src/cpu/ppc/vm/sharedRuntime_ppc.cpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * Copyright 2012, 2014 SAP AG. All rights reserved.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5  *
     6  * This code is free software; you can redistribute it and/or modify it
     7  * under the terms of the GNU General Public License version 2 only, as
     8  * published by the Free Software Foundation.
     9  *
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13  * version 2 for more details (a copy is included in the LICENSE file that
    14  * accompanied this code).
    15  *
    16  * You should have received a copy of the GNU General Public License version
    17  * 2 along with this work; if not, write to the Free Software Foundation,
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19  *
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21  * or visit www.oracle.com if you need additional information or have any
    22  * questions.
    23  *
    24  */
    26 #include "precompiled.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "code/debugInfoRec.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "oops/compiledICHolder.hpp"
    33 #include "prims/jvmtiRedefineClassesTrace.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/vframeArray.hpp"
    36 #include "vmreg_ppc.inline.hpp"
    37 #include "adfiles/ad_ppc_64.hpp"
    38 #ifdef COMPILER1
    39 #include "c1/c1_Runtime1.hpp"
    40 #endif
    41 #ifdef COMPILER2
    42 #include "opto/runtime.hpp"
    43 #endif
    45 #define __ masm->
    47 #ifdef PRODUCT
    48 #define BLOCK_COMMENT(str) // nothing
    49 #else
    50 #define BLOCK_COMMENT(str) __ block_comment(str)
    51 #endif
    53 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    56 class RegisterSaver {
    57  // Used for saving volatile registers.
    58  public:
    60   // Support different return pc locations.
    61   enum ReturnPCLocation {
    62     return_pc_is_lr,
    63     return_pc_is_r4,
    64     return_pc_is_thread_saved_exception_pc
    65   };
    67   static OopMap* push_frame_reg_args_and_save_live_registers(MacroAssembler* masm,
    68                          int* out_frame_size_in_bytes,
    69                          bool generate_oop_map,
    70                          int return_pc_adjustment,
    71                          ReturnPCLocation return_pc_location);
    72   static void    restore_live_registers_and_pop_frame(MacroAssembler* masm,
    73                          int frame_size_in_bytes,
    74                          bool restore_ctr);
    76   static void push_frame_and_save_argument_registers(MacroAssembler* masm,
    77                          Register r_temp,
    78                          int frame_size,
    79                          int total_args,
    80                          const VMRegPair *regs, const VMRegPair *regs2 = NULL);
    81   static void restore_argument_registers_and_pop_frame(MacroAssembler*masm,
    82                          int frame_size,
    83                          int total_args,
    84                          const VMRegPair *regs, const VMRegPair *regs2 = NULL);
    86   // During deoptimization only the result registers need to be restored
    87   // all the other values have already been extracted.
    88   static void restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes);
    90   // Constants and data structures:
    92   typedef enum {
    93     int_reg           = 0,
    94     float_reg         = 1,
    95     special_reg       = 2
    96   } RegisterType;
    98   typedef enum {
    99     reg_size          = 8,
   100     half_reg_size     = reg_size / 2,
   101   } RegisterConstants;
   103   typedef struct {
   104     RegisterType        reg_type;
   105     int                 reg_num;
   106     VMReg               vmreg;
   107   } LiveRegType;
   108 };
   111 #define RegisterSaver_LiveSpecialReg(regname) \
   112   { RegisterSaver::special_reg, regname->encoding(), regname->as_VMReg() }
   114 #define RegisterSaver_LiveIntReg(regname) \
   115   { RegisterSaver::int_reg,     regname->encoding(), regname->as_VMReg() }
   117 #define RegisterSaver_LiveFloatReg(regname) \
   118   { RegisterSaver::float_reg,   regname->encoding(), regname->as_VMReg() }
   120 static const RegisterSaver::LiveRegType RegisterSaver_LiveRegs[] = {
   121   // Live registers which get spilled to the stack. Register
   122   // positions in this array correspond directly to the stack layout.
   124   //
   125   // live special registers:
   126   //
   127   RegisterSaver_LiveSpecialReg(SR_CTR),
   128   //
   129   // live float registers:
   130   //
   131   RegisterSaver_LiveFloatReg( F0  ),
   132   RegisterSaver_LiveFloatReg( F1  ),
   133   RegisterSaver_LiveFloatReg( F2  ),
   134   RegisterSaver_LiveFloatReg( F3  ),
   135   RegisterSaver_LiveFloatReg( F4  ),
   136   RegisterSaver_LiveFloatReg( F5  ),
   137   RegisterSaver_LiveFloatReg( F6  ),
   138   RegisterSaver_LiveFloatReg( F7  ),
   139   RegisterSaver_LiveFloatReg( F8  ),
   140   RegisterSaver_LiveFloatReg( F9  ),
   141   RegisterSaver_LiveFloatReg( F10 ),
   142   RegisterSaver_LiveFloatReg( F11 ),
   143   RegisterSaver_LiveFloatReg( F12 ),
   144   RegisterSaver_LiveFloatReg( F13 ),
   145   RegisterSaver_LiveFloatReg( F14 ),
   146   RegisterSaver_LiveFloatReg( F15 ),
   147   RegisterSaver_LiveFloatReg( F16 ),
   148   RegisterSaver_LiveFloatReg( F17 ),
   149   RegisterSaver_LiveFloatReg( F18 ),
   150   RegisterSaver_LiveFloatReg( F19 ),
   151   RegisterSaver_LiveFloatReg( F20 ),
   152   RegisterSaver_LiveFloatReg( F21 ),
   153   RegisterSaver_LiveFloatReg( F22 ),
   154   RegisterSaver_LiveFloatReg( F23 ),
   155   RegisterSaver_LiveFloatReg( F24 ),
   156   RegisterSaver_LiveFloatReg( F25 ),
   157   RegisterSaver_LiveFloatReg( F26 ),
   158   RegisterSaver_LiveFloatReg( F27 ),
   159   RegisterSaver_LiveFloatReg( F28 ),
   160   RegisterSaver_LiveFloatReg( F29 ),
   161   RegisterSaver_LiveFloatReg( F30 ),
   162   RegisterSaver_LiveFloatReg( F31 ),
   163   //
   164   // live integer registers:
   165   //
   166   RegisterSaver_LiveIntReg(   R0  ),
   167   //RegisterSaver_LiveIntReg( R1  ), // stack pointer
   168   RegisterSaver_LiveIntReg(   R2  ),
   169   RegisterSaver_LiveIntReg(   R3  ),
   170   RegisterSaver_LiveIntReg(   R4  ),
   171   RegisterSaver_LiveIntReg(   R5  ),
   172   RegisterSaver_LiveIntReg(   R6  ),
   173   RegisterSaver_LiveIntReg(   R7  ),
   174   RegisterSaver_LiveIntReg(   R8  ),
   175   RegisterSaver_LiveIntReg(   R9  ),
   176   RegisterSaver_LiveIntReg(   R10 ),
   177   RegisterSaver_LiveIntReg(   R11 ),
   178   RegisterSaver_LiveIntReg(   R12 ),
   179   //RegisterSaver_LiveIntReg( R13 ), // system thread id
   180   RegisterSaver_LiveIntReg(   R14 ),
   181   RegisterSaver_LiveIntReg(   R15 ),
   182   RegisterSaver_LiveIntReg(   R16 ),
   183   RegisterSaver_LiveIntReg(   R17 ),
   184   RegisterSaver_LiveIntReg(   R18 ),
   185   RegisterSaver_LiveIntReg(   R19 ),
   186   RegisterSaver_LiveIntReg(   R20 ),
   187   RegisterSaver_LiveIntReg(   R21 ),
   188   RegisterSaver_LiveIntReg(   R22 ),
   189   RegisterSaver_LiveIntReg(   R23 ),
   190   RegisterSaver_LiveIntReg(   R24 ),
   191   RegisterSaver_LiveIntReg(   R25 ),
   192   RegisterSaver_LiveIntReg(   R26 ),
   193   RegisterSaver_LiveIntReg(   R27 ),
   194   RegisterSaver_LiveIntReg(   R28 ),
   195   RegisterSaver_LiveIntReg(   R29 ),
   196   RegisterSaver_LiveIntReg(   R31 ),
   197   RegisterSaver_LiveIntReg(   R30 ), // r30 must be the last register
   198 };
   200 OopMap* RegisterSaver::push_frame_reg_args_and_save_live_registers(MacroAssembler* masm,
   201                          int* out_frame_size_in_bytes,
   202                          bool generate_oop_map,
   203                          int return_pc_adjustment,
   204                          ReturnPCLocation return_pc_location) {
   205   // Push an abi_reg_args-frame and store all registers which may be live.
   206   // If requested, create an OopMap: Record volatile registers as
   207   // callee-save values in an OopMap so their save locations will be
   208   // propagated to the RegisterMap of the caller frame during
   209   // StackFrameStream construction (needed for deoptimization; see
   210   // compiledVFrame::create_stack_value).
   211   // If return_pc_adjustment != 0 adjust the return pc by return_pc_adjustment.
   213   int i;
   214   int offset;
   216   // calcualte frame size
   217   const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
   218                                    sizeof(RegisterSaver::LiveRegType);
   219   const int register_save_size   = regstosave_num * reg_size;
   220   const int frame_size_in_bytes  = round_to(register_save_size, frame::alignment_in_bytes)
   221                                    + frame::abi_reg_args_size;
   222   *out_frame_size_in_bytes       = frame_size_in_bytes;
   223   const int frame_size_in_slots  = frame_size_in_bytes / sizeof(jint);
   224   const int register_save_offset = frame_size_in_bytes - register_save_size;
   226   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words.
   227   OopMap* map = generate_oop_map ? new OopMap(frame_size_in_slots, 0) : NULL;
   229   BLOCK_COMMENT("push_frame_reg_args_and_save_live_registers {");
   231   // Save r30 in the last slot of the not yet pushed frame so that we
   232   // can use it as scratch reg.
   233   __ std(R30, -reg_size, R1_SP);
   234   assert(-reg_size == register_save_offset - frame_size_in_bytes + ((regstosave_num-1)*reg_size),
   235          "consistency check");
   237   // save the flags
   238   // Do the save_LR_CR by hand and adjust the return pc if requested.
   239   __ mfcr(R30);
   240   __ std(R30, _abi(cr), R1_SP);
   241   switch (return_pc_location) {
   242     case return_pc_is_lr:    __ mflr(R30);           break;
   243     case return_pc_is_r4:    __ mr(R30, R4);     break;
   244     case return_pc_is_thread_saved_exception_pc:
   245                                  __ ld(R30, thread_(saved_exception_pc)); break;
   246     default: ShouldNotReachHere();
   247   }
   248   if (return_pc_adjustment != 0)
   249     __ addi(R30, R30, return_pc_adjustment);
   250   __ std(R30, _abi(lr), R1_SP);
   252   // push a new frame
   253   __ push_frame(frame_size_in_bytes, R30);
   255   // save all registers (ints and floats)
   256   offset = register_save_offset;
   257   for (int i = 0; i < regstosave_num; i++) {
   258     int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
   259     int reg_type = RegisterSaver_LiveRegs[i].reg_type;
   261     switch (reg_type) {
   262       case RegisterSaver::int_reg: {
   263         if (reg_num != 30) { // We spilled R30 right at the beginning.
   264           __ std(as_Register(reg_num), offset, R1_SP);
   265         }
   266         break;
   267       }
   268       case RegisterSaver::float_reg: {
   269         __ stfd(as_FloatRegister(reg_num), offset, R1_SP);
   270         break;
   271       }
   272       case RegisterSaver::special_reg: {
   273         if (reg_num == SR_CTR_SpecialRegisterEnumValue) {
   274           __ mfctr(R30);
   275           __ std(R30, offset, R1_SP);
   276         } else {
   277           Unimplemented();
   278         }
   279         break;
   280       }
   281       default:
   282         ShouldNotReachHere();
   283     }
   285     if (generate_oop_map) {
   286       map->set_callee_saved(VMRegImpl::stack2reg(offset>>2),
   287                             RegisterSaver_LiveRegs[i].vmreg);
   288       map->set_callee_saved(VMRegImpl::stack2reg((offset + half_reg_size)>>2),
   289                             RegisterSaver_LiveRegs[i].vmreg->next());
   290     }
   291     offset += reg_size;
   292   }
   294   BLOCK_COMMENT("} push_frame_reg_args_and_save_live_registers");
   296   // And we're done.
   297   return map;
   298 }
   301 // Pop the current frame and restore all the registers that we
   302 // saved.
   303 void RegisterSaver::restore_live_registers_and_pop_frame(MacroAssembler* masm,
   304                                                          int frame_size_in_bytes,
   305                                                          bool restore_ctr) {
   306   int i;
   307   int offset;
   308   const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
   309                                    sizeof(RegisterSaver::LiveRegType);
   310   const int register_save_size   = regstosave_num * reg_size;
   311   const int register_save_offset = frame_size_in_bytes - register_save_size;
   313   BLOCK_COMMENT("restore_live_registers_and_pop_frame {");
   315   // restore all registers (ints and floats)
   316   offset = register_save_offset;
   317   for (int i = 0; i < regstosave_num; i++) {
   318     int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
   319     int reg_type = RegisterSaver_LiveRegs[i].reg_type;
   321     switch (reg_type) {
   322       case RegisterSaver::int_reg: {
   323         if (reg_num != 30) // R30 restored at the end, it's the tmp reg!
   324           __ ld(as_Register(reg_num), offset, R1_SP);
   325         break;
   326       }
   327       case RegisterSaver::float_reg: {
   328         __ lfd(as_FloatRegister(reg_num), offset, R1_SP);
   329         break;
   330       }
   331       case RegisterSaver::special_reg: {
   332         if (reg_num == SR_CTR_SpecialRegisterEnumValue) {
   333           if (restore_ctr) { // Nothing to do here if ctr already contains the next address.
   334             __ ld(R30, offset, R1_SP);
   335             __ mtctr(R30);
   336           }
   337         } else {
   338           Unimplemented();
   339         }
   340         break;
   341       }
   342       default:
   343         ShouldNotReachHere();
   344     }
   345     offset += reg_size;
   346   }
   348   // pop the frame
   349   __ pop_frame();
   351   // restore the flags
   352   __ restore_LR_CR(R30);
   354   // restore scratch register's value
   355   __ ld(R30, -reg_size, R1_SP);
   357   BLOCK_COMMENT("} restore_live_registers_and_pop_frame");
   358 }
   360 void RegisterSaver::push_frame_and_save_argument_registers(MacroAssembler* masm, Register r_temp,
   361                                                            int frame_size,int total_args, const VMRegPair *regs,
   362                                                            const VMRegPair *regs2) {
   363   __ push_frame(frame_size, r_temp);
   364   int st_off = frame_size - wordSize;
   365   for (int i = 0; i < total_args; i++) {
   366     VMReg r_1 = regs[i].first();
   367     VMReg r_2 = regs[i].second();
   368     if (!r_1->is_valid()) {
   369       assert(!r_2->is_valid(), "");
   370       continue;
   371     }
   372     if (r_1->is_Register()) {
   373       Register r = r_1->as_Register();
   374       __ std(r, st_off, R1_SP);
   375       st_off -= wordSize;
   376     } else if (r_1->is_FloatRegister()) {
   377       FloatRegister f = r_1->as_FloatRegister();
   378       __ stfd(f, st_off, R1_SP);
   379       st_off -= wordSize;
   380     }
   381   }
   382   if (regs2 != NULL) {
   383     for (int i = 0; i < total_args; i++) {
   384       VMReg r_1 = regs2[i].first();
   385       VMReg r_2 = regs2[i].second();
   386       if (!r_1->is_valid()) {
   387         assert(!r_2->is_valid(), "");
   388         continue;
   389       }
   390       if (r_1->is_Register()) {
   391         Register r = r_1->as_Register();
   392         __ std(r, st_off, R1_SP);
   393         st_off -= wordSize;
   394       } else if (r_1->is_FloatRegister()) {
   395         FloatRegister f = r_1->as_FloatRegister();
   396         __ stfd(f, st_off, R1_SP);
   397         st_off -= wordSize;
   398       }
   399     }
   400   }
   401 }
   403 void RegisterSaver::restore_argument_registers_and_pop_frame(MacroAssembler*masm, int frame_size,
   404                                                              int total_args, const VMRegPair *regs,
   405                                                              const VMRegPair *regs2) {
   406   int st_off = frame_size - wordSize;
   407   for (int i = 0; i < total_args; i++) {
   408     VMReg r_1 = regs[i].first();
   409     VMReg r_2 = regs[i].second();
   410     if (r_1->is_Register()) {
   411       Register r = r_1->as_Register();
   412       __ ld(r, st_off, R1_SP);
   413       st_off -= wordSize;
   414     } else if (r_1->is_FloatRegister()) {
   415       FloatRegister f = r_1->as_FloatRegister();
   416       __ lfd(f, st_off, R1_SP);
   417       st_off -= wordSize;
   418     }
   419   }
   420   if (regs2 != NULL)
   421     for (int i = 0; i < total_args; i++) {
   422       VMReg r_1 = regs2[i].first();
   423       VMReg r_2 = regs2[i].second();
   424       if (r_1->is_Register()) {
   425         Register r = r_1->as_Register();
   426         __ ld(r, st_off, R1_SP);
   427         st_off -= wordSize;
   428       } else if (r_1->is_FloatRegister()) {
   429         FloatRegister f = r_1->as_FloatRegister();
   430         __ lfd(f, st_off, R1_SP);
   431         st_off -= wordSize;
   432       }
   433     }
   434   __ pop_frame();
   435 }
   437 // Restore the registers that might be holding a result.
