src/cpu/sparc/vm/methodHandles_sparc.cpp

Tue, 14 Jun 2011 14:41:33 -0700

author
never
date
Tue, 14 Jun 2011 14:41:33 -0700
changeset 2954
f8c9417e3571
parent 2950
cba7b5c2d53f
child 2978
d83ac25d0304
permissions
-rw-r--r--

7052219: JSR 292: Crash in ~BufferBlob::MethodHandles adapters
Reviewed-by: twisti, kvn, jrose

     1 /*
     2  * Copyright (c) 2008, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "prims/methodHandles.hpp"
    30 #define __ _masm->
    32 #ifdef PRODUCT
    33 #define BLOCK_COMMENT(str) /* nothing */
    34 #else
    35 #define BLOCK_COMMENT(str) __ block_comment(str)
    36 #endif
    38 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    40 address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
    41                                                 address interpreted_entry) {
    42   // Just before the actual machine code entry point, allocate space
    43   // for a MethodHandleEntry::Data record, so that we can manage everything
    44   // from one base pointer.
    45   __ align(wordSize);
    46   address target = __ pc() + sizeof(Data);
    47   while (__ pc() < target) {
    48     __ nop();
    49     __ align(wordSize);
    50   }
    52   MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
    53   me->set_end_address(__ pc());         // set a temporary end_address
    54   me->set_from_interpreted_entry(interpreted_entry);
    55   me->set_type_checking_entry(NULL);
    57   return (address) me;
    58 }
    60 MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
    61                                                 address start_addr) {
    62   MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
    63   assert(me->end_address() == start_addr, "valid ME");
    65   // Fill in the real end_address:
    66   __ align(wordSize);
    67   me->set_end_address(__ pc());
    69   return me;
    70 }
    72 // stack walking support
    74 frame MethodHandles::ricochet_frame_sender(const frame& fr, RegisterMap *map) {
    75   //RicochetFrame* f = RicochetFrame::from_frame(fr);
    76   // Cf. is_interpreted_frame path of frame::sender
    77   intptr_t* younger_sp = fr.sp();
    78   intptr_t* sp         = fr.sender_sp();
    79   map->make_integer_regs_unsaved();
    80   map->shift_window(sp, younger_sp);
    81   bool this_frame_adjusted_stack = true;  // I5_savedSP is live in this RF
    82   return frame(sp, younger_sp, this_frame_adjusted_stack);
    83 }
    85 void MethodHandles::ricochet_frame_oops_do(const frame& fr, OopClosure* blk, const RegisterMap* reg_map) {
    86   ResourceMark rm;
    87   RicochetFrame* f = RicochetFrame::from_frame(fr);
    89   // pick up the argument type descriptor:
    90   Thread* thread = Thread::current();
    91   Handle cookie(thread, f->compute_saved_args_layout(true, true));
    93   // process fixed part
    94   blk->do_oop((oop*)f->saved_target_addr());
    95   blk->do_oop((oop*)f->saved_args_layout_addr());
    97   // process variable arguments:
    98   if (cookie.is_null())  return;  // no arguments to describe
   100   // the cookie is actually the invokeExact method for my target
   101   // his argument signature is what I'm interested in
   102   assert(cookie->is_method(), "");
   103   methodHandle invoker(thread, methodOop(cookie()));
   104   assert(invoker->name() == vmSymbols::invokeExact_name(), "must be this kind of method");
   105   assert(!invoker->is_static(), "must have MH argument");
   106   int slot_count = invoker->size_of_parameters();
   107   assert(slot_count >= 1, "must include 'this'");
   108   intptr_t* base = f->saved_args_base();
   109   intptr_t* retval = NULL;
   110   if (f->has_return_value_slot())
   111     retval = f->return_value_slot_addr();
   112   int slot_num = slot_count - 1;
   113   intptr_t* loc = &base[slot_num];
   114   //blk->do_oop((oop*) loc);   // original target, which is irrelevant
   115   int arg_num = 0;
   116   for (SignatureStream ss(invoker->signature()); !ss.is_done(); ss.next()) {
   117     if (ss.at_return_type())  continue;
   118     BasicType ptype = ss.type();
   119     if (ptype == T_ARRAY)  ptype = T_OBJECT; // fold all refs to T_OBJECT
   120     assert(ptype >= T_BOOLEAN && ptype <= T_OBJECT, "not array or void");
   121     slot_num -= type2size[ptype];
   122     loc = &base[slot_num];
   123     bool is_oop = (ptype == T_OBJECT && loc != retval);
   124     if (is_oop)  blk->do_oop((oop*)loc);
   125     arg_num += 1;
   126   }
   127   assert(slot_num == 0, "must have processed all the arguments");
   128 }
   130 // Ricochet Frames
   131 const Register MethodHandles::RicochetFrame::L1_continuation      = L1;
   132 const Register MethodHandles::RicochetFrame::L2_saved_target      = L2;
   133 const Register MethodHandles::RicochetFrame::L3_saved_args_layout = L3;
   134 const Register MethodHandles::RicochetFrame::L4_saved_args_base   = L4; // cf. Gargs = G4
   135 const Register MethodHandles::RicochetFrame::L5_conversion        = L5;
   136 #ifdef ASSERT
   137 const Register MethodHandles::RicochetFrame::L0_magic_number_1    = L0;
   138 #endif //ASSERT
   140 oop MethodHandles::RicochetFrame::compute_saved_args_layout(bool read_cache, bool write_cache) {
   141   if (read_cache) {
   142     oop cookie = saved_args_layout();
   143     if (cookie != NULL)  return cookie;
   144   }
   145   oop target = saved_target();
   146   oop mtype  = java_lang_invoke_MethodHandle::type(target);
   147   oop mtform = java_lang_invoke_MethodType::form(mtype);
   148   oop cookie = java_lang_invoke_MethodTypeForm::vmlayout(mtform);
   149   if (write_cache)  {
   150     (*saved_args_layout_addr()) = cookie;
   151   }
   152   return cookie;
   153 }
   155 void MethodHandles::RicochetFrame::generate_ricochet_blob(MacroAssembler* _masm,
   156                                                           // output params:
   157                                                           int* bounce_offset,
   158                                                           int* exception_offset,
   159                                                           int* frame_size_in_words) {
   160   (*frame_size_in_words) = RicochetFrame::frame_size_in_bytes() / wordSize;
   162   address start = __ pc();
   164 #ifdef ASSERT
   165   __ illtrap(0); __ illtrap(0); __ illtrap(0);
   166   // here's a hint of something special:
   167   __ set(MAGIC_NUMBER_1, G0);
   168   __ set(MAGIC_NUMBER_2, G0);
   169 #endif //ASSERT
   170   __ illtrap(0);  // not reached
   172   // Return values are in registers.
   173   // L1_continuation contains a cleanup continuation we must return
   174   // to.
   176   (*bounce_offset) = __ pc() - start;
   177   BLOCK_COMMENT("ricochet_blob.bounce");
   179   if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
   180   trace_method_handle(_masm, "ricochet_blob.bounce");
   182   __ JMP(L1_continuation, 0);
   183   __ delayed()->nop();
   184   __ illtrap(0);
   186   DEBUG_ONLY(__ set(MAGIC_NUMBER_2, G0));
   188   (*exception_offset) = __ pc() - start;
   189   BLOCK_COMMENT("ricochet_blob.exception");
   191   // compare this to Interpreter::rethrow_exception_entry, which is parallel code
   192   // for example, see TemplateInterpreterGenerator::generate_throw_exception
   193   // Live registers in:
   194   //   Oexception  (O0): exception
   195   //   Oissuing_pc (O1): return address/pc that threw exception (ignored, always equal to bounce addr)
   196   __ verify_oop(Oexception);
   198   // Take down the frame.
   200   // Cf. InterpreterMacroAssembler::remove_activation.
   201   leave_ricochet_frame(_masm, /*recv_reg=*/ noreg, I5_savedSP, I7);
   203   // We are done with this activation frame; find out where to go next.
   204   // The continuation point will be an exception handler, which expects
   205   // the following registers set up:
   206   //
   207   // Oexception: exception
   208   // Oissuing_pc: the local call that threw exception
   209   // Other On: garbage
   210   // In/Ln:  the contents of the caller's register window
   211   //
   212   // We do the required restore at the last possible moment, because we
   213   // need to preserve some state across a runtime call.
   214   // (Remember that the caller activation is unknown--it might not be
   215   // interpreted, so things like Lscratch are useless in the caller.)
   216   __ mov(Oexception,  Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
   217   __ add(I7, frame::pc_return_offset, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
   218   __ call_VM_leaf(L7_thread_cache,
   219                   CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
   220                   G2_thread, Oissuing_pc->after_save());
   222   // The caller's SP was adjusted upon method entry to accomodate
   223   // the callee's non-argument locals. Undo that adjustment.
   224   __ JMP(O0, 0);                         // return exception handler in caller
   225   __ delayed()->restore(I5_savedSP, G0, SP);
   227   // (same old exception object is already in Oexception; see above)
   228   // Note that an "issuing PC" is actually the next PC after the call
   229 }
   231 void MethodHandles::RicochetFrame::enter_ricochet_frame(MacroAssembler* _masm,
   232                                                         Register recv_reg,
   233                                                         Register argv_reg,
   234                                                         address return_handler) {
   235   // does not include the __ save()
   236   assert(argv_reg == Gargs, "");
   237   Address G3_mh_vmtarget(   recv_reg, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes());
   238   Address G3_amh_conversion(recv_reg, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes());
   240   // Create the RicochetFrame.
   241   // Unlike on x86 we can store all required information in local
   242   // registers.
   243   BLOCK_COMMENT("push RicochetFrame {");
   244   __ set(ExternalAddress(return_handler),          L1_continuation);
   245   __ load_heap_oop(G3_mh_vmtarget,                 L2_saved_target);
   246   __ mov(G0,                                       L3_saved_args_layout);
   247   __ mov(Gargs,                                    L4_saved_args_base);
   248   __ lduw(G3_amh_conversion,                       L5_conversion);  // 32-bit field
   249   // I5, I6, I7 are already set up
   250   DEBUG_ONLY(__ set((int32_t) MAGIC_NUMBER_1,      L0_magic_number_1));
   251   BLOCK_COMMENT("} RicochetFrame");
   252 }
   254 void MethodHandles::RicochetFrame::leave_ricochet_frame(MacroAssembler* _masm,
   255                                                         Register recv_reg,
   256                                                         Register new_sp_reg,
   257                                                         Register sender_pc_reg) {
   258   assert(new_sp_reg == I5_savedSP, "exact_sender_sp already in place");
   259   assert(sender_pc_reg == I7, "in a fixed place");
   260   // does not include the __ ret() & __ restore()
   261   assert_different_registers(recv_reg, new_sp_reg, sender_pc_reg);
   262   // Take down the frame.
   263   // Cf. InterpreterMacroAssembler::remove_activation.
   264   BLOCK_COMMENT("end_ricochet_frame {");
   265   if (recv_reg->is_valid())
   266     __ mov(L2_saved_target, recv_reg);
   267   BLOCK_COMMENT("} end_ricochet_frame");
   268 }
   270 // Emit code to verify that FP is pointing at a valid ricochet frame.
   271 #ifdef ASSERT
   272 enum {
   273   ARG_LIMIT = 255, SLOP = 45,
   274   // use this parameter for checking for garbage stack movements:
   275   UNREASONABLE_STACK_MOVE = (ARG_LIMIT + SLOP)
   276   // the slop defends against false alarms due to fencepost errors
   277 };
   279 void MethodHandles::RicochetFrame::verify_clean(MacroAssembler* _masm) {
   280   // The stack should look like this:
   281   //    ... keep1 | dest=42 | keep2 | magic | handler | magic | recursive args | [RF]
   282   // Check various invariants.
