src/cpu/sparc/vm/sparc.ad

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

     1 //
     2 // Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Header information of the source block.
   461 // Method declarations/definitions which are used outside
   462 // the ad-scope can conveniently be defined here.
   463 //
   464 // To keep related declarations/definitions/uses close together,
   465 // we switch between source %{ }% and source_hpp %{ }% freely as needed.
   467 // Must be visible to the DFA in dfa_sparc.cpp
   468 extern bool can_branch_register( Node *bol, Node *cmp );
   470 extern bool use_block_zeroing(Node* count);
   472 // Macros to extract hi & lo halves from a long pair.
   473 // G0 is not part of any long pair, so assert on that.
   474 // Prevents accidentally using G1 instead of G0.
   475 #define LONG_HI_REG(x) (x)
   476 #define LONG_LO_REG(x) (x)
   478 class CallStubImpl {
   480   //--------------------------------------------------------------
   481   //---<  Used for optimization in Compile::Shorten_branches  >---
   482   //--------------------------------------------------------------
   484  public:
   485   // Size of call trampoline stub.
   486   static uint size_call_trampoline() {
   487     return 0; // no call trampolines on this platform
   488   }
   490   // number of relocations needed by a call trampoline stub
   491   static uint reloc_call_trampoline() {
   492     return 0; // no call trampolines on this platform
   493   }
   494 };
   496 class HandlerImpl {
   498  public:
   500   static int emit_exception_handler(CodeBuffer &cbuf);
   501   static int emit_deopt_handler(CodeBuffer& cbuf);
   503   static uint size_exception_handler() {
   504     if (TraceJumps) {
   505       return (400); // just a guess
   506     }
   507     return ( NativeJump::instruction_size ); // sethi;jmp;nop
   508   }
   510   static uint size_deopt_handler() {
   511     if (TraceJumps) {
   512       return (400); // just a guess
   513     }
   514     return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
   515   }
   516 };
   518 %}
   520 source %{
   521 #define __ _masm.
   523 // tertiary op of a LoadP or StoreP encoding
   524 #define REGP_OP true
   526 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   527 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   528 static Register reg_to_register_object(int register_encoding);
   530 // Used by the DFA in dfa_sparc.cpp.
   531 // Check for being able to use a V9 branch-on-register.  Requires a
   532 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   533 // extended.  Doesn't work following an integer ADD, for example, because of
   534 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   535 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   536 // replace them with zero, which could become sign-extension in a different OS
   537 // release.  There's no obvious reason why an interrupt will ever fill these
   538 // bits with non-zero junk (the registers are reloaded with standard LD
   539 // instructions which either zero-fill or sign-fill).
   540 bool can_branch_register( Node *bol, Node *cmp ) {
   541   if( !BranchOnRegister ) return false;
   542 #ifdef _LP64
   543   if( cmp->Opcode() == Op_CmpP )
   544     return true;  // No problems with pointer compares
   545 #endif
   546   if( cmp->Opcode() == Op_CmpL )
   547     return true;  // No problems with long compares
   549   if( !SparcV9RegsHiBitsZero ) return false;
   550   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   551       bol->as_Bool()->_test._test != BoolTest::eq )
   552      return false;
   554   // Check for comparing against a 'safe' value.  Any operation which
   555   // clears out the high word is safe.  Thus, loads and certain shifts
   556   // are safe, as are non-negative constants.  Any operation which
   557   // preserves zero bits in the high word is safe as long as each of its
   558   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   559   // inputs are safe.  At present, the only important case to recognize
   560   // seems to be loads.  Constants should fold away, and shifts &
   561   // logicals can use the 'cc' forms.
   562   Node *x = cmp->in(1);
   563   if( x->is_Load() ) return true;
   564   if( x->is_Phi() ) {
   565     for( uint i = 1; i < x->req(); i++ )
   566       if( !x->in(i)->is_Load() )
   567         return false;
   568     return true;
   569   }
   570   return false;
   571 }
   573 bool use_block_zeroing(Node* count) {
   574   // Use BIS for zeroing if count is not constant
   575   // or it is >= BlockZeroingLowLimit.
   576   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
   577 }
   579 // ****************************************************************************
   581 // REQUIRED FUNCTIONALITY
   583 // !!!!! Special hack to get all type of calls to specify the byte offset
   584 //       from the start of the call to the point where the return address
   585 //       will point.
   586 //       The "return address" is the address of the call instruction, plus 8.
   588 int MachCallStaticJavaNode::ret_addr_offset() {
   589   int offset = NativeCall::instruction_size;  // call; delay slot
   590   if (_method_handle_invoke)
   591     offset += 4;  // restore SP
   592   return offset;
   593 }
   595 int MachCallDynamicJavaNode::ret_addr_offset() {
   596   int vtable_index = this->_vtable_index;
   597   if (vtable_index < 0) {
   598     // must be invalid_vtable_index, not nonvirtual_vtable_index
   599     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
   600     return (NativeMovConstReg::instruction_size +
   601            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   602   } else {
   603     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   604     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   605     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   606     int klass_load_size;
   607     if (UseCompressedClassPointers) {
   608       assert(Universe::heap() != NULL, "java heap should be initialized");
   609       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
   610     } else {
   611       klass_load_size = 1*BytesPerInstWord;
   612     }
   613     if (Assembler::is_simm13(v_off)) {
   614       return klass_load_size +
   615              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   616              NativeCall::instruction_size);  // call; delay slot
   617     } else {
   618       return klass_load_size +
   619              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   620              NativeCall::instruction_size);  // call; delay slot
   621     }
   622   }
   623 }
   625 int MachCallRuntimeNode::ret_addr_offset() {
   626 #ifdef _LP64
   627   if (MacroAssembler::is_far_target(entry_point())) {
   628     return NativeFarCall::instruction_size;
   629   } else {
   630     return NativeCall::instruction_size;
   631   }
   632 #else
   633   return NativeCall::instruction_size;  // call; delay slot
   634 #endif
   635 }
   637 // Indicate if the safepoint node needs the polling page as an input.
   638 // Since Sparc does not have absolute addressing, it does.
   639 bool SafePointNode::needs_polling_address_input() {
   640   return true;
   641 }
   643 // emit an interrupt that is caught by the debugger (for debugging compiler)
   644 void emit_break(CodeBuffer &cbuf) {
   645   MacroAssembler _masm(&cbuf);
   646   __ breakpoint_trap();
   647 }
   649 #ifndef PRODUCT
   650 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   651   st->print("TA");
   652 }
   653 #endif
   655 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   656   emit_break(cbuf);
   657 }
   659 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   660   return MachNode::size(ra_);
   661 }
   663 // Traceable jump
   664 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   665   MacroAssembler _masm(&cbuf);
   666   Register rdest = reg_to_register_object(jump_target);
   667   __ JMP(rdest, 0);
   668   __ delayed()->nop();
   669 }
   671 // Traceable jump and set exception pc
   672 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   673   MacroAssembler _masm(&cbuf);
   674   Register rdest = reg_to_register_object(jump_target);
   675   __ JMP(rdest, 0);
   676   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   677 }
   679 void emit_nop(CodeBuffer &cbuf) {
   680   MacroAssembler _masm(&cbuf);
   681   __ nop();
   682 }
   684 void emit_illtrap(CodeBuffer &cbuf) {
   685   MacroAssembler _masm(&cbuf);
   686   __ illtrap(0);
   687 }
   690 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   691   assert(n->rule() != loadUB_rule, "");
   693   intptr_t offset = 0;
   694   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   695   const Node* addr = n->get_base_and_disp(offset, adr_type);
   696   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   697   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   698   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   699   atype = atype->add_offset(offset);
   700   assert(disp32 == offset, "wrong disp32");
   701   return atype->_offset;
   702 }
   705 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   706   assert(n->rule() != loadUB_rule, "");
   708   intptr_t offset = 0;
   709   Node* addr = n->in(2);
   710   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   711   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   712     Node* a = addr->in(2/*AddPNode::Address*/);
   713     Node* o = addr->in(3/*AddPNode::Offset*/);
   714     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   715     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   716     assert(atype->isa_oop_ptr(), "still an oop");
   717   }
   718   offset = atype->is_ptr()->_offset;
   719   if (offset != Type::OffsetBot)  offset += disp32;
   720   return offset;
   721 }
   723 static inline jdouble replicate_immI(int con, int count, int width) {
   724   // Load a constant replicated "count" times with width "width"
   725   assert(count*width == 8 && width <= 4, "sanity");
   726   int bit_width = width * 8;
   727   jlong val = con;
   728   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   729   for (int i = 0; i < count - 1; i++) {
   730     val |= (val << bit_width);
   731   }
   732   jdouble dval = *((jdouble*) &val);  // coerce to double type
   733   return dval;
   734 }
   736 static inline jdouble replicate_immF(float con) {
   737   // Replicate float con 2 times and pack into vector.
   738   int val = *((int*)&con);
   739   jlong lval = val;
   740   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
   741   jdouble dval = *((jdouble*) &lval);  // coerce to double type
   742   return dval;
   743 }
   745 // Standard Sparc opcode form2 field breakdown
   746 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   747   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   748   int op = (f30 << 30) |
   749            (f29 << 29) |
   750            (f25 << 25) |
   751            (f22 << 22) |
   752            (f20 << 20) |
   753            (f19 << 19) |
   754            (f0  <<  0);
   755   cbuf.insts()->emit_int32(op);
   756 }
   758 // Standard Sparc opcode form2 field breakdown
   759 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   760   f0 >>= 10;           // Drop 10 bits
   761   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   762   int op = (f30 << 30) |
   763            (f25 << 25) |
   764            (f22 << 22) |
   765            (f0  <<  0);
   766   cbuf.insts()->emit_int32(op);
   767 }
   769 // Standard Sparc opcode form3 field breakdown
   770 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   771   int op = (f30 << 30) |
   772            (f25 << 25) |
   773            (f19 << 19) |
   774            (f14 << 14) |
   775            (f5  <<  5) |
   776            (f0  <<  0);
   777   cbuf.insts()->emit_int32(op);
   778 }
   780 // Standard Sparc opcode form3 field breakdown
   781 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   782   simm13 &= (1<<13)-1; // Mask to 13 bits
   783   int op = (f30 << 30) |
   784            (f25 << 25) |
   785            (f19 << 19) |
   786            (f14 << 14) |
   787            (1   << 13) | // bit to indicate immediate-mode
   788            (simm13<<0);
   789   cbuf.insts()->emit_int32(op);
   790 }
   792 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   793   simm10 &= (1<<10)-1; // Mask to 10 bits
   794   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   795 }
   797 #ifdef ASSERT
   798 // Helper function for VerifyOops in emit_form3_mem_reg
   799 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   800   warning("VerifyOops encountered unexpected instruction:");
   801   n->dump(2);
   802   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   803 }
   804 #endif
   807 void emit_form3_mem_reg(CodeBuffer &cbuf, PhaseRegAlloc* ra, const MachNode* n, int primary, int tertiary,
   808                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   810 #ifdef ASSERT
   811   // The following code implements the +VerifyOops feature.
   812   // It verifies oop values which are loaded into or stored out of
   813   // the current method activation.  +VerifyOops complements techniques
   814   // like ScavengeALot, because it eagerly inspects oops in transit,
   815   // as they enter or leave the stack, as opposed to ScavengeALot,
   816   // which inspects oops "at rest", in the stack or heap, at safepoints.
   817   // For this reason, +VerifyOops can sometimes detect bugs very close
   818   // to their point of creation.  It can also serve as a cross-check
   819   // on the validity of oop maps, when used toegether with ScavengeALot.
   821   // It would be good to verify oops at other points, especially
   822   // when an oop is used as a base pointer for a load or store.
   823   // This is presently difficult, because it is hard to know when
   824   // a base address is biased or not.  (If we had such information,
   825   // it would be easy and useful to make a two-argument version of
   826   // verify_oop which unbiases the base, and performs verification.)
   828   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   829   bool is_verified_oop_base  = false;
   830   bool is_verified_oop_load  = false;
   831   bool is_verified_oop_store = false;
   832   int tmp_enc = -1;
   833   if (VerifyOops && src1_enc != R_SP_enc) {
   834     // classify the op, mainly for an assert check
   835     int st_op = 0, ld_op = 0;
   836     switch (primary) {
   837     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   838     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   839     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   840     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   841     case Assembler::std_op3:  st_op = Op_StoreL; break;
   842     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   843     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   845     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   846     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
   847     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   848     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   849     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   850     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   851     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   852     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   853     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   854     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   855     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   857     default: ShouldNotReachHere();
   858     }
   859     if (tertiary == REGP_OP) {
   860       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   861       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   862       else                          ShouldNotReachHere();
   863       if (st_op) {
   864         // a store
   865         // inputs are (0:control, 1:memory, 2:address, 3:value)
   866         Node* n2 = n->in(3);
   867         if (n2 != NULL) {
   868           const Type* t = n2->bottom_type();
   869           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   870         }
   871       } else {
   872         // a load
   873         const Type* t = n->bottom_type();
   874         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   875       }
   876     }
   878     if (ld_op) {
   879       // a Load
   880       // inputs are (0:control, 1:memory, 2:address)
   881       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   882           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   883           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   884           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   885           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   886           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   887           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   888           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   889           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   890           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   891           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   892           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   893           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   894           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
   895           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
   896           !(n->rule() == loadUB_rule)) {
   897         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   898       }
   899     } else if (st_op) {
   900       // a Store
   901       // inputs are (0:control, 1:memory, 2:address, 3:value)
   902       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   903           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   904           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   905           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   906           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   907           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
   908           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   909         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   910       }
   911     }
   913     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   914       Node* addr = n->in(2);
   915       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   916         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   917         if (atype != NULL) {
   918           intptr_t offset = get_offset_from_base(n, atype, disp32);
   919           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   920           if (offset != offset_2) {
   921             get_offset_from_base(n, atype, disp32);
   922             get_offset_from_base_2(n, atype, disp32);
   923           }
   924           assert(offset == offset_2, "different offsets");
   925           if (offset == disp32) {
   926             // we now know that src1 is a true oop pointer
   927             is_verified_oop_base = true;
   928             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   929               if( primary == Assembler::ldd_op3 ) {
   930                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   931               } else {
   932                 tmp_enc = dst_enc;
   933                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   934                 assert(src1_enc != dst_enc, "");
   935               }
   936             }
   937           }
   938           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   939                        || offset == oopDesc::mark_offset_in_bytes())) {
   940                       // loading the mark should not be allowed either, but
   941                       // we don't check this since it conflicts with InlineObjectHash
   942                       // usage of LoadINode to get the mark. We could keep the
   943                       // check if we create a new LoadMarkNode
   944             // but do not verify the object before its header is initialized
   945             ShouldNotReachHere();
   946           }
   947         }
   948       }
   949     }
   950   }
   951 #endif
   953   uint instr;
   954   instr = (Assembler::ldst_op << 30)
   955         | (dst_enc        << 25)
   956         | (primary        << 19)
   957         | (src1_enc       << 14);
   959   uint index = src2_enc;
   960   int disp = disp32;
   962   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) {
   963     disp += STACK_BIAS;
   964     // Quick fix for JDK-8029668: check that stack offset fits, bailout if not
   965     if (!Assembler::is_simm13(disp)) {
   966       ra->C->record_method_not_compilable("unable to handle large constant offsets");
   967       return;
   968     }
   969   }
   971   // We should have a compiler bailout here rather than a guarantee.
   972   // Better yet would be some mechanism to handle variable-size matches correctly.
   973   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   975   if( disp == 0 ) {
   976     // use reg-reg form
   977     // bit 13 is already zero
   978     instr |= index;
   979   } else {
   980     // use reg-imm form
   981     instr |= 0x00002000;          // set bit 13 to one
   982     instr |= disp & 0x1FFF;
   983   }
   985   cbuf.insts()->emit_int32(instr);
   987 #ifdef ASSERT
   988   {
   989     MacroAssembler _masm(&cbuf);
   990     if (is_verified_oop_base) {
   991       __ verify_oop(reg_to_register_object(src1_enc));
   992     }
   993     if (is_verified_oop_store) {
   994       __ verify_oop(reg_to_register_object(dst_enc));
   995     }
   996     if (tmp_enc != -1) {
   997       __ mov(O7, reg_to_register_object(tmp_enc));
   998     }
   999     if (is_verified_oop_load) {
  1000       __ verify_oop(reg_to_register_object(dst_enc));
  1003 #endif
  1006 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
  1007   // The method which records debug information at every safepoint
  1008   // expects the call to be the first instruction in the snippet as
  1009   // it creates a PcDesc structure which tracks the offset of a call
  1010   // from the start of the codeBlob. This offset is computed as
  1011   // code_end() - code_begin() of the code which has been emitted
  1012   // so far.
  1013   // In this particular case we have skirted around the problem by
  1014   // putting the "mov" instruction in the delay slot but the problem
  1015   // may bite us again at some other point and a cleaner/generic
  1016   // solution using relocations would be needed.
  1017   MacroAssembler _masm(&cbuf);
  1018   __ set_inst_mark();
  1020   // We flush the current window just so that there is a valid stack copy
  1021   // the fact that the current window becomes active again instantly is
  1022   // not a problem there is nothing live in it.
  1024 #ifdef ASSERT
  1025   int startpos = __ offset();
  1026 #endif /* ASSERT */
  1028   __ call((address)entry_point, rtype);
  1030   if (preserve_g2)   __ delayed()->mov(G2, L7);
  1031   else __ delayed()->nop();
  1033   if (preserve_g2)   __ mov(L7, G2);
  1035 #ifdef ASSERT
  1036   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
  1037 #ifdef _LP64
  1038     // Trash argument dump slots.
  1039     __ set(0xb0b8ac0db0b8ac0d, G1);
  1040     __ mov(G1, G5);
  1041     __ stx(G1, SP, STACK_BIAS + 0x80);
  1042     __ stx(G1, SP, STACK_BIAS + 0x88);
  1043     __ stx(G1, SP, STACK_BIAS + 0x90);
  1044     __ stx(G1, SP, STACK_BIAS + 0x98);
  1045     __ stx(G1, SP, STACK_BIAS + 0xA0);
  1046     __ stx(G1, SP, STACK_BIAS + 0xA8);
  1047 #else // _LP64
  1048     // this is also a native call, so smash the first 7 stack locations,
  1049     // and the various registers
  1051     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1052     // while [SP+0x44..0x58] are the argument dump slots.
  1053     __ set((intptr_t)0xbaadf00d, G1);
  1054     __ mov(G1, G5);
  1055     __ sllx(G1, 32, G1);
  1056     __ or3(G1, G5, G1);
  1057     __ mov(G1, G5);
  1058     __ stx(G1, SP, 0x40);
  1059     __ stx(G1, SP, 0x48);
  1060     __ stx(G1, SP, 0x50);
  1061     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1062 #endif // _LP64
  1064 #endif /*ASSERT*/
  1067 //=============================================================================
  1068 // REQUIRED FUNCTIONALITY for encoding
  1069 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1070 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1073 //=============================================================================
  1074 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
  1076 int Compile::ConstantTable::calculate_table_base_offset() const {
  1077   if (UseRDPCForConstantTableBase) {
  1078     // The table base offset might be less but then it fits into
  1079     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
  1080     return Assembler::min_simm13();
  1081   } else {
  1082     int offset = -(size() / 2);
  1083     if (!Assembler::is_simm13(offset)) {
  1084       offset = Assembler::min_simm13();
  1086     return offset;
  1090 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
  1091 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
  1092   ShouldNotReachHere();
  1095 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1096   Compile* C = ra_->C;
  1097   Compile::ConstantTable& constant_table = C->constant_table();
  1098   MacroAssembler _masm(&cbuf);
  1100   Register r = as_Register(ra_->get_encode(this));
  1101   CodeSection* consts_section = __ code()->consts();
  1102   int consts_size = consts_section->align_at_start(consts_section->size());
  1103   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1105   if (UseRDPCForConstantTableBase) {
  1106     // For the following RDPC logic to work correctly the consts
  1107     // section must be allocated right before the insts section.  This
  1108     // assert checks for that.  The layout and the SECT_* constants
  1109     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1110     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1111     int insts_offset = __ offset();
  1113     // Layout:
  1114     //
  1115     // |----------- consts section ------------|----------- insts section -----------...
  1116     // |------ constant table -----|- padding -|------------------x----
  1117     //                                                            \ current PC (RDPC instruction)
  1118     // |<------------- consts_size ----------->|<- insts_offset ->|
  1119     //                                                            \ table base
  1120     // The table base offset is later added to the load displacement
  1121     // so it has to be negative.
  1122     int table_base_offset = -(consts_size + insts_offset);
  1123     int disp;
  1125     // If the displacement from the current PC to the constant table
  1126     // base fits into simm13 we set the constant table base to the
  1127     // current PC.
  1128     if (Assembler::is_simm13(table_base_offset)) {
  1129       constant_table.set_table_base_offset(table_base_offset);
  1130       disp = 0;
  1131     } else {
  1132       // Otherwise we set the constant table base offset to the
  1133       // maximum negative displacement of load instructions to keep
  1134       // the disp as small as possible:
  1135       //
  1136       // |<------------- consts_size ----------->|<- insts_offset ->|
  1137       // |<--------- min_simm13 --------->|<-------- disp --------->|
  1138       //                                  \ table base
  1139       table_base_offset = Assembler::min_simm13();
  1140       constant_table.set_table_base_offset(table_base_offset);
  1141       disp = (consts_size + insts_offset) + table_base_offset;
  1144     __ rdpc(r);
  1146     if (disp != 0) {
  1147       assert(r != O7, "need temporary");
  1148       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1151   else {
  1152     // Materialize the constant table base.
  1153     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1154     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1155     AddressLiteral base(baseaddr, rspec);
  1156     __ set(base, r);
  1160 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1161   if (UseRDPCForConstantTableBase) {
  1162     // This is really the worst case but generally it's only 1 instruction.
  1163     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1164   } else {
  1165     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1169 #ifndef PRODUCT
  1170 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1171   char reg[128];
  1172   ra_->dump_register(this, reg);
  1173   if (UseRDPCForConstantTableBase) {
  1174     st->print("RDPC   %s\t! constant table base", reg);
  1175   } else {
  1176     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1179 #endif
  1182 //=============================================================================
  1184 #ifndef PRODUCT
  1185 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1186   Compile* C = ra_->C;
  1188   for (int i = 0; i < OptoPrologueNops; i++) {
  1189     st->print_cr("NOP"); st->print("\t");
  1192   if( VerifyThread ) {
  1193     st->print_cr("Verify_Thread"); st->print("\t");
  1196   size_t framesize = C->frame_size_in_bytes();
  1197   int bangsize = C->bang_size_in_bytes();
  1199   // Calls to C2R adapters often do not accept exceptional returns.
  1200   // We require that their callers must bang for them.  But be careful, because
  1201   // some VM calls (such as call site linkage) can use several kilobytes of
  1202   // stack.  But the stack safety zone should account for that.
  1203   // See bugs 4446381, 4468289, 4497237.
  1204   if (C->need_stack_bang(bangsize)) {
  1205     st->print_cr("! stack bang (%d bytes)", bangsize); st->print("\t");
  1208   if (Assembler::is_simm13(-framesize)) {
  1209     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1210   } else {
  1211     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1212     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1213     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1217 #endif
  1219 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1220   Compile* C = ra_->C;
  1221   MacroAssembler _masm(&cbuf);
  1223   for (int i = 0; i < OptoPrologueNops; i++) {
  1224     __ nop();
  1227   __ verify_thread();
  1229   size_t framesize = C->frame_size_in_bytes();
  1230   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1231   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1232   int bangsize = C->bang_size_in_bytes();
  1234   // Calls to C2R adapters often do not accept exceptional returns.
  1235   // We require that their callers must bang for them.  But be careful, because
  1236   // some VM calls (such as call site linkage) can use several kilobytes of
  1237   // stack.  But the stack safety zone should account for that.
  1238   // See bugs 4446381, 4468289, 4497237.
  1239   if (C->need_stack_bang(bangsize)) {
  1240     __ generate_stack_overflow_check(bangsize);
  1243   if (Assembler::is_simm13(-framesize)) {
  1244     __ save(SP, -framesize, SP);
  1245   } else {
  1246     __ sethi(-framesize & ~0x3ff, G3);
  1247     __ add(G3, -framesize & 0x3ff, G3);
  1248     __ save(SP, G3, SP);
  1250   C->set_frame_complete( __ offset() );
  1252   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
  1253     // NOTE: We set the table base offset here because users might be
  1254     // emitted before MachConstantBaseNode.
  1255     Compile::ConstantTable& constant_table = C->constant_table();
  1256     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1260 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1261   return MachNode::size(ra_);
  1264 int MachPrologNode::reloc() const {
  1265   return 10; // a large enough number
  1268 //=============================================================================
  1269 #ifndef PRODUCT
  1270 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1271   Compile* C = ra_->C;
  1273   if(do_polling() && ra_->C->is_method_compilation()) {
  1274     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1275 #ifdef _LP64
  1276     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1277 #else
  1278     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1279 #endif
  1282   if(do_polling()) {
  1283     if (UseCBCond && !ra_->C->is_method_compilation()) {
  1284       st->print("NOP\n\t");
  1286     st->print("RET\n\t");
  1289   st->print("RESTORE");
  1291 #endif
  1293 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1294   MacroAssembler _masm(&cbuf);
  1295   Compile* C = ra_->C;
  1297   __ verify_thread();
  1299   // If this does safepoint polling, then do it here
  1300   if(do_polling() && ra_->C->is_method_compilation()) {
  1301     AddressLiteral polling_page(os::get_polling_page());
  1302     __ sethi(polling_page, L0);
  1303     __ relocate(relocInfo::poll_return_type);
  1304     __ ld_ptr(L0, 0, G0);
  1307   // If this is a return, then stuff the restore in the delay slot
  1308   if(do_polling()) {
  1309     if (UseCBCond && !ra_->C->is_method_compilation()) {
  1310       // Insert extra padding for the case when the epilogue is preceded by
  1311       // a cbcond jump, which can't be followed by a CTI instruction
  1312       __ nop();
  1314     __ ret();
  1315     __ delayed()->restore();
  1316   } else {
  1317     __ restore();
  1321 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1322   return MachNode::size(ra_);
  1325 int MachEpilogNode::reloc() const {
  1326   return 16; // a large enough number
  1329 const Pipeline * MachEpilogNode::pipeline() const {
  1330   return MachNode::pipeline_class();
  1333 int MachEpilogNode::safepoint_offset() const {
  1334   assert( do_polling(), "no return for this epilog node");
  1335   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1338 //=============================================================================
  1340 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1341 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1342 static enum RC rc_class( OptoReg::Name reg ) {
  1343   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1344   if (OptoReg::is_stack(reg)) return rc_stack;
  1345   VMReg r = OptoReg::as_VMReg(reg);
  1346   if (r->is_Register()) return rc_int;
  1347   assert(r->is_FloatRegister(), "must be");
  1348   return rc_float;
  1351 static int impl_helper(const MachNode* mach, CodeBuffer* cbuf, PhaseRegAlloc* ra, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1352   if (cbuf) {
  1353     emit_form3_mem_reg(*cbuf, ra, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1355 #ifndef PRODUCT
  1356   else if (!do_size) {
  1357     if (size != 0) st->print("\n\t");
  1358     if (is_load) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1359     else         st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1361 #endif
  1362   return size+4;
  1365 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1366   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1367 #ifndef PRODUCT
  1368   else if( !do_size ) {
  1369     if( size != 0 ) st->print("\n\t");
  1370     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1372 #endif
  1373   return size+4;
  1376 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1377                                         PhaseRegAlloc *ra_,
  1378                                         bool do_size,
  1379                                         outputStream* st ) const {
  1380   // Get registers to move
  1381   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1382   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1383   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1384   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1386   enum RC src_second_rc = rc_class(src_second);
  1387   enum RC src_first_rc = rc_class(src_first);
  1388   enum RC dst_second_rc = rc_class(dst_second);
  1389   enum RC dst_first_rc = rc_class(dst_first);
  1391   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1393   // Generate spill code!
  1394   int size = 0;
  1396   if( src_first == dst_first && src_second == dst_second )
  1397     return size;            // Self copy, no move
  1399   // --------------------------------------
  1400   // Check for mem-mem move.  Load into unused float registers and fall into
  1401   // the float-store case.
  1402   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1403     int offset = ra_->reg2offset(src_first);
  1404     // Further check for aligned-adjacent pair, so we can use a double load
  1405     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1406       src_second    = OptoReg::Name(R_F31_num);
  1407       src_second_rc = rc_float;
  1408       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1409     } else {
  1410       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1412     src_first    = OptoReg::Name(R_F30_num);
  1413     src_first_rc = rc_float;
  1416   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1417     int offset = ra_->reg2offset(src_second);
  1418     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1419     src_second    = OptoReg::Name(R_F31_num);
  1420     src_second_rc = rc_float;
  1423   // --------------------------------------
  1424   // Check for float->int copy; requires a trip through memory
  1425   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
  1426     int offset = frame::register_save_words*wordSize;
  1427     if (cbuf) {
  1428       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1429       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1430       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1431       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1433 #ifndef PRODUCT
  1434     else if (!do_size) {
  1435       if (size != 0) st->print("\n\t");
  1436       st->print(  "SUB    R_SP,16,R_SP\n");
  1437       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1438       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1439       st->print("\tADD    R_SP,16,R_SP\n");
  1441 #endif
  1442     size += 16;
  1445   // Check for float->int copy on T4
  1446   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
  1447     // Further check for aligned-adjacent pair, so we can use a double move
  1448     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1449       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
  1450     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  1452   // Check for int->float copy on T4
  1453   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
  1454     // Further check for aligned-adjacent pair, so we can use a double move
  1455     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1456       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
  1457     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  1460   // --------------------------------------
  1461   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1462   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1463   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1464   // there.  Misaligned sources only come from native-long-returns (handled
  1465   // special below).
  1466 #ifndef _LP64
  1467   if( src_first_rc == rc_int &&     // source is already big-endian
  1468       src_second_rc != rc_bad &&    // 64-bit move
  1469       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1470     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1471     // Do the big-endian flop.
  1472     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1473     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1475 #endif
  1477   // --------------------------------------
  1478   // Check for integer reg-reg copy
  1479   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1480 #ifndef _LP64
  1481     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1482       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1483       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1484       //       operand contains the least significant word of the 64-bit value and vice versa.
  1485       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1486       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1487       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1488       if( cbuf ) {
  1489         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1490         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1491         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1492 #ifndef PRODUCT
  1493       } else if( !do_size ) {
  1494         if( size != 0 ) st->print("\n\t");
  1495         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1496         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1497         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1498 #endif
  1500       return size+12;
  1502     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1503       // returning a long value in I0/I1
  1504       // a SpillCopy must be able to target a return instruction's reg_class
  1505       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1506       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1507       //       operand contains the least significant word of the 64-bit value and vice versa.
  1508       OptoReg::Name tdest = dst_first;
  1510       if (src_first == dst_first) {
  1511         tdest = OptoReg::Name(R_O7_num);
  1512         size += 4;
  1515       if( cbuf ) {
  1516         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1517         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1518         // ShrL_reg_imm6
  1519         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1520         // ShrR_reg_imm6  src, 0, dst
  1521         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1522         if (tdest != dst_first) {
  1523           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1526 #ifndef PRODUCT
  1527       else if( !do_size ) {
  1528         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1529         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1530         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1531         if (tdest != dst_first) {
  1532           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1535 #endif // PRODUCT
  1536       return size+8;
  1538 #endif // !_LP64
  1539     // Else normal reg-reg copy
  1540     assert( src_second != dst_first, "smashed second before evacuating it" );
  1541     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1542     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1543     // This moves an aligned adjacent pair.
  1544     // See if we are done.
  1545     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1546       return size;
  1549   // Check for integer store
  1550   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1551     int offset = ra_->reg2offset(dst_first);
  1552     // Further check for aligned-adjacent pair, so we can use a double store
  1553     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1554       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1555     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1558   // Check for integer load
  1559   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1560     int offset = ra_->reg2offset(src_first);
  1561     // Further check for aligned-adjacent pair, so we can use a double load
  1562     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1563       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1564     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1567   // Check for float reg-reg copy
  1568   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1569     // Further check for aligned-adjacent pair, so we can use a double move
  1570     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1571       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1572     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1575   // Check for float store
  1576   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1577     int offset = ra_->reg2offset(dst_first);
  1578     // Further check for aligned-adjacent pair, so we can use a double store
  1579     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1580       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1581     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1584   // Check for float load
  1585   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1586     int offset = ra_->reg2offset(src_first);
  1587     // Further check for aligned-adjacent pair, so we can use a double load
  1588     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1589       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1590     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1593   // --------------------------------------------------------------------
  1594   // Check for hi bits still needing moving.  Only happens for misaligned
  1595   // arguments to native calls.
  1596   if( src_second == dst_second )
  1597     return size;               // Self copy; no move
  1598   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1600 #ifndef _LP64
  1601   // In the LP64 build, all registers can be moved as aligned/adjacent
  1602   // pairs, so there's never any need to move the high bits separately.
  1603   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1604   // all sorts of silly alignment problems.
  1606   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1607   // 32-bits of a 64-bit register, but are needed in low bits of another
  1608   // register (else it's a hi-bits-to-hi-bits copy which should have
  1609   // happened already as part of a 64-bit move)
  1610   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1611     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1612     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1613     // Shift src_second down to dst_second's low bits.
  1614     if( cbuf ) {
  1615       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1616 #ifndef PRODUCT
  1617     } else if( !do_size ) {
  1618       if( size != 0 ) st->print("\n\t");
  1619       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1620 #endif
  1622     return size+4;
  1625   // Check for high word integer store.  Must down-shift the hi bits
  1626   // into a temp register, then fall into the case of storing int bits.
  1627   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1628     // Shift src_second down to dst_second's low bits.
  1629     if( cbuf ) {
  1630       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1631 #ifndef PRODUCT
  1632     } else if( !do_size ) {
  1633       if( size != 0 ) st->print("\n\t");
  1634       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1635 #endif
  1637     size+=4;
  1638     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1641   // Check for high word integer load
  1642   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1643     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1645   // Check for high word integer store
  1646   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1647     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1649   // Check for high word float store
  1650   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1651     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1653 #endif // !_LP64
  1655   Unimplemented();
  1658 #ifndef PRODUCT
  1659 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1660   implementation( NULL, ra_, false, st );
  1662 #endif
  1664 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1665   implementation( &cbuf, ra_, false, NULL );
  1668 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1669   return implementation( NULL, ra_, true, NULL );
  1672 //=============================================================================
  1673 #ifndef PRODUCT
  1674 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1675   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1677 #endif
  1679 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1680   MacroAssembler _masm(&cbuf);
  1681   for(int i = 0; i < _count; i += 1) {
  1682     __ nop();
  1686 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1687   return 4 * _count;
  1691 //=============================================================================
  1692 #ifndef PRODUCT
  1693 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1694   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1695   int reg = ra_->get_reg_first(this);
  1696   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1698 #endif
  1700 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1701   MacroAssembler _masm(&cbuf);
  1702   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1703   int reg = ra_->get_encode(this);
  1705   if (Assembler::is_simm13(offset)) {
  1706      __ add(SP, offset, reg_to_register_object(reg));
  1707   } else {
  1708      __ set(offset, O7);
  1709      __ add(SP, O7, reg_to_register_object(reg));
  1713 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1714   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1715   assert(ra_ == ra_->C->regalloc(), "sanity");
  1716   return ra_->C->scratch_emit_size(this);
  1719 //=============================================================================
  1720 #ifndef PRODUCT
  1721 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1722   st->print_cr("\nUEP:");
  1723 #ifdef    _LP64
  1724   if (UseCompressedClassPointers) {
  1725     assert(Universe::heap() != NULL, "java heap should be initialized");
  1726     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1727     if (Universe::narrow_klass_base() != 0) {
  1728       st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
  1729       if (Universe::narrow_klass_shift() != 0) {
  1730         st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
  1732       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1733       st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
  1734     } else {
  1735       st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
  1737   } else {
  1738     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1740   st->print_cr("\tCMP    R_G5,R_G3" );
  1741   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1742 #else  // _LP64
  1743   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1744   st->print_cr("\tCMP    R_G5,R_G3" );
  1745   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1746 #endif // _LP64
  1748 #endif
  1750 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1751   MacroAssembler _masm(&cbuf);
  1752   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1753   Register temp_reg   = G3;
  1754   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1756   // Load klass from receiver
  1757   __ load_klass(O0, temp_reg);
  1758   // Compare against expected klass
  1759   __ cmp(temp_reg, G5_ic_reg);
  1760   // Branch to miss code, checks xcc or icc depending
  1761   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1764 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1765   return MachNode::size(ra_);
  1769 //=============================================================================
  1772 // Emit exception handler code.
  1773 int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
  1774   Register temp_reg = G3;
  1775   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1776   MacroAssembler _masm(&cbuf);
  1778   address base =
  1779   __ start_a_stub(size_exception_handler());
  1780   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1782   int offset = __ offset();
  1784   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1785   __ delayed()->nop();
  1787   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1789   __ end_a_stub();
  1791   return offset;
  1794 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
  1795   // Can't use any of the current frame's registers as we may have deopted
  1796   // at a poll and everything (including G3) can be live.
  1797   Register temp_reg = L0;
  1798   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1799   MacroAssembler _masm(&cbuf);
  1801   address base =
  1802   __ start_a_stub(size_deopt_handler());
  1803   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1805   int offset = __ offset();
  1806   __ save_frame(0);
  1807   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1808   __ delayed()->restore();
  1810   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1812   __ end_a_stub();
  1813   return offset;
  1817 // Given a register encoding, produce a Integer Register object
  1818 static Register reg_to_register_object(int register_encoding) {
  1819   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1820   return as_Register(register_encoding);
  1823 // Given a register encoding, produce a single-precision Float Register object
  1824 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1825   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1826   return as_SingleFloatRegister(register_encoding);
  1829 // Given a register encoding, produce a double-precision Float Register object
  1830 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1831   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1832   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1833   return as_DoubleFloatRegister(register_encoding);
  1836 const bool Matcher::match_rule_supported(int opcode) {
  1837   if (!has_match_rule(opcode))
  1838     return false;
  1840   switch (opcode) {
  1841   case Op_CountLeadingZerosI:
  1842   case Op_CountLeadingZerosL:
  1843   case Op_CountTrailingZerosI:
  1844   case Op_CountTrailingZerosL:
  1845   case Op_PopCountI:
  1846   case Op_PopCountL:
  1847     if (!UsePopCountInstruction)
  1848       return false;
  1849   case Op_CompareAndSwapL:
  1850 #ifdef _LP64
  1851   case Op_CompareAndSwapP:
  1852 #endif
  1853     if (!VM_Version::supports_cx8())
  1854       return false;
  1855     break;
  1858   return true;  // Per default match rules are supported.