   438 void RegisterSaver::restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes) {
   439   int i;
   440   int offset;
   441   const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
   442                                    sizeof(RegisterSaver::LiveRegType);
   443   const int register_save_size   = regstosave_num * reg_size;
   444   const int register_save_offset = frame_size_in_bytes - register_save_size;
   446   // restore all result registers (ints and floats)
   447   offset = register_save_offset;
   448   for (int i = 0; i < regstosave_num; i++) {
   449     int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
   450     int reg_type = RegisterSaver_LiveRegs[i].reg_type;
   451     switch (reg_type) {
   452       case RegisterSaver::int_reg: {
   453         if (as_Register(reg_num)==R3_RET) // int result_reg
   454           __ ld(as_Register(reg_num), offset, R1_SP);
   455         break;
   456       }
   457       case RegisterSaver::float_reg: {
   458         if (as_FloatRegister(reg_num)==F1_RET) // float result_reg
   459           __ lfd(as_FloatRegister(reg_num), offset, R1_SP);
   460         break;
   461       }
   462       case RegisterSaver::special_reg: {
   463         // Special registers don't hold a result.
   464         break;
   465       }
   466       default:
   467         ShouldNotReachHere();
   468     }
   469     offset += reg_size;
   470   }
   471 }
   473 // Is vector's size (in bytes) bigger than a size saved by default?
   474 bool SharedRuntime::is_wide_vector(int size) {
   475   ResourceMark rm;
   476   // Note, MaxVectorSize == 8 on PPC64.
   477   assert(size <= 8, err_msg_res("%d bytes vectors are not supported", size));
   478   return size > 8;
   479 }
   480 #ifdef COMPILER2
   481 static int reg2slot(VMReg r) {
   482   return r->reg2stack() + SharedRuntime::out_preserve_stack_slots();
   483 }
   485 static int reg2offset(VMReg r) {
   486   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   487 }
   488 #endif
   490 // ---------------------------------------------------------------------------
   491 // Read the array of BasicTypes from a signature, and compute where the
   492 // arguments should go. Values in the VMRegPair regs array refer to 4-byte
   493 // quantities. Values less than VMRegImpl::stack0 are registers, those above
   494 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer
   495 // as framesizes are fixed.
   496 // VMRegImpl::stack0 refers to the first slot 0(sp).
   497 // and VMRegImpl::stack0+1 refers to the memory word 4-bytes higher. Register
   498 // up to RegisterImpl::number_of_registers) are the 64-bit
   499 // integer registers.
   501 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   502 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
   503 // units regardless of build. Of course for i486 there is no 64 bit build
   505 // The Java calling convention is a "shifted" version of the C ABI.
   506 // By skipping the first C ABI register we can call non-static jni methods
   507 // with small numbers of arguments without having to shuffle the arguments
   508 // at all. Since we control the java ABI we ought to at least get some
   509 // advantage out of it.
   511 const VMReg java_iarg_reg[8] = {
   512   R3->as_VMReg(),
   513   R4->as_VMReg(),
   514   R5->as_VMReg(),
   515   R6->as_VMReg(),
   516   R7->as_VMReg(),
   517   R8->as_VMReg(),
   518   R9->as_VMReg(),
   519   R10->as_VMReg()
   520 };
   522 const VMReg java_farg_reg[13] = {
   523   F1->as_VMReg(),
   524   F2->as_VMReg(),
   525   F3->as_VMReg(),
   526   F4->as_VMReg(),
   527   F5->as_VMReg(),
   528   F6->as_VMReg(),
   529   F7->as_VMReg(),
   530   F8->as_VMReg(),
   531   F9->as_VMReg(),
   532   F10->as_VMReg(),
   533   F11->as_VMReg(),
   534   F12->as_VMReg(),
   535   F13->as_VMReg()
   536 };
   538 const int num_java_iarg_registers = sizeof(java_iarg_reg) / sizeof(java_iarg_reg[0]);
   539 const int num_java_farg_registers = sizeof(java_farg_reg) / sizeof(java_farg_reg[0]);
   541 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   542                                            VMRegPair *regs,
   543                                            int total_args_passed,
   544                                            int is_outgoing) {
   545   // C2c calling conventions for compiled-compiled calls.
   546   // Put 8 ints/longs into registers _AND_ 13 float/doubles into
   547   // registers _AND_ put the rest on the stack.
   549   const int inc_stk_for_intfloat   = 1; // 1 slots for ints and floats
   550   const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles
   552   int i;
   553   VMReg reg;
   554   int stk = 0;
   555   int ireg = 0;
   556   int freg = 0;
   558   // We put the first 8 arguments into registers and the rest on the
   559   // stack, float arguments are already in their argument registers
   560   // due to c2c calling conventions (see calling_convention).
   561   for (int i = 0; i < total_args_passed; ++i) {
   562     switch(sig_bt[i]) {
   563     case T_BOOLEAN:
   564     case T_CHAR:
   565     case T_BYTE:
   566     case T_SHORT:
   567     case T_INT:
   568       if (ireg < num_java_iarg_registers) {
   569         // Put int/ptr in register
   570         reg = java_iarg_reg[ireg];
   571         ++ireg;
   572       } else {
   573         // Put int/ptr on stack.
   574         reg = VMRegImpl::stack2reg(stk);
   575         stk += inc_stk_for_intfloat;
   576       }
   577       regs[i].set1(reg);
   578       break;
   579     case T_LONG:
   580       assert(sig_bt[i+1] == T_VOID, "expecting half");
   581       if (ireg < num_java_iarg_registers) {
   582         // Put long in register.
   583         reg = java_iarg_reg[ireg];
   584         ++ireg;
   585       } else {
   586         // Put long on stack. They must be aligned to 2 slots.
   587         if (stk & 0x1) ++stk;
   588         reg = VMRegImpl::stack2reg(stk);
   589         stk += inc_stk_for_longdouble;
   590       }
   591       regs[i].set2(reg);
   592       break;
   593     case T_OBJECT:
   594     case T_ARRAY:
   595     case T_ADDRESS:
   596       if (ireg < num_java_iarg_registers) {
   597         // Put ptr in register.
   598         reg = java_iarg_reg[ireg];
   599         ++ireg;
   600       } else {
   601         // Put ptr on stack. Objects must be aligned to 2 slots too,
   602         // because "64-bit pointers record oop-ishness on 2 aligned
   603         // adjacent registers." (see OopFlow::build_oop_map).
   604         if (stk & 0x1) ++stk;
   605         reg = VMRegImpl::stack2reg(stk);
   606         stk += inc_stk_for_longdouble;
   607       }
   608       regs[i].set2(reg);
   609       break;
   610     case T_FLOAT:
   611       if (freg < num_java_farg_registers) {
   612         // Put float in register.
   613         reg = java_farg_reg[freg];
   614         ++freg;
   615       } else {
   616         // Put float on stack.
   617         reg = VMRegImpl::stack2reg(stk);
   618         stk += inc_stk_for_intfloat;
   619       }
   620       regs[i].set1(reg);
   621       break;
   622     case T_DOUBLE:
   623       assert(sig_bt[i+1] == T_VOID, "expecting half");
   624       if (freg < num_java_farg_registers) {
   625         // Put double in register.
   626         reg = java_farg_reg[freg];
   627         ++freg;
   628       } else {
   629         // Put double on stack. They must be aligned to 2 slots.
   630         if (stk & 0x1) ++stk;
   631         reg = VMRegImpl::stack2reg(stk);
   632         stk += inc_stk_for_longdouble;
   633       }
   634       regs[i].set2(reg);
   635       break;
   636     case T_VOID:
   637       // Do not count halves.
   638       regs[i].set_bad();
   639       break;
   640     default:
   641       ShouldNotReachHere();
   642     }
   643   }
   644   return round_to(stk, 2);
   645 }
   647 #ifdef COMPILER2
   648 // Calling convention for calling C code.
   649 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
   650                                         VMRegPair *regs,
   651                                         VMRegPair *regs2,
   652                                         int total_args_passed) {
   653   // Calling conventions for C runtime calls and calls to JNI native methods.
   654   //
   655   // PPC64 convention: Hoist the first 8 int/ptr/long's in the first 8
   656   // int regs, leaving int regs undefined if the arg is flt/dbl. Hoist
   657   // the first 13 flt/dbl's in the first 13 fp regs but additionally
   658   // copy flt/dbl to the stack if they are beyond the 8th argument.
   660   const VMReg iarg_reg[8] = {
   661     R3->as_VMReg(),
   662     R4->as_VMReg(),
   663     R5->as_VMReg(),
   664     R6->as_VMReg(),
   665     R7->as_VMReg(),
   666     R8->as_VMReg(),
   667     R9->as_VMReg(),
   668     R10->as_VMReg()
   669   };
   671   const VMReg farg_reg[13] = {
   672     F1->as_VMReg(),
   673     F2->as_VMReg(),
   674     F3->as_VMReg(),
   675     F4->as_VMReg(),
   676     F5->as_VMReg(),
   677     F6->as_VMReg(),
   678     F7->as_VMReg(),
   679     F8->as_VMReg(),
   680     F9->as_VMReg(),
   681     F10->as_VMReg(),
   682     F11->as_VMReg(),
   683     F12->as_VMReg(),
   684     F13->as_VMReg()
   685   };
   687   // Check calling conventions consistency.
   688   assert(sizeof(iarg_reg) / sizeof(iarg_reg[0]) == Argument::n_int_register_parameters_c &&
   689          sizeof(farg_reg) / sizeof(farg_reg[0]) == Argument::n_float_register_parameters_c,
   690          "consistency");
   692   // `Stk' counts stack slots. Due to alignment, 32 bit values occupy
   693   // 2 such slots, like 64 bit values do.
   694   const int inc_stk_for_intfloat   = 2; // 2 slots for ints and floats
   695   const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles
   697   int i;
   698   VMReg reg;
   699   // Leave room for C-compatible ABI_REG_ARGS.
   700   int stk = (frame::abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size;
   701   int arg = 0;
   702   int freg = 0;
   704   // Avoid passing C arguments in the wrong stack slots.
   705 #if defined(ABI_ELFv2)
   706   assert((SharedRuntime::out_preserve_stack_slots() + stk) * VMRegImpl::stack_slot_size == 96,
   707          "passing C arguments in wrong stack slots");
   708 #else
   709   assert((SharedRuntime::out_preserve_stack_slots() + stk) * VMRegImpl::stack_slot_size == 112,
   710          "passing C arguments in wrong stack slots");
   711 #endif
   712   // We fill-out regs AND regs2 if an argument must be passed in a
   713   // register AND in a stack slot. If regs2 is NULL in such a
   714   // situation, we bail-out with a fatal error.
   715   for (int i = 0; i < total_args_passed; ++i, ++arg) {
   716     // Initialize regs2 to BAD.
   717     if (regs2 != NULL) regs2[i].set_bad();
   719     switch(sig_bt[i]) {
   721     //
   722     // If arguments 0-7 are integers, they are passed in integer registers.
   723     // Argument i is placed in iarg_reg[i].
   724     //
   725     case T_BOOLEAN:
   726     case T_CHAR:
   727     case T_BYTE:
   728     case T_SHORT:
   729     case T_INT:
   730       // We must cast ints to longs and use full 64 bit stack slots
   731       // here. We do the cast in GraphKit::gen_stub() and just guard
   732       // here against loosing that change.
   733       assert(CCallingConventionRequiresIntsAsLongs,
   734              "argument of type int should be promoted to type long");
   735       guarantee(i > 0 && sig_bt[i-1] == T_LONG,
   736                 "argument of type (bt) should have been promoted to type (T_LONG,bt) for bt in "
   737                 "{T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
   738       // Do not count halves.
   739       regs[i].set_bad();
   740       --arg;
   741       break;
   742     case T_LONG:
   743       guarantee(sig_bt[i+1] == T_VOID    ||
   744                 sig_bt[i+1] == T_BOOLEAN || sig_bt[i+1] == T_CHAR  ||
   745                 sig_bt[i+1] == T_BYTE    || sig_bt[i+1] == T_SHORT ||
   746                 sig_bt[i+1] == T_INT,
   747                 "expecting type (T_LONG,half) or type (T_LONG,bt) with bt in {T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
   748     case T_OBJECT:
   749     case T_ARRAY:
   750     case T_ADDRESS:
   751     case T_METADATA:
   752       // Oops are already boxed if required (JNI).
   753       if (arg < Argument::n_int_register_parameters_c) {
   754         reg = iarg_reg[arg];
   755       } else {
   756         reg = VMRegImpl::stack2reg(stk);
   757         stk += inc_stk_for_longdouble;
   758       }
   759       regs[i].set2(reg);
   760       break;
   762     //
   763     // Floats are treated differently from int regs:  The first 13 float arguments
   764     // are passed in registers (not the float args among the first 13 args).
   765     // Thus argument i is NOT passed in farg_reg[i] if it is float.  It is passed
   766     // in farg_reg[j] if argument i is the j-th float argument of this call.
   767     //
   768     case T_FLOAT:
   769       if (freg < Argument::n_float_register_parameters_c) {
   770         // Put float in register ...
   771         reg = farg_reg[freg];
   772         ++freg;
   774         // Argument i for i > 8 is placed on the stack even if it's
   775         // placed in a register (if it's a float arg). Aix disassembly
   776         // shows that xlC places these float args on the stack AND in
   777         // a register. This is not documented, but we follow this
   778         // convention, too.
   779         if (arg >= Argument::n_regs_not_on_stack_c) {
   780           // ... and on the stack.
   781           guarantee(regs2 != NULL, "must pass float in register and stack slot");
   782           VMReg reg2 = VMRegImpl::stack2reg(stk LINUX_ONLY(+1));
   783           regs2[i].set1(reg2);
   784           stk += inc_stk_for_intfloat;
   785         }
   787       } else {
   788         // Put float on stack.
   789         reg = VMRegImpl::stack2reg(stk LINUX_ONLY(+1));
   790         stk += inc_stk_for_intfloat;
   791       }
   792       regs[i].set1(reg);
   793       break;
   794     case T_DOUBLE:
   795       assert(sig_bt[i+1] == T_VOID, "expecting half");
   796       if (freg < Argument::n_float_register_parameters_c) {
   797         // Put double in register ...
   798         reg = farg_reg[freg];
   799         ++freg;
   801         // Argument i for i > 8 is placed on the stack even if it's
   802         // placed in a register (if it's a double arg). Aix disassembly
   803         // shows that xlC places these float args on the stack AND in
   804         // a register. This is not documented, but we follow this
   805         // convention, too.
