is_Register()) {
  1306       int offset = slot * VMRegImpl::stack_slot_size;
  1307       slot++;
  1308       assert(slot <= stack_slots, "overflow");
  1310       // Value is in an input register pass we must flush it to the stack
  1311       const Register reg = in_regs[i].first()->as_Register();
  1312       switch (in_sig_bt[i]) {
  1313         case T_BOOLEAN:
  1314         case T_CHAR:
  1315         case T_BYTE:
  1316         case T_SHORT:
  1317         case T_INT:
  1318           if (map != NULL) {
  1319             __ movl(Address(rsp, offset), reg);
  1320           } else {
  1321             __ movl(reg, Address(rsp, offset));
  1323           break;
  1324         case T_ARRAY:
  1325         case T_LONG:
  1326           // handled above
  1327           break;
  1328         case T_OBJECT:
  1329         default: ShouldNotReachHere();
  1331     } else if (in_regs[i].first()->is_XMMRegister()) {
  1332       if (in_sig_bt[i] == T_FLOAT) {
  1333         int offset = slot * VMRegImpl::stack_slot_size;
  1334         slot++;
  1335         assert(slot <= stack_slots, "overflow");
  1336         if (map != NULL) {
  1337           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
  1338         } else {
  1339           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
  1342     } else if (in_regs[i].first()->is_stack()) {
  1343       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
  1344         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1345         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
  1352 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
  1353 // keeps a new JNI critical region from starting until a GC has been
  1354 // forced.  Save down any oops in registers and describe them in an
  1355 // OopMap.
  1356 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
  1357                                                int stack_slots,
  1358                                                int total_c_args,
  1359                                                int total_in_args,
  1360                                                int arg_save_area,
  1361                                                OopMapSet* oop_maps,
  1362                                                VMRegPair* in_regs,
  1363                                                BasicType* in_sig_bt) {
  1364   __ block_comment("check GC_locker::needs_gc");
  1365   Label cont;
  1366   __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
  1367   __ jcc(Assembler::equal, cont);
  1369   // Save down any incoming oops and call into the runtime to halt for a GC
  1371   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1372   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1373                             arg_save_area, map, in_regs, in_sig_bt);
  1375   address the_pc = __ pc();
  1376   oop_maps->add_gc_map( __ offset(), map);
  1377   __ set_last_Java_frame(rsp, noreg, the_pc);
  1379   __ block_comment("block_for_jni_critical");
  1380   __ movptr(c_rarg0, r15_thread);
  1381   __ mov(r12, rsp); // remember sp
  1382   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1383   __ andptr(rsp, -16); // align stack as required by ABI
  1384   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
  1385   __ mov(rsp, r12); // restore sp
  1386   __ reinit_heapbase();
  1388   __ reset_last_Java_frame(false, true);
  1390   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1391                             arg_save_area, NULL, in_regs, in_sig_bt);
  1393   __ bind(cont);
  1394 #ifdef ASSERT
  1395   if (StressCriticalJNINatives) {
  1396     // Stress register saving
  1397     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1398     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1399                               arg_save_area, map, in_regs, in_sig_bt);
  1400     // Destroy argument registers
  1401     for (int i = 0; i < total_in_args - 1; i++) {
  1402       if (in_regs[i].first()->is_Register()) {
  1403         const Register reg = in_regs[i].first()->as_Register();
  1404         __ xorptr(reg, reg);
  1405       } else if (in_regs[i].first()->is_XMMRegister()) {
  1406         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
  1407       } else if (in_regs[i].first()->is_FloatRegister()) {
  1408         ShouldNotReachHere();
  1409       } else if (in_regs[i].first()->is_stack()) {
  1410         // Nothing to do
  1411       } else {
  1412         ShouldNotReachHere();
  1414       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
  1415         i++;
  1419     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1420                               arg_save_area, NULL, in_regs, in_sig_bt);
  1422 #endif
  1425 // Unpack an array argument into a pointer to the body and the length
  1426 // if the array is non-null, otherwise pass 0 for both.
  1427 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
  1428   Register tmp_reg = rax;
  1429   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
  1430          "possible collision");
  1431   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
  1432          "possible collision");
  1434   __ block_comment("unpack_array_argument {");
  1436   // Pass the length, ptr pair
  1437   Label is_null, done;
  1438   VMRegPair tmp;
  1439   tmp.set_ptr(tmp_reg->as_VMReg());
  1440   if (reg.first()->is_stack()) {
  1441     // Load the arg up from the stack
  1442     move_ptr(masm, reg, tmp);
  1443     reg = tmp;
  1445   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
  1446   __ jccb(Assembler::equal, is_null);
  1447   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
  1448   move_ptr(masm, tmp, body_arg);
  1449   // load the length relative to the body.
  1450   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
  1451                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
  1452   move32_64(masm, tmp, length_arg);
  1453   __ jmpb(done);
  1454   __ bind(is_null);
  1455   // Pass zeros
  1456   __ xorptr(tmp_reg, tmp_reg);
  1457   move_ptr(masm, tmp, body_arg);
  1458   move32_64(masm, tmp, length_arg);
  1459   __ bind(done);
  1461   __ block_comment("} unpack_array_argument");
  1465 // Different signatures may require very different orders for the move
  1466 // to avoid clobbering other arguments.  There's no simple way to
  1467 // order them safely.  Compute a safe order for issuing stores and
  1468 // break any cycles in those stores.  This code is fairly general but
  1469 // it's not necessary on the other platforms so we keep it in the
  1470 // platform dependent code instead of moving it into a shared file.
  1471 // (See bugs 7013347 & 7145024.)
  1472 // Note that this code is specific to LP64.
  1473 class ComputeMoveOrder: public StackObj {
  1474   class MoveOperation: public ResourceObj {
  1475     friend class ComputeMoveOrder;
  1476    private:
  1477     VMRegPair        _src;
  1478     VMRegPair        _dst;
  1479     int              _src_index;
  1480     int              _dst_index;
  1481     bool             _processed;
  1482     MoveOperation*  _next;
  1483     MoveOperation*  _prev;
  1485     static int get_id(VMRegPair r) {
  1486       return r.first()->value();
  1489    public:
  1490     MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
  1491       _src(src)
  1492     , _src_index(src_index)
  1493     , _dst(dst)
  1494     , _dst_index(dst_index)
  1495     , _next(NULL)
  1496     , _prev(NULL)
  1497     , _processed(false) {
  1500     VMRegPair src() const              { return _src; }
  1501     int src_id() const                 { return get_id(src()); }
  1502     int src_index() const              { return _src_index; }
  1503     VMRegPair dst() const              { return _dst; }
  1504     void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
  1505     int dst_index() const              { return _dst_index; }
  1506     int dst_id() const                 { return get_id(dst()); }
  1507     MoveOperation* next() const       { return _next; }
  1508     MoveOperation* prev() const       { return _prev; }
  1509     void set_processed()               { _processed = true; }
  1510     bool is_processed() const          { return _processed; }
  1512     // insert
  1513     void break_cycle(VMRegPair temp_register) {
  1514       // create a new store following the last store
  1515       // to move from the temp_register to the original
  1516       MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
  1518       // break the cycle of links and insert new_store at the end
  1519       // break the reverse link.
  1520       MoveOperation* p = prev();
  1521       assert(p->next() == this, "must be");
  1522       _prev = NULL;
  1523       p->_next = new_store;
  1524       new_store->_prev = p;
  1526       // change the original store to save it's value in the temp.
  1527       set_dst(-1, temp_register);
  1530     void link(GrowableArray<MoveOperation*>& killer) {
  1531       // link this store in front the store that it depends on
  1532       MoveOperation* n = killer.at_grow(src_id(), NULL);
  1533       if (n != NULL) {
  1534         assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
  1535         _next = n;
  1536         n->_prev = this;
  1539   };
  1541  private:
  1542   GrowableArray<MoveOperation*> edges;
  1544  public:
  1545   ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
  1546                     BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
  1547     // Move operations where the dest is the stack can all be
  1548     // scheduled first since they can't interfere with the other moves.
  1549     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
  1550       if (in_sig_bt[i] == T_ARRAY) {
  1551         c_arg--;
  1552         if (out_regs[c_arg].first()->is_stack() &&
  1553             out_regs[c_arg + 1].first()->is_stack()) {
  1554           arg_order.push(i);
  1555           arg_order.push(c_arg);
  1556         } else {
  1557           if (out_regs[c_arg].first()->is_stack() ||
  1558               in_regs[i].first() == out_regs[c_arg].first()) {
  1559             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
  1560           } else {
  1561             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
  1564       } else if (in_sig_bt[i] == T_VOID) {
  1565         arg_order.push(i);
  1566         arg_order.push(c_arg);
  1567       } else {
  1568         if (out_regs[c_arg].first()->is_stack() ||
  1569             in_regs[i].first() == out_regs[c_arg].first()) {
  1570           arg_order.push(i);
  1571           arg_order.push(c_arg);
  1572         } else {
  1573           add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
  1577     // Break any cycles in the register moves and emit the in the
  1578     // proper order.
  1579     GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
  1580     for (int i = 0; i < stores->length(); i++) {
  1581       arg_order.push(stores->at(i)->src_index());
  1582       arg_order.push(stores->at(i)->dst_index());
  1586   // Collected all the move operations
  1587   void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
  1588     if (src.first() == dst.first()) return;
  1589     edges.append(new MoveOperation(src_index, src, dst_index, dst));
  1592   // Walk the edges breaking cycles between moves.  The result list
  1593   // can be walked in order to produce the proper set of loads
  1594   GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
  1595     // Record which moves kill which values
  1596     GrowableArray<MoveOperation*> killer;
  1597     for (int i = 0; i < edges.length(); i++) {
  1598       MoveOperation* s = edges.at(i);
  1599       assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
  1600       killer.at_put_grow(s->dst_id(), s, NULL);
  1602     assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
  1603            "make sure temp isn't in the registers that are killed");
  1605     // create links between loads and stores
  1606     for (int i = 0; i < edges.length(); i++) {
  1607       edges.at(i)->link(killer);
  1610     // at this point, all the move operations are chained together
  1611     // in a doubly linked list.  Processing it backwards finds
  1612     // the beginning of the chain, forwards finds the end.  If there's
  1613     // a cycle it can be broken at any point,  so pick an edge and walk
  1614     // backward until the list ends or we end where we started.