  1861 int Matcher::regnum_to_fpu_offset(int regnum) {
  1862   return regnum - 32; // The FP registers are in the second chunk
  1865 #ifdef ASSERT
  1866 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1867 #endif
  1869 // Vector width in bytes
  1870 const int Matcher::vector_width_in_bytes(BasicType bt) {
  1871   assert(MaxVectorSize == 8, "");
  1872   return 8;
  1875 // Vector ideal reg
  1876 const int Matcher::vector_ideal_reg(int size) {
  1877   assert(MaxVectorSize == 8, "");
  1878   return Op_RegD;
  1881 const int Matcher::vector_shift_count_ideal_reg(int size) {
  1882   fatal("vector shift is not supported");
  1883   return Node::NotAMachineReg;
  1886 // Limits on vector size (number of elements) loaded into vector.
  1887 const int Matcher::max_vector_size(const BasicType bt) {
  1888   assert(is_java_primitive(bt), "only primitive type vectors");
  1889   return vector_width_in_bytes(bt)/type2aelembytes(bt);
  1892 const int Matcher::min_vector_size(const BasicType bt) {
  1893   return max_vector_size(bt); // Same as max.
  1896 // SPARC doesn't support misaligned vectors store/load.
  1897 const bool Matcher::misaligned_vectors_ok() {
  1898   return false;
  1901 // Current (2013) SPARC platforms need to read original key
  1902 // to construct decryption expanded key 
  1903 const bool Matcher::pass_original_key_for_aes() {
  1904   return true;
  1907 // USII supports fxtof through the whole range of number, USIII doesn't
  1908 const bool Matcher::convL2FSupported(void) {
  1909   return VM_Version::has_fast_fxtof();
  1912 // Is this branch offset short enough that a short branch can be used?
  1913 //
  1914 // NOTE: If the platform does not provide any short branch variants, then
  1915 //       this method should return false for offset 0.
  1916 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1917   // The passed offset is relative to address of the branch.
  1918   // Don't need to adjust the offset.
  1919   return UseCBCond && Assembler::is_simm12(offset);
  1922 const bool Matcher::isSimpleConstant64(jlong value) {
  1923   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1924   // Depends on optimizations in MacroAssembler::setx.
  1925   int hi = (int)(value >> 32);
  1926   int lo = (int)(value & ~0);
  1927   return (hi == 0) || (hi == -1) || (lo == 0);
  1930 // No scaling for the parameter the ClearArray node.
  1931 const bool Matcher::init_array_count_is_in_bytes = true;
  1933 // Threshold size for cleararray.
  1934 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1936 // No additional cost for CMOVL.
  1937 const int Matcher::long_cmove_cost() { return 0; }
  1939 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
  1940 const int Matcher::float_cmove_cost() {
  1941   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
  1944 // Does the CPU require late expand (see block.cpp for description of late expand)?
  1945 const bool Matcher::require_postalloc_expand = false;
  1947 // Should the Matcher clone shifts on addressing modes, expecting them to
  1948 // be subsumed into complex addressing expressions or compute them into
  1949 // registers?  True for Intel but false for most RISCs
  1950 const bool Matcher::clone_shift_expressions = false;
  1952 // Do we need to mask the count passed to shift instructions or does
  1953 // the cpu only look at the lower 5/6 bits anyway?
  1954 const bool Matcher::need_masked_shift_count = false;
  1956 bool Matcher::narrow_oop_use_complex_address() {
  1957   NOT_LP64(ShouldNotCallThis());
  1958   assert(UseCompressedOops, "only for compressed oops code");
  1959   return false;
  1962 bool Matcher::narrow_klass_use_complex_address() {
  1963   NOT_LP64(ShouldNotCallThis());
  1964   assert(UseCompressedClassPointers, "only for compressed klass code");
  1965   return false;
  1968 // Is it better to copy float constants, or load them directly from memory?
  1969 // Intel can load a float constant from a direct address, requiring no
  1970 // extra registers.  Most RISCs will have to materialize an address into a
  1971 // register first, so they would do better to copy the constant from stack.
  1972 const bool Matcher::rematerialize_float_constants = false;
  1974 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1975 // needed.  Else we split the double into 2 integer pieces and move it
  1976 // piece-by-piece.  Only happens when passing doubles into C code as the
  1977 // Java calling convention forces doubles to be aligned.
  1978 #ifdef _LP64
  1979 const bool Matcher::misaligned_doubles_ok = true;
  1980 #else
  1981 const bool Matcher::misaligned_doubles_ok = false;
  1982 #endif
  1984 // No-op on SPARC.
  1985 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1988 // Advertise here if the CPU requires explicit rounding operations
  1989 // to implement the UseStrictFP mode.
  1990 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1992 // Are floats conerted to double when stored to stack during deoptimization?
  1993 // Sparc does not handle callee-save floats.
  1994 bool Matcher::float_in_double() { return false; }
  1996 // Do ints take an entire long register or just half?
  1997 // Note that we if-def off of _LP64.
  1998 // The relevant question is how the int is callee-saved.  In _LP64
  1999 // the whole long is written but de-opt'ing will have to extract
  2000 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  2001 #ifdef _LP64
  2002 const bool Matcher::int_in_long = true;
  2003 #else
  2004 const bool Matcher::int_in_long = false;
  2005 #endif
  2007 // Return whether or not this register is ever used as an argument.  This
  2008 // function is used on startup to build the trampoline stubs in generateOptoStub.
  2009 // Registers not mentioned will be killed by the VM call in the trampoline, and
  2010 // arguments in those registers not be available to the callee.
  2011 bool Matcher::can_be_java_arg( int reg ) {
  2012   // Standard sparc 6 args in registers
  2013   if( reg == R_I0_num ||
  2014       reg == R_I1_num ||
  2015       reg == R_I2_num ||
  2016       reg == R_I3_num ||
  2017       reg == R_I4_num ||
  2018       reg == R_I5_num ) return true;
  2019 #ifdef _LP64
  2020   // 64-bit builds can pass 64-bit pointers and longs in
  2021   // the high I registers
  2022   if( reg == R_I0H_num ||
  2023       reg == R_I1H_num ||
  2024       reg == R_I2H_num ||
  2025       reg == R_I3H_num ||
  2026       reg == R_I4H_num ||
  2027       reg == R_I5H_num ) return true;
  2029   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  2030     return true;
  2033 #else
  2034   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  2035   // Longs cannot be passed in O regs, because O regs become I regs
  2036   // after a 'save' and I regs get their high bits chopped off on
  2037   // interrupt.
  2038   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  2039   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  2040 #endif
  2041   // A few float args in registers
  2042   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  2044   return false;
  2047 bool Matcher::is_spillable_arg( int reg ) {
  2048   return can_be_java_arg(reg);
  2051 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  2052   // Use hardware SDIVX instruction when it is
  2053   // faster than a code which use multiply.
  2054   return VM_Version::has_fast_idiv();
  2057 // Register for DIVI projection of divmodI
  2058 RegMask Matcher::divI_proj_mask() {
  2059   ShouldNotReachHere();
  2060   return RegMask();
  2063 // Register for MODI projection of divmodI
  2064 RegMask Matcher::modI_proj_mask() {
  2065   ShouldNotReachHere();
  2066   return RegMask();
  2069 // Register for DIVL projection of divmodL
  2070 RegMask Matcher::divL_proj_mask() {
  2071   ShouldNotReachHere();
  2072   return RegMask();
  2075 // Register for MODL projection of divmodL
  2076 RegMask Matcher::modL_proj_mask() {
  2077   ShouldNotReachHere();
  2078   return RegMask();
  2081 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2082   return L7_REGP_mask();
  2085 %}
  2088 // The intptr_t operand types, defined by textual substitution.
  2089 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  2090 #ifdef _LP64
  2091 #define immX      immL
  2092 #define immX13    immL13
  2093 #define immX13m7  immL13m7
  2094 #define iRegX     iRegL
  2095 #define g1RegX    g1RegL
  2096 #else
  2097 #define immX      immI
  2098 #define immX13    immI13
  2099 #define immX13m7  immI13m7
  2100 #define iRegX     iRegI
  2101 #define g1RegX    g1RegI
  2102 #endif
  2104 //----------ENCODING BLOCK-----------------------------------------------------
  2105 // This block specifies the encoding classes used by the compiler to output
  2106 // byte streams.  Encoding classes are parameterized macros used by
  2107 // Machine Instruction Nodes in order to generate the bit encoding of the
  2108 // instruction.  Operands specify their base encoding interface with the
  2109 // interface keyword.  There are currently supported four interfaces,
  2110 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2111 // operand to generate a function which returns its register number when
  2112 // queried.   CONST_INTER causes an operand to generate a function which
  2113 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2114 // operand to generate four functions which return the Base Register, the
  2115 // Index Register, the Scale Value, and the Offset Value of the operand when
  2116 // queried.  COND_INTER causes an operand to generate six functions which
  2117 // return the encoding code (ie - encoding bits for the instruction)
  2118 // associated with each basic boolean condition for a conditional instruction.
  2119 //
  2120 // Instructions specify two basic values for encoding.  Again, a function
  2121 // is available to check if the constant displacement is an oop. They use the
  2122 // ins_encode keyword to specify their encoding classes (which must be
  2123 // a sequence of enc_class names, and their parameters, specified in
  2124 // the encoding block), and they use the
  2125 // opcode keyword to specify, in order, their primary, secondary, and
  2126 // tertiary opcode.  Only the opcode sections which a particular instruction
  2127 // needs for encoding need to be specified.
  2128 encode %{
  2129   enc_class enc_untested %{
  2130 #ifdef ASSERT
  2131     MacroAssembler _masm(&cbuf);
  2132     __ untested("encoding");
  2133 #endif
  2134   %}
  2136   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2137     emit_form3_mem_reg(cbuf, ra_, this, $primary, $tertiary,
  2138                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2139   %}
  2141   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2142     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
  2143                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2144   %}
  2146   enc_class form3_mem_prefetch_read( memory mem ) %{
  2147     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
  2148                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2149   %}
  2151   enc_class form3_mem_prefetch_write( memory mem ) %{
  2152     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
  2153                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2154   %}
  2156   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2157     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2158     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2159     guarantee($mem$$index == R_G0_enc, "double index?");
  2160     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2161     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2162     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2163     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2164   %}
  2166   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2167     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2168     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2169     guarantee($mem$$index == R_G0_enc, "double index?");
  2170     // Load long with 2 instructions
  2171     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2172     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2173   %}
  2175   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2176   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2177     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2178     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2179   %}
  2181   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2182     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2183     if( $rs2$$reg != $rd$$reg )
  2184       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2185   %}
  2187   // Target lo half of long
  2188   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2189     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2190     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2191       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2192   %}
  2194   // Source lo half of long
  2195   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2196     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2197     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2198       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2199   %}
  2201   // Target hi half of long
  2202   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2203     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2204   %}
  2206   // Source lo half of long, and leave it sign extended.
  2207   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2208     // Sign extend low half
  2209     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2210   %}
  2212   // Source hi half of long, and leave it sign extended.
  2213   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2214     // Shift high half to low half
  2215     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2216   %}
  2218   // Source hi half of long
  2219   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2220     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2221     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2222       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2223   %}
  2225   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2226     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2227   %}
  2229   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2230     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2231     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2232   %}
  2234   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2235     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2236     // clear if nothing else is happening
  2237     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2238     // blt,a,pn done
  2239     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2240     // mov dst,-1 in delay slot
  2241     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2242   %}
  2244   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2245     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2246   %}
  2248   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2249     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2250   %}
  2252   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2253     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2254   %}
  2256   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2257     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2258   %}
  2260   enc_class move_return_pc_to_o1() %{
  2261     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2262   %}
  2264 #ifdef _LP64
  2265   /* %%% merge with enc_to_bool */
  2266   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2267     MacroAssembler _masm(&cbuf);
  2269     Register   src_reg = reg_to_register_object($src$$reg);
  2270     Register   dst_reg = reg_to_register_object($dst$$reg);
  2271     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2272   %}
  2273 #endif
  2275   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2276     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2277     MacroAssembler _masm(&cbuf);
  2279     Register   p_reg = reg_to_register_object($p$$reg);
  2280     Register   q_reg = reg_to_register_object($q$$reg);
  2281     Register   y_reg = reg_to_register_object($y$$reg);
  2282     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2284     __ subcc( p_reg, q_reg,   p_reg );
  2285     __ add  ( p_reg, y_reg, tmp_reg );
  2286     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2287   %}
  2289   enc_class form_d2i_helper(regD src, regF dst) %{
  2290     // fcmp %fcc0,$src,$src
  2291     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2292     // branch %fcc0 not-nan, predict taken
  2293     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2294     // fdtoi $src,$dst
  2295     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2296     // fitos $dst,$dst (if nan)
  2297     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2298     // clear $dst (if nan)
  2299     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2300     // carry on here...
  2301   %}
  2303   enc_class form_d2l_helper(regD src, regD dst) %{
  2304     // fcmp %fcc0,$src,$src  check for NAN
  2305     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2306     // branch %fcc0 not-nan, predict taken
  2307     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2308     // fdtox $src,$dst   convert in delay slot
  2309     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2310     // fxtod $dst,$dst  (if nan)
  2311     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2312     // clear $dst (if nan)
  2313     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2314     // carry on here...
  2315   %}
  2317   enc_class form_f2i_helper(regF src, regF dst) %{
  2318     // fcmps %fcc0,$src,$src
  2319     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2320     // branch %fcc0 not-nan, predict taken
  2321     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2322     // fstoi $src,$dst
  2323     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2324     // fitos $dst,$dst (if nan)
  2325     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2326     // clear $dst (if nan)
  2327     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2328     // carry on here...
  2329   %}
  2331   enc_class form_f2l_helper(regF src, regD dst) %{
  2332     // fcmps %fcc0,$src,$src
  2333     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2334     // branch %fcc0 not-nan, predict taken
  2335     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2336     // fstox $src,$dst
  2337     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2338     // fxtod $dst,$dst (if nan)
  2339     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2340     // clear $dst (if nan)
  2341     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2342     // carry on here...
  2343   %}
  2345   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2346   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2347   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2348   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2350   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2352   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2353   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2355   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2356     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2357   %}
  2359   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2360     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2361   %}
  2363   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2364     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2365   %}
  2367   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2368     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2369   %}
  2371   enc_class form3_convI2F(regF rs2, regF rd) %{
  2372     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2373   %}
  2375   // Encloding class for traceable jumps
  2376   enc_class form_jmpl(g3RegP dest) %{
  2377     emit_jmpl(cbuf, $dest$$reg);
  2378   %}
  2380   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2381     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2382   %}
  2384   enc_class form2_nop() %{
  2385     emit_nop(cbuf);
  2386   %}
  2388   enc_class form2_illtrap() %{
  2389     emit_illtrap(cbuf);
  2390   %}
  2393   // Compare longs and convert into -1, 0, 1.
  2394   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2395     // CMP $src1,$src2
  2396     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2397     // blt,a,pn done
  2398     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2399     // mov dst,-1 in delay slot
  2400     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2401     // bgt,a,pn done
  2402     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2403     // mov dst,1 in delay slot
  2404     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2405     // CLR    $dst
  2406     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2407   %}
  2409   enc_class enc_PartialSubtypeCheck() %{
  2410     MacroAssembler _masm(&cbuf);
  2411     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2412     __ delayed()->nop();
  2413   %}
  2415   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
  2416     MacroAssembler _masm(&cbuf);
  2417     Label* L = $labl$$label;
  2418     Assembler::Predict predict_taken =
  2419       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2421     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  2422     __ delayed()->nop();
  2423   %}
  2425   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2426     MacroAssembler _masm(&cbuf);
  2427     Label* L = $labl$$label;
  2428     Assembler::Predict predict_taken =
  2429       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2431     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
  2432     __ delayed()->nop();
  2433   %}
  2435   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2436     int op = (Assembler::arith_op << 30) |
  2437              ($dst$$reg << 25) |
  2438              (Assembler::movcc_op3 << 19) |
  2439              (1 << 18) |                    // cc2 bit for 'icc'
  2440              ($cmp$$cmpcode << 14) |
  2441              (0 << 13) |                    // select register move
  2442              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2443              ($src$$reg << 0);
  2444     cbuf.insts()->emit_int32(op);
  2445   %}
  2447   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2448     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2449     int op = (Assembler::arith_op << 30) |
  2450              ($dst$$reg << 25) |
  2451              (Assembler::movcc_op3 << 19) |
  2452              (1 << 18) |                    // cc2 bit for 'icc'
  2453              ($cmp$$cmpcode << 14) |
  2454              (1 << 13) |                    // select immediate move
  2455              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2456              (simm11 << 0);
  2457     cbuf.insts()->emit_int32(op);
  2458   %}
  2460   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2461     int op = (Assembler::arith_op << 30) |
  2462              ($dst$$reg << 25) |
  2463              (Assembler::movcc_op3 << 19) |
  2464              (0 << 18) |                    // cc2 bit for 'fccX'
  2465              ($cmp$$cmpcode << 14) |
  2466              (0 << 13) |                    // select register move
  2467              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2468              ($src$$reg << 0);
  2469     cbuf.insts()->emit_int32(op);
  2470   %}
  2472   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2473     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2474     int op = (Assembler::arith_op << 30) |
  2475              ($dst$$reg << 25) |
  2476              (Assembler::movcc_op3 << 19) |
  2477              (0 << 18) |                    // cc2 bit for 'fccX'
  2478              ($cmp$$cmpcode << 14) |
  2479              (1 << 13) |                    // select immediate move
  2480              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2481              (simm11 << 0);
  2482     cbuf.insts()->emit_int32(op);
  2483   %}
  2485   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2486     int op = (Assembler::arith_op << 30) |
  2487              ($dst$$reg << 25) |
  2488              (Assembler::fpop2_op3 << 19) |
  2489              (0 << 18) |
  2490              ($cmp$$cmpcode << 14) |
  2491              (1 << 13) |                    // select register move
  2492              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2493              ($primary << 5) |              // select single, double or quad
  2494              ($src$$reg << 0);
  2495     cbuf.insts()->emit_int32(op);
  2496   %}
  2498   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2499     int op = (Assembler::arith_op << 30) |
  2500              ($dst$$reg << 25) |
  2501              (Assembler::fpop2_op3 << 19) |
  2502              (0 << 18) |
  2503              ($cmp$$cmpcode << 14) |
  2504              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2505              ($primary << 5) |              // select single, double or quad
  2506              ($src$$reg << 0);
  2507     cbuf.insts()->emit_int32(op);
  2508   %}
  2510   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2511   // the condition comes from opcode-field instead of an argument.
  2512   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2513     int op = (Assembler::arith_op << 30) |
  2514              ($dst$$reg << 25) |
  2515              (Assembler::movcc_op3 << 19) |
  2516              (1 << 18) |                    // cc2 bit for 'icc'
  2517              ($primary << 14) |
  2518              (0 << 13) |                    // select register move
  2519              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2520              ($src$$reg << 0);
  2521     cbuf.insts()->emit_int32(op);
  2522   %}
  2524   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2525     int op = (Assembler::arith_op << 30) |
  2526              ($dst$$reg << 25) |
  2527              (Assembler::movcc_op3 << 19) |
  2528              (6 << 16) |                    // cc2 bit for 'xcc'
  2529              ($primary << 14) |
  2530              (0 << 13) |                    // select register move
  2531              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2532              ($src$$reg << 0);
  2533     cbuf.insts()->emit_int32(op);
  2534   %}
  2536   enc_class Set13( immI13 src, iRegI rd ) %{
  2537     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2538   %}
  2540   enc_class SetHi22( immI src, iRegI rd ) %{
  2541     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2542   %}
  2544   enc_class Set32( immI src, iRegI rd ) %{
  2545     MacroAssembler _masm(&cbuf);
  2546     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2547   %}
  2549   enc_class call_epilog %{
  2550     if( VerifyStackAtCalls ) {
  2551       MacroAssembler _masm(&cbuf);
  2552       int framesize = ra_->C->frame_size_in_bytes();
  2553       Register temp_reg = G3;
  2554       __ add(SP, framesize, temp_reg);
  2555       __ cmp(temp_reg, FP);
  2556       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2558   %}
  2560   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2561   // to G1 so the register allocator will not have to deal with the misaligned register
  2562   // pair.
  2563   enc_class adjust_long_from_native_call %{
  2564 #ifndef _LP64
  2565     if (returns_long()) {
  2566       //    sllx  O0,32,O0
  2567       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2568       //    srl   O1,0,O1
  2569       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2570       //    or    O0,O1,G1
  2571       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2573 #endif
  2574   %}
  2576   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2577     // CALL directly to the runtime
  2578     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2579     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2580                     /*preserve_g2=*/true);
  2581   %}
  2583   enc_class preserve_SP %{
  2584     MacroAssembler _masm(&cbuf);
  2585     __ mov(SP, L7_mh_SP_save);
  2586   %}
  2588   enc_class restore_SP %{
  2589     MacroAssembler _masm(&cbuf);
  2590     __ mov(L7_mh_SP_save, SP);
  2591   %}
  2593   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2594     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2595     // who we intended to call.
  2596     if (!_method) {
  2597       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2598     } else if (_optimized_virtual) {
  2599       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2600     } else {
  2601       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2603     if (_method) {  // Emit stub for static call.
  2604       CompiledStaticCall::emit_to_interp_stub(cbuf);
  2606   %}
  2608   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2609     MacroAssembler _masm(&cbuf);
  2610     __ set_inst_mark();
  2611     int vtable_index = this->_vtable_index;
  2612     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2613     if (vtable_index < 0) {
  2614       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2615       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  2616       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2617       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2618       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2619       __ ic_call((address)$meth$$method);
  2620     } else {
  2621       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2622       // Just go thru the vtable
  2623       // get receiver klass (receiver already checked for non-null)
  2624       // If we end up going thru a c2i adapter interpreter expects method in G5
  2625       int off = __ offset();
  2626       __ load_klass(O0, G3_scratch);
  2627       int klass_load_size;
  2628       if (UseCompressedClassPointers) {
  2629         assert(Universe::heap() != NULL, "java heap should be initialized");
  2630         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
  2631       } else {
  2632         klass_load_size = 1*BytesPerInstWord;
  2634       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2635       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2636       if (Assembler::is_simm13(v_off)) {
  2637         __ ld_ptr(G3, v_off, G5_method);
  2638       } else {
  2639         // Generate 2 instructions
  2640         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2641         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2642         // ld_ptr, set_hi, set
  2643         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2644                "Unexpected instruction size(s)");
  2645         __ ld_ptr(G3, G5_method, G5_method);
  2647       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2648       // However it may very well end up in handle_wrong_method if the
  2649       // method is abstract for the particular class.
  2650       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
  2651       // jump to target (either compiled code or c2iadapter)
  2652       __ jmpl(G3_scratch, G0, O7);
  2653       __ delayed()->nop();
  2655   %}
  2657   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2658     MacroAssembler _masm(&cbuf);
  2660     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2661     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2662                               // we might be calling a C2I adapter which needs it.
  2664     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2665     // Load nmethod
  2666     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
  2668     // CALL to compiled java, indirect the contents of G3
  2669     __ set_inst_mark();
  2670     __ callr(temp_reg, G0);
  2671     __ delayed()->nop();
  2672   %}
  2674 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2675     MacroAssembler _masm(&cbuf);
  2676     Register Rdividend = reg_to_register_object($src1$$reg);
  2677     Register Rdivisor = reg_to_register_object($src2$$reg);
  2678     Register Rresult = reg_to_register_object($dst$$reg);
  2680     __ sra(Rdivisor, 0, Rdivisor);
  2681     __ sra(Rdividend, 0, Rdividend);
  2682     __ sdivx(Rdividend, Rdivisor, Rresult);
  2683 %}
  2685 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2686     MacroAssembler _masm(&cbuf);
  2688     Register Rdividend = reg_to_register_object($src1$$reg);
  2689     int divisor = $imm$$constant;
  2690     Register Rresult = reg_to_register_object($dst$$reg);
  2692     __ sra(Rdividend, 0, Rdividend);
  2693     __ sdivx(Rdividend, divisor, Rresult);
  2694 %}
  2696 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2697     MacroAssembler _masm(&cbuf);
  2698     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2699     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2700     Register Rdst  = reg_to_register_object($dst$$reg);
  2702     __ sra( Rsrc1, 0, Rsrc1 );
  2703     __ sra( Rsrc2, 0, Rsrc2 );
  2704     __ mulx( Rsrc1, Rsrc2, Rdst );
  2705     __ srlx( Rdst, 32, Rdst );
  2706 %}
  2708 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2709     MacroAssembler _masm(&cbuf);
  2710     Register Rdividend = reg_to_register_object($src1$$reg);
  2711     Register Rdivisor = reg_to_register_object($src2$$reg);
  2712     Register Rresult = reg_to_register_object($dst$$reg);
  2713     Register Rscratch = reg_to_register_object($scratch$$reg);
  2715     assert(Rdividend != Rscratch, "");
  2716     assert(Rdivisor  != Rscratch, "");
  2718     __ sra(Rdividend, 0, Rdividend);
  2719     __ sra(Rdivisor, 0, Rdivisor);
  2720     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2721     __ mulx(Rscratch, Rdivisor, Rscratch);
  2722     __ sub(Rdividend, Rscratch, Rresult);
  2723 %}
  2725 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2726     MacroAssembler _masm(&cbuf);
  2728     Register Rdividend = reg_to_register_object($src1$$reg);
  2729     int divisor = $imm$$constant;
  2730     Register Rresult = reg_to_register_object($dst$$reg);
  2731     Register Rscratch = reg_to_register_object($scratch$$reg);
  2733     assert(Rdividend != Rscratch, "");
  2735     __ sra(Rdividend, 0, Rdividend);
  2736     __ sdivx(Rdividend, divisor, Rscratch);
  2737     __ mulx(Rscratch, divisor, Rscratch);
  2738     __ sub(Rdividend, Rscratch, Rresult);
  2739 %}
  2741 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2742     MacroAssembler _masm(&cbuf);
  2744     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2745     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2747     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2748 %}
  2750 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2751     MacroAssembler _masm(&cbuf);
  2753     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2754     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2756     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2757 %}
  2759 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2760     MacroAssembler _masm(&cbuf);
  2762     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2763     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2765     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2766 %}
  2768 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2769     MacroAssembler _masm(&cbuf);
  2771     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2772     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2774     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2775 %}
  2777 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2778     MacroAssembler _masm(&cbuf);
  2780     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2781     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2783     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2784 %}
  2786 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2787     MacroAssembler _masm(&cbuf);
  2789     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2790     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2792     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2793 %}
  2795 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2796     MacroAssembler _masm(&cbuf);
  2798     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2799     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2801     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2802 %}
  2804 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2805     MacroAssembler _masm(&cbuf);
  2807     Register Roop  = reg_to_register_object($oop$$reg);
  2808     Register Rbox  = reg_to_register_object($box$$reg);
  2809     Register Rscratch = reg_to_register_object($scratch$$reg);
  2810     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2812     assert(Roop  != Rscratch, "");
  2813     assert(Roop  != Rmark, "");
  2814     assert(Rbox  != Rscratch, "");
  2815     assert(Rbox  != Rmark, "");
  2817     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2818 %}
  2820 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2821     MacroAssembler _masm(&cbuf);
  2823     Register Roop  = reg_to_register_object($oop$$reg);
  2824     Register Rbox  = reg_to_register_object($box$$reg);
  2825     Register Rscratch = reg_to_register_object($scratch$$reg);
  2826     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2828     assert(Roop  != Rscratch, "");
  2829     assert(Roop  != Rmark, "");
  2830     assert(Rbox  != Rscratch, "");
  2831     assert(Rbox  != Rmark, "");
  2833     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2834   %}
  2836   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2837     MacroAssembler _masm(&cbuf);
  2838     Register Rmem = reg_to_register_object($mem$$reg);
  2839     Register Rold = reg_to_register_object($old$$reg);
  2840     Register Rnew = reg_to_register_object($new$$reg);
  2842     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2843     __ cmp( Rold, Rnew );
  2844   %}
  2846   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2847     Register Rmem = reg_to_register_object($mem$$reg);
  2848     Register Rold = reg_to_register_object($old$$reg);
  2849     Register Rnew = reg_to_register_object($new$$reg);
  2851     MacroAssembler _masm(&cbuf);
  2852     __ mov(Rnew, O7);
  2853     __ casx(Rmem, Rold, O7);
  2854     __ cmp( Rold, O7 );
  2855   %}
  2857   // raw int cas, used for compareAndSwap
  2858   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2859     Register Rmem = reg_to_register_object($mem$$reg);
  2860     Register Rold = reg_to_register_object($old$$reg);
  2861     Register Rnew = reg_to_register_object($new$$reg);
  2863     MacroAssembler _masm(&cbuf);
  2864     __ mov(Rnew, O7);
  2865     __ cas(Rmem, Rold, O7);
  2866     __ cmp( Rold, O7 );
  2867   %}
  2869   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2870     Register Rres = reg_to_register_object($res$$reg);
  2872     MacroAssembler _masm(&cbuf);
  2873     __ mov(1, Rres);
  2874     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2875   %}
  2877   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2878     Register Rres = reg_to_register_object($res$$reg);
  2880     MacroAssembler _masm(&cbuf);
  2881     __ mov(1, Rres);
  2882     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2883   %}
  2885   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2886     MacroAssembler _masm(&cbuf);
  2887     Register Rdst = reg_to_register_object($dst$$reg);
  2888     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2889                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2890     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2891                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2893     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2894     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2895   %}
  2898   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2899     Label Ldone, Lloop;
  2900     MacroAssembler _masm(&cbuf);
  2902     Register   str1_reg = reg_to_register_object($str1$$reg);
  2903     Register   str2_reg = reg_to_register_object($str2$$reg);
  2904     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2905     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2906     Register result_reg = reg_to_register_object($result$$reg);
  2908     assert(result_reg != str1_reg &&
  2909            result_reg != str2_reg &&
  2910            result_reg != cnt1_reg &&
  2911            result_reg != cnt2_reg ,
  2912            "need different registers");
  2914     // Compute the minimum of the string lengths(str1_reg) and the
  2915     // difference of the string lengths (stack)
  2917     // See if the lengths are different, and calculate min in str1_reg.
  2918     // Stash diff in O7 in case we need it for a tie-breaker.
  2919     Label Lskip;
  2920     __ subcc(cnt1_reg, cnt2_reg, O7);
  2921     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2922     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2923     // cnt2 is shorter, so use its count:
  2924     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2925     __ bind(Lskip);
  2927     // reallocate cnt1_reg, cnt2_reg, result_reg
  2928     // Note:  limit_reg holds the string length pre-scaled by 2
  2929     Register limit_reg =   cnt1_reg;
  2930     Register  chr2_reg =   cnt2_reg;
  2931     Register  chr1_reg = result_reg;
  2932     // str{12} are the base pointers
  2934     // Is the minimum length zero?
  2935     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2936     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2937     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2939     // Load first characters
  2940     __ lduh(str1_reg, 0, chr1_reg);
  2941     __ lduh(str2_reg, 0, chr2_reg);
  2943     // Compare first characters
  2944     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2945     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2946     assert(chr1_reg == result_reg, "result must be pre-placed");
  2947     __ delayed()->nop();
  2950       // Check after comparing first character to see if strings are equivalent
  2951       Label LSkip2;
  2952       // Check if the strings start at same location
  2953       __ cmp(str1_reg, str2_reg);
  2954       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2955       __ delayed()->nop();
  2957       // Check if the length difference is zero (in O7)
  2958       __ cmp(G0, O7);
  2959       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2960       __ delayed()->mov(G0, result_reg);  // result is zero
  2962       // Strings might not be equal
  2963       __ bind(LSkip2);
  2966     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
  2967     __ signx(limit_reg);
  2969     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2970     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2971     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2973     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2974     __ add(str1_reg, limit_reg, str1_reg);
  2975     __ add(str2_reg, limit_reg, str2_reg);
  2976     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2978     // Compare the rest of the characters
  2979     __ lduh(str1_reg, limit_reg, chr1_reg);
  2980     __ bind(Lloop);
  2981     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2982     __ lduh(str2_reg, limit_reg, chr2_reg);
  2983     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2984     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2985     assert(chr1_reg == result_reg, "result must be pre-placed");
  2986     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2987     // annul LDUH if branch is not taken to prevent access past end of string
  2988     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2989     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2991     // If strings are equal up to min length, return the length difference.
  2992     __ mov(O7, result_reg);
  2994     // Otherwise, return the difference between the first mismatched chars.
  2995     __ bind(Ldone);
  2996   %}
  2998 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2999     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  3000     MacroAssembler _masm(&cbuf);
  3002     Register   str1_reg = reg_to_register_object($str1$$reg);
  3003     Register   str2_reg = reg_to_register_object($str2$$reg);
  3004     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  3005     Register   tmp1_reg = O7;
  3006     Register result_reg = reg_to_register_object($result$$reg);
  3008     assert(result_reg != str1_reg &&
  3009            result_reg != str2_reg &&
  3010            result_reg !=  cnt_reg &&
  3011            result_reg != tmp1_reg ,
  3012            "need different registers");
  3014     __ cmp(str1_reg, str2_reg); //same char[] ?
  3015     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3016     __ delayed()->add(G0, 1, result_reg);
  3018     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
  3019     __ delayed()->add(G0, 1, result_reg); // count == 0
  3021     //rename registers
  3022     Register limit_reg =    cnt_reg;
  3023     Register  chr1_reg = result_reg;
  3024     Register  chr2_reg =   tmp1_reg;
  3026     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
  3027     __ signx(limit_reg);
  3029     //check for alignment and position the pointers to the ends
  3030     __ or3(str1_reg, str2_reg, chr1_reg);
  3031     __ andcc(chr1_reg, 0x3, chr1_reg);
  3032     // notZero means at least one not 4-byte aligned.
  3033     // We could optimize the case when both arrays are not aligned
  3034     // but it is not frequent case and it requires additional checks.
  3035     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  3036     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  3038     // Compare char[] arrays aligned to 4 bytes.
  3039     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  3040                           chr1_reg, chr2_reg, Ldone);
  3041     __ ba(Ldone);
  3042     __ delayed()->add(G0, 1, result_reg);
  3044     // char by char compare
  3045     __ bind(Lchar);
  3046     __ add(str1_reg, limit_reg, str1_reg);
  3047     __ add(str2_reg, limit_reg, str2_reg);
  3048     __ neg(limit_reg); //negate count
  3050     __ lduh(str1_reg, limit_reg, chr1_reg);
  3051     // Lchar_loop
  3052     __ bind(Lchar_loop);
  3053     __ lduh(str2_reg, limit_reg, chr2_reg);
  3054     __ cmp(chr1_reg, chr2_reg);
  3055     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  3056     __ delayed()->mov(G0, result_reg); //not equal
  3057     __ inccc(limit_reg, sizeof(jchar));
  3058     // annul LDUH if branch is not taken to prevent access past end of string
  3059     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  3060     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  3062     __ add(G0, 1, result_reg);  //equal
  3064     __ bind(Ldone);
  3065   %}
  3067 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  3068     Label Lvector, Ldone, Lloop;
  3069     MacroAssembler _masm(&cbuf);
  3071     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3072     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3073     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3074     Register   tmp2_reg = O7;
  3075     Register result_reg = reg_to_register_object($result$$reg);
  3077     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3078     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3080     // return true if the same array
  3081     __ cmp(ary1_reg, ary2_reg);
  3082     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3083     __ delayed()->add(G0, 1, result_reg); // equal
  3085     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3086     __ delayed()->mov(G0, result_reg);    // not equal
  3088     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3089     __ delayed()->mov(G0, result_reg);    // not equal
  3091     //load the lengths of arrays
  3092     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3093     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3095     // return false if the two arrays are not equal length
  3096     __ cmp(tmp1_reg, tmp2_reg);
  3097     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3098     __ delayed()->mov(G0, result_reg);     // not equal
  3100     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
  3101     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3103     // load array addresses
  3104     __ add(ary1_reg, base_offset, ary1_reg);
  3105     __ add(ary2_reg, base_offset, ary2_reg);
  3107     // renaming registers
  3108     Register chr1_reg  =  result_reg; // for characters in ary1
  3109     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3110     Register limit_reg =  tmp1_reg;   // length
  3112     // set byte count
  3113     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3115     // Compare char[] arrays aligned to 4 bytes.
  3116     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3117                           chr1_reg, chr2_reg, Ldone);
  3118     __ add(G0, 1, result_reg); // equals
  3120     __ bind(Ldone);
  3121   %}
  3123   enc_class enc_rethrow() %{
  3124     cbuf.set_insts_mark();
  3125     Register temp_reg = G3;
  3126     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3127     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3128     MacroAssembler _masm(&cbuf);
  3129 #ifdef ASSERT
  3130     __ save_frame(0);
  3131     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3132     __ sethi(last_rethrow_addrlit, L1);
  3133     Address addr(L1, last_rethrow_addrlit.low10());
  3134     __ rdpc(L2);
  3135     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3136     __ st_ptr(L2, addr);
  3137     __ restore();
  3138 #endif
  3139     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3140     __ delayed()->nop();
  3141   %}
  3143   enc_class emit_mem_nop() %{
  3144     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3145     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3146   %}
  3148   enc_class emit_fadd_nop() %{
  3149     // Generates the instruction FMOVS f31,f31
  3150     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3151   %}
  3153   enc_class emit_br_nop() %{
  3154     // Generates the instruction BPN,PN .
  3155     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3156   %}
  3158   enc_class enc_membar_acquire %{
  3159     MacroAssembler _masm(&cbuf);
  3160     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3161   %}
  3163   enc_class enc_membar_release %{
  3164     MacroAssembler _masm(&cbuf);
  3165     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3166   %}
  3168   enc_class enc_membar_volatile %{
  3169     MacroAssembler _masm(&cbuf);
  3170     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3171   %}
  3173 %}
  3175 //----------FRAME--------------------------------------------------------------
  3176 // Definition of frame structure and management information.
  3177 //
  3178 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3179 //                             |   (to get allocators register number
  3180 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3181 //  r   CALLER     |        |
  3182 //  o     |        +--------+      pad to even-align allocators stack-slot
  3183 //  w     V        |  pad0  |        numbers; owned by CALLER
  3184 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3185 //  h     ^        |   in   |  5
  3186 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3187 //  |     |        |        |  3
  3188 //  |     |        +--------+
  3189 //  V     |        | old out|      Empty on Intel, window on Sparc
  3190 //        |    old |preserve|      Must be even aligned.
  3191 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3192 //        |        |   in   |  3   area for Intel ret address
  3193 //     Owned by    |preserve|      Empty on Sparc.
