src/share/vm/gc_implementation/g1/concurrentMark.hpp

Tue, 05 Feb 2013 09:13:05 -0800

author
johnc
date
Tue, 05 Feb 2013 09:13:05 -0800
changeset 4555
f90b9bceb8e5
parent 4549
256d3f43c177
child 4733
9def4075da6d
permissions
-rw-r--r--

8005032: G1: Cleanup serial reference processing closures in concurrent marking
Summary: Reuse the parallel reference processing oop closures during serial reference processing.
Reviewed-by: brutisso

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    28 #include "gc_implementation/g1/heapRegionSets.hpp"
    29 #include "utilities/taskqueue.hpp"
    31 class G1CollectedHeap;
    32 class CMTask;
    33 typedef GenericTaskQueue<oop, mtGC>            CMTaskQueue;
    34 typedef GenericTaskQueueSet<CMTaskQueue, mtGC> CMTaskQueueSet;
    36 // Closure used by CM during concurrent reference discovery
    37 // and reference processing (during remarking) to determine
    38 // if a particular object is alive. It is primarily used
    39 // to determine if referents of discovered reference objects
    40 // are alive. An instance is also embedded into the
    41 // reference processor as the _is_alive_non_header field
    42 class G1CMIsAliveClosure: public BoolObjectClosure {
    43   G1CollectedHeap* _g1;
    44  public:
    45   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
    47   void do_object(oop obj) {
    48     ShouldNotCallThis();
    49   }
    50   bool do_object_b(oop obj);
    51 };
    53 // A generic CM bit map.  This is essentially a wrapper around the BitMap
    54 // class, with one bit per (1<<_shifter) HeapWords.
    56 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
    57  protected:
    58   HeapWord* _bmStartWord;      // base address of range covered by map
    59   size_t    _bmWordSize;       // map size (in #HeapWords covered)
    60   const int _shifter;          // map to char or bit
    61   VirtualSpace _virtual_space; // underlying the bit map
    62   BitMap    _bm;               // the bit map itself
    64  public:
    65   // constructor
    66   CMBitMapRO(int shifter);
    68   enum { do_yield = true };
    70   // inquiries
    71   HeapWord* startWord()   const { return _bmStartWord; }
    72   size_t    sizeInWords() const { return _bmWordSize;  }
    73   // the following is one past the last word in space
    74   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
    76   // read marks
    78   bool isMarked(HeapWord* addr) const {
    79     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
    80            "outside underlying space?");
    81     return _bm.at(heapWordToOffset(addr));
    82   }
    84   // iteration
    85   inline bool iterate(BitMapClosure* cl, MemRegion mr);
    86   inline bool iterate(BitMapClosure* cl);
    88   // Return the address corresponding to the next marked bit at or after
    89   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    90   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    91   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
    92                                      HeapWord* limit = NULL) const;
    93   // Return the address corresponding to the next unmarked bit at or after
    94   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    95   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    96   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
    97                                        HeapWord* limit = NULL) const;
    99   // conversion utilities
   100   // XXX Fix these so that offsets are size_t's...
   101   HeapWord* offsetToHeapWord(size_t offset) const {
   102     return _bmStartWord + (offset << _shifter);
   103   }
   104   size_t heapWordToOffset(HeapWord* addr) const {
   105     return pointer_delta(addr, _bmStartWord) >> _shifter;
   106   }
   107   int heapWordDiffToOffsetDiff(size_t diff) const;
   108   HeapWord* nextWord(HeapWord* addr) {
   109     return offsetToHeapWord(heapWordToOffset(addr) + 1);
   110   }
   112   // debugging
   113   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
   114 };
   116 class CMBitMap : public CMBitMapRO {
   118  public:
   119   // constructor
   120   CMBitMap(int shifter) :
   121     CMBitMapRO(shifter) {}
   123   // Allocates the back store for the marking bitmap
   124   bool allocate(ReservedSpace heap_rs);
   126   // write marks
   127   void mark(HeapWord* addr) {
   128     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   129            "outside underlying space?");
   130     _bm.set_bit(heapWordToOffset(addr));
   131   }
   132   void clear(HeapWord* addr) {
   133     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   134            "outside underlying space?");
   135     _bm.clear_bit(heapWordToOffset(addr));
   136   }
   137   bool parMark(HeapWord* addr) {
   138     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   139            "outside underlying space?");
   140     return _bm.par_set_bit(heapWordToOffset(addr));
   141   }
   142   bool parClear(HeapWord* addr) {
   143     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   144            "outside underlying space?");
   145     return _bm.par_clear_bit(heapWordToOffset(addr));
   146   }
   147   void markRange(MemRegion mr);
   148   void clearAll();
   149   void clearRange(MemRegion mr);
   151   // Starting at the bit corresponding to "addr" (inclusive), find the next
   152   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
   153   // the end of this run (stopping at "end_addr").  Return the MemRegion
   154   // covering from the start of the region corresponding to the first bit
   155   // of the run to the end of the region corresponding to the last bit of
   156   // the run.  If there is no "1" bit at or after "addr", return an empty
   157   // MemRegion.
   158   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
   159 };
   161 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
   162 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
   163   VirtualSpace _virtual_space;   // Underlying backing store for actual stack
   164   ConcurrentMark* _cm;
   165   oop*   _base;        // bottom of stack
   166   jint _index;       // one more than last occupied index
   167   jint _capacity;    // max #elements
   168   jint _saved_index; // value of _index saved at start of GC
   169   NOT_PRODUCT(jint _max_depth;)   // max depth plumbed during run
   171   bool  _overflow;
   172   bool  _should_expand;
   173   DEBUG_ONLY(bool _drain_in_progress;)
   174   DEBUG_ONLY(bool _drain_in_progress_yields;)
   176  public:
   177   CMMarkStack(ConcurrentMark* cm);
   178   ~CMMarkStack();
   180 #ifndef PRODUCT
   181   jint max_depth() const {
   182     return _max_depth;
   183   }
   184 #endif
   186   bool allocate(size_t capacity);
   188   oop pop() {
   189     if (!isEmpty()) {
   190       return _base[--_index] ;
   191     }
   192     return NULL;
   193   }
   195   // If overflow happens, don't do the push, and record the overflow.