  1615     GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
  1616     for (int e = 0; e < edges.length(); e++) {
  1617       MoveOperation* s = edges.at(e);
  1618       if (!s->is_processed()) {
  1619         MoveOperation* start = s;
  1620         // search for the beginning of the chain or cycle
  1621         while (start->prev() != NULL && start->prev() != s) {
  1622           start = start->prev();
  1624         if (start->prev() == s) {
  1625           start->break_cycle(temp_register);
  1627         // walk the chain forward inserting to store list
  1628         while (start != NULL) {
  1629           stores->append(start);
  1630           start->set_processed();
  1631           start = start->next();
  1635     return stores;
  1637 };
  1639 static void verify_oop_args(MacroAssembler* masm,
  1640                             methodHandle method,
  1641                             const BasicType* sig_bt,
  1642                             const VMRegPair* regs) {
  1643   Register temp_reg = rbx;  // not part of any compiled calling seq
  1644   if (VerifyOops) {
  1645     for (int i = 0; i < method->size_of_parameters(); i++) {
  1646       if (sig_bt[i] == T_OBJECT ||
  1647           sig_bt[i] == T_ARRAY) {
  1648         VMReg r = regs[i].first();
  1649         assert(r->is_valid(), "bad oop arg");
  1650         if (r->is_stack()) {
  1651           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1652           __ verify_oop(temp_reg);
  1653         } else {
  1654           __ verify_oop(r->as_Register());
  1661 static void gen_special_dispatch(MacroAssembler* masm,
  1662                                  methodHandle method,
  1663                                  const BasicType* sig_bt,
  1664                                  const VMRegPair* regs) {
  1665   verify_oop_args(masm, method, sig_bt, regs);
  1666   vmIntrinsics::ID iid = method->intrinsic_id();
  1668   // Now write the args into the outgoing interpreter space
  1669   bool     has_receiver   = false;
  1670   Register receiver_reg   = noreg;
  1671   int      member_arg_pos = -1;
  1672   Register member_reg     = noreg;
  1673   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
  1674   if (ref_kind != 0) {
  1675     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
  1676     member_reg = rbx;  // known to be free at this point
  1677     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
  1678   } else if (iid == vmIntrinsics::_invokeBasic) {
  1679     has_receiver = true;
  1680   } else {
  1681     fatal(err_msg_res("unexpected intrinsic id %d", iid));
  1684   if (member_reg != noreg) {
  1685     // Load the member_arg into register, if necessary.
  1686     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
  1687     VMReg r = regs[member_arg_pos].first();
  1688     if (r->is_stack()) {
  1689       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1690     } else {
  1691       // no data motion is needed
  1692       member_reg = r->as_Register();
  1696   if (has_receiver) {
  1697     // Make sure the receiver is loaded into a register.
  1698     assert(method->size_of_parameters() > 0, "oob");
  1699     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
  1700     VMReg r = regs[0].first();
  1701     assert(r->is_valid(), "bad receiver arg");
  1702     if (r->is_stack()) {
  1703       // Porting note:  This assumes that compiled calling conventions always
  1704       // pass the receiver oop in a register.  If this is not true on some
  1705       // platform, pick a temp and load the receiver from stack.
  1706       fatal("receiver always in a register");
  1707       receiver_reg = j_rarg0;  // known to be free at this point
  1708       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1709     } else {
  1710       // no data motion is needed
  1711       receiver_reg = r->as_Register();
  1715   // Figure out which address we are really jumping to:
  1716   MethodHandles::generate_method_handle_dispatch(masm, iid,
  1717                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
  1720 // ---------------------------------------------------------------------------
  1721 // Generate a native wrapper for a given method.  The method takes arguments
  1722 // in the Java compiled code convention, marshals them to the native
  1723 // convention (handlizes oops, etc), transitions to native, makes the call,
  1724 // returns to java state (possibly blocking), unhandlizes any result and
  1725 // returns.
  1726 //
  1727 // Critical native functions are a shorthand for the use of
  1728 // GetPrimtiveArrayCritical and disallow the use of any other JNI
  1729 // functions.  The wrapper is expected to unpack the arguments before
  1730 // passing them to the callee and perform checks before and after the
  1731 // native call to ensure that they GC_locker
  1732 // lock_critical/unlock_critical semantics are followed.  Some other
  1733 // parts of JNI setup are skipped like the tear down of the JNI handle
  1734 // block and the check for pending exceptions it's impossible for them
  1735 // to be thrown.
  1736 //
  1737 // They are roughly structured like this:
  1738 //    if (GC_locker::needs_gc())
  1739 //      SharedRuntime::block_for_jni_critical();
  1740 //    tranistion to thread_in_native
  1741 //    unpack arrray arguments and call native entry point
  1742 //    check for safepoint in progress
  1743 //    check if any thread suspend flags are set
  1744 //      call into JVM and possible unlock the JNI critical
  1745 //      if a GC was suppressed while in the critical native.
  1746 //    transition back to thread_in_Java
  1747 //    return to caller
  1748 //
  1749 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
  1750                                                 methodHandle method,
  1751                                                 int compile_id,
  1752                                                 BasicType* in_sig_bt,
  1753                                                 VMRegPair* in_regs,
  1754                                                 BasicType ret_type) {
  1755   if (method->is_method_handle_intrinsic()) {
  1756     vmIntrinsics::ID iid = method->intrinsic_id();
  1757     intptr_t start = (intptr_t)__ pc();
  1758     int vep_offset = ((intptr_t)__ pc()) - start;
  1759     gen_special_dispatch(masm,
  1760                          method,
  1761                          in_sig_bt,
  1762                          in_regs);
  1763     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
  1764     __ flush();
  1765     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
  1766     return nmethod::new_native_nmethod(method,
  1767                                        compile_id,
  1768                                        masm->code(),
  1769                                        vep_offset,
  1770                                        frame_complete,
  1771                                        stack_slots / VMRegImpl::slots_per_word,
  1772                                        in_ByteSize(-1),
  1773                                        in_ByteSize(-1),
  1774                                        (OopMapSet*)NULL);
  1776   bool is_critical_native = true;
  1777   address native_func = method->critical_native_function();
  1778   if (native_func == NULL) {
  1779     native_func = method->native_function();
  1780     is_critical_native = false;
  1782   assert(native_func != NULL, "must have function");
  1784   // An OopMap for lock (and class if static)
  1785   OopMapSet *oop_maps = new OopMapSet();
  1786   intptr_t start = (intptr_t)__ pc();
  1788   // We have received a description of where all the java arg are located
  1789   // on entry to the wrapper. We need to convert these args to where
  1790   // the jni function will expect them. To figure out where they go
  1791   // we convert the java signature to a C signature by inserting
  1792   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1794   const int total_in_args = method->size_of_parameters();
  1795   int total_c_args = total_in_args;
  1796   if (!is_critical_native) {
  1797     total_c_args += 1;
  1798     if (method->is_static()) {
  1799       total_c_args++;
  1801   } else {
  1802     for (int i = 0; i < total_in_args; i++) {
  1803       if (in_sig_bt[i] == T_ARRAY) {
  1804         total_c_args++;
  1809   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1810   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  1811   BasicType* in_elem_bt = NULL;
  1813   int argc = 0;
  1814   if (!is_critical_native) {
  1815     out_sig_bt[argc++] = T_ADDRESS;
  1816     if (method->is_static()) {
  1817       out_sig_bt[argc++] = T_OBJECT;
  1820     for (int i = 0; i < total_in_args ; i++ ) {
  1821       out_sig_bt[argc++] = in_sig_bt[i];
  1823   } else {
  1824     Thread* THREAD = Thread::current();
  1825     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
  1826     SignatureStream ss(method->signature());
  1827     for (int i = 0; i < total_in_args ; i++ ) {
  1828       if (in_sig_bt[i] == T_ARRAY) {
  1829         // Arrays are passed as int, elem* pair
  1830         out_sig_bt[argc++] = T_INT;
  1831         out_sig_bt[argc++] = T_ADDRESS;
  1832         Symbol* atype = ss.as_symbol(CHECK_NULL);
  1833         const char* at = atype->as_C_string();
  1834         if (strlen(at) == 2) {
  1835           assert(at[0] == '[', "must be");
  1836           switch (at[1]) {
  1837             case 'B': in_elem_bt[i]  = T_BYTE; break;
  1838             case 'C': in_elem_bt[i]  = T_CHAR; break;
  1839             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
  1840             case 'F': in_elem_bt[i]  = T_FLOAT; break;
  1841             case 'I': in_elem_bt[i]  = T_INT; break;
  1842             case 'J': in_elem_bt[i]  = T_LONG; break;
  1843             case 'S': in_elem_bt[i]  = T_SHORT; break;
  1844             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
  1845             default: ShouldNotReachHere();
  1848       } else {
  1849         out_sig_bt[argc++] = in_sig_bt[i];
  1850         in_elem_bt[i] = T_VOID;
  1852       if (in_sig_bt[i] != T_VOID) {
  1853         assert(in_sig_bt[i] == ss.type(), "must match");
  1854         ss.next();
  1859   // Now figure out where the args must be stored and how much stack space
  1860   // they require.
  1861   int out_arg_slots;
  1862   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
  1864   // Compute framesize for the wrapper.  We need to handlize all oops in
  1865   // incoming registers
  1867   // Calculate the total number of stack slots we will need.
  1869   // First count the abi requirement plus all of the outgoing args
  1870   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1872   // Now the space for the inbound oop handle area
  1873   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
  1874   if (is_critical_native) {
  1875     // Critical natives may have to call out so they need a save area
  1876     // for register arguments.
  1877     int double_slots = 0;
  1878     int single_slots = 0;
  1879     for ( int i = 0; i < total_in_args; i++) {
  1880       if (in_regs[i].first()->is_Register()) {
  1881         const Register reg = in_regs[i].first()->as_Register();
  1882         switch (in_sig_bt[i]) {
  1883           case T_BOOLEAN:
  1884           case T_BYTE:
  1885           case T_SHORT:
  1886           case T_CHAR:
  1887           case T_INT:  single_slots++; break;
  1888           case T_ARRAY:  // specific to LP64 (7145024)
  1889           case T_LONG: double_slots++; break;
  1890           default:  ShouldNotReachHere();
  1892       } else if (in_regs[i].first()->is_XMMRegister()) {
  1893         switch (in_sig_bt[i]) {
  1894           case T_FLOAT:  single_slots++; break;
  1895           case T_DOUBLE: double_slots++; break;
  1896           default:  ShouldNotReachHere();
  1898       } else if (in_regs[i].first()->is_FloatRegister()) {
  1899         ShouldNotReachHere();
  1902     total_save_slots = double_slots * 2 + single_slots;
  1903     // align the save area
  1904     if (double_slots != 0) {
  1905       stack_slots = round_to(stack_slots, 2);
  1909   int oop_handle_offset = stack_slots;
  1910   stack_slots += total_save_slots;
  1912   // Now any space we need for handlizing a klass if static method
  1914   int klass_slot_offset = 0;
  1915   int klass_offset = -1;
  1916   int lock_slot_offset = 0;
  1917   bool is_static = false;
  1919   if (method->is_static()) {
  1920     klass_slot_offset = stack_slots;
  1921     stack_slots += VMRegImpl::slots_per_word;
  1922     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  1923     is_static = true;
  1926   // Plus a lock if needed
  1928   if (method->is_synchronized()) {
  1929     lock_slot_offset = stack_slots;
  1930     stack_slots += VMRegImpl::slots_per_word;
  1933   // Now a place (+2) to save return values or temp during shuffling
  1934   // + 4 for return address (which we own) and saved rbp
  1935   stack_slots += 6;
  1937   // Ok The space we have allocated will look like:
  1938   //
  1939   //
  1940   // FP-> |                     |
  1941   //      |---------------------|
  1942   //      | 2 slots for moves   |
  1943   //      |---------------------|
  1944   //      | lock box (if sync)  |
  1945   //      |---------------------| <- lock_slot_offset
  1946   //      | klass (if static)   |
  1947   //      |---------------------| <- klass_slot_offset
  1948   //      | oopHandle area      |
  1949   //      |---------------------| <- oop_handle_offset (6 java arg registers)
  1950   //      | outbound memory     |
  1951   //      | based arguments     |
  1952   //      |                     |
  1953   //      |---------------------|
  1954   //      |                     |
  1955   // SP-> | out_preserved_slots |
  1956   //
  1957   //
  1960   // Now compute actual number of stack words we need rounding to make
  1961   // stack properly aligned.