  3194 //       SELF      +--------+
  3195 //        |        |  pad2  |  2   pad to align old SP
  3196 //        |        +--------+  1
  3197 //        |        | locks  |  0
  3198 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3199 //        |        |  pad1  | 11   pad to align new SP
  3200 //        |        +--------+
  3201 //        |        |        | 10
  3202 //        |        | spills |  9   spills
  3203 //        V        |        |  8   (pad0 slot for callee)
  3204 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3205 //        ^        |  out   |  7
  3206 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3207 //     Owned by    +--------+
  3208 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3209 //        |    new |preserve|      Must be even-aligned.
  3210 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3211 //        |        |        |
  3212 //
  3213 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3214 //         known from SELF's arguments and the Java calling convention.
  3215 //         Region 6-7 is determined per call site.
  3216 // Note 2: If the calling convention leaves holes in the incoming argument
  3217 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3218 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3219 //         incoming area, as the Java calling convention is completely under
  3220 //         the control of the AD file.  Doubles can be sorted and packed to
  3221 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3222 //         varargs C calling conventions.
  3223 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3224 //         even aligned with pad0 as needed.
  3225 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3226 //         region 6-11 is even aligned; it may be padded out more so that
  3227 //         the region from SP to FP meets the minimum stack alignment.
  3229 frame %{
  3230   // What direction does stack grow in (assumed to be same for native & Java)
  3231   stack_direction(TOWARDS_LOW);
  3233   // These two registers define part of the calling convention
  3234   // between compiled code and the interpreter.
  3235   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
  3236   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3238   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3239   cisc_spilling_operand_name(indOffset);
  3241   // Number of stack slots consumed by a Monitor enter
  3242 #ifdef _LP64
  3243   sync_stack_slots(2);
  3244 #else
  3245   sync_stack_slots(1);
  3246 #endif
  3248   // Compiled code's Frame Pointer
  3249   frame_pointer(R_SP);
  3251   // Stack alignment requirement
  3252   stack_alignment(StackAlignmentInBytes);
  3253   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3254   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3256   // Number of stack slots between incoming argument block and the start of
  3257   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3258   // EPILOG must remove this many slots.
  3259   in_preserve_stack_slots(0);
  3261   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3262   // for calls to C.  Supports the var-args backing area for register parms.
  3263   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3264 #ifdef _LP64
  3265   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3266   varargs_C_out_slots_killed(12);
  3267 #else
  3268   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3269   varargs_C_out_slots_killed( 7);
  3270 #endif
  3272   // The after-PROLOG location of the return address.  Location of
  3273   // return address specifies a type (REG or STACK) and a number
  3274   // representing the register number (i.e. - use a register name) or
  3275   // stack slot.
  3276   return_addr(REG R_I7);          // Ret Addr is in register I7
  3278   // Body of function which returns an OptoRegs array locating
  3279   // arguments either in registers or in stack slots for calling
  3280   // java
  3281   calling_convention %{
  3282     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3284   %}
  3286   // Body of function which returns an OptoRegs array locating
  3287   // arguments either in registers or in stack slots for callin
  3288   // C.
  3289   c_calling_convention %{
  3290     // This is obviously always outgoing
  3291     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  3292   %}
  3294   // Location of native (C/C++) and interpreter return values.  This is specified to
  3295   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3296   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3297   // to and from the register pairs is done by the appropriate call and epilog
  3298   // opcodes.  This simplifies the register allocator.
  3299   c_return_value %{
  3300     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3301 #ifdef     _LP64
  3302     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3303     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3304     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3305     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3306 #else  // !_LP64
  3307     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3308     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3309     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3310     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3311 #endif
  3312     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3313                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3314   %}
  3316   // Location of compiled Java return values.  Same as C
  3317   return_value %{
  3318     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3319 #ifdef     _LP64
  3320     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3321     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3322     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3323     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3324 #else  // !_LP64
  3325     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3326     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3327     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3328     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3329 #endif
  3330     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3331                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3332   %}
  3334 %}
  3337 //----------ATTRIBUTES---------------------------------------------------------
  3338 //----------Operand Attributes-------------------------------------------------
  3339 op_attrib op_cost(1);          // Required cost attribute
  3341 //----------Instruction Attributes---------------------------------------------
  3342 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3343 ins_attrib ins_size(32);           // Required size attribute (in bits)
  3345 // avoid_back_to_back attribute is an expression that must return
  3346 // one of the following values defined in MachNode:
  3347 // AVOID_NONE   - instruction can be placed anywhere
  3348 // AVOID_BEFORE - instruction cannot be placed after an
  3349 //                instruction with MachNode::AVOID_AFTER
  3350 // AVOID_AFTER  - the next instruction cannot be the one 
  3351 //                with MachNode::AVOID_BEFORE
  3352 // AVOID_BEFORE_AND_AFTER - BEFORE and AFTER attributes at 
  3353 //                          the same time                                
  3354 ins_attrib ins_avoid_back_to_back(MachNode::AVOID_NONE);
  3356 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
  3357                                    // non-matching short branch variant of some
  3358                                                             // long branch?
  3360 //----------OPERANDS-----------------------------------------------------------
  3361 // Operand definitions must precede instruction definitions for correct parsing
  3362 // in the ADLC because operands constitute user defined types which are used in
  3363 // instruction definitions.
  3365 //----------Simple Operands----------------------------------------------------
  3366 // Immediate Operands
  3367 // Integer Immediate: 32-bit
  3368 operand immI() %{
  3369   match(ConI);
  3371   op_cost(0);
  3372   // formats are generated automatically for constants and base registers
  3373   format %{ %}
  3374   interface(CONST_INTER);
  3375 %}
  3377 // Integer Immediate: 8-bit
  3378 operand immI8() %{
  3379   predicate(Assembler::is_simm8(n->get_int()));
  3380   match(ConI);
  3381   op_cost(0);
  3382   format %{ %}
  3383   interface(CONST_INTER);
  3384 %}
  3386 // Integer Immediate: 13-bit
  3387 operand immI13() %{
  3388   predicate(Assembler::is_simm13(n->get_int()));
  3389   match(ConI);
  3390   op_cost(0);
  3392   format %{ %}
  3393   interface(CONST_INTER);
  3394 %}
  3396 // Integer Immediate: 13-bit minus 7
  3397 operand immI13m7() %{
  3398   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3399   match(ConI);
  3400   op_cost(0);
  3402   format %{ %}
  3403   interface(CONST_INTER);
  3404 %}
  3406 // Integer Immediate: 16-bit
  3407 operand immI16() %{
  3408   predicate(Assembler::is_simm16(n->get_int()));
  3409   match(ConI);
  3410   op_cost(0);
  3411   format %{ %}
  3412   interface(CONST_INTER);
  3413 %}
  3415 // Unsigned Integer Immediate: 12-bit (non-negative that fits in simm13)
  3416 operand immU12() %{
  3417   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3418   match(ConI);
  3419   op_cost(0);
  3421   format %{ %}
  3422   interface(CONST_INTER);
  3423 %}
  3425 // Integer Immediate: 6-bit
  3426 operand immU6() %{
  3427   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3428   match(ConI);
  3429   op_cost(0);
  3430   format %{ %}
  3431   interface(CONST_INTER);
  3432 %}
  3434 // Integer Immediate: 11-bit
  3435 operand immI11() %{
  3436   predicate(Assembler::is_simm11(n->get_int()));
  3437   match(ConI);
  3438   op_cost(0);
  3439   format %{ %}
  3440   interface(CONST_INTER);
  3441 %}
  3443 // Integer Immediate: 5-bit
  3444 operand immI5() %{
  3445   predicate(Assembler::is_simm5(n->get_int()));
  3446   match(ConI);
  3447   op_cost(0);
  3448   format %{ %}
  3449   interface(CONST_INTER);
  3450 %}
  3452 // Int Immediate non-negative
  3453 operand immU31()
  3454 %{
  3455   predicate(n->get_int() >= 0);
  3456   match(ConI);
  3458   op_cost(0);
  3459   format %{ %}
  3460   interface(CONST_INTER);
  3461 %}
  3463 // Integer Immediate: 0-bit
  3464 operand immI0() %{
  3465   predicate(n->get_int() == 0);
  3466   match(ConI);
  3467   op_cost(0);
  3469   format %{ %}
  3470   interface(CONST_INTER);
  3471 %}
  3473 // Integer Immediate: the value 10
  3474 operand immI10() %{
  3475   predicate(n->get_int() == 10);
  3476   match(ConI);
  3477   op_cost(0);
  3479   format %{ %}
  3480   interface(CONST_INTER);
  3481 %}
  3483 // Integer Immediate: the values 0-31
  3484 operand immU5() %{
  3485   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3486   match(ConI);
  3487   op_cost(0);
  3489   format %{ %}
  3490   interface(CONST_INTER);
  3491 %}
  3493 // Integer Immediate: the values 1-31
  3494 operand immI_1_31() %{
  3495   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3496   match(ConI);
  3497   op_cost(0);
  3499   format %{ %}
  3500   interface(CONST_INTER);
  3501 %}
  3503 // Integer Immediate: the values 32-63
  3504 operand immI_32_63() %{
  3505   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3506   match(ConI);
  3507   op_cost(0);
  3509   format %{ %}
  3510   interface(CONST_INTER);
  3511 %}
  3513 // Immediates for special shifts (sign extend)
  3515 // Integer Immediate: the value 16
  3516 operand immI_16() %{
  3517   predicate(n->get_int() == 16);
  3518   match(ConI);
  3519   op_cost(0);
  3521   format %{ %}
  3522   interface(CONST_INTER);
  3523 %}
  3525 // Integer Immediate: the value 24
  3526 operand immI_24() %{
  3527   predicate(n->get_int() == 24);
  3528   match(ConI);
  3529   op_cost(0);
  3531   format %{ %}
  3532   interface(CONST_INTER);
  3533 %}
  3535 // Integer Immediate: the value 255
  3536 operand immI_255() %{
  3537   predicate( n->get_int() == 255 );
  3538   match(ConI);
  3539   op_cost(0);
  3541   format %{ %}
  3542   interface(CONST_INTER);
  3543 %}
  3545 // Integer Immediate: the value 65535
  3546 operand immI_65535() %{
  3547   predicate(n->get_int() == 65535);
  3548   match(ConI);
  3549   op_cost(0);
  3551   format %{ %}
  3552   interface(CONST_INTER);
  3553 %}
  3555 // Long Immediate: the value FF
  3556 operand immL_FF() %{
  3557   predicate( n->get_long() == 0xFFL );
  3558   match(ConL);
  3559   op_cost(0);
  3561   format %{ %}
  3562   interface(CONST_INTER);
  3563 %}
  3565 // Long Immediate: the value FFFF
  3566 operand immL_FFFF() %{
  3567   predicate( n->get_long() == 0xFFFFL );
  3568   match(ConL);
  3569   op_cost(0);
  3571   format %{ %}
  3572   interface(CONST_INTER);
  3573 %}
  3575 // Pointer Immediate: 32 or 64-bit
  3576 operand immP() %{
  3577   match(ConP);
  3579   op_cost(5);
  3580   // formats are generated automatically for constants and base registers
  3581   format %{ %}
  3582   interface(CONST_INTER);
  3583 %}
  3585 #ifdef _LP64
  3586 // Pointer Immediate: 64-bit
  3587 operand immP_set() %{
  3588   predicate(!VM_Version::is_niagara_plus());
  3589   match(ConP);
  3591   op_cost(5);
  3592   // formats are generated automatically for constants and base registers
  3593   format %{ %}
  3594   interface(CONST_INTER);
  3595 %}
  3597 // Pointer Immediate: 64-bit
  3598 // From Niagara2 processors on a load should be better than materializing.
  3599 operand immP_load() %{
  3600   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3601   match(ConP);
  3603   op_cost(5);
  3604   // formats are generated automatically for constants and base registers
  3605   format %{ %}
  3606   interface(CONST_INTER);
  3607 %}
  3609 // Pointer Immediate: 64-bit
  3610 operand immP_no_oop_cheap() %{
  3611   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3612   match(ConP);
  3614   op_cost(5);
  3615   // formats are generated automatically for constants and base registers
  3616   format %{ %}
  3617   interface(CONST_INTER);
  3618 %}
  3619 #endif
  3621 operand immP13() %{
  3622   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3623   match(ConP);
  3624   op_cost(0);
  3626   format %{ %}
  3627   interface(CONST_INTER);
  3628 %}
  3630 operand immP0() %{
  3631   predicate(n->get_ptr() == 0);
  3632   match(ConP);
  3633   op_cost(0);
  3635   format %{ %}
  3636   interface(CONST_INTER);
  3637 %}
  3639 operand immP_poll() %{
  3640   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3641   match(ConP);
  3643   // formats are generated automatically for constants and base registers
  3644   format %{ %}
  3645   interface(CONST_INTER);
  3646 %}
  3648 // Pointer Immediate
  3649 operand immN()
  3650 %{
  3651   match(ConN);
  3653   op_cost(10);
  3654   format %{ %}
  3655   interface(CONST_INTER);
  3656 %}
  3658 operand immNKlass()
  3659 %{
  3660   match(ConNKlass);
  3662   op_cost(10);
  3663   format %{ %}
  3664   interface(CONST_INTER);
  3665 %}
  3667 // NULL Pointer Immediate
  3668 operand immN0()
  3669 %{
  3670   predicate(n->get_narrowcon() == 0);
  3671   match(ConN);
  3673   op_cost(0);
  3674   format %{ %}
  3675   interface(CONST_INTER);
  3676 %}
  3678 operand immL() %{
  3679   match(ConL);
  3680   op_cost(40);
  3681   // formats are generated automatically for constants and base registers
  3682   format %{ %}
  3683   interface(CONST_INTER);
  3684 %}
  3686 operand immL0() %{
  3687   predicate(n->get_long() == 0L);
  3688   match(ConL);
  3689   op_cost(0);
  3690   // formats are generated automatically for constants and base registers
  3691   format %{ %}
  3692   interface(CONST_INTER);
  3693 %}
  3695 // Integer Immediate: 5-bit
  3696 operand immL5() %{
  3697   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
  3698   match(ConL);
  3699   op_cost(0);
  3700   format %{ %}
  3701   interface(CONST_INTER);
  3702 %}
  3704 // Long Immediate: 13-bit
  3705 operand immL13() %{
  3706   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3707   match(ConL);
  3708   op_cost(0);
  3710   format %{ %}
  3711   interface(CONST_INTER);
  3712 %}
  3714 // Long Immediate: 13-bit minus 7
  3715 operand immL13m7() %{
  3716   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3717   match(ConL);
  3718   op_cost(0);
  3720   format %{ %}
  3721   interface(CONST_INTER);
  3722 %}
  3724 // Long Immediate: low 32-bit mask
  3725 operand immL_32bits() %{
  3726   predicate(n->get_long() == 0xFFFFFFFFL);
  3727   match(ConL);
  3728   op_cost(0);
  3730   format %{ %}
  3731   interface(CONST_INTER);
  3732 %}
  3734 // Long Immediate: cheap (materialize in <= 3 instructions)
  3735 operand immL_cheap() %{
  3736   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3737   match(ConL);
  3738   op_cost(0);
  3740   format %{ %}
  3741   interface(CONST_INTER);
  3742 %}
  3744 // Long Immediate: expensive (materialize in > 3 instructions)
  3745 operand immL_expensive() %{
  3746   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3747   match(ConL);
  3748   op_cost(0);
  3750   format %{ %}
  3751   interface(CONST_INTER);
  3752 %}
  3754 // Double Immediate
  3755 operand immD() %{
  3756   match(ConD);
  3758   op_cost(40);
  3759   format %{ %}
  3760   interface(CONST_INTER);
  3761 %}
  3763 operand immD0() %{
  3764 #ifdef _LP64
  3765   // on 64-bit architectures this comparision is faster
  3766   predicate(jlong_cast(n->getd()) == 0);
  3767 #else
  3768   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3769 #endif
  3770   match(ConD);
  3772   op_cost(0);
  3773   format %{ %}
  3774   interface(CONST_INTER);
  3775 %}
  3777 // Float Immediate
  3778 operand immF() %{
  3779   match(ConF);
  3781   op_cost(20);
  3782   format %{ %}
  3783   interface(CONST_INTER);
  3784 %}
  3786 // Float Immediate: 0
  3787 operand immF0() %{
  3788   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3789   match(ConF);
  3791   op_cost(0);
  3792   format %{ %}
  3793   interface(CONST_INTER);
  3794 %}
  3796 // Integer Register Operands
  3797 // Integer Register
  3798 operand iRegI() %{
  3799   constraint(ALLOC_IN_RC(int_reg));
  3800   match(RegI);
  3802   match(notemp_iRegI);
  3803   match(g1RegI);
  3804   match(o0RegI);
  3805   match(iRegIsafe);
  3807   format %{ %}
  3808   interface(REG_INTER);
  3809 %}
  3811 operand notemp_iRegI() %{
  3812   constraint(ALLOC_IN_RC(notemp_int_reg));
  3813   match(RegI);
  3815   match(o0RegI);
  3817   format %{ %}
  3818   interface(REG_INTER);
  3819 %}
  3821 operand o0RegI() %{
  3822   constraint(ALLOC_IN_RC(o0_regI));
  3823   match(iRegI);
  3825   format %{ %}
  3826   interface(REG_INTER);
  3827 %}
  3829 // Pointer Register
  3830 operand iRegP() %{
  3831   constraint(ALLOC_IN_RC(ptr_reg));
  3832   match(RegP);
  3834   match(lock_ptr_RegP);
  3835   match(g1RegP);
  3836   match(g2RegP);
  3837   match(g3RegP);
  3838   match(g4RegP);
  3839   match(i0RegP);
  3840   match(o0RegP);
  3841   match(o1RegP);
  3842   match(l7RegP);
  3844   format %{ %}
  3845   interface(REG_INTER);
  3846 %}
  3848 operand sp_ptr_RegP() %{
  3849   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3850   match(RegP);
  3851   match(iRegP);
  3853   format %{ %}
  3854   interface(REG_INTER);
  3855 %}
  3857 operand lock_ptr_RegP() %{
  3858   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3859   match(RegP);
  3860   match(i0RegP);
  3861   match(o0RegP);
  3862   match(o1RegP);
  3863   match(l7RegP);
  3865   format %{ %}
  3866   interface(REG_INTER);
  3867 %}
  3869 operand g1RegP() %{
  3870   constraint(ALLOC_IN_RC(g1_regP));
  3871   match(iRegP);
  3873   format %{ %}
  3874   interface(REG_INTER);
  3875 %}
  3877 operand g2RegP() %{
  3878   constraint(ALLOC_IN_RC(g2_regP));
  3879   match(iRegP);
  3881   format %{ %}
  3882   interface(REG_INTER);
  3883 %}
  3885 operand g3RegP() %{
  3886   constraint(ALLOC_IN_RC(g3_regP));
  3887   match(iRegP);
  3889   format %{ %}
  3890   interface(REG_INTER);
  3891 %}
  3893 operand g1RegI() %{
  3894   constraint(ALLOC_IN_RC(g1_regI));
  3895   match(iRegI);
  3897   format %{ %}
  3898   interface(REG_INTER);
  3899 %}
  3901 operand g3RegI() %{
  3902   constraint(ALLOC_IN_RC(g3_regI));
  3903   match(iRegI);
  3905   format %{ %}
  3906   interface(REG_INTER);
  3907 %}
  3909 operand g4RegI() %{
  3910   constraint(ALLOC_IN_RC(g4_regI));
  3911   match(iRegI);
  3913   format %{ %}
  3914   interface(REG_INTER);
  3915 %}
  3917 operand g4RegP() %{
  3918   constraint(ALLOC_IN_RC(g4_regP));
  3919   match(iRegP);
  3921   format %{ %}
  3922   interface(REG_INTER);
  3923 %}
  3925 operand i0RegP() %{
  3926   constraint(ALLOC_IN_RC(i0_regP));
  3927   match(iRegP);
  3929   format %{ %}
  3930   interface(REG_INTER);
  3931 %}
  3933 operand o0RegP() %{
  3934   constraint(ALLOC_IN_RC(o0_regP));
  3935   match(iRegP);
  3937   format %{ %}
  3938   interface(REG_INTER);
  3939 %}
  3941 operand o1RegP() %{
  3942   constraint(ALLOC_IN_RC(o1_regP));
  3943   match(iRegP);
  3945   format %{ %}
  3946   interface(REG_INTER);
  3947 %}
  3949 operand o2RegP() %{
  3950   constraint(ALLOC_IN_RC(o2_regP));
  3951   match(iRegP);
  3953   format %{ %}
  3954   interface(REG_INTER);
  3955 %}
  3957 operand o7RegP() %{
  3958   constraint(ALLOC_IN_RC(o7_regP));
  3959   match(iRegP);
  3961   format %{ %}
  3962   interface(REG_INTER);
  3963 %}
  3965 operand l7RegP() %{
  3966   constraint(ALLOC_IN_RC(l7_regP));
  3967   match(iRegP);
  3969   format %{ %}
  3970   interface(REG_INTER);
  3971 %}
  3973 operand o7RegI() %{
  3974   constraint(ALLOC_IN_RC(o7_regI));
  3975   match(iRegI);
  3977   format %{ %}
  3978   interface(REG_INTER);
  3979 %}
  3981 operand iRegN() %{
  3982   constraint(ALLOC_IN_RC(int_reg));
  3983   match(RegN);
  3985   format %{ %}
  3986   interface(REG_INTER);
  3987 %}
  3989 // Long Register
  3990 operand iRegL() %{
  3991   constraint(ALLOC_IN_RC(long_reg));
  3992   match(RegL);
  3994   format %{ %}
  3995   interface(REG_INTER);
  3996 %}
  3998 operand o2RegL() %{
  3999   constraint(ALLOC_IN_RC(o2_regL));
  4000   match(iRegL);
  4002   format %{ %}
  4003   interface(REG_INTER);
  4004 %}
  4006 operand o7RegL() %{
  4007   constraint(ALLOC_IN_RC(o7_regL));
  4008   match(iRegL);
  4010   format %{ %}
  4011   interface(REG_INTER);
  4012 %}
  4014 operand g1RegL() %{
  4015   constraint(ALLOC_IN_RC(g1_regL));
  4016   match(iRegL);
  4018   format %{ %}
  4019   interface(REG_INTER);
  4020 %}
  4022 operand g3RegL() %{
  4023   constraint(ALLOC_IN_RC(g3_regL));
  4024   match(iRegL);
  4026   format %{ %}
  4027   interface(REG_INTER);
  4028 %}
  4030 // Int Register safe
  4031 // This is 64bit safe
  4032 operand iRegIsafe() %{
  4033   constraint(ALLOC_IN_RC(long_reg));
  4035   match(iRegI);
  4037   format %{ %}
  4038   interface(REG_INTER);
  4039 %}
  4041 // Condition Code Flag Register
  4042 operand flagsReg() %{
  4043   constraint(ALLOC_IN_RC(int_flags));
  4044   match(RegFlags);
  4046   format %{ "ccr" %} // both ICC and XCC
  4047   interface(REG_INTER);
  4048 %}
  4050 // Condition Code Register, unsigned comparisons.
  4051 operand flagsRegU() %{
  4052   constraint(ALLOC_IN_RC(int_flags));
  4053   match(RegFlags);
  4055   format %{ "icc_U" %}
  4056   interface(REG_INTER);
  4057 %}
  4059 // Condition Code Register, pointer comparisons.
  4060 operand flagsRegP() %{
  4061   constraint(ALLOC_IN_RC(int_flags));
  4062   match(RegFlags);
  4064 #ifdef _LP64
  4065   format %{ "xcc_P" %}
  4066 #else
  4067   format %{ "icc_P" %}
  4068 #endif
  4069   interface(REG_INTER);
  4070 %}
  4072 // Condition Code Register, long comparisons.
  4073 operand flagsRegL() %{
  4074   constraint(ALLOC_IN_RC(int_flags));
  4075   match(RegFlags);
  4077   format %{ "xcc_L" %}
  4078   interface(REG_INTER);
  4079 %}
  4081 // Condition Code Register, floating comparisons, unordered same as "less".
  4082 operand flagsRegF() %{
  4083   constraint(ALLOC_IN_RC(float_flags));
  4084   match(RegFlags);
  4085   match(flagsRegF0);
  4087   format %{ %}
  4088   interface(REG_INTER);
  4089 %}
  4091 operand flagsRegF0() %{
  4092   constraint(ALLOC_IN_RC(float_flag0));
  4093   match(RegFlags);
  4095   format %{ %}
  4096   interface(REG_INTER);
  4097 %}
  4100 // Condition Code Flag Register used by long compare
  4101 operand flagsReg_long_LTGE() %{
  4102   constraint(ALLOC_IN_RC(int_flags));
  4103   match(RegFlags);
  4104   format %{ "icc_LTGE" %}
  4105   interface(REG_INTER);
  4106 %}
  4107 operand flagsReg_long_EQNE() %{
  4108   constraint(ALLOC_IN_RC(int_flags));
  4109   match(RegFlags);
  4110   format %{ "icc_EQNE" %}
  4111   interface(REG_INTER);
  4112 %}
  4113 operand flagsReg_long_LEGT() %{
  4114   constraint(ALLOC_IN_RC(int_flags));
  4115   match(RegFlags);
  4116   format %{ "icc_LEGT" %}
  4117   interface(REG_INTER);
  4118 %}
  4121 operand regD() %{
  4122   constraint(ALLOC_IN_RC(dflt_reg));
  4123   match(RegD);
  4125   match(regD_low);
  4127   format %{ %}
  4128   interface(REG_INTER);
  4129 %}
  4131 operand regF() %{
  4132   constraint(ALLOC_IN_RC(sflt_reg));
  4133   match(RegF);
  4135   format %{ %}
  4136   interface(REG_INTER);
  4137 %}
  4139 operand regD_low() %{
  4140   constraint(ALLOC_IN_RC(dflt_low_reg));
  4141   match(regD);
  4143   format %{ %}
  4144   interface(REG_INTER);
  4145 %}
  4147 // Special Registers
  4149 // Method Register
  4150 operand inline_cache_regP(iRegP reg) %{
  4151   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4152   match(reg);
  4153   format %{ %}
  4154   interface(REG_INTER);
  4155 %}
  4157 operand interpreter_method_oop_regP(iRegP reg) %{
  4158   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4159   match(reg);
  4160   format %{ %}
  4161   interface(REG_INTER);
  4162 %}
  4165 //----------Complex Operands---------------------------------------------------
  4166 // Indirect Memory Reference
  4167 operand indirect(sp_ptr_RegP reg) %{
  4168   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4169   match(reg);
  4171   op_cost(100);
  4172   format %{ "[$reg]" %}
  4173   interface(MEMORY_INTER) %{
  4174     base($reg);
  4175     index(0x0);
  4176     scale(0x0);
  4177     disp(0x0);
  4178   %}
  4179 %}
  4181 // Indirect with simm13 Offset
  4182 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4183   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4184   match(AddP reg offset);
  4186   op_cost(100);
  4187   format %{ "[$reg + $offset]" %}
  4188   interface(MEMORY_INTER) %{
  4189     base($reg);
  4190     index(0x0);
  4191     scale(0x0);
  4192     disp($offset);
  4193   %}
  4194 %}
  4196 // Indirect with simm13 Offset minus 7
  4197 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4198   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4199   match(AddP reg offset);
  4201   op_cost(100);
  4202   format %{ "[$reg + $offset]" %}
  4203   interface(MEMORY_INTER) %{
  4204     base($reg);
  4205     index(0x0);
  4206     scale(0x0);
  4207     disp($offset);
  4208   %}
  4209 %}
  4211 // Note:  Intel has a swapped version also, like this:
  4212 //operand indOffsetX(iRegI reg, immP offset) %{
  4213 //  constraint(ALLOC_IN_RC(int_reg));
  4214 //  match(AddP offset reg);
  4215 //
  4216 //  op_cost(100);
  4217 //  format %{ "[$reg + $offset]" %}
  4218 //  interface(MEMORY_INTER) %{
  4219 //    base($reg);
  4220 //    index(0x0);
  4221 //    scale(0x0);
  4222 //    disp($offset);
  4223 //  %}
  4224 //%}
  4225 //// However, it doesn't make sense for SPARC, since
  4226 // we have no particularly good way to embed oops in
  4227 // single instructions.
  4229 // Indirect with Register Index
  4230 operand indIndex(iRegP addr, iRegX index) %{
  4231   constraint(ALLOC_IN_RC(ptr_reg));
  4232   match(AddP addr index);
  4234   op_cost(100);
  4235   format %{ "[$addr + $index]" %}
  4236   interface(MEMORY_INTER) %{
  4237     base($addr);
  4238     index($index);
  4239     scale(0x0);
  4240     disp(0x0);
  4241   %}
  4242 %}
  4244 //----------Special Memory Operands--------------------------------------------
  4245 // Stack Slot Operand - This operand is used for loading and storing temporary
  4246 //                      values on the stack where a match requires a value to
  4247 //                      flow through memory.
  4248 operand stackSlotI(sRegI reg) %{
  4249   constraint(ALLOC_IN_RC(stack_slots));
  4250   op_cost(100);
  4251   //match(RegI);
  4252   format %{ "[$reg]" %}
  4253   interface(MEMORY_INTER) %{
  4254     base(0xE);   // R_SP
  4255     index(0x0);
  4256     scale(0x0);
  4257     disp($reg);  // Stack Offset
  4258   %}
  4259 %}
  4261 operand stackSlotP(sRegP reg) %{
  4262   constraint(ALLOC_IN_RC(stack_slots));
  4263   op_cost(100);
  4264   //match(RegP);
  4265   format %{ "[$reg]" %}
  4266   interface(MEMORY_INTER) %{
  4267     base(0xE);   // R_SP
  4268     index(0x0);
  4269     scale(0x0);
  4270     disp($reg);  // Stack Offset
  4271   %}
  4272 %}
  4274 operand stackSlotF(sRegF reg) %{
  4275   constraint(ALLOC_IN_RC(stack_slots));
  4276   op_cost(100);
  4277   //match(RegF);
  4278   format %{ "[$reg]" %}
  4279   interface(MEMORY_INTER) %{
  4280     base(0xE);   // R_SP
  4281     index(0x0);
  4282     scale(0x0);
  4283     disp($reg);  // Stack Offset
  4284   %}
  4285 %}
  4286 operand stackSlotD(sRegD reg) %{
  4287   constraint(ALLOC_IN_RC(stack_slots));
  4288   op_cost(100);
  4289   //match(RegD);
  4290   format %{ "[$reg]" %}
  4291   interface(MEMORY_INTER) %{
  4292     base(0xE);   // R_SP
  4293     index(0x0);
  4294     scale(0x0);
  4295     disp($reg);  // Stack Offset
  4296   %}
  4297 %}
  4298 operand stackSlotL(sRegL reg) %{
  4299   constraint(ALLOC_IN_RC(stack_slots));
  4300   op_cost(100);
  4301   //match(RegL);
  4302   format %{ "[$reg]" %}
  4303   interface(MEMORY_INTER) %{
  4304     base(0xE);   // R_SP
  4305     index(0x0);
  4306     scale(0x0);
  4307     disp($reg);  // Stack Offset
  4308   %}
  4309 %}
  4311 // Operands for expressing Control Flow
  4312 // NOTE:  Label is a predefined operand which should not be redefined in
  4313 //        the AD file.  It is generically handled within the ADLC.
  4315 //----------Conditional Branch Operands----------------------------------------
  4316 // Comparison Op  - This is the operation of the comparison, and is limited to
  4317 //                  the following set of codes:
  4318 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4319 //
  4320 // Other attributes of the comparison, such as unsignedness, are specified
  4321 // by the comparison instruction that sets a condition code flags register.
  4322 // That result is represented by a flags operand whose subtype is appropriate
  4323 // to the unsignedness (etc.) of the comparison.
  4324 //
  4325 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4326 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4327 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4329 operand cmpOp() %{
  4330   match(Bool);
  4332   format %{ "" %}
  4333   interface(COND_INTER) %{
  4334     equal(0x1);
  4335     not_equal(0x9);
  4336     less(0x3);
  4337     greater_equal(0xB);
  4338     less_equal(0x2);
  4339     greater(0xA);
  4340     overflow(0x7);
  4341     no_overflow(0xF);
  4342   %}
  4343 %}
  4345 // Comparison Op, unsigned
  4346 operand cmpOpU() %{
  4347   match(Bool);
  4348   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4349             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4351   format %{ "u" %}
  4352   interface(COND_INTER) %{
  4353     equal(0x1);
  4354     not_equal(0x9);
  4355     less(0x5);
  4356     greater_equal(0xD);
  4357     less_equal(0x4);
  4358     greater(0xC);
  4359     overflow(0x7);
  4360     no_overflow(0xF);
  4361   %}
  4362 %}
  4364 // Comparison Op, pointer (same as unsigned)
  4365 operand cmpOpP() %{
  4366   match(Bool);
  4367   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4368             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4370   format %{ "p" %}
  4371   interface(COND_INTER) %{
  4372     equal(0x1);
  4373     not_equal(0x9);
  4374     less(0x5);
  4375     greater_equal(0xD);
  4376     less_equal(0x4);
  4377     greater(0xC);
  4378     overflow(0x7);
  4379     no_overflow(0xF);
  4380   %}
  4381 %}
  4383 // Comparison Op, branch-register encoding
  4384 operand cmpOp_reg() %{
  4385   match(Bool);
  4386   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4387             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4389   format %{ "" %}
  4390   interface(COND_INTER) %{
  4391     equal        (0x1);
  4392     not_equal    (0x5);
  4393     less         (0x3);
  4394     greater_equal(0x7);
  4395     less_equal   (0x2);
  4396     greater      (0x6);
  4397     overflow(0x7); // not supported
  4398     no_overflow(0xF); // not supported
  4399   %}
  4400 %}
  4402 // Comparison Code, floating, unordered same as less
  4403 operand cmpOpF() %{
  4404   match(Bool);
  4405   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4406             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4408   format %{ "fl" %}
  4409   interface(COND_INTER) %{
  4410     equal(0x9);
  4411     not_equal(0x1);
  4412     less(0x3);
  4413     greater_equal(0xB);
  4414     less_equal(0xE);
  4415     greater(0x6);
  4417     overflow(0x7); // not supported
  4418     no_overflow(0xF); // not supported
  4419   %}
  4420 %}
  4422 // Used by long compare
  4423 operand cmpOp_commute() %{
  4424   match(Bool);
  4425   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4426             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4428   format %{ "" %}
  4429   interface(COND_INTER) %{
  4430     equal(0x1);
  4431     not_equal(0x9);
  4432     less(0xA);
  4433     greater_equal(0x2);
  4434     less_equal(0xB);
  4435     greater(0x3);
  4436     overflow(0x7);
  4437     no_overflow(0xF);
  4438   %}
  4439 %}
  4441 //----------OPERAND CLASSES----------------------------------------------------
  4442 // Operand Classes are groups of operands that are used to simplify
  4443 // instruction definitions by not requiring the AD writer to specify separate
  4444 // instructions for every form of operand when the instruction accepts
  4445 // multiple operand types with the same basic encoding and format.  The classic
  4446 // case of this is memory operands.
  4447 opclass memory( indirect, indOffset13, indIndex );
  4448 opclass indIndexMemory( indIndex );
  4450 //----------PIPELINE-----------------------------------------------------------
  4451 pipeline %{
  4453 //----------ATTRIBUTES---------------------------------------------------------
  4454 attributes %{
  4455   fixed_size_instructions;           // Fixed size instructions
  4456   branch_has_delay_slot;             // Branch has delay slot following
  4457   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4458   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4459   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4460   instruction_fetch_units = 1;       // of 16 bytes
  4462   // List of nop instructions
  4463   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4464 %}
  4466 //----------RESOURCES----------------------------------------------------------
  4467 // Resources are the functional units available to the machine
  4468 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4470 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4471 // Pipeline Description specifies the stages in the machine's pipeline
  4473 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4475 //----------PIPELINE CLASSES---------------------------------------------------
  4476 // Pipeline Classes describe the stages in which input and output are
  4477 // referenced by the hardware pipeline.
  4479 // Integer ALU reg-reg operation
  4480 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4481     single_instruction;
  4482     dst   : E(write);
  4483     src1  : R(read);
  4484     src2  : R(read);
  4485     IALU  : R;
  4486 %}
  4488 // Integer ALU reg-reg long operation
  4489 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4490     instruction_count(2);
  4491     dst   : E(write);
  4492     src1  : R(read);
  4493     src2  : R(read);
  4494     IALU  : R;
  4495     IALU  : R;
  4496 %}
  4498 // Integer ALU reg-reg long dependent operation
  4499 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4500     instruction_count(1); multiple_bundles;
  4501     dst   : E(write);
  4502     src1  : R(read);
  4503     src2  : R(read);
  4504     cr    : E(write);
  4505     IALU  : R(2);
  4506 %}
  4508 // Integer ALU reg-imm operaion
  4509 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4510     single_instruction;
  4511     dst   : E(write);
  4512     src1  : R(read);
  4513     IALU  : R;
  4514 %}
  4516 // Integer ALU reg-reg operation with condition code
  4517 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4518     single_instruction;
  4519     dst   : E(write);
  4520     cr    : E(write);
  4521     src1  : R(read);
  4522     src2  : R(read);
  4523     IALU  : R;
  4524 %}
  4526 // Integer ALU reg-imm operation with condition code
  4527 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4528     single_instruction;
  4529     dst   : E(write);
  4530     cr    : E(write);
  4531     src1  : R(read);
  4532     IALU  : R;
  4533 %}
  4535 // Integer ALU zero-reg operation
  4536 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4537     single_instruction;
  4538     dst   : E(write);
  4539     src2  : R(read);
  4540     IALU  : R;
  4541 %}
  4543 // Integer ALU zero-reg operation with condition code only
  4544 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4545     single_instruction;
  4546     cr    : E(write);
  4547     src   : R(read);
  4548     IALU  : R;
  4549 %}
  4551 // Integer ALU reg-reg operation with condition code only
  4552 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4553     single_instruction;
  4554     cr    : E(write);
  4555     src1  : R(read);
  4556     src2  : R(read);
  4557     IALU  : R;
  4558 %}
  4560 // Integer ALU reg-imm operation with condition code only
  4561 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4562     single_instruction;
  4563     cr    : E(write);
  4564     src1  : R(read);
  4565     IALU  : R;
  4566 %}
  4568 // Integer ALU reg-reg-zero operation with condition code only
  4569 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4570     single_instruction;
  4571     cr    : E(write);
  4572     src1  : R(read);
  4573     src2  : R(read);
  4574     IALU  : R;
  4575 %}
  4577 // Integer ALU reg-imm-zero operation with condition code only
  4578 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4579     single_instruction;
  4580     cr    : E(write);
  4581     src1  : R(read);
  4582     IALU  : R;
  4583 %}
  4585 // Integer ALU reg-reg operation with condition code, src1 modified
  4586 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4587     single_instruction;
  4588     cr    : E(write);
  4589     src1  : E(write);
  4590     src1  : R(read);
  4591     src2  : R(read);
  4592     IALU  : R;
  4593 %}
  4595 // Integer ALU reg-imm operation with condition code, src1 modified
  4596 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4597     single_instruction;
  4598     cr    : E(write);
  4599     src1  : E(write);
  4600     src1  : R(read);
  4601     IALU  : R;
  4602 %}
  4604 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4605     multiple_bundles;
  4606     dst   : E(write)+4;
  4607     cr    : E(write);
  4608     src1  : R(read);
  4609     src2  : R(read);
  4610     IALU  : R(3);
  4611     BR    : R(2);
  4612 %}
  4614 // Integer ALU operation
  4615 pipe_class ialu_none(iRegI dst) %{
  4616     single_instruction;
  4617     dst   : E(write);
  4618     IALU  : R;
  4619 %}
  4621 // Integer ALU reg operation
  4622 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4623     single_instruction; may_have_no_code;
  4624     dst   : E(write);
  4625     src   : R(read);
  4626     IALU  : R;
  4627 %}
  4629 // Integer ALU reg conditional operation
  4630 // This instruction has a 1 cycle stall, and cannot execute
  4631 // in the same cycle as the instruction setting the condition
  4632 // code. We kludge this by pretending to read the condition code
  4633 // 1 cycle earlier, and by marking the functional units as busy
  4634 // for 2 cycles with the result available 1 cycle later than
  4635 // is really the case.