   806         if (arg >= Argument::n_regs_not_on_stack_c) {
   807           // ... and on the stack.
   808           guarantee(regs2 != NULL, "must pass float in register and stack slot");
   809           VMReg reg2 = VMRegImpl::stack2reg(stk);
   810           regs2[i].set2(reg2);
   811           stk += inc_stk_for_longdouble;
   812         }
   813       } else {
   814         // Put double on stack.
   815         reg = VMRegImpl::stack2reg(stk);
   816         stk += inc_stk_for_longdouble;
   817       }
   818       regs[i].set2(reg);
   819       break;
   821     case T_VOID:
   822       // Do not count halves.
   823       regs[i].set_bad();
   824       --arg;
   825       break;
   826     default:
   827       ShouldNotReachHere();
   828     }
   829   }
   831   return round_to(stk, 2);
   832 }
   833 #endif // COMPILER2
   835 static address gen_c2i_adapter(MacroAssembler *masm,
   836                             int total_args_passed,
   837                             int comp_args_on_stack,
   838                             const BasicType *sig_bt,
   839                             const VMRegPair *regs,
   840                             Label& call_interpreter,
   841                             const Register& ientry) {
   843   address c2i_entrypoint;
   845   const Register sender_SP = R21_sender_SP; // == R21_tmp1
   846   const Register code      = R22_tmp2;
   847   //const Register ientry  = R23_tmp3;
   848   const Register value_regs[] = { R24_tmp4, R25_tmp5, R26_tmp6 };
   849   const int num_value_regs = sizeof(value_regs) / sizeof(Register);
   850   int value_regs_index = 0;
   852   const Register return_pc = R27_tmp7;
   853   const Register tmp       = R28_tmp8;
   855   assert_different_registers(sender_SP, code, ientry, return_pc, tmp);
   857   // Adapter needs TOP_IJAVA_FRAME_ABI.
   858   const int adapter_size = frame::top_ijava_frame_abi_size +
   859                            round_to(total_args_passed * wordSize, frame::alignment_in_bytes);
   861   // regular (verified) c2i entry point
   862   c2i_entrypoint = __ pc();
   864   // Does compiled code exists? If yes, patch the caller's callsite.
   865   __ ld(code, method_(code));
   866   __ cmpdi(CCR0, code, 0);
   867   __ ld(ientry, method_(interpreter_entry)); // preloaded
   868   __ beq(CCR0, call_interpreter);
   871   // Patch caller's callsite, method_(code) was not NULL which means that
   872   // compiled code exists.
   873   __ mflr(return_pc);
   874   __ std(return_pc, _abi(lr), R1_SP);
   875   RegisterSaver::push_frame_and_save_argument_registers(masm, tmp, adapter_size, total_args_passed, regs);
   877   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), R19_method, return_pc);
   879   RegisterSaver::restore_argument_registers_and_pop_frame(masm, adapter_size, total_args_passed, regs);
   880   __ ld(return_pc, _abi(lr), R1_SP);
   881   __ ld(ientry, method_(interpreter_entry)); // preloaded
   882   __ mtlr(return_pc);
   885   // Call the interpreter.
   886   __ BIND(call_interpreter);
   887   __ mtctr(ientry);
   889   // Get a copy of the current SP for loading caller's arguments.
   890   __ mr(sender_SP, R1_SP);
   892   // Add space for the adapter.
   893   __ resize_frame(-adapter_size, R12_scratch2);
   895   int st_off = adapter_size - wordSize;
   897   // Write the args into the outgoing interpreter space.
   898   for (int i = 0; i < total_args_passed; i++) {
   899     VMReg r_1 = regs[i].first();
   900     VMReg r_2 = regs[i].second();
   901     if (!r_1->is_valid()) {
   902       assert(!r_2->is_valid(), "");
   903       continue;
   904     }
   905     if (r_1->is_stack()) {
   906       Register tmp_reg = value_regs[value_regs_index];
   907       value_regs_index = (value_regs_index + 1) % num_value_regs;
   908       // The calling convention produces OptoRegs that ignore the out
   909       // preserve area (JIT's ABI). We must account for it here.
   910       int ld_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   911       if (!r_2->is_valid()) {
   912         __ lwz(tmp_reg, ld_off, sender_SP);
   913       } else {
   914         __ ld(tmp_reg, ld_off, sender_SP);
   915       }
   916       // Pretend stack targets were loaded into tmp_reg.
   917       r_1 = tmp_reg->as_VMReg();
   918     }
   920     if (r_1->is_Register()) {
   921       Register r = r_1->as_Register();
   922       if (!r_2->is_valid()) {
   923         __ stw(r, st_off, R1_SP);
   924         st_off-=wordSize;
   925       } else {
   926         // Longs are given 2 64-bit slots in the interpreter, but the
   927         // data is passed in only 1 slot.
   928         if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   929           DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); )
   930           st_off-=wordSize;
   931         }
   932         __ std(r, st_off, R1_SP);
   933         st_off-=wordSize;
   934       }
   935     } else {
   936       assert(r_1->is_FloatRegister(), "");
   937       FloatRegister f = r_1->as_FloatRegister();
   938       if (!r_2->is_valid()) {
   939         __ stfs(f, st_off, R1_SP);
   940         st_off-=wordSize;
   941       } else {
   942         // In 64bit, doubles are given 2 64-bit slots in the interpreter, but the
   943         // data is passed in only 1 slot.
   944         // One of these should get known junk...
   945         DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); )
   946         st_off-=wordSize;
   947         __ stfd(f, st_off, R1_SP);
   948         st_off-=wordSize;
   949       }
   950     }
   951   }
   953   // Jump to the interpreter just as if interpreter was doing it.
   955 #ifdef CC_INTERP
   956   const Register tos = R17_tos;
   957 #else
   958   const Register tos = R15_esp;
   959   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
   960 #endif
   962   // load TOS
   963   __ addi(tos, R1_SP, st_off);
   965   // Frame_manager expects initial_caller_sp (= SP without resize by c2i) in R21_tmp1.
   966   assert(sender_SP == R21_sender_SP, "passing initial caller's SP in wrong register");
   967   __ bctr();
   969   return c2i_entrypoint;
   970 }
   972 static void gen_i2c_adapter(MacroAssembler *masm,
   973                             int total_args_passed,
   974                             int comp_args_on_stack,
   975                             const BasicType *sig_bt,
   976                             const VMRegPair *regs) {
   978   // Load method's entry-point from method.
   979   __ ld(R12_scratch2, in_bytes(Method::from_compiled_offset()), R19_method);
   980   __ mtctr(R12_scratch2);
   982   // We will only enter here from an interpreted frame and never from after
   983   // passing thru a c2i. Azul allowed this but we do not. If we lose the
   984   // race and use a c2i we will remain interpreted for the race loser(s).
   985   // This removes all sorts of headaches on the x86 side and also eliminates
   986   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
   988   // Note: r13 contains the senderSP on entry. We must preserve it since
   989   // we may do a i2c -> c2i transition if we lose a race where compiled
   990   // code goes non-entrant while we get args ready.
   991   // In addition we use r13 to locate all the interpreter args as
   992   // we must align the stack to 16 bytes on an i2c entry else we
   993   // lose alignment we expect in all compiled code and register
   994   // save code can segv when fxsave instructions find improperly
   995   // aligned stack pointer.
   997 #ifdef CC_INTERP
   998   const Register ld_ptr = R17_tos;
   999 #else
  1000   const Register ld_ptr = R15_esp;
  1001 #endif
  1003   const Register value_regs[] = { R22_tmp2, R23_tmp3, R24_tmp4, R25_tmp5, R26_tmp6 };
  1004   const int num_value_regs = sizeof(value_regs) / sizeof(Register);
  1005   int value_regs_index = 0;
  1007   int ld_offset = total_args_passed*wordSize;
  1009   // Cut-out for having no stack args. Since up to 2 int/oop args are passed
  1010   // in registers, we will occasionally have no stack args.
  1011   int comp_words_on_stack = 0;
  1012   if (comp_args_on_stack) {
  1013     // Sig words on the stack are greater-than VMRegImpl::stack0. Those in
  1014     // registers are below. By subtracting stack0, we either get a negative
  1015     // number (all values in registers) or the maximum stack slot accessed.
  1017     // Convert 4-byte c2 stack slots to words.
  1018     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
  1019     // Round up to miminum stack alignment, in wordSize.
  1020     comp_words_on_stack = round_to(comp_words_on_stack, 2);
  1021     __ resize_frame(-comp_words_on_stack * wordSize, R11_scratch1);
  1024   // Now generate the shuffle code.  Pick up all register args and move the
  1025   // rest through register value=Z_R12.
  1026   BLOCK_COMMENT("Shuffle arguments");
  1027   for (int i = 0; i < total_args_passed; i++) {
  1028     if (sig_bt[i] == T_VOID) {
  1029       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
  1030       continue;
  1033     // Pick up 0, 1 or 2 words from ld_ptr.
  1034     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
  1035             "scrambled load targets?");
  1036     VMReg r_1 = regs[i].first();
  1037     VMReg r_2 = regs[i].second();
  1038     if (!r_1->is_valid()) {
  1039       assert(!r_2->is_valid(), "");
  1040       continue;
  1042     if (r_1->is_FloatRegister()) {
  1043       if (!r_2->is_valid()) {
  1044         __ lfs(r_1->as_FloatRegister(), ld_offset, ld_ptr);
  1045         ld_offset-=wordSize;
  1046       } else {
  1047         // Skip the unused interpreter slot.
  1048         __ lfd(r_1->as_FloatRegister(), ld_offset-wordSize, ld_ptr);
  1049         ld_offset-=2*wordSize;
  1051     } else {
  1052       Register r;
  1053       if (r_1->is_stack()) {
  1054         // Must do a memory to memory move thru "value".
  1055         r = value_regs[value_regs_index];
  1056         value_regs_index = (value_regs_index + 1) % num_value_regs;
  1057       } else {
  1058         r = r_1->as_Register();
  1060       if (!r_2->is_valid()) {
  1061         // Not sure we need to do this but it shouldn't hurt.
  1062         if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ADDRESS || sig_bt[i] == T_ARRAY) {
  1063           __ ld(r, ld_offset, ld_ptr);
  1064           ld_offset-=wordSize;
  1065         } else {
  1066           __ lwz(r, ld_offset, ld_ptr);
  1067           ld_offset-=wordSize;
  1069       } else {
  1070         // In 64bit, longs are given 2 64-bit slots in the interpreter, but the
  1071         // data is passed in only 1 slot.
  1072         if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
  1073           ld_offset-=wordSize;
  1075         __ ld(r, ld_offset, ld_ptr);
  1076         ld_offset-=wordSize;
  1079       if (r_1->is_stack()) {
  1080         // Now store value where the compiler expects it
  1081         int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots())*VMRegImpl::stack_slot_size;
  1083         if (sig_bt[i] == T_INT   || sig_bt[i] == T_FLOAT ||sig_bt[i] == T_BOOLEAN ||
  1084             sig_bt[i] == T_SHORT || sig_bt[i] == T_CHAR  || sig_bt[i] == T_BYTE) {
  1085           __ stw(r, st_off, R1_SP);
  1086         } else {
  1087           __ std(r, st_off, R1_SP);
  1093   BLOCK_COMMENT("Store method");
  1094   // Store method into thread->callee_target.
  1095   // We might end up in handle_wrong_method if the callee is
  1096   // deoptimized as we race thru here. If that happens we don't want
  1097   // to take a safepoint because the caller frame will look
  1098   // interpreted and arguments are now "compiled" so it is much better
  1099   // to make this transition invisible to the stack walking
  1100   // code. Unfortunately if we try and find the callee by normal means
  1101   // a safepoint is possible. So we stash the desired callee in the
  1102   // thread and the vm will find there should this case occur.
  1103   __ std(R19_method, thread_(callee_target));
  1105   // Jump to the compiled code just as if compiled code was doing it.
  1106   __ bctr();
  1109 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
  1110                                                             int total_args_passed,
  1111                                                             int comp_args_on_stack,
  1112                                                             const BasicType *sig_bt,
  1113                                                             const VMRegPair *regs,
  1114                                                             AdapterFingerPrint* fingerprint) {
  1115   address i2c_entry;
  1116   address c2i_unverified_entry;
  1117   address c2i_entry;
  1120   // entry: i2c
  1122   __ align(CodeEntryAlignment);
  1123   i2c_entry = __ pc();
  1124   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
  1127   // entry: c2i unverified
  1129   __ align(CodeEntryAlignment);
  1130   BLOCK_COMMENT("c2i unverified entry");
  1131   c2i_unverified_entry = __ pc();
  1133   // inline_cache contains a compiledICHolder
  1134   const Register ic             = R19_method;
  1135   const Register ic_klass       = R11_scratch1;
  1136   const Register receiver_klass = R12_scratch2;
  1137   const Register code           = R21_tmp1;
  1138   const Register ientry         = R23_tmp3;
  1140   assert_different_registers(ic, ic_klass, receiver_klass, R3_ARG1, code, ientry);
  1141   assert(R11_scratch1 == R11, "need prologue scratch register");
  1143   Label call_interpreter;
  1145   assert(!MacroAssembler::needs_explicit_null_check(oopDesc::klass_offset_in_bytes()),
  1146          "klass offset should reach into any page");
  1147   // Check for NULL argument if we don't have implicit null checks.
  1148   if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
  1149     if (TrapBasedNullChecks) {
  1150       __ trap_null_check(R3_ARG1);
  1151     } else {
  1152       Label valid;
  1153       __ cmpdi(CCR0, R3_ARG1, 0);
  1154       __ bne_predict_taken(CCR0, valid);
  1155       // We have a null argument, branch to ic_miss_stub.
  1156       __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  1157                        relocInfo::runtime_call_type);
  1158       __ BIND(valid);
  1161   // Assume argument is not NULL, load klass from receiver.
  1162   __ load_klass(receiver_klass, R3_ARG1);
  1164   __ ld(ic_klass, CompiledICHolder::holder_klass_offset(), ic);
  1166   if (TrapBasedICMissChecks) {
  1167     __ trap_ic_miss_check(receiver_klass, ic_klass);
  1168   } else {
  1169     Label valid;
  1170     __ cmpd(CCR0, receiver_klass, ic_klass);
  1171     __ beq_predict_taken(CCR0, valid);
  1172     // We have an unexpected klass, branch to ic_miss_stub.
  1173     __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  1174                      relocInfo::runtime_call_type);
  1175     __ BIND(valid);
  1178   // Argument is valid and klass is as expected, continue.
  1180   // Extract method from inline cache, verified entry point needs it.
  1181   __ ld(R19_method, CompiledICHolder::holder_method_offset(), ic);
  1182   assert(R19_method == ic, "the inline cache register is dead here");
  1184   __ ld(code, method_(code));
  1185   __ cmpdi(CCR0, code, 0);
  1186   __ ld(ientry, method_(interpreter_entry)); // preloaded
  1187   __ beq_predict_taken(CCR0, call_interpreter);
  1189   // Branch to ic_miss_stub.
  1190   __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type);
  1192   // entry: c2i
  1194   c2i_entry = gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, call_interpreter, ientry);
  1196   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  1199 #ifdef COMPILER2
  1200 // An oop arg. Must pass a handle not the oop itself.
  1201 static void object_move(MacroAssembler* masm,
  1202                         int frame_size_in_slots,
  1203                         OopMap* oop_map, int oop_handle_offset,
  1204                         bool is_receiver, int* receiver_offset,
  1205                         VMRegPair src, VMRegPair dst,
  1206                         Register r_caller_sp, Register r_temp_1, Register r_temp_2) {
  1207   assert(!is_receiver || (is_receiver && (*receiver_offset == -1)),
  1208          "receiver has already been moved");
  1210   // We must pass a handle. First figure out the location we use as a handle.
  1212   if (src.first()->is_stack()) {
  1213     // stack to stack or reg
  1215     const Register r_handle = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register();
  1216     Label skip;
  1217     const int oop_slot_in_callers_frame = reg2slot(src.first());
  1219     guarantee(!is_receiver, "expecting receiver in register");
  1220     oop_map->set_oop(VMRegImpl::stack2reg(oop_slot_in_callers_frame + frame_size_in_slots));
  1222     __ addi(r_handle, r_caller_sp, reg2offset(src.first()));
  1223     __ ld(  r_temp_2, reg2offset(src.first()), r_caller_sp);
  1224     __ cmpdi(CCR0, r_temp_2, 0);
  1225     __ bne(CCR0, skip);
  1226     // Use a NULL handle if oop is NULL.
  1227     __ li(r_handle, 0);
  1228     __ bind(skip);
  1230     if (dst.first()->is_stack()) {
  1231       // stack to stack
  1232       __ std(r_handle, reg2offset(dst.first()), R1_SP);
  1233     } else {
  1234       // stack to reg
  1235       // Nothing to do, r_handle is already the dst register.
  1237   } else {
  1238     // reg to stack or reg
  1239     const Register r_oop      = src.first()->as_Register();
  1240     const Register r_handle   = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register();
  1241     const int oop_slot        = (r_oop->encoding()-R3_ARG1->encoding()) * VMRegImpl::slots_per_word
  1242                                 + oop_handle_offset; // in slots
  1243     const int oop_offset = oop_slot * VMRegImpl::stack_slot_size;
  1244     Label skip;
  1246     if (is_receiver) {
  1247       *receiver_offset = oop_offset;
  1249     oop_map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1251     __ std( r_oop,    oop_offset, R1_SP);
  1252     __ addi(r_handle, R1_SP, oop_offset);
  1254     __ cmpdi(CCR0, r_oop, 0);
  1255     __ bne(CCR0, skip);
  1256     // Use a NULL handle if oop is NULL.
  1257     __ li(r_handle, 0);
  1258     __ bind(skip);
  1260     if (dst.first()->is_stack()) {
  1261       // reg to stack
  1262       __ std(r_handle, reg2offset(dst.first()), R1_SP);
  1263     } else {
  1264       // reg to reg
  1265       // Nothing to do, r_handle is already the dst register.
  1270 static void int_move(MacroAssembler*masm,
  1271                      VMRegPair src, VMRegPair dst,
  1272                      Register r_caller_sp, Register r_temp) {
  1273   assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be long-int");
  1274   assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long");
  1276   if (src.first()->is_stack()) {
  1277     if (dst.first()->is_stack()) {
  1278       // stack to stack
  1279       __ lwa(r_temp, reg2offset(src.first()), r_caller_sp);
  1280       __ std(r_temp, reg2offset(dst.first()), R1_SP);
  1281     } else {
  1282       // stack to reg
  1283       __ lwa(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
  1285   } else if (dst.first()->is_stack()) {
  1286     // reg to stack
  1287     __ extsw(r_temp, src.first()->as_Register());
  1288     __ std(r_temp, reg2offset(dst.first()), R1_SP);
  1289   } else {
  1290     // reg to reg
  1291     __ extsw(dst.first()->as_Register(), src.first()->as_Register());
  1295 static void long_move(MacroAssembler*masm,
  1296                       VMRegPair src, VMRegPair dst,
  1297                       Register r_caller_sp, Register r_temp) {
  1298   assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be long");
  1299   assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long");
  1301   if (src.first()->is_stack()) {
  1302     if (dst.first()->is_stack()) {
  1303       // stack to stack
  1304       __ ld( r_temp, reg2offset(src.first()), r_caller_sp);
  1305       __ std(r_temp, reg2offset(dst.first()), R1_SP);
  1306     } else {
  1307       // stack to reg
  1308       __ ld(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
  1310   } else if (dst.first()->is_stack()) {
  1311     // reg to stack
  1312     __ std(src.first()->as_Register(), reg2offset(dst.first()), R1_SP);
  1313   } else {
  1314     // reg to reg
  1315     if (dst.first()->as_Register() != src.first()->as_Register())
  1316       __ mr(dst.first()->as_Register(), src.first()->as_Register());
  1320 static void float_move(MacroAssembler*masm,
  1321                        VMRegPair src, VMRegPair dst,
  1322                        Register r_caller_sp, Register r_temp) {
  1323   assert(src.first()->is_valid() && !src.second()->is_valid(), "incoming must be float");
  1324   assert(dst.first()->is_valid() && !dst.second()->is_valid(), "outgoing must be float");
  1326   if (src.first()->is_stack()) {
  1327     if (dst.first()->is_stack()) {
  1328       // stack to stack
  1329       __ lwz(r_temp, reg2offset(src.first()), r_caller_sp);
  1330       __ stw(r_temp, reg2offset(dst.first()), R1_SP);
  1331     } else {
  1332       // stack to reg
  1333       __ lfs(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp);
  1335   } else if (dst.first()->is_stack()) {
  1336     // reg to stack
  1337     __ stfs(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP);
  1338   } else {
  1339     // reg to reg
  1340     if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister())
  1341       __ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
  1345 static void double_move(MacroAssembler*masm,
  1346                         VMRegPair src, VMRegPair dst,
  1347                         Register r_caller_sp, Register r_temp) {
  1348   assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be double");
  1349   assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be double");
  1351   if (src.first()->is_stack()) {
  1352     if (dst.first()->is_stack()) {
  1353       // stack to stack
  1354       __ ld( r_temp, reg2offset(src.first()), r_caller_sp);
  1355       __ std(r_temp, reg2offset(dst.first()), R1_SP);
  1356     } else {
  1357       // stack to reg
  1358       __ lfd(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp);
  1360   } else if (dst.first()->is_stack()) {
  1361     // reg to stack
  1362     __ stfd(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP);
  1363   } else {
  1364     // reg to reg
  1365     if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister())
  1366       __ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
  1370 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1371   switch (ret_type) {
  1372     case T_BOOLEAN:
  1373     case T_CHAR:
  1374     case T_BYTE:
  1375     case T_SHORT:
  1376     case T_INT:
  1377       __ stw (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1378       break;
  1379     case T_ARRAY:
  1380     case T_OBJECT:
  1381     case T_LONG:
  1382       __ std (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1383       break;
  1384     case T_FLOAT:
  1385       __ stfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1386       break;
  1387     case T_DOUBLE:
  1388       __ stfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1389       break;
  1390     case T_VOID:
  1391       break;
  1392     default:
  1393       ShouldNotReachHere();
  1394       break;
  1398 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1399   switch (ret_type) {
  1400     case T_BOOLEAN:
  1401     case T_CHAR:
  1402     case T_BYTE:
  1403     case T_SHORT:
  1404     case T_INT:
  1405       __ lwz(R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1406       break;
  1407     case T_ARRAY:
  1408     case T_OBJECT:
  1409     case T_LONG:
  1410       __ ld (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1411       break;
  1412     case T_FLOAT:
  1413       __ lfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1414       break;
  1415     case T_DOUBLE:
  1416       __ lfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1417       break;
  1418     case T_VOID:
  1419       break;
  1420     default:
  1421       ShouldNotReachHere();
  1422       break;
  1426 static void save_or_restore_arguments(MacroAssembler* masm,
  1427                                       const int stack_slots,
  1428                                       const int total_in_args,
  1429                                       const int arg_save_area,
  1430                                       OopMap* map,
  1431                                       VMRegPair* in_regs,
  1432                                       BasicType* in_sig_bt) {
  1433   // If map is non-NULL then the code should store the values,
  1434   // otherwise it should load them.
  1435   int slot = arg_save_area;
  1436   // Save down double word first.
  1437   for (int i = 0; i < total_in_args; i++) {
  1438     if (in_regs[i].first()->is_FloatRegister() && in_sig_bt[i] == T_DOUBLE) {
  1439       int offset = slot * VMRegImpl::stack_slot_size;
  1440       slot += VMRegImpl::slots_per_word;
  1441       assert(slot <= stack_slots, "overflow (after DOUBLE stack slot)");
  1442       if (map != NULL) {
  1443         __ stfd(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
  1444       } else {
  1445         __ lfd(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
  1447     } else if (in_regs[i].first()->is_Register() &&
  1448         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
  1449       int offset = slot * VMRegImpl::stack_slot_size;
  1450       if (map != NULL) {
  1451         __ std(in_regs[i].first()->as_Register(), offset, R1_SP);
  1452         if (in_sig_bt[i] == T_ARRAY) {
  1453           map->set_oop(VMRegImpl::stack2reg(slot));
  1455       } else {
  1456         __ ld(in_regs[i].first()->as_Register(), offset, R1_SP);
  1458       slot += VMRegImpl::slots_per_word;
  1459       assert(slot <= stack_slots, "overflow (after LONG/ARRAY stack slot)");
  1462   // Save or restore single word registers.
  1463   for (int i = 0; i < total_in_args; i++) {
  1464     // PPC64: pass ints as longs: must only deal with floats here.
  1465     if (in_regs[i].first()->is_FloatRegister()) {
  1466       if (in_sig_bt[i] == T_FLOAT) {
  1467         int offset = slot * VMRegImpl::stack_slot_size;
  1468         slot++;
  1469         assert(slot <= stack_slots, "overflow (after FLOAT stack slot)");
  1470         if (map != NULL) {
  1471           __ stfs(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
  1472         } else {
  1473           __ lfs(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
  1476     } else if (in_regs[i].first()->is_stack()) {
  1477       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
  1478         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1479         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
  1485 // Check GC_locker::needs_gc and enter the runtime if it's true. This
  1486 // keeps a new JNI critical region from starting until a GC has been
  1487 // forced. Save down any oops in registers and describe them in an
  1488 // OopMap.
  1489 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
  1490                                                const int stack_slots,
  1491                                                const int total_in_args,
  1492                                                const int arg_save_area,
  1493                                                OopMapSet* oop_maps,
  1494                                                VMRegPair* in_regs,
  1495                                                BasicType* in_sig_bt,
  1496                                                Register tmp_reg ) {
  1497   __ block_comment("check GC_locker::needs_gc");
  1498   Label cont;
  1499   __ lbz(tmp_reg, (RegisterOrConstant)(intptr_t)GC_locker::needs_gc_address());
  1500   __ cmplwi(CCR0, tmp_reg, 0);
  1501   __ beq(CCR0, cont);
  1503   // Save down any values that are live in registers and call into the
  1504   // runtime to halt for a GC.
  1505   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1506   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1507                             arg_save_area, map, in_regs, in_sig_bt);
  1509   __ mr(R3_ARG1, R16_thread);
  1510   __ set_last_Java_frame(R1_SP, noreg);
  1512   __ block_comment("block_for_jni_critical");
  1513   address entry_point = CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical);
  1514 #if defined(ABI_ELFv2)
  1515   __ call_c(entry_point, relocInfo::runtime_call_type);
  1516 #else
  1517   __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::runtime_call_type);
  1518 #endif
  1519   address start           = __ pc() - __ offset(),
  1520           calls_return_pc = __ last_calls_return_pc();
  1521   oop_maps->add_gc_map(calls_return_pc - start, map);
  1523   __ reset_last_Java_frame();
  1525   // Reload all the register arguments.
  1526   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1527                             arg_save_area, NULL, in_regs, in_sig_bt);
  1529   __ BIND(cont);
  1531 #ifdef ASSERT
  1532   if (StressCriticalJNINatives) {
  1533     // Stress register saving.
  1534     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1535     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1536                               arg_save_area, map, in_regs, in_sig_bt);
  1537     // Destroy argument registers.
  1538     for (int i = 0; i < total_in_args; i++) {
  1539       if (in_regs[i].first()->is_Register()) {
  1540         const Register reg = in_regs[i].first()->as_Register();
  1541         __ neg(reg, reg);
  1542       } else if (in_regs[i].first()->is_FloatRegister()) {
  1543         __ fneg(in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
  1547     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1548                               arg_save_area, NULL, in_regs, in_sig_bt);
  1550 #endif
  1553 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst, Register r_caller_sp, Register r_temp) {
  1554   if (src.first()->is_stack()) {
  1555     if (dst.first()->is_stack()) {
  1556       // stack to stack
  1557       __ ld(r_temp, reg2offset(src.first()), r_caller_sp);
  1558       __ std(r_temp, reg2offset(dst.first()), R1_SP);
  1559     } else {
  1560       // stack to reg
  1561       __ ld(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
  1563   } else if (dst.first()->is_stack()) {
  1564     // reg to stack
  1565     __ std(src.first()->as_Register(), reg2offset(dst.first()), R1_SP);
  1566   } else {
  1567     if (dst.first() != src.first()) {
  1568       __ mr(dst.first()->as_Register(), src.first()->as_Register());
  1573 // Unpack an array argument into a pointer to the body and the length
  1574 // if the array is non-null, otherwise pass 0 for both.
  1575 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type,
  1576                                   VMRegPair body_arg, VMRegPair length_arg, Register r_caller_sp,
  1577                                   Register tmp_reg, Register tmp2_reg) {
  1578   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
  1579          "possible collision");
  1580   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
  1581          "possible collision");
  1583   // Pass the length, ptr pair.
  1584   Label set_out_args;
  1585   VMRegPair tmp, tmp2;
  1586   tmp.set_ptr(tmp_reg->as_VMReg());
  1587   tmp2.set_ptr(tmp2_reg->as_VMReg());
  1588   if (reg.first()->is_stack()) {
  1589     // Load the arg up from the stack.
  1590     move_ptr(masm, reg, tmp, r_caller_sp, /*unused*/ R0);
  1591     reg = tmp;
  1593   __ li(tmp2_reg, 0); // Pass zeros if Array=null.
  1594   if (tmp_reg != reg.first()->as_Register()) __ li(tmp_reg, 0);
  1595   __ cmpdi(CCR0, reg.first()->as_Register(), 0);
  1596   __ beq(CCR0, set_out_args);
  1597   __ lwa(tmp2_reg, arrayOopDesc::length_offset_in_bytes(), reg.first()->as_Register());
  1598   __ addi(tmp_reg, reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type));
  1599   __ bind(set_out_args);
  1600   move_ptr(masm, tmp, body_arg, r_caller_sp, /*unused*/ R0);
  1601   move_ptr(masm, tmp2, length_arg, r_caller_sp, /*unused*/ R0); // Same as move32_64 on PPC64.
  1604 static void verify_oop_args(MacroAssembler* masm,
  1605                             methodHandle method,
  1606                             const BasicType* sig_bt,
  1607                             const VMRegPair* regs) {
  1608   Register temp_reg = R19_method;  // not part of any compiled calling seq
  1609   if (VerifyOops) {
  1610     for (int i = 0; i < method->size_of_parameters(); i++) {
  1611       if (sig_bt[i] == T_OBJECT ||
  1612           sig_bt[i] == T_ARRAY) {
  1613         VMReg r = regs[i].first();
  1614         assert(r->is_valid(), "bad oop arg");
  1615         if (r->is_stack()) {
  1616           __ ld(temp_reg, reg2offset(r), R1_SP);
  1617           __ verify_oop(temp_reg);
  1618         } else {
  1619           __ verify_oop(r->as_Register());
  1626 static void gen_special_dispatch(MacroAssembler* masm,
  1627                                  methodHandle method,
  1628                                  const BasicType* sig_bt,
  1629                                  const VMRegPair* regs) {
  1630   verify_oop_args(masm, method, sig_bt, regs);
  1631   vmIntrinsics::ID iid = method->intrinsic_id();
  1633   // Now write the args into the outgoing interpreter space
  1634   bool     has_receiver   = false;
  1635   Register receiver_reg   = noreg;
  1636   int      member_arg_pos = -1;
  1637   Register member_reg     = noreg;
  1638   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
  1639   if (ref_kind != 0) {
  1640     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
  1641     member_reg = R19_method;  // known to be free at this point
  1642     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
  1643   } else if (iid == vmIntrinsics::_invokeBasic) {
  1644     has_receiver = true;
  1645   } else {
  1646     fatal(err_msg_res("unexpected intrinsic id %d", iid));
  1649   if (member_reg != noreg) {
  1650     // Load the member_arg into register, if necessary.
  1651     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
  1652     VMReg r = regs[member_arg_pos].first();
  1653     if (r->is_stack()) {
  1654       __ ld(member_reg, reg2offset(r), R1_SP);
  1655     } else {
  1656       // no data motion is needed
  1657       member_reg = r->as_Register();
  1661   if (has_receiver) {
  1662     // Make sure the receiver is loaded into a register.
  1663     assert(method->size_of_parameters() > 0, "oob");
  1664     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
  1665     VMReg r = regs[0].first();
  1666     assert(r->is_valid(), "bad receiver arg");
  1667     if (r->is_stack()) {
  1668       // Porting note:  This assumes that compiled calling conventions always
  1669       // pass the receiver oop in a register.  If this is not true on some
  1670       // platform, pick a temp and load the receiver from stack.
  1671       fatal("receiver always in a register");
  1672       receiver_reg = R11_scratch1;  // TODO (hs24): is R11_scratch1 really free at this point?
  1673       __ ld(receiver_reg, reg2offset(r), R1_SP);
  1674     } else {
  1675       // no data motion is needed
  1676       receiver_reg = r->as_Register();
  1680   // Figure out which address we are really jumping to:
  1681   MethodHandles::generate_method_handle_dispatch(masm, iid,
  1682                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
  1685 #endif // COMPILER2
  1687 // ---------------------------------------------------------------------------
  1688 // Generate a native wrapper for a given method. The method takes arguments
  1689 // in the Java compiled code convention, marshals them to the native
  1690 // convention (handlizes oops, etc), transitions to native, makes the call,
  1691 // returns to java state (possibly blocking), unhandlizes any result and
  1692 // returns.
  1693 //
  1694 // Critical native functions are a shorthand for the use of
  1695 // GetPrimtiveArrayCritical and disallow the use of any other JNI
  1696 // functions.  The wrapper is expected to unpack the arguments before
  1697 // passing them to the callee and perform checks before and after the
  1698 // native call to ensure that they GC_locker
  1699 // lock_critical/unlock_critical semantics are followed.  Some other
  1700 // parts of JNI setup are skipped like the tear down of the JNI handle
  1701 // block and the check for pending exceptions it's impossible for them
  1702 // to be thrown.
  1703 //
  1704 // They are roughly structured like this:
  1705 //   if (GC_locker::needs_gc())
  1706 //     SharedRuntime::block_for_jni_critical();
  1707 //   tranistion to thread_in_native
  1708 //   unpack arrray arguments and call native entry point
  1709 //   check for safepoint in progress
  1710 //   check if any thread suspend flags are set
  1711 //     call into JVM and possible unlock the JNI critical
  1712 //     if a GC was suppressed while in the critical native.
  1713 //   transition back to thread_in_Java
  1714 //   return to caller
  1715 //
  1716 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
  1717                                                 methodHandle method,
  1718                                                 int compile_id,
  1719                                                 BasicType *in_sig_bt,
  1720                                                 VMRegPair *in_regs,
  1721                                                 BasicType ret_type) {
  1722 #ifdef COMPILER2
  1723   if (method->is_method_handle_intrinsic()) {
  1724     vmIntrinsics::ID iid = method->intrinsic_id();
  1725     intptr_t start = (intptr_t)__ pc();
  1726     int vep_offset = ((intptr_t)__ pc()) - start;
  1727     gen_special_dispatch(masm,
  1728                          method,
  1729                          in_sig_bt,
  1730                          in_regs);
  1731     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
  1732     __ flush();
  1733     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
  1734     return nmethod::new_native_nmethod(method,
  1735                                        compile_id,
  1736                                        masm->code(),
  1737                                        vep_offset,
  1738                                        frame_complete,
  1739                                        stack_slots / VMRegImpl::slots_per_word,
  1740                                        in_ByteSize(-1),
  1741                                        in_ByteSize(-1),
  1742                                        (OopMapSet*)NULL);
  1745   bool is_critical_native = true;
  1746   address native_func = method->critical_native_function();
  1747   if (native_func == NULL) {
  1748     native_func = method->native_function();
  1749     is_critical_native = false;
  1751   assert(native_func != NULL, "must have function");
  1753   // First, create signature for outgoing C call
  1754   // --------------------------------------------------------------------------
  1756   int total_in_args = method->size_of_parameters();
  1757   // We have received a description of where all the java args are located
  1758   // on entry to the wrapper. We need to convert these args to where
  1759   // the jni function will expect them. To figure out where they go
  1760   // we convert the java signature to a C signature by inserting
  1761   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1762   //
  1763   // Additionally, on ppc64 we must convert integers to longs in the C
  1764   // signature. We do this in advance in order to have no trouble with
  1765   // indexes into the bt-arrays.
  1766   // So convert the signature and registers now, and adjust the total number
  1767   // of in-arguments accordingly.
  1768   int i2l_argcnt = convert_ints_to_longints_argcnt(total_in_args, in_sig_bt); // PPC64: pass ints as longs.
  1770   // Calculate the total number of C arguments and create arrays for the
  1771   // signature and the outgoing registers.
  1772   // On ppc64, we have two arrays for the outgoing registers, because
  1773   // some floating-point arguments must be passed in registers _and_
  1774   // in stack locations.
  1775   bool method_is_static = method->is_static();
  1776   int  total_c_args     = i2l_argcnt;
  1778   if (!is_critical_native) {
  1779     int n_hidden_args = method_is_static ? 2 : 1;
  1780     total_c_args += n_hidden_args;
  1781   } else {
  1782     // No JNIEnv*, no this*, but unpacked arrays (base+length).
  1783     for (int i = 0; i < total_in_args; i++) {
  1784       if (in_sig_bt[i] == T_ARRAY) {
  1785         total_c_args += 2; // PPC64: T_LONG, T_INT, T_ADDRESS (see convert_ints_to_longints and c_calling_convention)
  1790   BasicType *out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1791   VMRegPair *out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  1792   VMRegPair *out_regs2  = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  1793   BasicType* in_elem_bt = NULL;
  1795   // Create the signature for the C call:
  1796   //   1) add the JNIEnv*
  1797   //   2) add the class if the method is static
  1798   //   3) copy the rest of the incoming signature (shifted by the number of
  1799   //      hidden arguments).
  1801   int argc = 0;
  1802   if (!is_critical_native) {
  1803     convert_ints_to_longints(i2l_argcnt, total_in_args, in_sig_bt, in_regs); // PPC64: pass ints as longs.
  1805     out_sig_bt[argc++] = T_ADDRESS;
  1806     if (method->is_static()) {
  1807       out_sig_bt[argc++] = T_OBJECT;
  1810     for (int i = 0; i < total_in_args ; i++ ) {
  1811       out_sig_bt[argc++] = in_sig_bt[i];
  1813   } else {
  1814     Thread* THREAD = Thread::current();
  1815     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
  1816     SignatureStream ss(method->signature());
  1817     int o = 0;
  1818     for (int i = 0; i < total_in_args ; i++, o++) {
  1819       if (in_sig_bt[i] == T_ARRAY) {
  1820         // Arrays are passed as int, elem* pair
  1821         Symbol* atype = ss.as_symbol(CHECK_NULL);
  1822         const char* at = atype->as_C_string();
  1823         if (strlen(at) == 2) {
  1824           assert(at[0] == '[', "must be");
  1825           switch (at[1]) {
  1826             case 'B': in_elem_bt[o] = T_BYTE; break;
  1827             case 'C': in_elem_bt[o] = T_CHAR; break;
  1828             case 'D': in_elem_bt[o] = T_DOUBLE; break;
  1829             case 'F': in_elem_bt[o] = T_FLOAT; break;
  1830             case 'I': in_elem_bt[o] = T_INT; break;
  1831             case 'J': in_elem_bt[o] = T_LONG; break;
  1832             case 'S': in_elem_bt[o] = T_SHORT; break;
  1833             case 'Z': in_elem_bt[o] = T_BOOLEAN; break;
  1834             default: ShouldNotReachHere();
  1837       } else {
  1838         in_elem_bt[o] = T_VOID;
  1839         switch(in_sig_bt[i]) { // PPC64: pass ints as longs.
  1840           case T_BOOLEAN:
  1841           case T_CHAR:
  1842           case T_BYTE:
  1843           case T_SHORT:
  1844           case T_INT: in_elem_bt[++o] = T_VOID; break;
  1845           default: break;
  1848       if (in_sig_bt[i] != T_VOID) {
  1849         assert(in_sig_bt[i] == ss.type(), "must match");
  1850         ss.next();
  1853     assert(i2l_argcnt==o, "must match");
  1855     convert_ints_to_longints(i2l_argcnt, total_in_args, in_sig_bt, in_regs); // PPC64: pass ints as longs.
  1857     for (int i = 0; i < total_in_args ; i++ ) {
  1858       if (in_sig_bt[i] == T_ARRAY) {
  1859         // Arrays are passed as int, elem* pair.
  1860         out_sig_bt[argc++] = T_LONG; // PPC64: pass ints as longs.
  1861         out_sig_bt[argc++] = T_INT;
  1862         out_sig_bt[argc++] = T_ADDRESS;
  1863       } else {
  1864         out_sig_bt[argc++] = in_sig_bt[i];
  1870   // Compute the wrapper's frame size.
  1871   // --------------------------------------------------------------------------
  1873   // Now figure out where the args must be stored and how much stack space
  1874   // they require.
  1875   //
  1876   // Compute framesize for the wrapper. We need to handlize all oops in
  1877   // incoming registers.
  1878   //
  1879   // Calculate the total number of stack slots we will need:
  1880   //   1) abi requirements
  1881   //   2) outgoing arguments
  1882   //   3) space for inbound oop handle area
  1883   //   4) space for handlizing a klass if static method
  1884   //   5) space for a lock if synchronized method
  1885   //   6) workspace for saving return values, int <-> float reg moves, etc.
  1886   //   7) alignment
  1887   //
  1888   // Layout of the native wrapper frame:
  1889   // (stack grows upwards, memory grows downwards)
  1890   //
  1891   // NW     [ABI_REG_ARGS]             <-- 1) R1_SP
  1892   //        [outgoing arguments]       <-- 2) R1_SP + out_arg_slot_offset
  1893   //        [oopHandle area]           <-- 3) R1_SP + oop_handle_offset (save area for critical natives)
  1894   //        klass                      <-- 4) R1_SP + klass_offset
  1895   //        lock                       <-- 5) R1_SP + lock_offset
  1896   //        [workspace]                <-- 6) R1_SP + workspace_offset
  1897   //        [alignment] (optional)     <-- 7)
  1898   // caller [JIT_TOP_ABI_48]           <-- r_callers_sp
  1899   //
  1900   // - *_slot_offset Indicates offset from SP in number of stack slots.
  1901   // - *_offset      Indicates offset from SP in bytes.
  1903   int stack_slots = c_calling_convention(out_sig_bt, out_regs, out_regs2, total_c_args) // 1+2)
  1904                   + SharedRuntime::out_preserve_stack_slots(); // See c_calling_convention.
  1906   // Now the space for the inbound oop handle area.
  1907   int total_save_slots = num_java_iarg_registers * VMRegImpl::slots_per_word;
  1908   if (is_critical_native) {
  1909     // Critical natives may have to call out so they need a save area
  1910     // for register arguments.
  1911     int double_slots = 0;
  1912     int single_slots = 0;
  1913     for (int i = 0; i < total_in_args; i++) {
  1914       if (in_regs[i].first()->is_Register()) {
  1915         const Register reg = in_regs[i].first()->as_Register();
  1916         switch (in_sig_bt[i]) {
  1917           case T_BOOLEAN:
  1918           case T_BYTE:
  1919           case T_SHORT:
  1920           case T_CHAR:
  1921           case T_INT:  /*single_slots++;*/ break; // PPC64: pass ints as longs.
  1922           case T_ARRAY:
  1923           case T_LONG: double_slots++; break;
  1924           default:  ShouldNotReachHere();
  1926       } else if (in_regs[i].first()->is_FloatRegister()) {
  1927         switch (in_sig_bt[i]) {
  1928           case T_FLOAT:  single_slots++; break;
  1929           case T_DOUBLE: double_slots++; break;
  1930           default:  ShouldNotReachHere();
  1934     total_save_slots = double_slots * 2 + round_to(single_slots, 2); // round to even
  1937   int oop_handle_slot_offset = stack_slots;
  1938   stack_slots += total_save_slots;                                                // 3)
  1940   int klass_slot_offset = 0;
  1941   int klass_offset      = -1;
  1942   if (method_is_static && !is_critical_native) {                                  // 4)
  1943     klass_slot_offset  = stack_slots;
  1944     klass_offset       = klass_slot_offset * VMRegImpl::stack_slot_size;
  1945     stack_slots       += VMRegImpl::slots_per_word;
  1948   int lock_slot_offset = 0;
  1949   int lock_offset      = -1;
  1950   if (method->is_synchronized()) {                                                // 5)
  1951     lock_slot_offset   = stack_slots;
  1952     lock_offset        = lock_slot_offset * VMRegImpl::stack_slot_size;
  1953     stack_slots       += VMRegImpl::slots_per_word;
  1956   int workspace_slot_offset = stack_slots;                                        // 6)
  1957   stack_slots         += 2;
  1959   // Now compute actual number of stack words we need.
  1960   // Rounding to make stack properly aligned.
  1961   stack_slots = round_to(stack_slots,                                             // 7)
  1962                          frame::alignment_in_bytes / VMRegImpl::stack_slot_size);
  1963   int frame_size_in_bytes = stack_slots * VMRegImpl::stack_slot_size;
  1966   // Now we can start generating code.
  1967   // --------------------------------------------------------------------------
  1969   intptr_t start_pc = (intptr_t)__ pc();
  1970   intptr_t vep_start_pc;
  1971   intptr_t frame_done_pc;
  1972   intptr_t oopmap_pc;
  1974   Label    ic_miss;
  1975   Label    handle_pending_exception;
  1977   Register r_callers_sp = R21;
  1978   Register r_temp_1     = R22;
  1979   Register r_temp_2     = R23;
  1980   Register r_temp_3     = R24;
  1981   Register r_temp_4     = R25;
  1982   Register r_temp_5     = R26;
  1983   Register r_temp_6     = R27;
  1984   Register r_return_pc  = R28;
  1986   Register r_carg1_jnienv        = noreg;
  1987   Register r_carg2_classorobject = noreg;
  1988   if (!is_critical_native) {
  1989     r_carg1_jnienv        = out_regs[0].first()->as_Register();
  1990     r_carg2_classorobject = out_regs[1].first()->as_Register();
  1994   // Generate the Unverified Entry Point (UEP).
  1995   // --------------------------------------------------------------------------
  1996   assert(start_pc == (intptr_t)__ pc(), "uep must be at start");
  1998   // Check ic: object class == cached class?
  1999   if (!method_is_static) {
  2000   Register ic = as_Register(Matcher::inline_cache_reg_encode());
  2001   Register receiver_klass = r_temp_1;
  2003   __ cmpdi(CCR0, R3_ARG1, 0);
  2004   __ beq(CCR0, ic_miss);
  2005   __ verify_oop(R3_ARG1);
  2006   __ load_klass(receiver_klass, R3_ARG1);
  2008   __ cmpd(CCR0, receiver_klass, ic);
  2009   __ bne(CCR0, ic_miss);
  2013   // Generate the Verified Entry Point (VEP).
  2014   // --------------------------------------------------------------------------
  2015   vep_start_pc = (intptr_t)__ pc();
  2017   __ save_LR_CR(r_temp_1);
  2018   __ generate_stack_overflow_check(frame_size_in_bytes); // Check before creating frame.
  2019   __ mr(r_callers_sp, R1_SP);                       // Remember frame pointer.
  2020   __ push_frame(frame_size_in_bytes, r_temp_1);          // Push the c2n adapter's frame.
  2021   frame_done_pc = (intptr_t)__ pc();
  2023   // Native nmethod wrappers never take possesion of the oop arguments.
  2024   // So the caller will gc the arguments.
  2025   // The only thing we need an oopMap for is if the call is static.
  2026   //
  2027   // An OopMap for lock (and class if static), and one for the VM call itself.
  2028   OopMapSet *oop_maps = new OopMapSet();
  2029   OopMap    *oop_map  = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  2031   if (is_critical_native) {
  2032     check_needs_gc_for_critical_native(masm, stack_slots, total_in_args, oop_handle_slot_offset, oop_maps, in_regs, in_sig_bt, r_temp_1);
  2035   // Move arguments from register/stack to register/stack.
  2036   // --------------------------------------------------------------------------
  2037   //
  2038   // We immediately shuffle the arguments so that for any vm call we have
  2039   // to make from here on out (sync slow path, jvmti, etc.) we will have
  2040   // captured the oops from our caller and have a valid oopMap for them.
  2041   //
  2042   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
  2043   // (derived from JavaThread* which is in R16_thread) and, if static,
  2044   // the class mirror instead of a receiver. This pretty much guarantees that
  2045   // register layout will not match. We ignore these extra arguments during
  2046   // the shuffle. The shuffle is described by the two calling convention
  2047   // vectors we have in our possession. We simply walk the java vector to
  2048   // get the source locations and the c vector to get the destinations.
  2050   // Record sp-based slot for receiver on stack for non-static methods.
  2051   int receiver_offset = -1;
  2053   // We move the arguments backward because the floating point registers
  2054   // destination will always be to a register with a greater or equal
  2055   // register number or the stack.
  2056   //   in  is the index of the incoming Java arguments
  2057   //   out is the index of the outgoing C arguments
  2059 #ifdef ASSERT
  2060   bool reg_destroyed[RegisterImpl::number_of_registers];
  2061   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
  2062   for (int r = 0 ; r < RegisterImpl::number_of_registers ; r++) {
  2063     reg_destroyed[r] = false;
  2065   for (int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++) {
  2066     freg_destroyed[f] = false;
  2068 #endif // ASSERT
  2070   for (int in = total_in_args - 1, out = total_c_args - 1; in >= 0 ; in--, out--) {
  2072 #ifdef ASSERT
  2073     if (in_regs[in].first()->is_Register()) {
  2074       assert(!reg_destroyed[in_regs[in].first()->as_Register()->encoding()], "ack!");
  2075     } else if (in_regs[in].first()->is_FloatRegister()) {
  2076       assert(!freg_destroyed[in_regs[in].first()->as_FloatRegister()->encoding()], "ack!");
  2078     if (out_regs[out].first()->is_Register()) {
  2079       reg_destroyed[out_regs[out].first()->as_Register()->encoding()] = true;
  2080     } else if (out_regs[out].first()->is_FloatRegister()) {
  2081       freg_destroyed[out_regs[out].first()->as_FloatRegister()->encoding()] = true;
  2083     if (out_regs2[out].first()->is_Register()) {
  2084       reg_destroyed[out_regs2[out].first()->as_Register()->encoding()] = true;
  2085     } else if (out_regs2[out].first()->is_FloatRegister()) {
  2086       freg_destroyed[out_regs2[out].first()->as_FloatRegister()->encoding()] = true;
  2088 #endif // ASSERT
  2090     switch (in_sig_bt[in]) {
  2091       case T_BOOLEAN:
  2092       case T_CHAR:
  2093       case T_BYTE:
  2094       case T_SHORT:
  2095       case T_INT:
  2096         guarantee(in > 0 && in_sig_bt[in-1] == T_LONG,
  2097                   "expecting type (T_LONG,bt) for bt in {T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
  2098         break;
  2099       case T_LONG:
  2100         if (in_sig_bt[in+1] == T_VOID) {
  2101           long_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
  2102         } else {
  2103           guarantee(in_sig_bt[in+1] == T_BOOLEAN || in_sig_bt[in+1] == T_CHAR  ||
  2104                     in_sig_bt[in+1] == T_BYTE    || in_sig_bt[in+1] == T_SHORT ||
  2105                     in_sig_bt[in+1] == T_INT,
  2106                  "expecting type (T_LONG,bt) for bt in {T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
  2107           int_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
  2109         break;
  2110       case T_ARRAY:
  2111         if (is_critical_native) {
  2112           int body_arg = out;
  2113           out -= 2; // Point to length arg. PPC64: pass ints as longs.
  2114           unpack_array_argument(masm, in_regs[in], in_elem_bt[in], out_regs[body_arg], out_regs[out],
  2115                                 r_callers_sp, r_temp_1, r_temp_2);
  2116           break;
  2118       case T_OBJECT:
  2119         assert(!is_critical_native, "no oop arguments");
  2120         object_move(masm, stack_slots,
  2121                     oop_map, oop_handle_slot_offset,
  2122                     ((in == 0) && (!method_is_static)), &receiver_offset,
  2123                     in_regs[in], out_regs[out],
  2124                     r_callers_sp, r_temp_1, r_temp_2);
  2125         break;
  2126       case T_VOID:
  2127         break;
  2128       case T_FLOAT:
  2129         float_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
  2130         if (out_regs2[out].first()->is_valid()) {
  2131           float_move(masm, in_regs[in], out_regs2[out], r_callers_sp, r_temp_1);
  2133         break;
  2134       case T_DOUBLE:
  2135         double_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
  2136         if (out_regs2[out].first()->is_valid()) {
  2137           double_move(masm, in_regs[in], out_regs2[out], r_callers_sp, r_temp_1);
  2139         break;
  2140       case T_ADDRESS:
  2141         fatal("found type (T_ADDRESS) in java args");
  2142         break;
  2143       default:
  2144         ShouldNotReachHere();
  2145         break;
  2149   // Pre-load a static method's oop into ARG2.
  2150   // Used both by locking code and the normal JNI call code.
  2151   if (method_is_static && !is_critical_native) {
  2152     __ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()),
  2153                         r_carg2_classorobject);
  2155     // Now handlize the static class mirror in carg2. It's known not-null.
  2156     __ std(r_carg2_classorobject, klass_offset, R1_SP);
  2157     oop_map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  2158     __ addi(r_carg2_classorobject, R1_SP, klass_offset);
  2161   // Get JNIEnv* which is first argument to native.
  2162   if (!is_critical_native) {
  2163     __ addi(r_carg1_jnienv, R16_thread, in_bytes(JavaThread::jni_environment_offset()));
  2166   // NOTE:
  2167   //
  2168   // We have all of the arguments setup at this point.
  2169   // We MUST NOT touch any outgoing regs from this point on.
  2170   // So if we must call out we must push a new frame.
  2172   // Get current pc for oopmap, and load it patchable relative to global toc.
  2173   oopmap_pc = (intptr_t) __ pc();
  2174   __ calculate_address_from_global_toc(r_return_pc, (address)oopmap_pc, true, true, true, true);
  2176   // We use the same pc/oopMap repeatedly when we call out.
  2177   oop_maps->add_gc_map(oopmap_pc - start_pc, oop_map);
  2179   // r_return_pc now has the pc loaded that we will use when we finally call
  2180   // to native.
  2182   // Make sure that thread is non-volatile; it crosses a bunch of VM calls below.
  2183   assert(R16_thread->is_nonvolatile(), "thread must be in non-volatile register");
  2186 # if 0
  2187   // DTrace method entry
  2188 # endif
  2190   // Lock a synchronized method.
  2191   // --------------------------------------------------------------------------
  2193   if (method->is_synchronized()) {
  2194     assert(!is_critical_native, "unhandled");
  2195     ConditionRegister r_flag = CCR1;
  2196     Register          r_oop  = r_temp_4;
  2197     const Register    r_box  = r_temp_5;
  2198     Label             done, locked;
  2200     // Load the oop for the object or class. r_carg2_classorobject contains
  2201     // either the handlized oop from the incoming arguments or the handlized
  2202     // class mirror (if the method is static).
  2203     __ ld(r_oop, 0, r_carg2_classorobject);
  2205     // Get the lock box slot's address.
  2206     __ addi(r_box, R1_SP, lock_offset);
  2208 #   ifdef ASSERT
  2209     if (UseBiasedLocking) {
  2210       // Making the box point to itself will make it clear it went unused
  2211       // but also be obviously invalid.
  2212       __ std(r_box, 0, r_box);
  2214 #   endif // ASSERT
  2216     // Try fastpath for locking.
  2217     // fast_lock kills r_temp_1, r_temp_2, r_temp_3.
  2218     __ compiler_fast_lock_object(r_flag, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3);
  2219     __ beq(r_flag, locked);
  2221     // None of the above fast optimizations worked so we have to get into the
  2222     // slow case of monitor enter. Inline a special case of call_VM that
  2223     // disallows any pending_exception.
  2225     // Save argument registers and leave room for C-compatible ABI_REG_ARGS.
  2226     int frame_size = frame::abi_reg_args_size +
  2227                      round_to(total_c_args * wordSize, frame::alignment_in_bytes);
  2228     __ mr(R11_scratch1, R1_SP);
  2229     RegisterSaver::push_frame_and_save_argument_registers(masm, R12_scratch2, frame_size, total_c_args, out_regs, out_regs2);
  2231     // Do the call.
  2232     __ set_last_Java_frame(R11_scratch1, r_return_pc);
  2233     assert(r_return_pc->is_nonvolatile(), "expecting return pc to be in non-volatile register");
  2234     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), r_oop, r_box, R16_thread);
  2235     __ reset_last_Java_frame();
  2237     RegisterSaver::restore_argument_registers_and_pop_frame(masm, frame_size, total_c_args, out_regs, out_regs2);
  2239     __ asm_assert_mem8_is_zero(thread_(pending_exception),
  2240        "no pending exception allowed on exit from SharedRuntime::complete_monitor_locking_C", 0);
  2242     __ bind(locked);
  2246   // Publish thread state
  2247   // --------------------------------------------------------------------------
  2249   // Use that pc we placed in r_return_pc a while back as the current frame anchor.
  2250   __ set_last_Java_frame(R1_SP, r_return_pc);
  2252   // Transition from _thread_in_Java to _thread_in_native.
  2253   __ li(R0, _thread_in_native);
  2254   __ release();
  2255   // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
  2256   __ stw(R0, thread_(thread_state));
  2257   if (UseMembar) {
  2258     __ fence();
  2262   // The JNI call
  2263   // --------------------------------------------------------------------------
  2264 #if defined(ABI_ELFv2)
  2265   __ call_c(native_func, relocInfo::runtime_call_type);
  2266 #else
  2267   FunctionDescriptor* fd_native_method = (FunctionDescriptor*) native_func;
  2268   __ call_c(fd_native_method, relocInfo::runtime_call_type);
  2269 #endif
  2272   // Now, we are back from the native code.
  2275   // Unpack the native result.
  2276   // --------------------------------------------------------------------------
  2278   // For int-types, we do any needed sign-extension required.
  2279   // Care must be taken that the return values (R3_RET and F1_RET)
  2280   // will survive any VM calls for blocking or unlocking.
  2281   // An OOP result (handle) is done specially in the slow-path code.
  2283   switch (ret_type) {
  2284     case T_VOID:    break;        // Nothing to do!
  2285     case T_FLOAT:   break;        // Got it where we want it (unless slow-path).
  2286     case T_DOUBLE:  break;        // Got it where we want it (unless slow-path).
  2287     case T_LONG:    break;        // Got it where we want it (unless slow-path).
  2288     case T_OBJECT:  break;        // Really a handle.
  2289                                   // Cannot de-handlize until after reclaiming jvm_lock.
  2290     case T_ARRAY:   break;
  2292     case T_BOOLEAN: {             // 0 -> false(0); !0 -> true(1)
  2293       Label skip_modify;
  2294       __ cmpwi(CCR0, R3_RET, 0);
  2295       __ beq(CCR0, skip_modify);
  2296       __ li(R3_RET, 1);
  2297       __ bind(skip_modify);
  2298       break;
  2300     case T_BYTE: {                // sign extension
  2301       __ extsb(R3_RET, R3_RET);
  2302       break;
  2304     case T_CHAR: {                // unsigned result
  2305       __ andi(R3_RET, R3_RET, 0xffff);
  2306       break;
  2308     case T_SHORT: {               // sign extension
  2309       __ extsh(R3_RET, R3_RET);
  2310       break;
  2312     case T_INT:                   // nothing to do
  2313       break;
  2314     default:
  2315       ShouldNotReachHere();
  2316       break;
  2320   // Publish thread state
  2321   // --------------------------------------------------------------------------
  2323   // Switch thread to "native transition" state before reading the
  2324   // synchronization state. This additional state is necessary because reading
  2325   // and testing the synchronization state is not atomic w.r.t. GC, as this
  2326   // scenario demonstrates:
  2327   //   - Java thread A, in _thread_in_native state, loads _not_synchronized
  2328   //     and is preempted.
  2329   //   - VM thread changes sync state to synchronizing and suspends threads
  2330   //     for GC.
  2331   //   - Thread A is resumed to finish this native method, but doesn't block
  2332   //     here since it didn't see any synchronization in progress, and escapes.
  2334   // Transition from _thread_in_native to _thread_in_native_trans.
  2335   __ li(R0, _thread_in_native_trans);
  2336   __ release();
  2337   // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
  2338   __ stw(R0, thread_(thread_state));
  2341   // Must we block?
  2342   // --------------------------------------------------------------------------
  2344   // Block, if necessary, before resuming in _thread_in_Java state.
  2345   // In order for GC to work, don't clear the last_Java_sp until after blocking.
  2346   Label after_transition;
  2348     Label no_block, sync;
  2350     if (os::is_MP()) {
  2351       if (UseMembar) {
  2352         // Force this write out before the read below.
  2353         __ fence();
  2354       } else {
  2355         // Write serialization page so VM thread can do a pseudo remote membar.
  2356         // We use the current thread pointer to calculate a thread specific
  2357         // offset to write to within the page. This minimizes bus traffic
  2358         // due to cache line collision.
  2359         __ serialize_memory(R16_thread, r_temp_4, r_temp_5);
  2363     Register sync_state_addr = r_temp_4;
  2364     Register sync_state      = r_temp_5;
  2365     Register suspend_flags   = r_temp_6;
  2367     __ load_const(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/ sync_state);
  2369     // TODO: PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
  2370     __ lwz(sync_state, 0, sync_state_addr);
  2372     // TODO: PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
  2373     __ lwz(suspend_flags, thread_(suspend_flags));
  2375     __ acquire();
  2377     Label do_safepoint;
  2378     // No synchronization in progress nor yet synchronized.
  2379     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
  2380     // Not suspended.
  2381     __ cmpwi(CCR1, suspend_flags, 0);
  2383     __ bne(CCR0, sync);
  2384     __ beq(CCR1, no_block);
  2386     // Block. Save any potential method result value before the operation and
  2387     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
  2388     // lets us share the oopMap we used when we went native rather than create
  2389     // a distinct one for this pc.
  2390     __ bind(sync);
  2392     address entry_point = is_critical_native
  2393       ? CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)
  2394       : CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans);
  2395     save_native_result(masm, ret_type, workspace_slot_offset);
  2396     __ call_VM_leaf(entry_point, R16_thread);
  2397     restore_native_result(masm, ret_type, workspace_slot_offset);
  2399     if (is_critical_native) {
  2400       __ b(after_transition); // No thread state transition here.
  2402     __ bind(no_block);
  2405   // Publish thread state.
  2406   // --------------------------------------------------------------------------
  2408   // Thread state is thread_in_native_trans. Any safepoint blocking has
  2409   // already happened so we can now change state to _thread_in_Java.
  2411   // Transition from _thread_in_native_trans to _thread_in_Java.
  2412   __ li(R0, _thread_in_Java);
  2413   __ release();
  2414   // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
  2415   __ stw(R0, thread_(thread_state));
  2416   if (UseMembar) {
  2417     __ fence();
  2419   __ bind(after_transition);
  2421   // Reguard any pages if necessary.
  2422   // --------------------------------------------------------------------------
  2424   Label no_reguard;
  2425   __ lwz(r_temp_1, thread_(stack_guard_state));
  2426   __ cmpwi(CCR0, r_temp_1, JavaThread::stack_guard_yellow_disabled);
  2427   __ bne(CCR0, no_reguard);
  2429   save_native_result(masm, ret_type, workspace_slot_offset);
  2430   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
  2431   restore_native_result(masm, ret_type, workspace_slot_offset);
  2433   __ bind(no_reguard);
  2436   // Unlock
  2437   // --------------------------------------------------------------------------
  2439   if (method->is_synchronized()) {
  2441     ConditionRegister r_flag   = CCR1;
  2442     const Register r_oop       = r_temp_4;
  2443     const Register r_box       = r_temp_5;
  2444     const Register r_exception = r_temp_6;
  2445     Label done;
  2447     // Get oop and address of lock object box.
  2448     if (method_is_static) {
  2449       assert(klass_offset != -1, "");
  2450       __ ld(r_oop, klass_offset, R1_SP);
  2451     } else {
  2452       assert(receiver_offset != -1, "");
  2453       __ ld(r_oop, receiver_offset, R1_SP);
  2455     __ addi(r_box, R1_SP, lock_offset);
  2457     // Try fastpath for unlocking.
  2458     __ compiler_fast_unlock_object(r_flag, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3);
  2459     __ beq(r_flag, done);
  2461     // Save and restore any potential method result value around the unlocking operation.
  2462     save_native_result(masm, ret_type, workspace_slot_offset);
  2464     // Must save pending exception around the slow-path VM call. Since it's a
  2465     // leaf call, the pending exception (if any) can be kept in a register.
  2466     __ ld(r_exception, thread_(pending_exception));
  2467     assert(r_exception->is_nonvolatile(), "exception register must be non-volatile");
  2468     __ li(R0, 0);
  2469     __ std(R0, thread_(pending_exception));
  2471     // Slow case of monitor enter.
  2472     // Inline a special case of call_VM that disallows any pending_exception.
  2473     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), r_oop, r_box);
  2475     __ asm_assert_mem8_is_zero(thread_(pending_exception),
  2476        "no pending exception allowed on exit from SharedRuntime::complete_monitor_unlocking_C", 0);
  2478     restore_native_result(masm, ret_type, workspace_slot_offset);
  2480     // Check_forward_pending_exception jump to forward_exception if any pending
  2481     // exception is set. The forward_exception routine expects to see the
  2482     // exception in pending_exception and not in a register. Kind of clumsy,
  2483     // since all folks who branch to forward_exception must have tested
  2484     // pending_exception first and hence have it in a register already.
  2485     __ std(r_exception, thread_(pending_exception));
  2487     __ bind(done);
  2490 # if 0
  2491   // DTrace method exit
  2492 # endif
  2494   // Clear "last Java frame" SP and PC.
  2495   // --------------------------------------------------------------------------
  2497   __ reset_last_Java_frame();
  2499   // Unpack oop result.
  2500   // --------------------------------------------------------------------------
  2502   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  2503     Label skip_unboxing;
  2504     __ cmpdi(CCR0, R3_RET, 0);
  2505     __ beq(CCR0, skip_unboxing);
  2506     __ ld(R3_RET, 0, R3_RET);
  2507     __ bind(skip_unboxing);
  2508     __ verify_oop(R3_RET);
  2512   // Reset handle block.
  2513   // --------------------------------------------------------------------------
  2514   if (!is_critical_native) {
  2515   __ ld(r_temp_1, thread_(active_handles));
  2516   // TODO: PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
  2517   __ li(r_temp_2, 0);
  2518   __ stw(r_temp_2, JNIHandleBlock::top_offset_in_bytes(), r_temp_1);
  2521   // Check for pending exceptions.
  2522   // --------------------------------------------------------------------------
  2523   __ ld(r_temp_2, thread_(pending_exception));
  2524   __ cmpdi(CCR0, r_temp_2, 0);
  2525   __ bne(CCR0, handle_pending_exception);
  2528   // Return
  2529   // --------------------------------------------------------------------------
  2531   __ pop_frame();
  2532   __ restore_LR_CR(R11);
  2533   __ blr();
  2536   // Handler for pending exceptions (out-of-line).
  2537   // --------------------------------------------------------------------------
  2539   // Since this is a native call, we know the proper exception handler
  2540   // is the empty function. We just pop this frame and then jump to
  2541   // forward_exception_entry.
  2542   if (!is_critical_native) {
  2543   __ align(InteriorEntryAlignment);
  2544   __ bind(handle_pending_exception);
  2546   __ pop_frame();
  2547   __ restore_LR_CR(R11);
  2548   __ b64_patchable((address)StubRoutines::forward_exception_entry(),
  2549                        relocInfo::runtime_call_type);
  2552   // Handler for a cache miss (out-of-line).
  2553   // --------------------------------------------------------------------------
  2555   if (!method_is_static) {
  2556   __ align(InteriorEntryAlignment);
  2557   __ bind(ic_miss);
  2559   __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  2560                        relocInfo::runtime_call_type);
  2563   // Done.
  2564   // --------------------------------------------------------------------------
  2566   __ flush();
  2568   nmethod *nm = nmethod::new_native_nmethod(method,
  2569                                             compile_id,
  2570                                             masm->code(),
  2571                                             vep_start_pc-start_pc,
  2572                                             frame_done_pc-start_pc,
  2573                                             stack_slots / VMRegImpl::slots_per_word,
  2574                                             (method_is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  2575                                             in_ByteSize(lock_offset),
  2576                                             oop_maps);
  2578   if (is_critical_native) {
  2579     nm->set_lazy_critical_native(true);
  2582   return nm;
  2583 #else
  2584   ShouldNotReachHere();
  2585   return NULL;
  2586 #endif // COMPILER2
  2589 // This function returns the adjust size (in number of words) to a c2i adapter
  2590 // activation for use during deoptimization.
  2591 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
  2592   return round_to((callee_locals - callee_parameters) * Interpreter::stackElementWords, frame::alignment_in_bytes);
  2595 uint SharedRuntime::out_preserve_stack_slots() {
  2596 #ifdef COMPILER2
  2597   return frame::jit_out_preserve_size / VMRegImpl::stack_slot_size;
  2598 #else
  2599   return 0;
  2600 #endif
  2603 #ifdef COMPILER2
  2604 // Frame generation for deopt and uncommon trap blobs.
  2605 static void push_skeleton_frame(MacroAssembler* masm, bool deopt,
  2606                                 /* Read */
  2607                                 Register unroll_block_reg,
  2608                                 /* Update */
  2609                                 Register frame_sizes_reg,
  2610                                 Register number_of_frames_reg,
  2611                                 Register pcs_reg,
  2612                                 /* Invalidate */
  2613                                 Register frame_size_reg,
  2614                                 Register pc_reg) {
  2616   __ ld(pc_reg, 0, pcs_reg);
  2617   __ ld(frame_size_reg, 0, frame_sizes_reg);
  2618   __ std(pc_reg, _abi(lr), R1_SP);
  2619   __ push_frame(frame_size_reg, R0/*tmp*/);
  2620 #ifdef CC_INTERP
  2621   __ std(R1_SP, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
  2622 #else
  2623 #ifdef ASSERT
  2624   __ load_const_optimized(pc_reg, 0x5afe);
  2625   __ std(pc_reg, _ijava_state_neg(ijava_reserved), R1_SP);
  2626 #endif
  2627   __ std(R1_SP, _ijava_state_neg(sender_sp), R1_SP);
  2628 #endif // CC_INTERP
  2629   __ addi(number_of_frames_reg, number_of_frames_reg, -1);
  2630   __ addi(frame_sizes_reg, frame_sizes_reg, wordSize);
  2631   __ addi(pcs_reg, pcs_reg, wordSize);
  2634 // Loop through the UnrollBlock info and create new frames.
  2635 static void push_skeleton_frames(MacroAssembler* masm, bool deopt,
  2636                                  /* read */
  2637                                  Register unroll_block_reg,
  2638                                  /* invalidate */
  2639                                  Register frame_sizes_reg,
  2640                                  Register number_of_frames_reg,
  2641                                  Register pcs_reg,
  2642                                  Register frame_size_reg,
  2643                                  Register pc_reg) {
  2644   Label loop;
  2646  // _number_of_frames is of type int (deoptimization.hpp)
  2647   __ lwa(number_of_frames_reg,
  2648              Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(),
  2649              unroll_block_reg);
  2650   __ ld(pcs_reg,
  2651             Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(),
  2652             unroll_block_reg);
  2653   __ ld(frame_sizes_reg,
  2654             Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(),
  2655             unroll_block_reg);
  2657   // stack: (caller_of_deoptee, ...).
  2659   // At this point we either have an interpreter frame or a compiled
  2660   // frame on top of stack. If it is a compiled frame we push a new c2i
  2661   // adapter here
  2663   // Memorize top-frame stack-pointer.
  2664   __ mr(frame_size_reg/*old_sp*/, R1_SP);
  2666   // Resize interpreter top frame OR C2I adapter.
  2668   // At this moment, the top frame (which is the caller of the deoptee) is
  2669   // an interpreter frame or a newly pushed C2I adapter or an entry frame.
  2670   // The top frame has a TOP_IJAVA_FRAME_ABI and the frame contains the
  2671   // outgoing arguments.
  2672   //
  2673   // In order to push the interpreter frame for the deoptee, we need to
  2674   // resize the top frame such that we are able to place the deoptee's
  2675   // locals in the frame.
  2676   // Additionally, we have to turn the top frame's TOP_IJAVA_FRAME_ABI
  2677   // into a valid PARENT_IJAVA_FRAME_ABI.
  2679   __ lwa(R11_scratch1,
  2680              Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(),
  2681              unroll_block_reg);
  2682   __ neg(R11_scratch1, R11_scratch1);
  2684   // R11_scratch1 contains size of locals for frame resizing.
  2685   // R12_scratch2 contains top frame's lr.
  2687   // Resize frame by complete frame size prevents TOC from being
  2688   // overwritten by locals. A more stack space saving way would be
  2689   // to copy the TOC to its location in the new abi.
  2690   __ addi(R11_scratch1, R11_scratch1, - frame::parent_ijava_frame_abi_size);
  2692   // now, resize the frame
  2693   __ resize_frame(R11_scratch1, pc_reg/*tmp*/);
  2695   // In the case where we have resized a c2i frame above, the optional
  2696   // alignment below the locals has size 32 (why?).
  2697   __ std(R12_scratch2, _abi(lr), R1_SP);
  2699   // Initialize initial_caller_sp.
  2700 #ifdef CC_INTERP
  2701   __ std(frame_size_reg/*old_sp*/, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
  2702 #else
  2703 #ifdef ASSERT
  2704  __ load_const_optimized(pc_reg, 0x5afe);
  2705  __ std(pc_reg, _ijava_state_neg(ijava_reserved), R1_SP);
  2706 #endif
  2707  __ std(frame_size_reg, _ijava_state_neg(sender_sp), R1_SP);
  2708 #endif // CC_INTERP
  2710 #ifdef ASSERT
  2711   // Make sure that there is at least one entry in the array.
  2712   __ cmpdi(CCR0, number_of_frames_reg, 0);
  2713   __ asm_assert_ne("array_size must be > 0", 0x205);
  2714 #endif
  2716   // Now push the new interpreter frames.
  2717   //
  2718   __ bind(loop);
  2719   // Allocate a new frame, fill in the pc.
  2720   push_skeleton_frame(masm, deopt,
  2721                       unroll_block_reg,
  2722                       frame_sizes_reg,
  2723                       number_of_frames_reg,
  2724                       pcs_reg,
  2725                       frame_size_reg,
  2726                       pc_reg);
  2727   __ cmpdi(CCR0, number_of_frames_reg, 0);
  2728   __ bne(CCR0, loop);
  2730   // Get the return address pointing into the frame manager.
  2731   __ ld(R0, 0, pcs_reg);
  2732   // Store it in the top interpreter frame.
  2733   __ std(R0, _abi(lr), R1_SP);
  2734   // Initialize frame_manager_lr of interpreter top frame.
  2735 #ifdef CC_INTERP
  2736   __ std(R0, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
  2737 #endif
  2739 #endif
  2741 void SharedRuntime::generate_deopt_blob() {
  2742   // Allocate space for the code
  2743   ResourceMark rm;
  2744   // Setup code generation tools
  2745   CodeBuffer buffer("deopt_blob", 2048, 1024);
  2746   InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer);
  2747   Label exec_mode_initialized;
  2748   int frame_size_in_words;
  2749   OopMap* map = NULL;
  2750   OopMapSet *oop_maps = new OopMapSet();
  2752   // size of ABI112 plus spill slots for R3_RET and F1_RET.
  2753   const int frame_size_in_bytes = frame::abi_reg_args_spill_size;
  2754   const int frame_size_in_slots = frame_size_in_bytes / sizeof(jint);
  2755   int first_frame_size_in_bytes = 0; // frame size of "unpack frame" for call to fetch_unroll_info.
  2757   const Register exec_mode_reg = R21_tmp1;
  2759   const address start = __ pc();
  2761 #ifdef COMPILER2
  2762   // --------------------------------------------------------------------------
  2763   // Prolog for non exception case!
  2765   // We have been called from the deopt handler of the deoptee.
  2766   //
  2767   // deoptee:
  2768   //                      ...
  2769   //                      call X
  2770   //                      ...
  2771   //  deopt_handler:      call_deopt_stub
  2772   //  cur. return pc  --> ...
  2773   //
  2774   // So currently SR_LR points behind the call in the deopt handler.
  2775   // We adjust it such that it points to the start of the deopt handler.
  2776   // The return_pc has been stored in the frame of the deoptee and
  2777   // will replace the address of the deopt_handler in the call
  2778   // to Deoptimization::fetch_unroll_info below.
  2779   // We can't grab a free register here, because all registers may
  2780   // contain live values, so let the RegisterSaver do the adjustment
  2781   // of the return pc.
  2782   const int return_pc_adjustment_no_exception = -HandlerImpl::size_deopt_handler();
  2784   // Push the "unpack frame"
  2785   // Save everything in sight.
  2786   map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
  2787                                                                    &first_frame_size_in_bytes,
  2788                                                                    /*generate_oop_map=*/ true,
  2789                                                                    return_pc_adjustment_no_exception,
  2790                                                                    RegisterSaver::return_pc_is_lr);
  2791   assert(map != NULL, "OopMap must have been created");
  2793   __ li(exec_mode_reg, Deoptimization::Unpack_deopt);
  2794   // Save exec mode for unpack_frames.
  2795   __ b(exec_mode_initialized);
  2797   // --------------------------------------------------------------------------
  2798   // Prolog for exception case
  2800   // An exception is pending.
  2801   // We have been called with a return (interpreter) or a jump (exception blob).
  2802   //
  2803   // - R3_ARG1: exception oop
  2804   // - R4_ARG2: exception pc
  2806   int exception_offset = __ pc() - start;
  2808   BLOCK_COMMENT("Prolog for exception case");
  2810   // The RegisterSaves doesn't need to adjust the return pc for this situation.
  2811   const int return_pc_adjustment_exception = 0;
  2813   // Push the "unpack frame".
  2814   // Save everything in sight.
  2815   assert(R4 == R4_ARG2, "exception pc must be in r4");
  2816   RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
  2817                                                              &first_frame_size_in_bytes,
  2818                                                              /*generate_oop_map=*/ false,
  2819                                                              return_pc_adjustment_exception,
  2820                                                              RegisterSaver::return_pc_is_r4);
  2822   // Deopt during an exception. Save exec mode for unpack_frames.
  2823   __ li(exec_mode_reg, Deoptimization::Unpack_exception);
  2825   // Store exception oop and pc in thread (location known to GC).
  2826   // This is needed since the call to "fetch_unroll_info()" may safepoint.
  2827   __ std(R3_ARG1, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
  2828   __ std(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()),  R16_thread);
  2830   // fall through
  2832   // --------------------------------------------------------------------------
  2833   __ BIND(exec_mode_initialized);
  2836   const Register unroll_block_reg = R22_tmp2;
  2838   // We need to set `last_Java_frame' because `fetch_unroll_info' will
  2839   // call `last_Java_frame()'. The value of the pc in the frame is not
  2840   // particularly important. It just needs to identify this blob.
  2841   __ set_last_Java_frame(R1_SP, noreg);
  2843   // With EscapeAnalysis turned on, this call may safepoint!
  2844   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), R16_thread);
  2845   address calls_return_pc = __ last_calls_return_pc();
  2846   // Set an oopmap for the call site that describes all our saved registers.
  2847   oop_maps->add_gc_map(calls_return_pc - start, map);
  2849   __ reset_last_Java_frame();
  2850   // Save the return value.
  2851   __ mr(unroll_block_reg, R3_RET);
  2853   // Restore only the result registers that have been saved
  2854   // by save_volatile_registers(...).
  2855   RegisterSaver::restore_result_registers(masm, first_frame_size_in_bytes);
  2857   // In excp_deopt_mode, restore and clear exception oop which we
  2858   // stored in the thread during exception entry above. The exception
  2859   // oop will be the return value of this stub.
  2860   Label skip_restore_excp;
  2861   __ cmpdi(CCR0, exec_mode_reg, Deoptimization::Unpack_exception);
  2862   __ bne(CCR0, skip_restore_excp);
  2863   __ ld(R3_RET, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
  2864   __ ld(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()), R16_thread);
  2865   __ li(R0, 0);
  2866   __ std(R0, in_bytes(JavaThread::exception_pc_offset()),  R16_thread);
  2867   __ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
  2868   __ BIND(skip_restore_excp);
  2870   // reload narrro_oop_base
  2871   if (UseCompressedOops && Universe::narrow_oop_base() != 0) {
  2872     __ load_const_optimized(R30, Universe::narrow_oop_base());
  2875   __ pop_frame();
  2877   // stack: (deoptee, optional i2c, caller of deoptee, ...).
  2879   // pop the deoptee's frame
  2880   __ pop_frame();
  2882   // stack: (caller_of_deoptee, ...).
  2884   // Loop through the `UnrollBlock' info and create interpreter frames.
  2885   push_skeleton_frames(masm, true/*deopt*/,
  2886                        unroll_block_reg,
  2887                        R23_tmp3,
  2888                        R24_tmp4,
  2889                        R25_tmp5,
  2890                        R26_tmp6,
  2891                        R27_tmp7);
  2893   // stack: (skeletal interpreter frame, ..., optional skeletal
  2894   // interpreter frame, optional c2i, caller of deoptee, ...).
  2897   // push an `unpack_frame' taking care of float / int return values.
  2898   __ push_frame(frame_size_in_bytes, R0/*tmp*/);
  2900   // stack: (unpack frame, skeletal interpreter frame, ..., optional
  2901   // skeletal interpreter frame, optional c2i, caller of deoptee,
  2902   // ...).
  2904   // Spill live volatile registers since we'll do a call.
  2905   __ std( R3_RET, _abi_reg_args_spill(spill_ret),  R1_SP);
  2906   __ stfd(F1_RET, _abi_reg_args_spill(spill_fret), R1_SP);
  2908   // Let the unpacker layout information in the skeletal frames just
  2909   // allocated.
  2910   __ get_PC_trash_LR(R3_RET);
  2911   __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R3_RET);
  2912   // This is a call to a LEAF method, so no oop map is required.
  2913   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames),
  2914                   R16_thread/*thread*/, exec_mode_reg/*exec_mode*/);
  2915   __ reset_last_Java_frame();
  2917   // Restore the volatiles saved above.
  2918   __ ld( R3_RET, _abi_reg_args_spill(spill_ret),  R1_SP);
  2919   __ lfd(F1_RET, _abi_reg_args_spill(spill_fret), R1_SP);
  2921   // Pop the unpack frame.
  2922   __ pop_frame();
  2923   __ restore_LR_CR(R0);
  2925   // stack: (top interpreter frame, ..., optional interpreter frame,
  2926   // optional c2i, caller of deoptee, ...).
  2928   // Initialize R14_state.
  2929 #ifdef CC_INTERP
  2930   __ ld(R14_state, 0, R1_SP);
  2931   __ addi(R14_state, R14_state, -frame::interpreter_frame_cinterpreterstate_size_in_bytes());
  2932   // Also inititialize R15_prev_state.
  2933   __ restore_prev_state();
  2934 #else
  2935   __ restore_interpreter_state(R11_scratch1);
  2936   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
  2937 #endif // CC_INTERP
  2940   // Return to the interpreter entry point.
  2941   __ blr();
  2942   __ flush();
  2943 #else // COMPILER2
  2944   __ unimplemented("deopt blob needed only with compiler");
  2945   int exception_offset = __ pc() - start;
  2946 #endif // COMPILER2
  2948   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, 0, first_frame_size_in_bytes / wordSize);
  2951 #ifdef COMPILER2
  2952 void SharedRuntime::generate_uncommon_trap_blob() {
  2953   // Allocate space for the code.
  2954   ResourceMark rm;
  2955   // Setup code generation tools.
  2956   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
  2957   InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer);
  2958   address start = __ pc();
  2960   Register unroll_block_reg = R21_tmp1;
  2961   Register klass_index_reg  = R22_tmp2;
  2962   Register unc_trap_reg     = R23_tmp3;
  2964   OopMapSet* oop_maps = new OopMapSet();
  2965   int frame_size_in_bytes = frame::abi_reg_args_size;
  2966   OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0);
  2968   // stack: (deoptee, optional i2c, caller_of_deoptee, ...).
  2970   // Push a dummy `unpack_frame' and call
  2971   // `Deoptimization::uncommon_trap' to pack the compiled frame into a
  2972   // vframe array and return the `UnrollBlock' information.
  2974   // Save LR to compiled frame.
  2975   __ save_LR_CR(R11_scratch1);
  2977   // Push an "uncommon_trap" frame.
  2978   __ push_frame_reg_args(0, R11_scratch1);
  2980   // stack: (unpack frame, deoptee, optional i2c, caller_of_deoptee, ...).
  2982   // Set the `unpack_frame' as last_Java_frame.
  2983   // `Deoptimization::uncommon_trap' expects it and considers its
  2984   // sender frame as the deoptee frame.
  2985   // Remember the offset of the instruction whose address will be
  2986   // moved to R11_scratch1.
  2987   address gc_map_pc = __ get_PC_trash_LR(R11_scratch1);
  2989   __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1);
  2991   __ mr(klass_index_reg, R3);
  2992   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap),
  2993                   R16_thread, klass_index_reg);
  2995   // Set an oopmap for the call site.
  2996   oop_maps->add_gc_map(gc_map_pc - start, map);
  2998   __ reset_last_Java_frame();
  3000   // Pop the `unpack frame'.
  3001   __ pop_frame();
  3003   // stack: (deoptee, optional i2c, caller_of_deoptee, ...).
  3005   // Save the return value.
  3006   __ mr(unroll_block_reg, R3_RET);
  3008   // Pop the uncommon_trap frame.
  3009   __ pop_frame();
  3011   // stack: (caller_of_deoptee, ...).
  3013   // Allocate new interpreter frame(s) and possibly a c2i adapter
  3014   // frame.
  3015   push_skeleton_frames(masm, false/*deopt*/,
  3016                        unroll_block_reg,
  3017                        R22_tmp2,
  3018                        R23_tmp3,
  3019                        R24_tmp4,
  3020                        R25_tmp5,
  3021                        R26_tmp6);
  3023   // stack: (skeletal interpreter frame, ..., optional skeletal
  3024   // interpreter frame, optional c2i, caller of deoptee, ...).
  3026   // Push a dummy `unpack_frame' taking care of float return values.
  3027   // Call `Deoptimization::unpack_frames' to layout information in the
  3028   // interpreter frames just created.
  3030   // Push a simple "unpack frame" here.
  3031   __ push_frame_reg_args(0, R11_scratch1);
  3033   // stack: (unpack frame, skeletal interpreter frame, ..., optional
  3034   // skeletal interpreter frame, optional c2i, caller of deoptee,
  3035   // ...).
  3037   // Set the "unpack_frame" as last_Java_frame.
  3038   __ get_PC_trash_LR(R11_scratch1);
  3039   __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1);
  3041   // Indicate it is the uncommon trap case.
  3042   __ li(unc_trap_reg, Deoptimization::Unpack_uncommon_trap);
  3043   // Let the unpacker layout information in the skeletal frames just
  3044   // allocated.
  3045   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames),
  3046                   R16_thread, unc_trap_reg);
  3048   __ reset_last_Java_frame();
  3049   // Pop the `unpack frame'.
  3050   __ pop_frame();
  3051   // Restore LR from top interpreter frame.
  3052   __ restore_LR_CR(R11_scratch1);
  3054   // stack: (top interpreter frame, ..., optional interpreter frame,
  3055   // optional c2i, caller of deoptee, ...).
  3057 #ifdef CC_INTERP
  3058   // Initialize R14_state, ...
  3059   __ ld(R11_scratch1, 0, R1_SP);
  3060   __ addi(R14_state, R11_scratch1, -frame::interpreter_frame_cinterpreterstate_size_in_bytes());
  3061   // also initialize R15_prev_state.
  3062   __ restore_prev_state();
  3063 #else
  3064   __ restore_interpreter_state(R11_scratch1);
  3065   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
  3066 #endif // CC_INTERP
  3068   // Return to the interpreter entry point.
  3069   __ blr();
  3071   masm->flush();
  3073   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, frame_size_in_bytes/wordSize);
  3075 #endif // COMPILER2
  3077 // Generate a special Compile2Runtime blob that saves all registers, and setup oopmap.
  3078 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
  3079   assert(StubRoutines::forward_exception_entry() != NULL,
  3080          "must be generated before");
  3082   ResourceMark rm;
  3083   OopMapSet *oop_maps = new OopMapSet();
  3084   OopMap* map;
  3086   // Allocate space for the code. Setup code generation tools.
  3087   CodeBuffer buffer("handler_blob", 2048, 1024);
  3088   MacroAssembler* masm = new MacroAssembler(&buffer);
  3090   address start = __ pc();
  3091   int frame_size_in_bytes = 0;
  3093   RegisterSaver::ReturnPCLocation return_pc_location;
  3094   bool cause_return = (poll_type == POLL_AT_RETURN);
  3095   if (cause_return) {
  3096     // Nothing to do here. The frame has already been popped in MachEpilogNode.
  3097     // Register LR already contains the return pc.
  3098     return_pc_location = RegisterSaver::return_pc_is_lr;
  3099   } else {
  3100     // Use thread()->saved_exception_pc() as return pc.
  3101     return_pc_location = RegisterSaver::return_pc_is_thread_saved_exception_pc;
  3104   // Save registers, fpu state, and flags.
  3105   map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
  3106                                                                    &frame_size_in_bytes,
  3107                                                                    /*generate_oop_map=*/ true,
  3108                                                                    /*return_pc_adjustment=*/0,
  3109                                                                    return_pc_location);
  3111   // The following is basically a call_VM. However, we need the precise
  3112   // address of the call in order to generate an oopmap. Hence, we do all the
  3113   // work outselves.
  3114   __ set_last_Java_frame(/*sp=*/R1_SP, /*pc=*/noreg);
  3116   // The return address must always be correct so that the frame constructor
  3117   // never sees an invalid pc.
  3119   // Do the call
  3120   __ call_VM_leaf(call_ptr, R16_thread);
  3121   address calls_return_pc = __ last_calls_return_pc();
  3123   // Set an oopmap for the call site. This oopmap will map all
  3124   // oop-registers and debug-info registers as callee-saved. This
  3125   // will allow deoptimization at this safepoint to find all possible
  3126   // debug-info recordings, as well as let GC find all oops.
  3127   oop_maps->add_gc_map(calls_return_pc - start, map);
  3129   Label noException;
  3131   // Clear the last Java frame.
  3132   __ reset_last_Java_frame();
  3134   BLOCK_COMMENT("  Check pending exception.");
  3135   const Register pending_exception = R0;
  3136   __ ld(pending_exception, thread_(pending_exception));
  3137   __ cmpdi(CCR0, pending_exception, 0);
  3138   __ beq(CCR0, noException);
  3140   // Exception pending
  3141   RegisterSaver::restore_live_registers_and_pop_frame(masm,
  3142                                                       frame_size_in_bytes,
  3143                                                       /*restore_ctr=*/true);
  3145   BLOCK_COMMENT("  Jump to forward_exception_entry.");
  3146   // Jump to forward_exception_entry, with the issuing PC in LR
  3147   // so it looks like the original nmethod called forward_exception_entry.
  3148   __ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  3150   // No exception case.
  3151   __ BIND(noException);
  3154   // Normal exit, restore registers and exit.
  3155   RegisterSaver::restore_live_registers_and_pop_frame(masm,
  3156                                                       frame_size_in_bytes,
  3157                                                       /*restore_ctr=*/true);
  3159   __ blr();
  3161   // Make sure all code is generated
  3162   masm->flush();
  3164   // Fill-out other meta info
  3165   // CodeBlob frame size is in words.
  3166   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_bytes / wordSize);
  3169 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss)
  3170 //
  3171 // Generate a stub that calls into the vm to find out the proper destination
  3172 // of a java call. All the argument registers are live at this point
  3173 // but since this is generic code we don't know what they are and the caller
  3174 // must do any gc of the args.
  3175 //
  3176 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
  3178   // allocate space for the code
  3179   ResourceMark rm;
  3181   CodeBuffer buffer(name, 1000, 512);
  3182   MacroAssembler* masm = new MacroAssembler(&buffer);
  3184   int frame_size_in_bytes;
  3186   OopMapSet *oop_maps = new OopMapSet();
  3187   OopMap* map = NULL;
  3189   address start = __ pc();
  3191   map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
  3192                                                                    &frame_size_in_bytes,
  3193                                                                    /*generate_oop_map*/ true,
  3194                                                                    /*return_pc_adjustment*/ 0,
  3195                                                                    RegisterSaver::return_pc_is_lr);
  3197   // Use noreg as last_Java_pc, the return pc will be reconstructed
  3198   // from the physical frame.
  3199   __ set_last_Java_frame(/*sp*/R1_SP, noreg);
  3201   int frame_complete = __ offset();
  3203   // Pass R19_method as 2nd (optional) argument, used by
  3204   // counter_overflow_stub.
  3205   __ call_VM_leaf(destination, R16_thread, R19_method);
  3206   address calls_return_pc = __ last_calls_return_pc();
  3207   // Set an oopmap for the call site.
  3208   // We need this not only for callee-saved registers, but also for volatile
  3209   // registers that the compiler might be keeping live across a safepoint.
  3210   // Create the oopmap for the call's return pc.
  3211   oop_maps->add_gc_map(calls_return_pc - start, map);
  3213   // R3_RET contains the address we are going to jump to assuming no exception got installed.
  3215   // clear last_Java_sp
  3216   __ reset_last_Java_frame();
  3218   // Check for pending exceptions.
  3219   BLOCK_COMMENT("Check for pending exceptions.");
  3220   Label pending;
  3221   __ ld(R11_scratch1, thread_(pending_exception));
  3222   __ cmpdi(CCR0, R11_scratch1, 0);
  3223   __ bne(CCR0, pending);
  3225   __ mtctr(R3_RET); // Ctr will not be touched by restore_live_registers_and_pop_frame.
  3227   RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ false);
  3229   // Get the returned method.
  3230   __ get_vm_result_2(R19_method);
  3232   __ bctr();
  3235   // Pending exception after the safepoint.
  3236   __ BIND(pending);
  3238   RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ true);
  3240   // exception pending => remove activation and forward to exception handler
  3242   __ li(R11_scratch1, 0);
  3243   __ ld(R3_ARG1, thread_(pending_exception));
  3244   __ std(R11_scratch1, in_bytes(JavaThread::vm_result_offset()), R16_thread);
  3245   __ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  3247   // -------------
  3248   // Make sure all code is generated.
  3249   masm->flush();
  3251   // return the blob
  3252   // frame_size_words or bytes??
  3253   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_bytes/wordSize,
  3254                                        oop_maps, true);

mercurial