   196   // *Requires* that "ptr" is already marked.
   197   void push(oop ptr) {
   198     if (isFull()) {
   199       // Record overflow.
   200       _overflow = true;
   201       return;
   202     } else {
   203       _base[_index++] = ptr;
   204       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   205     }
   206   }
   207   // Non-block impl.  Note: concurrency is allowed only with other
   208   // "par_push" operations, not with "pop" or "drain".  We would need
   209   // parallel versions of them if such concurrency was desired.
   210   void par_push(oop ptr);
   212   // Pushes the first "n" elements of "ptr_arr" on the stack.
   213   // Non-block impl.  Note: concurrency is allowed only with other
   214   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
   215   void par_adjoin_arr(oop* ptr_arr, int n);
   217   // Pushes the first "n" elements of "ptr_arr" on the stack.
   218   // Locking impl: concurrency is allowed only with
   219   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
   220   // locking strategy.
   221   void par_push_arr(oop* ptr_arr, int n);
   223   // If returns false, the array was empty.  Otherwise, removes up to "max"
   224   // elements from the stack, and transfers them to "ptr_arr" in an
   225   // unspecified order.  The actual number transferred is given in "n" ("n
   226   // == 0" is deliberately redundant with the return value.)  Locking impl:
   227   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
   228   // operations, which use the same locking strategy.
   229   bool par_pop_arr(oop* ptr_arr, int max, int* n);
   231   // Drain the mark stack, applying the given closure to all fields of
   232   // objects on the stack.  (That is, continue until the stack is empty,
   233   // even if closure applications add entries to the stack.)  The "bm"
   234   // argument, if non-null, may be used to verify that only marked objects
   235   // are on the mark stack.  If "yield_after" is "true", then the
   236   // concurrent marker performing the drain offers to yield after
   237   // processing each object.  If a yield occurs, stops the drain operation
   238   // and returns false.  Otherwise, returns true.
   239   template<class OopClosureClass>
   240   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
   242   bool isEmpty()    { return _index == 0; }
   243   bool isFull()     { return _index == _capacity; }
   244   int  maxElems()   { return _capacity; }
   246   bool overflow() { return _overflow; }
   247   void clear_overflow() { _overflow = false; }
   249   bool should_expand() const { return _should_expand; }
   250   void set_should_expand();
   252   // Expand the stack, typically in response to an overflow condition
   253   void expand();
   255   int  size() { return _index; }
   257   void setEmpty()   { _index = 0; clear_overflow(); }
   259   // Record the current index.
   260   void note_start_of_gc();
   262   // Make sure that we have not added any entries to the stack during GC.
   263   void note_end_of_gc();
   265   // iterate over the oops in the mark stack, up to the bound recorded via
   266   // the call above.
   267   void oops_do(OopClosure* f);
   268 };
   270 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
   271 private:
   272 #ifndef PRODUCT
   273   uintx _num_remaining;
   274   bool _force;
   275 #endif // !defined(PRODUCT)
   277 public:
   278   void init() PRODUCT_RETURN;
   279   void update() PRODUCT_RETURN;
   280   bool should_force() PRODUCT_RETURN_( return false; );
   281 };
   283 // this will enable a variety of different statistics per GC task
   284 #define _MARKING_STATS_       0
   285 // this will enable the higher verbose levels
   286 #define _MARKING_VERBOSE_     0
   288 #if _MARKING_STATS_
   289 #define statsOnly(statement)  \
   290 do {                          \
   291   statement ;                 \
   292 } while (0)
   293 #else // _MARKING_STATS_
   294 #define statsOnly(statement)  \
   295 do {                          \
   296 } while (0)
   297 #endif // _MARKING_STATS_
   299 typedef enum {
   300   no_verbose  = 0,   // verbose turned off
   301   stats_verbose,     // only prints stats at the end of marking
   302   low_verbose,       // low verbose, mostly per region and per major event
   303   medium_verbose,    // a bit more detailed than low
   304   high_verbose       // per object verbose
   305 } CMVerboseLevel;
   307 class YoungList;
   309 // Root Regions are regions that are not empty at the beginning of a
   310 // marking cycle and which we might collect during an evacuation pause
   311 // while the cycle is active. Given that, during evacuation pauses, we
   312 // do not copy objects that are explicitly marked, what we have to do
   313 // for the root regions is to scan them and mark all objects reachable
   314 // from them. According to the SATB assumptions, we only need to visit
   315 // each object once during marking. So, as long as we finish this scan
   316 // before the next evacuation pause, we can copy the objects from the
   317 // root regions without having to mark them or do anything else to them.
   318 //
   319 // Currently, we only support root region scanning once (at the start
   320 // of the marking cycle) and the root regions are all the survivor
   321 // regions populated during the initial-mark pause.
   322 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
   323 private:
   324   YoungList*           _young_list;
   325   ConcurrentMark*      _cm;
   327   volatile bool        _scan_in_progress;
   328   volatile bool        _should_abort;
   329   HeapRegion* volatile _next_survivor;
   331 public:
   332   CMRootRegions();
   333   // We actually do most of the initialization in this method.
   334   void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
   336   // Reset the claiming / scanning of the root regions.
   337   void prepare_for_scan();
   339   // Forces get_next() to return NULL so that the iteration aborts early.
   340   void abort() { _should_abort = true; }
   342   // Return true if the CM thread are actively scanning root regions,
   343   // false otherwise.
   344   bool scan_in_progress() { return _scan_in_progress; }
   346   // Claim the next root region to scan atomically, or return NULL if
   347   // all have been claimed.