  4636 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4637     single_instruction;
  4638     op2_out : C(write);
  4639     op1     : R(read);
  4640     cr      : R(read);       // This is really E, with a 1 cycle stall
  4641     BR      : R(2);
  4642     MS      : R(2);
  4643 %}
  4645 #ifdef _LP64
  4646 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4647     instruction_count(1); multiple_bundles;
  4648     dst     : C(write)+1;
  4649     src     : R(read)+1;
  4650     IALU    : R(1);
  4651     BR      : E(2);
  4652     MS      : E(2);
  4653 %}
  4654 #endif
  4656 // Integer ALU reg operation
  4657 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4658     single_instruction; may_have_no_code;
  4659     dst   : E(write);
  4660     src   : R(read);
  4661     IALU  : R;
  4662 %}
  4663 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4664     single_instruction; may_have_no_code;
  4665     dst   : E(write);
  4666     src   : R(read);
  4667     IALU  : R;
  4668 %}
  4670 // Two integer ALU reg operations
  4671 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4672     instruction_count(2);
  4673     dst   : E(write);
  4674     src   : R(read);
  4675     A0    : R;
  4676     A1    : R;
  4677 %}
  4679 // Two integer ALU reg operations
  4680 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4681     instruction_count(2); may_have_no_code;
  4682     dst   : E(write);
  4683     src   : R(read);
  4684     A0    : R;
  4685     A1    : R;
  4686 %}
  4688 // Integer ALU imm operation
  4689 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4690     single_instruction;
  4691     dst   : E(write);
  4692     IALU  : R;
  4693 %}
  4695 // Integer ALU reg-reg with carry operation
  4696 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4697     single_instruction;
  4698     dst   : E(write);
  4699     src1  : R(read);
  4700     src2  : R(read);
  4701     IALU  : R;
  4702 %}
  4704 // Integer ALU cc operation
  4705 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4706     single_instruction;
  4707     dst   : E(write);
  4708     cc    : R(read);
  4709     IALU  : R;
  4710 %}
  4712 // Integer ALU cc / second IALU operation
  4713 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4714     instruction_count(1); multiple_bundles;
  4715     dst   : E(write)+1;
  4716     src   : R(read);
  4717     IALU  : R;
  4718 %}
  4720 // Integer ALU cc / second IALU operation
  4721 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4722     instruction_count(1); multiple_bundles;
  4723     dst   : E(write)+1;
  4724     p     : R(read);
  4725     q     : R(read);
  4726     IALU  : R;
  4727 %}
  4729 // Integer ALU hi-lo-reg operation
  4730 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4731     instruction_count(1); multiple_bundles;
  4732     dst   : E(write)+1;
  4733     IALU  : R(2);
  4734 %}
  4736 // Float ALU hi-lo-reg operation (with temp)
  4737 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4738     instruction_count(1); multiple_bundles;
  4739     dst   : E(write)+1;
  4740     IALU  : R(2);
  4741 %}
  4743 // Long Constant
  4744 pipe_class loadConL( iRegL dst, immL src ) %{
  4745     instruction_count(2); multiple_bundles;
  4746     dst   : E(write)+1;
  4747     IALU  : R(2);
  4748     IALU  : R(2);
  4749 %}
  4751 // Pointer Constant
  4752 pipe_class loadConP( iRegP dst, immP src ) %{
  4753     instruction_count(0); multiple_bundles;
  4754     fixed_latency(6);
  4755 %}
  4757 // Polling Address
  4758 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4759 #ifdef _LP64
  4760     instruction_count(0); multiple_bundles;
  4761     fixed_latency(6);
  4762 #else
  4763     dst   : E(write);
  4764     IALU  : R;
  4765 #endif
  4766 %}
  4768 // Long Constant small
  4769 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4770     instruction_count(2);
  4771     dst   : E(write);
  4772     IALU  : R;
  4773     IALU  : R;
  4774 %}
  4776 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4777 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4778     instruction_count(1); multiple_bundles;
  4779     src   : R(read);
  4780     dst   : M(write)+1;
  4781     IALU  : R;
  4782     MS    : E;
  4783 %}
  4785 // Integer ALU nop operation
  4786 pipe_class ialu_nop() %{
  4787     single_instruction;
  4788     IALU  : R;
  4789 %}
  4791 // Integer ALU nop operation
  4792 pipe_class ialu_nop_A0() %{
  4793     single_instruction;
  4794     A0    : R;
  4795 %}
  4797 // Integer ALU nop operation
  4798 pipe_class ialu_nop_A1() %{
  4799     single_instruction;
  4800     A1    : R;
  4801 %}
  4803 // Integer Multiply reg-reg operation
  4804 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4805     single_instruction;
  4806     dst   : E(write);
  4807     src1  : R(read);
  4808     src2  : R(read);
  4809     MS    : R(5);
  4810 %}
  4812 // Integer Multiply reg-imm operation
  4813 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4814     single_instruction;
  4815     dst   : E(write);
  4816     src1  : R(read);
  4817     MS    : R(5);
  4818 %}
  4820 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4821     single_instruction;
  4822     dst   : E(write)+4;
  4823     src1  : R(read);
  4824     src2  : R(read);
  4825     MS    : R(6);
  4826 %}
  4828 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4829     single_instruction;
  4830     dst   : E(write)+4;
  4831     src1  : R(read);
  4832     MS    : R(6);
  4833 %}
  4835 // Integer Divide reg-reg
  4836 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4837     instruction_count(1); multiple_bundles;
  4838     dst   : E(write);
  4839     temp  : E(write);
  4840     src1  : R(read);
  4841     src2  : R(read);
  4842     temp  : R(read);
  4843     MS    : R(38);
  4844 %}
  4846 // Integer Divide reg-imm
  4847 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4848     instruction_count(1); multiple_bundles;
  4849     dst   : E(write);
  4850     temp  : E(write);
  4851     src1  : R(read);
  4852     temp  : R(read);
  4853     MS    : R(38);
  4854 %}
  4856 // Long Divide
  4857 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4858     dst  : E(write)+71;
  4859     src1 : R(read);
  4860     src2 : R(read)+1;
  4861     MS   : R(70);
  4862 %}
  4864 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4865     dst  : E(write)+71;
  4866     src1 : R(read);
  4867     MS   : R(70);
  4868 %}
  4870 // Floating Point Add Float
  4871 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4872     single_instruction;
  4873     dst   : X(write);
  4874     src1  : E(read);
  4875     src2  : E(read);
  4876     FA    : R;
  4877 %}
  4879 // Floating Point Add Double
  4880 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4881     single_instruction;
  4882     dst   : X(write);
  4883     src1  : E(read);
  4884     src2  : E(read);
  4885     FA    : R;
  4886 %}
  4888 // Floating Point Conditional Move based on integer flags
  4889 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4890     single_instruction;
  4891     dst   : X(write);
  4892     src   : E(read);
  4893     cr    : R(read);
  4894     FA    : R(2);
  4895     BR    : R(2);
  4896 %}
  4898 // Floating Point Conditional Move based on integer flags
  4899 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4900     single_instruction;
  4901     dst   : X(write);
  4902     src   : E(read);
  4903     cr    : R(read);
  4904     FA    : R(2);
  4905     BR    : R(2);
  4906 %}
  4908 // Floating Point Multiply Float
  4909 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4910     single_instruction;
  4911     dst   : X(write);
  4912     src1  : E(read);
  4913     src2  : E(read);
  4914     FM    : R;
  4915 %}
  4917 // Floating Point Multiply Double
  4918 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4919     single_instruction;
  4920     dst   : X(write);
  4921     src1  : E(read);
  4922     src2  : E(read);
  4923     FM    : R;
  4924 %}
  4926 // Floating Point Divide Float
  4927 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4928     single_instruction;
  4929     dst   : X(write);
  4930     src1  : E(read);
  4931     src2  : E(read);
  4932     FM    : R;
  4933     FDIV  : C(14);
  4934 %}
  4936 // Floating Point Divide Double
  4937 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4938     single_instruction;
  4939     dst   : X(write);
  4940     src1  : E(read);
  4941     src2  : E(read);
  4942     FM    : R;
  4943     FDIV  : C(17);
  4944 %}
  4946 // Floating Point Move/Negate/Abs Float
  4947 pipe_class faddF_reg(regF dst, regF src) %{
  4948     single_instruction;
  4949     dst   : W(write);
  4950     src   : E(read);
  4951     FA    : R(1);
  4952 %}
  4954 // Floating Point Move/Negate/Abs Double
  4955 pipe_class faddD_reg(regD dst, regD src) %{
  4956     single_instruction;
  4957     dst   : W(write);
  4958     src   : E(read);
  4959     FA    : R;
  4960 %}
  4962 // Floating Point Convert F->D
  4963 pipe_class fcvtF2D(regD dst, regF src) %{
  4964     single_instruction;
  4965     dst   : X(write);
  4966     src   : E(read);
  4967     FA    : R;
  4968 %}
  4970 // Floating Point Convert I->D
  4971 pipe_class fcvtI2D(regD dst, regF src) %{
  4972     single_instruction;
  4973     dst   : X(write);
  4974     src   : E(read);
  4975     FA    : R;
  4976 %}
  4978 // Floating Point Convert LHi->D
  4979 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4980     single_instruction;
  4981     dst   : X(write);
  4982     src   : E(read);
  4983     FA    : R;
  4984 %}
  4986 // Floating Point Convert L->D
  4987 pipe_class fcvtL2D(regD dst, regF src) %{
  4988     single_instruction;
  4989     dst   : X(write);
  4990     src   : E(read);
  4991     FA    : R;
  4992 %}
  4994 // Floating Point Convert L->F
  4995 pipe_class fcvtL2F(regD dst, regF src) %{
  4996     single_instruction;
  4997     dst   : X(write);
  4998     src   : E(read);
  4999     FA    : R;
  5000 %}
  5002 // Floating Point Convert D->F
  5003 pipe_class fcvtD2F(regD dst, regF src) %{
  5004     single_instruction;
  5005     dst   : X(write);
  5006     src   : E(read);
  5007     FA    : R;
  5008 %}
  5010 // Floating Point Convert I->L
  5011 pipe_class fcvtI2L(regD dst, regF src) %{
  5012     single_instruction;
  5013     dst   : X(write);
  5014     src   : E(read);
  5015     FA    : R;
  5016 %}
  5018 // Floating Point Convert D->F
  5019 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  5020     instruction_count(1); multiple_bundles;
  5021     dst   : X(write)+6;
  5022     src   : E(read);
  5023     FA    : R;
  5024 %}
  5026 // Floating Point Convert D->L
  5027 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  5028     instruction_count(1); multiple_bundles;
  5029     dst   : X(write)+6;
  5030     src   : E(read);
  5031     FA    : R;
  5032 %}
  5034 // Floating Point Convert F->I
  5035 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  5036     instruction_count(1); multiple_bundles;
  5037     dst   : X(write)+6;
  5038     src   : E(read);
  5039     FA    : R;
  5040 %}
  5042 // Floating Point Convert F->L
  5043 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  5044     instruction_count(1); multiple_bundles;
  5045     dst   : X(write)+6;
  5046     src   : E(read);
  5047     FA    : R;
  5048 %}
  5050 // Floating Point Convert I->F
  5051 pipe_class fcvtI2F(regF dst, regF src) %{
  5052     single_instruction;
  5053     dst   : X(write);
  5054     src   : E(read);
  5055     FA    : R;
  5056 %}
  5058 // Floating Point Compare
  5059 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  5060     single_instruction;
  5061     cr    : X(write);
  5062     src1  : E(read);
  5063     src2  : E(read);
  5064     FA    : R;
  5065 %}
  5067 // Floating Point Compare
  5068 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  5069     single_instruction;
  5070     cr    : X(write);
  5071     src1  : E(read);
  5072     src2  : E(read);
  5073     FA    : R;
  5074 %}
  5076 // Floating Add Nop
  5077 pipe_class fadd_nop() %{
  5078     single_instruction;
  5079     FA  : R;
  5080 %}
  5082 // Integer Store to Memory
  5083 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  5084     single_instruction;
  5085     mem   : R(read);
  5086     src   : C(read);
  5087     MS    : R;
  5088 %}
  5090 // Integer Store to Memory
  5091 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5092     single_instruction;
  5093     mem   : R(read);
  5094     src   : C(read);
  5095     MS    : R;
  5096 %}
  5098 // Integer Store Zero to Memory
  5099 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5100     single_instruction;
  5101     mem   : R(read);
  5102     MS    : R;
  5103 %}
  5105 // Special Stack Slot Store
  5106 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5107     single_instruction;
  5108     stkSlot : R(read);
  5109     src     : C(read);
  5110     MS      : R;
  5111 %}
  5113 // Special Stack Slot Store
  5114 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5115     instruction_count(2); multiple_bundles;
  5116     stkSlot : R(read);
  5117     src     : C(read);
  5118     MS      : R(2);
  5119 %}
  5121 // Float Store
  5122 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5123     single_instruction;
  5124     mem : R(read);
  5125     src : C(read);
  5126     MS  : R;
  5127 %}
  5129 // Float Store
  5130 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5131     single_instruction;
  5132     mem : R(read);
  5133     MS  : R;
  5134 %}
  5136 // Double Store
  5137 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5138     instruction_count(1);
  5139     mem : R(read);
  5140     src : C(read);
  5141     MS  : R;
  5142 %}
  5144 // Double Store
  5145 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5146     single_instruction;
  5147     mem : R(read);
  5148     MS  : R;
  5149 %}
  5151 // Special Stack Slot Float Store
  5152 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5153     single_instruction;
  5154     stkSlot : R(read);
  5155     src     : C(read);
  5156     MS      : R;
  5157 %}
  5159 // Special Stack Slot Double Store
  5160 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5161     single_instruction;
  5162     stkSlot : R(read);
  5163     src     : C(read);
  5164     MS      : R;
  5165 %}
  5167 // Integer Load (when sign bit propagation not needed)
  5168 pipe_class iload_mem(iRegI dst, memory mem) %{
  5169     single_instruction;
  5170     mem : R(read);
  5171     dst : C(write);
  5172     MS  : R;
  5173 %}
  5175 // Integer Load from stack operand
  5176 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5177     single_instruction;
  5178     mem : R(read);
  5179     dst : C(write);
  5180     MS  : R;
  5181 %}
  5183 // Integer Load (when sign bit propagation or masking is needed)
  5184 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5185     single_instruction;
  5186     mem : R(read);
  5187     dst : M(write);
  5188     MS  : R;
  5189 %}
  5191 // Float Load
  5192 pipe_class floadF_mem(regF dst, memory mem) %{
  5193     single_instruction;
  5194     mem : R(read);
  5195     dst : M(write);
  5196     MS  : R;
  5197 %}
  5199 // Float Load
  5200 pipe_class floadD_mem(regD dst, memory mem) %{
  5201     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5202     mem : R(read);
  5203     dst : M(write);
  5204     MS  : R;
  5205 %}
  5207 // Float Load
  5208 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5209     single_instruction;
  5210     stkSlot : R(read);
  5211     dst : M(write);
  5212     MS  : R;
  5213 %}
  5215 // Float Load
  5216 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5217     single_instruction;
  5218     stkSlot : R(read);
  5219     dst : M(write);
  5220     MS  : R;
  5221 %}
  5223 // Memory Nop
  5224 pipe_class mem_nop() %{
  5225     single_instruction;
  5226     MS  : R;
  5227 %}
  5229 pipe_class sethi(iRegP dst, immI src) %{
  5230     single_instruction;
  5231     dst  : E(write);
  5232     IALU : R;
  5233 %}
  5235 pipe_class loadPollP(iRegP poll) %{
  5236     single_instruction;
  5237     poll : R(read);
  5238     MS   : R;
  5239 %}
  5241 pipe_class br(Universe br, label labl) %{
  5242     single_instruction_with_delay_slot;
  5243     BR  : R;
  5244 %}
  5246 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5247     single_instruction_with_delay_slot;
  5248     cr    : E(read);
  5249     BR    : R;
  5250 %}
  5252 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5253     single_instruction_with_delay_slot;
  5254     op1 : E(read);
  5255     BR  : R;
  5256     MS  : R;
  5257 %}
  5259 // Compare and branch
  5260 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
  5261     instruction_count(2); has_delay_slot;
  5262     cr    : E(write);
  5263     src1  : R(read);
  5264     src2  : R(read);
  5265     IALU  : R;
  5266     BR    : R;
  5267 %}
  5269 // Compare and branch
  5270 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
  5271     instruction_count(2); has_delay_slot;
  5272     cr    : E(write);
  5273     src1  : R(read);
  5274     IALU  : R;
  5275     BR    : R;
  5276 %}
  5278 // Compare and branch using cbcond
  5279 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
  5280     single_instruction;
  5281     src1  : E(read);
  5282     src2  : E(read);
  5283     IALU  : R;
  5284     BR    : R;
  5285 %}
  5287 // Compare and branch using cbcond
  5288 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
  5289     single_instruction;
  5290     src1  : E(read);
  5291     IALU  : R;
  5292     BR    : R;
  5293 %}
  5295 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5296     single_instruction_with_delay_slot;
  5297     cr    : E(read);
  5298     BR    : R;
  5299 %}
  5301 pipe_class br_nop() %{
  5302     single_instruction;
  5303     BR  : R;
  5304 %}
  5306 pipe_class simple_call(method meth) %{
  5307     instruction_count(2); multiple_bundles; force_serialization;
  5308     fixed_latency(100);
  5309     BR  : R(1);
  5310     MS  : R(1);
  5311     A0  : R(1);
  5312 %}
  5314 pipe_class compiled_call(method meth) %{
  5315     instruction_count(1); multiple_bundles; force_serialization;
  5316     fixed_latency(100);
  5317     MS  : R(1);
  5318 %}
  5320 pipe_class call(method meth) %{
  5321     instruction_count(0); multiple_bundles; force_serialization;
  5322     fixed_latency(100);
  5323 %}
  5325 pipe_class tail_call(Universe ignore, label labl) %{
  5326     single_instruction; has_delay_slot;
  5327     fixed_latency(100);
  5328     BR  : R(1);
  5329     MS  : R(1);
  5330 %}
  5332 pipe_class ret(Universe ignore) %{
  5333     single_instruction; has_delay_slot;
  5334     BR  : R(1);
  5335     MS  : R(1);
  5336 %}
  5338 pipe_class ret_poll(g3RegP poll) %{
  5339     instruction_count(3); has_delay_slot;
  5340     poll : E(read);
  5341     MS   : R;
  5342 %}
  5344 // The real do-nothing guy
  5345 pipe_class empty( ) %{
  5346     instruction_count(0);
  5347 %}
  5349 pipe_class long_memory_op() %{
  5350     instruction_count(0); multiple_bundles; force_serialization;
  5351     fixed_latency(25);
  5352     MS  : R(1);
  5353 %}
  5355 // Check-cast
  5356 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5357     array : R(read);
  5358     match  : R(read);
  5359     IALU   : R(2);
  5360     BR     : R(2);
  5361     MS     : R;
  5362 %}
  5364 // Convert FPU flags into +1,0,-1
  5365 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5366     src1  : E(read);
  5367     src2  : E(read);
  5368     dst   : E(write);
  5369     FA    : R;
  5370     MS    : R(2);
  5371     BR    : R(2);
  5372 %}
  5374 // Compare for p < q, and conditionally add y
  5375 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5376     p     : E(read);
  5377     q     : E(read);
  5378     y     : E(read);
  5379     IALU  : R(3)
  5380 %}
  5382 // Perform a compare, then move conditionally in a branch delay slot.
  5383 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5384     src2   : E(read);
  5385     srcdst : E(read);
  5386     IALU   : R;
  5387     BR     : R;
  5388 %}
  5390 // Define the class for the Nop node
  5391 define %{
  5392    MachNop = ialu_nop;
  5393 %}
  5395 %}
  5397 //----------INSTRUCTIONS-------------------------------------------------------
  5399 //------------Special Stack Slot instructions - no match rules-----------------
  5400 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5401   // No match rule to avoid chain rule match.
  5402   effect(DEF dst, USE src);
  5403   ins_cost(MEMORY_REF_COST);
  5404   size(4);
  5405   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5406   opcode(Assembler::ldf_op3);
  5407   ins_encode(simple_form3_mem_reg(src, dst));
  5408   ins_pipe(floadF_stk);
  5409 %}
  5411 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5412   // No match rule to avoid chain rule match.
  5413   effect(DEF dst, USE src);
  5414   ins_cost(MEMORY_REF_COST);
  5415   size(4);
  5416   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5417   opcode(Assembler::lddf_op3);
  5418   ins_encode(simple_form3_mem_reg(src, dst));
  5419   ins_pipe(floadD_stk);
  5420 %}
  5422 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5423   // No match rule to avoid chain rule match.
  5424   effect(DEF dst, USE src);
  5425   ins_cost(MEMORY_REF_COST);
  5426   size(4);
  5427   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5428   opcode(Assembler::stf_op3);
  5429   ins_encode(simple_form3_mem_reg(dst, src));
  5430   ins_pipe(fstoreF_stk_reg);
  5431 %}
  5433 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5434   // No match rule to avoid chain rule match.
  5435   effect(DEF dst, USE src);
  5436   ins_cost(MEMORY_REF_COST);
  5437   size(4);
  5438   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5439   opcode(Assembler::stdf_op3);
  5440   ins_encode(simple_form3_mem_reg(dst, src));
  5441   ins_pipe(fstoreD_stk_reg);
  5442 %}
  5444 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5445   effect(DEF dst, USE src);
  5446   ins_cost(MEMORY_REF_COST*2);
  5447   size(8);
  5448   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5449             "STW    R_G0,$dst.lo" %}
  5450   opcode(Assembler::stw_op3);
  5451   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5452   ins_pipe(lstoreI_stk_reg);
  5453 %}
  5455 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5456   // No match rule to avoid chain rule match.
  5457   effect(DEF dst, USE src);
  5458   ins_cost(MEMORY_REF_COST);
  5459   size(4);
  5460   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5461   opcode(Assembler::stx_op3);
  5462   ins_encode(simple_form3_mem_reg( dst, src ) );
  5463   ins_pipe(istore_stk_reg);
  5464 %}
  5466 //---------- Chain stack slots between similar types --------
  5468 // Load integer from stack slot
  5469 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5470   match(Set dst src);
  5471   ins_cost(MEMORY_REF_COST);
  5473   size(4);
  5474   format %{ "LDUW   $src,$dst\t!stk" %}
  5475   opcode(Assembler::lduw_op3);
  5476   ins_encode(simple_form3_mem_reg( src, dst ) );
  5477   ins_pipe(iload_mem);
  5478 %}
  5480 // Store integer to stack slot
  5481 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5482   match(Set dst src);
  5483   ins_cost(MEMORY_REF_COST);
  5485   size(4);
  5486   format %{ "STW    $src,$dst\t!stk" %}
  5487   opcode(Assembler::stw_op3);
  5488   ins_encode(simple_form3_mem_reg( dst, src ) );
  5489   ins_pipe(istore_mem_reg);
  5490 %}
  5492 // Load long from stack slot
  5493 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5494   match(Set dst src);
  5496   ins_cost(MEMORY_REF_COST);
  5497   size(4);
  5498   format %{ "LDX    $src,$dst\t! long" %}
  5499   opcode(Assembler::ldx_op3);
  5500   ins_encode(simple_form3_mem_reg( src, dst ) );
  5501   ins_pipe(iload_mem);
  5502 %}
  5504 // Store long to stack slot
  5505 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5506   match(Set dst src);
  5508   ins_cost(MEMORY_REF_COST);
  5509   size(4);
  5510   format %{ "STX    $src,$dst\t! long" %}
  5511   opcode(Assembler::stx_op3);
  5512   ins_encode(simple_form3_mem_reg( dst, src ) );
  5513   ins_pipe(istore_mem_reg);
  5514 %}
  5516 #ifdef _LP64
  5517 // Load pointer from stack slot, 64-bit encoding
  5518 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5519   match(Set dst src);
  5520   ins_cost(MEMORY_REF_COST);
  5521   size(4);
  5522   format %{ "LDX    $src,$dst\t!ptr" %}
  5523   opcode(Assembler::ldx_op3);
  5524   ins_encode(simple_form3_mem_reg( src, dst ) );
  5525   ins_pipe(iload_mem);
  5526 %}
  5528 // Store pointer to stack slot
  5529 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5530   match(Set dst src);
  5531   ins_cost(MEMORY_REF_COST);
  5532   size(4);
  5533   format %{ "STX    $src,$dst\t!ptr" %}
  5534   opcode(Assembler::stx_op3);
  5535   ins_encode(simple_form3_mem_reg( dst, src ) );
  5536   ins_pipe(istore_mem_reg);
  5537 %}
  5538 #else // _LP64
  5539 // Load pointer from stack slot, 32-bit encoding
  5540 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5541   match(Set dst src);
  5542   ins_cost(MEMORY_REF_COST);
  5543   format %{ "LDUW   $src,$dst\t!ptr" %}
  5544   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5545   ins_encode(simple_form3_mem_reg( src, dst ) );
  5546   ins_pipe(iload_mem);
  5547 %}
  5549 // Store pointer to stack slot
  5550 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5551   match(Set dst src);
  5552   ins_cost(MEMORY_REF_COST);
  5553   format %{ "STW    $src,$dst\t!ptr" %}
  5554   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5555   ins_encode(simple_form3_mem_reg( dst, src ) );
  5556   ins_pipe(istore_mem_reg);
  5557 %}
  5558 #endif // _LP64
  5560 //------------Special Nop instructions for bundling - no match rules-----------
  5561 // Nop using the A0 functional unit
  5562 instruct Nop_A0() %{
  5563   ins_cost(0);
  5565   format %{ "NOP    ! Alu Pipeline" %}
  5566   opcode(Assembler::or_op3, Assembler::arith_op);
  5567   ins_encode( form2_nop() );
  5568   ins_pipe(ialu_nop_A0);
  5569 %}
  5571 // Nop using the A1 functional unit
  5572 instruct Nop_A1( ) %{
  5573   ins_cost(0);
  5575   format %{ "NOP    ! Alu Pipeline" %}
  5576   opcode(Assembler::or_op3, Assembler::arith_op);
  5577   ins_encode( form2_nop() );
  5578   ins_pipe(ialu_nop_A1);
  5579 %}
  5581 // Nop using the memory functional unit
  5582 instruct Nop_MS( ) %{
  5583   ins_cost(0);
  5585   format %{ "NOP    ! Memory Pipeline" %}
  5586   ins_encode( emit_mem_nop );
  5587   ins_pipe(mem_nop);
  5588 %}
  5590 // Nop using the floating add functional unit
  5591 instruct Nop_FA( ) %{
  5592   ins_cost(0);
  5594   format %{ "NOP    ! Floating Add Pipeline" %}
  5595   ins_encode( emit_fadd_nop );
  5596   ins_pipe(fadd_nop);
  5597 %}
  5599 // Nop using the branch functional unit
  5600 instruct Nop_BR( ) %{
  5601   ins_cost(0);
  5603   format %{ "NOP    ! Branch Pipeline" %}
  5604   ins_encode( emit_br_nop );
  5605   ins_pipe(br_nop);
  5606 %}
  5608 //----------Load/Store/Move Instructions---------------------------------------
  5609 //----------Load Instructions--------------------------------------------------
  5610 // Load Byte (8bit signed)
  5611 instruct loadB(iRegI dst, memory mem) %{
  5612   match(Set dst (LoadB mem));
  5613   ins_cost(MEMORY_REF_COST);
  5615   size(4);
  5616   format %{ "LDSB   $mem,$dst\t! byte" %}
  5617   ins_encode %{
  5618     __ ldsb($mem$$Address, $dst$$Register);
  5619   %}
  5620   ins_pipe(iload_mask_mem);
  5621 %}
  5623 // Load Byte (8bit signed) into a Long Register
  5624 instruct loadB2L(iRegL dst, memory mem) %{
  5625   match(Set dst (ConvI2L (LoadB mem)));
  5626   ins_cost(MEMORY_REF_COST);
  5628   size(4);
  5629   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5630   ins_encode %{
  5631     __ ldsb($mem$$Address, $dst$$Register);
  5632   %}
  5633   ins_pipe(iload_mask_mem);
  5634 %}
  5636 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5637 instruct loadUB(iRegI dst, memory mem) %{
  5638   match(Set dst (LoadUB mem));
  5639   ins_cost(MEMORY_REF_COST);
  5641   size(4);
  5642   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5643   ins_encode %{
  5644     __ ldub($mem$$Address, $dst$$Register);
  5645   %}
  5646   ins_pipe(iload_mem);
  5647 %}
  5649 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5650 instruct loadUB2L(iRegL dst, memory mem) %{
  5651   match(Set dst (ConvI2L (LoadUB mem)));
  5652   ins_cost(MEMORY_REF_COST);
  5654   size(4);
  5655   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5656   ins_encode %{
  5657     __ ldub($mem$$Address, $dst$$Register);
  5658   %}
  5659   ins_pipe(iload_mem);
  5660 %}
  5662 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5663 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5664   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5665   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5667   size(2*4);
  5668   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5669             "AND    $dst,$mask,$dst" %}
  5670   ins_encode %{
  5671     __ ldub($mem$$Address, $dst$$Register);
  5672     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5673   %}
  5674   ins_pipe(iload_mem);
  5675 %}
  5677 // Load Short (16bit signed)
  5678 instruct loadS(iRegI dst, memory mem) %{
  5679   match(Set dst (LoadS mem));
  5680   ins_cost(MEMORY_REF_COST);
  5682   size(4);
  5683   format %{ "LDSH   $mem,$dst\t! short" %}
  5684   ins_encode %{
  5685     __ ldsh($mem$$Address, $dst$$Register);
  5686   %}
  5687   ins_pipe(iload_mask_mem);
  5688 %}
  5690 // Load Short (16 bit signed) to Byte (8 bit signed)
  5691 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5692   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5693   ins_cost(MEMORY_REF_COST);
  5695   size(4);
  5697   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5698   ins_encode %{
  5699     __ ldsb($mem$$Address, $dst$$Register, 1);
  5700   %}
  5701   ins_pipe(iload_mask_mem);
  5702 %}
  5704 // Load Short (16bit signed) into a Long Register
  5705 instruct loadS2L(iRegL dst, memory mem) %{
  5706   match(Set dst (ConvI2L (LoadS mem)));
  5707   ins_cost(MEMORY_REF_COST);
  5709   size(4);
  5710   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5711   ins_encode %{
  5712     __ ldsh($mem$$Address, $dst$$Register);
  5713   %}
  5714   ins_pipe(iload_mask_mem);
  5715 %}
  5717 // Load Unsigned Short/Char (16bit UNsigned)
  5718 instruct loadUS(iRegI dst, memory mem) %{
  5719   match(Set dst (LoadUS mem));
  5720   ins_cost(MEMORY_REF_COST);
  5722   size(4);
  5723   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5724   ins_encode %{
  5725     __ lduh($mem$$Address, $dst$$Register);
  5726   %}
  5727   ins_pipe(iload_mem);
  5728 %}
  5730 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5731 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5732   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5733   ins_cost(MEMORY_REF_COST);
  5735   size(4);
  5736   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5737   ins_encode %{
  5738     __ ldsb($mem$$Address, $dst$$Register, 1);
  5739   %}
  5740   ins_pipe(iload_mask_mem);
  5741 %}
  5743 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5744 instruct loadUS2L(iRegL dst, memory mem) %{
  5745   match(Set dst (ConvI2L (LoadUS mem)));
  5746   ins_cost(MEMORY_REF_COST);
  5748   size(4);
  5749   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5750   ins_encode %{
  5751     __ lduh($mem$$Address, $dst$$Register);
  5752   %}
  5753   ins_pipe(iload_mem);
  5754 %}
  5756 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5757 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5758   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5759   ins_cost(MEMORY_REF_COST);
  5761   size(4);
  5762   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5763   ins_encode %{
  5764     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5765   %}
  5766   ins_pipe(iload_mem);
  5767 %}
  5769 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5770 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5771   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5772   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5774   size(2*4);
  5775   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5776             "AND    $dst,$mask,$dst" %}
  5777   ins_encode %{
  5778     Register Rdst = $dst$$Register;
  5779     __ lduh($mem$$Address, Rdst);
  5780     __ and3(Rdst, $mask$$constant, Rdst);
  5781   %}
  5782   ins_pipe(iload_mem);
  5783 %}
  5785 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5786 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5787   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5788   effect(TEMP dst, TEMP tmp);
  5789   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5791   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5792             "SET    $mask,$tmp\n\t"
  5793             "AND    $dst,$tmp,$dst" %}
  5794   ins_encode %{
  5795     Register Rdst = $dst$$Register;
  5796     Register Rtmp = $tmp$$Register;
  5797     __ lduh($mem$$Address, Rdst);
  5798     __ set($mask$$constant, Rtmp);
  5799     __ and3(Rdst, Rtmp, Rdst);
  5800   %}
  5801   ins_pipe(iload_mem);
  5802 %}
  5804 // Load Integer
  5805 instruct loadI(iRegI dst, memory mem) %{
  5806   match(Set dst (LoadI mem));
  5807   ins_cost(MEMORY_REF_COST);
  5809   size(4);
  5810   format %{ "LDUW   $mem,$dst\t! int" %}
  5811   ins_encode %{
  5812     __ lduw($mem$$Address, $dst$$Register);
  5813   %}
  5814   ins_pipe(iload_mem);
  5815 %}
  5817 // Load Integer to Byte (8 bit signed)
  5818 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5819   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5820   ins_cost(MEMORY_REF_COST);
  5822   size(4);
  5824   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5825   ins_encode %{
  5826     __ ldsb($mem$$Address, $dst$$Register, 3);
  5827   %}
  5828   ins_pipe(iload_mask_mem);
  5829 %}
  5831 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5832 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5833   match(Set dst (AndI (LoadI mem) mask));
  5834   ins_cost(MEMORY_REF_COST);
  5836   size(4);
  5838   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5839   ins_encode %{
  5840     __ ldub($mem$$Address, $dst$$Register, 3);
  5841   %}
  5842   ins_pipe(iload_mask_mem);
  5843 %}
  5845 // Load Integer to Short (16 bit signed)
  5846 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5847   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5848   ins_cost(MEMORY_REF_COST);
  5850   size(4);
  5852   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5853   ins_encode %{
  5854     __ ldsh($mem$$Address, $dst$$Register, 2);
  5855   %}
  5856   ins_pipe(iload_mask_mem);
  5857 %}
  5859 // Load Integer to Unsigned Short (16 bit UNsigned)
  5860 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5861   match(Set dst (AndI (LoadI mem) mask));
  5862   ins_cost(MEMORY_REF_COST);
  5864   size(4);
  5866   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5867   ins_encode %{
  5868     __ lduh($mem$$Address, $dst$$Register, 2);
  5869   %}
  5870   ins_pipe(iload_mask_mem);
  5871 %}
  5873 // Load Integer into a Long Register
  5874 instruct loadI2L(iRegL dst, memory mem) %{
  5875   match(Set dst (ConvI2L (LoadI mem)));
  5876   ins_cost(MEMORY_REF_COST);
  5878   size(4);
  5879   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5880   ins_encode %{
  5881     __ ldsw($mem$$Address, $dst$$Register);
  5882   %}
  5883   ins_pipe(iload_mask_mem);
  5884 %}
  5886 // Load Integer with mask 0xFF into a Long Register
  5887 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5888   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5889   ins_cost(MEMORY_REF_COST);
  5891   size(4);
  5892   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5893   ins_encode %{
  5894     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5895   %}
  5896   ins_pipe(iload_mem);
  5897 %}
  5899 // Load Integer with mask 0xFFFF into a Long Register
  5900 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5901   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5902   ins_cost(MEMORY_REF_COST);
  5904   size(4);
  5905   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5906   ins_encode %{
  5907     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5908   %}
  5909   ins_pipe(iload_mem);
  5910 %}
  5912 // Load Integer with a 12-bit mask into a Long Register
  5913 instruct loadI2L_immU12(iRegL dst, memory mem, immU12 mask) %{
  5914   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5915   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5917   size(2*4);
  5918   format %{ "LDUW   $mem,$dst\t! int & 12-bit mask -> long\n\t"
  5919             "AND    $dst,$mask,$dst" %}
  5920   ins_encode %{
  5921     Register Rdst = $dst$$Register;
  5922     __ lduw($mem$$Address, Rdst);
  5923     __ and3(Rdst, $mask$$constant, Rdst);
  5924   %}
  5925   ins_pipe(iload_mem);
  5926 %}
  5928 // Load Integer with a 31-bit mask into a Long Register
  5929 instruct loadI2L_immU31(iRegL dst, memory mem, immU31 mask, iRegL tmp) %{
  5930   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5931   effect(TEMP dst, TEMP tmp);
  5932   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5934   format %{ "LDUW   $mem,$dst\t! int & 31-bit mask -> long\n\t"
  5935             "SET    $mask,$tmp\n\t"
  5936             "AND    $dst,$tmp,$dst" %}
  5937   ins_encode %{
  5938     Register Rdst = $dst$$Register;
  5939     Register Rtmp = $tmp$$Register;
  5940     __ lduw($mem$$Address, Rdst);
  5941     __ set($mask$$constant, Rtmp);
  5942     __ and3(Rdst, Rtmp, Rdst);
  5943   %}
  5944   ins_pipe(iload_mem);
  5945 %}
  5947 // Load Unsigned Integer into a Long Register
  5948 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
  5949   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  5950   ins_cost(MEMORY_REF_COST);
  5952   size(4);
  5953   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5954   ins_encode %{
  5955     __ lduw($mem$$Address, $dst$$Register);
  5956   %}
  5957   ins_pipe(iload_mem);
  5958 %}
  5960 // Load Long - aligned
  5961 instruct loadL(iRegL dst, memory mem ) %{
  5962   match(Set dst (LoadL mem));
  5963   ins_cost(MEMORY_REF_COST);
  5965   size(4);
  5966   format %{ "LDX    $mem,$dst\t! long" %}
  5967   ins_encode %{
  5968     __ ldx($mem$$Address, $dst$$Register);
  5969   %}
  5970   ins_pipe(iload_mem);
  5971 %}
  5973 // Load Long - UNaligned
  5974 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5975   match(Set dst (LoadL_unaligned mem));
  5976   effect(KILL tmp);
  5977   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5978   size(16);
  5979   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5980           "\tLDUW   $mem  ,$dst\n"
  5981           "\tSLLX   #32, $dst, $dst\n"
  5982           "\tOR     $dst, R_O7, $dst" %}
  5983   opcode(Assembler::lduw_op3);
  5984   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5985   ins_pipe(iload_mem);
  5986 %}
  5988 // Load Range
  5989 instruct loadRange(iRegI dst, memory mem) %{
  5990   match(Set dst (LoadRange mem));
  5991   ins_cost(MEMORY_REF_COST);
  5993   size(4);
  5994   format %{ "LDUW   $mem,$dst\t! range" %}
  5995   opcode(Assembler::lduw_op3);
  5996   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5997   ins_pipe(iload_mem);
  5998 %}
  6000 // Load Integer into %f register (for fitos/fitod)
  6001 instruct loadI_freg(regF dst, memory mem) %{
  6002   match(Set dst (LoadI mem));
  6003   ins_cost(MEMORY_REF_COST);
  6004   size(4);
  6006   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  6007   opcode(Assembler::ldf_op3);
  6008   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6009   ins_pipe(floadF_mem);
  6010 %}
  6012 // Load Pointer
  6013 instruct loadP(iRegP dst, memory mem) %{
  6014   match(Set dst (LoadP mem));
  6015   ins_cost(MEMORY_REF_COST);
  6016   size(4);
  6018 #ifndef _LP64
  6019   format %{ "LDUW   $mem,$dst\t! ptr" %}
  6020   ins_encode %{
  6021     __ lduw($mem$$Address, $dst$$Register);
  6022   %}
  6023 #else
  6024   format %{ "LDX    $mem,$dst\t! ptr" %}
  6025   ins_encode %{
  6026     __ ldx($mem$$Address, $dst$$Register);
  6027   %}
  6028 #endif
  6029   ins_pipe(iload_mem);
  6030 %}
  6032 // Load Compressed Pointer
  6033 instruct loadN(iRegN dst, memory mem) %{
  6034   match(Set dst (LoadN mem));
  6035   ins_cost(MEMORY_REF_COST);
  6036   size(4);
  6038   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  6039   ins_encode %{
  6040     __ lduw($mem$$Address, $dst$$Register);
  6041   %}
  6042   ins_pipe(iload_mem);
  6043 %}
  6045 // Load Klass Pointer
  6046 instruct loadKlass(iRegP dst, memory mem) %{
  6047   match(Set dst (LoadKlass mem));
  6048   ins_cost(MEMORY_REF_COST);
  6049   size(4);
  6051 #ifndef _LP64
  6052   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  6053   ins_encode %{
  6054     __ lduw($mem$$Address, $dst$$Register);
  6055   %}
  6056 #else
  6057   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  6058   ins_encode %{
  6059     __ ldx($mem$$Address, $dst$$Register);
  6060   %}
  6061 #endif
  6062   ins_pipe(iload_mem);
  6063 %}
  6065 // Load narrow Klass Pointer
  6066 instruct loadNKlass(iRegN dst, memory mem) %{
  6067   match(Set dst (LoadNKlass mem));
  6068   ins_cost(MEMORY_REF_COST);
  6069   size(4);
  6071   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  6072   ins_encode %{
  6073     __ lduw($mem$$Address, $dst$$Register);
  6074   %}
  6075   ins_pipe(iload_mem);
  6076 %}
  6078 // Load Double
  6079 instruct loadD(regD dst, memory mem) %{
  6080   match(Set dst (LoadD mem));
  6081   ins_cost(MEMORY_REF_COST);
  6083   size(4);
  6084   format %{ "LDDF   $mem,$dst" %}
  6085   opcode(Assembler::lddf_op3);
  6086   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6087   ins_pipe(floadD_mem);
  6088 %}
  6090 // Load Double - UNaligned
  6091 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6092   match(Set dst (LoadD_unaligned mem));
  6093   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6094   size(8);
  6095   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6096           "\tLDF    $mem+4,$dst.lo\t!" %}
  6097   opcode(Assembler::ldf_op3);
  6098   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6099   ins_pipe(iload_mem);
  6100 %}
  6102 // Load Float
  6103 instruct loadF(regF dst, memory mem) %{
  6104   match(Set dst (LoadF mem));
  6105   ins_cost(MEMORY_REF_COST);
  6107   size(4);
  6108   format %{ "LDF    $mem,$dst" %}
  6109   opcode(Assembler::ldf_op3);
  6110   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6111   ins_pipe(floadF_mem);
  6112 %}
  6114 // Load Constant
  6115 instruct loadConI( iRegI dst, immI src ) %{
  6116   match(Set dst src);
  6117   ins_cost(DEFAULT_COST * 3/2);
  6118   format %{ "SET    $src,$dst" %}
  6119   ins_encode( Set32(src, dst) );
  6120   ins_pipe(ialu_hi_lo_reg);
  6121 %}
  6123 instruct loadConI13( iRegI dst, immI13 src ) %{
  6124   match(Set dst src);
  6126   size(4);
  6127   format %{ "MOV    $src,$dst" %}
  6128   ins_encode( Set13( src, dst ) );
  6129   ins_pipe(ialu_imm);
  6130 %}
  6132 #ifndef _LP64
  6133 instruct loadConP(iRegP dst, immP con) %{
  6134   match(Set dst con);
  6135   ins_cost(DEFAULT_COST * 3/2);
  6136   format %{ "SET    $con,$dst\t!ptr" %}
  6137   ins_encode %{
  6138     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6139       intptr_t val = $con$$constant;
  6140     if (constant_reloc == relocInfo::oop_type) {
  6141       __ set_oop_constant((jobject) val, $dst$$Register);
  6142     } else if (constant_reloc == relocInfo::metadata_type) {
  6143       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6144     } else {          // non-oop pointers, e.g. card mark base, heap top
  6145       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6146       __ set(val, $dst$$Register);
  6148   %}
  6149   ins_pipe(loadConP);
  6150 %}
  6151 #else
  6152 instruct loadConP_set(iRegP dst, immP_set con) %{
  6153   match(Set dst con);
  6154   ins_cost(DEFAULT_COST * 3/2);
  6155   format %{ "SET    $con,$dst\t! ptr" %}
  6156   ins_encode %{
  6157     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6158       intptr_t val = $con$$constant;
  6159     if (constant_reloc == relocInfo::oop_type) {
  6160       __ set_oop_constant((jobject) val, $dst$$Register);
  6161     } else if (constant_reloc == relocInfo::metadata_type) {
  6162       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6163     } else {          // non-oop pointers, e.g. card mark base, heap top
  6164       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6165       __ set(val, $dst$$Register);
  6167   %}
  6168   ins_pipe(loadConP);
  6169 %}
  6171 instruct loadConP_load(iRegP dst, immP_load con) %{
  6172   match(Set dst con);
  6173   ins_cost(MEMORY_REF_COST);
  6174   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6175   ins_encode %{
  6176     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6177     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6178   %}
  6179   ins_pipe(loadConP);
  6180 %}
  6182 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6183   match(Set dst con);
  6184   ins_cost(DEFAULT_COST * 3/2);
  6185   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6186   ins_encode %{
  6187     __ set($con$$constant, $dst$$Register);
  6188   %}
  6189   ins_pipe(loadConP);
  6190 %}
  6191 #endif // _LP64
  6193 instruct loadConP0(iRegP dst, immP0 src) %{
  6194   match(Set dst src);
  6196   size(4);
  6197   format %{ "CLR    $dst\t!ptr" %}
  6198   ins_encode %{
  6199     __ clr($dst$$Register);
  6200   %}
  6201   ins_pipe(ialu_imm);
  6202 %}
  6204 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6205   match(Set dst src);
  6206   ins_cost(DEFAULT_COST);
  6207   format %{ "SET    $src,$dst\t!ptr" %}
  6208   ins_encode %{
  6209     AddressLiteral polling_page(os::get_polling_page());
  6210     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6211   %}
  6212   ins_pipe(loadConP_poll);
  6213 %}
  6215 instruct loadConN0(iRegN dst, immN0 src) %{
  6216   match(Set dst src);
  6218   size(4);
  6219   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6220   ins_encode %{
  6221     __ clr($dst$$Register);
  6222   %}
  6223   ins_pipe(ialu_imm);
  6224 %}
  6226 instruct loadConN(iRegN dst, immN src) %{
  6227   match(Set dst src);
  6228   ins_cost(DEFAULT_COST * 3/2);
  6229   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6230   ins_encode %{
  6231     Register dst = $dst$$Register;
  6232     __ set_narrow_oop((jobject)$src$$constant, dst);
  6233   %}
  6234   ins_pipe(ialu_hi_lo_reg);
  6235 %}
  6237 instruct loadConNKlass(iRegN dst, immNKlass src) %{
  6238   match(Set dst src);
  6239   ins_cost(DEFAULT_COST * 3/2);
  6240   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
  6241   ins_encode %{
  6242     Register dst = $dst$$Register;
  6243     __ set_narrow_klass((Klass*)$src$$constant, dst);
  6244   %}
  6245   ins_pipe(ialu_hi_lo_reg);
  6246 %}
  6248 // Materialize long value (predicated by immL_cheap).