  1962   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
  1964   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  1966   // First thing make an ic check to see if we should even be here
  1968   // We are free to use all registers as temps without saving them and
  1969   // restoring them except rbp. rbp is the only callee save register
  1970   // as far as the interpreter and the compiler(s) are concerned.
  1973   const Register ic_reg = rax;
  1974   const Register receiver = j_rarg0;
  1976   Label hit;
  1977   Label exception_pending;
  1979   assert_different_registers(ic_reg, receiver, rscratch1);
  1980   __ verify_oop(receiver);
  1981   __ load_klass(rscratch1, receiver);
  1982   __ cmpq(ic_reg, rscratch1);
  1983   __ jcc(Assembler::equal, hit);
  1985   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1987   // Verified entry point must be aligned
  1988   __ align(8);
  1990   __ bind(hit);
  1992   int vep_offset = ((intptr_t)__ pc()) - start;
  1994   // The instruction at the verified entry point must be 5 bytes or longer
  1995   // because it can be patched on the fly by make_non_entrant. The stack bang
  1996   // instruction fits that requirement.
  1998   // Generate stack overflow check
  2000   if (UseStackBanging) {
  2001     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  2002   } else {
  2003     // need a 5 byte instruction to allow MT safe patching to non-entrant
  2004     __ fat_nop();
  2007   // Generate a new frame for the wrapper.
  2008   __ enter();
  2009   // -2 because return address is already present and so is saved rbp
  2010   __ subptr(rsp, stack_size - 2*wordSize);
  2012   // Frame is now completed as far as size and linkage.
  2013   int frame_complete = ((intptr_t)__ pc()) - start;
  2015     if (UseRTMLocking) {
  2016       // Abort RTM transaction before calling JNI
  2017       // because critical section will be large and will be
  2018       // aborted anyway. Also nmethod could be deoptimized.
  2019       __ xabort(0);
  2022 #ifdef ASSERT
  2024       Label L;
  2025       __ mov(rax, rsp);
  2026       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
  2027       __ cmpptr(rax, rsp);
  2028       __ jcc(Assembler::equal, L);
  2029       __ stop("improperly aligned stack");
  2030       __ bind(L);
  2032 #endif /* ASSERT */
  2035   // We use r14 as the oop handle for the receiver/klass
  2036   // It is callee save so it survives the call to native
  2038   const Register oop_handle_reg = r14;
  2040   if (is_critical_native) {
  2041     check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
  2042                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
  2045   //
  2046   // We immediately shuffle the arguments so that any vm call we have to
  2047   // make from here on out (sync slow path, jvmti, etc.) we will have
  2048   // captured the oops from our caller and have a valid oopMap for
  2049   // them.
  2051   // -----------------
  2052   // The Grand Shuffle
  2054   // The Java calling convention is either equal (linux) or denser (win64) than the
  2055   // c calling convention. However the because of the jni_env argument the c calling
  2056   // convention always has at least one more (and two for static) arguments than Java.
  2057   // Therefore if we move the args from java -> c backwards then we will never have
  2058   // a register->register conflict and we don't have to build a dependency graph
  2059   // and figure out how to break any cycles.
  2060   //
  2062   // Record esp-based slot for receiver on stack for non-static methods
  2063   int receiver_offset = -1;
  2065   // This is a trick. We double the stack slots so we can claim
  2066   // the oops in the caller's frame. Since we are sure to have
  2067   // more args than the caller doubling is enough to make
  2068   // sure we can capture all the incoming oop args from the
  2069   // caller.
  2070   //
  2071   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  2073   // Mark location of rbp (someday)
  2074   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
  2076   // Use eax, ebx as temporaries during any memory-memory moves we have to do
  2077   // All inbound args are referenced based on rbp and all outbound args via rsp.
  2080 #ifdef ASSERT
  2081   bool reg_destroyed[RegisterImpl::number_of_registers];
  2082   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
  2083   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  2084     reg_destroyed[r] = false;
  2086   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
  2087     freg_destroyed[f] = false;
  2090 #endif /* ASSERT */
  2092   // This may iterate in two different directions depending on the
  2093   // kind of native it is.  The reason is that for regular JNI natives
  2094   // the incoming and outgoing registers are offset upwards and for
  2095   // critical natives they are offset down.
  2096   GrowableArray<int> arg_order(2 * total_in_args);
  2097   VMRegPair tmp_vmreg;
  2098   tmp_vmreg.set1(rbx->as_VMReg());
  2100   if (!is_critical_native) {
  2101     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
  2102       arg_order.push(i);
  2103       arg_order.push(c_arg);
  2105   } else {
  2106     // Compute a valid move order, using tmp_vmreg to break any cycles
  2107     ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
  2110   int temploc = -1;
  2111   for (int ai = 0; ai < arg_order.length(); ai += 2) {
  2112     int i = arg_order.at(ai);
  2113     int c_arg = arg_order.at(ai + 1);
  2114     __ block_comment(err_msg("move %d -> %d", i, c_arg));
  2115     if (c_arg == -1) {
  2116       assert(is_critical_native, "should only be required for critical natives");
  2117       // This arg needs to be moved to a temporary
  2118       __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
  2119       in_regs[i] = tmp_vmreg;
  2120       temploc = i;
  2121       continue;
  2122     } else if (i == -1) {
  2123       assert(is_critical_native, "should only be required for critical natives");
  2124       // Read from the temporary location
  2125       assert(temploc != -1, "must be valid");
  2126       i = temploc;
  2127       temploc = -1;
  2129 #ifdef ASSERT
  2130     if (in_regs[i].first()->is_Register()) {
  2131       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
  2132     } else if (in_regs[i].first()->is_XMMRegister()) {
  2133       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
  2135     if (out_regs[c_arg].first()->is_Register()) {
  2136       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  2137     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
  2138       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
  2140 #endif /* ASSERT */
  2141     switch (in_sig_bt[i]) {
  2142       case T_ARRAY:
  2143         if (is_critical_native) {
  2144           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
  2145           c_arg++;
  2146 #ifdef ASSERT
  2147           if (out_regs[c_arg].first()->is_Register()) {
  2148             reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  2149           } else if (out_regs[c_arg].first()->is_XMMRegister()) {
  2150             freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
  2152 #endif
  2153           break;
  2155       case T_OBJECT:
  2156         assert(!is_critical_native, "no oop arguments");
  2157         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  2158                     ((i == 0) && (!is_static)),
  2159                     &receiver_offset);
  2160         break;
  2161       case T_VOID:
  2162         break;
  2164       case T_FLOAT:
  2165         float_move(masm, in_regs[i], out_regs[c_arg]);
  2166           break;
  2168       case T_DOUBLE:
  2169         assert( i + 1 < total_in_args &&
  2170                 in_sig_bt[i + 1] == T_VOID &&
  2171                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  2172         double_move(masm, in_regs[i], out_regs[c_arg]);
  2173         break;
  2175       case T_LONG :
  2176         long_move(masm, in_regs[i], out_regs[c_arg]);
  2177         break;
  2179       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2181       default:
  2182         move32_64(masm, in_regs[i], out_regs[c_arg]);
  2186   int c_arg;
  2188   // Pre-load a static method's oop into r14.  Used both by locking code and
  2189   // the normal JNI call code.
  2190   if (!is_critical_native) {
  2191     // point c_arg at the first arg that is already loaded in case we
  2192     // need to spill before we call out
  2193     c_arg = total_c_args - total_in_args;
  2195     if (method->is_static()) {
  2197       //  load oop into a register
  2198       __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
  2200       // Now handlize the static class mirror it's known not-null.
  2201       __ movptr(Address(rsp, klass_offset), oop_handle_reg);
  2202       map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  2204       // Now get the handle
  2205       __ lea(oop_handle_reg, Address(rsp, klass_offset));
  2206       // store the klass handle as second argument
  2207       __ movptr(c_rarg1, oop_handle_reg);
  2208       // and protect the arg if we must spill
  2209       c_arg--;
  2211   } else {
  2212     // For JNI critical methods we need to save all registers in save_args.
  2213     c_arg = 0;
  2216   // Change state to native (we save the return address in the thread, since it might not
  2217   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  2218   // points into the right code segment. It does not have to be the correct return pc.
  2219   // We use the same pc/oopMap repeatedly when we call out
  2221   intptr_t the_pc = (intptr_t) __ pc();
  2222   oop_maps->add_gc_map(the_pc - start, map);
  2224   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
  2227   // We have all of the arguments setup at this point. We must not touch any register
  2228   // argument registers at this point (what if we save/restore them there are no oop?
  2231     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
  2232     // protect the args we've loaded
  2233     save_args(masm, total_c_args, c_arg, out_regs);
  2234     __ mov_metadata(c_rarg1, method());
  2235     __ call_VM_leaf(
  2236       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  2237       r15_thread, c_rarg1);
  2238     restore_args(masm, total_c_args, c_arg, out_regs);
  2241   // RedefineClasses() tracing support for obsolete method entry
  2242   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2243     // protect the args we've loaded
  2244     save_args(masm, total_c_args, c_arg, out_regs);
  2245     __ mov_metadata(c_rarg1, method());
  2246     __ call_VM_leaf(
  2247       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  2248       r15_thread, c_rarg1);
  2249     restore_args(masm, total_c_args, c_arg, out_regs);
  2252   // Lock a synchronized method
  2254   // Register definitions used by locking and unlocking
  2256   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
  2257   const Register obj_reg  = rbx;  // Will contain the oop
  2258   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
  2259   const Register old_hdr  = r13;  // value of old header at unlock time
  2261   Label slow_path_lock;
  2262   Label lock_done;
  2264   if (method->is_synchronized()) {
  2265     assert(!is_critical_native, "unhandled");
  2268     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
  2270     // Get the handle (the 2nd argument)
  2271     __ mov(oop_handle_reg, c_rarg1);
  2273     // Get address of the box
  2275     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  2277     // Load the oop from the handle
  2278     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  2280     if (UseBiasedLocking) {
  2281       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
  2284     // Load immediate 1 into swap_reg %rax
  2285     __ movl(swap_reg, 1);
  2287     // Load (object->mark() | 1) into swap_reg %rax
  2288     __ orptr(swap_reg, Address(obj_reg, 0));
  2290     // Save (object->mark() | 1) into BasicLock's displaced header
  2291     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  2293     if (os::is_MP()) {
  2294       __ lock();
  2297     // src -> dest iff dest == rax else rax <- dest
  2298     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
  2299     __ jcc(Assembler::equal, lock_done);
  2301     // Hmm should this move to the slow path code area???
  2303     // Test if the oopMark is an obvious stack pointer, i.e.,
  2304     //  1) (mark & 3) == 0, and
  2305     //  2) rsp <= mark < mark + os::pagesize()
  2306     // These 3 tests can be done by evaluating the following
  2307     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
  2308     // assuming both stack pointer and pagesize have their
  2309     // least significant 2 bits clear.