   348   HeapRegion* claim_next();
   350   // Flag that we're done with root region scanning and notify anyone
   351   // who's waiting on it. If aborted is false, assume that all regions
   352   // have been claimed.
   353   void scan_finished();
   355   // If CM threads are still scanning root regions, wait until they
   356   // are done. Return true if we had to wait, false otherwise.
   357   bool wait_until_scan_finished();
   358 };
   360 class ConcurrentMarkThread;
   362 class ConcurrentMark: public CHeapObj<mtGC> {
   363   friend class CMMarkStack;
   364   friend class ConcurrentMarkThread;
   365   friend class CMTask;
   366   friend class CMBitMapClosure;
   367   friend class CMGlobalObjectClosure;
   368   friend class CMRemarkTask;
   369   friend class CMConcurrentMarkingTask;
   370   friend class G1ParNoteEndTask;
   371   friend class CalcLiveObjectsClosure;
   372   friend class G1CMRefProcTaskProxy;
   373   friend class G1CMRefProcTaskExecutor;
   374   friend class G1CMKeepAliveAndDrainClosure;
   375   friend class G1CMDrainMarkingStackClosure;
   377 protected:
   378   ConcurrentMarkThread* _cmThread;   // the thread doing the work
   379   G1CollectedHeap*      _g1h;        // the heap.
   380   uint                  _parallel_marking_threads; // the number of marking
   381                                                    // threads we're use
   382   uint                  _max_parallel_marking_threads; // max number of marking
   383                                                    // threads we'll ever use
   384   double                _sleep_factor; // how much we have to sleep, with
   385                                        // respect to the work we just did, to
   386                                        // meet the marking overhead goal
   387   double                _marking_task_overhead; // marking target overhead for
   388                                                 // a single task
   390   // same as the two above, but for the cleanup task
   391   double                _cleanup_sleep_factor;
   392   double                _cleanup_task_overhead;
   394   FreeRegionList        _cleanup_list;
   396   // Concurrent marking support structures
   397   CMBitMap                _markBitMap1;
   398   CMBitMap                _markBitMap2;
   399   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
   400   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
   402   BitMap                  _region_bm;
   403   BitMap                  _card_bm;
   405   // Heap bounds
   406   HeapWord*               _heap_start;
   407   HeapWord*               _heap_end;
   409   // Root region tracking and claiming.
   410   CMRootRegions           _root_regions;
   412   // For gray objects
   413   CMMarkStack             _markStack; // Grey objects behind global finger.
   414   HeapWord* volatile      _finger;  // the global finger, region aligned,
   415                                     // always points to the end of the
   416                                     // last claimed region
   418   // marking tasks
   419   uint                    _max_worker_id;// maximum worker id
   420   uint                    _active_tasks; // task num currently active
   421   CMTask**                _tasks;        // task queue array (max_worker_id len)
   422   CMTaskQueueSet*         _task_queues;  // task queue set
   423   ParallelTaskTerminator  _terminator;   // for termination
   425   // Two sync barriers that are used to synchronise tasks when an
   426   // overflow occurs. The algorithm is the following. All tasks enter
   427   // the first one to ensure that they have all stopped manipulating
   428   // the global data structures. After they exit it, they re-initialise
   429   // their data structures and task 0 re-initialises the global data
   430   // structures. Then, they enter the second sync barrier. This
   431   // ensure, that no task starts doing work before all data
   432   // structures (local and global) have been re-initialised. When they
   433   // exit it, they are free to start working again.
   434   WorkGangBarrierSync     _first_overflow_barrier_sync;
   435   WorkGangBarrierSync     _second_overflow_barrier_sync;
   437   // this is set by any task, when an overflow on the global data
   438   // structures is detected.
   439   volatile bool           _has_overflown;
   440   // true: marking is concurrent, false: we're in remark
   441   volatile bool           _concurrent;
   442   // set at the end of a Full GC so that marking aborts
   443   volatile bool           _has_aborted;
   445   // used when remark aborts due to an overflow to indicate that
   446   // another concurrent marking phase should start
   447   volatile bool           _restart_for_overflow;
   449   // This is true from the very start of concurrent marking until the
   450   // point when all the tasks complete their work. It is really used
   451   // to determine the points between the end of concurrent marking and
   452   // time of remark.
   453   volatile bool           _concurrent_marking_in_progress;
   455   // verbose level
   456   CMVerboseLevel          _verbose_level;
   458   // All of these times are in ms.
   459   NumberSeq _init_times;
   460   NumberSeq _remark_times;
   461   NumberSeq   _remark_mark_times;
   462   NumberSeq   _remark_weak_ref_times;
   463   NumberSeq _cleanup_times;
   464   double    _total_counting_time;
   465   double    _total_rs_scrub_time;
   467   double*   _accum_task_vtime;   // accumulated task vtime
   469   FlexibleWorkGang* _parallel_workers;
   471   ForceOverflowSettings _force_overflow_conc;
   472   ForceOverflowSettings _force_overflow_stw;
   474   void weakRefsWork(bool clear_all_soft_refs);
   476   void swapMarkBitMaps();
   478   // It resets the global marking data structures, as well as the
   479   // task local ones; should be called during initial mark.
   480   void reset();
   482   // Resets all the marking data structures. Called when we have to restart
   483   // marking or when marking completes (via set_non_marking_state below).
   484   void reset_marking_state(bool clear_overflow = true);
   486   // We do this after we're done with marking so that the marking data
   487   // structures are initialised to a sensible and predictable state.
   488   void set_non_marking_state();
   490   // It should be called to indicate which phase we're in (concurrent
   491   // mark or remark) and how many threads are currently active.