   284   Register O7_temp = O7, O5_temp = O5;
   286   Label L_ok_1, L_ok_2, L_ok_3, L_ok_4;
   287   BLOCK_COMMENT("verify_clean {");
   288   // Magic numbers must check out:
   289   __ set((int32_t) MAGIC_NUMBER_1, O7_temp);
   290   __ cmp(O7_temp, L0_magic_number_1);
   291   __ br(Assembler::equal, false, Assembler::pt, L_ok_1);
   292   __ delayed()->nop();
   293   __ stop("damaged ricochet frame: MAGIC_NUMBER_1 not found");
   295   __ BIND(L_ok_1);
   297   // Arguments pointer must look reasonable:
   298 #ifdef _LP64
   299   Register FP_temp = O5_temp;
   300   __ add(FP, STACK_BIAS, FP_temp);
   301 #else
   302   Register FP_temp = FP;
   303 #endif
   304   __ cmp(L4_saved_args_base, FP_temp);
   305   __ br(Assembler::greaterEqualUnsigned, false, Assembler::pt, L_ok_2);
   306   __ delayed()->nop();
   307   __ stop("damaged ricochet frame: L4 < FP");
   309   __ BIND(L_ok_2);
   310   __ sub(L4_saved_args_base, UNREASONABLE_STACK_MOVE * Interpreter::stackElementSize, O7_temp);
   311   __ cmp(O7_temp, FP_temp);
   312   __ br(Assembler::lessEqualUnsigned, false, Assembler::pt, L_ok_3);
   313   __ delayed()->nop();
   314   __ stop("damaged ricochet frame: (L4 - UNREASONABLE_STACK_MOVE) > FP");
   316   __ BIND(L_ok_3);
   317   extract_conversion_dest_type(_masm, L5_conversion, O7_temp);
   318   __ cmp(O7_temp, T_VOID);
   319   __ br(Assembler::equal, false, Assembler::pt, L_ok_4);
   320   __ delayed()->nop();
   321   extract_conversion_vminfo(_masm, L5_conversion, O5_temp);
   322   __ ld_ptr(L4_saved_args_base, __ argument_offset(O5_temp, O5_temp), O7_temp);
   323   assert(__ is_simm13(RETURN_VALUE_PLACEHOLDER), "must be simm13");
   324   __ cmp(O7_temp, (int32_t) RETURN_VALUE_PLACEHOLDER);
   325   __ brx(Assembler::equal, false, Assembler::pt, L_ok_4);
   326   __ delayed()->nop();
   327   __ stop("damaged ricochet frame: RETURN_VALUE_PLACEHOLDER not found");
   328   __ BIND(L_ok_4);
   329   BLOCK_COMMENT("} verify_clean");
   330 }
   331 #endif //ASSERT
   333 void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg, Register temp_reg, Register temp2_reg) {
   334   if (VerifyMethodHandles)
   335     verify_klass(_masm, klass_reg, SystemDictionaryHandles::Class_klass(), temp_reg, temp2_reg,
   336                  "AMH argument is a Class");
   337   __ load_heap_oop(Address(klass_reg, java_lang_Class::klass_offset_in_bytes()), klass_reg);
   338 }
   340 void MethodHandles::load_conversion_vminfo(MacroAssembler* _masm, Address conversion_field_addr, Register reg) {
   341   assert(CONV_VMINFO_SHIFT == 0, "preshifted");
   342   assert(CONV_VMINFO_MASK == right_n_bits(BitsPerByte), "else change type of following load");
   343   __ ldub(conversion_field_addr.plus_disp(BytesPerInt - 1), reg);
   344 }
   346 void MethodHandles::extract_conversion_vminfo(MacroAssembler* _masm, Register conversion_field_reg, Register reg) {
   347   assert(CONV_VMINFO_SHIFT == 0, "preshifted");
   348   __ and3(conversion_field_reg, CONV_VMINFO_MASK, reg);
   349 }
   351 void MethodHandles::extract_conversion_dest_type(MacroAssembler* _masm, Register conversion_field_reg, Register reg) {
   352   __ srl(conversion_field_reg, CONV_DEST_TYPE_SHIFT, reg);
   353   __ and3(reg, 0x0F, reg);
   354 }
   356 void MethodHandles::load_stack_move(MacroAssembler* _masm,
   357                                     Address G3_amh_conversion,
   358                                     Register stack_move_reg) {
   359   BLOCK_COMMENT("load_stack_move {");
   360   __ ldsw(G3_amh_conversion, stack_move_reg);
   361   __ sra(stack_move_reg, CONV_STACK_MOVE_SHIFT, stack_move_reg);
   362   if (VerifyMethodHandles) {
   363     Label L_ok, L_bad;
   364     int32_t stack_move_limit = 0x0800;  // extra-large
   365     __ cmp(stack_move_reg, stack_move_limit);
   366     __ br(Assembler::greaterEqual, false, Assembler::pn, L_bad);
   367     __ delayed()->nop();
   368     __ cmp(stack_move_reg, -stack_move_limit);
   369     __ br(Assembler::greater, false, Assembler::pt, L_ok);
   370     __ delayed()->nop();
   371     __ BIND(L_bad);
   372     __ stop("load_stack_move of garbage value");
   373     __ BIND(L_ok);
   374   }
   375   BLOCK_COMMENT("} load_stack_move");
   376 }
   378 #ifdef ASSERT
   379 void MethodHandles::RicochetFrame::verify() const {
   380   assert(magic_number_1() == MAGIC_NUMBER_1, "");
   381   if (!Universe::heap()->is_gc_active()) {
   382     if (saved_args_layout() != NULL) {
   383       assert(saved_args_layout()->is_method(), "must be valid oop");
   384     }
   385     if (saved_target() != NULL) {
   386       assert(java_lang_invoke_MethodHandle::is_instance(saved_target()), "checking frame value");
   387     }
   388   }
   389   int conv_op = adapter_conversion_op(conversion());
   390   assert(conv_op == java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS ||
   391          conv_op == java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS ||
   392          conv_op == java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF,
   393          "must be a sane conversion");
   394   if (has_return_value_slot()) {
   395     assert(*return_value_slot_addr() == RETURN_VALUE_PLACEHOLDER, "");
   396   }
   397 }
   399 void MethodHandles::verify_argslot(MacroAssembler* _masm, Register argslot_reg, Register temp_reg, const char* error_message) {
   400   // Verify that argslot lies within (Gargs, FP].
   401   Label L_ok, L_bad;
   402   BLOCK_COMMENT("verify_argslot {");
   403   __ add(FP, STACK_BIAS, temp_reg);  // STACK_BIAS is zero on !_LP64
   404   __ cmp(argslot_reg, temp_reg);
   405   __ brx(Assembler::greaterUnsigned, false, Assembler::pn, L_bad);
   406   __ delayed()->nop();
   407   __ cmp(Gargs, argslot_reg);
   408   __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, L_ok);
   409   __ delayed()->nop();
   410   __ BIND(L_bad);
   411   __ stop(error_message);
   412   __ BIND(L_ok);
   413   BLOCK_COMMENT("} verify_argslot");
   414 }
   416 void MethodHandles::verify_argslots(MacroAssembler* _masm,
   417                                     RegisterOrConstant arg_slots,
   418                                     Register arg_slot_base_reg,
   419                                     Register temp_reg,
   420                                     Register temp2_reg,
   421                                     bool negate_argslots,
   422                                     const char* error_message) {
   423   // Verify that [argslot..argslot+size) lies within (Gargs, FP).
   424   Label L_ok, L_bad;
   425   BLOCK_COMMENT("verify_argslots {");
   426   if (negate_argslots) {
   427     if (arg_slots.is_constant()) {
   428       arg_slots = -1 * arg_slots.as_constant();
   429     } else {
   430       __ neg(arg_slots.as_register(), temp_reg);
   431       arg_slots = temp_reg;
   432     }
   433   }
   434   __ add(arg_slot_base_reg, __ argument_offset(arg_slots, temp_reg), temp_reg);
   435   __ add(FP, STACK_BIAS, temp2_reg);  // STACK_BIAS is zero on !_LP64
   436   __ cmp(temp_reg, temp2_reg);
   437   __ brx(Assembler::greaterUnsigned, false, Assembler::pn, L_bad);
   438   __ delayed()->nop();
   439   // Gargs points to the first word so adjust by BytesPerWord
   440   __ add(arg_slot_base_reg, BytesPerWord, temp_reg);
   441   __ cmp(Gargs, temp_reg);
   442   __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, L_ok);
   443   __ delayed()->nop();
   444   __ BIND(L_bad);
   445   __ stop(error_message);
   446   __ BIND(L_ok);
   447   BLOCK_COMMENT("} verify_argslots");
   448 }
   450 // Make sure that arg_slots has the same sign as the given direction.
   451 // If (and only if) arg_slots is a assembly-time constant, also allow it to be zero.
   452 void MethodHandles::verify_stack_move(MacroAssembler* _masm,
   453                                       RegisterOrConstant arg_slots, int direction) {
   454   enum { UNREASONABLE_STACK_MOVE = 256 * 4 };  // limit of 255 arguments
   455   bool allow_zero = arg_slots.is_constant();
   456   if (direction == 0) { direction = +1; allow_zero = true; }
   457   assert(stack_move_unit() == -1, "else add extra checks here");
   458   if (arg_slots.is_register()) {
   459     Label L_ok, L_bad;
   460     BLOCK_COMMENT("verify_stack_move {");
   461     // __ btst(-stack_move_unit() - 1, arg_slots.as_register());  // no need
   462     // __ br(Assembler::notZero, false, Assembler::pn, L_bad);
   463     // __ delayed()->nop();
   464     __ cmp(arg_slots.as_register(), (int32_t) NULL_WORD);
   465     if (direction > 0) {
   466       __ br(allow_zero ? Assembler::less : Assembler::lessEqual, false, Assembler::pn, L_bad);
   467       __ delayed()->nop();
   468       __ cmp(arg_slots.as_register(), (int32_t) UNREASONABLE_STACK_MOVE);
   469       __ br(Assembler::less, false, Assembler::pn, L_ok);
   470       __ delayed()->nop();
   471     } else {
   472       __ br(allow_zero ? Assembler::greater : Assembler::greaterEqual, false, Assembler::pn, L_bad);
   473       __ delayed()->nop();
   474       __ cmp(arg_slots.as_register(), (int32_t) -UNREASONABLE_STACK_MOVE);
   475       __ br(Assembler::greater, false, Assembler::pn, L_ok);
   476       __ delayed()->nop();
   477     }
   478     __ BIND(L_bad);
   479     if (direction > 0)
   480       __ stop("assert arg_slots > 0");
   481     else
   482       __ stop("assert arg_slots < 0");
   483     __ BIND(L_ok);
   484     BLOCK_COMMENT("} verify_stack_move");
   485   } else {
   486     intptr_t size = arg_slots.as_constant();
   487     if (direction < 0)  size = -size;
   488     assert(size >= 0, "correct direction of constant move");
   489     assert(size < UNREASONABLE_STACK_MOVE, "reasonable size of constant move");
   490   }
   491 }
   493 void MethodHandles::verify_klass(MacroAssembler* _masm,
   494                                  Register obj_reg, KlassHandle klass,
   495                                  Register temp_reg, Register temp2_reg,
   496                                  const char* error_message) {
   497   oop* klass_addr = klass.raw_value();
   498   assert(klass_addr >= SystemDictionaryHandles::Object_klass().raw_value() &&
   499          klass_addr <= SystemDictionaryHandles::Long_klass().raw_value(),
   500          "must be one of the SystemDictionaryHandles");
   501   Label L_ok, L_bad;
   502   BLOCK_COMMENT("verify_klass {");
   503   __ verify_oop(obj_reg);
   504   __ br_null(obj_reg, false, Assembler::pn, L_bad);
   505   __ delayed()->nop();
   506   __ load_klass(obj_reg, temp_reg);
   507   __ set(ExternalAddress(klass_addr), temp2_reg);
   508   __ ld_ptr(Address(temp2_reg, 0), temp2_reg);
   509   __ cmp(temp_reg, temp2_reg);
   510   __ brx(Assembler::equal, false, Assembler::pt, L_ok);
   511   __ delayed()->nop();
   512   intptr_t super_check_offset = klass->super_check_offset();
   513   __ ld_ptr(Address(temp_reg, super_check_offset), temp_reg);
   514   __ set(ExternalAddress(klass_addr), temp2_reg);
   515   __ ld_ptr(Address(temp2_reg, 0), temp2_reg);
   516   __ cmp(temp_reg, temp2_reg);
   517   __ brx(Assembler::equal, false, Assembler::pt, L_ok);
   518   __ delayed()->nop();
   519   __ BIND(L_bad);
   520   __ stop(error_message);
   521   __ BIND(L_ok);
   522   BLOCK_COMMENT("} verify_klass");
   523 }
   524 #endif // ASSERT
   526 // Code generation
   527 address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
   528   // I5_savedSP/O5_savedSP: sender SP (must preserve)
   529   // G4 (Gargs): incoming argument list (must preserve)
   530   // G5_method:  invoke methodOop
   531   // G3_method_handle: receiver method handle (must load from sp[MethodTypeForm.vmslots])
   532   // O0, O1, O2, O3, O4: garbage temps, blown away
   533   Register O0_mtype   = O0;
   534   Register O1_scratch = O1;
   535   Register O2_scratch = O2;
   536   Register O3_scratch = O3;
   537   Register O4_argslot = O4;
   538   Register O4_argbase = O4;
   540   // emit WrongMethodType path first, to enable back-branch from main path
   541   Label wrong_method_type;
   542   __ bind(wrong_method_type);
   543   Label invoke_generic_slow_path;
   544   assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");;
   545   __ ldub(Address(G5_method, methodOopDesc::intrinsic_id_offset_in_bytes()), O1_scratch);
   546   __ cmp(O1_scratch, (int) vmIntrinsics::_invokeExact);
   547   __ brx(Assembler::notEqual, false, Assembler::pt, invoke_generic_slow_path);
   548   __ delayed()->nop();
   549   __ mov(O0_mtype, G5_method_type);  // required by throw_WrongMethodType
   550   // mov(G3_method_handle, G3_method_handle);  // already in this register
   551   __ jump_to(AddressLiteral(Interpreter::throw_WrongMethodType_entry()), O1_scratch);
   552   __ delayed()->nop();
   554   // here's where control starts out:
   555   __ align(CodeEntryAlignment);
   556   address entry_point = __ pc();
   558   // fetch the MethodType from the method handle
   559   // FIXME: Interpreter should transmit pre-popped stack pointer, to locate base of arg list.
   560   // This would simplify several touchy bits of code.
   561   // See 6984712: JSR 292 method handle calls need a clean argument base pointer
   562   {
   563     Register tem = G5_method;
   564     for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
   565       __ ld_ptr(Address(tem, *pchase), O0_mtype);
   566       tem = O0_mtype;          // in case there is another indirection
   567     }
   568   }
   570   // given the MethodType, find out where the MH argument is buried
   571   __ load_heap_oop(Address(O0_mtype,   __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes,        O1_scratch)), O4_argslot);
   572   __ ldsw(         Address(O4_argslot, __ delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, O1_scratch)), O4_argslot);
   573   __ add(__ argument_address(O4_argslot, O4_argslot, 1), O4_argbase);
   574   // Note: argument_address uses its input as a scratch register!
   575   Address mh_receiver_slot_addr(O4_argbase, -Interpreter::stackElementSize);
   576   __ ld_ptr(mh_receiver_slot_addr, G3_method_handle);
   578   trace_method_handle(_masm, "invokeExact");
   580   __ check_method_handle_type(O0_mtype, G3_method_handle, O1_scratch, wrong_method_type);
   582   // Nobody uses the MH receiver slot after this.  Make sure.