  2310     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
  2312     __ subptr(swap_reg, rsp);
  2313     __ andptr(swap_reg, 3 - os::vm_page_size());
  2315     // Save the test result, for recursive case, the result is zero
  2316     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  2317     __ jcc(Assembler::notEqual, slow_path_lock);
  2319     // Slow path will re-enter here
  2321     __ bind(lock_done);
  2325   // Finally just about ready to make the JNI call
  2328   // get JNIEnv* which is first argument to native
  2329   if (!is_critical_native) {
  2330     __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
  2333   // Now set thread in native
  2334   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
  2336   __ call(RuntimeAddress(native_func));
  2338   // Verify or restore cpu control state after JNI call
  2339   __ restore_cpu_control_state_after_jni();
  2341   // Unpack native results.
  2342   switch (ret_type) {
  2343   case T_BOOLEAN: __ c2bool(rax);            break;
  2344   case T_CHAR   : __ movzwl(rax, rax);      break;
  2345   case T_BYTE   : __ sign_extend_byte (rax); break;
  2346   case T_SHORT  : __ sign_extend_short(rax); break;
  2347   case T_INT    : /* nothing to do */        break;
  2348   case T_DOUBLE :
  2349   case T_FLOAT  :
  2350     // Result is in xmm0 we'll save as needed
  2351     break;
  2352   case T_ARRAY:                 // Really a handle
  2353   case T_OBJECT:                // Really a handle
  2354       break; // can't de-handlize until after safepoint check
  2355   case T_VOID: break;
  2356   case T_LONG: break;
  2357   default       : ShouldNotReachHere();
  2360   // Switch thread to "native transition" state before reading the synchronization state.
  2361   // This additional state is necessary because reading and testing the synchronization
  2362   // state is not atomic w.r.t. GC, as this scenario demonstrates:
  2363   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  2364   //     VM thread changes sync state to synchronizing and suspends threads for GC.
  2365   //     Thread A is resumed to finish this native method, but doesn't block here since it
  2366   //     didn't see any synchronization is progress, and escapes.
  2367   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  2369   if(os::is_MP()) {
  2370     if (UseMembar) {
  2371       // Force this write out before the read below
  2372       __ membar(Assembler::Membar_mask_bits(
  2373            Assembler::LoadLoad | Assembler::LoadStore |
  2374            Assembler::StoreLoad | Assembler::StoreStore));
  2375     } else {
  2376       // Write serialization page so VM thread can do a pseudo remote membar.
  2377       // We use the current thread pointer to calculate a thread specific
  2378       // offset to write to within the page. This minimizes bus traffic
  2379       // due to cache line collision.
  2380       __ serialize_memory(r15_thread, rcx);
  2384   Label after_transition;
  2386   // check for safepoint operation in progress and/or pending suspend requests
  2388     Label Continue;
  2390     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
  2391              SafepointSynchronize::_not_synchronized);
  2393     Label L;
  2394     __ jcc(Assembler::notEqual, L);
  2395     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
  2396     __ jcc(Assembler::equal, Continue);
  2397     __ bind(L);
  2399     // Don't use call_VM as it will see a possible pending exception and forward it
  2400     // and never return here preventing us from clearing _last_native_pc down below.
  2401     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  2402     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  2403     // by hand.
  2404     //
  2405     save_native_result(masm, ret_type, stack_slots);
  2406     __ mov(c_rarg0, r15_thread);
  2407     __ mov(r12, rsp); // remember sp
  2408     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  2409     __ andptr(rsp, -16); // align stack as required by ABI
  2410     if (!is_critical_native) {
  2411       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
  2412     } else {
  2413       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
  2415     __ mov(rsp, r12); // restore sp
  2416     __ reinit_heapbase();
  2417     // Restore any method result value
  2418     restore_native_result(masm, ret_type, stack_slots);
  2420     if (is_critical_native) {
  2421       // The call above performed the transition to thread_in_Java so
  2422       // skip the transition logic below.
  2423       __ jmpb(after_transition);
  2426     __ bind(Continue);
  2429   // change thread state
  2430   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
  2431   __ bind(after_transition);
  2433   Label reguard;
  2434   Label reguard_done;
  2435   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  2436   __ jcc(Assembler::equal, reguard);
  2437   __ bind(reguard_done);
  2439   // native result if any is live
  2441   // Unlock
  2442   Label unlock_done;
  2443   Label slow_path_unlock;
  2444   if (method->is_synchronized()) {
  2446     // Get locked oop from the handle we passed to jni
  2447     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  2449     Label done;
  2451     if (UseBiasedLocking) {
  2452       __ biased_locking_exit(obj_reg, old_hdr, done);
  2455     // Simple recursive lock?
  2457     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
  2458     __ jcc(Assembler::equal, done);
  2460     // Must save rax if if it is live now because cmpxchg must use it
  2461     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  2462       save_native_result(masm, ret_type, stack_slots);
  2466     // get address of the stack lock
  2467     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  2468     //  get old displaced header
  2469     __ movptr(old_hdr, Address(rax, 0));
  2471     // Atomic swap old header if oop still contains the stack lock
  2472     if (os::is_MP()) {
  2473       __ lock();
  2475     __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
  2476     __ jcc(Assembler::notEqual, slow_path_unlock);
  2478     // slow path re-enters here
  2479     __ bind(unlock_done);
  2480     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  2481       restore_native_result(masm, ret_type, stack_slots);
  2484     __ bind(done);
  2488     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
  2489     save_native_result(masm, ret_type, stack_slots);
  2490     __ mov_metadata(c_rarg1, method());
  2491     __ call_VM_leaf(
  2492          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2493          r15_thread, c_rarg1);
  2494     restore_native_result(masm, ret_type, stack_slots);
  2497   __ reset_last_Java_frame(false, true);
  2499   // Unpack oop result
  2500   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  2501       Label L;
  2502       __ testptr(rax, rax);
  2503       __ jcc(Assembler::zero, L);
  2504       __ movptr(rax, Address(rax, 0));
  2505       __ bind(L);
  2506       __ verify_oop(rax);
  2509   if (!is_critical_native) {
  2510     // reset handle block
  2511     __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
  2512     __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
  2515   // pop our frame
  2517   __ leave();
  2519   if (!is_critical_native) {
  2520     // Any exception pending?
  2521     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2522     __ jcc(Assembler::notEqual, exception_pending);
  2525   // Return
  2527   __ ret(0);
  2529   // Unexpected paths are out of line and go here
  2531   if (!is_critical_native) {
  2532     // forward the exception
  2533     __ bind(exception_pending);
  2535     // and forward the exception
  2536     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2539   // Slow path locking & unlocking
  2540   if (method->is_synchronized()) {
  2542     // BEGIN Slow path lock
  2543     __ bind(slow_path_lock);
  2545     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
  2546     // args are (oop obj, BasicLock* lock, JavaThread* thread)
  2548     // protect the args we've loaded
  2549     save_args(masm, total_c_args, c_arg, out_regs);
  2551     __ mov(c_rarg0, obj_reg);
  2552     __ mov(c_rarg1, lock_reg);
  2553     __ mov(c_rarg2, r15_thread);
  2555     // Not a leaf but we have last_Java_frame setup as we want
  2556     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
  2557     restore_args(masm, total_c_args, c_arg, out_regs);
  2559 #ifdef ASSERT
  2560     { Label L;
  2561     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2562     __ jcc(Assembler::equal, L);
  2563     __ stop("no pending exception allowed on exit from monitorenter");
  2564     __ bind(L);
  2566 #endif
  2567     __ jmp(lock_done);
  2569     // END Slow path lock
  2571     // BEGIN Slow path unlock
  2572     __ bind(slow_path_unlock);
  2574     // If we haven't already saved the native result we must save it now as xmm registers
  2575     // are still exposed.
  2577     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  2578       save_native_result(masm, ret_type, stack_slots);
  2581     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  2583     __ mov(c_rarg0, obj_reg);
  2584     __ mov(r12, rsp); // remember sp
  2585     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  2586     __ andptr(rsp, -16); // align stack as required by ABI
  2588     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
  2589     // NOTE that obj_reg == rbx currently
  2590     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
  2591     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2593     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
  2594     __ mov(rsp, r12); // restore sp
  2595     __ reinit_heapbase();
  2596 #ifdef ASSERT
  2598       Label L;
  2599       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
  2600       __ jcc(Assembler::equal, L);
  2601       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
  2602       __ bind(L);
  2604 #endif /* ASSERT */
  2606     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
  2608     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  2609       restore_native_result(masm, ret_type, stack_slots);
  2611     __ jmp(unlock_done);
  2613     // END Slow path unlock
  2615   } // synchronized
  2617   // SLOW PATH Reguard the stack if needed
  2619   __ bind(reguard);
  2620   save_native_result(masm, ret_type, stack_slots);
  2621   __ mov(r12, rsp); // remember sp
  2622   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  2623   __ andptr(rsp, -16); // align stack as required by ABI
  2624   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  2625   __ mov(rsp, r12); // restore sp
  2626   __ reinit_heapbase();
  2627   restore_native_result(masm, ret_type, stack_slots);
  2628   // and continue
  2629   __ jmp(reguard_done);
  2633   __ flush();
  2635   nmethod *nm = nmethod::new_native_nmethod(method,
  2636                                             compile_id,
  2637                                             masm->code(),
  2638                                             vep_offset,
  2639                                             frame_complete,
  2640                                             stack_slots / VMRegImpl::slots_per_word,
  2641                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  2642                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
  2643                                             oop_maps);
  2645   if (is_critical_native) {
  2646     nm->set_lazy_critical_native(true);
  2649   return nm;
  2653 #ifdef HAVE_DTRACE_H
  2654 // ---------------------------------------------------------------------------
  2655 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  2656 // in the Java compiled code convention, marshals them to the native
  2657 // abi and then leaves nops at the position you would expect to call a native
  2658 // function. When the probe is enabled the nops are replaced with a trap
  2659 // instruction that dtrace inserts and the trace will cause a notification
  2660 // to dtrace.
  2661 //
  2662 // The probes are only able to take primitive types and java/lang/String as
  2663 // arguments.  No other java types are allowed. Strings are converted to utf8
  2664 // strings so that from dtrace point of view java strings are converted to C
  2665 // strings. There is an arbitrary fixed limit on the total space that a method
  2666 // can use for converting the strings. (256 chars per string in the signature).
  2667 // So any java string larger then this is truncated.
  2669 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
  2670 static bool offsets_initialized = false;
  2673 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
  2674                                                 methodHandle method) {
  2677   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  2678   // be single threaded in this method.
  2679   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  2681   if (!offsets_initialized) {
  2682     fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
  2683     fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
  2684     fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
  2685     fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
  2686     fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
  2687     fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
  2689     fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
  2690     fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
  2691     fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
  2692     fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
  2693     fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
  2694     fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
  2695     fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
  2696     fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
  2698     offsets_initialized = true;
  2700   // Fill in the signature array, for the calling-convention call.
  2701   int total_args_passed = method->size_of_parameters();
  2703   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2704   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2706   // The signature we are going to use for the trap that dtrace will see
  2707   // java/lang/String is converted. We drop "this" and any other object
  2708   // is converted to NULL.  (A one-slot java/lang/Long object reference
  2709   // is converted to a two-slot long, which is why we double the allocation).
  2710   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  2711   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  2713   int i=0;
  2714   int total_strings = 0;
  2715   int first_arg_to_pass = 0;
  2716   int total_c_args = 0;
  2718   // Skip the receiver as dtrace doesn't want to see it
  2719   if( !method->is_static() ) {
  2720     in_sig_bt[i++] = T_OBJECT;
  2721     first_arg_to_pass = 1;
  2724   // We need to convert the java args to where a native (non-jni) function
  2725   // would expect them. To figure out where they go we convert the java
  2726   // signature to a C signature.
  2728   SignatureStream ss(method->signature());
  2729   for ( ; !ss.at_return_type(); ss.next()) {
  2730     BasicType bt = ss.type();
  2731     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  2732     out_sig_bt[total_c_args++] = bt;
  2733     if( bt == T_OBJECT) {
  2734       Symbol* s = ss.as_symbol_or_null();   // symbol is created
  2735       if (s == vmSymbols::java_lang_String()) {
  2736         total_strings++;
  2737         out_sig_bt[total_c_args-1] = T_ADDRESS;
  2738       } else if (s == vmSymbols::java_lang_Boolean() ||
  2739                  s == vmSymbols::java_lang_Character() ||
  2740                  s == vmSymbols::java_lang_Byte() ||
  2741                  s == vmSymbols::java_lang_Short() ||
  2742                  s == vmSymbols::java_lang_Integer() ||
  2743                  s == vmSymbols::java_lang_Float()) {
  2744         out_sig_bt[total_c_args-1] = T_INT;
  2745       } else if (s == vmSymbols::java_lang_Long() ||
  2746                  s == vmSymbols::java_lang_Double()) {
  2747         out_sig_bt[total_c_args-1] = T_LONG;
  2748         out_sig_bt[total_c_args++] = T_VOID;
  2750     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  2751       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2752       // We convert double to long
  2753       out_sig_bt[total_c_args-1] = T_LONG;
  2754       out_sig_bt[total_c_args++] = T_VOID;
  2755     } else if ( bt == T_FLOAT) {
  2756       // We convert float to int
  2757       out_sig_bt[total_c_args-1] = T_INT;
  2761   assert(i==total_args_passed, "validly parsed signature");
  2763   // Now get the compiled-Java layout as input arguments
  2764   int comp_args_on_stack;
  2765   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2766       in_sig_bt, in_regs, total_args_passed, false);
  2768   // Now figure out where the args must be stored and how much stack space
  2769   // they require (neglecting out_preserve_stack_slots but space for storing
  2770   // the 1st six register arguments). It's weird see int_stk_helper.
  2772   int out_arg_slots;
  2773   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
  2775   // Calculate the total number of stack slots we will need.
  2777   // First count the abi requirement plus all of the outgoing args
  2778   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2780   // Now space for the string(s) we must convert
  2781   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
  2782   for (i = 0; i < total_strings ; i++) {
  2783     string_locs[i] = stack_slots;
  2784     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
  2787   // Plus the temps we might need to juggle register args
  2788   // regs take two slots each
  2789   stack_slots += (Argument::n_int_register_parameters_c +
  2790                   Argument::n_float_register_parameters_c) * 2;
  2793   // + 4 for return address (which we own) and saved rbp,
  2795   stack_slots += 4;
  2797   // Ok The space we have allocated will look like:
  2798   //
  2799   //
  2800   // FP-> |                     |
  2801   //      |---------------------|
  2802   //      | string[n]           |
  2803   //      |---------------------| <- string_locs[n]
  2804   //      | string[n-1]         |
  2805   //      |---------------------| <- string_locs[n-1]
  2806   //      | ...                 |
  2807   //      | ...                 |
  2808   //      |---------------------| <- string_locs[1]
  2809   //      | string[0]           |
  2810   //      |---------------------| <- string_locs[0]
  2811   //      | outbound memory     |
  2812   //      | based arguments     |
  2813   //      |                     |
  2814   //      |---------------------|
  2815   //      |                     |
  2816   // SP-> | out_preserved_slots |
  2817   //
  2818   //
  2820   // Now compute actual number of stack words we need rounding to make
  2821   // stack properly aligned.
  2822   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
  2824   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2826   intptr_t start = (intptr_t)__ pc();
  2828   // First thing make an ic check to see if we should even be here
  2830   // We are free to use all registers as temps without saving them and
  2831   // restoring them except rbp. rbp, is the only callee save register
  2832   // as far as the interpreter and the compiler(s) are concerned.
  2834   const Register ic_reg = rax;
  2835   const Register receiver = rcx;
  2836   Label hit;
  2837   Label exception_pending;
  2840   __ verify_oop(receiver);
  2841   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  2842   __ jcc(Assembler::equal, hit);
  2844   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  2846   // verified entry must be aligned for code patching.
  2847   // and the first 5 bytes must be in the same cache line
  2848   // if we align at 8 then we will be sure 5 bytes are in the same line
  2849   __ align(8);
  2851   __ bind(hit);
  2853   int vep_offset = ((intptr_t)__ pc()) - start;
  2856   // The instruction at the verified entry point must be 5 bytes or longer
  2857   // because it can be patched on the fly by make_non_entrant. The stack bang
  2858   // instruction fits that requirement.
  2860   // Generate stack overflow check
  2862   if (UseStackBanging) {
  2863     if (stack_size <= StackShadowPages*os::vm_page_size()) {
  2864       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  2865     } else {
  2866       __ movl(rax, stack_size);
  2867       __ bang_stack_size(rax, rbx);
  2869   } else {
  2870     // need a 5 byte instruction to allow MT safe patching to non-entrant
  2871     __ fat_nop();
  2874   assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
  2875          "valid size for make_non_entrant");
  2877   // Generate a new frame for the wrapper.
  2878   __ enter();
  2880   // -4 because return address is already present and so is saved rbp,
  2881   if (stack_size - 2*wordSize != 0) {
  2882     __ subq(rsp, stack_size - 2*wordSize);
  2885   // Frame is now completed as far a size and linkage.
  2887   int frame_complete = ((intptr_t)__ pc()) - start;
  2889   int c_arg, j_arg;
  2891   // State of input register args
  2893   bool  live[ConcreteRegisterImpl::number_of_registers];
  2895   live[j_rarg0->as_VMReg()->value()] = false;
  2896   live[j_rarg1->as_VMReg()->value()] = false;
  2897   live[j_rarg2->as_VMReg()->value()] = false;
  2898   live[j_rarg3->as_VMReg()->value()] = false;
  2899   live[j_rarg4->as_VMReg()->value()] = false;
  2900   live[j_rarg5->as_VMReg()->value()] = false;
  2902   live[j_farg0->as_VMReg()->value()] = false;
  2903   live[j_farg1->as_VMReg()->value()] = false;
  2904   live[j_farg2->as_VMReg()->value()] = false;
  2905   live[j_farg3->as_VMReg()->value()] = false;
  2906   live[j_farg4->as_VMReg()->value()] = false;
  2907   live[j_farg5->as_VMReg()->value()] = false;
  2908   live[j_farg6->as_VMReg()->value()] = false;
  2909   live[j_farg7->as_VMReg()->value()] = false;
  2912   bool rax_is_zero = false;
  2914   // All args (except strings) destined for the stack are moved first
  2915   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2916        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2917     VMRegPair src = in_regs[j_arg];
  2918     VMRegPair dst = out_regs[c_arg];
  2920     // Get the real reg value or a dummy (rsp)
  2922     int src_reg = src.first()->is_reg() ?
  2923                   src.first()->value() :
  2924                   rsp->as_VMReg()->value();
  2926     bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  2927                     (in_sig_bt[j_arg] == T_OBJECT &&
  2928                      out_sig_bt[c_arg] != T_INT &&
  2929                      out_sig_bt[c_arg] != T_ADDRESS &&
  2930                      out_sig_bt[c_arg] != T_LONG);
  2932     live[src_reg] = !useless;
  2934     if (dst.first()->is_stack()) {
  2936       // Even though a string arg in a register is still live after this loop
  2937       // after the string conversion loop (next) it will be dead so we take
  2938       // advantage of that now for simpler code to manage live.
  2940       live[src_reg] = false;
  2941       switch (in_sig_bt[j_arg]) {
  2943         case T_ARRAY:
  2944         case T_OBJECT:
  2946             Address stack_dst(rsp, reg2offset_out(dst.first()));
  2948             if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2949               // need to unbox a one-word value
  2950               Register in_reg = rax;
  2951               if ( src.first()->is_reg() ) {
  2952                 in_reg = src.first()->as_Register();
  2953               } else {
  2954                 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  2955                 rax_is_zero = false;
  2957               Label skipUnbox;
  2958               __ movptr(Address(rsp, reg2offset_out(dst.first())),
  2959                         (int32_t)NULL_WORD);
  2960               __ testq(in_reg, in_reg);
  2961               __ jcc(Assembler::zero, skipUnbox);
  2963               BasicType bt = out_sig_bt[c_arg];
  2964               int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2965               Address src1(in_reg, box_offset);
  2966               if ( bt == T_LONG ) {
  2967                 __ movq(in_reg,  src1);
  2968                 __ movq(stack_dst, in_reg);
  2969                 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2970                 ++c_arg; // skip over T_VOID to keep the loop indices in sync
  2971               } else {
  2972                 __ movl(in_reg,  src1);
  2973                 __ movl(stack_dst, in_reg);
  2976               __ bind(skipUnbox);
  2977             } else if (out_sig_bt[c_arg] != T_ADDRESS) {
  2978               // Convert the arg to NULL
  2979               if (!rax_is_zero) {
  2980                 __ xorq(rax, rax);
  2981                 rax_is_zero = true;
  2983               __ movq(stack_dst, rax);
  2986           break;
  2988         case T_VOID:
  2989           break;
  2991         case T_FLOAT:
  2992           // This does the right thing since we know it is destined for the
  2993           // stack
  2994           float_move(masm, src, dst);
  2995           break;
  2997         case T_DOUBLE:
  2998           // This does the right thing since we know it is destined for the
  2999           // stack
  3000           double_move(masm, src, dst);
  3001           break;
  3003         case T_LONG :
  3004           long_move(masm, src, dst);
  3005           break;
  3007         case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  3009         default:
  3010           move32_64(masm, src, dst);
  3016   // If we have any strings we must store any register based arg to the stack
  3017   // This includes any still live xmm registers too.
  3019   int sid = 0;
  3021   if (total_strings > 0 ) {
  3022     for (j_arg = first_arg_to_pass, c_arg = 0 ;
  3023          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  3024       VMRegPair src = in_regs[j_arg];
  3025       VMRegPair dst = out_regs[c_arg];
  3027       if (src.first()->is_reg()) {
  3028         Address src_tmp(rbp, fp_offset[src.first()->value()]);
  3030         // string oops were left untouched by the previous loop even if the
  3031         // eventual (converted) arg is destined for the stack so park them
  3032         // away now (except for first)
  3034         if (out_sig_bt[c_arg] == T_ADDRESS) {
  3035           Address utf8_addr = Address(
  3036               rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  3037           if (sid != 1) {
  3038             // The first string arg won't be killed until after the utf8
  3039             // conversion
  3040             __ movq(utf8_addr, src.first()->as_Register());
  3042         } else if (dst.first()->is_reg()) {
  3043           if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
  3045             // Convert the xmm register to an int and store it in the reserved
  3046             // location for the eventual c register arg
  3047             XMMRegister f = src.first()->as_XMMRegister();
  3048             if (in_sig_bt[j_arg] == T_FLOAT) {
  3049               __ movflt(src_tmp, f);
  3050             } else {
  3051               __ movdbl(src_tmp, f);
  3053           } else {
  3054             // If the arg is an oop type we don't support don't bother to store
  3055             // it remember string was handled above.