   492   void set_phase(uint active_tasks, bool concurrent);
   494   // prints all gathered CM-related statistics
   495   void print_stats();
   497   bool cleanup_list_is_empty() {
   498     return _cleanup_list.is_empty();
   499   }
   501   // accessor methods
   502   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
   503   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
   504   double sleep_factor()                     { return _sleep_factor; }
   505   double marking_task_overhead()            { return _marking_task_overhead;}
   506   double cleanup_sleep_factor()             { return _cleanup_sleep_factor; }
   507   double cleanup_task_overhead()            { return _cleanup_task_overhead;}
   509   bool use_parallel_marking_threads() const {
   510     assert(parallel_marking_threads() <=
   511            max_parallel_marking_threads(), "sanity");
   512     assert((_parallel_workers == NULL && parallel_marking_threads() == 0) ||
   513            parallel_marking_threads() > 0,
   514            "parallel workers not set up correctly");
   515     return _parallel_workers != NULL;
   516   }
   518   HeapWord*               finger()          { return _finger;   }
   519   bool                    concurrent()      { return _concurrent; }
   520   uint                    active_tasks()    { return _active_tasks; }
   521   ParallelTaskTerminator* terminator()      { return &_terminator; }
   523   // It claims the next available region to be scanned by a marking
   524   // task/thread. It might return NULL if the next region is empty or
   525   // we have run out of regions. In the latter case, out_of_regions()
   526   // determines whether we've really run out of regions or the task
   527   // should call claim_region() again. This might seem a bit
   528   // awkward. Originally, the code was written so that claim_region()
   529   // either successfully returned with a non-empty region or there
   530   // were no more regions to be claimed. The problem with this was
   531   // that, in certain circumstances, it iterated over large chunks of
   532   // the heap finding only empty regions and, while it was working, it
   533   // was preventing the calling task to call its regular clock
   534   // method. So, this way, each task will spend very little time in
   535   // claim_region() and is allowed to call the regular clock method
   536   // frequently.
   537   HeapRegion* claim_region(uint worker_id);
   539   // It determines whether we've run out of regions to scan.
   540   bool        out_of_regions() { return _finger == _heap_end; }
   542   // Returns the task with the given id
   543   CMTask* task(int id) {
   544     assert(0 <= id && id < (int) _active_tasks,
   545            "task id not within active bounds");
   546     return _tasks[id];
   547   }
   549   // Returns the task queue with the given id
   550   CMTaskQueue* task_queue(int id) {
   551     assert(0 <= id && id < (int) _active_tasks,
   552            "task queue id not within active bounds");
   553     return (CMTaskQueue*) _task_queues->queue(id);
   554   }
   556   // Returns the task queue set
   557   CMTaskQueueSet* task_queues()  { return _task_queues; }
   559   // Access / manipulation of the overflow flag which is set to
   560   // indicate that the global stack has overflown
   561   bool has_overflown()           { return _has_overflown; }
   562   void set_has_overflown()       { _has_overflown = true; }
   563   void clear_has_overflown()     { _has_overflown = false; }
   564   bool restart_for_overflow()    { return _restart_for_overflow; }
   566   bool has_aborted()             { return _has_aborted; }
   568   // Methods to enter the two overflow sync barriers
   569   void enter_first_sync_barrier(uint worker_id);
   570   void enter_second_sync_barrier(uint worker_id);
   572   ForceOverflowSettings* force_overflow_conc() {
   573     return &_force_overflow_conc;
   574   }
   576   ForceOverflowSettings* force_overflow_stw() {
   577     return &_force_overflow_stw;
   578   }
   580   ForceOverflowSettings* force_overflow() {
   581     if (concurrent()) {
   582       return force_overflow_conc();
   583     } else {
   584       return force_overflow_stw();
   585     }
   586   }
   588   // Live Data Counting data structures...
   589   // These data structures are initialized at the start of
   590   // marking. They are written to while marking is active.
   591   // They are aggregated during remark; the aggregated values
   592   // are then used to populate the _region_bm, _card_bm, and
   593   // the total live bytes, which are then subsequently updated
   594   // during cleanup.
   596   // An array of bitmaps (one bit map per task). Each bitmap
   597   // is used to record the cards spanned by the live objects
   598   // marked by that task/worker.
   599   BitMap*  _count_card_bitmaps;
   601   // Used to record the number of marked live bytes
   602   // (for each region, by worker thread).
   603   size_t** _count_marked_bytes;
   605   // Card index of the bottom of the G1 heap. Used for biasing indices into
   606   // the card bitmaps.
   607   intptr_t _heap_bottom_card_num;
   609   // Set to true when initialization is complete
   610   bool _completed_initialization;
   612 public:
   613   // Manipulation of the global mark stack.
   614   // Notice that the first mark_stack_push is CAS-based, whereas the
   615   // two below are Mutex-based. This is OK since the first one is only
   616   // called during evacuation pauses and doesn't compete with the
   617   // other two (which are called by the marking tasks during
   618   // concurrent marking or remark).
   619   bool mark_stack_push(oop p) {
   620     _markStack.par_push(p);
   621     if (_markStack.overflow()) {
   622       set_has_overflown();
   623       return false;
   624     }
   625     return true;
   626   }
   627   bool mark_stack_push(oop* arr, int n) {
   628     _markStack.par_push_arr(arr, n);
   629     if (_markStack.overflow()) {
   630       set_has_overflown();
   631       return false;
   632     }
   633     return true;
   634   }
   635   void mark_stack_pop(oop* arr, int max, int* n) {
   636     _markStack.par_pop_arr(arr, max, n);
   637   }
   638   size_t mark_stack_size()                { return _markStack.size(); }
   639   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
   640   bool mark_stack_overflow()              { return _markStack.overflow(); }
   641   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
   643   CMRootRegions* root_regions() { return &_root_regions; }
   645   bool concurrent_marking_in_progress() {
   646     return _concurrent_marking_in_progress;
   647   }
   648   void set_concurrent_marking_in_progress() {
   649     _concurrent_marking_in_progress = true;
   650   }
   651   void clear_concurrent_marking_in_progress() {
   652     _concurrent_marking_in_progress = false;
   653   }
   655   void update_accum_task_vtime(int i, double vtime) {
   656     _accum_task_vtime[i] += vtime;
   657   }
   659   double all_task_accum_vtime() {
   660     double ret = 0.0;
   661     for (uint i = 0; i < _max_worker_id; ++i)
   662       ret += _accum_task_vtime[i];
   663     return ret;
   664   }
   666   // Attempts to steal an object from the task queues of other tasks
   667   bool try_stealing(uint worker_id, int* hash_seed, oop& obj) {
   668     return _task_queues->steal(worker_id, hash_seed, obj);
   669   }
   671   ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs);
   672   ~ConcurrentMark();
   674   ConcurrentMarkThread* cmThread() { return _cmThread; }
   676   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
   677   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
   679   // Returns the number of GC threads to be used in a concurrent
   680   // phase based on the number of GC threads being used in a STW
   681   // phase.