   583   DEBUG_ONLY(__ set((int32_t) 0x999999, O1_scratch); __ st_ptr(O1_scratch, mh_receiver_slot_addr));
   585   __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
   587   // for invokeGeneric (only), apply argument and result conversions on the fly
   588   __ bind(invoke_generic_slow_path);
   589 #ifdef ASSERT
   590   if (VerifyMethodHandles) {
   591     Label L;
   592     __ ldub(Address(G5_method, methodOopDesc::intrinsic_id_offset_in_bytes()), O1_scratch);
   593     __ cmp(O1_scratch, (int) vmIntrinsics::_invokeGeneric);
   594     __ brx(Assembler::equal, false, Assembler::pt, L);
   595     __ delayed()->nop();
   596     __ stop("bad methodOop::intrinsic_id");
   597     __ bind(L);
   598   }
   599 #endif //ASSERT
   601   // make room on the stack for another pointer:
   602   insert_arg_slots(_masm, 2 * stack_move_unit(), O4_argbase, O1_scratch, O2_scratch, O3_scratch);
   603   // load up an adapter from the calling type (Java weaves this)
   604   Register O2_form    = O2_scratch;
   605   Register O3_adapter = O3_scratch;
   606   __ load_heap_oop(Address(O0_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes,               O1_scratch)), O2_form);
   607   __ load_heap_oop(Address(O2_form,  __ delayed_value(java_lang_invoke_MethodTypeForm::genericInvoker_offset_in_bytes, O1_scratch)), O3_adapter);
   608   __ verify_oop(O3_adapter);
   609   __ st_ptr(O3_adapter, Address(O4_argbase, 1 * Interpreter::stackElementSize));
   610   // As a trusted first argument, pass the type being called, so the adapter knows
   611   // the actual types of the arguments and return values.
   612   // (Generic invokers are shared among form-families of method-type.)
   613   __ st_ptr(O0_mtype,   Address(O4_argbase, 0 * Interpreter::stackElementSize));
   614   // FIXME: assert that O3_adapter is of the right method-type.
   615   __ mov(O3_adapter, G3_method_handle);
   616   trace_method_handle(_masm, "invokeGeneric");
   617   __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
   619   return entry_point;
   620 }
   622 // Workaround for C++ overloading nastiness on '0' for RegisterOrConstant.
   623 static RegisterOrConstant constant(int value) {
   624   return RegisterOrConstant(value);
   625 }
   627 static void load_vmargslot(MacroAssembler* _masm, Address vmargslot_addr, Register result) {
   628   __ ldsw(vmargslot_addr, result);
   629 }
   631 static RegisterOrConstant adjust_SP_and_Gargs_down_by_slots(MacroAssembler* _masm,
   632                                                             RegisterOrConstant arg_slots,
   633                                                             Register temp_reg, Register temp2_reg) {
   634   // Keep the stack pointer 2*wordSize aligned.
   635   const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1);
   636   if (arg_slots.is_constant()) {
   637     const int        offset = arg_slots.as_constant() << LogBytesPerWord;
   638     const int masked_offset = round_to(offset, 2 * BytesPerWord);
   639     const int masked_offset2 = (offset + 1*BytesPerWord) & ~TwoWordAlignmentMask;
   640     assert(masked_offset == masked_offset2, "must agree");
   641     __ sub(Gargs,        offset, Gargs);
   642     __ sub(SP,    masked_offset, SP   );
   643     return offset;
   644   } else {
   645 #ifdef ASSERT
   646     {
   647       Label L_ok;
   648       __ cmp(arg_slots.as_register(), 0);
   649       __ br(Assembler::greaterEqual, false, Assembler::pt, L_ok);
   650       __ delayed()->nop();
   651       __ stop("negative arg_slots");
   652       __ bind(L_ok);
   653     }
   654 #endif
   655     __ sll_ptr(arg_slots.as_register(), LogBytesPerWord, temp_reg);
   656     __ add( temp_reg,  1*BytesPerWord,       temp2_reg);
   657     __ andn(temp2_reg, TwoWordAlignmentMask, temp2_reg);
   658     __ sub(Gargs, temp_reg,  Gargs);
   659     __ sub(SP,    temp2_reg, SP   );
   660     return temp_reg;
   661   }
   662 }
   664 static RegisterOrConstant adjust_SP_and_Gargs_up_by_slots(MacroAssembler* _masm,
   665                                                           RegisterOrConstant arg_slots,
   666                                                           Register temp_reg, Register temp2_reg) {
   667   // Keep the stack pointer 2*wordSize aligned.
   668   const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1);
   669   if (arg_slots.is_constant()) {
   670     const int        offset = arg_slots.as_constant() << LogBytesPerWord;
   671     const int masked_offset = offset & ~TwoWordAlignmentMask;
   672     __ add(Gargs,        offset, Gargs);
   673     __ add(SP,    masked_offset, SP   );
   674     return offset;
   675   } else {
   676     __ sll_ptr(arg_slots.as_register(), LogBytesPerWord, temp_reg);
   677     __ andn(temp_reg, TwoWordAlignmentMask, temp2_reg);
   678     __ add(Gargs, temp_reg,  Gargs);
   679     __ add(SP,    temp2_reg, SP   );
   680     return temp_reg;
   681   }
   682 }
   684 // Helper to insert argument slots into the stack.
   685 // arg_slots must be a multiple of stack_move_unit() and < 0
   686 // argslot_reg is decremented to point to the new (shifted) location of the argslot
   687 // But, temp_reg ends up holding the original value of argslot_reg.
   688 void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
   689                                      RegisterOrConstant arg_slots,
   690                                      Register argslot_reg,
   691                                      Register temp_reg, Register temp2_reg, Register temp3_reg) {
   692   // allow constant zero
   693   if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
   694     return;
   696   assert_different_registers(argslot_reg, temp_reg, temp2_reg, temp3_reg,
   697                              (!arg_slots.is_register() ? Gargs : arg_slots.as_register()));
   699   BLOCK_COMMENT("insert_arg_slots {");
   700   if (VerifyMethodHandles)
   701     verify_argslot(_masm, argslot_reg, temp_reg, "insertion point must fall within current frame");
   702   if (VerifyMethodHandles)
   703     verify_stack_move(_masm, arg_slots, -1);
   705   // Make space on the stack for the inserted argument(s).
   706   // Then pull down everything shallower than argslot_reg.
   707   // The stacked return address gets pulled down with everything else.
   708   // That is, copy [sp, argslot) downward by -size words.  In pseudo-code:
   709   //   sp -= size;
   710   //   for (temp = sp + size; temp < argslot; temp++)
   711   //     temp[-size] = temp[0]
   712   //   argslot -= size;
   714   // offset is temp3_reg in case of arg_slots being a register.
   715   RegisterOrConstant offset = adjust_SP_and_Gargs_up_by_slots(_masm, arg_slots, temp3_reg, temp_reg);
   716   __ sub(Gargs, offset, temp_reg);  // source pointer for copy
   718   {
   719     Label loop;
   720     __ BIND(loop);
   721     // pull one word down each time through the loop
   722     __ ld_ptr(           Address(temp_reg, 0     ), temp2_reg);
   723     __ st_ptr(temp2_reg, Address(temp_reg, offset)           );
   724     __ add(temp_reg, wordSize, temp_reg);
   725     __ cmp(temp_reg, argslot_reg);
   726     __ brx(Assembler::lessUnsigned, false, Assembler::pt, loop);
   727     __ delayed()->nop();  // FILLME
   728   }
   730   // Now move the argslot down, to point to the opened-up space.
   731   __ add(argslot_reg, offset, argslot_reg);
   732   BLOCK_COMMENT("} insert_arg_slots");
   733 }
   736 // Helper to remove argument slots from the stack.
   737 // arg_slots must be a multiple of stack_move_unit() and > 0
   738 void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
   739                                      RegisterOrConstant arg_slots,
   740                                      Register argslot_reg,
   741                                      Register temp_reg, Register temp2_reg, Register temp3_reg) {
   742   // allow constant zero
   743   if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
   744     return;
   745   assert_different_registers(argslot_reg, temp_reg, temp2_reg, temp3_reg,
   746                              (!arg_slots.is_register() ? Gargs : arg_slots.as_register()));
   748   BLOCK_COMMENT("remove_arg_slots {");
   749   if (VerifyMethodHandles)
   750     verify_argslots(_masm, arg_slots, argslot_reg, temp_reg, temp2_reg, false,
   751                     "deleted argument(s) must fall within current frame");
   752   if (VerifyMethodHandles)
   753     verify_stack_move(_masm, arg_slots, +1);
   755   // Pull up everything shallower than argslot.
   756   // Then remove the excess space on the stack.
   757   // The stacked return address gets pulled up with everything else.
   758   // That is, copy [sp, argslot) upward by size words.  In pseudo-code:
   759   //   for (temp = argslot-1; temp >= sp; --temp)
   760   //     temp[size] = temp[0]
   761   //   argslot += size;
   762   //   sp += size;
   764   RegisterOrConstant offset = __ regcon_sll_ptr(arg_slots, LogBytesPerWord, temp3_reg);
   765   __ sub(argslot_reg, wordSize, temp_reg);  // source pointer for copy
   767   {
   768     Label L_loop;
   769     __ BIND(L_loop);
   770     // pull one word up each time through the loop
   771     __ ld_ptr(           Address(temp_reg, 0     ), temp2_reg);
   772     __ st_ptr(temp2_reg, Address(temp_reg, offset)           );
   773     __ sub(temp_reg, wordSize, temp_reg);
   774     __ cmp(temp_reg, Gargs);
   775     __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, L_loop);
   776     __ delayed()->nop();  // FILLME
   777   }
   779   // And adjust the argslot address to point at the deletion point.
   780   __ add(argslot_reg, offset, argslot_reg);
   782   // We don't need the offset at this point anymore, just adjust SP and Gargs.
   783   (void) adjust_SP_and_Gargs_up_by_slots(_masm, arg_slots, temp3_reg, temp_reg);
   785   BLOCK_COMMENT("} remove_arg_slots");
   786 }
   788 // Helper to copy argument slots to the top of the stack.
   789 // The sequence starts with argslot_reg and is counted by slot_count
   790 // slot_count must be a multiple of stack_move_unit() and >= 0
   791 // This function blows the temps but does not change argslot_reg.
   792 void MethodHandles::push_arg_slots(MacroAssembler* _masm,
   793                                    Register argslot_reg,
   794                                    RegisterOrConstant slot_count,
   795                                    Register temp_reg, Register temp2_reg) {
   796   // allow constant zero
   797   if (slot_count.is_constant() && slot_count.as_constant() == 0)
   798     return;
   799   assert_different_registers(argslot_reg, temp_reg, temp2_reg,
   800                              (!slot_count.is_register() ? Gargs : slot_count.as_register()),
   801                              SP);
   802   assert(Interpreter::stackElementSize == wordSize, "else change this code");
   804   BLOCK_COMMENT("push_arg_slots {");
   805   if (VerifyMethodHandles)
   806     verify_stack_move(_masm, slot_count, 0);
   808   RegisterOrConstant offset = adjust_SP_and_Gargs_down_by_slots(_masm, slot_count, temp2_reg, temp_reg);
   810   if (slot_count.is_constant()) {
   811     for (int i = slot_count.as_constant() - 1; i >= 0; i--) {
   812       __ ld_ptr(          Address(argslot_reg, i * wordSize), temp_reg);
   813       __ st_ptr(temp_reg, Address(Gargs,       i * wordSize));
   814     }
   815   } else {
   816     Label L_plural, L_loop, L_break;
   817     // Emit code to dynamically check for the common cases, zero and one slot.