  6249 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6250   match(Set dst con);
  6251   effect(KILL tmp);
  6252   ins_cost(DEFAULT_COST * 3);
  6253   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6254   ins_encode %{
  6255     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6256   %}
  6257   ins_pipe(loadConL);
  6258 %}
  6260 // Load long value from constant table (predicated by immL_expensive).
  6261 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6262   match(Set dst con);
  6263   ins_cost(MEMORY_REF_COST);
  6264   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6265   ins_encode %{
  6266       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6267     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6268   %}
  6269   ins_pipe(loadConL);
  6270 %}
  6272 instruct loadConL0( iRegL dst, immL0 src ) %{
  6273   match(Set dst src);
  6274   ins_cost(DEFAULT_COST);
  6275   size(4);
  6276   format %{ "CLR    $dst\t! long" %}
  6277   ins_encode( Set13( src, dst ) );
  6278   ins_pipe(ialu_imm);
  6279 %}
  6281 instruct loadConL13( iRegL dst, immL13 src ) %{
  6282   match(Set dst src);
  6283   ins_cost(DEFAULT_COST * 2);
  6285   size(4);
  6286   format %{ "MOV    $src,$dst\t! long" %}
  6287   ins_encode( Set13( src, dst ) );
  6288   ins_pipe(ialu_imm);
  6289 %}
  6291 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6292   match(Set dst con);
  6293   effect(KILL tmp);
  6294   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6295   ins_encode %{
  6296       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6297     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6298   %}
  6299   ins_pipe(loadConFD);
  6300 %}
  6302 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6303   match(Set dst con);
  6304   effect(KILL tmp);
  6305   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6306   ins_encode %{
  6307     // XXX This is a quick fix for 6833573.
  6308     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6309     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6310     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6311   %}
  6312   ins_pipe(loadConFD);
  6313 %}
  6315 // Prefetch instructions.
  6316 // Must be safe to execute with invalid address (cannot fault).
  6318 instruct prefetchr( memory mem ) %{
  6319   match( PrefetchRead mem );
  6320   ins_cost(MEMORY_REF_COST);
  6321   size(4);
  6323   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6324   opcode(Assembler::prefetch_op3);
  6325   ins_encode( form3_mem_prefetch_read( mem ) );
  6326   ins_pipe(iload_mem);
  6327 %}
  6329 instruct prefetchw( memory mem ) %{
  6330   match( PrefetchWrite mem );
  6331   ins_cost(MEMORY_REF_COST);
  6332   size(4);
  6334   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6335   opcode(Assembler::prefetch_op3);
  6336   ins_encode( form3_mem_prefetch_write( mem ) );
  6337   ins_pipe(iload_mem);
  6338 %}
  6340 // Prefetch instructions for allocation.
  6342 instruct prefetchAlloc( memory mem ) %{
  6343   predicate(AllocatePrefetchInstr == 0);
  6344   match( PrefetchAllocation mem );
  6345   ins_cost(MEMORY_REF_COST);
  6346   size(4);
  6348   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
  6349   opcode(Assembler::prefetch_op3);
  6350   ins_encode( form3_mem_prefetch_write( mem ) );
  6351   ins_pipe(iload_mem);
  6352 %}
  6354 // Use BIS instruction to prefetch for allocation.
  6355 // Could fault, need space at the end of TLAB.
  6356 instruct prefetchAlloc_bis( iRegP dst ) %{
  6357   predicate(AllocatePrefetchInstr == 1);
  6358   match( PrefetchAllocation dst );
  6359   ins_cost(MEMORY_REF_COST);
  6360   size(4);
  6362   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
  6363   ins_encode %{
  6364     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  6365   %}
  6366   ins_pipe(istore_mem_reg);
  6367 %}
  6369 // Next code is used for finding next cache line address to prefetch.
  6370 #ifndef _LP64
  6371 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
  6372   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
  6373   ins_cost(DEFAULT_COST);
  6374   size(4);
  6376   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6377   ins_encode %{
  6378     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6379   %}
  6380   ins_pipe(ialu_reg_imm);
  6381 %}
  6382 #else
  6383 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
  6384   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
  6385   ins_cost(DEFAULT_COST);
  6386   size(4);
  6388   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6389   ins_encode %{
  6390     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6391   %}
  6392   ins_pipe(ialu_reg_imm);
  6393 %}
  6394 #endif
  6396 //----------Store Instructions-------------------------------------------------
  6397 // Store Byte
  6398 instruct storeB(memory mem, iRegI src) %{
  6399   match(Set mem (StoreB mem src));
  6400   ins_cost(MEMORY_REF_COST);
  6402   size(4);
  6403   format %{ "STB    $src,$mem\t! byte" %}
  6404   opcode(Assembler::stb_op3);
  6405   ins_encode(simple_form3_mem_reg( mem, src ) );
  6406   ins_pipe(istore_mem_reg);
  6407 %}
  6409 instruct storeB0(memory mem, immI0 src) %{
  6410   match(Set mem (StoreB mem src));
  6411   ins_cost(MEMORY_REF_COST);
  6413   size(4);
  6414   format %{ "STB    $src,$mem\t! byte" %}
  6415   opcode(Assembler::stb_op3);
  6416   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6417   ins_pipe(istore_mem_zero);
  6418 %}
  6420 instruct storeCM0(memory mem, immI0 src) %{
  6421   match(Set mem (StoreCM mem src));
  6422   ins_cost(MEMORY_REF_COST);
  6424   size(4);
  6425   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6426   opcode(Assembler::stb_op3);
  6427   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6428   ins_pipe(istore_mem_zero);
  6429 %}
  6431 // Store Char/Short
  6432 instruct storeC(memory mem, iRegI src) %{
  6433   match(Set mem (StoreC mem src));
  6434   ins_cost(MEMORY_REF_COST);
  6436   size(4);
  6437   format %{ "STH    $src,$mem\t! short" %}
  6438   opcode(Assembler::sth_op3);
  6439   ins_encode(simple_form3_mem_reg( mem, src ) );
  6440   ins_pipe(istore_mem_reg);
  6441 %}
  6443 instruct storeC0(memory mem, immI0 src) %{
  6444   match(Set mem (StoreC mem src));
  6445   ins_cost(MEMORY_REF_COST);
  6447   size(4);
  6448   format %{ "STH    $src,$mem\t! short" %}
  6449   opcode(Assembler::sth_op3);
  6450   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6451   ins_pipe(istore_mem_zero);
  6452 %}
  6454 // Store Integer
  6455 instruct storeI(memory mem, iRegI src) %{
  6456   match(Set mem (StoreI mem src));
  6457   ins_cost(MEMORY_REF_COST);
  6459   size(4);
  6460   format %{ "STW    $src,$mem" %}
  6461   opcode(Assembler::stw_op3);
  6462   ins_encode(simple_form3_mem_reg( mem, src ) );
  6463   ins_pipe(istore_mem_reg);
  6464 %}
  6466 // Store Long
  6467 instruct storeL(memory mem, iRegL src) %{
  6468   match(Set mem (StoreL mem src));
  6469   ins_cost(MEMORY_REF_COST);
  6470   size(4);
  6471   format %{ "STX    $src,$mem\t! long" %}
  6472   opcode(Assembler::stx_op3);
  6473   ins_encode(simple_form3_mem_reg( mem, src ) );
  6474   ins_pipe(istore_mem_reg);
  6475 %}
  6477 instruct storeI0(memory mem, immI0 src) %{
  6478   match(Set mem (StoreI mem src));
  6479   ins_cost(MEMORY_REF_COST);
  6481   size(4);
  6482   format %{ "STW    $src,$mem" %}
  6483   opcode(Assembler::stw_op3);
  6484   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6485   ins_pipe(istore_mem_zero);
  6486 %}
  6488 instruct storeL0(memory mem, immL0 src) %{
  6489   match(Set mem (StoreL mem src));
  6490   ins_cost(MEMORY_REF_COST);
  6492   size(4);
  6493   format %{ "STX    $src,$mem" %}
  6494   opcode(Assembler::stx_op3);
  6495   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6496   ins_pipe(istore_mem_zero);
  6497 %}
  6499 // Store Integer from float register (used after fstoi)
  6500 instruct storeI_Freg(memory mem, regF src) %{
  6501   match(Set mem (StoreI mem src));
  6502   ins_cost(MEMORY_REF_COST);
  6504   size(4);
  6505   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6506   opcode(Assembler::stf_op3);
  6507   ins_encode(simple_form3_mem_reg( mem, src ) );
  6508   ins_pipe(fstoreF_mem_reg);
  6509 %}
  6511 // Store Pointer
  6512 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6513   match(Set dst (StoreP dst src));
  6514   ins_cost(MEMORY_REF_COST);
  6515   size(4);
  6517 #ifndef _LP64
  6518   format %{ "STW    $src,$dst\t! ptr" %}
  6519   opcode(Assembler::stw_op3, 0, REGP_OP);
  6520 #else
  6521   format %{ "STX    $src,$dst\t! ptr" %}
  6522   opcode(Assembler::stx_op3, 0, REGP_OP);
  6523 #endif
  6524   ins_encode( form3_mem_reg( dst, src ) );
  6525   ins_pipe(istore_mem_spORreg);
  6526 %}
  6528 instruct storeP0(memory dst, immP0 src) %{
  6529   match(Set dst (StoreP dst src));
  6530   ins_cost(MEMORY_REF_COST);
  6531   size(4);
  6533 #ifndef _LP64
  6534   format %{ "STW    $src,$dst\t! ptr" %}
  6535   opcode(Assembler::stw_op3, 0, REGP_OP);
  6536 #else
  6537   format %{ "STX    $src,$dst\t! ptr" %}
  6538   opcode(Assembler::stx_op3, 0, REGP_OP);
  6539 #endif
  6540   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6541   ins_pipe(istore_mem_zero);
  6542 %}
  6544 // Store Compressed Pointer
  6545 instruct storeN(memory dst, iRegN src) %{
  6546    match(Set dst (StoreN dst src));
  6547    ins_cost(MEMORY_REF_COST);
  6548    size(4);
  6550    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6551    ins_encode %{
  6552      Register base = as_Register($dst$$base);
  6553      Register index = as_Register($dst$$index);
  6554      Register src = $src$$Register;
  6555      if (index != G0) {
  6556        __ stw(src, base, index);
  6557      } else {
  6558        __ stw(src, base, $dst$$disp);
  6560    %}
  6561    ins_pipe(istore_mem_spORreg);
  6562 %}
  6564 instruct storeNKlass(memory dst, iRegN src) %{
  6565    match(Set dst (StoreNKlass dst src));
  6566    ins_cost(MEMORY_REF_COST);
  6567    size(4);
  6569    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
  6570    ins_encode %{
  6571      Register base = as_Register($dst$$base);
  6572      Register index = as_Register($dst$$index);
  6573      Register src = $src$$Register;
  6574      if (index != G0) {
  6575        __ stw(src, base, index);
  6576      } else {
  6577        __ stw(src, base, $dst$$disp);
  6579    %}
  6580    ins_pipe(istore_mem_spORreg);
  6581 %}
  6583 instruct storeN0(memory dst, immN0 src) %{
  6584    match(Set dst (StoreN dst src));
  6585    ins_cost(MEMORY_REF_COST);
  6586    size(4);
  6588    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6589    ins_encode %{
  6590      Register base = as_Register($dst$$base);
  6591      Register index = as_Register($dst$$index);
  6592      if (index != G0) {
  6593        __ stw(0, base, index);
  6594      } else {
  6595        __ stw(0, base, $dst$$disp);
  6597    %}
  6598    ins_pipe(istore_mem_zero);
  6599 %}
  6601 // Store Double
  6602 instruct storeD( memory mem, regD src) %{
  6603   match(Set mem (StoreD mem src));
  6604   ins_cost(MEMORY_REF_COST);
  6606   size(4);
  6607   format %{ "STDF   $src,$mem" %}
  6608   opcode(Assembler::stdf_op3);
  6609   ins_encode(simple_form3_mem_reg( mem, src ) );
  6610   ins_pipe(fstoreD_mem_reg);
  6611 %}
  6613 instruct storeD0( memory mem, immD0 src) %{
  6614   match(Set mem (StoreD mem src));
  6615   ins_cost(MEMORY_REF_COST);
  6617   size(4);
  6618   format %{ "STX    $src,$mem" %}
  6619   opcode(Assembler::stx_op3);
  6620   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6621   ins_pipe(fstoreD_mem_zero);
  6622 %}
  6624 // Store Float
  6625 instruct storeF( memory mem, regF src) %{
  6626   match(Set mem (StoreF mem src));
  6627   ins_cost(MEMORY_REF_COST);
  6629   size(4);
  6630   format %{ "STF    $src,$mem" %}
  6631   opcode(Assembler::stf_op3);
  6632   ins_encode(simple_form3_mem_reg( mem, src ) );
  6633   ins_pipe(fstoreF_mem_reg);
  6634 %}
  6636 instruct storeF0( memory mem, immF0 src) %{
  6637   match(Set mem (StoreF mem src));
  6638   ins_cost(MEMORY_REF_COST);
  6640   size(4);
  6641   format %{ "STW    $src,$mem\t! storeF0" %}
  6642   opcode(Assembler::stw_op3);
  6643   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6644   ins_pipe(fstoreF_mem_zero);
  6645 %}
  6647 // Convert oop pointer into compressed form
  6648 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6649   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6650   match(Set dst (EncodeP src));
  6651   format %{ "encode_heap_oop $src, $dst" %}
  6652   ins_encode %{
  6653     __ encode_heap_oop($src$$Register, $dst$$Register);
  6654   %}
  6655   ins_avoid_back_to_back(Universe::narrow_oop_base() == NULL ? AVOID_NONE : AVOID_BEFORE);
  6656   ins_pipe(ialu_reg);
  6657 %}
  6659 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6660   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6661   match(Set dst (EncodeP src));
  6662   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6663   ins_encode %{
  6664     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6665   %}
  6666   ins_pipe(ialu_reg);
  6667 %}
  6669 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6670   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6671             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6672   match(Set dst (DecodeN src));
  6673   format %{ "decode_heap_oop $src, $dst" %}
  6674   ins_encode %{
  6675     __ decode_heap_oop($src$$Register, $dst$$Register);
  6676   %}
  6677   ins_pipe(ialu_reg);
  6678 %}
  6680 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6681   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6682             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6683   match(Set dst (DecodeN src));
  6684   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6685   ins_encode %{
  6686     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6687   %}
  6688   ins_pipe(ialu_reg);
  6689 %}
  6691 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
  6692   match(Set dst (EncodePKlass src));
  6693   format %{ "encode_klass_not_null $src, $dst" %}
  6694   ins_encode %{
  6695     __ encode_klass_not_null($src$$Register, $dst$$Register);
  6696   %}
  6697   ins_pipe(ialu_reg);
  6698 %}
  6700 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
  6701   match(Set dst (DecodeNKlass src));
  6702   format %{ "decode_klass_not_null $src, $dst" %}
  6703   ins_encode %{
  6704     __ decode_klass_not_null($src$$Register, $dst$$Register);
  6705   %}
  6706   ins_pipe(ialu_reg);
  6707 %}
  6709 //----------MemBar Instructions-----------------------------------------------
  6710 // Memory barrier flavors
  6712 instruct membar_acquire() %{
  6713   match(MemBarAcquire);
  6714   match(LoadFence);
  6715   ins_cost(4*MEMORY_REF_COST);
  6717   size(0);
  6718   format %{ "MEMBAR-acquire" %}
  6719   ins_encode( enc_membar_acquire );
  6720   ins_pipe(long_memory_op);
  6721 %}
  6723 instruct membar_acquire_lock() %{
  6724   match(MemBarAcquireLock);
  6725   ins_cost(0);
  6727   size(0);
  6728   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6729   ins_encode( );
  6730   ins_pipe(empty);
  6731 %}
  6733 instruct membar_release() %{
  6734   match(MemBarRelease);
  6735   match(StoreFence);
  6736   ins_cost(4*MEMORY_REF_COST);
  6738   size(0);
  6739   format %{ "MEMBAR-release" %}
  6740   ins_encode( enc_membar_release );
  6741   ins_pipe(long_memory_op);
  6742 %}
  6744 instruct membar_release_lock() %{
  6745   match(MemBarReleaseLock);
  6746   ins_cost(0);
  6748   size(0);
  6749   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6750   ins_encode( );
  6751   ins_pipe(empty);
  6752 %}
  6754 instruct membar_volatile() %{
  6755   match(MemBarVolatile);
  6756   ins_cost(4*MEMORY_REF_COST);
  6758   size(4);
  6759   format %{ "MEMBAR-volatile" %}
  6760   ins_encode( enc_membar_volatile );
  6761   ins_pipe(long_memory_op);
  6762 %}
  6764 instruct unnecessary_membar_volatile() %{
  6765   match(MemBarVolatile);
  6766   predicate(Matcher::post_store_load_barrier(n));
  6767   ins_cost(0);
  6769   size(0);
  6770   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6771   ins_encode( );
  6772   ins_pipe(empty);
  6773 %}
  6775 instruct membar_storestore() %{
  6776   match(MemBarStoreStore);
  6777   ins_cost(0);
  6779   size(0);
  6780   format %{ "!MEMBAR-storestore (empty encoding)" %}
  6781   ins_encode( );
  6782   ins_pipe(empty);
  6783 %}
  6785 //----------Register Move Instructions-----------------------------------------
  6786 instruct roundDouble_nop(regD dst) %{
  6787   match(Set dst (RoundDouble dst));
  6788   ins_cost(0);
  6789   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6790   ins_encode( );
  6791   ins_pipe(empty);
  6792 %}
  6795 instruct roundFloat_nop(regF dst) %{
  6796   match(Set dst (RoundFloat dst));
  6797   ins_cost(0);
  6798   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6799   ins_encode( );
  6800   ins_pipe(empty);
  6801 %}
  6804 // Cast Index to Pointer for unsafe natives
  6805 instruct castX2P(iRegX src, iRegP dst) %{
  6806   match(Set dst (CastX2P src));
  6808   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6809   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6810   ins_pipe(ialu_reg);
  6811 %}
  6813 // Cast Pointer to Index for unsafe natives
  6814 instruct castP2X(iRegP src, iRegX dst) %{
  6815   match(Set dst (CastP2X src));
  6817   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6818   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6819   ins_pipe(ialu_reg);
  6820 %}
  6822 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6823   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6824   match(Set stkSlot src);   // chain rule
  6825   ins_cost(MEMORY_REF_COST);
  6826   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6827   opcode(Assembler::stdf_op3);
  6828   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6829   ins_pipe(fstoreD_stk_reg);
  6830 %}
  6832 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6833   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6834   match(Set dst stkSlot);   // chain rule
  6835   ins_cost(MEMORY_REF_COST);
  6836   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6837   opcode(Assembler::lddf_op3);
  6838   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6839   ins_pipe(floadD_stk);
  6840 %}
  6842 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6843   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6844   match(Set stkSlot src);   // chain rule
  6845   ins_cost(MEMORY_REF_COST);
  6846   format %{ "STF   $src,$stkSlot\t!stk" %}
  6847   opcode(Assembler::stf_op3);
  6848   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6849   ins_pipe(fstoreF_stk_reg);
  6850 %}
  6852 //----------Conditional Move---------------------------------------------------
  6853 // Conditional move
  6854 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6855   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6856   ins_cost(150);
  6857   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6858   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6859   ins_pipe(ialu_reg);
  6860 %}
  6862 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6863   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6864   ins_cost(140);
  6865   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6866   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6867   ins_pipe(ialu_imm);
  6868 %}
  6870 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6871   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6872   ins_cost(150);
  6873   size(4);
  6874   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6875   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6876   ins_pipe(ialu_reg);
  6877 %}
  6879 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6880   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6881   ins_cost(140);
  6882   size(4);
  6883   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6884   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6885   ins_pipe(ialu_imm);
  6886 %}
  6888 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6889   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6890   ins_cost(150);
  6891   size(4);
  6892   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6893   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6894   ins_pipe(ialu_reg);
  6895 %}
  6897 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6898   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6899   ins_cost(140);
  6900   size(4);
  6901   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6902   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6903   ins_pipe(ialu_imm);
  6904 %}
  6906 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6907   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6908   ins_cost(150);
  6909   size(4);
  6910   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6911   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6912   ins_pipe(ialu_reg);
  6913 %}
  6915 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6916   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6917   ins_cost(140);
  6918   size(4);
  6919   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6920   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6921   ins_pipe(ialu_imm);
  6922 %}
  6924 // Conditional move for RegN. Only cmov(reg,reg).
  6925 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6926   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6927   ins_cost(150);
  6928   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6929   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6930   ins_pipe(ialu_reg);
  6931 %}
  6933 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6934 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6935   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6936   ins_cost(150);
  6937   size(4);
  6938   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6939   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6940   ins_pipe(ialu_reg);
  6941 %}
  6943 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6944 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6945   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6946   ins_cost(150);
  6947   size(4);
  6948   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6949   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6950   ins_pipe(ialu_reg);
  6951 %}
  6953 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6954   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6955   ins_cost(150);
  6956   size(4);
  6957   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6958   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6959   ins_pipe(ialu_reg);
  6960 %}
  6962 // Conditional move
  6963 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6964   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6965   ins_cost(150);
  6966   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6967   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6968   ins_pipe(ialu_reg);
  6969 %}
  6971 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6972   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6973   ins_cost(140);
  6974   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6975   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6976   ins_pipe(ialu_imm);
  6977 %}
  6979 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6980 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6981   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6982   ins_cost(150);
  6984   size(4);
  6985   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6986   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6987   ins_pipe(ialu_reg);
  6988 %}
  6990 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6991   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6992   ins_cost(150);
  6994   size(4);
  6995   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6996   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6997   ins_pipe(ialu_reg);
  6998 %}
  7000 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  7001   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  7002   ins_cost(140);
  7004   size(4);
  7005   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  7006   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  7007   ins_pipe(ialu_imm);
  7008 %}
  7010 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  7011   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  7012   ins_cost(140);
  7014   size(4);
  7015   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  7016   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  7017   ins_pipe(ialu_imm);
  7018 %}
  7020 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  7021   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  7022   ins_cost(150);
  7023   size(4);
  7024   format %{ "MOV$cmp $fcc,$src,$dst" %}
  7025   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7026   ins_pipe(ialu_imm);
  7027 %}
  7029 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  7030   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  7031   ins_cost(140);
  7032   size(4);
  7033   format %{ "MOV$cmp $fcc,$src,$dst" %}
  7034   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  7035   ins_pipe(ialu_imm);
  7036 %}
  7038 // Conditional move
  7039 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  7040   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  7041   ins_cost(150);
  7042   opcode(0x101);
  7043   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7044   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7045   ins_pipe(int_conditional_float_move);
  7046 %}
  7048 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  7049   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  7050   ins_cost(150);
  7052   size(4);
  7053   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  7054   opcode(0x101);
  7055   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7056   ins_pipe(int_conditional_float_move);
  7057 %}
  7059 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  7060   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  7061   ins_cost(150);
  7063   size(4);
  7064   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  7065   opcode(0x101);
  7066   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7067   ins_pipe(int_conditional_float_move);
  7068 %}
  7070 // Conditional move,
  7071 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  7072   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  7073   ins_cost(150);
  7074   size(4);
  7075   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  7076   opcode(0x1);
  7077   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7078   ins_pipe(int_conditional_double_move);
  7079 %}
  7081 // Conditional move
  7082 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  7083   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  7084   ins_cost(150);
  7085   size(4);
  7086   opcode(0x102);
  7087   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7088   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7089   ins_pipe(int_conditional_double_move);
  7090 %}
  7092 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  7093   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7094   ins_cost(150);
  7096   size(4);
  7097   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7098   opcode(0x102);
  7099   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7100   ins_pipe(int_conditional_double_move);
  7101 %}
  7103 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  7104   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7105   ins_cost(150);
  7107   size(4);
  7108   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7109   opcode(0x102);
  7110   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7111   ins_pipe(int_conditional_double_move);
  7112 %}
  7114 // Conditional move,
  7115 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  7116   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  7117   ins_cost(150);
  7118   size(4);
  7119   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  7120   opcode(0x2);
  7121   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7122   ins_pipe(int_conditional_double_move);
  7123 %}
  7125 // Conditional move
  7126 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7127   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7128   ins_cost(150);
  7129   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7130   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7131   ins_pipe(ialu_reg);
  7132 %}
  7134 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7135   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7136   ins_cost(140);
  7137   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7138   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7139   ins_pipe(ialu_imm);
  7140 %}
  7142 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7143   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7144   ins_cost(150);
  7146   size(4);
  7147   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7148   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7149   ins_pipe(ialu_reg);
  7150 %}
  7153 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7154   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7155   ins_cost(150);
  7157   size(4);
  7158   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7159   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7160   ins_pipe(ialu_reg);
  7161 %}
  7164 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7165   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7166   ins_cost(150);
  7168   size(4);
  7169   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7170   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7171   ins_pipe(ialu_reg);
  7172 %}
  7176 //----------OS and Locking Instructions----------------------------------------
  7178 // This name is KNOWN by the ADLC and cannot be changed.
  7179 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7180 // for this guy.
  7181 instruct tlsLoadP(g2RegP dst) %{
  7182   match(Set dst (ThreadLocal));
  7184   size(0);
  7185   ins_cost(0);
  7186   format %{ "# TLS is in G2" %}
  7187   ins_encode( /*empty encoding*/ );
  7188   ins_pipe(ialu_none);
  7189 %}
  7191 instruct checkCastPP( iRegP dst ) %{
  7192   match(Set dst (CheckCastPP dst));
  7194   size(0);
  7195   format %{ "# checkcastPP of $dst" %}
  7196   ins_encode( /*empty encoding*/ );
  7197   ins_pipe(empty);
  7198 %}
  7201 instruct castPP( iRegP dst ) %{
  7202   match(Set dst (CastPP dst));
  7203   format %{ "# castPP of $dst" %}
  7204   ins_encode( /*empty encoding*/ );
  7205   ins_pipe(empty);
  7206 %}
  7208 instruct castII( iRegI dst ) %{
  7209   match(Set dst (CastII dst));
  7210   format %{ "# castII of $dst" %}
  7211   ins_encode( /*empty encoding*/ );
  7212   ins_cost(0);
  7213   ins_pipe(empty);
  7214 %}
  7216 //----------Arithmetic Instructions--------------------------------------------
  7217 // Addition Instructions
  7218 // Register Addition
  7219 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7220   match(Set dst (AddI src1 src2));
  7222   size(4);
  7223   format %{ "ADD    $src1,$src2,$dst" %}
  7224   ins_encode %{
  7225     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7226   %}
  7227   ins_pipe(ialu_reg_reg);
  7228 %}
  7230 // Immediate Addition
  7231 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7232   match(Set dst (AddI src1 src2));
  7234   size(4);
  7235   format %{ "ADD    $src1,$src2,$dst" %}
  7236   opcode(Assembler::add_op3, Assembler::arith_op);
  7237   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7238   ins_pipe(ialu_reg_imm);
  7239 %}
  7241 // Pointer Register Addition
  7242 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7243   match(Set dst (AddP src1 src2));
  7245   size(4);
  7246   format %{ "ADD    $src1,$src2,$dst" %}
  7247   opcode(Assembler::add_op3, Assembler::arith_op);
  7248   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7249   ins_pipe(ialu_reg_reg);
  7250 %}
  7252 // Pointer Immediate Addition
  7253 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7254   match(Set dst (AddP src1 src2));
  7256   size(4);
  7257   format %{ "ADD    $src1,$src2,$dst" %}
  7258   opcode(Assembler::add_op3, Assembler::arith_op);
  7259   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7260   ins_pipe(ialu_reg_imm);
  7261 %}
  7263 // Long Addition
  7264 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7265   match(Set dst (AddL src1 src2));
  7267   size(4);
  7268   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7269   opcode(Assembler::add_op3, Assembler::arith_op);
  7270   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7271   ins_pipe(ialu_reg_reg);
  7272 %}
  7274 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7275   match(Set dst (AddL src1 con));
  7277   size(4);
  7278   format %{ "ADD    $src1,$con,$dst" %}
  7279   opcode(Assembler::add_op3, Assembler::arith_op);
  7280   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7281   ins_pipe(ialu_reg_imm);
  7282 %}
  7284 //----------Conditional_store--------------------------------------------------
  7285 // Conditional-store of the updated heap-top.
  7286 // Used during allocation of the shared heap.
  7287 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7289 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7290 instruct loadPLocked(iRegP dst, memory mem) %{
  7291   match(Set dst (LoadPLocked mem));
  7292   ins_cost(MEMORY_REF_COST);
  7294 #ifndef _LP64
  7295   size(4);
  7296   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7297   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7298 #else
  7299   format %{ "LDX    $mem,$dst\t! ptr" %}
  7300   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7301 #endif
  7302   ins_encode( form3_mem_reg( mem, dst ) );
  7303   ins_pipe(iload_mem);
  7304 %}
  7306 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7307   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7308   effect( KILL newval );
  7309   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7310             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7311   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7312   ins_pipe( long_memory_op );
  7313 %}
  7315 // Conditional-store of an int value.