   682   uint scale_parallel_threads(uint n_par_threads);
   684   // Calculates the number of GC threads to be used in a concurrent phase.
   685   uint calc_parallel_marking_threads();
   687   // The following three are interaction between CM and
   688   // G1CollectedHeap
   690   // This notifies CM that a root during initial-mark needs to be
   691   // grayed. It is MT-safe. word_size is the size of the object in
   692   // words. It is passed explicitly as sometimes we cannot calculate
   693   // it from the given object because it might be in an inconsistent
   694   // state (e.g., in to-space and being copied). So the caller is
   695   // responsible for dealing with this issue (e.g., get the size from
   696   // the from-space image when the to-space image might be
   697   // inconsistent) and always passing the size. hr is the region that
   698   // contains the object and it's passed optionally from callers who
   699   // might already have it (no point in recalculating it).
   700   inline void grayRoot(oop obj, size_t word_size,
   701                        uint worker_id, HeapRegion* hr = NULL);
   703   // It iterates over the heap and for each object it comes across it
   704   // will dump the contents of its reference fields, as well as
   705   // liveness information for the object and its referents. The dump
   706   // will be written to a file with the following name:
   707   // G1PrintReachableBaseFile + "." + str.
   708   // vo decides whether the prev (vo == UsePrevMarking), the next
   709   // (vo == UseNextMarking) marking information, or the mark word
   710   // (vo == UseMarkWord) will be used to determine the liveness of
   711   // each object / referent.
   712   // If all is true, all objects in the heap will be dumped, otherwise
   713   // only the live ones. In the dump the following symbols / breviations
   714   // are used:
   715   //   M : an explicitly live object (its bitmap bit is set)
   716   //   > : an implicitly live object (over tams)
   717   //   O : an object outside the G1 heap (typically: in the perm gen)
   718   //   NOT : a reference field whose referent is not live
   719   //   AND MARKED : indicates that an object is both explicitly and
   720   //   implicitly live (it should be one or the other, not both)
   721   void print_reachable(const char* str,
   722                        VerifyOption vo, bool all) PRODUCT_RETURN;
   724   // Clear the next marking bitmap (will be called concurrently).
   725   void clearNextBitmap();
   727   // These two do the work that needs to be done before and after the
   728   // initial root checkpoint. Since this checkpoint can be done at two
   729   // different points (i.e. an explicit pause or piggy-backed on a
   730   // young collection), then it's nice to be able to easily share the
   731   // pre/post code. It might be the case that we can put everything in
   732   // the post method. TP
   733   void checkpointRootsInitialPre();
   734   void checkpointRootsInitialPost();
   736   // Scan all the root regions and mark everything reachable from
   737   // them.
   738   void scanRootRegions();
   740   // Scan a single root region and mark everything reachable from it.
   741   void scanRootRegion(HeapRegion* hr, uint worker_id);
   743   // Do concurrent phase of marking, to a tentative transitive closure.
   744   void markFromRoots();
   746   void checkpointRootsFinal(bool clear_all_soft_refs);
   747   void checkpointRootsFinalWork();
   748   void cleanup();
   749   void completeCleanup();
   751   // Mark in the previous bitmap.  NB: this is usually read-only, so use
   752   // this carefully!
   753   inline void markPrev(oop p);
   755   // Clears marks for all objects in the given range, for the prev,
   756   // next, or both bitmaps.  NB: the previous bitmap is usually
   757   // read-only, so use this carefully!
   758   void clearRangePrevBitmap(MemRegion mr);
   759   void clearRangeNextBitmap(MemRegion mr);
   760   void clearRangeBothBitmaps(MemRegion mr);
   762   // Notify data structures that a GC has started.
   763   void note_start_of_gc() {
   764     _markStack.note_start_of_gc();
   765   }
   767   // Notify data structures that a GC is finished.
   768   void note_end_of_gc() {
   769     _markStack.note_end_of_gc();
   770   }
   772   // Verify that there are no CSet oops on the stacks (taskqueues /
   773   // global mark stack), enqueued SATB buffers, per-thread SATB
   774   // buffers, and fingers (global / per-task). The boolean parameters
   775   // decide which of the above data structures to verify. If marking
   776   // is not in progress, it's a no-op.
   777   void verify_no_cset_oops(bool verify_stacks,
   778                            bool verify_enqueued_buffers,
   779                            bool verify_thread_buffers,
   780                            bool verify_fingers) PRODUCT_RETURN;
   782   // It is called at the end of an evacuation pause during marking so
   783   // that CM is notified of where the new end of the heap is. It
   784   // doesn't do anything if concurrent_marking_in_progress() is false,
   785   // unless the force parameter is true.