  3056             bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  3057                             (in_sig_bt[j_arg] == T_OBJECT &&
  3058                              out_sig_bt[c_arg] != T_INT &&
  3059                              out_sig_bt[c_arg] != T_LONG);
  3061             if (!useless) {
  3062               __ movq(src_tmp, src.first()->as_Register());
  3067       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  3068         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  3069         ++c_arg; // skip over T_VOID to keep the loop indices in sync
  3073     // Now that the volatile registers are safe, convert all the strings
  3074     sid = 0;
  3076     for (j_arg = first_arg_to_pass, c_arg = 0 ;
  3077          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  3078       if (out_sig_bt[c_arg] == T_ADDRESS) {
  3079         // It's a string
  3080         Address utf8_addr = Address(
  3081             rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  3082         // The first string we find might still be in the original java arg
  3083         // register
  3085         VMReg src = in_regs[j_arg].first();
  3087         // We will need to eventually save the final argument to the trap
  3088         // in the von-volatile location dedicated to src. This is the offset
  3089         // from fp we will use.
  3090         int src_off = src->is_reg() ?
  3091             fp_offset[src->value()] : reg2offset_in(src);
  3093         // This is where the argument will eventually reside
  3094         VMRegPair dst = out_regs[c_arg];
  3096         if (src->is_reg()) {
  3097           if (sid == 1) {
  3098             __ movq(c_rarg0, src->as_Register());
  3099           } else {
  3100             __ movq(c_rarg0, utf8_addr);
  3102         } else {
  3103           // arg is still in the original location
  3104           __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
  3106         Label done, convert;
  3108         // see if the oop is NULL
  3109         __ testq(c_rarg0, c_rarg0);
  3110         __ jcc(Assembler::notEqual, convert);
  3112         if (dst.first()->is_reg()) {
  3113           // Save the ptr to utf string in the origina src loc or the tmp
  3114           // dedicated to it
  3115           __ movq(Address(rbp, src_off), c_rarg0);
  3116         } else {
  3117           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
  3119         __ jmp(done);
  3121         __ bind(convert);
  3123         __ lea(c_rarg1, utf8_addr);
  3124         if (dst.first()->is_reg()) {
  3125           __ movq(Address(rbp, src_off), c_rarg1);
  3126         } else {
  3127           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
  3129         // And do the conversion
  3130         __ call(RuntimeAddress(
  3131                 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
  3133         __ bind(done);
  3135       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  3136         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  3137         ++c_arg; // skip over T_VOID to keep the loop indices in sync
  3140     // The get_utf call killed all the c_arg registers
  3141     live[c_rarg0->as_VMReg()->value()] = false;
  3142     live[c_rarg1->as_VMReg()->value()] = false;
  3143     live[c_rarg2->as_VMReg()->value()] = false;
  3144     live[c_rarg3->as_VMReg()->value()] = false;
  3145     live[c_rarg4->as_VMReg()->value()] = false;
  3146     live[c_rarg5->as_VMReg()->value()] = false;
  3148     live[c_farg0->as_VMReg()->value()] = false;
  3149     live[c_farg1->as_VMReg()->value()] = false;
  3150     live[c_farg2->as_VMReg()->value()] = false;
  3151     live[c_farg3->as_VMReg()->value()] = false;
  3152     live[c_farg4->as_VMReg()->value()] = false;
  3153     live[c_farg5->as_VMReg()->value()] = false;
  3154     live[c_farg6->as_VMReg()->value()] = false;
  3155     live[c_farg7->as_VMReg()->value()] = false;
  3158   // Now we can finally move the register args to their desired locations
  3160   rax_is_zero = false;
  3162   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  3163        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  3165     VMRegPair src = in_regs[j_arg];
  3166     VMRegPair dst = out_regs[c_arg];
  3168     // Only need to look for args destined for the interger registers (since we
  3169     // convert float/double args to look like int/long outbound)
  3170     if (dst.first()->is_reg()) {
  3171       Register r =  dst.first()->as_Register();
  3173       // Check if the java arg is unsupported and thereofre useless
  3174       bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  3175                       (in_sig_bt[j_arg] == T_OBJECT &&
  3176                        out_sig_bt[c_arg] != T_INT &&
  3177                        out_sig_bt[c_arg] != T_ADDRESS &&
  3178                        out_sig_bt[c_arg] != T_LONG);
  3181       // If we're going to kill an existing arg save it first
  3182       if (live[dst.first()->value()]) {
  3183         // you can't kill yourself
  3184         if (src.first() != dst.first()) {
  3185           __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
  3188       if (src.first()->is_reg()) {
  3189         if (live[src.first()->value()] ) {
  3190           if (in_sig_bt[j_arg] == T_FLOAT) {
  3191             __ movdl(r, src.first()->as_XMMRegister());
  3192           } else if (in_sig_bt[j_arg] == T_DOUBLE) {
  3193             __ movdq(r, src.first()->as_XMMRegister());
  3194           } else if (r != src.first()->as_Register()) {
  3195             if (!useless) {
  3196               __ movq(r, src.first()->as_Register());
  3199         } else {
  3200           // If the arg is an oop type we don't support don't bother to store
  3201           // it
  3202           if (!useless) {
  3203             if (in_sig_bt[j_arg] == T_DOUBLE ||
  3204                 in_sig_bt[j_arg] == T_LONG  ||
  3205                 in_sig_bt[j_arg] == T_OBJECT ) {
  3206               __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
  3207             } else {
  3208               __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
  3212         live[src.first()->value()] = false;
  3213       } else if (!useless) {
  3214         // full sized move even for int should be ok
  3215         __ movq(r, Address(rbp, reg2offset_in(src.first())));
  3218       // At this point r has the original java arg in the final location
  3219       // (assuming it wasn't useless). If the java arg was an oop
  3220       // we have a bit more to do
  3222       if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
  3223         if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  3224           // need to unbox a one-word value
  3225           Label skip;
  3226           __ testq(r, r);
  3227           __ jcc(Assembler::equal, skip);
  3228           BasicType bt = out_sig_bt[c_arg];
  3229           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  3230           Address src1(r, box_offset);
  3231           if ( bt == T_LONG ) {
  3232             __ movq(r, src1);
  3233           } else {
  3234             __ movl(r, src1);
  3236           __ bind(skip);
  3238         } else if (out_sig_bt[c_arg] != T_ADDRESS) {
  3239           // Convert the arg to NULL
  3240           __ xorq(r, r);
  3244       // dst can longer be holding an input value
  3245       live[dst.first()->value()] = false;
  3247     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  3248       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  3249       ++c_arg; // skip over T_VOID to keep the loop indices in sync
  3254   // Ok now we are done. Need to place the nop that dtrace wants in order to
  3255   // patch in the trap
  3256   int patch_offset = ((intptr_t)__ pc()) - start;
  3258   __ nop();
  3261   // Return
  3263   __ leave();
  3264   __ ret(0);
  3266   __ flush();
  3268   nmethod *nm = nmethod::new_dtrace_nmethod(
  3269       method, masm->code(), vep_offset, patch_offset, frame_complete,
  3270       stack_slots / VMRegImpl::slots_per_word);
  3271   return nm;
  3275 #endif // HAVE_DTRACE_H
  3277 // this function returns the adjust size (in number of words) to a c2i adapter
  3278 // activation for use during deoptimization
  3279 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
  3280   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
  3284 uint SharedRuntime::out_preserve_stack_slots() {
  3285   return 0;
  3288 //------------------------------generate_deopt_blob----------------------------
  3289 void SharedRuntime::generate_deopt_blob() {
  3290   // Allocate space for the code
  3291   ResourceMark rm;
  3292   // Setup code generation tools
  3293   CodeBuffer buffer("deopt_blob", 2048, 1024);
  3294   MacroAssembler* masm = new MacroAssembler(&buffer);
  3295   int frame_size_in_words;
  3296   OopMap* map = NULL;
  3297   OopMapSet *oop_maps = new OopMapSet();
  3299   // -------------
  3300   // This code enters when returning to a de-optimized nmethod.  A return
  3301   // address has been pushed on the the stack, and return values are in
  3302   // registers.
  3303   // If we are doing a normal deopt then we were called from the patched
  3304   // nmethod from the point we returned to the nmethod. So the return
  3305   // address on the stack is wrong by NativeCall::instruction_size
  3306   // We will adjust the value so it looks like we have the original return
  3307   // address on the stack (like when we eagerly deoptimized).
  3308   // In the case of an exception pending when deoptimizing, we enter
  3309   // with a return address on the stack that points after the call we patched
  3310   // into the exception handler. We have the following register state from,
  3311   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
  3312   //    rax: exception oop
  3313   //    rbx: exception handler
  3314   //    rdx: throwing pc
  3315   // So in this case we simply jam rdx into the useless return address and
  3316   // the stack looks just like we want.
  3317   //
  3318   // At this point we need to de-opt.  We save the argument return
  3319   // registers.  We call the first C routine, fetch_unroll_info().  This
  3320   // routine captures the return values and returns a structure which
  3321   // describes the current frame size and the sizes of all replacement frames.
  3322   // The current frame is compiled code and may contain many inlined
  3323   // functions, each with their own JVM state.  We pop the current frame, then
  3324   // push all the new frames.  Then we call the C routine unpack_frames() to
  3325   // populate these frames.  Finally unpack_frames() returns us the new target
  3326   // address.  Notice that callee-save registers are BLOWN here; they have
  3327   // already been captured in the vframeArray at the time the return PC was
  3328   // patched.
  3329   address start = __ pc();
  3330   Label cont;
  3332   // Prolog for non exception case!
  3334   // Save everything in sight.
  3335   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3337   // Normal deoptimization.  Save exec mode for unpack_frames.
  3338   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
  3339   __ jmp(cont);
  3341   int reexecute_offset = __ pc() - start;
  3343   // Reexecute case
  3344   // return address is the pc describes what bci to do re-execute at
  3346   // No need to update map as each call to save_live_registers will produce identical oopmap
  3347   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3349   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
  3350   __ jmp(cont);
  3352   int exception_offset = __ pc() - start;
  3354   // Prolog for exception case
  3356   // all registers are dead at this entry point, except for rax, and
  3357   // rdx which contain the exception oop and exception pc
  3358   // respectively.  Set them in TLS and fall thru to the
  3359   // unpack_with_exception_in_tls entry point.
  3361   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
  3362   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
  3364   int exception_in_tls_offset = __ pc() - start;
  3366   // new implementation because exception oop is now passed in JavaThread
  3368   // Prolog for exception case
  3369   // All registers must be preserved because they might be used by LinearScan
  3370   // Exceptiop oop and throwing PC are passed in JavaThread
  3371   // tos: stack at point of call to method that threw the exception (i.e. only
  3372   // args are on the stack, no return address)
  3374   // make room on stack for the return address
  3375   // It will be patched later with the throwing pc. The correct value is not
  3376   // available now because loading it from memory would destroy registers.
  3377   __ push(0);
  3379   // Save everything in sight.
  3380   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3382   // Now it is safe to overwrite any register
  3384   // Deopt during an exception.  Save exec mode for unpack_frames.
  3385   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
  3387   // load throwing pc from JavaThread and patch it as the return address
  3388   // of the current frame. Then clear the field in JavaThread
  3390   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  3391   __ movptr(Address(rbp, wordSize), rdx);
  3392   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
  3394 #ifdef ASSERT
  3395   // verify that there is really an exception oop in JavaThread
  3396   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  3397   __ verify_oop(rax);
  3399   // verify that there is no pending exception
  3400   Label no_pending_exception;
  3401   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
  3402   __ testptr(rax, rax);
  3403   __ jcc(Assembler::zero, no_pending_exception);
  3404   __ stop("must not have pending exception here");
  3405   __ bind(no_pending_exception);
  3406 #endif
  3408   __ bind(cont);
  3410   // Call C code.  Need thread and this frame, but NOT official VM entry
  3411   // crud.  We cannot block on this call, no GC can happen.
  3412   //
  3413   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
  3415   // fetch_unroll_info needs to call last_java_frame().
  3417   __ set_last_Java_frame(noreg, noreg, NULL);
  3418 #ifdef ASSERT
  3419   { Label L;
  3420     __ cmpptr(Address(r15_thread,
  3421                     JavaThread::last_Java_fp_offset()),
  3422             (int32_t)0);
  3423     __ jcc(Assembler::equal, L);
  3424     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
  3425     __ bind(L);
  3427 #endif // ASSERT
  3428   __ mov(c_rarg0, r15_thread);
  3429   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
  3431   // Need to have an oopmap that tells fetch_unroll_info where to
  3432   // find any register it might need.
  3433   oop_maps->add_gc_map(__ pc() - start, map);
  3435   __ reset_last_Java_frame(false, false);
  3437   // Load UnrollBlock* into rdi
  3438   __ mov(rdi, rax);
  3440    Label noException;
  3441   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
  3442   __ jcc(Assembler::notEqual, noException);
  3443   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  3444   // QQQ this is useless it was NULL above
  3445   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  3446   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
  3447   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
  3449   __ verify_oop(rax);
  3451   // Overwrite the result registers with the exception results.
  3452   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  3453   // I think this is useless
  3454   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
  3456   __ bind(noException);
  3458   // Only register save data is on the stack.
  3459   // Now restore the result registers.  Everything else is either dead
  3460   // or captured in the vframeArray.
  3461   RegisterSaver::restore_result_registers(masm);
  3463   // All of the register save area has been popped of the stack. Only the
  3464   // return address remains.
  3466   // Pop all the frames we must move/replace.
  3467   //
  3468   // Frame picture (youngest to oldest)
  3469   // 1: self-frame (no frame link)
  3470   // 2: deopting frame  (no frame link)
  3471   // 3: caller of deopting frame (could be compiled/interpreted).
  3472   //
  3473   // Note: by leaving the return address of self-frame on the stack
  3474   // and using the size of frame 2 to adjust the stack
  3475   // when we are done the return to frame 3 will still be on the stack.
  3477   // Pop deoptimized frame
  3478   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  3479   __ addptr(rsp, rcx);
  3481   // rsp should be pointing at the return address to the caller (3)
  3483   // Pick up the initial fp we should save
  3484   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
  3485   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
  3487 #ifdef ASSERT
  3488   // Compilers generate code that bang the stack by as much as the
  3489   // interpreter would need. So this stack banging should never
  3490   // trigger a fault. Verify that it does not on non product builds.
  3491   if (UseStackBanging) {
  3492     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  3493     __ bang_stack_size(rbx, rcx);
  3495 #endif
  3497   // Load address of array of frame pcs into rcx
  3498   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  3500   // Trash the old pc
  3501   __ addptr(rsp, wordSize);
  3503   // Load address of array of frame sizes into rsi
  3504   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  3506   // Load counter into rdx
  3507   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  3509   // Now adjust the caller's stack to make up for the extra locals
  3510   // but record the original sp so that we can save it in the skeletal interpreter
  3511   // frame and the stack walking of interpreter_sender will get the unextended sp
  3512   // value and not the "real" sp value.
  3514   const Register sender_sp = r8;
  3516   __ mov(sender_sp, rsp);
  3517   __ movl(rbx, Address(rdi,
  3518                        Deoptimization::UnrollBlock::
  3519                        caller_adjustment_offset_in_bytes()));
  3520   __ subptr(rsp, rbx);
  3522   // Push interpreter frames in a loop
  3523   Label loop;
  3524   __ bind(loop);
  3525   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  3526 #ifdef CC_INTERP
  3527   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  3528 #ifdef ASSERT
  3529   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  3530   __ push(0xDEADDEAD);
  3531 #else /* ASSERT */
  3532   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  3533 #endif /* ASSERT */
  3534 #else
  3535   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
  3536 #endif // CC_INTERP
  3537   __ pushptr(Address(rcx, 0));          // Save return address
  3538   __ enter();                           // Save old & set new ebp
  3539   __ subptr(rsp, rbx);                  // Prolog
  3540 #ifdef CC_INTERP
  3541   __ movptr(Address(rbp,
  3542                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  3543             sender_sp); // Make it walkable
  3544 #else /* CC_INTERP */
  3545   // This value is corrected by layout_activation_impl
  3546   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
  3547   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
  3548 #endif /* CC_INTERP */
  3549   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
  3550   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  3551   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  3552   __ decrementl(rdx);                   // Decrement counter
  3553   __ jcc(Assembler::notZero, loop);
  3554   __ pushptr(Address(rcx, 0));          // Save final return address
  3556   // Re-push self-frame
  3557   __ enter();                           // Save old & set new ebp
  3559   // Allocate a full sized register save area.
  3560   // Return address and rbp are in place, so we allocate two less words.
  3561   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
  3563   // Restore frame locals after moving the frame
  3564   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
  3565   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  3567   // Call C code.  Need thread but NOT official VM entry
  3568   // crud.  We cannot block on this call, no GC can happen.  Call should
  3569   // restore return values to their stack-slots with the new SP.
  3570   //
  3571   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
  3573   // Use rbp because the frames look interpreted now
  3574   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
  3575   // Don't need the precise return PC here, just precise enough to point into this code blob.
  3576   address the_pc = __ pc();
  3577   __ set_last_Java_frame(noreg, rbp, the_pc);
  3579   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
  3580   __ mov(c_rarg0, r15_thread);
  3581   __ movl(c_rarg1, r14); // second arg: exec_mode
  3582   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  3583   // Revert SP alignment after call since we're going to do some SP relative addressing below
  3584   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
  3586   // Set an oopmap for the call site
  3587   // Use the same PC we used for the last java frame
  3588   oop_maps->add_gc_map(the_pc - start,
  3589                        new OopMap( frame_size_in_words, 0 ));
  3591   // Clear fp AND pc
  3592   __ reset_last_Java_frame(true, true);
  3594   // Collect return values
  3595   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
  3596   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
  3597   // I think this is useless (throwing pc?)
  3598   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
  3600   // Pop self-frame.
  3601   __ leave();                           // Epilog
  3603   // Jump to interpreter
  3604   __ ret(0);
  3606   // Make sure all code is generated
  3607   masm->flush();
  3609   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
  3610   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  3613 #ifdef COMPILER2
  3614 //------------------------------generate_uncommon_trap_blob--------------------
  3615 void SharedRuntime::generate_uncommon_trap_blob() {
  3616   // Allocate space for the code
  3617   ResourceMark rm;
  3618   // Setup code generation tools
  3619   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
  3620   MacroAssembler* masm = new MacroAssembler(&buffer);
  3622   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
  3624   address start = __ pc();
  3626   if (UseRTMLocking) {
  3627     // Abort RTM transaction before possible nmethod deoptimization.
  3628     __ xabort(0);
  3631   // Push self-frame.  We get here with a return address on the
  3632   // stack, so rsp is 8-byte aligned until we allocate our frame.
  3633   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
  3635   // No callee saved registers. rbp is assumed implicitly saved
  3636   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
  3638   // compiler left unloaded_class_index in j_rarg0 move to where the
  3639   // runtime expects it.
  3640   __ movl(c_rarg1, j_rarg0);
  3642   __ set_last_Java_frame(noreg, noreg, NULL);
  3644   // Call C code.  Need thread but NOT official VM entry
  3645   // crud.  We cannot block on this call, no GC can happen.  Call should
  3646   // capture callee-saved registers as well as return values.
  3647   // Thread is in rdi already.
  3648   //
  3649   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
  3651   __ mov(c_rarg0, r15_thread);
  3652   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
  3654   // Set an oopmap for the call site
  3655   OopMapSet* oop_maps = new OopMapSet();
  3656   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
  3658   // location of rbp is known implicitly by the frame sender code
  3660   oop_maps->add_gc_map(__ pc() - start, map);
  3662   __ reset_last_Java_frame(false, false);
  3664   // Load UnrollBlock* into rdi
  3665   __ mov(rdi, rax);
  3667   // Pop all the frames we must move/replace.
  3668   //
  3669   // Frame picture (youngest to oldest)
  3670   // 1: self-frame (no frame link)
  3671   // 2: deopting frame  (no frame link)
  3672   // 3: caller of deopting frame (could be compiled/interpreted).
  3674   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
  3675   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
  3677   // Pop deoptimized frame (int)
  3678   __ movl(rcx, Address(rdi,
  3679                        Deoptimization::UnrollBlock::
  3680                        size_of_deoptimized_frame_offset_in_bytes()));
  3681   __ addptr(rsp, rcx);
  3683   // rsp should be pointing at the return address to the caller (3)
  3685   // Pick up the initial fp we should save
  3686   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
  3687   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
  3689 #ifdef ASSERT
  3690   // Compilers generate code that bang the stack by as much as the
  3691   // interpreter would need. So this stack banging should never
  3692   // trigger a fault. Verify that it does not on non product builds.
  3693   if (UseStackBanging) {
  3694     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  3695     __ bang_stack_size(rbx, rcx);
  3697 #endif
  3699   // Load address of array of frame pcs into rcx (address*)
  3700   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  3702   // Trash the return pc
  3703   __ addptr(rsp, wordSize);
  3705   // Load address of array of frame sizes into rsi (intptr_t*)
  3706   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes()));
  3708   // Counter
  3709   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int)
  3711   // Now adjust the caller's stack to make up for the extra locals but
  3712   // record the original sp so that we can save it in the skeletal
  3713   // interpreter frame and the stack walking of interpreter_sender
  3714   // will get the unextended sp value and not the "real" sp value.