  7316 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7317   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7318   effect( KILL newval );
  7319   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7320             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7321   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7322   ins_pipe( long_memory_op );
  7323 %}
  7325 // Conditional-store of a long value.
  7326 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7327   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7328   effect( KILL newval );
  7329   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7330             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7331   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7332   ins_pipe( long_memory_op );
  7333 %}
  7335 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7337 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7338   predicate(VM_Version::supports_cx8());
  7339   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7340   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7341   format %{
  7342             "MOV    $newval,O7\n\t"
  7343             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7344             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7345             "MOV    1,$res\n\t"
  7346             "MOVne  xcc,R_G0,$res"
  7347   %}
  7348   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7349               enc_lflags_ne_to_boolean(res) );
  7350   ins_pipe( long_memory_op );
  7351 %}
  7354 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7355   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7356   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7357   format %{
  7358             "MOV    $newval,O7\n\t"
  7359             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7360             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7361             "MOV    1,$res\n\t"
  7362             "MOVne  icc,R_G0,$res"
  7363   %}
  7364   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7365               enc_iflags_ne_to_boolean(res) );
  7366   ins_pipe( long_memory_op );
  7367 %}
  7369 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7370 #ifdef _LP64
  7371   predicate(VM_Version::supports_cx8());
  7372 #endif
  7373   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7374   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7375   format %{
  7376             "MOV    $newval,O7\n\t"
  7377             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7378             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7379             "MOV    1,$res\n\t"
  7380             "MOVne  xcc,R_G0,$res"
  7381   %}
  7382 #ifdef _LP64
  7383   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7384               enc_lflags_ne_to_boolean(res) );
  7385 #else
  7386   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7387               enc_iflags_ne_to_boolean(res) );
  7388 #endif
  7389   ins_pipe( long_memory_op );
  7390 %}
  7392 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7393   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7394   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7395   format %{
  7396             "MOV    $newval,O7\n\t"
  7397             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7398             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7399             "MOV    1,$res\n\t"
  7400             "MOVne  icc,R_G0,$res"
  7401   %}
  7402   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7403               enc_iflags_ne_to_boolean(res) );
  7404   ins_pipe( long_memory_op );
  7405 %}
  7407 instruct xchgI( memory mem, iRegI newval) %{
  7408   match(Set newval (GetAndSetI mem newval));
  7409   format %{ "SWAP  [$mem],$newval" %}
  7410   size(4);
  7411   ins_encode %{
  7412     __ swap($mem$$Address, $newval$$Register);
  7413   %}
  7414   ins_pipe( long_memory_op );
  7415 %}
  7417 #ifndef _LP64
  7418 instruct xchgP( memory mem, iRegP newval) %{
  7419   match(Set newval (GetAndSetP mem newval));
  7420   format %{ "SWAP  [$mem],$newval" %}
  7421   size(4);
  7422   ins_encode %{
  7423     __ swap($mem$$Address, $newval$$Register);
  7424   %}
  7425   ins_pipe( long_memory_op );
  7426 %}
  7427 #endif
  7429 instruct xchgN( memory mem, iRegN newval) %{
  7430   match(Set newval (GetAndSetN mem newval));
  7431   format %{ "SWAP  [$mem],$newval" %}
  7432   size(4);
  7433   ins_encode %{
  7434     __ swap($mem$$Address, $newval$$Register);
  7435   %}
  7436   ins_pipe( long_memory_op );
  7437 %}
  7439 //---------------------
  7440 // Subtraction Instructions
  7441 // Register Subtraction
  7442 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7443   match(Set dst (SubI src1 src2));
  7445   size(4);
  7446   format %{ "SUB    $src1,$src2,$dst" %}
  7447   opcode(Assembler::sub_op3, Assembler::arith_op);
  7448   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7449   ins_pipe(ialu_reg_reg);
  7450 %}
  7452 // Immediate Subtraction
  7453 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7454   match(Set dst (SubI src1 src2));
  7456   size(4);
  7457   format %{ "SUB    $src1,$src2,$dst" %}
  7458   opcode(Assembler::sub_op3, Assembler::arith_op);
  7459   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7460   ins_pipe(ialu_reg_imm);
  7461 %}
  7463 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7464   match(Set dst (SubI zero src2));
  7466   size(4);
  7467   format %{ "NEG    $src2,$dst" %}
  7468   opcode(Assembler::sub_op3, Assembler::arith_op);
  7469   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7470   ins_pipe(ialu_zero_reg);
  7471 %}
  7473 // Long subtraction
  7474 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7475   match(Set dst (SubL src1 src2));
  7477   size(4);
  7478   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7479   opcode(Assembler::sub_op3, Assembler::arith_op);
  7480   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7481   ins_pipe(ialu_reg_reg);
  7482 %}
  7484 // Immediate Subtraction
  7485 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7486   match(Set dst (SubL src1 con));
  7488   size(4);
  7489   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7490   opcode(Assembler::sub_op3, Assembler::arith_op);
  7491   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7492   ins_pipe(ialu_reg_imm);
  7493 %}
  7495 // Long negation
  7496 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7497   match(Set dst (SubL zero src2));
  7499   size(4);
  7500   format %{ "NEG    $src2,$dst\t! long" %}
  7501   opcode(Assembler::sub_op3, Assembler::arith_op);
  7502   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7503   ins_pipe(ialu_zero_reg);
  7504 %}
  7506 // Multiplication Instructions
  7507 // Integer Multiplication
  7508 // Register Multiplication
  7509 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7510   match(Set dst (MulI src1 src2));
  7512   size(4);
  7513   format %{ "MULX   $src1,$src2,$dst" %}
  7514   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7515   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7516   ins_pipe(imul_reg_reg);
  7517 %}
  7519 // Immediate Multiplication
  7520 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7521   match(Set dst (MulI src1 src2));
  7523   size(4);
  7524   format %{ "MULX   $src1,$src2,$dst" %}
  7525   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7526   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7527   ins_pipe(imul_reg_imm);
  7528 %}
  7530 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7531   match(Set dst (MulL src1 src2));
  7532   ins_cost(DEFAULT_COST * 5);
  7533   size(4);
  7534   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7535   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7536   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7537   ins_pipe(mulL_reg_reg);
  7538 %}
  7540 // Immediate Multiplication
  7541 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7542   match(Set dst (MulL src1 src2));
  7543   ins_cost(DEFAULT_COST * 5);
  7544   size(4);
  7545   format %{ "MULX   $src1,$src2,$dst" %}
  7546   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7547   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7548   ins_pipe(mulL_reg_imm);
  7549 %}
  7551 // Integer Division
  7552 // Register Division
  7553 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7554   match(Set dst (DivI src1 src2));
  7555   ins_cost((2+71)*DEFAULT_COST);
  7557   format %{ "SRA     $src2,0,$src2\n\t"
  7558             "SRA     $src1,0,$src1\n\t"
  7559             "SDIVX   $src1,$src2,$dst" %}
  7560   ins_encode( idiv_reg( src1, src2, dst ) );
  7561   ins_pipe(sdiv_reg_reg);
  7562 %}
  7564 // Immediate Division
  7565 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7566   match(Set dst (DivI src1 src2));
  7567   ins_cost((2+71)*DEFAULT_COST);
  7569   format %{ "SRA     $src1,0,$src1\n\t"
  7570             "SDIVX   $src1,$src2,$dst" %}
  7571   ins_encode( idiv_imm( src1, src2, dst ) );
  7572   ins_pipe(sdiv_reg_imm);
  7573 %}
  7575 //----------Div-By-10-Expansion------------------------------------------------
  7576 // Extract hi bits of a 32x32->64 bit multiply.
  7577 // Expand rule only, not matched
  7578 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7579   effect( DEF dst, USE src1, USE src2 );
  7580   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7581             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7582   ins_encode( enc_mul_hi(dst,src1,src2));
  7583   ins_pipe(sdiv_reg_reg);
  7584 %}
  7586 // Magic constant, reciprocal of 10
  7587 instruct loadConI_x66666667(iRegIsafe dst) %{
  7588   effect( DEF dst );
  7590   size(8);
  7591   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7592   ins_encode( Set32(0x66666667, dst) );
  7593   ins_pipe(ialu_hi_lo_reg);
  7594 %}
  7596 // Register Shift Right Arithmetic Long by 32-63
  7597 instruct sra_31( iRegI dst, iRegI src ) %{
  7598   effect( DEF dst, USE src );
  7599   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7600   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7601   ins_pipe(ialu_reg_reg);
  7602 %}
  7604 // Arithmetic Shift Right by 8-bit immediate
  7605 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7606   effect( DEF dst, USE src );
  7607   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7608   opcode(Assembler::sra_op3, Assembler::arith_op);
  7609   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7610   ins_pipe(ialu_reg_imm);
  7611 %}
  7613 // Integer DIV with 10
  7614 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7615   match(Set dst (DivI src div));
  7616   ins_cost((6+6)*DEFAULT_COST);
  7617   expand %{
  7618     iRegIsafe tmp1;               // Killed temps;
  7619     iRegIsafe tmp2;               // Killed temps;
  7620     iRegI tmp3;                   // Killed temps;
  7621     iRegI tmp4;                   // Killed temps;
  7622     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7623     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7624     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7625     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7626     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7627   %}
  7628 %}
  7630 // Register Long Division
  7631 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7632   match(Set dst (DivL src1 src2));
  7633   ins_cost(DEFAULT_COST*71);
  7634   size(4);
  7635   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7636   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7637   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7638   ins_pipe(divL_reg_reg);
  7639 %}
  7641 // Register Long Division
  7642 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7643   match(Set dst (DivL src1 src2));
  7644   ins_cost(DEFAULT_COST*71);
  7645   size(4);
  7646   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7647   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7648   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7649   ins_pipe(divL_reg_imm);
  7650 %}
  7652 // Integer Remainder
  7653 // Register Remainder
  7654 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7655   match(Set dst (ModI src1 src2));
  7656   effect( KILL ccr, KILL temp);
  7658   format %{ "SREM   $src1,$src2,$dst" %}
  7659   ins_encode( irem_reg(src1, src2, dst, temp) );
  7660   ins_pipe(sdiv_reg_reg);
  7661 %}
  7663 // Immediate Remainder
  7664 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7665   match(Set dst (ModI src1 src2));
  7666   effect( KILL ccr, KILL temp);
  7668   format %{ "SREM   $src1,$src2,$dst" %}
  7669   ins_encode( irem_imm(src1, src2, dst, temp) );
  7670   ins_pipe(sdiv_reg_imm);
  7671 %}
  7673 // Register Long Remainder
  7674 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7675   effect(DEF dst, USE src1, USE src2);
  7676   size(4);
  7677   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7678   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7679   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7680   ins_pipe(divL_reg_reg);
  7681 %}
  7683 // Register Long Division
  7684 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7685   effect(DEF dst, USE src1, USE src2);
  7686   size(4);
  7687   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7688   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7689   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7690   ins_pipe(divL_reg_imm);
  7691 %}
  7693 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7694   effect(DEF dst, USE src1, USE src2);
  7695   size(4);
  7696   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7697   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7698   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7699   ins_pipe(mulL_reg_reg);
  7700 %}
  7702 // Immediate Multiplication
  7703 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7704   effect(DEF dst, USE src1, USE src2);
  7705   size(4);
  7706   format %{ "MULX   $src1,$src2,$dst" %}
  7707   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7708   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7709   ins_pipe(mulL_reg_imm);
  7710 %}
  7712 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7713   effect(DEF dst, USE src1, USE src2);
  7714   size(4);
  7715   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7716   opcode(Assembler::sub_op3, Assembler::arith_op);
  7717   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7718   ins_pipe(ialu_reg_reg);
  7719 %}
  7721 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7722   effect(DEF dst, USE src1, USE src2);
  7723   size(4);
  7724   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7725   opcode(Assembler::sub_op3, Assembler::arith_op);
  7726   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7727   ins_pipe(ialu_reg_reg);
  7728 %}
  7730 // Register Long Remainder
  7731 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7732   match(Set dst (ModL src1 src2));
  7733   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7734   expand %{
  7735     iRegL tmp1;
  7736     iRegL tmp2;
  7737     divL_reg_reg_1(tmp1, src1, src2);
  7738     mulL_reg_reg_1(tmp2, tmp1, src2);
  7739     subL_reg_reg_1(dst,  src1, tmp2);
  7740   %}
  7741 %}
  7743 // Register Long Remainder
  7744 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7745   match(Set dst (ModL src1 src2));
  7746   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7747   expand %{
  7748     iRegL tmp1;
  7749     iRegL tmp2;
  7750     divL_reg_imm13_1(tmp1, src1, src2);
  7751     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7752     subL_reg_reg_2  (dst,  src1, tmp2);
  7753   %}
  7754 %}
  7756 // Integer Shift Instructions
  7757 // Register Shift Left
  7758 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7759   match(Set dst (LShiftI src1 src2));
  7761   size(4);
  7762   format %{ "SLL    $src1,$src2,$dst" %}
  7763   opcode(Assembler::sll_op3, Assembler::arith_op);
  7764   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7765   ins_pipe(ialu_reg_reg);
  7766 %}
  7768 // Register Shift Left Immediate
  7769 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7770   match(Set dst (LShiftI src1 src2));
  7772   size(4);
  7773   format %{ "SLL    $src1,$src2,$dst" %}
  7774   opcode(Assembler::sll_op3, Assembler::arith_op);
  7775   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7776   ins_pipe(ialu_reg_imm);
  7777 %}
  7779 // Register Shift Left
  7780 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7781   match(Set dst (LShiftL src1 src2));
  7783   size(4);
  7784   format %{ "SLLX   $src1,$src2,$dst" %}
  7785   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7786   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7787   ins_pipe(ialu_reg_reg);
  7788 %}
  7790 // Register Shift Left Immediate
  7791 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7792   match(Set dst (LShiftL src1 src2));
  7794   size(4);
  7795   format %{ "SLLX   $src1,$src2,$dst" %}
  7796   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7797   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7798   ins_pipe(ialu_reg_imm);
  7799 %}
  7801 // Register Arithmetic Shift Right
  7802 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7803   match(Set dst (RShiftI src1 src2));
  7804   size(4);
  7805   format %{ "SRA    $src1,$src2,$dst" %}
  7806   opcode(Assembler::sra_op3, Assembler::arith_op);
  7807   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7808   ins_pipe(ialu_reg_reg);
  7809 %}
  7811 // Register Arithmetic Shift Right Immediate
  7812 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7813   match(Set dst (RShiftI src1 src2));
  7815   size(4);
  7816   format %{ "SRA    $src1,$src2,$dst" %}
  7817   opcode(Assembler::sra_op3, Assembler::arith_op);
  7818   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7819   ins_pipe(ialu_reg_imm);
  7820 %}
  7822 // Register Shift Right Arithmatic Long
  7823 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7824   match(Set dst (RShiftL src1 src2));
  7826   size(4);
  7827   format %{ "SRAX   $src1,$src2,$dst" %}
  7828   opcode(Assembler::srax_op3, Assembler::arith_op);
  7829   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7830   ins_pipe(ialu_reg_reg);
  7831 %}
  7833 // Register Shift Left Immediate
  7834 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7835   match(Set dst (RShiftL src1 src2));
  7837   size(4);
  7838   format %{ "SRAX   $src1,$src2,$dst" %}
  7839   opcode(Assembler::srax_op3, Assembler::arith_op);
  7840   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7841   ins_pipe(ialu_reg_imm);
  7842 %}
  7844 // Register Shift Right
  7845 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7846   match(Set dst (URShiftI src1 src2));
  7848   size(4);
  7849   format %{ "SRL    $src1,$src2,$dst" %}
  7850   opcode(Assembler::srl_op3, Assembler::arith_op);
  7851   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7852   ins_pipe(ialu_reg_reg);
  7853 %}
  7855 // Register Shift Right Immediate
  7856 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7857   match(Set dst (URShiftI src1 src2));
  7859   size(4);
  7860   format %{ "SRL    $src1,$src2,$dst" %}
  7861   opcode(Assembler::srl_op3, Assembler::arith_op);
  7862   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7863   ins_pipe(ialu_reg_imm);
  7864 %}
  7866 // Register Shift Right
  7867 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7868   match(Set dst (URShiftL src1 src2));
  7870   size(4);
  7871   format %{ "SRLX   $src1,$src2,$dst" %}
  7872   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7873   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7874   ins_pipe(ialu_reg_reg);
  7875 %}
  7877 // Register Shift Right Immediate
  7878 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7879   match(Set dst (URShiftL src1 src2));
  7881   size(4);
  7882   format %{ "SRLX   $src1,$src2,$dst" %}
  7883   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7884   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7885   ins_pipe(ialu_reg_imm);
  7886 %}
  7888 // Register Shift Right Immediate with a CastP2X
  7889 #ifdef _LP64
  7890 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7891   match(Set dst (URShiftL (CastP2X src1) src2));
  7892   size(4);
  7893   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7894   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7895   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7896   ins_pipe(ialu_reg_imm);
  7897 %}
  7898 #else
  7899 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7900   match(Set dst (URShiftI (CastP2X src1) src2));
  7901   size(4);
  7902   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7903   opcode(Assembler::srl_op3, Assembler::arith_op);
  7904   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7905   ins_pipe(ialu_reg_imm);
  7906 %}
  7907 #endif
  7910 //----------Floating Point Arithmetic Instructions-----------------------------
  7912 //  Add float single precision
  7913 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7914   match(Set dst (AddF src1 src2));
  7916   size(4);
  7917   format %{ "FADDS  $src1,$src2,$dst" %}
  7918   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7919   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7920   ins_pipe(faddF_reg_reg);
  7921 %}
  7923 //  Add float double precision
  7924 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7925   match(Set dst (AddD src1 src2));
  7927   size(4);
  7928   format %{ "FADDD  $src1,$src2,$dst" %}
  7929   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7930   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7931   ins_pipe(faddD_reg_reg);
  7932 %}
  7934 //  Sub float single precision
  7935 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7936   match(Set dst (SubF src1 src2));
  7938   size(4);
  7939   format %{ "FSUBS  $src1,$src2,$dst" %}
  7940   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7941   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7942   ins_pipe(faddF_reg_reg);
  7943 %}
  7945 //  Sub float double precision
  7946 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7947   match(Set dst (SubD src1 src2));
  7949   size(4);
  7950   format %{ "FSUBD  $src1,$src2,$dst" %}
  7951   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7952   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7953   ins_pipe(faddD_reg_reg);
  7954 %}
  7956 //  Mul float single precision
  7957 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7958   match(Set dst (MulF src1 src2));
  7960   size(4);
  7961   format %{ "FMULS  $src1,$src2,$dst" %}
  7962   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7963   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7964   ins_pipe(fmulF_reg_reg);
  7965 %}
  7967 //  Mul float double precision
  7968 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7969   match(Set dst (MulD src1 src2));
  7971   size(4);
  7972   format %{ "FMULD  $src1,$src2,$dst" %}
  7973   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7974   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7975   ins_pipe(fmulD_reg_reg);
  7976 %}
  7978 //  Div float single precision
  7979 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7980   match(Set dst (DivF src1 src2));
  7982   size(4);
  7983   format %{ "FDIVS  $src1,$src2,$dst" %}
  7984   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7985   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7986   ins_pipe(fdivF_reg_reg);
  7987 %}
  7989 //  Div float double precision
  7990 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7991   match(Set dst (DivD src1 src2));
  7993   size(4);
  7994   format %{ "FDIVD  $src1,$src2,$dst" %}
  7995   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7996   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7997   ins_pipe(fdivD_reg_reg);
  7998 %}
  8000 //  Absolute float double precision
  8001 instruct absD_reg(regD dst, regD src) %{
  8002   match(Set dst (AbsD src));
  8004   format %{ "FABSd  $src,$dst" %}
  8005   ins_encode(fabsd(dst, src));
  8006   ins_pipe(faddD_reg);
  8007 %}
  8009 //  Absolute float single precision
  8010 instruct absF_reg(regF dst, regF src) %{
  8011   match(Set dst (AbsF src));
  8013   format %{ "FABSs  $src,$dst" %}
  8014   ins_encode(fabss(dst, src));
  8015   ins_pipe(faddF_reg);
  8016 %}
  8018 instruct negF_reg(regF dst, regF src) %{
  8019   match(Set dst (NegF src));
  8021   size(4);
  8022   format %{ "FNEGs  $src,$dst" %}
  8023   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  8024   ins_encode(form3_opf_rs2F_rdF(src, dst));
  8025   ins_pipe(faddF_reg);
  8026 %}
  8028 instruct negD_reg(regD dst, regD src) %{
  8029   match(Set dst (NegD src));
  8031   format %{ "FNEGd  $src,$dst" %}
  8032   ins_encode(fnegd(dst, src));
  8033   ins_pipe(faddD_reg);
  8034 %}
  8036 //  Sqrt float double precision
  8037 instruct sqrtF_reg_reg(regF dst, regF src) %{
  8038   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  8040   size(4);
  8041   format %{ "FSQRTS $src,$dst" %}
  8042   ins_encode(fsqrts(dst, src));
  8043   ins_pipe(fdivF_reg_reg);
  8044 %}
  8046 //  Sqrt float double precision
  8047 instruct sqrtD_reg_reg(regD dst, regD src) %{
  8048   match(Set dst (SqrtD src));
  8050   size(4);
  8051   format %{ "FSQRTD $src,$dst" %}
  8052   ins_encode(fsqrtd(dst, src));
  8053   ins_pipe(fdivD_reg_reg);
  8054 %}
  8056 //----------Logical Instructions-----------------------------------------------
  8057 // And Instructions
  8058 // Register And
  8059 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8060   match(Set dst (AndI src1 src2));
  8062   size(4);
  8063   format %{ "AND    $src1,$src2,$dst" %}
  8064   opcode(Assembler::and_op3, Assembler::arith_op);
  8065   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8066   ins_pipe(ialu_reg_reg);
  8067 %}
  8069 // Immediate And
  8070 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8071   match(Set dst (AndI src1 src2));
  8073   size(4);
  8074   format %{ "AND    $src1,$src2,$dst" %}
  8075   opcode(Assembler::and_op3, Assembler::arith_op);
  8076   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8077   ins_pipe(ialu_reg_imm);
  8078 %}
  8080 // Register And Long
  8081 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8082   match(Set dst (AndL src1 src2));
  8084   ins_cost(DEFAULT_COST);
  8085   size(4);
  8086   format %{ "AND    $src1,$src2,$dst\t! long" %}
  8087   opcode(Assembler::and_op3, Assembler::arith_op);
  8088   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8089   ins_pipe(ialu_reg_reg);
  8090 %}
  8092 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8093   match(Set dst (AndL src1 con));
  8095   ins_cost(DEFAULT_COST);
  8096   size(4);
  8097   format %{ "AND    $src1,$con,$dst\t! long" %}
  8098   opcode(Assembler::and_op3, Assembler::arith_op);
  8099   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8100   ins_pipe(ialu_reg_imm);
  8101 %}
  8103 // Or Instructions
  8104 // Register Or
  8105 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8106   match(Set dst (OrI src1 src2));
  8108   size(4);
  8109   format %{ "OR     $src1,$src2,$dst" %}
  8110   opcode(Assembler::or_op3, Assembler::arith_op);
  8111   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8112   ins_pipe(ialu_reg_reg);
  8113 %}
  8115 // Immediate Or
  8116 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8117   match(Set dst (OrI src1 src2));
  8119   size(4);
  8120   format %{ "OR     $src1,$src2,$dst" %}
  8121   opcode(Assembler::or_op3, Assembler::arith_op);
  8122   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8123   ins_pipe(ialu_reg_imm);
  8124 %}
  8126 // Register Or Long
  8127 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8128   match(Set dst (OrL src1 src2));
  8130   ins_cost(DEFAULT_COST);
  8131   size(4);
  8132   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8133   opcode(Assembler::or_op3, Assembler::arith_op);
  8134   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8135   ins_pipe(ialu_reg_reg);
  8136 %}
  8138 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8139   match(Set dst (OrL src1 con));
  8140   ins_cost(DEFAULT_COST*2);
  8142   ins_cost(DEFAULT_COST);
  8143   size(4);
  8144   format %{ "OR     $src1,$con,$dst\t! long" %}
  8145   opcode(Assembler::or_op3, Assembler::arith_op);
  8146   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8147   ins_pipe(ialu_reg_imm);
  8148 %}
  8150 #ifndef _LP64
  8152 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8153 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8154   match(Set dst (OrI src1 (CastP2X src2)));
  8156   size(4);
  8157   format %{ "OR     $src1,$src2,$dst" %}
  8158   opcode(Assembler::or_op3, Assembler::arith_op);
  8159   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8160   ins_pipe(ialu_reg_reg);
  8161 %}
  8163 #else
  8165 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8166   match(Set dst (OrL src1 (CastP2X src2)));
  8168   ins_cost(DEFAULT_COST);
  8169   size(4);
  8170   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8171   opcode(Assembler::or_op3, Assembler::arith_op);
  8172   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8173   ins_pipe(ialu_reg_reg);
  8174 %}
  8176 #endif
  8178 // Xor Instructions
  8179 // Register Xor
  8180 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8181   match(Set dst (XorI src1 src2));
  8183   size(4);
  8184   format %{ "XOR    $src1,$src2,$dst" %}
  8185   opcode(Assembler::xor_op3, Assembler::arith_op);
  8186   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8187   ins_pipe(ialu_reg_reg);
  8188 %}
  8190 // Immediate Xor
  8191 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8192   match(Set dst (XorI src1 src2));
  8194   size(4);
  8195   format %{ "XOR    $src1,$src2,$dst" %}
  8196   opcode(Assembler::xor_op3, Assembler::arith_op);
  8197   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8198   ins_pipe(ialu_reg_imm);
  8199 %}
  8201 // Register Xor Long
  8202 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8203   match(Set dst (XorL src1 src2));
  8205   ins_cost(DEFAULT_COST);
  8206   size(4);
  8207   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8208   opcode(Assembler::xor_op3, Assembler::arith_op);
  8209   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8210   ins_pipe(ialu_reg_reg);
  8211 %}
  8213 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8214   match(Set dst (XorL src1 con));
  8216   ins_cost(DEFAULT_COST);
  8217   size(4);
  8218   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8219   opcode(Assembler::xor_op3, Assembler::arith_op);
  8220   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8221   ins_pipe(ialu_reg_imm);
  8222 %}
  8224 //----------Convert to Boolean-------------------------------------------------
  8225 // Nice hack for 32-bit tests but doesn't work for
  8226 // 64-bit pointers.
  8227 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8228   match(Set dst (Conv2B src));
  8229   effect( KILL ccr );
  8230   ins_cost(DEFAULT_COST*2);
  8231   format %{ "CMP    R_G0,$src\n\t"
  8232             "ADDX   R_G0,0,$dst" %}
  8233   ins_encode( enc_to_bool( src, dst ) );
  8234   ins_pipe(ialu_reg_ialu);
  8235 %}
  8237 #ifndef _LP64
  8238 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8239   match(Set dst (Conv2B src));
  8240   effect( KILL ccr );
  8241   ins_cost(DEFAULT_COST*2);
  8242   format %{ "CMP    R_G0,$src\n\t"
  8243             "ADDX   R_G0,0,$dst" %}
  8244   ins_encode( enc_to_bool( src, dst ) );
  8245   ins_pipe(ialu_reg_ialu);
  8246 %}
  8247 #else
  8248 instruct convP2B( iRegI dst, iRegP src ) %{
  8249   match(Set dst (Conv2B src));
  8250   ins_cost(DEFAULT_COST*2);
  8251   format %{ "MOV    $src,$dst\n\t"
  8252             "MOVRNZ $src,1,$dst" %}
  8253   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8254   ins_pipe(ialu_clr_and_mover);
  8255 %}
  8256 #endif
  8258 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8259   match(Set dst (CmpLTMask src zero));
  8260   effect(KILL ccr);
  8261   size(4);
  8262   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8263   ins_encode %{
  8264     __ sra($src$$Register, 31, $dst$$Register);
  8265   %}
  8266   ins_pipe(ialu_reg_imm);
  8267 %}
  8269 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8270   match(Set dst (CmpLTMask p q));
  8271   effect( KILL ccr );
  8272   ins_cost(DEFAULT_COST*4);
  8273   format %{ "CMP    $p,$q\n\t"
  8274             "MOV    #0,$dst\n\t"
  8275             "BLT,a  .+8\n\t"
  8276             "MOV    #-1,$dst" %}
  8277   ins_encode( enc_ltmask(p,q,dst) );
  8278   ins_pipe(ialu_reg_reg_ialu);
  8279 %}
  8281 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8282   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8283   effect(KILL ccr, TEMP tmp);
  8284   ins_cost(DEFAULT_COST*3);
  8286   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8287             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8288             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8289   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
  8290   ins_pipe(cadd_cmpltmask);
  8291 %}
  8293 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
  8294   match(Set p (AndI (CmpLTMask p q) y));
  8295   effect(KILL ccr);
  8296   ins_cost(DEFAULT_COST*3);
  8298   format %{ "CMP  $p,$q\n\t"
  8299             "MOV  $y,$p\n\t"
  8300             "MOVge G0,$p" %}
  8301   ins_encode %{
  8302     __ cmp($p$$Register, $q$$Register);
  8303     __ mov($y$$Register, $p$$Register);
  8304     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
  8305   %}
  8306   ins_pipe(ialu_reg_reg_ialu);
  8307 %}
  8309 //-----------------------------------------------------------------
  8310 // Direct raw moves between float and general registers using VIS3.
  8312 //  ins_pipe(faddF_reg);
  8313 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  8314   predicate(UseVIS >= 3);
  8315   match(Set dst (MoveF2I src));
  8317   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  8318   ins_encode %{
  8319     __ movstouw($src$$FloatRegister, $dst$$Register);
  8320   %}
  8321   ins_pipe(ialu_reg_reg);
  8322 %}
  8324 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  8325   predicate(UseVIS >= 3);
  8326   match(Set dst (MoveI2F src));
  8328   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  8329   ins_encode %{
  8330     __ movwtos($src$$Register, $dst$$FloatRegister);
  8331   %}
  8332   ins_pipe(ialu_reg_reg);
  8333 %}
  8335 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  8336   predicate(UseVIS >= 3);
  8337   match(Set dst (MoveD2L src));
  8339   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  8340   ins_encode %{
  8341     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  8342   %}
  8343   ins_pipe(ialu_reg_reg);
  8344 %}
  8346 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  8347   predicate(UseVIS >= 3);
  8348   match(Set dst (MoveL2D src));
  8350   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  8351   ins_encode %{
  8352     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  8353   %}
  8354   ins_pipe(ialu_reg_reg);
  8355 %}
  8358 // Raw moves between float and general registers using stack.
  8360 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8361   match(Set dst (MoveF2I src));
  8362   effect(DEF dst, USE src);
  8363   ins_cost(MEMORY_REF_COST);
  8365   size(4);
  8366   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8367   opcode(Assembler::lduw_op3);
  8368   ins_encode(simple_form3_mem_reg( src, dst ) );
  8369   ins_pipe(iload_mem);
  8370 %}
  8372 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8373   match(Set dst (MoveI2F src));
  8374   effect(DEF dst, USE src);
  8375   ins_cost(MEMORY_REF_COST);
  8377   size(4);
  8378   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8379   opcode(Assembler::ldf_op3);
  8380   ins_encode(simple_form3_mem_reg(src, dst));
  8381   ins_pipe(floadF_stk);
  8382 %}
  8384 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8385   match(Set dst (MoveD2L src));
  8386   effect(DEF dst, USE src);
  8387   ins_cost(MEMORY_REF_COST);
  8389   size(4);
  8390   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8391   opcode(Assembler::ldx_op3);
  8392   ins_encode(simple_form3_mem_reg( src, dst ) );
  8393   ins_pipe(iload_mem);
  8394 %}
  8396 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8397   match(Set dst (MoveL2D src));
  8398   effect(DEF dst, USE src);
  8399   ins_cost(MEMORY_REF_COST);
  8401   size(4);
  8402   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8403   opcode(Assembler::lddf_op3);
  8404   ins_encode(simple_form3_mem_reg(src, dst));
  8405   ins_pipe(floadD_stk);
  8406 %}
  8408 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8409   match(Set dst (MoveF2I src));
  8410   effect(DEF dst, USE src);
  8411   ins_cost(MEMORY_REF_COST);
  8413   size(4);
  8414   format %{ "STF   $src,$dst\t! MoveF2I" %}
  8415   opcode(Assembler::stf_op3);
  8416   ins_encode(simple_form3_mem_reg(dst, src));
  8417   ins_pipe(fstoreF_stk_reg);
  8418 %}
  8420 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8421   match(Set dst (MoveI2F src));
  8422   effect(DEF dst, USE src);
  8423   ins_cost(MEMORY_REF_COST);
  8425   size(4);
  8426   format %{ "STW    $src,$dst\t! MoveI2F" %}
  8427   opcode(Assembler::stw_op3);
  8428   ins_encode(simple_form3_mem_reg( dst, src ) );
  8429   ins_pipe(istore_mem_reg);
  8430 %}
  8432 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8433   match(Set dst (MoveD2L src));
  8434   effect(DEF dst, USE src);
  8435   ins_cost(MEMORY_REF_COST);
  8437   size(4);
  8438   format %{ "STDF   $src,$dst\t! MoveD2L" %}
  8439   opcode(Assembler::stdf_op3);
  8440   ins_encode(simple_form3_mem_reg(dst, src));
  8441   ins_pipe(fstoreD_stk_reg);
  8442 %}
  8444 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8445   match(Set dst (MoveL2D src));
  8446   effect(DEF dst, USE src);
  8447   ins_cost(MEMORY_REF_COST);
  8449   size(4);
  8450   format %{ "STX    $src,$dst\t! MoveL2D" %}
  8451   opcode(Assembler::stx_op3);
  8452   ins_encode(simple_form3_mem_reg( dst, src ) );
  8453   ins_pipe(istore_mem_reg);
  8454 %}
  8457 //----------Arithmetic Conversion Instructions---------------------------------
  8458 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8460 instruct convD2F_reg(regF dst, regD src) %{
  8461   match(Set dst (ConvD2F src));
  8462   size(4);
  8463   format %{ "FDTOS  $src,$dst" %}
  8464   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8465   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8466   ins_pipe(fcvtD2F);
  8467 %}
  8470 // Convert a double to an int in a float register.
  8471 // If the double is a NAN, stuff a zero in instead.
  8472 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8473   effect(DEF dst, USE src, KILL fcc0);
  8474   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8475             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8476             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8477             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8478             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8479       "skip:" %}
  8480   ins_encode(form_d2i_helper(src,dst));
  8481   ins_pipe(fcvtD2I);
  8482 %}
  8484 instruct convD2I_stk(stackSlotI dst, regD src) %{
  8485   match(Set dst (ConvD2I src));
  8486   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8487   expand %{
  8488     regF tmp;
  8489     convD2I_helper(tmp, src);
  8490     regF_to_stkI(dst, tmp);
  8491   %}
  8492 %}
  8494 instruct convD2I_reg(iRegI dst, regD src) %{
  8495   predicate(UseVIS >= 3);
  8496   match(Set dst (ConvD2I src));
  8497   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8498   expand %{
  8499     regF tmp;
  8500     convD2I_helper(tmp, src);
  8501     MoveF2I_reg_reg(dst, tmp);
  8502   %}
  8503 %}
  8506 // Convert a double to a long in a double register.
  8507 // If the double is a NAN, stuff a zero in instead.
  8508 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8509   effect(DEF dst, USE src, KILL fcc0);
  8510   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8511             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8512             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8513             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8514             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8515       "skip:" %}
  8516   ins_encode(form_d2l_helper(src,dst));
  8517   ins_pipe(fcvtD2L);
  8518 %}
  8520 instruct convD2L_stk(stackSlotL dst, regD src) %{
  8521   match(Set dst (ConvD2L src));
  8522   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8523   expand %{
  8524     regD tmp;
  8525     convD2L_helper(tmp, src);
  8526     regD_to_stkL(dst, tmp);
  8527   %}
  8528 %}
  8530 instruct convD2L_reg(iRegL dst, regD src) %{
  8531   predicate(UseVIS >= 3);
  8532   match(Set dst (ConvD2L src));
  8533   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8534   expand %{
  8535     regD tmp;
  8536     convD2L_helper(tmp, src);
  8537     MoveD2L_reg_reg(dst, tmp);
  8538   %}
  8539 %}
  8542 instruct convF2D_reg(regD dst, regF src) %{
  8543   match(Set dst (ConvF2D src));
  8544   format %{ "FSTOD  $src,$dst" %}
  8545   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8546   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8547   ins_pipe(fcvtF2D);
  8548 %}
  8551 // Convert a float to an int in a float register.
  8552 // If the float is a NAN, stuff a zero in instead.
  8553 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8554   effect(DEF dst, USE src, KILL fcc0);
  8555   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8556             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8557             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8558             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8559             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8560       "skip:" %}
  8561   ins_encode(form_f2i_helper(src,dst));
  8562   ins_pipe(fcvtF2I);
  8563 %}
  8565 instruct convF2I_stk(stackSlotI dst, regF src) %{
  8566   match(Set dst (ConvF2I src));
  8567   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8568   expand %{
  8569     regF tmp;
  8570     convF2I_helper(tmp, src);
  8571     regF_to_stkI(dst, tmp);
  8572   %}
  8573 %}
  8575 instruct convF2I_reg(iRegI dst, regF src) %{
  8576   predicate(UseVIS >= 3);
  8577   match(Set dst (ConvF2I src));
  8578   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8579   expand %{
  8580     regF tmp;
  8581     convF2I_helper(tmp, src);
  8582     MoveF2I_reg_reg(dst, tmp);
  8583   %}
  8584 %}
  8587 // Convert a float to a long in a float register.
  8588 // If the float is a NAN, stuff a zero in instead.