   786   void update_g1_committed(bool force = false);
   788   bool isMarked(oop p) const {
   789     assert(p != NULL && p->is_oop(), "expected an oop");
   790     HeapWord* addr = (HeapWord*)p;
   791     assert(addr >= _nextMarkBitMap->startWord() ||
   792            addr < _nextMarkBitMap->endWord(), "in a region");
   794     return _nextMarkBitMap->isMarked(addr);
   795   }
   797   inline bool not_yet_marked(oop p) const;
   799   // XXX Debug code
   800   bool containing_card_is_marked(void* p);
   801   bool containing_cards_are_marked(void* start, void* last);
   803   bool isPrevMarked(oop p) const {
   804     assert(p != NULL && p->is_oop(), "expected an oop");
   805     HeapWord* addr = (HeapWord*)p;
   806     assert(addr >= _prevMarkBitMap->startWord() ||
   807            addr < _prevMarkBitMap->endWord(), "in a region");
   809     return _prevMarkBitMap->isMarked(addr);
   810   }
   812   inline bool do_yield_check(uint worker_i = 0);
   813   inline bool should_yield();
   815   // Called to abort the marking cycle after a Full GC takes palce.
   816   void abort();
   818   // This prints the global/local fingers. It is used for debugging.
   819   NOT_PRODUCT(void print_finger();)
   821   void print_summary_info();
   823   void print_worker_threads_on(outputStream* st) const;
   825   // The following indicate whether a given verbose level has been
   826   // set. Notice that anything above stats is conditional to
   827   // _MARKING_VERBOSE_ having been set to 1
   828   bool verbose_stats() {
   829     return _verbose_level >= stats_verbose;
   830   }
   831   bool verbose_low() {
   832     return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
   833   }
   834   bool verbose_medium() {
   835     return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
   836   }
   837   bool verbose_high() {
   838     return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
   839   }
   841   // Liveness counting
   843   // Utility routine to set an exclusive range of cards on the given
   844   // card liveness bitmap
   845   inline void set_card_bitmap_range(BitMap* card_bm,
   846                                     BitMap::idx_t start_idx,
   847                                     BitMap::idx_t end_idx,
   848                                     bool is_par);
   850   // Returns the card number of the bottom of the G1 heap.
   851   // Used in biasing indices into accounting card bitmaps.
   852   intptr_t heap_bottom_card_num() const {
   853     return _heap_bottom_card_num;
   854   }
   856   // Returns the card bitmap for a given task or worker id.
   857   BitMap* count_card_bitmap_for(uint worker_id) {
   858     assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
   859     assert(_count_card_bitmaps != NULL, "uninitialized");
   860     BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
   861     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
   862     return task_card_bm;
   863   }
   865   // Returns the array containing the marked bytes for each region,
   866   // for the given worker or task id.
   867   size_t* count_marked_bytes_array_for(uint worker_id) {
   868     assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
   869     assert(_count_marked_bytes != NULL, "uninitialized");
   870     size_t* marked_bytes_array = _count_marked_bytes[worker_id];
   871     assert(marked_bytes_array != NULL, "uninitialized");
   872     return marked_bytes_array;
   873   }
   875   // Returns the index in the liveness accounting card table bitmap
   876   // for the given address
   877   inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
   879   // Counts the size of the given memory region in the the given
   880   // marked_bytes array slot for the given HeapRegion.
   881   // Sets the bits in the given card bitmap that are associated with the
   882   // cards that are spanned by the memory region.
   883   inline void count_region(MemRegion mr, HeapRegion* hr,
   884                            size_t* marked_bytes_array,
   885                            BitMap* task_card_bm);
   887   // Counts the given memory region in the task/worker counting
   888   // data structures for the given worker id.
   889   inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
   891   // Counts the given memory region in the task/worker counting
   892   // data structures for the given worker id.
   893   inline void count_region(MemRegion mr, uint worker_id);
   895   // Counts the given object in the given task/worker counting
   896   // data structures.
   897   inline void count_object(oop obj, HeapRegion* hr,
   898                            size_t* marked_bytes_array,
   899                            BitMap* task_card_bm);
   901   // Counts the given object in the task/worker counting data
   902   // structures for the given worker id.
   903   inline void count_object(oop obj, HeapRegion* hr, uint worker_id);
   905   // Attempts to mark the given object and, if successful, counts
   906   // the object in the given task/worker counting structures.
   907   inline bool par_mark_and_count(oop obj, HeapRegion* hr,
   908                                  size_t* marked_bytes_array,
   909                                  BitMap* task_card_bm);
   911   // Attempts to mark the given object and, if successful, counts
   912   // the object in the task/worker counting structures for the
   913   // given worker id.
   914   inline bool par_mark_and_count(oop obj, size_t word_size,
   915                                  HeapRegion* hr, uint worker_id);
   917   // Attempts to mark the given object and, if successful, counts
   918   // the object in the task/worker counting structures for the
   919   // given worker id.
   920   inline bool par_mark_and_count(oop obj, HeapRegion* hr, uint worker_id);
   922   // Similar to the above routine but we don't know the heap region that
   923   // contains the object to be marked/counted, which this routine looks up.
   924   inline bool par_mark_and_count(oop obj, uint worker_id);
   926   // Similar to the above routine but there are times when we cannot
   927   // safely calculate the size of obj due to races and we, therefore,
   928   // pass the size in as a parameter. It is the caller's reponsibility
   929   // to ensure that the size passed in for obj is valid.
   930   inline bool par_mark_and_count(oop obj, size_t word_size, uint worker_id);
   932   // Unconditionally mark the given object, and unconditinally count
   933   // the object in the counting structures for worker id 0.
   934   // Should *not* be called from parallel code.
   935   inline bool mark_and_count(oop obj, HeapRegion* hr);
   937   // Similar to the above routine but we don't know the heap region that
   938   // contains the object to be marked/counted, which this routine looks up.
   939   // Should *not* be called from parallel code.
   940   inline bool mark_and_count(oop obj);
   942   // Returns true if initialization was successfully completed.
   943   bool completed_initialization() const {
   944     return _completed_initialization;
   945   }
   947 protected:
   948   // Clear all the per-task bitmaps and arrays used to store the
   949   // counting data.