  3716   const Register sender_sp = r8;
  3718   __ mov(sender_sp, rsp);
  3719   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int)
  3720   __ subptr(rsp, rbx);
  3722   // Push interpreter frames in a loop
  3723   Label loop;
  3724   __ bind(loop);
  3725   __ movptr(rbx, Address(rsi, 0)); // Load frame size
  3726   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
  3727   __ pushptr(Address(rcx, 0));     // Save return address
  3728   __ enter();                      // Save old & set new rbp
  3729   __ subptr(rsp, rbx);             // Prolog
  3730 #ifdef CC_INTERP
  3731   __ movptr(Address(rbp,
  3732                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  3733             sender_sp); // Make it walkable
  3734 #else // CC_INTERP
  3735   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
  3736             sender_sp);            // Make it walkable
  3737   // This value is corrected by layout_activation_impl
  3738   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
  3739 #endif // CC_INTERP
  3740   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
  3741   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
  3742   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
  3743   __ decrementl(rdx);              // Decrement counter
  3744   __ jcc(Assembler::notZero, loop);
  3745   __ pushptr(Address(rcx, 0));     // Save final return address
  3747   // Re-push self-frame
  3748   __ enter();                 // Save old & set new rbp
  3749   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
  3750                               // Prolog
  3752   // Use rbp because the frames look interpreted now
  3753   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
  3754   // Don't need the precise return PC here, just precise enough to point into this code blob.
  3755   address the_pc = __ pc();
  3756   __ set_last_Java_frame(noreg, rbp, the_pc);
  3758   // Call C code.  Need thread but NOT official VM entry
  3759   // crud.  We cannot block on this call, no GC can happen.  Call should
  3760   // restore return values to their stack-slots with the new SP.
  3761   // Thread is in rdi already.
  3762   //
  3763   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
  3765   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
  3766   __ mov(c_rarg0, r15_thread);
  3767   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
  3768   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  3770   // Set an oopmap for the call site
  3771   // Use the same PC we used for the last java frame
  3772   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
  3774   // Clear fp AND pc
  3775   __ reset_last_Java_frame(true, true);
  3777   // Pop self-frame.
  3778   __ leave();                 // Epilog
  3780   // Jump to interpreter
  3781   __ ret(0);
  3783   // Make sure all code is generated
  3784   masm->flush();
  3786   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
  3787                                                  SimpleRuntimeFrame::framesize >> 1);
  3789 #endif // COMPILER2
  3792 //------------------------------generate_handler_blob------
  3793 //
  3794 // Generate a special Compile2Runtime blob that saves all registers,
  3795 // and setup oopmap.
  3796 //
  3797 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
  3798   assert(StubRoutines::forward_exception_entry() != NULL,
  3799          "must be generated before");
  3801   ResourceMark rm;
  3802   OopMapSet *oop_maps = new OopMapSet();
  3803   OopMap* map;
  3805   // Allocate space for the code.  Setup code generation tools.
  3806   CodeBuffer buffer("handler_blob", 2048, 1024);
  3807   MacroAssembler* masm = new MacroAssembler(&buffer);
  3809   address start   = __ pc();
  3810   address call_pc = NULL;
  3811   int frame_size_in_words;
  3812   bool cause_return = (poll_type == POLL_AT_RETURN);
  3813   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
  3815   if (UseRTMLocking) {
  3816     // Abort RTM transaction before calling runtime
  3817     // because critical section will be large and will be
  3818     // aborted anyway. Also nmethod could be deoptimized.
  3819     __ xabort(0);
  3822   // Make room for return address (or push it again)
  3823   if (!cause_return) {
  3824     __ push(rbx);
  3827   // Save registers, fpu state, and flags
  3828   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
  3830   // The following is basically a call_VM.  However, we need the precise
  3831   // address of the call in order to generate an oopmap. Hence, we do all the
  3832   // work outselves.
  3834   __ set_last_Java_frame(noreg, noreg, NULL);
  3836   // The return address must always be correct so that frame constructor never
  3837   // sees an invalid pc.
  3839   if (!cause_return) {
  3840     // overwrite the dummy value we pushed on entry
  3841     __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
  3842     __ movptr(Address(rbp, wordSize), c_rarg0);
  3845   // Do the call
  3846   __ mov(c_rarg0, r15_thread);
  3847   __ call(RuntimeAddress(call_ptr));
  3849   // Set an oopmap for the call site.  This oopmap will map all
  3850   // oop-registers and debug-info registers as callee-saved.  This
  3851   // will allow deoptimization at this safepoint to find all possible
  3852   // debug-info recordings, as well as let GC find all oops.
  3854   oop_maps->add_gc_map( __ pc() - start, map);
  3856   Label noException;
  3858   __ reset_last_Java_frame(false, false);
  3860   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3861   __ jcc(Assembler::equal, noException);
  3863   // Exception pending
  3865   RegisterSaver::restore_live_registers(masm, save_vectors);
  3867   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3869   // No exception case
  3870   __ bind(noException);
  3872   // Normal exit, restore registers and exit.
  3873   RegisterSaver::restore_live_registers(masm, save_vectors);
  3875   __ ret(0);
  3877   // Make sure all code is generated
  3878   masm->flush();
  3880   // Fill-out other meta info
  3881   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
  3884 //
  3885 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  3886 //
  3887 // Generate a stub that calls into vm to find out the proper destination
  3888 // of a java call. All the argument registers are live at this point
  3889 // but since this is generic code we don't know what they are and the caller
  3890 // must do any gc of the args.
  3891 //
  3892 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
  3893   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3895   // allocate space for the code
  3896   ResourceMark rm;
  3898   CodeBuffer buffer(name, 1000, 512);
  3899   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3901   int frame_size_in_words;
  3903   OopMapSet *oop_maps = new OopMapSet();
  3904   OopMap* map = NULL;
  3906   int start = __ offset();
  3908   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3910   int frame_complete = __ offset();
  3912   __ set_last_Java_frame(noreg, noreg, NULL);
  3914   __ mov(c_rarg0, r15_thread);
  3916   __ call(RuntimeAddress(destination));
  3919   // Set an oopmap for the call site.
  3920   // We need this not only for callee-saved registers, but also for volatile
  3921   // registers that the compiler might be keeping live across a safepoint.
  3923   oop_maps->add_gc_map( __ offset() - start, map);
  3925   // rax contains the address we are going to jump to assuming no exception got installed
  3927   // clear last_Java_sp
  3928   __ reset_last_Java_frame(false, false);
  3929   // check for pending exceptions
  3930   Label pending;
  3931   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3932   __ jcc(Assembler::notEqual, pending);
  3934   // get the returned Method*
  3935   __ get_vm_result_2(rbx, r15_thread);
  3936   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
  3938   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  3940   RegisterSaver::restore_live_registers(masm);
  3942   // We are back the the original state on entry and ready to go.
  3944   __ jmp(rax);
  3946   // Pending exception after the safepoint
  3948   __ bind(pending);
  3950   RegisterSaver::restore_live_registers(masm);
  3952   // exception pending => remove activation and forward to exception handler
  3954   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
  3956   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
  3957   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3959   // -------------
  3960   // make sure all code is generated
  3961   masm->flush();
  3963   // return the  blob
  3964   // frame_size_words or bytes??
  3965   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
  3969 #ifdef COMPILER2
  3970 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
  3971 //
  3972 //------------------------------generate_exception_blob---------------------------
  3973 // creates exception blob at the end
  3974 // Using exception blob, this code is jumped from a compiled method.
  3975 // (see emit_exception_handler in x86_64.ad file)
  3976 //
  3977 // Given an exception pc at a call we call into the runtime for the
  3978 // handler in this method. This handler might merely restore state
  3979 // (i.e. callee save registers) unwind the frame and jump to the
  3980 // exception handler for the nmethod if there is no Java level handler
  3981 // for the nmethod.
  3982 //
  3983 // This code is entered with a jmp.
  3984 //
  3985 // Arguments:
  3986 //   rax: exception oop
  3987 //   rdx: exception pc
  3988 //
  3989 // Results:
  3990 //   rax: exception oop
  3991 //   rdx: exception pc in caller or ???
  3992 //   destination: exception handler of caller
  3993 //
  3994 // Note: the exception pc MUST be at a call (precise debug information)
  3995 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
  3996 //
  3998 void OptoRuntime::generate_exception_blob() {
  3999   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
  4000   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
  4001   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
  4003   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
  4005   // Allocate space for the code
  4006   ResourceMark rm;
  4007   // Setup code generation tools
  4008   CodeBuffer buffer("exception_blob", 2048, 1024);
  4009   MacroAssembler* masm = new MacroAssembler(&buffer);
  4012   address start = __ pc();
  4014   // Exception pc is 'return address' for stack walker
  4015   __ push(rdx);
  4016   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
  4018   // Save callee-saved registers.  See x86_64.ad.
  4020   // rbp is an implicitly saved callee saved register (i.e. the calling
  4021   // convention will save restore it in prolog/epilog) Other than that
  4022   // there are no callee save registers now that adapter frames are gone.
  4024   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
  4026   // Store exception in Thread object. We cannot pass any arguments to the
  4027   // handle_exception call, since we do not want to make any assumption
  4028   // about the size of the frame where the exception happened in.
  4029   // c_rarg0 is either rdi (Linux) or rcx (Windows).
  4030   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
  4031   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
  4033   // This call does all the hard work.  It checks if an exception handler
  4034   // exists in the method.
  4035   // If so, it returns the handler address.
  4036   // If not, it prepares for stack-unwinding, restoring the callee-save
  4037   // registers of the frame being removed.
  4038   //
  4039   // address OptoRuntime::handle_exception_C(JavaThread* thread)
  4041   // At a method handle call, the stack may not be properly aligned
  4042   // when returning with an exception.
  4043   address the_pc = __ pc();
  4044   __ set_last_Java_frame(noreg, noreg, the_pc);
  4045   __ mov(c_rarg0, r15_thread);
  4046   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
  4047   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
  4049   // Set an oopmap for the call site.  This oopmap will only be used if we
  4050   // are unwinding the stack.  Hence, all locations will be dead.
  4051   // Callee-saved registers will be the same as the frame above (i.e.,
  4052   // handle_exception_stub), since they were restored when we got the
  4053   // exception.
  4055   OopMapSet* oop_maps = new OopMapSet();
  4057   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
  4059   __ reset_last_Java_frame(false, true);
  4061   // Restore callee-saved registers
  4063   // rbp is an implicitly saved callee saved register (i.e. the calling
  4064   // convention will save restore it in prolog/epilog) Other than that
  4065   // there are no callee save registers no that adapter frames are gone.
  4067   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
  4069   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
  4070   __ pop(rdx);                  // No need for exception pc anymore
  4072   // rax: exception handler
  4074   // Restore SP from BP if the exception PC is a MethodHandle call site.
  4075   __ cmpl(Address(r15_thread, JavaThread::is_method_handle_return_offset()), 0);
  4076   __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
  4078   // We have a handler in rax (could be deopt blob).
  4079   __ mov(r8, rax);
  4081   // Get the exception oop
  4082   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  4083   // Get the exception pc in case we are deoptimized
  4084   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  4085 #ifdef ASSERT
  4086   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
  4087   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
  4088 #endif
  4089   // Clear the exception oop so GC no longer processes it as a root.
  4090   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
  4092   // rax: exception oop
  4093   // r8:  exception handler
  4094   // rdx: exception pc
  4095   // Jump to handler
  4097   __ jmp(r8);
  4099   // Make sure all code is generated
  4100   masm->flush();
  4102   // Set exception blob
  4103   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
  4105 #endif // COMPILER2

mercurial