   818     __ cmp(slot_count.as_register(), (int32_t) 1);
   819     __ br(Assembler::greater, false, Assembler::pn, L_plural);
   820     __ delayed()->nop();
   821     __ br(Assembler::less, false, Assembler::pn, L_break);
   822     __ delayed()->nop();
   823     __ ld_ptr(          Address(argslot_reg, 0), temp_reg);
   824     __ st_ptr(temp_reg, Address(Gargs,       0));
   825     __ ba(false, L_break);
   826     __ delayed()->nop();  // FILLME
   827     __ BIND(L_plural);
   829     // Loop for 2 or more:
   830     //   top = &argslot[slot_count]
   831     //   while (top > argslot)  *(--Gargs) = *(--top)
   832     Register top_reg = temp_reg;
   833     __ add(argslot_reg, offset, top_reg);
   834     __ add(Gargs,       offset, Gargs  );  // move back up again so we can go down
   835     __ BIND(L_loop);
   836     __ sub(top_reg, wordSize, top_reg);
   837     __ sub(Gargs,   wordSize, Gargs  );
   838     __ ld_ptr(           Address(top_reg, 0), temp2_reg);
   839     __ st_ptr(temp2_reg, Address(Gargs,   0));
   840     __ cmp(top_reg, argslot_reg);
   841     __ brx(Assembler::greaterUnsigned, false, Assembler::pt, L_loop);
   842     __ delayed()->nop();  // FILLME
   843     __ BIND(L_break);
   844   }
   845   BLOCK_COMMENT("} push_arg_slots");
   846 }
   848 // in-place movement; no change to Gargs
   849 // blows temp_reg, temp2_reg
   850 void MethodHandles::move_arg_slots_up(MacroAssembler* _masm,
   851                                       Register bottom_reg,  // invariant
   852                                       Address  top_addr,    // can use temp_reg
   853                                       RegisterOrConstant positive_distance_in_slots,  // destroyed if register
   854                                       Register temp_reg, Register temp2_reg) {
   855   assert_different_registers(bottom_reg,
   856                              temp_reg, temp2_reg,
   857                              positive_distance_in_slots.register_or_noreg());
   858   BLOCK_COMMENT("move_arg_slots_up {");
   859   Label L_loop, L_break;
   860   Register top_reg = temp_reg;
   861   if (!top_addr.is_same_address(Address(top_reg, 0))) {
   862     __ add(top_addr, top_reg);
   863   }
   864   // Detect empty (or broken) loop:
   865 #ifdef ASSERT
   866   if (VerifyMethodHandles) {
   867     // Verify that &bottom < &top (non-empty interval)
   868     Label L_ok, L_bad;
   869     if (positive_distance_in_slots.is_register()) {
   870       __ cmp(positive_distance_in_slots.as_register(), (int32_t) 0);
   871       __ br(Assembler::lessEqual, false, Assembler::pn, L_bad);
   872       __ delayed()->nop();
   873     }
   874     __ cmp(bottom_reg, top_reg);
   875     __ brx(Assembler::lessUnsigned, false, Assembler::pt, L_ok);
   876     __ delayed()->nop();
   877     __ BIND(L_bad);
   878     __ stop("valid bounds (copy up)");
   879     __ BIND(L_ok);
   880   }
   881 #endif
   882   __ cmp(bottom_reg, top_reg);
   883   __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pn, L_break);
   884   __ delayed()->nop();
   885   // work top down to bottom, copying contiguous data upwards
   886   // In pseudo-code:
   887   //   while (--top >= bottom) *(top + distance) = *(top + 0);
   888   RegisterOrConstant offset = __ argument_offset(positive_distance_in_slots, positive_distance_in_slots.register_or_noreg());
   889   __ BIND(L_loop);
   890   __ sub(top_reg, wordSize, top_reg);
   891   __ ld_ptr(           Address(top_reg, 0     ), temp2_reg);
   892   __ st_ptr(temp2_reg, Address(top_reg, offset)           );
   893   __ cmp(top_reg, bottom_reg);
   894   __ brx(Assembler::greaterUnsigned, false, Assembler::pt, L_loop);
   895   __ delayed()->nop();  // FILLME
   896   assert(Interpreter::stackElementSize == wordSize, "else change loop");
   897   __ BIND(L_break);
   898   BLOCK_COMMENT("} move_arg_slots_up");
   899 }
   901 // in-place movement; no change to rsp
   902 // blows temp_reg, temp2_reg
   903 void MethodHandles::move_arg_slots_down(MacroAssembler* _masm,
   904                                         Address  bottom_addr,  // can use temp_reg
   905                                         Register top_reg,      // invariant
   906                                         RegisterOrConstant negative_distance_in_slots,  // destroyed if register
   907                                         Register temp_reg, Register temp2_reg) {
   908   assert_different_registers(top_reg,
   909                              negative_distance_in_slots.register_or_noreg(),
   910                              temp_reg, temp2_reg);
   911   BLOCK_COMMENT("move_arg_slots_down {");
   912   Label L_loop, L_break;
   913   Register bottom_reg = temp_reg;
   914   if (!bottom_addr.is_same_address(Address(bottom_reg, 0))) {
   915     __ add(bottom_addr, bottom_reg);
   916   }
   917   // Detect empty (or broken) loop:
   918 #ifdef ASSERT
   919   assert(!negative_distance_in_slots.is_constant() || negative_distance_in_slots.as_constant() < 0, "");
   920   if (VerifyMethodHandles) {
   921     // Verify that &bottom < &top (non-empty interval)
   922     Label L_ok, L_bad;
   923     if (negative_distance_in_slots.is_register()) {
   924       __ cmp(negative_distance_in_slots.as_register(), (int32_t) 0);
   925       __ br(Assembler::greaterEqual, false, Assembler::pn, L_bad);
   926       __ delayed()->nop();
   927     }
   928     __ cmp(bottom_reg, top_reg);
   929     __ brx(Assembler::lessUnsigned, false, Assembler::pt, L_ok);
   930     __ delayed()->nop();
   931     __ BIND(L_bad);
   932     __ stop("valid bounds (copy down)");
   933     __ BIND(L_ok);
   934   }
   935 #endif
   936   __ cmp(bottom_reg, top_reg);
   937   __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pn, L_break);
   938   __ delayed()->nop();
   939   // work bottom up to top, copying contiguous data downwards
   940   // In pseudo-code:
   941   //   while (bottom < top) *(bottom - distance) = *(bottom + 0), bottom++;
   942   RegisterOrConstant offset = __ argument_offset(negative_distance_in_slots, negative_distance_in_slots.register_or_noreg());
   943   __ BIND(L_loop);
   944   __ ld_ptr(           Address(bottom_reg, 0     ), temp2_reg);
   945   __ st_ptr(temp2_reg, Address(bottom_reg, offset)           );
   946   __ add(bottom_reg, wordSize, bottom_reg);
   947   __ cmp(bottom_reg, top_reg);
   948   __ brx(Assembler::lessUnsigned, false, Assembler::pt, L_loop);
   949   __ delayed()->nop();  // FILLME
   950   assert(Interpreter::stackElementSize == wordSize, "else change loop");
   951   __ BIND(L_break);
   952   BLOCK_COMMENT("} move_arg_slots_down");
   953 }
   955 // Copy from a field or array element to a stacked argument slot.
   956 // is_element (ignored) says whether caller is loading an array element instead of an instance field.
   957 void MethodHandles::move_typed_arg(MacroAssembler* _masm,
   958                                    BasicType type, bool is_element,
   959                                    Address value_src, Address slot_dest,
   960                                    Register temp_reg) {
   961   assert(!slot_dest.uses(temp_reg), "must be different register");
   962   BLOCK_COMMENT(!is_element ? "move_typed_arg {" : "move_typed_arg { (array element)");
   963   if (type == T_OBJECT || type == T_ARRAY) {
   964     __ load_heap_oop(value_src, temp_reg);
   965     __ verify_oop(temp_reg);
   966     __ st_ptr(temp_reg, slot_dest);
   967   } else if (type != T_VOID) {
   968     int  arg_size      = type2aelembytes(type);
   969     bool arg_is_signed = is_signed_subword_type(type);
   970     int  slot_size     = is_subword_type(type) ? type2aelembytes(T_INT) : arg_size;  // store int sub-words as int
   971     __ load_sized_value( value_src, temp_reg, arg_size, arg_is_signed);
   972     __ store_sized_value(temp_reg, slot_dest, slot_size              );
   973   }
   974   BLOCK_COMMENT("} move_typed_arg");
   975 }
   977 // Cf. TemplateInterpreterGenerator::generate_return_entry_for and
   978 // InterpreterMacroAssembler::save_return_value
   979 void MethodHandles::move_return_value(MacroAssembler* _masm, BasicType type,
   980                                       Address return_slot) {
   981   BLOCK_COMMENT("move_return_value {");
   982   // Look at the type and pull the value out of the corresponding register.
   983   if (type == T_VOID) {
   984     // nothing to do
   985   } else if (type == T_OBJECT) {
   986     __ verify_oop(O0);
   987     __ st_ptr(O0, return_slot);
   988   } else if (type == T_INT || is_subword_type(type)) {
   989     int type_size = type2aelembytes(T_INT);
   990     __ store_sized_value(O0, return_slot, type_size);
   991   } else if (type == T_LONG) {
   992     // store the value by parts
   993     // Note: We assume longs are continguous (if misaligned) on the interpreter stack.
   994 #if !defined(_LP64) && defined(COMPILER2)
   995     __ stx(G1, return_slot);
   996 #else
   997   #ifdef _LP64
   998     __ stx(O0, return_slot);
   999   #else
  1000     if (return_slot.has_disp()) {
  1001       // The displacement is a constant
  1002       __ st(O0, return_slot);
  1003       __ st(O1, return_slot.plus_disp(Interpreter::stackElementSize));
  1004     } else {
  1005       __ std(O0, return_slot);
  1007   #endif
  1008 #endif
  1009   } else if (type == T_FLOAT) {
  1010     __ stf(FloatRegisterImpl::S, Ftos_f, return_slot);
  1011   } else if (type == T_DOUBLE) {
  1012     __ stf(FloatRegisterImpl::D, Ftos_f, return_slot);
  1013   } else {
  1014     ShouldNotReachHere();
  1016   BLOCK_COMMENT("} move_return_value");
  1019 #ifndef PRODUCT
  1020 extern "C" void print_method_handle(oop mh);
  1021 void trace_method_handle_stub(const char* adaptername,
  1022                               oopDesc* mh,
  1023                               intptr_t* saved_sp) {
  1024   bool has_mh = (strstr(adaptername, "return/") == NULL);  // return adapters don't have mh
  1025   tty->print_cr("MH %s mh="INTPTR_FORMAT " saved_sp=" INTPTR_FORMAT, adaptername, (intptr_t) mh, saved_sp);
  1026   if (has_mh)
  1027     print_method_handle(mh);
  1029 void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) {
  1030   if (!TraceMethodHandles)  return;
  1031   BLOCK_COMMENT("trace_method_handle {");
  1032   // save: Gargs, O5_savedSP
  1033   __ save_frame(16);
  1034   __ set((intptr_t) adaptername, O0);
  1035   __ mov(G3_method_handle, O1);
  1036   __ mov(I5_savedSP, O2);
  1037   __ mov(G3_method_handle, L3);
  1038   __ mov(Gargs, L4);
  1039   __ mov(G5_method_type, L5);
  1040   __ call_VM_leaf(L7, CAST_FROM_FN_PTR(address, trace_method_handle_stub));
  1042   __ mov(L3, G3_method_handle);
  1043   __ mov(L4, Gargs);
  1044   __ mov(L5, G5_method_type);
  1045   __ restore();
  1046   BLOCK_COMMENT("} trace_method_handle");
  1048 #endif // PRODUCT
  1050 // which conversion op types are implemented here?
  1051 int MethodHandles::adapter_conversion_ops_supported_mask() {
  1052   return ((1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_ONLY)
  1053          |(1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_RAW)
  1054          |(1<<java_lang_invoke_AdapterMethodHandle::OP_CHECK_CAST)
  1055          |(1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_PRIM)
  1056          |(1<<java_lang_invoke_AdapterMethodHandle::OP_REF_TO_PRIM)
  1057           // OP_PRIM_TO_REF is below...
  1058          |(1<<java_lang_invoke_AdapterMethodHandle::OP_SWAP_ARGS)
  1059          |(1<<java_lang_invoke_AdapterMethodHandle::OP_ROT_ARGS)
  1060          |(1<<java_lang_invoke_AdapterMethodHandle::OP_DUP_ARGS)
  1061          |(1<<java_lang_invoke_AdapterMethodHandle::OP_DROP_ARGS)
  1062           // OP_COLLECT_ARGS is below...
  1063          |(1<<java_lang_invoke_AdapterMethodHandle::OP_SPREAD_ARGS)
  1064          |(!UseRicochetFrames ? 0 :
  1065            java_lang_invoke_MethodTypeForm::vmlayout_offset_in_bytes() <= 0 ? 0 :
  1066            ((1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF)
  1067            |(1<<java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS)
  1068            |(1<<java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS)
  1071          );
  1074 //------------------------------------------------------------------------------
  1075 // MethodHandles::generate_method_handle_stub
  1076 //
  1077 // Generate an "entry" field for a method handle.
  1078 // This determines how the method handle will respond to calls.
  1079 void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
  1080   MethodHandles::EntryKind ek_orig = ek_original_kind(ek);
  1082   // Here is the register state during an interpreted call,
  1083   // as set up by generate_method_handle_interpreter_entry():
  1084   // - G5: garbage temp (was MethodHandle.invoke methodOop, unused)
  1085   // - G3: receiver method handle
  1086   // - O5_savedSP: sender SP (must preserve)
  1088   const Register O0_scratch = O0;
  1089   const Register O1_scratch = O1;
  1090   const Register O2_scratch = O2;
  1091   const Register O3_scratch = O3;
  1092   const Register O4_scratch = O4;
  1093   const Register G5_scratch = G5;
  1095   // Often used names:
  1096   const Register O0_argslot = O0;
  1098   // Argument registers for _raise_exception:
  1099   const Register O0_code     = O0;
  1100   const Register O1_actual   = O1;
  1101   const Register O2_required = O2;
  1103   guarantee(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
  1105   // Some handy addresses:
  1106   Address G5_method_fie(    G5_method,        in_bytes(methodOopDesc::from_interpreted_offset()));
  1107   Address G5_method_fce(    G5_method,        in_bytes(methodOopDesc::from_compiled_offset()));
  1109   Address G3_mh_vmtarget(   G3_method_handle, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes());
  1111   Address G3_dmh_vmindex(   G3_method_handle, java_lang_invoke_DirectMethodHandle::vmindex_offset_in_bytes());
  1113   Address G3_bmh_vmargslot( G3_method_handle, java_lang_invoke_BoundMethodHandle::vmargslot_offset_in_bytes());
  1114   Address G3_bmh_argument(  G3_method_handle, java_lang_invoke_BoundMethodHandle::argument_offset_in_bytes());
  1116   Address G3_amh_vmargslot( G3_method_handle, java_lang_invoke_AdapterMethodHandle::vmargslot_offset_in_bytes());
  1117   Address G3_amh_argument ( G3_method_handle, java_lang_invoke_AdapterMethodHandle::argument_offset_in_bytes());
  1118   Address G3_amh_conversion(G3_method_handle, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes());
  1120   const int java_mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
  1122   if (have_entry(ek)) {
  1123     __ nop();  // empty stubs make SG sick
  1124     return;
  1127   address interp_entry = __ pc();
  1129   trace_method_handle(_masm, entry_name(ek));
  1131   BLOCK_COMMENT(err_msg("Entry %s {", entry_name(ek)));
  1133   switch ((int) ek) {
  1134   case _raise_exception:
  1136       // Not a real MH entry, but rather shared code for raising an
  1137       // exception.  Since we use the compiled entry, arguments are
  1138       // expected in compiler argument registers.