  8589 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8590   effect(DEF dst, USE src, KILL fcc0);
  8591   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8592             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8593             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8594             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8595             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8596       "skip:" %}
  8597   ins_encode(form_f2l_helper(src,dst));
  8598   ins_pipe(fcvtF2L);
  8599 %}
  8601 instruct convF2L_stk(stackSlotL dst, regF src) %{
  8602   match(Set dst (ConvF2L src));
  8603   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8604   expand %{
  8605     regD tmp;
  8606     convF2L_helper(tmp, src);
  8607     regD_to_stkL(dst, tmp);
  8608   %}
  8609 %}
  8611 instruct convF2L_reg(iRegL dst, regF src) %{
  8612   predicate(UseVIS >= 3);
  8613   match(Set dst (ConvF2L src));
  8614   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8615   expand %{
  8616     regD tmp;
  8617     convF2L_helper(tmp, src);
  8618     MoveD2L_reg_reg(dst, tmp);
  8619   %}
  8620 %}
  8623 instruct convI2D_helper(regD dst, regF tmp) %{
  8624   effect(USE tmp, DEF dst);
  8625   format %{ "FITOD  $tmp,$dst" %}
  8626   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8627   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8628   ins_pipe(fcvtI2D);
  8629 %}
  8631 instruct convI2D_stk(stackSlotI src, regD dst) %{
  8632   match(Set dst (ConvI2D src));
  8633   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8634   expand %{
  8635     regF tmp;
  8636     stkI_to_regF(tmp, src);
  8637     convI2D_helper(dst, tmp);
  8638   %}
  8639 %}
  8641 instruct convI2D_reg(regD_low dst, iRegI src) %{
  8642   predicate(UseVIS >= 3);
  8643   match(Set dst (ConvI2D src));
  8644   expand %{
  8645     regF tmp;
  8646     MoveI2F_reg_reg(tmp, src);
  8647     convI2D_helper(dst, tmp);
  8648   %}
  8649 %}
  8651 instruct convI2D_mem(regD_low dst, memory mem) %{
  8652   match(Set dst (ConvI2D (LoadI mem)));
  8653   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8654   size(8);
  8655   format %{ "LDF    $mem,$dst\n\t"
  8656             "FITOD  $dst,$dst" %}
  8657   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8658   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8659   ins_pipe(floadF_mem);
  8660 %}
  8663 instruct convI2F_helper(regF dst, regF tmp) %{
  8664   effect(DEF dst, USE tmp);
  8665   format %{ "FITOS  $tmp,$dst" %}
  8666   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8667   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8668   ins_pipe(fcvtI2F);
  8669 %}
  8671 instruct convI2F_stk(regF dst, stackSlotI src) %{
  8672   match(Set dst (ConvI2F src));
  8673   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8674   expand %{
  8675     regF tmp;
  8676     stkI_to_regF(tmp,src);
  8677     convI2F_helper(dst, tmp);
  8678   %}
  8679 %}
  8681 instruct convI2F_reg(regF dst, iRegI src) %{
  8682   predicate(UseVIS >= 3);
  8683   match(Set dst (ConvI2F src));
  8684   ins_cost(DEFAULT_COST);
  8685   expand %{
  8686     regF tmp;
  8687     MoveI2F_reg_reg(tmp, src);
  8688     convI2F_helper(dst, tmp);
  8689   %}
  8690 %}
  8692 instruct convI2F_mem( regF dst, memory mem ) %{
  8693   match(Set dst (ConvI2F (LoadI mem)));
  8694   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8695   size(8);
  8696   format %{ "LDF    $mem,$dst\n\t"
  8697             "FITOS  $dst,$dst" %}
  8698   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8699   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8700   ins_pipe(floadF_mem);
  8701 %}
  8704 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8705   match(Set dst (ConvI2L src));
  8706   size(4);
  8707   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8708   opcode(Assembler::sra_op3, Assembler::arith_op);
  8709   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8710   ins_pipe(ialu_reg_reg);
  8711 %}
  8713 // Zero-extend convert int to long
  8714 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8715   match(Set dst (AndL (ConvI2L src) mask) );
  8716   size(4);
  8717   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8718   opcode(Assembler::srl_op3, Assembler::arith_op);
  8719   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8720   ins_pipe(ialu_reg_reg);
  8721 %}
  8723 // Zero-extend long
  8724 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8725   match(Set dst (AndL src mask) );
  8726   size(4);
  8727   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8728   opcode(Assembler::srl_op3, Assembler::arith_op);
  8729   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8730   ins_pipe(ialu_reg_reg);
  8731 %}
  8734 //-----------
  8735 // Long to Double conversion using V8 opcodes.
  8736 // Still useful because cheetah traps and becomes
  8737 // amazingly slow for some common numbers.
  8739 // Magic constant, 0x43300000
  8740 instruct loadConI_x43300000(iRegI dst) %{
  8741   effect(DEF dst);
  8742   size(4);
  8743   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8744   ins_encode(SetHi22(0x43300000, dst));
  8745   ins_pipe(ialu_none);
  8746 %}
  8748 // Magic constant, 0x41f00000
  8749 instruct loadConI_x41f00000(iRegI dst) %{
  8750   effect(DEF dst);
  8751   size(4);
  8752   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8753   ins_encode(SetHi22(0x41f00000, dst));
  8754   ins_pipe(ialu_none);
  8755 %}
  8757 // Construct a double from two float halves
  8758 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8759   effect(DEF dst, USE src1, USE src2);
  8760   size(8);
  8761   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8762             "FMOVS  $src2.lo,$dst.lo" %}
  8763   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8764   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8765   ins_pipe(faddD_reg_reg);
  8766 %}
  8768 // Convert integer in high half of a double register (in the lower half of
  8769 // the double register file) to double
  8770 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8771   effect(DEF dst, USE src);
  8772   size(4);
  8773   format %{ "FITOD  $src,$dst" %}
  8774   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8775   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8776   ins_pipe(fcvtLHi2D);
  8777 %}
  8779 // Add float double precision
  8780 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8781   effect(DEF dst, USE src1, USE src2);
  8782   size(4);
  8783   format %{ "FADDD  $src1,$src2,$dst" %}
  8784   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8785   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8786   ins_pipe(faddD_reg_reg);
  8787 %}
  8789 // Sub float double precision
  8790 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8791   effect(DEF dst, USE src1, USE src2);
  8792   size(4);
  8793   format %{ "FSUBD  $src1,$src2,$dst" %}
  8794   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8795   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8796   ins_pipe(faddD_reg_reg);
  8797 %}
  8799 // Mul float double precision
  8800 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8801   effect(DEF dst, USE src1, USE src2);
  8802   size(4);
  8803   format %{ "FMULD  $src1,$src2,$dst" %}
  8804   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8805   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8806   ins_pipe(fmulD_reg_reg);
  8807 %}
  8809 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8810   match(Set dst (ConvL2D src));
  8811   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8813   expand %{
  8814     regD_low   tmpsrc;
  8815     iRegI      ix43300000;
  8816     iRegI      ix41f00000;
  8817     stackSlotL lx43300000;
  8818     stackSlotL lx41f00000;
  8819     regD_low   dx43300000;
  8820     regD       dx41f00000;
  8821     regD       tmp1;
  8822     regD_low   tmp2;
  8823     regD       tmp3;
  8824     regD       tmp4;
  8826     stkL_to_regD(tmpsrc, src);
  8828     loadConI_x43300000(ix43300000);
  8829     loadConI_x41f00000(ix41f00000);
  8830     regI_to_stkLHi(lx43300000, ix43300000);
  8831     regI_to_stkLHi(lx41f00000, ix41f00000);
  8832     stkL_to_regD(dx43300000, lx43300000);
  8833     stkL_to_regD(dx41f00000, lx41f00000);
  8835     convI2D_regDHi_regD(tmp1, tmpsrc);
  8836     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8837     subD_regD_regD(tmp3, tmp2, dx43300000);
  8838     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8839     addD_regD_regD(dst, tmp3, tmp4);
  8840   %}
  8841 %}
  8843 // Long to Double conversion using fast fxtof
  8844 instruct convL2D_helper(regD dst, regD tmp) %{
  8845   effect(DEF dst, USE tmp);
  8846   size(4);
  8847   format %{ "FXTOD  $tmp,$dst" %}
  8848   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8849   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8850   ins_pipe(fcvtL2D);
  8851 %}
  8853 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
  8854   predicate(VM_Version::has_fast_fxtof());
  8855   match(Set dst (ConvL2D src));
  8856   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8857   expand %{
  8858     regD tmp;
  8859     stkL_to_regD(tmp, src);
  8860     convL2D_helper(dst, tmp);
  8861   %}
  8862 %}
  8864 instruct convL2D_reg(regD dst, iRegL src) %{
  8865   predicate(UseVIS >= 3);
  8866   match(Set dst (ConvL2D src));
  8867   expand %{
  8868     regD tmp;
  8869     MoveL2D_reg_reg(tmp, src);
  8870     convL2D_helper(dst, tmp);
  8871   %}
  8872 %}
  8874 // Long to Float conversion using fast fxtof
  8875 instruct convL2F_helper(regF dst, regD tmp) %{
  8876   effect(DEF dst, USE tmp);
  8877   size(4);
  8878   format %{ "FXTOS  $tmp,$dst" %}
  8879   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8880   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8881   ins_pipe(fcvtL2F);
  8882 %}
  8884 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
  8885   match(Set dst (ConvL2F src));
  8886   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8887   expand %{
  8888     regD tmp;
  8889     stkL_to_regD(tmp, src);
  8890     convL2F_helper(dst, tmp);
  8891   %}
  8892 %}
  8894 instruct convL2F_reg(regF dst, iRegL src) %{
  8895   predicate(UseVIS >= 3);
  8896   match(Set dst (ConvL2F src));
  8897   ins_cost(DEFAULT_COST);
  8898   expand %{
  8899     regD tmp;
  8900     MoveL2D_reg_reg(tmp, src);
  8901     convL2F_helper(dst, tmp);
  8902   %}
  8903 %}
  8905 //-----------
  8907 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8908   match(Set dst (ConvL2I src));
  8909 #ifndef _LP64
  8910   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8911   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8912   ins_pipe(ialu_move_reg_I_to_L);
  8913 #else
  8914   size(4);
  8915   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8916   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8917   ins_pipe(ialu_reg);
  8918 #endif
  8919 %}
  8921 // Register Shift Right Immediate
  8922 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8923   match(Set dst (ConvL2I (RShiftL src cnt)));
  8925   size(4);
  8926   format %{ "SRAX   $src,$cnt,$dst" %}
  8927   opcode(Assembler::srax_op3, Assembler::arith_op);
  8928   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8929   ins_pipe(ialu_reg_imm);
  8930 %}
  8932 //----------Control Flow Instructions------------------------------------------
  8933 // Compare Instructions
  8934 // Compare Integers
  8935 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8936   match(Set icc (CmpI op1 op2));
  8937   effect( DEF icc, USE op1, USE op2 );
  8939   size(4);
  8940   format %{ "CMP    $op1,$op2" %}
  8941   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8942   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8943   ins_pipe(ialu_cconly_reg_reg);
  8944 %}
  8946 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8947   match(Set icc (CmpU op1 op2));
  8949   size(4);
  8950   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8951   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8952   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8953   ins_pipe(ialu_cconly_reg_reg);
  8954 %}
  8956 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8957   match(Set icc (CmpI op1 op2));
  8958   effect( DEF icc, USE op1 );
  8960   size(4);
  8961   format %{ "CMP    $op1,$op2" %}
  8962   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8963   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8964   ins_pipe(ialu_cconly_reg_imm);
  8965 %}
  8967 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8968   match(Set icc (CmpI (AndI op1 op2) zero));
  8970   size(4);
  8971   format %{ "BTST   $op2,$op1" %}
  8972   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8973   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8974   ins_pipe(ialu_cconly_reg_reg_zero);
  8975 %}
  8977 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8978   match(Set icc (CmpI (AndI op1 op2) zero));
  8980   size(4);
  8981   format %{ "BTST   $op2,$op1" %}
  8982   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8983   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8984   ins_pipe(ialu_cconly_reg_imm_zero);
  8985 %}
  8987 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8988   match(Set xcc (CmpL op1 op2));
  8989   effect( DEF xcc, USE op1, USE op2 );
  8991   size(4);
  8992   format %{ "CMP    $op1,$op2\t\t! long" %}
  8993   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8994   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8995   ins_pipe(ialu_cconly_reg_reg);
  8996 %}
  8998 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8999   match(Set xcc (CmpL op1 con));
  9000   effect( DEF xcc, USE op1, USE con );
  9002   size(4);
  9003   format %{ "CMP    $op1,$con\t\t! long" %}
  9004   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9005   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  9006   ins_pipe(ialu_cconly_reg_reg);
  9007 %}
  9009 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  9010   match(Set xcc (CmpL (AndL op1 op2) zero));
  9011   effect( DEF xcc, USE op1, USE op2 );
  9013   size(4);
  9014   format %{ "BTST   $op1,$op2\t\t! long" %}
  9015   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9016   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9017   ins_pipe(ialu_cconly_reg_reg);
  9018 %}
  9020 // useful for checking the alignment of a pointer:
  9021 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  9022   match(Set xcc (CmpL (AndL op1 con) zero));
  9023   effect( DEF xcc, USE op1, USE con );
  9025   size(4);
  9026   format %{ "BTST   $op1,$con\t\t! long" %}
  9027   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9028   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  9029   ins_pipe(ialu_cconly_reg_reg);
  9030 %}
  9032 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU12 op2 ) %{
  9033   match(Set icc (CmpU op1 op2));
  9035   size(4);
  9036   format %{ "CMP    $op1,$op2\t! unsigned" %}
  9037   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9038   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9039   ins_pipe(ialu_cconly_reg_imm);
  9040 %}
  9042 // Compare Pointers
  9043 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  9044   match(Set pcc (CmpP op1 op2));
  9046   size(4);
  9047   format %{ "CMP    $op1,$op2\t! ptr" %}
  9048   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9049   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9050   ins_pipe(ialu_cconly_reg_reg);
  9051 %}
  9053 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  9054   match(Set pcc (CmpP op1 op2));
  9056   size(4);
  9057   format %{ "CMP    $op1,$op2\t! ptr" %}
  9058   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9059   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9060   ins_pipe(ialu_cconly_reg_imm);
  9061 %}
  9063 // Compare Narrow oops
  9064 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  9065   match(Set icc (CmpN op1 op2));
  9067   size(4);
  9068   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9069   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9070   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9071   ins_pipe(ialu_cconly_reg_reg);
  9072 %}
  9074 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  9075   match(Set icc (CmpN op1 op2));
  9077   size(4);
  9078   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9079   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9080   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9081   ins_pipe(ialu_cconly_reg_imm);
  9082 %}
  9084 //----------Max and Min--------------------------------------------------------
  9085 // Min Instructions
  9086 // Conditional move for min
  9087 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9088   effect( USE_DEF op2, USE op1, USE icc );
  9090   size(4);
  9091   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  9092   opcode(Assembler::less);
  9093   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9094   ins_pipe(ialu_reg_flags);
  9095 %}
  9097 // Min Register with Register.
  9098 instruct minI_eReg(iRegI op1, iRegI op2) %{
  9099   match(Set op2 (MinI op1 op2));
  9100   ins_cost(DEFAULT_COST*2);
  9101   expand %{
  9102     flagsReg icc;
  9103     compI_iReg(icc,op1,op2);
  9104     cmovI_reg_lt(op2,op1,icc);
  9105   %}
  9106 %}
  9108 // Max Instructions
  9109 // Conditional move for max
  9110 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9111   effect( USE_DEF op2, USE op1, USE icc );
  9112   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  9113   opcode(Assembler::greater);
  9114   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9115   ins_pipe(ialu_reg_flags);
  9116 %}
  9118 // Max Register with Register
  9119 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  9120   match(Set op2 (MaxI op1 op2));
  9121   ins_cost(DEFAULT_COST*2);
  9122   expand %{
  9123     flagsReg icc;
  9124     compI_iReg(icc,op1,op2);
  9125     cmovI_reg_gt(op2,op1,icc);
  9126   %}
  9127 %}
  9130 //----------Float Compares----------------------------------------------------
  9131 // Compare floating, generate condition code
  9132 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  9133   match(Set fcc (CmpF src1 src2));
  9135   size(4);
  9136   format %{ "FCMPs  $fcc,$src1,$src2" %}
  9137   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  9138   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  9139   ins_pipe(faddF_fcc_reg_reg_zero);
  9140 %}
  9142 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  9143   match(Set fcc (CmpD src1 src2));
  9145   size(4);
  9146   format %{ "FCMPd  $fcc,$src1,$src2" %}
  9147   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  9148   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  9149   ins_pipe(faddD_fcc_reg_reg_zero);
  9150 %}
  9153 // Compare floating, generate -1,0,1
  9154 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9155   match(Set dst (CmpF3 src1 src2));
  9156   effect(KILL fcc0);
  9157   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9158   format %{ "fcmpl  $dst,$src1,$src2" %}
  9159   // Primary = float
  9160   opcode( true );
  9161   ins_encode( floating_cmp( dst, src1, src2 ) );
  9162   ins_pipe( floating_cmp );
  9163 %}
  9165 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9166   match(Set dst (CmpD3 src1 src2));
  9167   effect(KILL fcc0);
  9168   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9169   format %{ "dcmpl  $dst,$src1,$src2" %}
  9170   // Primary = double (not float)
  9171   opcode( false );
  9172   ins_encode( floating_cmp( dst, src1, src2 ) );
  9173   ins_pipe( floating_cmp );
  9174 %}
  9176 //----------Branches---------------------------------------------------------
  9177 // Jump
  9178 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9179 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9180   match(Jump switch_val);
  9181   effect(TEMP table);
  9183   ins_cost(350);
  9185   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9186              "LD     [O7 + $switch_val], O7\n\t"
  9187              "JUMP   O7" %}
  9188   ins_encode %{
  9189     // Calculate table address into a register.
  9190     Register table_reg;
  9191     Register label_reg = O7;
  9192     // If we are calculating the size of this instruction don't trust
  9193     // zero offsets because they might change when
  9194     // MachConstantBaseNode decides to optimize the constant table
  9195     // base.
  9196     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
  9197       table_reg = $constanttablebase;
  9198     } else {
  9199       table_reg = O7;
  9200       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9201       __ add($constanttablebase, con_offset, table_reg);
  9204     // Jump to base address + switch value
  9205     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9206     __ jmp(label_reg, G0);
  9207     __ delayed()->nop();
  9208   %}
  9209   ins_pipe(ialu_reg_reg);
  9210 %}
  9212 // Direct Branch.  Use V8 version with longer range.
  9213 instruct branch(label labl) %{
  9214   match(Goto);
  9215   effect(USE labl);
  9217   size(8);
  9218   ins_cost(BRANCH_COST);
  9219   format %{ "BA     $labl" %}
  9220   ins_encode %{
  9221     Label* L = $labl$$label;
  9222     __ ba(*L);
  9223     __ delayed()->nop();
  9224   %}
  9225   ins_avoid_back_to_back(AVOID_BEFORE);
  9226   ins_pipe(br);
  9227 %}
  9229 // Direct Branch, short with no delay slot
  9230 instruct branch_short(label labl) %{
  9231   match(Goto);
  9232   predicate(UseCBCond);
  9233   effect(USE labl);
  9235   size(4);
  9236   ins_cost(BRANCH_COST);
  9237   format %{ "BA     $labl\t! short branch" %}
  9238   ins_encode %{
  9239     Label* L = $labl$$label;
  9240     assert(__ use_cbcond(*L), "back to back cbcond");
  9241     __ ba_short(*L);
  9242   %}
  9243   ins_short_branch(1);
  9244   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9245   ins_pipe(cbcond_reg_imm);
  9246 %}
  9248 // Conditional Direct Branch
  9249 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9250   match(If cmp icc);
  9251   effect(USE labl);
  9253   size(8);
  9254   ins_cost(BRANCH_COST);
  9255   format %{ "BP$cmp   $icc,$labl" %}
  9256   // Prim = bits 24-22, Secnd = bits 31-30
  9257   ins_encode( enc_bp( labl, cmp, icc ) );
  9258   ins_avoid_back_to_back(AVOID_BEFORE);
  9259   ins_pipe(br_cc);
  9260 %}
  9262 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9263   match(If cmp icc);
  9264   effect(USE labl);
  9266   ins_cost(BRANCH_COST);
  9267   format %{ "BP$cmp  $icc,$labl" %}
  9268   // Prim = bits 24-22, Secnd = bits 31-30
  9269   ins_encode( enc_bp( labl, cmp, icc ) );
  9270   ins_avoid_back_to_back(AVOID_BEFORE);
  9271   ins_pipe(br_cc);
  9272 %}
  9274 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9275   match(If cmp pcc);
  9276   effect(USE labl);
  9278   size(8);
  9279   ins_cost(BRANCH_COST);
  9280   format %{ "BP$cmp  $pcc,$labl" %}
  9281   ins_encode %{
  9282     Label* L = $labl$$label;
  9283     Assembler::Predict predict_taken =
  9284       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9286     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9287     __ delayed()->nop();
  9288   %}
  9289   ins_avoid_back_to_back(AVOID_BEFORE);
  9290   ins_pipe(br_cc);
  9291 %}
  9293 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9294   match(If cmp fcc);
  9295   effect(USE labl);
  9297   size(8);
  9298   ins_cost(BRANCH_COST);
  9299   format %{ "FBP$cmp $fcc,$labl" %}
  9300   ins_encode %{
  9301     Label* L = $labl$$label;
  9302     Assembler::Predict predict_taken =
  9303       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9305     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
  9306     __ delayed()->nop();
  9307   %}
  9308   ins_avoid_back_to_back(AVOID_BEFORE);
  9309   ins_pipe(br_fcc);
  9310 %}
  9312 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9313   match(CountedLoopEnd cmp icc);
  9314   effect(USE labl);
  9316   size(8);
  9317   ins_cost(BRANCH_COST);
  9318   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9319   // Prim = bits 24-22, Secnd = bits 31-30
  9320   ins_encode( enc_bp( labl, cmp, icc ) );
  9321   ins_avoid_back_to_back(AVOID_BEFORE);
  9322   ins_pipe(br_cc);
  9323 %}
  9325 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9326   match(CountedLoopEnd cmp icc);
  9327   effect(USE labl);
  9329   size(8);
  9330   ins_cost(BRANCH_COST);
  9331   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9332   // Prim = bits 24-22, Secnd = bits 31-30
  9333   ins_encode( enc_bp( labl, cmp, icc ) );
  9334   ins_avoid_back_to_back(AVOID_BEFORE);
  9335   ins_pipe(br_cc);
  9336 %}
  9338 // Compare and branch instructions
  9339 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9340   match(If cmp (CmpI op1 op2));
  9341   effect(USE labl, KILL icc);
  9343   size(12);
  9344   ins_cost(BRANCH_COST);
  9345   format %{ "CMP    $op1,$op2\t! int\n\t"
  9346             "BP$cmp   $labl" %}
  9347   ins_encode %{
  9348     Label* L = $labl$$label;
  9349     Assembler::Predict predict_taken =
  9350       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9351     __ cmp($op1$$Register, $op2$$Register);
  9352     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9353     __ delayed()->nop();
  9354   %}
  9355   ins_pipe(cmp_br_reg_reg);
  9356 %}
  9358 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9359   match(If cmp (CmpI op1 op2));
  9360   effect(USE labl, KILL icc);
  9362   size(12);
  9363   ins_cost(BRANCH_COST);
  9364   format %{ "CMP    $op1,$op2\t! int\n\t"
  9365             "BP$cmp   $labl" %}
  9366   ins_encode %{
  9367     Label* L = $labl$$label;
  9368     Assembler::Predict predict_taken =
  9369       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9370     __ cmp($op1$$Register, $op2$$constant);
  9371     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9372     __ delayed()->nop();
  9373   %}
  9374   ins_pipe(cmp_br_reg_imm);
  9375 %}
  9377 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9378   match(If cmp (CmpU op1 op2));
  9379   effect(USE labl, KILL icc);
  9381   size(12);
  9382   ins_cost(BRANCH_COST);
  9383   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9384             "BP$cmp  $labl" %}
  9385   ins_encode %{
  9386     Label* L = $labl$$label;
  9387     Assembler::Predict predict_taken =
  9388       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9389     __ cmp($op1$$Register, $op2$$Register);
  9390     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9391     __ delayed()->nop();
  9392   %}
  9393   ins_pipe(cmp_br_reg_reg);
  9394 %}
  9396 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9397   match(If cmp (CmpU op1 op2));
  9398   effect(USE labl, KILL icc);
  9400   size(12);
  9401   ins_cost(BRANCH_COST);
  9402   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9403             "BP$cmp  $labl" %}
  9404   ins_encode %{
  9405     Label* L = $labl$$label;
  9406     Assembler::Predict predict_taken =
  9407       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9408     __ cmp($op1$$Register, $op2$$constant);
  9409     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9410     __ delayed()->nop();
  9411   %}
  9412   ins_pipe(cmp_br_reg_imm);
  9413 %}
  9415 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9416   match(If cmp (CmpL op1 op2));
  9417   effect(USE labl, KILL xcc);
  9419   size(12);
  9420   ins_cost(BRANCH_COST);
  9421   format %{ "CMP    $op1,$op2\t! long\n\t"
  9422             "BP$cmp   $labl" %}
  9423   ins_encode %{
  9424     Label* L = $labl$$label;
  9425     Assembler::Predict predict_taken =
  9426       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9427     __ cmp($op1$$Register, $op2$$Register);
  9428     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9429     __ delayed()->nop();
  9430   %}
  9431   ins_pipe(cmp_br_reg_reg);
  9432 %}
  9434 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9435   match(If cmp (CmpL op1 op2));
  9436   effect(USE labl, KILL xcc);
  9438   size(12);
  9439   ins_cost(BRANCH_COST);
  9440   format %{ "CMP    $op1,$op2\t! long\n\t"
  9441             "BP$cmp   $labl" %}
  9442   ins_encode %{
  9443     Label* L = $labl$$label;
  9444     Assembler::Predict predict_taken =
  9445       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9446     __ cmp($op1$$Register, $op2$$constant);
  9447     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9448     __ delayed()->nop();
  9449   %}
  9450   ins_pipe(cmp_br_reg_imm);
  9451 %}
  9453 // Compare Pointers and branch
  9454 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9455   match(If cmp (CmpP op1 op2));
  9456   effect(USE labl, KILL pcc);
  9458   size(12);
  9459   ins_cost(BRANCH_COST);
  9460   format %{ "CMP    $op1,$op2\t! ptr\n\t"
  9461             "B$cmp   $labl" %}
  9462   ins_encode %{
  9463     Label* L = $labl$$label;
  9464     Assembler::Predict predict_taken =
  9465       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9466     __ cmp($op1$$Register, $op2$$Register);
  9467     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9468     __ delayed()->nop();
  9469   %}
  9470   ins_pipe(cmp_br_reg_reg);
  9471 %}
  9473 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9474   match(If cmp (CmpP op1 null));
  9475   effect(USE labl, KILL pcc);
  9477   size(12);
  9478   ins_cost(BRANCH_COST);
  9479   format %{ "CMP    $op1,0\t! ptr\n\t"
  9480             "B$cmp   $labl" %}
  9481   ins_encode %{
  9482     Label* L = $labl$$label;
  9483     Assembler::Predict predict_taken =
  9484       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9485     __ cmp($op1$$Register, G0);
  9486     // bpr() is not used here since it has shorter distance.
  9487     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9488     __ delayed()->nop();
  9489   %}
  9490   ins_pipe(cmp_br_reg_reg);
  9491 %}
  9493 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9494   match(If cmp (CmpN op1 op2));
  9495   effect(USE labl, KILL icc);
  9497   size(12);
  9498   ins_cost(BRANCH_COST);
  9499   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  9500             "BP$cmp   $labl" %}
  9501   ins_encode %{
  9502     Label* L = $labl$$label;
  9503     Assembler::Predict predict_taken =
  9504       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9505     __ cmp($op1$$Register, $op2$$Register);
  9506     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9507     __ delayed()->nop();
  9508   %}
  9509   ins_pipe(cmp_br_reg_reg);
  9510 %}
  9512 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9513   match(If cmp (CmpN op1 null));
  9514   effect(USE labl, KILL icc);
  9516   size(12);
  9517   ins_cost(BRANCH_COST);
  9518   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  9519             "BP$cmp   $labl" %}
  9520   ins_encode %{
  9521     Label* L = $labl$$label;
  9522     Assembler::Predict predict_taken =
  9523       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9524     __ cmp($op1$$Register, G0);
  9525     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9526     __ delayed()->nop();
  9527   %}
  9528   ins_pipe(cmp_br_reg_reg);
  9529 %}
  9531 // Loop back branch
  9532 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9533   match(CountedLoopEnd cmp (CmpI op1 op2));
  9534   effect(USE labl, KILL icc);
  9536   size(12);
  9537   ins_cost(BRANCH_COST);
  9538   format %{ "CMP    $op1,$op2\t! int\n\t"
  9539             "BP$cmp   $labl\t! Loop end" %}
  9540   ins_encode %{
  9541     Label* L = $labl$$label;
  9542     Assembler::Predict predict_taken =
  9543       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9544     __ cmp($op1$$Register, $op2$$Register);
  9545     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9546     __ delayed()->nop();
  9547   %}
  9548   ins_pipe(cmp_br_reg_reg);
  9549 %}
  9551 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9552   match(CountedLoopEnd cmp (CmpI op1 op2));
  9553   effect(USE labl, KILL icc);
  9555   size(12);
  9556   ins_cost(BRANCH_COST);
  9557   format %{ "CMP    $op1,$op2\t! int\n\t"
  9558             "BP$cmp   $labl\t! Loop end" %}
  9559   ins_encode %{
  9560     Label* L = $labl$$label;
  9561     Assembler::Predict predict_taken =
  9562       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9563     __ cmp($op1$$Register, $op2$$constant);
  9564     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9565     __ delayed()->nop();
  9566   %}
  9567   ins_pipe(cmp_br_reg_imm);
  9568 %}
  9570 // Short compare and branch instructions
  9571 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9572   match(If cmp (CmpI op1 op2));
  9573   predicate(UseCBCond);
  9574   effect(USE labl, KILL icc);
  9576   size(4);
  9577   ins_cost(BRANCH_COST);
  9578   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9579   ins_encode %{
  9580     Label* L = $labl$$label;
  9581     assert(__ use_cbcond(*L), "back to back cbcond");
  9582     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9583   %}
  9584   ins_short_branch(1);
  9585   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9586   ins_pipe(cbcond_reg_reg);
  9587 %}
  9589 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9590   match(If cmp (CmpI op1 op2));
  9591   predicate(UseCBCond);
  9592   effect(USE labl, KILL icc);
  9594   size(4);
  9595   ins_cost(BRANCH_COST);
  9596   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9597   ins_encode %{
  9598     Label* L = $labl$$label;
  9599     assert(__ use_cbcond(*L), "back to back cbcond");
  9600     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9601   %}
  9602   ins_short_branch(1);
  9603   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9604   ins_pipe(cbcond_reg_imm);
  9605 %}
  9607 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9608   match(If cmp (CmpU op1 op2));
  9609   predicate(UseCBCond);
  9610   effect(USE labl, KILL icc);
  9612   size(4);
  9613   ins_cost(BRANCH_COST);
  9614   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9615   ins_encode %{
  9616     Label* L = $labl$$label;
  9617     assert(__ use_cbcond(*L), "back to back cbcond");
  9618     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9619   %}
  9620   ins_short_branch(1);
  9621   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9622   ins_pipe(cbcond_reg_reg);
  9623 %}
  9625 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9626   match(If cmp (CmpU op1 op2));
  9627   predicate(UseCBCond);
  9628   effect(USE labl, KILL icc);
  9630   size(4);
  9631   ins_cost(BRANCH_COST);
  9632   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9633   ins_encode %{
  9634     Label* L = $labl$$label;
  9635     assert(__ use_cbcond(*L), "back to back cbcond");
  9636     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9637   %}
  9638   ins_short_branch(1);
  9639   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9640   ins_pipe(cbcond_reg_imm);
  9641 %}
  9643 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9644   match(If cmp (CmpL op1 op2));
  9645   predicate(UseCBCond);
  9646   effect(USE labl, KILL xcc);
  9648   size(4);
  9649   ins_cost(BRANCH_COST);
  9650   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9651   ins_encode %{
  9652     Label* L = $labl$$label;
  9653     assert(__ use_cbcond(*L), "back to back cbcond");
  9654     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
  9655   %}
  9656   ins_short_branch(1);
  9657   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9658   ins_pipe(cbcond_reg_reg);
  9659 %}
  9661 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9662   match(If cmp (CmpL op1 op2));
  9663   predicate(UseCBCond);
  9664   effect(USE labl, KILL xcc);
  9666   size(4);
  9667   ins_cost(BRANCH_COST);
  9668   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9669   ins_encode %{
  9670     Label* L = $labl$$label;
  9671     assert(__ use_cbcond(*L), "back to back cbcond");
  9672     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
  9673   %}
  9674   ins_short_branch(1);
  9675   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9676   ins_pipe(cbcond_reg_imm);
  9677 %}
  9679 // Compare Pointers and branch
  9680 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9681   match(If cmp (CmpP op1 op2));
  9682   predicate(UseCBCond);
  9683   effect(USE labl, KILL pcc);
  9685   size(4);
  9686   ins_cost(BRANCH_COST);
  9687 #ifdef _LP64
  9688   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
  9689 #else
  9690   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
  9691 #endif
  9692   ins_encode %{
  9693     Label* L = $labl$$label;
  9694     assert(__ use_cbcond(*L), "back to back cbcond");
  9695     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
  9696   %}
  9697   ins_short_branch(1);
  9698   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9699   ins_pipe(cbcond_reg_reg);
  9700 %}
  9702 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9703   match(If cmp (CmpP op1 null));
  9704   predicate(UseCBCond);
  9705   effect(USE labl, KILL pcc);
  9707   size(4);
  9708   ins_cost(BRANCH_COST);
  9709 #ifdef _LP64
  9710   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
  9711 #else
  9712   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
  9713 #endif
  9714   ins_encode %{
  9715     Label* L = $labl$$label;
  9716     assert(__ use_cbcond(*L), "back to back cbcond");
  9717     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
  9718   %}
  9719   ins_short_branch(1);
  9720   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9721   ins_pipe(cbcond_reg_reg);
  9722 %}
  9724 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9725   match(If cmp (CmpN op1 op2));
  9726   predicate(UseCBCond);
  9727   effect(USE labl, KILL icc);
  9729   size(4);
  9730   ins_cost(BRANCH_COST);
  9731   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
  9732   ins_encode %{
  9733     Label* L = $labl$$label;
  9734     assert(__ use_cbcond(*L), "back to back cbcond");
  9735     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9736   %}
  9737   ins_short_branch(1);
  9738   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9739   ins_pipe(cbcond_reg_reg);
  9740 %}
  9742 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9743   match(If cmp (CmpN op1 null));
  9744   predicate(UseCBCond);
  9745   effect(USE labl, KILL icc);
  9747   size(4);
  9748   ins_cost(BRANCH_COST);
  9749   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
  9750   ins_encode %{
  9751     Label* L = $labl$$label;
  9752     assert(__ use_cbcond(*L), "back to back cbcond");
  9753     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
  9754   %}
  9755   ins_short_branch(1);
  9756   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9757   ins_pipe(cbcond_reg_reg);
  9758 %}
  9760 // Loop back branch
  9761 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9762   match(CountedLoopEnd cmp (CmpI op1 op2));
  9763   predicate(UseCBCond);
  9764   effect(USE labl, KILL icc);
  9766   size(4);
  9767   ins_cost(BRANCH_COST);
  9768   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9769   ins_encode %{
  9770     Label* L = $labl$$label;
  9771     assert(__ use_cbcond(*L), "back to back cbcond");
  9772     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9773   %}
  9774   ins_short_branch(1);
  9775   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9776   ins_pipe(cbcond_reg_reg);
  9777 %}
  9779 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9780   match(CountedLoopEnd cmp (CmpI op1 op2));
  9781   predicate(UseCBCond);
  9782   effect(USE labl, KILL icc);
  9784   size(4);
  9785   ins_cost(BRANCH_COST);
  9786   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9787   ins_encode %{
  9788     Label* L = $labl$$label;
  9789     assert(__ use_cbcond(*L), "back to back cbcond");
  9790     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9791   %}
  9792   ins_short_branch(1);
  9793   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
  9794   ins_pipe(cbcond_reg_imm);
  9795 %}
  9797 // Branch-on-register tests all 64 bits.  We assume that values
  9798 // in 64-bit registers always remains zero or sign extended
  9799 // unless our code munges the high bits.  Interrupts can chop
  9800 // the high order bits to zero or sign at any time.
  9801 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9802   match(If cmp (CmpI op1 zero));
  9803   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9804   effect(USE labl);
  9806   size(8);
  9807   ins_cost(BRANCH_COST);
  9808   format %{ "BR$cmp   $op1,$labl" %}
  9809   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9810   ins_avoid_back_to_back(AVOID_BEFORE);
  9811   ins_pipe(br_reg);
  9812 %}
  9814 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9815   match(If cmp (CmpP op1 null));
  9816   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9817   effect(USE labl);
  9819   size(8);
  9820   ins_cost(BRANCH_COST);
  9821   format %{ "BR$cmp   $op1,$labl" %}
  9822   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9823   ins_avoid_back_to_back(AVOID_BEFORE);
  9824   ins_pipe(br_reg);
  9825 %}
  9827 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9828   match(If cmp (CmpL op1 zero));
  9829   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9830   effect(USE labl);
  9832   size(8);
  9833   ins_cost(BRANCH_COST);
  9834   format %{ "BR$cmp   $op1,$labl" %}
  9835   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9836   ins_avoid_back_to_back(AVOID_BEFORE);
  9837   ins_pipe(br_reg);
  9838 %}
  9841 // ============================================================================
  9842 // Long Compare
  9843 //
  9844 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9845 // is tricky.  The flavor of compare used depends on whether we are testing
  9846 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9847 // The GE test is the negated LT test.  The LE test can be had by commuting
  9848 // the operands (yielding a GE test) and then negating; negate again for the
  9849 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9850 // NE test is negated from that.
  9852 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9853 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9854 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9855 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9856 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9857 // foo match ends up with the wrong leaf.  One fix is to not match both
  9858 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9859 // both forms beat the trinary form of long-compare and both are very useful
  9860 // on Intel which has so few registers.
  9862 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9863   match(If cmp xcc);
  9864   effect(USE labl);
  9866   size(8);
  9867   ins_cost(BRANCH_COST);
  9868   format %{ "BP$cmp   $xcc,$labl" %}
  9869   ins_encode %{
  9870     Label* L = $labl$$label;
  9871     Assembler::Predict predict_taken =
  9872       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9874     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9875     __ delayed()->nop();
  9876   %}
  9877   ins_avoid_back_to_back(AVOID_BEFORE);
  9878   ins_pipe(br_cc);
  9879 %}
  9881 // Manifest a CmpL3 result in an integer register.  Very painful.
  9882 // This is the test to avoid.