   950   void clear_all_count_data();
   952   // Aggregates the counting data for each worker/task
   953   // that was constructed while marking. Also sets
   954   // the amount of marked bytes for each region and
   955   // the top at concurrent mark count.
   956   void aggregate_count_data();
   958   // Verification routine
   959   void verify_count_data();
   960 };
   962 // A class representing a marking task.
   963 class CMTask : public TerminatorTerminator {
   964 private:
   965   enum PrivateConstants {
   966     // the regular clock call is called once the scanned words reaches
   967     // this limit
   968     words_scanned_period          = 12*1024,
   969     // the regular clock call is called once the number of visited
   970     // references reaches this limit
   971     refs_reached_period           = 384,
   972     // initial value for the hash seed, used in the work stealing code
   973     init_hash_seed                = 17,
   974     // how many entries will be transferred between global stack and
   975     // local queues
   976     global_stack_transfer_size    = 16
   977   };
   979   uint                        _worker_id;
   980   G1CollectedHeap*            _g1h;
   981   ConcurrentMark*             _cm;
   982   CMBitMap*                   _nextMarkBitMap;
   983   // the task queue of this task
   984   CMTaskQueue*                _task_queue;
   985 private:
   986   // the task queue set---needed for stealing
   987   CMTaskQueueSet*             _task_queues;
   988   // indicates whether the task has been claimed---this is only  for
   989   // debugging purposes
   990   bool                        _claimed;
   992   // number of calls to this task
   993   int                         _calls;
   995   // when the virtual timer reaches this time, the marking step should
   996   // exit
   997   double                      _time_target_ms;
   998   // the start time of the current marking step
   999   double                      _start_time_ms;
  1001   // the oop closure used for iterations over oops
  1002   G1CMOopClosure*             _cm_oop_closure;
  1004   // the region this task is scanning, NULL if we're not scanning any
  1005   HeapRegion*                 _curr_region;
  1006   // the local finger of this task, NULL if we're not scanning a region
  1007   HeapWord*                   _finger;
  1008   // limit of the region this task is scanning, NULL if we're not scanning one
  1009   HeapWord*                   _region_limit;
  1011   // the number of words this task has scanned
  1012   size_t                      _words_scanned;
  1013   // When _words_scanned reaches this limit, the regular clock is
  1014   // called. Notice that this might be decreased under certain
  1015   // circumstances (i.e. when we believe that we did an expensive
  1016   // operation).
  1017   size_t                      _words_scanned_limit;
  1018   // the initial value of _words_scanned_limit (i.e. what it was
  1019   // before it was decreased).
  1020   size_t                      _real_words_scanned_limit;
  1022   // the number of references this task has visited
  1023   size_t                      _refs_reached;
  1024   // When _refs_reached reaches this limit, the regular clock is
  1025   // called. Notice this this might be decreased under certain
  1026   // circumstances (i.e. when we believe that we did an expensive
  1027   // operation).
  1028   size_t                      _refs_reached_limit;
  1029   // the initial value of _refs_reached_limit (i.e. what it was before
  1030   // it was decreased).
  1031   size_t                      _real_refs_reached_limit;
  1033   // used by the work stealing stuff
  1034   int                         _hash_seed;
  1035   // if this is true, then the task has aborted for some reason
  1036   bool                        _has_aborted;
  1037   // set when the task aborts because it has met its time quota
  1038   bool                        _has_timed_out;
  1039   // true when we're draining SATB buffers; this avoids the task
  1040   // aborting due to SATB buffers being available (as we're already
  1041   // dealing with them)
  1042   bool                        _draining_satb_buffers;
  1044   // number sequence of past step times
  1045   NumberSeq                   _step_times_ms;
  1046   // elapsed time of this task
  1047   double                      _elapsed_time_ms;
  1048   // termination time of this task
  1049   double                      _termination_time_ms;
  1050   // when this task got into the termination protocol
  1051   double                      _termination_start_time_ms;
  1053   // true when the task is during a concurrent phase, false when it is
  1054   // in the remark phase (so, in the latter case, we do not have to
  1055   // check all the things that we have to check during the concurrent
  1056   // phase, i.e. SATB buffer availability...)
  1057   bool                        _concurrent;
  1059   TruncatedSeq                _marking_step_diffs_ms;
  1061   // Counting data structures. Embedding the task's marked_bytes_array
  1062   // and card bitmap into the actual task saves having to go through
  1063   // the ConcurrentMark object.
  1064   size_t*                     _marked_bytes_array;
  1065   BitMap*                     _card_bm;
  1067   // LOTS of statistics related with this task
  1068 #if _MARKING_STATS_
  1069   NumberSeq                   _all_clock_intervals_ms;
  1070   double                      _interval_start_time_ms;
  1072   int                         _aborted;
  1073   int                         _aborted_overflow;
  1074   int                         _aborted_cm_aborted;
  1075   int                         _aborted_yield;
  1076   int                         _aborted_timed_out;
  1077   int                         _aborted_satb;
  1078   int                         _aborted_termination;
  1080   int                         _steal_attempts;
  1081   int                         _steals;
  1083   int                         _clock_due_to_marking;
  1084   int                         _clock_due_to_scanning;
  1086   int                         _local_pushes;
  1087   int                         _local_pops;
  1088   int                         _local_max_size;
  1089   int                         _objs_scanned;
  1091   int                         _global_pushes;
  1092   int                         _global_pops;
  1093   int                         _global_max_size;
  1095   int                         _global_transfers_to;
  1096   int                         _global_transfers_from;
  1098   int                         _regions_claimed;
  1099   int                         _objs_found_on_bitmap;
  1101   int                         _satb_buffers_processed;
  1102 #endif // _MARKING_STATS_
  1104   // it updates the local fields after this task has claimed
  1105   // a new region to scan
  1106   void setup_for_region(HeapRegion* hr);
  1107   // it brings up-to-date the limit of the region
  1108   void update_region_limit();
  1110   // called when either the words scanned or the refs visited limit
  1111   // has been reached
  1112   void reached_limit();
  1113   // recalculates the words scanned and refs visited limits
  1114   void recalculate_limits();
  1115   // decreases the words scanned and refs visited limits when we reach
  1116   // an expensive operation
  1117   void decrease_limits();
  1118   // it checks whether the words scanned or refs visited reached their
  1119   // respective limit and calls reached_limit() if they have
  1120   void check_limits() {
  1121     if (_words_scanned >= _words_scanned_limit ||
  1122         _refs_reached >= _refs_reached_limit) {
  1123       reached_limit();
  1126   // this is supposed to be called regularly during a marking step as
  1127   // it checks a bunch of conditions that might cause the marking step
  1128   // to abort
  1129   void regular_clock_call();
  1130   bool concurrent() { return _concurrent; }
  1132 public:
  1133   // It resets the task; it should be called right at the beginning of
  1134   // a marking phase.