  1139       assert(raise_exception_method(), "must be set");
  1140       assert(raise_exception_method()->from_compiled_entry(), "method must be linked");
  1142       __ mov(O5_savedSP, SP);  // Cut the stack back to where the caller started.
  1144       Label L_no_method;
  1145       // FIXME: fill in _raise_exception_method with a suitable java.lang.invoke method
  1146       __ set(AddressLiteral((address) &_raise_exception_method), G5_method);
  1147       __ ld_ptr(Address(G5_method, 0), G5_method);
  1148       __ tst(G5_method);
  1149       __ brx(Assembler::zero, false, Assembler::pn, L_no_method);
  1150       __ delayed()->nop();
  1152       const int jobject_oop_offset = 0;
  1153       __ ld_ptr(Address(G5_method, jobject_oop_offset), G5_method);
  1154       __ tst(G5_method);
  1155       __ brx(Assembler::zero, false, Assembler::pn, L_no_method);
  1156       __ delayed()->nop();
  1158       __ verify_oop(G5_method);
  1159       __ jump_indirect_to(G5_method_fce, O3_scratch);  // jump to compiled entry
  1160       __ delayed()->nop();
  1162       // Do something that is at least causes a valid throw from the interpreter.
  1163       __ bind(L_no_method);
  1164       __ unimplemented("call throw_WrongMethodType_entry");
  1166     break;
  1168   case _invokestatic_mh:
  1169   case _invokespecial_mh:
  1171       __ load_heap_oop(G3_mh_vmtarget, G5_method);  // target is a methodOop
  1172       __ verify_oop(G5_method);
  1173       // Same as TemplateTable::invokestatic or invokespecial,
  1174       // minus the CP setup and profiling:
  1175       if (ek == _invokespecial_mh) {
  1176         // Must load & check the first argument before entering the target method.
  1177         __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
  1178         __ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle);
  1179         __ null_check(G3_method_handle);
  1180         __ verify_oop(G3_method_handle);
  1182       __ jump_indirect_to(G5_method_fie, O1_scratch);
  1183       __ delayed()->nop();
  1185     break;
  1187   case _invokevirtual_mh:
  1189       // Same as TemplateTable::invokevirtual,
  1190       // minus the CP setup and profiling:
  1192       // Pick out the vtable index and receiver offset from the MH,
  1193       // and then we can discard it:
  1194       Register O2_index = O2_scratch;
  1195       __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
  1196       __ ldsw(G3_dmh_vmindex, O2_index);
  1197       // Note:  The verifier allows us to ignore G3_mh_vmtarget.
  1198       __ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle);
  1199       __ null_check(G3_method_handle, oopDesc::klass_offset_in_bytes());
  1201       // Get receiver klass:
  1202       Register O0_klass = O0_argslot;
  1203       __ load_klass(G3_method_handle, O0_klass);
  1204       __ verify_oop(O0_klass);
  1206       // Get target methodOop & entry point:
  1207       const int base = instanceKlass::vtable_start_offset() * wordSize;
  1208       assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  1210       __ sll_ptr(O2_index, LogBytesPerWord, O2_index);
  1211       __ add(O0_klass, O2_index, O0_klass);
  1212       Address vtable_entry_addr(O0_klass, base + vtableEntry::method_offset_in_bytes());
  1213       __ ld_ptr(vtable_entry_addr, G5_method);
  1215       __ verify_oop(G5_method);
  1216       __ jump_indirect_to(G5_method_fie, O1_scratch);
  1217       __ delayed()->nop();
  1219     break;
  1221   case _invokeinterface_mh:
  1223       // Same as TemplateTable::invokeinterface,
  1224       // minus the CP setup and profiling:
  1225       __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
  1226       Register O1_intf  = O1_scratch;
  1227       Register G5_index = G5_scratch;
  1228       __ load_heap_oop(G3_mh_vmtarget, O1_intf);
  1229       __ ldsw(G3_dmh_vmindex, G5_index);
  1230       __ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle);
  1231       __ null_check(G3_method_handle, oopDesc::klass_offset_in_bytes());
  1233       // Get receiver klass:
  1234       Register O0_klass = O0_argslot;
  1235       __ load_klass(G3_method_handle, O0_klass);
  1236       __ verify_oop(O0_klass);
  1238       // Get interface:
  1239       Label no_such_interface;
  1240       __ verify_oop(O1_intf);
  1241       __ lookup_interface_method(O0_klass, O1_intf,
  1242                                  // Note: next two args must be the same:
  1243                                  G5_index, G5_method,
  1244                                  O2_scratch,
  1245                                  O3_scratch,
  1246                                  no_such_interface);
  1248       __ verify_oop(G5_method);
  1249       __ jump_indirect_to(G5_method_fie, O1_scratch);
  1250       __ delayed()->nop();
  1252       __ bind(no_such_interface);
  1253       // Throw an exception.
  1254       // For historical reasons, it will be IncompatibleClassChangeError.
  1255       __ unimplemented("not tested yet");
  1256       __ ld_ptr(Address(O1_intf, java_mirror_offset), O2_required);  // required interface
  1257       __ mov(   O0_klass,                             O1_actual);    // bad receiver
  1258       __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
  1259       __ delayed()->mov(Bytecodes::_invokeinterface,  O0_code);      // who is complaining?
  1261     break;
  1263   case _bound_ref_mh:
  1264   case _bound_int_mh:
  1265   case _bound_long_mh:
  1266   case _bound_ref_direct_mh:
  1267   case _bound_int_direct_mh:
  1268   case _bound_long_direct_mh:
  1270       const bool direct_to_method = (ek >= _bound_ref_direct_mh);
  1271       BasicType arg_type  = ek_bound_mh_arg_type(ek);
  1272       int       arg_slots = type2size[arg_type];
  1274       // Make room for the new argument:
  1275       load_vmargslot(_masm, G3_bmh_vmargslot, O0_argslot);
  1276       __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
  1278       insert_arg_slots(_masm, arg_slots * stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
  1280       // Store bound argument into the new stack slot:
  1281       __ load_heap_oop(G3_bmh_argument, O1_scratch);
  1282       if (arg_type == T_OBJECT) {
  1283         __ st_ptr(O1_scratch, Address(O0_argslot, 0));
  1284       } else {
  1285         Address prim_value_addr(O1_scratch, java_lang_boxing_object::value_offset_in_bytes(arg_type));
  1286         move_typed_arg(_masm, arg_type, false,
  1287                        prim_value_addr,
  1288                        Address(O0_argslot, 0),
  1289                        O2_scratch);  // must be an even register for !_LP64 long moves (uses O2/O3)
  1292       if (direct_to_method) {
  1293         __ load_heap_oop(G3_mh_vmtarget, G5_method);  // target is a methodOop
  1294         __ verify_oop(G5_method);
  1295         __ jump_indirect_to(G5_method_fie, O1_scratch);
  1296         __ delayed()->nop();
  1297       } else {
  1298         __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);  // target is a methodOop
  1299         __ verify_oop(G3_method_handle);
  1300         __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1303     break;
  1305   case _adapter_retype_only:
  1306   case _adapter_retype_raw:
  1307     // Immediately jump to the next MH layer:
  1308     __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  1309     __ verify_oop(G3_method_handle);
  1310     __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1311     // This is OK when all parameter types widen.
  1312     // It is also OK when a return type narrows.
  1313     break;
  1315   case _adapter_check_cast:
  1317       // Check a reference argument before jumping to the next layer of MH:
  1318       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
  1319       Address vmarg = __ argument_address(O0_argslot, O0_argslot);
  1321       // What class are we casting to?
  1322       Register O1_klass = O1_scratch;  // Interesting AMH data.
  1323       __ load_heap_oop(G3_amh_argument, O1_klass);  // This is a Class object!
  1324       load_klass_from_Class(_masm, O1_klass, O2_scratch, O3_scratch);
  1326       Label L_done;
  1327       __ ld_ptr(vmarg, O2_scratch);
  1328       __ tst(O2_scratch);
  1329       __ brx(Assembler::zero, false, Assembler::pn, L_done);  // No cast if null.
  1330       __ delayed()->nop();
  1331       __ load_klass(O2_scratch, O2_scratch);
  1333       // Live at this point:
  1334       // - O0_argslot      :  argslot index in vmarg; may be required in the failing path
  1335       // - O1_klass        :  klass required by the target method
  1336       // - O2_scratch      :  argument klass to test
  1337       // - G3_method_handle:  adapter method handle
  1338       __ check_klass_subtype(O2_scratch, O1_klass, O3_scratch, O4_scratch, L_done);
  1340       // If we get here, the type check failed!
  1341       __ load_heap_oop(G3_amh_argument,        O2_required);  // required class
  1342       __ ld_ptr(       vmarg,                  O1_actual);    // bad object
  1343       __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
  1344       __ delayed()->mov(Bytecodes::_checkcast, O0_code);      // who is complaining?
  1346       __ BIND(L_done);
  1347       // Get the new MH:
  1348       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  1349       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1351     break;
  1353   case _adapter_prim_to_prim:
  1354   case _adapter_ref_to_prim:
  1355     // Handled completely by optimized cases.
  1356     __ stop("init_AdapterMethodHandle should not issue this");
  1357     break;
  1359   case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
  1360 //case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
  1361   case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
  1362   case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
  1364       // Perform an in-place conversion to int or an int subword.
  1365       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
  1366       Address value;
  1367       Address vmarg;
  1368       bool value_left_justified = false;
  1370       switch (ek) {
  1371       case _adapter_opt_i2i:
  1372         value = vmarg = __ argument_address(O0_argslot, O0_argslot);
  1373         break;
  1374       case _adapter_opt_l2i:
  1376           // just delete the extra slot
  1377 #ifdef _LP64
  1378           // In V9, longs are given 2 64-bit slots in the interpreter, but the
  1379           // data is passed in only 1 slot.
  1380           // Keep the second slot.
  1381           __ add(__ argument_address(O0_argslot, O0_argslot, -1), O0_argslot);
  1382           remove_arg_slots(_masm, -stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
  1383           value = Address(O0_argslot, 4);  // Get least-significant 32-bit of 64-bit value.
  1384           vmarg = Address(O0_argslot, Interpreter::stackElementSize);
  1385 #else
  1386           // Keep the first slot.
  1387           __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
  1388           remove_arg_slots(_masm, -stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
  1389           value = Address(O0_argslot, 0);
  1390           vmarg = value;
  1391 #endif
  1393         break;
  1394       case _adapter_opt_unboxi:
  1396           vmarg = __ argument_address(O0_argslot, O0_argslot);
  1397           // Load the value up from the heap.
  1398           __ ld_ptr(vmarg, O1_scratch);
  1399           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
  1400 #ifdef ASSERT
  1401           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
  1402             if (is_subword_type(BasicType(bt)))
  1403               assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
  1405 #endif
  1406           __ null_check(O1_scratch, value_offset);
  1407           value = Address(O1_scratch, value_offset);
  1408 #ifdef _BIG_ENDIAN
  1409           // Values stored in objects are packed.
  1410           value_left_justified = true;
  1411 #endif
  1413         break;
  1414       default:
  1415         ShouldNotReachHere();
  1418       // This check is required on _BIG_ENDIAN
  1419       Register G5_vminfo = G5_scratch;
  1420       __ ldsw(G3_amh_conversion, G5_vminfo);
  1421       assert(CONV_VMINFO_SHIFT == 0, "preshifted");
  1423       // Original 32-bit vmdata word must be of this form:
  1424       // | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
  1425       __ lduw(value, O1_scratch);
  1426       if (!value_left_justified)
  1427         __ sll(O1_scratch, G5_vminfo, O1_scratch);
  1428       Label zero_extend, done;
  1429       __ btst(CONV_VMINFO_SIGN_FLAG, G5_vminfo);
  1430       __ br(Assembler::zero, false, Assembler::pn, zero_extend);
  1431       __ delayed()->nop();
  1433       // this path is taken for int->byte, int->short
  1434       __ sra(O1_scratch, G5_vminfo, O1_scratch);
  1435       __ ba(false, done);
  1436       __ delayed()->nop();
  1438       __ bind(zero_extend);
  1439       // this is taken for int->char
  1440       __ srl(O1_scratch, G5_vminfo, O1_scratch);
  1442       __ bind(done);
  1443       __ st(O1_scratch, vmarg);
  1445       // Get the new MH:
  1446       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  1447       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1449     break;
  1451   case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
  1452   case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
  1454       // Perform an in-place int-to-long or ref-to-long conversion.
  1455       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
  1457       // On big-endian machine we duplicate the slot and store the MSW
  1458       // in the first slot.
  1459       __ add(__ argument_address(O0_argslot, O0_argslot, 1), O0_argslot);
  1461       insert_arg_slots(_masm, stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
  1463       Address arg_lsw(O0_argslot, 0);
  1464       Address arg_msw(O0_argslot, -Interpreter::stackElementSize);
  1466       switch (ek) {
  1467       case _adapter_opt_i2l:
  1469 #ifdef _LP64
  1470           __ ldsw(arg_lsw, O2_scratch);                 // Load LSW sign-extended
  1471 #else
  1472           __ ldsw(arg_lsw, O3_scratch);                 // Load LSW sign-extended
  1473           __ srlx(O3_scratch, BitsPerInt, O2_scratch);  // Move MSW value to lower 32-bits for std
  1474 #endif
  1475           __ st_long(O2_scratch, arg_msw);              // Uses O2/O3 on !_LP64
  1477         break;
  1478       case _adapter_opt_unboxl:
  1480           // Load the value up from the heap.
  1481           __ ld_ptr(arg_lsw, O1_scratch);
  1482           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
  1483           assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
  1484           __ null_check(O1_scratch, value_offset);
  1485           __ ld_long(Address(O1_scratch, value_offset), O2_scratch);  // Uses O2/O3 on !_LP64
  1486           __ st_long(O2_scratch, arg_msw);
  1488         break;
  1489       default:
  1490         ShouldNotReachHere();
  1493       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  1494       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1496     break;
  1498   case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
  1499   case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
  1501       // perform an in-place floating primitive conversion
  1502       __ unimplemented(entry_name(ek));
  1504     break;
  1506   case _adapter_prim_to_ref:
  1507     __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
  1508     break;
  1510   case _adapter_swap_args:
  1511   case _adapter_rot_args:
  1512     // handled completely by optimized cases
  1513     __ stop("init_AdapterMethodHandle should not issue this");
  1514     break;
  1516   case _adapter_opt_swap_1:
  1517   case _adapter_opt_swap_2:
  1518   case _adapter_opt_rot_1_up:
  1519   case _adapter_opt_rot_1_down:
  1520   case _adapter_opt_rot_2_up:
  1521   case _adapter_opt_rot_2_down:
  1523       int swap_slots = ek_adapter_opt_swap_slots(ek);
  1524       int rotate     = ek_adapter_opt_swap_mode(ek);
  1526       // 'argslot' is the position of the first argument to swap.
  1527       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
  1528       __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
  1529       if (VerifyMethodHandles)
  1530         verify_argslot(_masm, O0_argslot, O2_scratch, "swap point must fall within current frame");
  1532       // 'vminfo' is the second.
  1533       Register O1_destslot = O1_scratch;
  1534       load_conversion_vminfo(_masm, G3_amh_conversion, O1_destslot);
  1535       __ add(__ argument_address(O1_destslot, O1_destslot), O1_destslot);
  1536       if (VerifyMethodHandles)
  1537         verify_argslot(_masm, O1_destslot, O2_scratch, "swap point must fall within current frame");
  1539       assert(Interpreter::stackElementSize == wordSize, "else rethink use of wordSize here");
  1540       if (!rotate) {
  1541         // simple swap
  1542         for (int i = 0; i < swap_slots; i++) {
  1543           __ ld_ptr(            Address(O0_argslot,  i * wordSize), O2_scratch);
  1544           __ ld_ptr(            Address(O1_destslot, i * wordSize), O3_scratch);
  1545           __ st_ptr(O3_scratch, Address(O0_argslot,  i * wordSize));
  1546           __ st_ptr(O2_scratch, Address(O1_destslot, i * wordSize));
  1548       } else {
  1549         // A rotate is actually pair of moves, with an "odd slot" (or pair)
  1550         // changing place with a series of other slots.
  1551         // First, push the "odd slot", which is going to get overwritten
  1552         switch (swap_slots) {
  1553         case 2 :  __ ld_ptr(Address(O0_argslot, 1 * wordSize), O4_scratch); // fall-thru
  1554         case 1 :  __ ld_ptr(Address(O0_argslot, 0 * wordSize), O3_scratch); break;
  1555         default:  ShouldNotReachHere();
  1557         if (rotate > 0) {
  1558           // Here is rotate > 0:
  1559           // (low mem)                                          (high mem)
  1560           //     | dest:     more_slots...     | arg: odd_slot :arg+1 |
  1561           // =>
  1562           //     | dest: odd_slot | dest+1: more_slots...      :arg+1 |
  1563           // work argslot down to destslot, copying contiguous data upwards
  1564           // pseudo-code:
  1565           //   argslot  = src_addr - swap_bytes
  1566           //   destslot = dest_addr
  1567           //   while (argslot >= destslot) *(argslot + swap_bytes) = *(argslot + 0), argslot--;
  1568           move_arg_slots_up(_masm,
  1569                             O1_destslot,
  1570                             Address(O0_argslot, 0),
  1571                             swap_slots,
  1572                             O0_argslot, O2_scratch);
  1573         } else {
  1574           // Here is the other direction, rotate < 0:
  1575           // (low mem)                                          (high mem)
  1576           //     | arg: odd_slot | arg+1: more_slots...       :dest+1 |
  1577           // =>
  1578           //     | arg:    more_slots...     | dest: odd_slot :dest+1 |
  1579           // work argslot up to destslot, copying contiguous data downwards
  1580           // pseudo-code:
  1581           //   argslot  = src_addr + swap_bytes
  1582           //   destslot = dest_addr
  1583           //   while (argslot <= destslot) *(argslot - swap_bytes) = *(argslot + 0), argslot++;
  1584           // dest_slot denotes an exclusive upper limit
  1585           int limit_bias = OP_ROT_ARGS_DOWN_LIMIT_BIAS;
  1586           if (limit_bias != 0)
  1587             __ add(O1_destslot, - limit_bias * wordSize, O1_destslot);
  1588           move_arg_slots_down(_masm,
  1589                               Address(O0_argslot, swap_slots * wordSize),
  1590                               O1_destslot,
  1591                               -swap_slots,
  1592                               O0_argslot, O2_scratch);
  1594           __ sub(O1_destslot, swap_slots * wordSize, O1_destslot);
  1596         // pop the original first chunk into the destination slot, now free
  1597         switch (swap_slots) {
  1598         case 2 :  __ st_ptr(O4_scratch, Address(O1_destslot, 1 * wordSize)); // fall-thru
  1599         case 1 :  __ st_ptr(O3_scratch, Address(O1_destslot, 0 * wordSize)); break;
  1600         default:  ShouldNotReachHere();
  1604       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  1605       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1607     break;
  1609   case _adapter_dup_args:
  1611       // 'argslot' is the position of the first argument to duplicate.
  1612       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
  1613       __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
  1615       // 'stack_move' is negative number of words to duplicate.
  1616       Register O1_stack_move = O1_scratch;
  1617       load_stack_move(_masm, G3_amh_conversion, O1_stack_move);
  1619       if (VerifyMethodHandles) {
  1620         verify_argslots(_masm, O1_stack_move, O0_argslot, O2_scratch, O3_scratch, true,
  1621                         "copied argument(s) must fall within current frame");
  1624       // insert location is always the bottom of the argument list:
  1625       __ neg(O1_stack_move);
  1626       push_arg_slots(_masm, O0_argslot, O1_stack_move, O2_scratch, O3_scratch);
  1628       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  1629       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1631     break;
  1633   case _adapter_drop_args:
  1635       // 'argslot' is the position of the first argument to nuke.
  1636       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
  1637       __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
  1639       // 'stack_move' is number of words to drop.
  1640       Register O1_stack_move = O1_scratch;
  1641       load_stack_move(_masm, G3_amh_conversion, O1_stack_move);
  1643       remove_arg_slots(_masm, O1_stack_move, O0_argslot, O2_scratch, O3_scratch, O4_scratch);
  1645       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  1646       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1648     break;
  1650   case _adapter_collect_args:
  1651   case _adapter_fold_args:
  1652   case _adapter_spread_args:
  1653     // Handled completely by optimized cases.
  1654     __ stop("init_AdapterMethodHandle should not issue this");
  1655     break;
  1657   case _adapter_opt_collect_ref:
  1658   case _adapter_opt_collect_int:
  1659   case _adapter_opt_collect_long:
  1660   case _adapter_opt_collect_float:
  1661   case _adapter_opt_collect_double:
  1662   case _adapter_opt_collect_void:
  1663   case _adapter_opt_collect_0_ref:
  1664   case _adapter_opt_collect_1_ref:
  1665   case _adapter_opt_collect_2_ref:
  1666   case _adapter_opt_collect_3_ref:
  1667   case _adapter_opt_collect_4_ref:
  1668   case _adapter_opt_collect_5_ref:
  1669   case _adapter_opt_filter_S0_ref:
  1670   case _adapter_opt_filter_S1_ref:
  1671   case _adapter_opt_filter_S2_ref:
  1672   case _adapter_opt_filter_S3_ref:
  1673   case _adapter_opt_filter_S4_ref:
  1674   case _adapter_opt_filter_S5_ref:
  1675   case _adapter_opt_collect_2_S0_ref:
  1676   case _adapter_opt_collect_2_S1_ref:
  1677   case _adapter_opt_collect_2_S2_ref:
  1678   case _adapter_opt_collect_2_S3_ref:
  1679   case _adapter_opt_collect_2_S4_ref:
  1680   case _adapter_opt_collect_2_S5_ref:
  1681   case _adapter_opt_fold_ref:
  1682   case _adapter_opt_fold_int:
  1683   case _adapter_opt_fold_long:
  1684   case _adapter_opt_fold_float:
  1685   case _adapter_opt_fold_double:
  1686   case _adapter_opt_fold_void:
  1687   case _adapter_opt_fold_1_ref:
  1688   case _adapter_opt_fold_2_ref:
  1689   case _adapter_opt_fold_3_ref:
  1690   case _adapter_opt_fold_4_ref:
  1691   case _adapter_opt_fold_5_ref:
  1693       // Given a fresh incoming stack frame, build a new ricochet frame.
  1694       // On entry, TOS points at a return PC, and FP is the callers frame ptr.
  1695       // RSI/R13 has the caller's exact stack pointer, which we must also preserve.
  1696       // RCX contains an AdapterMethodHandle of the indicated kind.
  1698       // Relevant AMH fields:
  1699       // amh.vmargslot:
  1700       //   points to the trailing edge of the arguments
  1701       //   to filter, collect, or fold.  For a boxing operation,
  1702       //   it points just after the single primitive value.
  1703       // amh.argument:
  1704       //   recursively called MH, on |collect| arguments
  1705       // amh.vmtarget:
  1706       //   final destination MH, on return value, etc.
  1707       // amh.conversion.dest:
  1708       //   tells what is the type of the return value
  1709       //   (not needed here, since dest is also derived from ek)
  1710       // amh.conversion.vminfo:
  1711       //   points to the trailing edge of the return value
  1712       //   when the vmtarget is to be called; this is
  1713       //   equal to vmargslot + (retained ? |collect| : 0)
  1715       // Pass 0 or more argument slots to the recursive target.
  1716       int collect_count_constant = ek_adapter_opt_collect_count(ek);
  1718       // The collected arguments are copied from the saved argument list:
  1719       int collect_slot_constant = ek_adapter_opt_collect_slot(ek);
  1721       assert(ek_orig == _adapter_collect_args ||
  1722              ek_orig == _adapter_fold_args, "");
  1723       bool retain_original_args = (ek_orig == _adapter_fold_args);
  1725       // The return value is replaced (or inserted) at the 'vminfo' argslot.
  1726       // Sometimes we can compute this statically.
  1727       int dest_slot_constant = -1;
  1728       if (!retain_original_args)
  1729         dest_slot_constant = collect_slot_constant;
  1730       else if (collect_slot_constant >= 0 && collect_count_constant >= 0)
  1731         // We are preserving all the arguments, and the return value is prepended,
  1732         // so the return slot is to the left (above) the |collect| sequence.
  1733         dest_slot_constant = collect_slot_constant + collect_count_constant;
  1735       // Replace all those slots by the result of the recursive call.
  1736       // The result type can be one of ref, int, long, float, double, void.
  1737       // In the case of void, nothing is pushed on the stack after return.
  1738       BasicType dest = ek_adapter_opt_collect_type(ek);
  1739       assert(dest == type2wfield[dest], "dest is a stack slot type");
  1740       int dest_count = type2size[dest];
  1741       assert(dest_count == 1 || dest_count == 2 || (dest_count == 0 && dest == T_VOID), "dest has a size");
  1743       // Choose a return continuation.
  1744       EntryKind ek_ret = _adapter_opt_return_any;
  1745       if (dest != T_CONFLICT && OptimizeMethodHandles) {
  1746         switch (dest) {
  1747         case T_INT    : ek_ret = _adapter_opt_return_int;     break;
  1748         case T_LONG   : ek_ret = _adapter_opt_return_long;    break;
  1749         case T_FLOAT  : ek_ret = _adapter_opt_return_float;   break;
  1750         case T_DOUBLE : ek_ret = _adapter_opt_return_double;  break;
  1751         case T_OBJECT : ek_ret = _adapter_opt_return_ref;     break;
  1752         case T_VOID   : ek_ret = _adapter_opt_return_void;    break;
  1753         default       : ShouldNotReachHere();
  1755         if (dest == T_OBJECT && dest_slot_constant >= 0) {
  1756           EntryKind ek_try = EntryKind(_adapter_opt_return_S0_ref + dest_slot_constant);
  1757           if (ek_try <= _adapter_opt_return_LAST &&
  1758               ek_adapter_opt_return_slot(ek_try) == dest_slot_constant) {
  1759             ek_ret = ek_try;
  1762         assert(ek_adapter_opt_return_type(ek_ret) == dest, "");
  1765       // Already pushed:  ... keep1 | collect | keep2 |
  1767       // Push a few extra argument words, if we need them to store the return value.
  1769         int extra_slots = 0;
  1770         if (retain_original_args) {
  1771           extra_slots = dest_count;
  1772         } else if (collect_count_constant == -1) {
  1773           extra_slots = dest_count;  // collect_count might be zero; be generous
  1774         } else if (dest_count > collect_count_constant) {
  1775           extra_slots = (dest_count - collect_count_constant);
  1776         } else {
  1777           // else we know we have enough dead space in |collect| to repurpose for return values
  1779         if (extra_slots != 0) {
  1780           __ sub(SP, round_to(extra_slots, 2) * Interpreter::stackElementSize, SP);
  1784       // Set up Ricochet Frame.
  1785       __ mov(SP, O5_savedSP);  // record SP for the callee
  1787       // One extra (empty) slot for outgoing target MH (see Gargs computation below).
  1788       __ save_frame(2);  // Note: we need to add 2 slots since frame::memory_parameter_word_sp_offset is 23.
  1790       // Note: Gargs is live throughout the following, until we make our recursive call.
  1791       // And the RF saves a copy in L4_saved_args_base.
  1793       RicochetFrame::enter_ricochet_frame(_masm, G3_method_handle, Gargs,
  1794                                           entry(ek_ret)->from_interpreted_entry());
  1796       // Compute argument base:
  1797       // Set up Gargs for current frame, extra (empty) slot is for outgoing target MH (space reserved by save_frame above).
  1798       __ add(FP, STACK_BIAS - (1 * Interpreter::stackElementSize), Gargs);
  1800       // Now pushed:  ... keep1 | collect | keep2 | extra | [RF]
  1802 #ifdef ASSERT
  1803       if (VerifyMethodHandles && dest != T_CONFLICT) {
  1804         BLOCK_COMMENT("verify AMH.conv.dest {");
  1805         extract_conversion_dest_type(_masm, RicochetFrame::L5_conversion, O1_scratch);
  1806         Label L_dest_ok;
  1807         __ cmp(O1_scratch, (int) dest);
  1808         __ br(Assembler::equal, false, Assembler::pt, L_dest_ok);
  1809         __ delayed()->nop();
  1810         if (dest == T_INT) {
  1811           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
  1812             if (is_subword_type(BasicType(bt))) {
  1813               __ cmp(O1_scratch, (int) bt);
  1814               __ br(Assembler::equal, false, Assembler::pt, L_dest_ok);
  1815               __ delayed()->nop();
  1819         __ stop("bad dest in AMH.conv");
  1820         __ BIND(L_dest_ok);
  1821         BLOCK_COMMENT("} verify AMH.conv.dest");
  1823 #endif //ASSERT
  1825       // Find out where the original copy of the recursive argument sequence begins.
  1826       Register O0_coll = O0_scratch;
  1828         RegisterOrConstant collect_slot = collect_slot_constant;
  1829         if (collect_slot_constant == -1) {
  1830           load_vmargslot(_masm, G3_amh_vmargslot, O1_scratch);
  1831           collect_slot = O1_scratch;
  1833         // collect_slot might be 0, but we need the move anyway.
  1834         __ add(RicochetFrame::L4_saved_args_base, __ argument_offset(collect_slot, collect_slot.register_or_noreg()), O0_coll);
  1835         // O0_coll now points at the trailing edge of |collect| and leading edge of |keep2|
  1838       // Replace the old AMH with the recursive MH.  (No going back now.)
  1839       // In the case of a boxing call, the recursive call is to a 'boxer' method,
  1840       // such as Integer.valueOf or Long.valueOf.  In the case of a filter
  1841       // or collect call, it will take one or more arguments, transform them,
  1842       // and return some result, to store back into argument_base[vminfo].
  1843       __ load_heap_oop(G3_amh_argument, G3_method_handle);
  1844       if (VerifyMethodHandles)  verify_method_handle(_masm, G3_method_handle, O1_scratch, O2_scratch);
  1846       // Calculate |collect|, the number of arguments we are collecting.
  1847       Register O1_collect_count = O1_scratch;
  1848       RegisterOrConstant collect_count;
  1849       if (collect_count_constant < 0) {
  1850         __ load_method_handle_vmslots(O1_collect_count, G3_method_handle, O2_scratch);
  1851         collect_count = O1_collect_count;
  1852       } else {
  1853         collect_count = collect_count_constant;
  1854 #ifdef ASSERT
  1855         if (VerifyMethodHandles) {
  1856           BLOCK_COMMENT("verify collect_count_constant {");
  1857           __ load_method_handle_vmslots(O3_scratch, G3_method_handle, O2_scratch);
  1858           Label L_count_ok;
  1859           __ cmp(O3_scratch, collect_count_constant);
  1860           __ br(Assembler::equal, false, Assembler::pt, L_count_ok);
  1861           __ delayed()->nop();
  1862           __ stop("bad vminfo in AMH.conv");
  1863           __ BIND(L_count_ok);
  1864           BLOCK_COMMENT("} verify collect_count_constant");
  1866 #endif //ASSERT
  1869       // copy |collect| slots directly to TOS:
  1870       push_arg_slots(_masm, O0_coll, collect_count, O2_scratch, O3_scratch);
  1871       // Now pushed:  ... keep1 | collect | keep2 | RF... | collect |
  1872       // O0_coll still points at the trailing edge of |collect| and leading edge of |keep2|
  1874       // If necessary, adjust the saved arguments to make room for the eventual return value.
  1875       // Normal adjustment:  ... keep1 | +dest+ | -collect- | keep2 | RF... | collect |
  1876       // If retaining args:  ... keep1 | +dest+ |  collect  | keep2 | RF... | collect |
  1877       // In the non-retaining case, this might move keep2 either up or down.
  1878       // We don't have to copy the whole | RF... collect | complex,
  1879       // but we must adjust RF.saved_args_base.
  1880       // Also, from now on, we will forget about the original copy of |collect|.
  1881       // If we are retaining it, we will treat it as part of |keep2|.
  1882       // For clarity we will define |keep3| = |collect|keep2| or |keep2|.
  1884       BLOCK_COMMENT("adjust trailing arguments {");
  1885       // Compare the sizes of |+dest+| and |-collect-|, which are opposed opening and closing movements.
  1886       int                open_count  = dest_count;
  1887       RegisterOrConstant close_count = collect_count_constant;
  1888       Register O1_close_count = O1_collect_count;
  1889       if (retain_original_args) {
  1890         close_count = constant(0);
  1891       } else if (collect_count_constant == -1) {
  1892         close_count = O1_collect_count;
  1895       // How many slots need moving?  This is simply dest_slot (0 => no |keep3|).
  1896       RegisterOrConstant keep3_count;
  1897       Register O2_keep3_count = O2_scratch;
  1898       if (dest_slot_constant < 0) {
  1899         extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O2_keep3_count);
  1900         keep3_count = O2_keep3_count;
  1901       } else  {
  1902         keep3_count = dest_slot_constant;
  1903 #ifdef ASSERT
  1904         if (VerifyMethodHandles && dest_slot_constant < 0) {
  1905           BLOCK_COMMENT("verify dest_slot_constant {");
  1906           extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O3_scratch);
  1907           Label L_vminfo_ok;
  1908           __ cmp(O3_scratch, dest_slot_constant);
  1909           __ br(Assembler::equal, false, Assembler::pt, L_vminfo_ok);
  1910           __ delayed()->nop();
  1911           __ stop("bad vminfo in AMH.conv");
  1912           __ BIND(L_vminfo_ok);
  1913           BLOCK_COMMENT("} verify dest_slot_constant");
  1915 #endif //ASSERT
  1918       // tasks remaining:
  1919       bool move_keep3 = (!keep3_count.is_constant() || keep3_count.as_constant() != 0);
  1920       bool stomp_dest = (NOT_DEBUG(dest == T_OBJECT) DEBUG_ONLY(dest_count != 0));
  1921       bool fix_arg_base = (!close_count.is_constant() || open_count != close_count.as_constant());
  1923       // Old and new argument locations (based at slot 0).
  1924       // Net shift (&new_argv - &old_argv) is (close_count - open_count).
  1925       bool zero_open_count = (open_count == 0);  // remember this bit of info
  1926       if (move_keep3 && fix_arg_base) {
  1927         // It will be easier to have everything in one register:
  1928         if (close_count.is_register()) {
  1929           // Deduct open_count from close_count register to get a clean +/- value.
  1930           __ sub(close_count.as_register(), open_count, close_count.as_register());
  1931         } else {
  1932           close_count = close_count.as_constant() - open_count;
  1934         open_count = 0;
  1936       Register L4_old_argv = RicochetFrame::L4_saved_args_base;
  1937       Register O3_new_argv = O3_scratch;
  1938       if (fix_arg_base) {
  1939         __ add(L4_old_argv, __ argument_offset(close_count, O4_scratch), O3_new_argv,
  1940                -(open_count * Interpreter::stackElementSize));
  1943       // First decide if any actual data are to be moved.
  1944       // We can skip if (a) |keep3| is empty, or (b) the argument list size didn't change.
  1945       // (As it happens, all movements involve an argument list size change.)
  1947       // If there are variable parameters, use dynamic checks to skip around the whole mess.
  1948       Label L_done;
  1949       if (keep3_count.is_register()) {
  1950         __ tst(keep3_count.as_register());
  1951         __ br(Assembler::zero, false, Assembler::pn, L_done);
  1952         __ delayed()->nop();
  1954       if (close_count.is_register()) {
  1955         __ cmp(close_count.as_register(), open_count);
  1956         __ br(Assembler::equal, false, Assembler::pn, L_done);
  1957         __ delayed()->nop();
  1960       if (move_keep3 && fix_arg_base) {
  1961         bool emit_move_down = false, emit_move_up = false, emit_guard = false;
  1962         if (!close_count.is_constant()) {
  1963           emit_move_down = emit_guard = !zero_open_count;
  1964           emit_move_up   = true;
  1965         } else if (open_count != close_count.as_constant()) {
  1966           emit_move_down = (open_count > close_count.as_constant());
  1967           emit_move_up   = !emit_move_down;
  1969         Label L_move_up;
  1970         if (emit_guard) {
  1971           __ cmp(close_count.as_register(), open_count);
  1972           __ br(Assembler::greater, false, Assembler::pn, L_move_up);
  1973           __ delayed()->nop();
  1976         if (emit_move_down) {
  1977           // Move arguments down if |+dest+| > |-collect-|
  1978           // (This is rare, except when arguments are retained.)
  1979           // This opens space for the return value.
  1980           if (keep3_count.is_constant()) {
  1981             for (int i = 0; i < keep3_count.as_constant(); i++) {
  1982               __ ld_ptr(            Address(L4_old_argv, i * Interpreter::stackElementSize), O4_scratch);
  1983               __ st_ptr(O4_scratch, Address(O3_new_argv, i * Interpreter::stackElementSize)            );
  1985           } else {
  1986             // Live: O1_close_count, O2_keep3_count, O3_new_argv
  1987             Register argv_top = O0_scratch;
  1988             __ add(L4_old_argv, __ argument_offset(keep3_count, O4_scratch), argv_top);
  1989             move_arg_slots_down(_masm,
  1990                                 Address(L4_old_argv, 0),  // beginning of old argv
  1991                                 argv_top,                 // end of old argv
  1992                                 close_count,              // distance to move down (must be negative)
  1993                                 O4_scratch, G5_scratch);
  1997         if (emit_guard) {
  1998           __ ba(false, L_done);  // assumes emit_move_up is true also
  1999           __ delayed()->nop();
  2000           __ BIND(L_move_up);
  2003         if (emit_move_up) {
  2004           // Move arguments up if |+dest+| < |-collect-|
  2005           // (This is usual, except when |keep3| is empty.)
  2006           // This closes up the space occupied by the now-deleted collect values.
  2007           if (keep3_count.is_constant()) {
  2008             for (int i = keep3_count.as_constant() - 1; i >= 0; i--) {
  2009               __ ld_ptr(            Address(L4_old_argv, i * Interpreter::stackElementSize), O4_scratch);
  2010               __ st_ptr(O4_scratch, Address(O3_new_argv, i * Interpreter::stackElementSize)            );
  2012           } else {
  2013             Address argv_top(L4_old_argv, __ argument_offset(keep3_count, O4_scratch));
  2014             // Live: O1_close_count, O2_keep3_count, O3_new_argv
  2015             move_arg_slots_up(_masm,
  2016                               L4_old_argv,  // beginning of old argv
  2017                               argv_top,     // end of old argv
  2018                               close_count,  // distance to move up (must be positive)
  2019                               O4_scratch, G5_scratch);
  2023       __ BIND(L_done);
  2025       if (fix_arg_base) {
  2026         // adjust RF.saved_args_base
  2027         __ mov(O3_new_argv, RicochetFrame::L4_saved_args_base);
  2030       if (stomp_dest) {
  2031         // Stomp the return slot, so it doesn't hold garbage.
  2032         // This isn't strictly necessary, but it may help detect bugs.
  2033         __ set(RicochetFrame::RETURN_VALUE_PLACEHOLDER, O4_scratch);
  2034         __ st_ptr(O4_scratch, Address(RicochetFrame::L4_saved_args_base,
  2035                                       __ argument_offset(keep3_count, keep3_count.register_or_noreg())));  // uses O2_keep3_count
  2037       BLOCK_COMMENT("} adjust trailing arguments");
  2039       BLOCK_COMMENT("do_recursive_call");
  2040       __ mov(SP, O5_savedSP);  // record SP for the callee
  2041       __ set(ExternalAddress(SharedRuntime::ricochet_blob()->bounce_addr() - frame::pc_return_offset), O7);
  2042       // The globally unique bounce address has two purposes:
  2043       // 1. It helps the JVM recognize this frame (frame::is_ricochet_frame).
  2044       // 2. When returned to, it cuts back the stack and redirects control flow
  2045       //    to the return handler.
  2046       // The return handler will further cut back the stack when it takes
  2047       // down the RF.  Perhaps there is a way to streamline this further.
  2049       // State during recursive call:
  2050       // ... keep1 | dest | dest=42 | keep3 | RF... | collect | bounce_pc |
  2051       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  2053     break;
  2055   case _adapter_opt_return_ref:
  2056   case _adapter_opt_return_int:
  2057   case _adapter_opt_return_long:
  2058   case _adapter_opt_return_float:
  2059   case _adapter_opt_return_double:
  2060   case _adapter_opt_return_void:
  2061   case _adapter_opt_return_S0_ref:
  2062   case _adapter_opt_return_S1_ref:
  2063   case _adapter_opt_return_S2_ref:
  2064   case _adapter_opt_return_S3_ref:
  2065   case _adapter_opt_return_S4_ref:
  2066   case _adapter_opt_return_S5_ref:
  2068       BasicType dest_type_constant = ek_adapter_opt_return_type(ek);
  2069       int       dest_slot_constant = ek_adapter_opt_return_slot(ek);
  2071       if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
  2073       if (dest_slot_constant == -1) {
  2074         // The current stub is a general handler for this dest_type.
  2075         // It can be called from _adapter_opt_return_any below.
  2076         // Stash the address in a little table.
  2077         assert((dest_type_constant & CONV_TYPE_MASK) == dest_type_constant, "oob");
  2078         address return_handler = __ pc();
  2079         _adapter_return_handlers[dest_type_constant] = return_handler;
  2080         if (dest_type_constant == T_INT) {
  2081           // do the subword types too
  2082           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
  2083             if (is_subword_type(BasicType(bt)) &&
  2084                 _adapter_return_handlers[bt] == NULL) {
  2085               _adapter_return_handlers[bt] = return_handler;
  2091       // On entry to this continuation handler, make Gargs live again.
  2092       __ mov(RicochetFrame::L4_saved_args_base, Gargs);
  2094       Register O7_temp   = O7;
  2095       Register O5_vminfo = O5;
  2097       RegisterOrConstant dest_slot = dest_slot_constant;
  2098       if (dest_slot_constant == -1) {
  2099         extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O5_vminfo);
  2100         dest_slot = O5_vminfo;
  2102       // Store the result back into the argslot.
  2103       // This code uses the interpreter calling sequence, in which the return value
  2104       // is usually left in the TOS register, as defined by InterpreterMacroAssembler::pop.
  2105       // There are certain irregularities with floating point values, which can be seen
  2106       // in TemplateInterpreterGenerator::generate_return_entry_for.
  2107       move_return_value(_masm, dest_type_constant, __ argument_address(dest_slot, O7_temp));
  2109       RicochetFrame::leave_ricochet_frame(_masm, G3_method_handle, I5_savedSP, I7);
  2111       // Load the final target and go.
  2112       if (VerifyMethodHandles)  verify_method_handle(_masm, G3_method_handle, O0_scratch, O1_scratch);
  2113       __ restore(I5_savedSP, G0, SP);
  2114       __ jump_to_method_handle_entry(G3_method_handle, O0_scratch);
  2115       __ illtrap(0);
  2117     break;
  2119   case _adapter_opt_return_any:
  2121       Register O7_temp      = O7;
  2122       Register O5_dest_type = O5;
  2124       if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
  2125       extract_conversion_dest_type(_masm, RicochetFrame::L5_conversion, O5_dest_type);
  2126       __ set(ExternalAddress((address) &_adapter_return_handlers[0]), O7_temp);
  2127       __ sll_ptr(O5_dest_type, LogBytesPerWord, O5_dest_type);
  2128       __ ld_ptr(O7_temp, O5_dest_type, O7_temp);
  2130 #ifdef ASSERT
  2131       { Label L_ok;
  2132         __ br_notnull(O7_temp, false, Assembler::pt, L_ok);
  2133         __ delayed()->nop();
  2134         __ stop("bad method handle return");
  2135         __ BIND(L_ok);
  2137 #endif //ASSERT
  2138       __ JMP(O7_temp, 0);
  2139       __ delayed()->nop();
  2141     break;
  2143   case _adapter_opt_spread_0:
  2144   case _adapter_opt_spread_1_ref:
  2145   case _adapter_opt_spread_2_ref:
  2146   case _adapter_opt_spread_3_ref:
  2147   case _adapter_opt_spread_4_ref:
  2148   case _adapter_opt_spread_5_ref:
  2149   case _adapter_opt_spread_ref:
  2150   case _adapter_opt_spread_byte:
  2151   case _adapter_opt_spread_char:
  2152   case _adapter_opt_spread_short:
  2153   case _adapter_opt_spread_int:
  2154   case _adapter_opt_spread_long:
  2155   case _adapter_opt_spread_float:
  2156   case _adapter_opt_spread_double:
  2158       // spread an array out into a group of arguments
  2159       int  length_constant    = ek_adapter_opt_spread_count(ek);
  2160       bool length_can_be_zero = (length_constant == 0);
  2161       if (length_constant < 0) {
  2162         // some adapters with variable length must handle the zero case
  2163         if (!OptimizeMethodHandles ||
  2164             ek_adapter_opt_spread_type(ek) != T_OBJECT)
  2165           length_can_be_zero = true;
  2168       // find the address of the array argument
  2169       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
  2170       __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
  2172       // O0_argslot points both to the array and to the first output arg
  2173       Address vmarg = Address(O0_argslot, 0);
  2175       // Get the array value.
  2176       Register  O1_array       = O1_scratch;
  2177       Register  O2_array_klass = O2_scratch;
  2178       BasicType elem_type      = ek_adapter_opt_spread_type(ek);
  2179       int       elem_slots     = type2size[elem_type];  // 1 or 2
  2180       int       array_slots    = 1;  // array is always a T_OBJECT
  2181       int       length_offset  = arrayOopDesc::length_offset_in_bytes();
  2182       int       elem0_offset   = arrayOopDesc::base_offset_in_bytes(elem_type);
  2183       __ ld_ptr(vmarg, O1_array);
  2185       Label L_array_is_empty, L_insert_arg_space, L_copy_args, L_args_done;
  2186       if (length_can_be_zero) {
  2187         // handle the null pointer case, if zero is allowed
  2188         Label L_skip;
  2189         if (length_constant < 0) {
  2190           load_conversion_vminfo(_masm, G3_amh_conversion, O3_scratch);
  2191           __ br_zero(Assembler::notZero, false, Assembler::pn, O3_scratch, L_skip);
  2192           __ delayed()->nop();
  2194         __ br_null(O1_array, false, Assembler::pn, L_array_is_empty);
  2195         __ delayed()->nop();
  2196         __ BIND(L_skip);
  2198       __ null_check(O1_array, oopDesc::klass_offset_in_bytes());
  2199       __ load_klass(O1_array, O2_array_klass);
  2201       // Check the array type.
  2202       Register O3_klass = O3_scratch;
  2203       __ load_heap_oop(G3_amh_argument, O3_klass);  // this is a Class object!
  2204       load_klass_from_Class(_masm, O3_klass, O4_scratch, G5_scratch);
  2206       Label L_ok_array_klass, L_bad_array_klass, L_bad_array_length;
  2207       __ check_klass_subtype(O2_array_klass, O3_klass, O4_scratch, G5_scratch, L_ok_array_klass);
  2208       // If we get here, the type check failed!
  2209       __ ba(false, L_bad_array_klass);
  2210       __ delayed()->nop();
  2211       __ BIND(L_ok_array_klass);
  2213       // Check length.
  2214       if (length_constant >= 0) {
  2215         __ ldsw(Address(O1_array, length_offset), O4_scratch);
  2216         __ cmp(O4_scratch, length_constant);
  2217       } else {
  2218         Register O3_vminfo = O3_scratch;
  2219         load_conversion_vminfo(_masm, G3_amh_conversion, O3_vminfo);
  2220         __ ldsw(Address(O1_array, length_offset), O4_scratch);
  2221         __ cmp(O3_vminfo, O4_scratch);
  2223       __ br(Assembler::notEqual, false, Assembler::pn, L_bad_array_length);
  2224       __ delayed()->nop();
  2226       Register O2_argslot_limit = O2_scratch;
  2228       // Array length checks out.  Now insert any required stack slots.
  2229       if (length_constant == -1) {
  2230         // Form a pointer to the end of the affected region.
  2231         __ add(O0_argslot, Interpreter::stackElementSize, O2_argslot_limit);
  2232         // 'stack_move' is negative number of words to insert
  2233         // This number already accounts for elem_slots.
  2234         Register O3_stack_move = O3_scratch;
  2235         load_stack_move(_masm, G3_amh_conversion, O3_stack_move);
  2236         __ cmp(O3_stack_move, 0);
  2237         assert(stack_move_unit() < 0, "else change this comparison");
  2238         __ br(Assembler::less, false, Assembler::pn, L_insert_arg_space);
  2239         __ delayed()->nop();
  2240         __ br(Assembler::equal, false, Assembler::pn, L_copy_args);
  2241         __ delayed()->nop();
  2242         // single argument case, with no array movement
  2243         __ BIND(L_array_is_empty);
  2244         remove_arg_slots(_masm, -stack_move_unit() * array_slots,
  2245                          O0_argslot, O1_scratch, O2_scratch, O3_scratch);
  2246         __ ba(false, L_args_done);  // no spreading to do
  2247         __ delayed()->nop();
  2248         __ BIND(L_insert_arg_space);
  2249         // come here in the usual case, stack_move < 0 (2 or more spread arguments)
  2250         // Live: O1_array, O2_argslot_limit, O3_stack_move
  2251         insert_arg_slots(_masm, O3_stack_move,
  2252                          O0_argslot, O4_scratch, G5_scratch, O1_scratch);
  2253         // reload from rdx_argslot_limit since rax_argslot is now decremented
  2254         __ ld_ptr(Address(O2_argslot_limit, -Interpreter::stackElementSize), O1_array);
  2255       } else if (length_constant >= 1) {
  2256         int new_slots = (length_constant * elem_slots) - array_slots;
  2257         insert_arg_slots(_masm, new_slots * stack_move_unit(),
  2258                          O0_argslot, O2_scratch, O3_scratch, O4_scratch);
  2259       } else if (length_constant == 0) {
  2260         __ BIND(L_array_is_empty);
  2261         remove_arg_slots(_masm, -stack_move_unit() * array_slots,
  2262                          O0_argslot, O1_scratch, O2_scratch, O3_scratch);
  2263       } else {
  2264         ShouldNotReachHere();
  2267       // Copy from the array to the new slots.
  2268       // Note: Stack change code preserves integrity of O0_argslot pointer.
  2269       // So even after slot insertions, O0_argslot still points to first argument.
  2270       // Beware:  Arguments that are shallow on the stack are deep in the array,
  2271       // and vice versa.  So a downward-growing stack (the usual) has to be copied
  2272       // elementwise in reverse order from the source array.
  2273       __ BIND(L_copy_args);
  2274       if (length_constant == -1) {
  2275         // [O0_argslot, O2_argslot_limit) is the area we are inserting into.
  2276         // Array element [0] goes at O0_argslot_limit[-wordSize].
  2277         Register O1_source = O1_array;
  2278         __ add(Address(O1_array, elem0_offset), O1_source);
  2279         Register O4_fill_ptr = O4_scratch;
  2280         __ mov(O2_argslot_limit, O4_fill_ptr);
  2281         Label L_loop;
  2282         __ BIND(L_loop);
  2283         __ add(O4_fill_ptr, -Interpreter::stackElementSize * elem_slots, O4_fill_ptr);
  2284         move_typed_arg(_masm, elem_type, true,
  2285                        Address(O1_source, 0), Address(O4_fill_ptr, 0),
  2286                        O2_scratch);  // must be an even register for !_LP64 long moves (uses O2/O3)
  2287         __ add(O1_source, type2aelembytes(elem_type), O1_source);
  2288         __ cmp(O4_fill_ptr, O0_argslot);
  2289         __ brx(Assembler::greaterUnsigned, false, Assembler::pt, L_loop);
  2290         __ delayed()->nop();  // FILLME
  2291       } else if (length_constant == 0) {
  2292         // nothing to copy
  2293       } else {
  2294         int elem_offset = elem0_offset;
  2295         int slot_offset = length_constant * Interpreter::stackElementSize;
  2296         for (int index = 0; index < length_constant; index++) {
  2297           slot_offset -= Interpreter::stackElementSize * elem_slots;  // fill backward
  2298           move_typed_arg(_masm, elem_type, true,
  2299                          Address(O1_array, elem_offset), Address(O0_argslot, slot_offset),
  2300                          O2_scratch);  // must be an even register for !_LP64 long moves (uses O2/O3)
  2301           elem_offset += type2aelembytes(elem_type);
  2304       __ BIND(L_args_done);
  2306       // Arguments are spread.  Move to next method handle.
  2307       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  2308       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  2310       __ BIND(L_bad_array_klass);
  2311       assert(!vmarg.uses(O2_required), "must be different registers");
  2312       __ load_heap_oop(Address(O2_array_klass, java_mirror_offset), O2_required);  // required class
  2313       __ ld_ptr(       vmarg,                                       O1_actual);    // bad object
  2314       __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
  2315       __ delayed()->mov(Bytecodes::_aaload,                         O0_code);      // who is complaining?
  2317       __ bind(L_bad_array_length);
  2318       assert(!vmarg.uses(O2_required), "must be different registers");
  2319       __ mov(   G3_method_handle,                O2_required);  // required class
  2320       __ ld_ptr(vmarg,                           O1_actual);    // bad object
  2321       __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
  2322       __ delayed()->mov(Bytecodes::_arraylength, O0_code);      // who is complaining?
  2324     break;
  2326   default:
  2327     DEBUG_ONLY(tty->print_cr("bad ek=%d (%s)", (int)ek, entry_name(ek)));
  2328     ShouldNotReachHere();
  2330   BLOCK_COMMENT(err_msg("} Entry %s", entry_name(ek)));
  2332   address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
  2333   __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
  2335   init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));

mercurial