  9883 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9884   match(Set dst (CmpL3 src1 src2) );
  9885   effect( KILL ccr );
  9886   ins_cost(6*DEFAULT_COST);
  9887   size(24);
  9888   format %{ "CMP    $src1,$src2\t\t! long\n"
  9889           "\tBLT,a,pn done\n"
  9890           "\tMOV    -1,$dst\t! delay slot\n"
  9891           "\tBGT,a,pn done\n"
  9892           "\tMOV    1,$dst\t! delay slot\n"
  9893           "\tCLR    $dst\n"
  9894     "done:"     %}
  9895   ins_encode( cmpl_flag(src1,src2,dst) );
  9896   ins_pipe(cmpL_reg);
  9897 %}
  9899 // Conditional move
  9900 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9901   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9902   ins_cost(150);
  9903   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9904   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9905   ins_pipe(ialu_reg);
  9906 %}
  9908 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9909   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9910   ins_cost(140);
  9911   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9912   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9913   ins_pipe(ialu_imm);
  9914 %}
  9916 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9917   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9918   ins_cost(150);
  9919   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9920   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9921   ins_pipe(ialu_reg);
  9922 %}
  9924 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9925   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9926   ins_cost(140);
  9927   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9928   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9929   ins_pipe(ialu_imm);
  9930 %}
  9932 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9933   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9934   ins_cost(150);
  9935   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9936   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9937   ins_pipe(ialu_reg);
  9938 %}
  9940 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9941   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9942   ins_cost(150);
  9943   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9944   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9945   ins_pipe(ialu_reg);
  9946 %}
  9948 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9949   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9950   ins_cost(140);
  9951   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9952   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9953   ins_pipe(ialu_imm);
  9954 %}
  9956 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9957   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9958   ins_cost(150);
  9959   opcode(0x101);
  9960   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9961   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9962   ins_pipe(int_conditional_float_move);
  9963 %}
  9965 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9966   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9967   ins_cost(150);
  9968   opcode(0x102);
  9969   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9970   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9971   ins_pipe(int_conditional_float_move);
  9972 %}
  9974 // ============================================================================
  9975 // Safepoint Instruction
  9976 instruct safePoint_poll(iRegP poll) %{
  9977   match(SafePoint poll);
  9978   effect(USE poll);
  9980   size(4);
  9981 #ifdef _LP64
  9982   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9983 #else
  9984   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9985 #endif
  9986   ins_encode %{
  9987     __ relocate(relocInfo::poll_type);
  9988     __ ld_ptr($poll$$Register, 0, G0);
  9989   %}
  9990   ins_pipe(loadPollP);
  9991 %}
  9993 // ============================================================================
  9994 // Call Instructions
  9995 // Call Java Static Instruction
  9996 instruct CallStaticJavaDirect( method meth ) %{
  9997   match(CallStaticJava);
  9998   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9999   effect(USE meth);
 10001   size(8);
 10002   ins_cost(CALL_COST);
 10003   format %{ "CALL,static  ; NOP ==> " %}
 10004   ins_encode( Java_Static_Call( meth ), call_epilog );
 10005   ins_avoid_back_to_back(AVOID_BEFORE);
 10006   ins_pipe(simple_call);
 10007 %}
 10009 // Call Java Static Instruction (method handle version)
 10010 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
 10011   match(CallStaticJava);
 10012   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 10013   effect(USE meth, KILL l7_mh_SP_save);
 10015   size(16);
 10016   ins_cost(CALL_COST);
 10017   format %{ "CALL,static/MethodHandle" %}
 10018   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
 10019   ins_pipe(simple_call);
 10020 %}
 10022 // Call Java Dynamic Instruction
 10023 instruct CallDynamicJavaDirect( method meth ) %{
 10024   match(CallDynamicJava);
 10025   effect(USE meth);
 10027   ins_cost(CALL_COST);
 10028   format %{ "SET    (empty),R_G5\n\t"
 10029             "CALL,dynamic  ; NOP ==> " %}
 10030   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
 10031   ins_pipe(call);
 10032 %}
 10034 // Call Runtime Instruction
 10035 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
 10036   match(CallRuntime);
 10037   effect(USE meth, KILL l7);
 10038   ins_cost(CALL_COST);
 10039   format %{ "CALL,runtime" %}
 10040   ins_encode( Java_To_Runtime( meth ),
 10041               call_epilog, adjust_long_from_native_call );
 10042   ins_avoid_back_to_back(AVOID_BEFORE);
 10043   ins_pipe(simple_call);
 10044 %}
 10046 // Call runtime without safepoint - same as CallRuntime
 10047 instruct CallLeafDirect(method meth, l7RegP l7) %{
 10048   match(CallLeaf);
 10049   effect(USE meth, KILL l7);
 10050   ins_cost(CALL_COST);
 10051   format %{ "CALL,runtime leaf" %}
 10052   ins_encode( Java_To_Runtime( meth ),
 10053               call_epilog,
 10054               adjust_long_from_native_call );
 10055   ins_avoid_back_to_back(AVOID_BEFORE);
 10056   ins_pipe(simple_call);
 10057 %}
 10059 // Call runtime without safepoint - same as CallLeaf
 10060 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
 10061   match(CallLeafNoFP);
 10062   effect(USE meth, KILL l7);
 10063   ins_cost(CALL_COST);
 10064   format %{ "CALL,runtime leaf nofp" %}
 10065   ins_encode( Java_To_Runtime( meth ),
 10066               call_epilog,
 10067               adjust_long_from_native_call );
 10068   ins_avoid_back_to_back(AVOID_BEFORE);
 10069   ins_pipe(simple_call);
 10070 %}
 10072 // Tail Call; Jump from runtime stub to Java code.
 10073 // Also known as an 'interprocedural jump'.
 10074 // Target of jump will eventually return to caller.
 10075 // TailJump below removes the return address.
 10076 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
 10077   match(TailCall jump_target method_oop );
 10079   ins_cost(CALL_COST);
 10080   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
 10081   ins_encode(form_jmpl(jump_target));
 10082   ins_avoid_back_to_back(AVOID_BEFORE);
 10083   ins_pipe(tail_call);
 10084 %}
 10087 // Return Instruction
 10088 instruct Ret() %{
 10089   match(Return);
 10091   // The epilogue node did the ret already.
 10092   size(0);
 10093   format %{ "! return" %}
 10094   ins_encode();
 10095   ins_pipe(empty);
 10096 %}
 10099 // Tail Jump; remove the return address; jump to target.
 10100 // TailCall above leaves the return address around.
 10101 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 10102 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 10103 // "restore" before this instruction (in Epilogue), we need to materialize it
 10104 // in %i0.
 10105 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
 10106   match( TailJump jump_target ex_oop );
 10107   ins_cost(CALL_COST);
 10108   format %{ "! discard R_O7\n\t"
 10109             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
 10110   ins_encode(form_jmpl_set_exception_pc(jump_target));
 10111   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
 10112   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
 10113   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
 10114   ins_avoid_back_to_back(AVOID_BEFORE);
 10115   ins_pipe(tail_call);
 10116 %}
 10118 // Create exception oop: created by stack-crawling runtime code.
 10119 // Created exception is now available to this handler, and is setup
 10120 // just prior to jumping to this handler.  No code emitted.
 10121 instruct CreateException( o0RegP ex_oop )
 10122 %{
 10123   match(Set ex_oop (CreateEx));
 10124   ins_cost(0);
 10126   size(0);
 10127   // use the following format syntax
 10128   format %{ "! exception oop is in R_O0; no code emitted" %}
 10129   ins_encode();
 10130   ins_pipe(empty);
 10131 %}
 10134 // Rethrow exception:
 10135 // The exception oop will come in the first argument position.
 10136 // Then JUMP (not call) to the rethrow stub code.
 10137 instruct RethrowException()
 10138 %{
 10139   match(Rethrow);
 10140   ins_cost(CALL_COST);
 10142   // use the following format syntax
 10143   format %{ "Jmp    rethrow_stub" %}
 10144   ins_encode(enc_rethrow);
 10145   ins_avoid_back_to_back(AVOID_BEFORE);
 10146   ins_pipe(tail_call);
 10147 %}
 10150 // Die now
 10151 instruct ShouldNotReachHere( )
 10152 %{
 10153   match(Halt);
 10154   ins_cost(CALL_COST);
 10156   size(4);
 10157   // Use the following format syntax
 10158   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
 10159   ins_encode( form2_illtrap() );
 10160   ins_pipe(tail_call);
 10161 %}
 10163 // ============================================================================
 10164 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 10165 // array for an instance of the superklass.  Set a hidden internal cache on a
 10166 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 10167 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
 10168 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
 10169   match(Set index (PartialSubtypeCheck sub super));
 10170   effect( KILL pcc, KILL o7 );
 10171   ins_cost(DEFAULT_COST*10);
 10172   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
 10173   ins_encode( enc_PartialSubtypeCheck() );
 10174   ins_avoid_back_to_back(AVOID_BEFORE);
 10175   ins_pipe(partial_subtype_check_pipe);
 10176 %}
 10178 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
 10179   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
 10180   effect( KILL idx, KILL o7 );
 10181   ins_cost(DEFAULT_COST*10);
 10182   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
 10183   ins_encode( enc_PartialSubtypeCheck() );
 10184   ins_avoid_back_to_back(AVOID_BEFORE);
 10185   ins_pipe(partial_subtype_check_pipe);
 10186 %}
 10189 // ============================================================================
 10190 // inlined locking and unlocking
 10192 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10193   match(Set pcc (FastLock object box));
 10195   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10196   ins_cost(100);
 10198   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10199   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
 10200   ins_pipe(long_memory_op);
 10201 %}
 10204 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10205   match(Set pcc (FastUnlock object box));
 10206   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10207   ins_cost(100);
 10209   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10210   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
 10211   ins_pipe(long_memory_op);
 10212 %}
 10214 // The encodings are generic.
 10215 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
 10216   predicate(!use_block_zeroing(n->in(2)) );
 10217   match(Set dummy (ClearArray cnt base));
 10218   effect(TEMP temp, KILL ccr);
 10219   ins_cost(300);
 10220   format %{ "MOV    $cnt,$temp\n"
 10221     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
 10222     "        BRge   loop\t\t! Clearing loop\n"
 10223     "        STX    G0,[$base+$temp]\t! delay slot" %}
 10225   ins_encode %{
 10226     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
 10227     Register nof_bytes_arg    = $cnt$$Register;
 10228     Register nof_bytes_tmp    = $temp$$Register;
 10229     Register base_pointer_arg = $base$$Register;
 10231     Label loop;
 10232     __ mov(nof_bytes_arg, nof_bytes_tmp);
 10234     // Loop and clear, walking backwards through the array.
 10235     // nof_bytes_tmp (if >0) is always the number of bytes to zero
 10236     __ bind(loop);
 10237     __ deccc(nof_bytes_tmp, 8);
 10238     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
 10239     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
 10240     // %%%% this mini-loop must not cross a cache boundary!
 10241   %}
 10242   ins_pipe(long_memory_op);
 10243 %}
 10245 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
 10246   predicate(use_block_zeroing(n->in(2)));
 10247   match(Set dummy (ClearArray cnt base));
 10248   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
 10249   ins_cost(300);
 10250   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10252   ins_encode %{
 10254     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10255     Register to    = $base$$Register;
 10256     Register count = $cnt$$Register;
 10258     Label Ldone;
 10259     __ nop(); // Separate short branches
 10260     // Use BIS for zeroing (temp is not used).
 10261     __ bis_zeroing(to, count, G0, Ldone);
 10262     __ bind(Ldone);
 10264   %}
 10265   ins_pipe(long_memory_op);
 10266 %}
 10268 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
 10269   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
 10270   match(Set dummy (ClearArray cnt base));
 10271   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
 10272   ins_cost(300);
 10273   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10275   ins_encode %{
 10277     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10278     Register to    = $base$$Register;
 10279     Register count = $cnt$$Register;
 10280     Register temp  = $tmp$$Register;
 10282     Label Ldone;
 10283     __ nop(); // Separate short branches
 10284     // Use BIS for zeroing
 10285     __ bis_zeroing(to, count, temp, Ldone);
 10286     __ bind(Ldone);
 10288   %}
 10289   ins_pipe(long_memory_op);
 10290 %}
 10292 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
 10293                         o7RegI tmp, flagsReg ccr) %{
 10294   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 10295   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
 10296   ins_cost(300);
 10297   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
 10298   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
 10299   ins_pipe(long_memory_op);
 10300 %}
 10302 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
 10303                        o7RegI tmp, flagsReg ccr) %{
 10304   match(Set result (StrEquals (Binary str1 str2) cnt));
 10305   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
 10306   ins_cost(300);
 10307   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
 10308   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
 10309   ins_pipe(long_memory_op);
 10310 %}
 10312 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
 10313                       o7RegI tmp2, flagsReg ccr) %{
 10314   match(Set result (AryEq ary1 ary2));
 10315   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
 10316   ins_cost(300);
 10317   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
 10318   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
 10319   ins_pipe(long_memory_op);
 10320 %}
 10323 //---------- Zeros Count Instructions ------------------------------------------
 10325 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
 10326   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10327   match(Set dst (CountLeadingZerosI src));
 10328   effect(TEMP dst, TEMP tmp, KILL cr);
 10330   // x |= (x >> 1);
 10331   // x |= (x >> 2);
 10332   // x |= (x >> 4);
 10333   // x |= (x >> 8);
 10334   // x |= (x >> 16);
 10335   // return (WORDBITS - popc(x));
 10336   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
 10337             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
 10338             "OR      $dst,$tmp,$dst\n\t"
 10339             "SRL     $dst,2,$tmp\n\t"
 10340             "OR      $dst,$tmp,$dst\n\t"
 10341             "SRL     $dst,4,$tmp\n\t"
 10342             "OR      $dst,$tmp,$dst\n\t"
 10343             "SRL     $dst,8,$tmp\n\t"
 10344             "OR      $dst,$tmp,$dst\n\t"
 10345             "SRL     $dst,16,$tmp\n\t"
 10346             "OR      $dst,$tmp,$dst\n\t"
 10347             "POPC    $dst,$dst\n\t"
 10348             "MOV     32,$tmp\n\t"
 10349             "SUB     $tmp,$dst,$dst" %}
 10350   ins_encode %{
 10351     Register Rdst = $dst$$Register;
 10352     Register Rsrc = $src$$Register;
 10353     Register Rtmp = $tmp$$Register;
 10354     __ srl(Rsrc, 1,    Rtmp);
 10355     __ srl(Rsrc, 0,    Rdst);
 10356     __ or3(Rdst, Rtmp, Rdst);
 10357     __ srl(Rdst, 2,    Rtmp);
 10358     __ or3(Rdst, Rtmp, Rdst);
 10359     __ srl(Rdst, 4,    Rtmp);
 10360     __ or3(Rdst, Rtmp, Rdst);
 10361     __ srl(Rdst, 8,    Rtmp);
 10362     __ or3(Rdst, Rtmp, Rdst);
 10363     __ srl(Rdst, 16,   Rtmp);
 10364     __ or3(Rdst, Rtmp, Rdst);
 10365     __ popc(Rdst, Rdst);
 10366     __ mov(BitsPerInt, Rtmp);
 10367     __ sub(Rtmp, Rdst, Rdst);
 10368   %}
 10369   ins_pipe(ialu_reg);
 10370 %}
 10372 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
 10373   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10374   match(Set dst (CountLeadingZerosL src));
 10375   effect(TEMP dst, TEMP tmp, KILL cr);
 10377   // x |= (x >> 1);
 10378   // x |= (x >> 2);
 10379   // x |= (x >> 4);
 10380   // x |= (x >> 8);
 10381   // x |= (x >> 16);
 10382   // x |= (x >> 32);
 10383   // return (WORDBITS - popc(x));
 10384   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
 10385             "OR      $src,$tmp,$dst\n\t"
 10386             "SRLX    $dst,2,$tmp\n\t"
 10387             "OR      $dst,$tmp,$dst\n\t"
 10388             "SRLX    $dst,4,$tmp\n\t"
 10389             "OR      $dst,$tmp,$dst\n\t"
 10390             "SRLX    $dst,8,$tmp\n\t"
 10391             "OR      $dst,$tmp,$dst\n\t"
 10392             "SRLX    $dst,16,$tmp\n\t"
 10393             "OR      $dst,$tmp,$dst\n\t"
 10394             "SRLX    $dst,32,$tmp\n\t"
 10395             "OR      $dst,$tmp,$dst\n\t"
 10396             "POPC    $dst,$dst\n\t"
 10397             "MOV     64,$tmp\n\t"
 10398             "SUB     $tmp,$dst,$dst" %}
 10399   ins_encode %{
 10400     Register Rdst = $dst$$Register;
 10401     Register Rsrc = $src$$Register;
 10402     Register Rtmp = $tmp$$Register;
 10403     __ srlx(Rsrc, 1,    Rtmp);
 10404     __ or3( Rsrc, Rtmp, Rdst);
 10405     __ srlx(Rdst, 2,    Rtmp);
 10406     __ or3( Rdst, Rtmp, Rdst);
 10407     __ srlx(Rdst, 4,    Rtmp);
 10408     __ or3( Rdst, Rtmp, Rdst);
 10409     __ srlx(Rdst, 8,    Rtmp);
 10410     __ or3( Rdst, Rtmp, Rdst);
 10411     __ srlx(Rdst, 16,   Rtmp);
 10412     __ or3( Rdst, Rtmp, Rdst);
 10413     __ srlx(Rdst, 32,   Rtmp);
 10414     __ or3( Rdst, Rtmp, Rdst);
 10415     __ popc(Rdst, Rdst);
 10416     __ mov(BitsPerLong, Rtmp);
 10417     __ sub(Rtmp, Rdst, Rdst);
 10418   %}
 10419   ins_pipe(ialu_reg);
 10420 %}
 10422 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
 10423   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10424   match(Set dst (CountTrailingZerosI src));
 10425   effect(TEMP dst, KILL cr);
 10427   // return popc(~x & (x - 1));
 10428   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
 10429             "ANDN    $dst,$src,$dst\n\t"
 10430             "SRL     $dst,R_G0,$dst\n\t"
 10431             "POPC    $dst,$dst" %}
 10432   ins_encode %{
 10433     Register Rdst = $dst$$Register;
 10434     Register Rsrc = $src$$Register;
 10435     __ sub(Rsrc, 1, Rdst);
 10436     __ andn(Rdst, Rsrc, Rdst);
 10437     __ srl(Rdst, G0, Rdst);
 10438     __ popc(Rdst, Rdst);
 10439   %}
 10440   ins_pipe(ialu_reg);
 10441 %}
 10443 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
 10444   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10445   match(Set dst (CountTrailingZerosL src));
 10446   effect(TEMP dst, KILL cr);
 10448   // return popc(~x & (x - 1));
 10449   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
 10450             "ANDN    $dst,$src,$dst\n\t"
 10451             "POPC    $dst,$dst" %}
 10452   ins_encode %{
 10453     Register Rdst = $dst$$Register;
 10454     Register Rsrc = $src$$Register;
 10455     __ sub(Rsrc, 1, Rdst);
 10456     __ andn(Rdst, Rsrc, Rdst);
 10457     __ popc(Rdst, Rdst);
 10458   %}
 10459   ins_pipe(ialu_reg);
 10460 %}
 10463 //---------- Population Count Instructions -------------------------------------
 10465 instruct popCountI(iRegIsafe dst, iRegI src) %{
 10466   predicate(UsePopCountInstruction);
 10467   match(Set dst (PopCountI src));
 10469   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
 10470             "POPC   $dst, $dst" %}
 10471   ins_encode %{
 10472     __ srl($src$$Register, G0, $dst$$Register);
 10473     __ popc($dst$$Register, $dst$$Register);
 10474   %}
 10475   ins_pipe(ialu_reg);
 10476 %}
 10478 // Note: Long.bitCount(long) returns an int.
 10479 instruct popCountL(iRegIsafe dst, iRegL src) %{
 10480   predicate(UsePopCountInstruction);
 10481   match(Set dst (PopCountL src));
 10483   format %{ "POPC   $src, $dst" %}
 10484   ins_encode %{
 10485     __ popc($src$$Register, $dst$$Register);
 10486   %}
 10487   ins_pipe(ialu_reg);
 10488 %}
 10491 // ============================================================================
 10492 //------------Bytes reverse--------------------------------------------------
 10494 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
 10495   match(Set dst (ReverseBytesI src));
 10497   // Op cost is artificially doubled to make sure that load or store
 10498   // instructions are preferred over this one which requires a spill
 10499   // onto a stack slot.
 10500   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10501   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10503   ins_encode %{
 10504     __ set($src$$disp + STACK_BIAS, O7);
 10505     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10506   %}
 10507   ins_pipe( iload_mem );
 10508 %}
 10510 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
 10511   match(Set dst (ReverseBytesL src));
 10513   // Op cost is artificially doubled to make sure that load or store
 10514   // instructions are preferred over this one which requires a spill
 10515   // onto a stack slot.
 10516   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10517   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10519   ins_encode %{
 10520     __ set($src$$disp + STACK_BIAS, O7);
 10521     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10522   %}
 10523   ins_pipe( iload_mem );
 10524 %}
 10526 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
 10527   match(Set dst (ReverseBytesUS src));
 10529   // Op cost is artificially doubled to make sure that load or store
 10530   // instructions are preferred over this one which requires a spill
 10531   // onto a stack slot.
 10532   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10533   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
 10535   ins_encode %{
 10536     // the value was spilled as an int so bias the load
 10537     __ set($src$$disp + STACK_BIAS + 2, O7);
 10538     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10539   %}
 10540   ins_pipe( iload_mem );
 10541 %}
 10543 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
 10544   match(Set dst (ReverseBytesS src));
 10546   // Op cost is artificially doubled to make sure that load or store
 10547   // instructions are preferred over this one which requires a spill
 10548   // onto a stack slot.
 10549   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10550   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
 10552   ins_encode %{
 10553     // the value was spilled as an int so bias the load
 10554     __ set($src$$disp + STACK_BIAS + 2, O7);
 10555     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10556   %}
 10557   ins_pipe( iload_mem );
 10558 %}
 10560 // Load Integer reversed byte order
 10561 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
 10562   match(Set dst (ReverseBytesI (LoadI src)));
 10564   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10565   size(4);
 10566   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10568   ins_encode %{
 10569     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10570   %}
 10571   ins_pipe(iload_mem);
 10572 %}
 10574 // Load Long - aligned and reversed
 10575 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
 10576   match(Set dst (ReverseBytesL (LoadL src)));
 10578   ins_cost(MEMORY_REF_COST);
 10579   size(4);
 10580   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10582   ins_encode %{
 10583     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10584   %}
 10585   ins_pipe(iload_mem);
 10586 %}
 10588 // Load unsigned short / char reversed byte order
 10589 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
 10590   match(Set dst (ReverseBytesUS (LoadUS src)));
 10592   ins_cost(MEMORY_REF_COST);
 10593   size(4);
 10594   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
 10596   ins_encode %{
 10597     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10598   %}
 10599   ins_pipe(iload_mem);
 10600 %}
 10602 // Load short reversed byte order
 10603 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
 10604   match(Set dst (ReverseBytesS (LoadS src)));
 10606   ins_cost(MEMORY_REF_COST);
 10607   size(4);
 10608   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
 10610   ins_encode %{
 10611     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10612   %}
 10613   ins_pipe(iload_mem);
 10614 %}
 10616 // Store Integer reversed byte order
 10617 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
 10618   match(Set dst (StoreI dst (ReverseBytesI src)));
 10620   ins_cost(MEMORY_REF_COST);
 10621   size(4);
 10622   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
 10624   ins_encode %{
 10625     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10626   %}
 10627   ins_pipe(istore_mem_reg);
 10628 %}
 10630 // Store Long reversed byte order
 10631 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
 10632   match(Set dst (StoreL dst (ReverseBytesL src)));
 10634   ins_cost(MEMORY_REF_COST);
 10635   size(4);
 10636   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
 10638   ins_encode %{
 10639     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10640   %}
 10641   ins_pipe(istore_mem_reg);
 10642 %}
 10644 // Store unsighed short/char reversed byte order
 10645 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
 10646   match(Set dst (StoreC dst (ReverseBytesUS src)));
 10648   ins_cost(MEMORY_REF_COST);
 10649   size(4);
 10650   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10652   ins_encode %{
 10653     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10654   %}
 10655   ins_pipe(istore_mem_reg);
 10656 %}
 10658 // Store short reversed byte order
 10659 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
 10660   match(Set dst (StoreC dst (ReverseBytesS src)));
 10662   ins_cost(MEMORY_REF_COST);
 10663   size(4);
 10664   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10666   ins_encode %{
 10667     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10668   %}
 10669   ins_pipe(istore_mem_reg);
 10670 %}
 10672 // ====================VECTOR INSTRUCTIONS=====================================
 10674 // Load Aligned Packed values into a Double Register
 10675 instruct loadV8(regD dst, memory mem) %{
 10676   predicate(n->as_LoadVector()->memory_size() == 8);
 10677   match(Set dst (LoadVector mem));
 10678   ins_cost(MEMORY_REF_COST);
 10679   size(4);
 10680   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
 10681   ins_encode %{
 10682     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
 10683   %}
 10684   ins_pipe(floadD_mem);
 10685 %}
 10687 // Store Vector in Double register to memory
 10688 instruct storeV8(memory mem, regD src) %{
 10689   predicate(n->as_StoreVector()->memory_size() == 8);
 10690   match(Set mem (StoreVector mem src));
 10691   ins_cost(MEMORY_REF_COST);
 10692   size(4);
 10693   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
 10694   ins_encode %{
 10695     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
 10696   %}
 10697   ins_pipe(fstoreD_mem_reg);
 10698 %}
 10700 // Store Zero into vector in memory
 10701 instruct storeV8B_zero(memory mem, immI0 zero) %{
 10702   predicate(n->as_StoreVector()->memory_size() == 8);
 10703   match(Set mem (StoreVector mem (ReplicateB zero)));
 10704   ins_cost(MEMORY_REF_COST);
 10705   size(4);
 10706   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
 10707   ins_encode %{
 10708     __ stx(G0, $mem$$Address);
 10709   %}
 10710   ins_pipe(fstoreD_mem_zero);
 10711 %}
 10713 instruct storeV4S_zero(memory mem, immI0 zero) %{
 10714   predicate(n->as_StoreVector()->memory_size() == 8);
 10715   match(Set mem (StoreVector mem (ReplicateS zero)));
 10716   ins_cost(MEMORY_REF_COST);
 10717   size(4);
 10718   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
 10719   ins_encode %{
 10720     __ stx(G0, $mem$$Address);
 10721   %}
 10722   ins_pipe(fstoreD_mem_zero);
 10723 %}
 10725 instruct storeV2I_zero(memory mem, immI0 zero) %{
 10726   predicate(n->as_StoreVector()->memory_size() == 8);
 10727   match(Set mem (StoreVector mem (ReplicateI zero)));
 10728   ins_cost(MEMORY_REF_COST);
 10729   size(4);
 10730   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
 10731   ins_encode %{
 10732     __ stx(G0, $mem$$Address);
 10733   %}
 10734   ins_pipe(fstoreD_mem_zero);
 10735 %}
 10737 instruct storeV2F_zero(memory mem, immF0 zero) %{
 10738   predicate(n->as_StoreVector()->memory_size() == 8);
 10739   match(Set mem (StoreVector mem (ReplicateF zero)));
 10740   ins_cost(MEMORY_REF_COST);
 10741   size(4);
 10742   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
 10743   ins_encode %{
 10744     __ stx(G0, $mem$$Address);
 10745   %}
 10746   ins_pipe(fstoreD_mem_zero);
 10747 %}
 10749 // Replicate scalar to packed byte values into Double register
 10750 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10751   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
 10752   match(Set dst (ReplicateB src));
 10753   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10754   format %{ "SLLX  $src,56,$tmp\n\t"
 10755             "SRLX  $tmp, 8,$tmp2\n\t"
 10756             "OR    $tmp,$tmp2,$tmp\n\t"
 10757             "SRLX  $tmp,16,$tmp2\n\t"
 10758             "OR    $tmp,$tmp2,$tmp\n\t"
 10759             "SRLX  $tmp,32,$tmp2\n\t"
 10760             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10761             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10762   ins_encode %{
 10763     Register Rsrc = $src$$Register;
 10764     Register Rtmp = $tmp$$Register;
 10765     Register Rtmp2 = $tmp2$$Register;
 10766     __ sllx(Rsrc,    56, Rtmp);
 10767     __ srlx(Rtmp,     8, Rtmp2);
 10768     __ or3 (Rtmp, Rtmp2, Rtmp);
 10769     __ srlx(Rtmp,    16, Rtmp2);
 10770     __ or3 (Rtmp, Rtmp2, Rtmp);
 10771     __ srlx(Rtmp,    32, Rtmp2);
 10772     __ or3 (Rtmp, Rtmp2, Rtmp);
 10773     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10774   %}
 10775   ins_pipe(ialu_reg);
 10776 %}
 10778 // Replicate scalar to packed byte values into Double stack
 10779 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10780   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
 10781   match(Set dst (ReplicateB src));
 10782   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10783   format %{ "SLLX  $src,56,$tmp\n\t"
 10784             "SRLX  $tmp, 8,$tmp2\n\t"
 10785             "OR    $tmp,$tmp2,$tmp\n\t"
 10786             "SRLX  $tmp,16,$tmp2\n\t"
 10787             "OR    $tmp,$tmp2,$tmp\n\t"
 10788             "SRLX  $tmp,32,$tmp2\n\t"
 10789             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10790             "STX   $tmp,$dst\t! regL to stkD" %}
 10791   ins_encode %{
 10792     Register Rsrc = $src$$Register;
 10793     Register Rtmp = $tmp$$Register;
 10794     Register Rtmp2 = $tmp2$$Register;
 10795     __ sllx(Rsrc,    56, Rtmp);
 10796     __ srlx(Rtmp,     8, Rtmp2);
 10797     __ or3 (Rtmp, Rtmp2, Rtmp);
 10798     __ srlx(Rtmp,    16, Rtmp2);
 10799     __ or3 (Rtmp, Rtmp2, Rtmp);
 10800     __ srlx(Rtmp,    32, Rtmp2);
 10801     __ or3 (Rtmp, Rtmp2, Rtmp);
 10802     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10803     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10804   %}
 10805   ins_pipe(ialu_reg);
 10806 %}
 10808 // Replicate scalar constant to packed byte values in Double register
 10809 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
 10810   predicate(n->as_Vector()->length() == 8);
 10811   match(Set dst (ReplicateB con));
 10812   effect(KILL tmp);
 10813   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
 10814   ins_encode %{
 10815     // XXX This is a quick fix for 6833573.
 10816     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
 10817     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
 10818     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10819   %}
 10820   ins_pipe(loadConFD);
 10821 %}
 10823 // Replicate scalar to packed char/short values into Double register
 10824 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10825   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
 10826   match(Set dst (ReplicateS src));
 10827   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10828   format %{ "SLLX  $src,48,$tmp\n\t"
 10829             "SRLX  $tmp,16,$tmp2\n\t"
 10830             "OR    $tmp,$tmp2,$tmp\n\t"
 10831             "SRLX  $tmp,32,$tmp2\n\t"
 10832             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10833             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10834   ins_encode %{
 10835     Register Rsrc = $src$$Register;
 10836     Register Rtmp = $tmp$$Register;
 10837     Register Rtmp2 = $tmp2$$Register;
 10838     __ sllx(Rsrc,    48, Rtmp);
 10839     __ srlx(Rtmp,    16, Rtmp2);
 10840     __ or3 (Rtmp, Rtmp2, Rtmp);
 10841     __ srlx(Rtmp,    32, Rtmp2);
 10842     __ or3 (Rtmp, Rtmp2, Rtmp);
 10843     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10844   %}
 10845   ins_pipe(ialu_reg);
 10846 %}
 10848 // Replicate scalar to packed char/short values into Double stack
 10849 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10850   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
 10851   match(Set dst (ReplicateS src));
 10852   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10853   format %{ "SLLX  $src,48,$tmp\n\t"
 10854             "SRLX  $tmp,16,$tmp2\n\t"
 10855             "OR    $tmp,$tmp2,$tmp\n\t"
 10856             "SRLX  $tmp,32,$tmp2\n\t"
 10857             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10858             "STX   $tmp,$dst\t! regL to stkD" %}
 10859   ins_encode %{
 10860     Register Rsrc = $src$$Register;
 10861     Register Rtmp = $tmp$$Register;
 10862     Register Rtmp2 = $tmp2$$Register;
 10863     __ sllx(Rsrc,    48, Rtmp);
 10864     __ srlx(Rtmp,    16, Rtmp2);
 10865     __ or3 (Rtmp, Rtmp2, Rtmp);
 10866     __ srlx(Rtmp,    32, Rtmp2);
 10867     __ or3 (Rtmp, Rtmp2, Rtmp);
 10868     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10869     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10870   %}
 10871   ins_pipe(ialu_reg);
 10872 %}
 10874 // Replicate scalar constant to packed char/short values in Double register
 10875 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
 10876   predicate(n->as_Vector()->length() == 4);
 10877   match(Set dst (ReplicateS con));
 10878   effect(KILL tmp);
 10879   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
 10880   ins_encode %{
 10881     // XXX This is a quick fix for 6833573.
 10882     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
 10883     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
 10884     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10885   %}
 10886   ins_pipe(loadConFD);
 10887 %}
 10889 // Replicate scalar to packed int values into Double register
 10890 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10891   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
 10892   match(Set dst (ReplicateI src));
 10893   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10894   format %{ "SLLX  $src,32,$tmp\n\t"
 10895             "SRLX  $tmp,32,$tmp2\n\t"
 10896             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10897             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10898   ins_encode %{
 10899     Register Rsrc = $src$$Register;
 10900     Register Rtmp = $tmp$$Register;
 10901     Register Rtmp2 = $tmp2$$Register;
 10902     __ sllx(Rsrc,    32, Rtmp);
 10903     __ srlx(Rtmp,    32, Rtmp2);
 10904     __ or3 (Rtmp, Rtmp2, Rtmp);
 10905     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10906   %}
 10907   ins_pipe(ialu_reg);
 10908 %}
 10910 // Replicate scalar to packed int values into Double stack
 10911 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10912   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
 10913   match(Set dst (ReplicateI src));
 10914   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10915   format %{ "SLLX  $src,32,$tmp\n\t"
 10916             "SRLX  $tmp,32,$tmp2\n\t"
 10917             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10918             "STX   $tmp,$dst\t! regL to stkD" %}
 10919   ins_encode %{
 10920     Register Rsrc = $src$$Register;
 10921     Register Rtmp = $tmp$$Register;
 10922     Register Rtmp2 = $tmp2$$Register;
 10923     __ sllx(Rsrc,    32, Rtmp);
 10924     __ srlx(Rtmp,    32, Rtmp2);
 10925     __ or3 (Rtmp, Rtmp2, Rtmp);
 10926     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10927     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10928   %}
 10929   ins_pipe(ialu_reg);
 10930 %}
 10932 // Replicate scalar zero constant to packed int values in Double register
 10933 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
 10934   predicate(n->as_Vector()->length() == 2);
 10935   match(Set dst (ReplicateI con));
 10936   effect(KILL tmp);
 10937   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
 10938   ins_encode %{
 10939     // XXX This is a quick fix for 6833573.
 10940     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
 10941     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
 10942     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10943   %}
 10944   ins_pipe(loadConFD);
 10945 %}
 10947 // Replicate scalar to packed float values into Double stack
 10948 instruct Repl2F_stk(stackSlotD dst, regF src) %{
 10949   predicate(n->as_Vector()->length() == 2);
 10950   match(Set dst (ReplicateF src));
 10951   ins_cost(MEMORY_REF_COST*2);
 10952   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
 10953             "STF    $src,$dst.lo" %}
 10954   opcode(Assembler::stf_op3);
 10955   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
 10956   ins_pipe(fstoreF_stk_reg);
 10957 %}
 10959 // Replicate scalar zero constant to packed float values in Double register
 10960 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
 10961   predicate(n->as_Vector()->length() == 2);
 10962   match(Set dst (ReplicateF con));
 10963   effect(KILL tmp);
 10964   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
 10965   ins_encode %{
 10966     // XXX This is a quick fix for 6833573.
 10967     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
 10968     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
 10969     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10970   %}
 10971   ins_pipe(loadConFD);
 10972 %}
 10974 //----------PEEPHOLE RULES-----------------------------------------------------
 10975 // These must follow all instruction definitions as they use the names
 10976 // defined in the instructions definitions.
 10977 //
 10978 // peepmatch ( root_instr_name [preceding_instruction]* );
 10979 //
 10980 // peepconstraint %{
 10981 // (instruction_number.operand_name relational_op instruction_number.operand_name
 10982 //  [, ...] );
 10983 // // instruction numbers are zero-based using left to right order in peepmatch
 10984 //
 10985 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 10986 // // provide an instruction_number.operand_name for each operand that appears
 10987 // // in the replacement instruction's match rule
 10988 //
 10989 // ---------VM FLAGS---------------------------------------------------------
 10990 //
 10991 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 10992 //
 10993 // Each peephole rule is given an identifying number starting with zero and
 10994 // increasing by one in the order seen by the parser.  An individual peephole
 10995 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 10996 // on the command-line.
 10997 //
 10998 // ---------CURRENT LIMITATIONS----------------------------------------------
 10999 //
 11000 // Only match adjacent instructions in same basic block
 11001 // Only equality constraints
 11002 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 11003 // Only one replacement instruction
 11004 //
 11005 // ---------EXAMPLE----------------------------------------------------------
 11006 //
 11007 // // pertinent parts of existing instructions in architecture description
 11008 // instruct movI(eRegI dst, eRegI src) %{
 11009 //   match(Set dst (CopyI src));
 11010 // %}
 11011 //
 11012 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 11013 //   match(Set dst (AddI dst src));
 11014 //   effect(KILL cr);
 11015 // %}
 11016 //
 11017 // // Change (inc mov) to lea
 11018 // peephole %{
 11019 //   // increment preceeded by register-register move
 11020 //   peepmatch ( incI_eReg movI );
 11021 //   // require that the destination register of the increment
 11022 //   // match the destination register of the move
 11023 //   peepconstraint ( 0.dst == 1.dst );
 11024 //   // construct a replacement instruction that sets
 11025 //   // the destination to ( move's source register + one )
 11026 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 11027 // %}
 11028 //
 11030 // // Change load of spilled value to only a spill
 11031 // instruct storeI(memory mem, eRegI src) %{
 11032 //   match(Set mem (StoreI mem src));
 11033 // %}
 11034 //
 11035 // instruct loadI(eRegI dst, memory mem) %{
 11036 //   match(Set dst (LoadI mem));
 11037 // %}
 11038 //
 11039 // peephole %{
 11040 //   peepmatch ( loadI storeI );
 11041 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 11042 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 11043 // %}
 11045 //----------SMARTSPILL RULES---------------------------------------------------
 11046 // These must follow all instruction definitions as they use the names
 11047 // defined in the instructions definitions.
 11048 //
 11049 // SPARC will probably not have any of these rules due to RISC instruction set.
 11051 //----------PIPELINE-----------------------------------------------------------
 11052 // Rules which define the behavior of the target architectures pipeline.

mercurial