  1135   void reset(CMBitMap* _nextMarkBitMap);
  1136   // it clears all the fields that correspond to a claimed region.
  1137   void clear_region_fields();
  1139   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
  1141   // The main method of this class which performs a marking step
  1142   // trying not to exceed the given duration. However, it might exit
  1143   // prematurely, according to some conditions (i.e. SATB buffers are
  1144   // available for processing).
  1145   void do_marking_step(double target_ms, bool do_stealing, bool do_termination);
  1147   // These two calls start and stop the timer
  1148   void record_start_time() {
  1149     _elapsed_time_ms = os::elapsedTime() * 1000.0;
  1151   void record_end_time() {
  1152     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
  1155   // returns the worker ID associated with this task.
  1156   uint worker_id() { return _worker_id; }
  1158   // From TerminatorTerminator. It determines whether this task should
  1159   // exit the termination protocol after it's entered it.
  1160   virtual bool should_exit_termination();
  1162   // Resets the local region fields after a task has finished scanning a
  1163   // region; or when they have become stale as a result of the region
  1164   // being evacuated.
  1165   void giveup_current_region();
  1167   HeapWord* finger()            { return _finger; }
  1169   bool has_aborted()            { return _has_aborted; }
  1170   void set_has_aborted()        { _has_aborted = true; }
  1171   void clear_has_aborted()      { _has_aborted = false; }
  1172   bool has_timed_out()          { return _has_timed_out; }
  1173   bool claimed()                { return _claimed; }
  1175   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
  1177   // It grays the object by marking it and, if necessary, pushing it
  1178   // on the local queue
  1179   inline void deal_with_reference(oop obj);
  1181   // It scans an object and visits its children.
  1182   void scan_object(oop obj);
  1184   // It pushes an object on the local queue.
  1185   inline void push(oop obj);
  1187   // These two move entries to/from the global stack.
  1188   void move_entries_to_global_stack();
  1189   void get_entries_from_global_stack();
  1191   // It pops and scans objects from the local queue. If partially is
  1192   // true, then it stops when the queue size is of a given limit. If
  1193   // partially is false, then it stops when the queue is empty.
  1194   void drain_local_queue(bool partially);
  1195   // It moves entries from the global stack to the local queue and
  1196   // drains the local queue. If partially is true, then it stops when
  1197   // both the global stack and the local queue reach a given size. If
  1198   // partially if false, it tries to empty them totally.
  1199   void drain_global_stack(bool partially);
  1200   // It keeps picking SATB buffers and processing them until no SATB
  1201   // buffers are available.
  1202   void drain_satb_buffers();
  1204   // moves the local finger to a new location
  1205   inline void move_finger_to(HeapWord* new_finger) {
  1206     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
  1207     _finger = new_finger;
  1210   CMTask(uint worker_id, ConcurrentMark *cm,
  1211          size_t* marked_bytes, BitMap* card_bm,
  1212          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
  1214   // it prints statistics associated with this task
  1215   void print_stats();
  1217 #if _MARKING_STATS_
  1218   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
  1219 #endif // _MARKING_STATS_
  1220 };
  1222 // Class that's used to to print out per-region liveness
  1223 // information. It's currently used at the end of marking and also
  1224 // after we sort the old regions at the end of the cleanup operation.
  1225 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
  1226 private:
  1227   outputStream* _out;
  1229   // Accumulators for these values.
  1230   size_t _total_used_bytes;
  1231   size_t _total_capacity_bytes;
  1232   size_t _total_prev_live_bytes;
  1233   size_t _total_next_live_bytes;
  1235   // These are set up when we come across a "stars humongous" region
  1236   // (as this is where most of this information is stored, not in the
  1237   // subsequent "continues humongous" regions). After that, for every
  1238   // region in a given humongous region series we deduce the right
  1239   // values for it by simply subtracting the appropriate amount from
  1240   // these fields. All these values should reach 0 after we've visited
  1241   // the last region in the series.
  1242   size_t _hum_used_bytes;
  1243   size_t _hum_capacity_bytes;
  1244   size_t _hum_prev_live_bytes;
  1245   size_t _hum_next_live_bytes;
  1247   static double perc(size_t val, size_t total) {
  1248     if (total == 0) {
  1249       return 0.0;
  1250     } else {
  1251       return 100.0 * ((double) val / (double) total);
  1255   static double bytes_to_mb(size_t val) {
  1256     return (double) val / (double) M;
  1259   // See the .cpp file.
  1260   size_t get_hum_bytes(size_t* hum_bytes);
  1261   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
  1262                      size_t* prev_live_bytes, size_t* next_live_bytes);
  1264 public:
  1265   // The header and footer are printed in the constructor and
  1266   // destructor respectively.
  1267   G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
  1268   virtual bool doHeapRegion(HeapRegion* r);
  1269   ~G1PrintRegionLivenessInfoClosure();
  1270 };
  1272 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial