src/cpu/x86/vm/sharedRuntime_x86_32.cpp

Fri, 29 Sep 2017 14:30:05 -0400

author
dbuck
date
Fri, 29 Sep 2017 14:30:05 -0400
changeset 8997
f8a45a60bc6b
parent 8877
f04097176542
child 9041
95a08233f46c
child 9669
32bc598624bd
permissions
-rw-r--r--

8174962: Better interface invocations
Reviewed-by: jrose, coleenp, ahgross, acorn, vlivanov

     1 /*
     2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "code/debugInfoRec.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "oops/compiledICHolder.hpp"
    33 #include "prims/jvmtiRedefineClassesTrace.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/vframeArray.hpp"
    36 #include "vmreg_x86.inline.hpp"
    37 #ifdef COMPILER1
    38 #include "c1/c1_Runtime1.hpp"
    39 #endif
    40 #ifdef COMPILER2
    41 #include "opto/runtime.hpp"
    42 #endif
    44 #define __ masm->
    46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
    48 class RegisterSaver {
    49   // Capture info about frame layout
    50 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
    51   enum layout {
    52                 fpu_state_off = 0,
    53                 fpu_state_end = fpu_state_off+FPUStateSizeInWords,
    54                 st0_off, st0H_off,
    55                 st1_off, st1H_off,
    56                 st2_off, st2H_off,
    57                 st3_off, st3H_off,
    58                 st4_off, st4H_off,
    59                 st5_off, st5H_off,
    60                 st6_off, st6H_off,
    61                 st7_off, st7H_off,
    62                 xmm_off,
    63                 DEF_XMM_OFFS(0),
    64                 DEF_XMM_OFFS(1),
    65                 DEF_XMM_OFFS(2),
    66                 DEF_XMM_OFFS(3),
    67                 DEF_XMM_OFFS(4),
    68                 DEF_XMM_OFFS(5),
    69                 DEF_XMM_OFFS(6),
    70                 DEF_XMM_OFFS(7),
    71                 flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word
    72                 rdi_off,
    73                 rsi_off,
    74                 ignore_off,  // extra copy of rbp,
    75                 rsp_off,
    76                 rbx_off,
    77                 rdx_off,
    78                 rcx_off,
    79                 rax_off,
    80                 // The frame sender code expects that rbp will be in the "natural" place and
    81                 // will override any oopMap setting for it. We must therefore force the layout
    82                 // so that it agrees with the frame sender code.
    83                 rbp_off,
    84                 return_off,      // slot for return address
    85                 reg_save_size };
    86   enum { FPU_regs_live = flags_off - fpu_state_end };
    88   public:
    90   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
    91                                      int* total_frame_words, bool verify_fpu = true, bool save_vectors = false);
    92   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
    94   static int rax_offset() { return rax_off; }
    95   static int rbx_offset() { return rbx_off; }
    97   // Offsets into the register save area
    98   // Used by deoptimization when it is managing result register
    99   // values on its own
   101   static int raxOffset(void) { return rax_off; }
   102   static int rdxOffset(void) { return rdx_off; }
   103   static int rbxOffset(void) { return rbx_off; }
   104   static int xmm0Offset(void) { return xmm0_off; }
   105   // This really returns a slot in the fp save area, which one is not important
   106   static int fpResultOffset(void) { return st0_off; }
   108   // During deoptimization only the result register need to be restored
   109   // all the other values have already been extracted.
   111   static void restore_result_registers(MacroAssembler* masm);
   113 };
   115 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
   116                                            int* total_frame_words, bool verify_fpu, bool save_vectors) {
   117   int vect_words = 0;
   118 #ifdef COMPILER2
   119   if (save_vectors) {
   120     assert(UseAVX > 0, "256bit vectors are supported only with AVX");
   121     assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
   122     // Save upper half of YMM registes
   123     vect_words = 8 * 16 / wordSize;
   124     additional_frame_words += vect_words;
   125   }
   126 #else
   127   assert(!save_vectors, "vectors are generated only by C2");
   128 #endif
   129   int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
   130   int frame_words = frame_size_in_bytes / wordSize;
   131   *total_frame_words = frame_words;
   133   assert(FPUStateSizeInWords == 27, "update stack layout");
   135   // save registers, fpu state, and flags
   136   // We assume caller has already has return address slot on the stack
   137   // We push epb twice in this sequence because we want the real rbp,
   138   // to be under the return like a normal enter and we want to use pusha
   139   // We push by hand instead of pusing push
   140   __ enter();
   141   __ pusha();
   142   __ pushf();
   143   __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space
   144   __ push_FPU_state();          // Save FPU state & init
   146   if (verify_fpu) {
   147     // Some stubs may have non standard FPU control word settings so
   148     // only check and reset the value when it required to be the
   149     // standard value.  The safepoint blob in particular can be used
   150     // in methods which are using the 24 bit control word for
   151     // optimized float math.
   153 #ifdef ASSERT
   154     // Make sure the control word has the expected value
   155     Label ok;
   156     __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
   157     __ jccb(Assembler::equal, ok);
   158     __ stop("corrupted control word detected");
   159     __ bind(ok);
   160 #endif
   162     // Reset the control word to guard against exceptions being unmasked
   163     // since fstp_d can cause FPU stack underflow exceptions.  Write it
   164     // into the on stack copy and then reload that to make sure that the
   165     // current and future values are correct.
   166     __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
   167   }
   169   __ frstor(Address(rsp, 0));
   170   if (!verify_fpu) {
   171     // Set the control word so that exceptions are masked for the
   172     // following code.
   173     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   174   }
   176   // Save the FPU registers in de-opt-able form
   178   __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
   179   __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
   180   __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
   181   __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
   182   __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
   183   __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
   184   __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
   185   __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
   187   if( UseSSE == 1 ) {           // Save the XMM state
   188     __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
   189     __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
   190     __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
   191     __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
   192     __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
   193     __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
   194     __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
   195     __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
   196   } else if( UseSSE >= 2 ) {
   197     // Save whole 128bit (16 bytes) XMM regiters
   198     __ movdqu(Address(rsp,xmm0_off*wordSize),xmm0);
   199     __ movdqu(Address(rsp,xmm1_off*wordSize),xmm1);
   200     __ movdqu(Address(rsp,xmm2_off*wordSize),xmm2);
   201     __ movdqu(Address(rsp,xmm3_off*wordSize),xmm3);
   202     __ movdqu(Address(rsp,xmm4_off*wordSize),xmm4);
   203     __ movdqu(Address(rsp,xmm5_off*wordSize),xmm5);
   204     __ movdqu(Address(rsp,xmm6_off*wordSize),xmm6);
   205     __ movdqu(Address(rsp,xmm7_off*wordSize),xmm7);
   206   }
   208   if (vect_words > 0) {
   209     assert(vect_words*wordSize == 128, "");
   210     __ subptr(rsp, 128); // Save upper half of YMM registes
   211     __ vextractf128h(Address(rsp,  0),xmm0);
   212     __ vextractf128h(Address(rsp, 16),xmm1);
   213     __ vextractf128h(Address(rsp, 32),xmm2);
   214     __ vextractf128h(Address(rsp, 48),xmm3);
   215     __ vextractf128h(Address(rsp, 64),xmm4);
   216     __ vextractf128h(Address(rsp, 80),xmm5);
   217     __ vextractf128h(Address(rsp, 96),xmm6);
   218     __ vextractf128h(Address(rsp,112),xmm7);
   219   }
   221   // Set an oopmap for the call site.  This oopmap will map all
   222   // oop-registers and debug-info registers as callee-saved.  This
   223   // will allow deoptimization at this safepoint to find all possible
   224   // debug-info recordings, as well as let GC find all oops.
   226   OopMapSet *oop_maps = new OopMapSet();
   227   OopMap* map =  new OopMap( frame_words, 0 );
   229 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
   231   map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
   232   map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
   233   map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
   234   map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
   235   // rbp, location is known implicitly, no oopMap
   236   map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
   237   map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
   238   map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
   239   map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
   240   map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
   241   map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
   242   map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
   243   map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
   244   map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
   245   map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
   246   map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
   247   map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
   248   map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
   249   map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
   250   map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
   251   map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
   252   map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
   253   map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
   254   // %%% This is really a waste but we'll keep things as they were for now
   255   if (true) {
   256 #define NEXTREG(x) (x)->as_VMReg()->next()
   257     map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
   258     map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
   259     map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
   260     map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
   261     map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
   262     map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
   263     map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
   264     map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
   265     map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
   266     map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
   267     map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
   268     map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
   269     map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
   270     map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
   271     map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
   272     map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
   273 #undef NEXTREG
   274 #undef STACK_OFFSET
   275   }
   277   return map;
   279 }
   281 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
   282   // Recover XMM & FPU state
   283   int additional_frame_bytes = 0;
   284 #ifdef COMPILER2
   285   if (restore_vectors) {
   286     assert(UseAVX > 0, "256bit vectors are supported only with AVX");
   287     assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
   288     additional_frame_bytes = 128;
   289   }
   290 #else
   291   assert(!restore_vectors, "vectors are generated only by C2");
   292 #endif
   293   if (UseSSE == 1) {
   294     assert(additional_frame_bytes == 0, "");
   295     __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
   296     __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
   297     __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
   298     __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
   299     __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
   300     __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
   301     __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
   302     __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
   303   } else if (UseSSE >= 2) {
   304 #define STACK_ADDRESS(x) Address(rsp,(x)*wordSize + additional_frame_bytes)
   305     __ movdqu(xmm0,STACK_ADDRESS(xmm0_off));
   306     __ movdqu(xmm1,STACK_ADDRESS(xmm1_off));
   307     __ movdqu(xmm2,STACK_ADDRESS(xmm2_off));
   308     __ movdqu(xmm3,STACK_ADDRESS(xmm3_off));
   309     __ movdqu(xmm4,STACK_ADDRESS(xmm4_off));
   310     __ movdqu(xmm5,STACK_ADDRESS(xmm5_off));
   311     __ movdqu(xmm6,STACK_ADDRESS(xmm6_off));
   312     __ movdqu(xmm7,STACK_ADDRESS(xmm7_off));
   313 #undef STACK_ADDRESS
   314   }
   315   if (restore_vectors) {
   316     // Restore upper half of YMM registes.
   317     assert(additional_frame_bytes == 128, "");
   318     __ vinsertf128h(xmm0, Address(rsp,  0));
   319     __ vinsertf128h(xmm1, Address(rsp, 16));
   320     __ vinsertf128h(xmm2, Address(rsp, 32));
   321     __ vinsertf128h(xmm3, Address(rsp, 48));
   322     __ vinsertf128h(xmm4, Address(rsp, 64));
   323     __ vinsertf128h(xmm5, Address(rsp, 80));
   324     __ vinsertf128h(xmm6, Address(rsp, 96));
   325     __ vinsertf128h(xmm7, Address(rsp,112));
   326     __ addptr(rsp, additional_frame_bytes);
   327   }
   328   __ pop_FPU_state();
   329   __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
   331   __ popf();
   332   __ popa();
   333   // Get the rbp, described implicitly by the frame sender code (no oopMap)
   334   __ pop(rbp);
   336 }
   338 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   340   // Just restore result register. Only used by deoptimization. By
   341   // now any callee save register that needs to be restore to a c2
   342   // caller of the deoptee has been extracted into the vframeArray
   343   // and will be stuffed into the c2i adapter we create for later
   344   // restoration so only result registers need to be restored here.
   345   //
   347   __ frstor(Address(rsp, 0));      // Restore fpu state
   349   // Recover XMM & FPU state
   350   if( UseSSE == 1 ) {
   351     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
   352   } else if( UseSSE >= 2 ) {
   353     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
   354   }
   355   __ movptr(rax, Address(rsp, rax_off*wordSize));
   356   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
   357   // Pop all of the register save are off the stack except the return address
   358   __ addptr(rsp, return_off * wordSize);
   359 }
   361 // Is vector's size (in bytes) bigger than a size saved by default?
   362 // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions.
   363 // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated.
   364 bool SharedRuntime::is_wide_vector(int size) {
   365   return size > 16;
   366 }
   368 // The java_calling_convention describes stack locations as ideal slots on
   369 // a frame with no abi restrictions. Since we must observe abi restrictions
   370 // (like the placement of the register window) the slots must be biased by
   371 // the following value.
   372 static int reg2offset_in(VMReg r) {
   373   // Account for saved rbp, and return address
   374   // This should really be in_preserve_stack_slots
   375   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
   376 }
   378 static int reg2offset_out(VMReg r) {
   379   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   380 }
   382 // ---------------------------------------------------------------------------
   383 // Read the array of BasicTypes from a signature, and compute where the
   384 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
   385 // quantities.  Values less than SharedInfo::stack0 are registers, those above
   386 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
   387 // as framesizes are fixed.
   388 // VMRegImpl::stack0 refers to the first slot 0(sp).
   389 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   390 // up to RegisterImpl::number_of_registers) are the 32-bit
   391 // integer registers.
   393 // Pass first two oop/int args in registers ECX and EDX.
   394 // Pass first two float/double args in registers XMM0 and XMM1.
   395 // Doubles have precedence, so if you pass a mix of floats and doubles
   396 // the doubles will grab the registers before the floats will.
   398 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   399 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   400 // units regardless of build. Of course for i486 there is no 64 bit build
   403 // ---------------------------------------------------------------------------
   404 // The compiled Java calling convention.
   405 // Pass first two oop/int args in registers ECX and EDX.
   406 // Pass first two float/double args in registers XMM0 and XMM1.
   407 // Doubles have precedence, so if you pass a mix of floats and doubles
   408 // the doubles will grab the registers before the floats will.
   409 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   410                                            VMRegPair *regs,
   411                                            int total_args_passed,
   412                                            int is_outgoing) {
   413   uint    stack = 0;          // Starting stack position for args on stack
   416   // Pass first two oop/int args in registers ECX and EDX.
   417   uint reg_arg0 = 9999;
   418   uint reg_arg1 = 9999;
   420   // Pass first two float/double args in registers XMM0 and XMM1.
   421   // Doubles have precedence, so if you pass a mix of floats and doubles
   422   // the doubles will grab the registers before the floats will.
   423   // CNC - TURNED OFF FOR non-SSE.
   424   //       On Intel we have to round all doubles (and most floats) at
   425   //       call sites by storing to the stack in any case.
   426   // UseSSE=0 ==> Don't Use ==> 9999+0
   427   // UseSSE=1 ==> Floats only ==> 9999+1
   428   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
   429   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
   430   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
   431   uint freg_arg0 = 9999+fargs;
   432   uint freg_arg1 = 9999+fargs;
   434   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
   435   int i;
   436   for( i = 0; i < total_args_passed; i++) {
   437     if( sig_bt[i] == T_DOUBLE ) {
   438       // first 2 doubles go in registers
   439       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
   440       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
   441       else // Else double is passed low on the stack to be aligned.
   442         stack += 2;
   443     } else if( sig_bt[i] == T_LONG ) {
   444       stack += 2;
   445     }
   446   }
   447   int dstack = 0;             // Separate counter for placing doubles
   449   // Now pick where all else goes.
   450   for( i = 0; i < total_args_passed; i++) {
   451     // From the type and the argument number (count) compute the location
   452     switch( sig_bt[i] ) {
   453     case T_SHORT:
   454     case T_CHAR:
   455     case T_BYTE:
   456     case T_BOOLEAN:
   457     case T_INT:
   458     case T_ARRAY:
   459     case T_OBJECT:
   460     case T_ADDRESS:
   461       if( reg_arg0 == 9999 )  {
   462         reg_arg0 = i;
   463         regs[i].set1(rcx->as_VMReg());
   464       } else if( reg_arg1 == 9999 )  {
   465         reg_arg1 = i;
   466         regs[i].set1(rdx->as_VMReg());
   467       } else {
   468         regs[i].set1(VMRegImpl::stack2reg(stack++));
   469       }
   470       break;
   471     case T_FLOAT:
   472       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
   473         freg_arg0 = i;
   474         regs[i].set1(xmm0->as_VMReg());
   475       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
   476         freg_arg1 = i;
   477         regs[i].set1(xmm1->as_VMReg());
   478       } else {
   479         regs[i].set1(VMRegImpl::stack2reg(stack++));
   480       }
   481       break;
   482     case T_LONG:
   483       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   484       regs[i].set2(VMRegImpl::stack2reg(dstack));
   485       dstack += 2;
   486       break;
   487     case T_DOUBLE:
   488       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   489       if( freg_arg0 == (uint)i ) {
   490         regs[i].set2(xmm0->as_VMReg());
   491       } else if( freg_arg1 == (uint)i ) {
   492         regs[i].set2(xmm1->as_VMReg());
   493       } else {
   494         regs[i].set2(VMRegImpl::stack2reg(dstack));
   495         dstack += 2;
   496       }
   497       break;
   498     case T_VOID: regs[i].set_bad(); break;
   499       break;
   500     default:
   501       ShouldNotReachHere();
   502       break;
   503     }
   504   }
   506   // return value can be odd number of VMRegImpl stack slots make multiple of 2
   507   return round_to(stack, 2);
   508 }
   510 // Patch the callers callsite with entry to compiled code if it exists.
   511 static void patch_callers_callsite(MacroAssembler *masm) {
   512   Label L;
   513   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
   514   __ jcc(Assembler::equal, L);
   515   // Schedule the branch target address early.
   516   // Call into the VM to patch the caller, then jump to compiled callee
   517   // rax, isn't live so capture return address while we easily can
   518   __ movptr(rax, Address(rsp, 0));
   519   __ pusha();
   520   __ pushf();
   522   if (UseSSE == 1) {
   523     __ subptr(rsp, 2*wordSize);
   524     __ movflt(Address(rsp, 0), xmm0);
   525     __ movflt(Address(rsp, wordSize), xmm1);
   526   }
   527   if (UseSSE >= 2) {
   528     __ subptr(rsp, 4*wordSize);
   529     __ movdbl(Address(rsp, 0), xmm0);
   530     __ movdbl(Address(rsp, 2*wordSize), xmm1);
   531   }
   532 #ifdef COMPILER2
   533   // C2 may leave the stack dirty if not in SSE2+ mode
   534   if (UseSSE >= 2) {
   535     __ verify_FPU(0, "c2i transition should have clean FPU stack");
   536   } else {
   537     __ empty_FPU_stack();
   538   }
   539 #endif /* COMPILER2 */
   541   // VM needs caller's callsite
   542   __ push(rax);
   543   // VM needs target method
   544   __ push(rbx);
   545   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
   546   __ addptr(rsp, 2*wordSize);
   548   if (UseSSE == 1) {
   549     __ movflt(xmm0, Address(rsp, 0));
   550     __ movflt(xmm1, Address(rsp, wordSize));
   551     __ addptr(rsp, 2*wordSize);
   552   }
   553   if (UseSSE >= 2) {
   554     __ movdbl(xmm0, Address(rsp, 0));
   555     __ movdbl(xmm1, Address(rsp, 2*wordSize));
   556     __ addptr(rsp, 4*wordSize);
   557   }
   559   __ popf();
   560   __ popa();
   561   __ bind(L);
   562 }
   565 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
   566   int next_off = st_off - Interpreter::stackElementSize;
   567   __ movdbl(Address(rsp, next_off), r);
   568 }
   570 static void gen_c2i_adapter(MacroAssembler *masm,
   571                             int total_args_passed,
   572                             int comp_args_on_stack,
   573                             const BasicType *sig_bt,
   574                             const VMRegPair *regs,
   575                             Label& skip_fixup) {
   576   // Before we get into the guts of the C2I adapter, see if we should be here
   577   // at all.  We've come from compiled code and are attempting to jump to the
   578   // interpreter, which means the caller made a static call to get here
   579   // (vcalls always get a compiled target if there is one).  Check for a
   580   // compiled target.  If there is one, we need to patch the caller's call.
   581   patch_callers_callsite(masm);
   583   __ bind(skip_fixup);
   585 #ifdef COMPILER2
   586   // C2 may leave the stack dirty if not in SSE2+ mode
   587   if (UseSSE >= 2) {
   588     __ verify_FPU(0, "c2i transition should have clean FPU stack");
   589   } else {
   590     __ empty_FPU_stack();
   591   }
   592 #endif /* COMPILER2 */
   594   // Since all args are passed on the stack, total_args_passed * interpreter_
   595   // stack_element_size  is the
   596   // space we need.
   597   int extraspace = total_args_passed * Interpreter::stackElementSize;
   599   // Get return address
   600   __ pop(rax);
   602   // set senderSP value
   603   __ movptr(rsi, rsp);
   605   __ subptr(rsp, extraspace);
   607   // Now write the args into the outgoing interpreter space
   608   for (int i = 0; i < total_args_passed; i++) {
   609     if (sig_bt[i] == T_VOID) {
   610       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   611       continue;
   612     }
   614     // st_off points to lowest address on stack.
   615     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
   616     int next_off = st_off - Interpreter::stackElementSize;
   618     // Say 4 args:
   619     // i   st_off
   620     // 0   12 T_LONG
   621     // 1    8 T_VOID
   622     // 2    4 T_OBJECT
   623     // 3    0 T_BOOL
   624     VMReg r_1 = regs[i].first();
   625     VMReg r_2 = regs[i].second();
   626     if (!r_1->is_valid()) {
   627       assert(!r_2->is_valid(), "");
   628       continue;
   629     }
   631     if (r_1->is_stack()) {
   632       // memory to memory use fpu stack top
   633       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
   635       if (!r_2->is_valid()) {
   636         __ movl(rdi, Address(rsp, ld_off));
   637         __ movptr(Address(rsp, st_off), rdi);
   638       } else {
   640         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
   641         // st_off == MSW, st_off-wordSize == LSW
   643         __ movptr(rdi, Address(rsp, ld_off));
   644         __ movptr(Address(rsp, next_off), rdi);
   645 #ifndef _LP64
   646         __ movptr(rdi, Address(rsp, ld_off + wordSize));
   647         __ movptr(Address(rsp, st_off), rdi);
   648 #else
   649 #ifdef ASSERT
   650         // Overwrite the unused slot with known junk
   651         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
   652         __ movptr(Address(rsp, st_off), rax);
   653 #endif /* ASSERT */
   654 #endif // _LP64
   655       }
   656     } else if (r_1->is_Register()) {
   657       Register r = r_1->as_Register();
   658       if (!r_2->is_valid()) {
   659         __ movl(Address(rsp, st_off), r);
   660       } else {
   661         // long/double in gpr
   662         NOT_LP64(ShouldNotReachHere());
   663         // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   664         // T_DOUBLE and T_LONG use two slots in the interpreter
   665         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   666           // long/double in gpr
   667 #ifdef ASSERT
   668           // Overwrite the unused slot with known junk
   669           LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
   670           __ movptr(Address(rsp, st_off), rax);
   671 #endif /* ASSERT */
   672           __ movptr(Address(rsp, next_off), r);
   673         } else {
   674           __ movptr(Address(rsp, st_off), r);
   675         }
   676       }
   677     } else {
   678       assert(r_1->is_XMMRegister(), "");
   679       if (!r_2->is_valid()) {
   680         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
   681       } else {
   682         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
   683         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
   684       }
   685     }
   686   }
   688   // Schedule the branch target address early.
   689   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
   690   // And repush original return address
   691   __ push(rax);
   692   __ jmp(rcx);
   693 }
   696 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
   697   int next_val_off = ld_off - Interpreter::stackElementSize;
   698   __ movdbl(r, Address(saved_sp, next_val_off));
   699 }
   701 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
   702                         address code_start, address code_end,
   703                         Label& L_ok) {
   704   Label L_fail;
   705   __ lea(temp_reg, ExternalAddress(code_start));
   706   __ cmpptr(pc_reg, temp_reg);
   707   __ jcc(Assembler::belowEqual, L_fail);
   708   __ lea(temp_reg, ExternalAddress(code_end));
   709   __ cmpptr(pc_reg, temp_reg);
   710   __ jcc(Assembler::below, L_ok);
   711   __ bind(L_fail);
   712 }
   714 static void gen_i2c_adapter(MacroAssembler *masm,
   715                             int total_args_passed,
   716                             int comp_args_on_stack,
   717                             const BasicType *sig_bt,
   718                             const VMRegPair *regs) {
   720   // Note: rsi contains the senderSP on entry. We must preserve it since
   721   // we may do a i2c -> c2i transition if we lose a race where compiled
   722   // code goes non-entrant while we get args ready.
   724   // Adapters can be frameless because they do not require the caller
   725   // to perform additional cleanup work, such as correcting the stack pointer.
   726   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
   727   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
   728   // even if a callee has modified the stack pointer.
   729   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
   730   // routinely repairs its caller's stack pointer (from sender_sp, which is set
   731   // up via the senderSP register).
   732   // In other words, if *either* the caller or callee is interpreted, we can
   733   // get the stack pointer repaired after a call.
   734   // This is why c2i and i2c adapters cannot be indefinitely composed.
   735   // In particular, if a c2i adapter were to somehow call an i2c adapter,
   736   // both caller and callee would be compiled methods, and neither would
   737   // clean up the stack pointer changes performed by the two adapters.
   738   // If this happens, control eventually transfers back to the compiled
   739   // caller, but with an uncorrected stack, causing delayed havoc.
   741   // Pick up the return address
   742   __ movptr(rax, Address(rsp, 0));
   744   if (VerifyAdapterCalls &&
   745       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
   746     // So, let's test for cascading c2i/i2c adapters right now.
   747     //  assert(Interpreter::contains($return_addr) ||
   748     //         StubRoutines::contains($return_addr),
   749     //         "i2c adapter must return to an interpreter frame");
   750     __ block_comment("verify_i2c { ");
   751     Label L_ok;
   752     if (Interpreter::code() != NULL)
   753       range_check(masm, rax, rdi,
   754                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
   755                   L_ok);
   756     if (StubRoutines::code1() != NULL)
   757       range_check(masm, rax, rdi,
   758                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
   759                   L_ok);
   760     if (StubRoutines::code2() != NULL)
   761       range_check(masm, rax, rdi,
   762                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
   763                   L_ok);
   764     const char* msg = "i2c adapter must return to an interpreter frame";
   765     __ block_comment(msg);
   766     __ stop(msg);
   767     __ bind(L_ok);
   768     __ block_comment("} verify_i2ce ");
   769   }
   771   // Must preserve original SP for loading incoming arguments because
   772   // we need to align the outgoing SP for compiled code.
   773   __ movptr(rdi, rsp);
   775   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
   776   // in registers, we will occasionally have no stack args.
   777   int comp_words_on_stack = 0;
   778   if (comp_args_on_stack) {
   779     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
   780     // registers are below.  By subtracting stack0, we either get a negative
   781     // number (all values in registers) or the maximum stack slot accessed.
   782     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
   783     // Convert 4-byte stack slots to words.
   784     comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
   785     // Round up to miminum stack alignment, in wordSize
   786     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   787     __ subptr(rsp, comp_words_on_stack * wordSize);
   788   }
   790   // Align the outgoing SP
   791   __ andptr(rsp, -(StackAlignmentInBytes));
   793   // push the return address on the stack (note that pushing, rather
   794   // than storing it, yields the correct frame alignment for the callee)
   795   __ push(rax);
   797   // Put saved SP in another register
   798   const Register saved_sp = rax;
   799   __ movptr(saved_sp, rdi);
   802   // Will jump to the compiled code just as if compiled code was doing it.
   803   // Pre-load the register-jump target early, to schedule it better.
   804   __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
   806   // Now generate the shuffle code.  Pick up all register args and move the
   807   // rest through the floating point stack top.
   808   for (int i = 0; i < total_args_passed; i++) {
   809     if (sig_bt[i] == T_VOID) {
   810       // Longs and doubles are passed in native word order, but misaligned
   811       // in the 32-bit build.
   812       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   813       continue;
   814     }
   816     // Pick up 0, 1 or 2 words from SP+offset.
   818     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
   819             "scrambled load targets?");
   820     // Load in argument order going down.
   821     int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
   822     // Point to interpreter value (vs. tag)
   823     int next_off = ld_off - Interpreter::stackElementSize;
   824     //
   825     //
   826     //
   827     VMReg r_1 = regs[i].first();
   828     VMReg r_2 = regs[i].second();
   829     if (!r_1->is_valid()) {
   830       assert(!r_2->is_valid(), "");
   831       continue;
   832     }
   833     if (r_1->is_stack()) {
   834       // Convert stack slot to an SP offset (+ wordSize to account for return address )
   835       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
   837       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
   838       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
   839       // we be generated.
   840       if (!r_2->is_valid()) {
   841         // __ fld_s(Address(saved_sp, ld_off));
   842         // __ fstp_s(Address(rsp, st_off));
   843         __ movl(rsi, Address(saved_sp, ld_off));
   844         __ movptr(Address(rsp, st_off), rsi);
   845       } else {
   846         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   847         // are accessed as negative so LSW is at LOW address
   849         // ld_off is MSW so get LSW
   850         // st_off is LSW (i.e. reg.first())
   851         // __ fld_d(Address(saved_sp, next_off));
   852         // __ fstp_d(Address(rsp, st_off));
   853         //
   854         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   855         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   856         // So we must adjust where to pick up the data to match the interpreter.
   857         //
   858         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   859         // are accessed as negative so LSW is at LOW address
   861         // ld_off is MSW so get LSW
   862         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   863                            next_off : ld_off;
   864         __ movptr(rsi, Address(saved_sp, offset));
   865         __ movptr(Address(rsp, st_off), rsi);
   866 #ifndef _LP64
   867         __ movptr(rsi, Address(saved_sp, ld_off));
   868         __ movptr(Address(rsp, st_off + wordSize), rsi);
   869 #endif // _LP64
   870       }
   871     } else if (r_1->is_Register()) {  // Register argument
   872       Register r = r_1->as_Register();
   873       assert(r != rax, "must be different");
   874       if (r_2->is_valid()) {
   875         //
   876         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   877         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   878         // So we must adjust where to pick up the data to match the interpreter.
   880         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   881                            next_off : ld_off;
   883         // this can be a misaligned move
   884         __ movptr(r, Address(saved_sp, offset));
   885 #ifndef _LP64
   886         assert(r_2->as_Register() != rax, "need another temporary register");
   887         // Remember r_1 is low address (and LSB on x86)
   888         // So r_2 gets loaded from high address regardless of the platform
   889         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
   890 #endif // _LP64
   891       } else {
   892         __ movl(r, Address(saved_sp, ld_off));
   893       }
   894     } else {
   895       assert(r_1->is_XMMRegister(), "");
   896       if (!r_2->is_valid()) {
   897         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
   898       } else {
   899         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
   900       }
   901     }
   902   }
   904   // 6243940 We might end up in handle_wrong_method if
   905   // the callee is deoptimized as we race thru here. If that
   906   // happens we don't want to take a safepoint because the
   907   // caller frame will look interpreted and arguments are now
   908   // "compiled" so it is much better to make this transition
   909   // invisible to the stack walking code. Unfortunately if
   910   // we try and find the callee by normal means a safepoint
   911   // is possible. So we stash the desired callee in the thread
   912   // and the vm will find there should this case occur.
   914   __ get_thread(rax);
   915   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
   917   // move Method* to rax, in case we end up in an c2i adapter.
   918   // the c2i adapters expect Method* in rax, (c2) because c2's
   919   // resolve stubs return the result (the method) in rax,.
   920   // I'd love to fix this.
   921   __ mov(rax, rbx);
   923   __ jmp(rdi);
   924 }
   926 // ---------------------------------------------------------------
   927 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
   928                                                             int total_args_passed,
   929                                                             int comp_args_on_stack,
   930                                                             const BasicType *sig_bt,
   931                                                             const VMRegPair *regs,
   932                                                             AdapterFingerPrint* fingerprint) {
   933   address i2c_entry = __ pc();
   935   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
   937   // -------------------------------------------------------------------------
   938   // Generate a C2I adapter.  On entry we know rbx, holds the Method* during calls
   939   // to the interpreter.  The args start out packed in the compiled layout.  They
   940   // need to be unpacked into the interpreter layout.  This will almost always
   941   // require some stack space.  We grow the current (compiled) stack, then repack
   942   // the args.  We  finally end in a jump to the generic interpreter entry point.
   943   // On exit from the interpreter, the interpreter will restore our SP (lest the
   944   // compiled code, which relys solely on SP and not EBP, get sick).
   946   address c2i_unverified_entry = __ pc();
   947   Label skip_fixup;
   949   Register holder = rax;
   950   Register receiver = rcx;
   951   Register temp = rbx;
   953   {
   955     Label missed;
   956     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
   957     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
   958     __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset()));
   959     __ jcc(Assembler::notEqual, missed);
   960     // Method might have been compiled since the call site was patched to
   961     // interpreted if that is the case treat it as a miss so we can get
   962     // the call site corrected.
   963     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
   964     __ jcc(Assembler::equal, skip_fixup);
   966     __ bind(missed);
   967     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   968   }
   970   address c2i_entry = __ pc();
   972   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
   974   __ flush();
   975   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
   976 }
   978 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
   979                                          VMRegPair *regs,
   980                                          VMRegPair *regs2,
   981                                          int total_args_passed) {
   982   assert(regs2 == NULL, "not needed on x86");
   983 // We return the amount of VMRegImpl stack slots we need to reserve for all
   984 // the arguments NOT counting out_preserve_stack_slots.
   986   uint    stack = 0;        // All arguments on stack
   988   for( int i = 0; i < total_args_passed; i++) {
   989     // From the type and the argument number (count) compute the location
   990     switch( sig_bt[i] ) {
   991     case T_BOOLEAN:
   992     case T_CHAR:
   993     case T_FLOAT:
   994     case T_BYTE:
   995     case T_SHORT:
   996     case T_INT:
   997     case T_OBJECT:
   998     case T_ARRAY:
   999     case T_ADDRESS:
  1000     case T_METADATA:
  1001       regs[i].set1(VMRegImpl::stack2reg(stack++));
  1002       break;
  1003     case T_LONG:
  1004     case T_DOUBLE: // The stack numbering is reversed from Java
  1005       // Since C arguments do not get reversed, the ordering for
  1006       // doubles on the stack must be opposite the Java convention
  1007       assert(sig_bt[i+1] == T_VOID, "missing Half" );
  1008       regs[i].set2(VMRegImpl::stack2reg(stack));
  1009       stack += 2;
  1010       break;
  1011     case T_VOID: regs[i].set_bad(); break;
  1012     default:
  1013       ShouldNotReachHere();
  1014       break;
  1017   return stack;
  1020 // A simple move of integer like type
  1021 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1022   if (src.first()->is_stack()) {
  1023     if (dst.first()->is_stack()) {
  1024       // stack to stack
  1025       // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1026       // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1027       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
  1028       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1029     } else {
  1030       // stack to reg
  1031       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
  1033   } else if (dst.first()->is_stack()) {
  1034     // reg to stack
  1035     // no need to sign extend on 64bit
  1036     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  1037   } else {
  1038     if (dst.first() != src.first()) {
  1039       __ mov(dst.first()->as_Register(), src.first()->as_Register());
  1044 // An oop arg. Must pass a handle not the oop itself
  1045 static void object_move(MacroAssembler* masm,
  1046                         OopMap* map,
  1047                         int oop_handle_offset,
  1048                         int framesize_in_slots,
  1049                         VMRegPair src,
  1050                         VMRegPair dst,
  1051                         bool is_receiver,
  1052                         int* receiver_offset) {
  1054   // Because of the calling conventions we know that src can be a
  1055   // register or a stack location. dst can only be a stack location.
  1057   assert(dst.first()->is_stack(), "must be stack");
  1058   // must pass a handle. First figure out the location we use as a handle
  1060   if (src.first()->is_stack()) {
  1061     // Oop is already on the stack as an argument
  1062     Register rHandle = rax;
  1063     Label nil;
  1064     __ xorptr(rHandle, rHandle);
  1065     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
  1066     __ jcc(Assembler::equal, nil);
  1067     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
  1068     __ bind(nil);
  1069     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
  1071     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1072     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
  1073     if (is_receiver) {
  1074       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
  1076   } else {
  1077     // Oop is in an a register we must store it to the space we reserve
  1078     // on the stack for oop_handles
  1079     const Register rOop = src.first()->as_Register();
  1080     const Register rHandle = rax;
  1081     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
  1082     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1083     Label skip;
  1084     __ movptr(Address(rsp, offset), rOop);
  1085     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1086     __ xorptr(rHandle, rHandle);
  1087     __ cmpptr(rOop, (int32_t)NULL_WORD);
  1088     __ jcc(Assembler::equal, skip);
  1089     __ lea(rHandle, Address(rsp, offset));
  1090     __ bind(skip);
  1091     // Store the handle parameter
  1092     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
  1093     if (is_receiver) {
  1094       *receiver_offset = offset;
  1099 // A float arg may have to do float reg int reg conversion
  1100 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1101   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1103   // Because of the calling convention we know that src is either a stack location
  1104   // or an xmm register. dst can only be a stack location.
  1106   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
  1108   if (src.first()->is_stack()) {
  1109     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
  1110     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1111   } else {
  1112     // reg to stack
  1113     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1117 // A long move
  1118 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1120   // The only legal possibility for a long_move VMRegPair is:
  1121   // 1: two stack slots (possibly unaligned)
  1122   // as neither the java  or C calling convention will use registers
  1123   // for longs.
  1125   if (src.first()->is_stack() && dst.first()->is_stack()) {
  1126     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
  1127     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
  1128     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
  1129     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1130     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
  1131   } else {
  1132     ShouldNotReachHere();
  1136 // A double move
  1137 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1139   // The only legal possibilities for a double_move VMRegPair are:
  1140   // The painful thing here is that like long_move a VMRegPair might be
  1142   // Because of the calling convention we know that src is either
  1143   //   1: a single physical register (xmm registers only)
  1144   //   2: two stack slots (possibly unaligned)
  1145   // dst can only be a pair of stack slots.
  1147   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
  1149   if (src.first()->is_stack()) {
  1150     // source is all stack
  1151     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
  1152     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
  1153     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1154     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
  1155   } else {
  1156     // reg to stack
  1157     // No worries about stack alignment
  1158     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1163 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1164   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1165   // which by this time is free to use
  1166   switch (ret_type) {
  1167   case T_FLOAT:
  1168     __ fstp_s(Address(rbp, -wordSize));
  1169     break;
  1170   case T_DOUBLE:
  1171     __ fstp_d(Address(rbp, -2*wordSize));
  1172     break;
  1173   case T_VOID:  break;
  1174   case T_LONG:
  1175     __ movptr(Address(rbp, -wordSize), rax);
  1176     NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
  1177     break;
  1178   default: {
  1179     __ movptr(Address(rbp, -wordSize), rax);
  1184 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1185   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1186   // which by this time is free to use
  1187   switch (ret_type) {
  1188   case T_FLOAT:
  1189     __ fld_s(Address(rbp, -wordSize));
  1190     break;
  1191   case T_DOUBLE:
  1192     __ fld_d(Address(rbp, -2*wordSize));
  1193     break;
  1194   case T_LONG:
  1195     __ movptr(rax, Address(rbp, -wordSize));
  1196     NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
  1197     break;
  1198   case T_VOID:  break;
  1199   default: {
  1200     __ movptr(rax, Address(rbp, -wordSize));
  1206 static void save_or_restore_arguments(MacroAssembler* masm,
  1207                                       const int stack_slots,
  1208                                       const int total_in_args,
  1209                                       const int arg_save_area,
  1210                                       OopMap* map,
  1211                                       VMRegPair* in_regs,
  1212                                       BasicType* in_sig_bt) {
  1213   // if map is non-NULL then the code should store the values,
  1214   // otherwise it should load them.
  1215   int handle_index = 0;
  1216   // Save down double word first
  1217   for ( int i = 0; i < total_in_args; i++) {
  1218     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
  1219       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
  1220       int offset = slot * VMRegImpl::stack_slot_size;
  1221       handle_index += 2;
  1222       assert(handle_index <= stack_slots, "overflow");
  1223       if (map != NULL) {
  1224         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
  1225       } else {
  1226         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
  1229     if (in_regs[i].first()->is_Register() && in_sig_bt[i] == T_LONG) {
  1230       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
  1231       int offset = slot * VMRegImpl::stack_slot_size;
  1232       handle_index += 2;
  1233       assert(handle_index <= stack_slots, "overflow");
  1234       if (map != NULL) {
  1235         __ movl(Address(rsp, offset), in_regs[i].first()->as_Register());
  1236         if (in_regs[i].second()->is_Register()) {
  1237           __ movl(Address(rsp, offset + 4), in_regs[i].second()->as_Register());
  1239       } else {
  1240         __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
  1241         if (in_regs[i].second()->is_Register()) {
  1242           __ movl(in_regs[i].second()->as_Register(), Address(rsp, offset + 4));
  1247   // Save or restore single word registers
  1248   for ( int i = 0; i < total_in_args; i++) {
  1249     if (in_regs[i].first()->is_Register()) {
  1250       int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
  1251       int offset = slot * VMRegImpl::stack_slot_size;
  1252       assert(handle_index <= stack_slots, "overflow");
  1253       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
  1254         map->set_oop(VMRegImpl::stack2reg(slot));;
  1257       // Value is in an input register pass we must flush it to the stack
  1258       const Register reg = in_regs[i].first()->as_Register();
  1259       switch (in_sig_bt[i]) {
  1260         case T_ARRAY:
  1261           if (map != NULL) {
  1262             __ movptr(Address(rsp, offset), reg);
  1263           } else {
  1264             __ movptr(reg, Address(rsp, offset));
  1266           break;
  1267         case T_BOOLEAN:
  1268         case T_CHAR:
  1269         case T_BYTE:
  1270         case T_SHORT:
  1271         case T_INT:
  1272           if (map != NULL) {
  1273             __ movl(Address(rsp, offset), reg);
  1274           } else {
  1275             __ movl(reg, Address(rsp, offset));
  1277           break;
  1278         case T_OBJECT:
  1279         default: ShouldNotReachHere();
  1281     } else if (in_regs[i].first()->is_XMMRegister()) {
  1282       if (in_sig_bt[i] == T_FLOAT) {
  1283         int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
  1284         int offset = slot * VMRegImpl::stack_slot_size;
  1285         assert(handle_index <= stack_slots, "overflow");
  1286         if (map != NULL) {
  1287           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
  1288         } else {
  1289           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
  1292     } else if (in_regs[i].first()->is_stack()) {
  1293       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
  1294         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1295         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
  1301 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
  1302 // keeps a new JNI critical region from starting until a GC has been
  1303 // forced.  Save down any oops in registers and describe them in an
  1304 // OopMap.
  1305 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
  1306                                                Register thread,
  1307                                                int stack_slots,
  1308                                                int total_c_args,
  1309                                                int total_in_args,
  1310                                                int arg_save_area,
  1311                                                OopMapSet* oop_maps,
  1312                                                VMRegPair* in_regs,
  1313                                                BasicType* in_sig_bt) {
  1314   __ block_comment("check GC_locker::needs_gc");
  1315   Label cont;
  1316   __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
  1317   __ jcc(Assembler::equal, cont);
  1319   // Save down any incoming oops and call into the runtime to halt for a GC
  1321   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1323   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1324                             arg_save_area, map, in_regs, in_sig_bt);
  1326   address the_pc = __ pc();
  1327   oop_maps->add_gc_map( __ offset(), map);
  1328   __ set_last_Java_frame(thread, rsp, noreg, the_pc);
  1330   __ block_comment("block_for_jni_critical");
  1331   __ push(thread);
  1332   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
  1333   __ increment(rsp, wordSize);
  1335   __ get_thread(thread);
  1336   __ reset_last_Java_frame(thread, false);
  1338   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1339                             arg_save_area, NULL, in_regs, in_sig_bt);
  1341   __ bind(cont);
  1342 #ifdef ASSERT
  1343   if (StressCriticalJNINatives) {
  1344     // Stress register saving
  1345     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1346     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1347                               arg_save_area, map, in_regs, in_sig_bt);
  1348     // Destroy argument registers
  1349     for (int i = 0; i < total_in_args - 1; i++) {
  1350       if (in_regs[i].first()->is_Register()) {
  1351         const Register reg = in_regs[i].first()->as_Register();
  1352         __ xorptr(reg, reg);
  1353       } else if (in_regs[i].first()->is_XMMRegister()) {
  1354         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
  1355       } else if (in_regs[i].first()->is_FloatRegister()) {
  1356         ShouldNotReachHere();
  1357       } else if (in_regs[i].first()->is_stack()) {
  1358         // Nothing to do
  1359       } else {
  1360         ShouldNotReachHere();
  1362       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
  1363         i++;
  1367     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1368                               arg_save_area, NULL, in_regs, in_sig_bt);
  1370 #endif
  1373 // Unpack an array argument into a pointer to the body and the length
  1374 // if the array is non-null, otherwise pass 0 for both.
  1375 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
  1376   Register tmp_reg = rax;
  1377   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
  1378          "possible collision");
  1379   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
  1380          "possible collision");
  1382   // Pass the length, ptr pair
  1383   Label is_null, done;
  1384   VMRegPair tmp(tmp_reg->as_VMReg());
  1385   if (reg.first()->is_stack()) {
  1386     // Load the arg up from the stack
  1387     simple_move32(masm, reg, tmp);
  1388     reg = tmp;
  1390   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
  1391   __ jccb(Assembler::equal, is_null);
  1392   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
  1393   simple_move32(masm, tmp, body_arg);
  1394   // load the length relative to the body.
  1395   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
  1396                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
  1397   simple_move32(masm, tmp, length_arg);
  1398   __ jmpb(done);
  1399   __ bind(is_null);
  1400   // Pass zeros
  1401   __ xorptr(tmp_reg, tmp_reg);
  1402   simple_move32(masm, tmp, body_arg);
  1403   simple_move32(masm, tmp, length_arg);
  1404   __ bind(done);
  1407 static void verify_oop_args(MacroAssembler* masm,
  1408                             methodHandle method,
  1409                             const BasicType* sig_bt,
  1410                             const VMRegPair* regs) {
  1411   Register temp_reg = rbx;  // not part of any compiled calling seq
  1412   if (VerifyOops) {
  1413     for (int i = 0; i < method->size_of_parameters(); i++) {
  1414       if (sig_bt[i] == T_OBJECT ||
  1415           sig_bt[i] == T_ARRAY) {
  1416         VMReg r = regs[i].first();
  1417         assert(r->is_valid(), "bad oop arg");
  1418         if (r->is_stack()) {
  1419           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1420           __ verify_oop(temp_reg);
  1421         } else {
  1422           __ verify_oop(r->as_Register());
  1429 static void gen_special_dispatch(MacroAssembler* masm,
  1430                                  methodHandle method,
  1431                                  const BasicType* sig_bt,
  1432                                  const VMRegPair* regs) {
  1433   verify_oop_args(masm, method, sig_bt, regs);
  1434   vmIntrinsics::ID iid = method->intrinsic_id();
  1436   // Now write the args into the outgoing interpreter space
  1437   bool     has_receiver   = false;
  1438   Register receiver_reg   = noreg;
  1439   int      member_arg_pos = -1;
  1440   Register member_reg     = noreg;
  1441   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
  1442   if (ref_kind != 0) {
  1443     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
  1444     member_reg = rbx;  // known to be free at this point
  1445     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
  1446   } else if (iid == vmIntrinsics::_invokeBasic) {
  1447     has_receiver = true;
  1448   } else {
  1449     fatal(err_msg_res("unexpected intrinsic id %d", iid));
  1452   if (member_reg != noreg) {
  1453     // Load the member_arg into register, if necessary.
  1454     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
  1455     VMReg r = regs[member_arg_pos].first();
  1456     if (r->is_stack()) {
  1457       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1458     } else {
  1459       // no data motion is needed
  1460       member_reg = r->as_Register();
  1464   if (has_receiver) {
  1465     // Make sure the receiver is loaded into a register.
  1466     assert(method->size_of_parameters() > 0, "oob");
  1467     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
  1468     VMReg r = regs[0].first();
  1469     assert(r->is_valid(), "bad receiver arg");
  1470     if (r->is_stack()) {
  1471       // Porting note:  This assumes that compiled calling conventions always
  1472       // pass the receiver oop in a register.  If this is not true on some
  1473       // platform, pick a temp and load the receiver from stack.
  1474       fatal("receiver always in a register");
  1475       receiver_reg = rcx;  // known to be free at this point
  1476       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1477     } else {
  1478       // no data motion is needed
  1479       receiver_reg = r->as_Register();
  1483   // Figure out which address we are really jumping to:
  1484   MethodHandles::generate_method_handle_dispatch(masm, iid,
  1485                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
  1488 // ---------------------------------------------------------------------------
  1489 // Generate a native wrapper for a given method.  The method takes arguments
  1490 // in the Java compiled code convention, marshals them to the native
  1491 // convention (handlizes oops, etc), transitions to native, makes the call,
  1492 // returns to java state (possibly blocking), unhandlizes any result and
  1493 // returns.
  1494 //
  1495 // Critical native functions are a shorthand for the use of
  1496 // GetPrimtiveArrayCritical and disallow the use of any other JNI
  1497 // functions.  The wrapper is expected to unpack the arguments before
  1498 // passing them to the callee and perform checks before and after the
  1499 // native call to ensure that they GC_locker
  1500 // lock_critical/unlock_critical semantics are followed.  Some other
  1501 // parts of JNI setup are skipped like the tear down of the JNI handle
  1502 // block and the check for pending exceptions it's impossible for them
  1503 // to be thrown.
  1504 //
  1505 // They are roughly structured like this:
  1506 //    if (GC_locker::needs_gc())
  1507 //      SharedRuntime::block_for_jni_critical();
  1508 //    tranistion to thread_in_native
  1509 //    unpack arrray arguments and call native entry point
  1510 //    check for safepoint in progress
  1511 //    check if any thread suspend flags are set
  1512 //      call into JVM and possible unlock the JNI critical
  1513 //      if a GC was suppressed while in the critical native.
  1514 //    transition back to thread_in_Java
  1515 //    return to caller
  1516 //
  1517 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
  1518                                                 methodHandle method,
  1519                                                 int compile_id,
  1520                                                 BasicType* in_sig_bt,
  1521                                                 VMRegPair* in_regs,
  1522                                                 BasicType ret_type) {
  1523   if (method->is_method_handle_intrinsic()) {
  1524     vmIntrinsics::ID iid = method->intrinsic_id();
  1525     intptr_t start = (intptr_t)__ pc();
  1526     int vep_offset = ((intptr_t)__ pc()) - start;
  1527     gen_special_dispatch(masm,
  1528                          method,
  1529                          in_sig_bt,
  1530                          in_regs);
  1531     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
  1532     __ flush();
  1533     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
  1534     return nmethod::new_native_nmethod(method,
  1535                                        compile_id,
  1536                                        masm->code(),
  1537                                        vep_offset,
  1538                                        frame_complete,
  1539                                        stack_slots / VMRegImpl::slots_per_word,
  1540                                        in_ByteSize(-1),
  1541                                        in_ByteSize(-1),
  1542                                        (OopMapSet*)NULL);
  1544   bool is_critical_native = true;
  1545   address native_func = method->critical_native_function();
  1546   if (native_func == NULL) {
  1547     native_func = method->native_function();
  1548     is_critical_native = false;
  1550   assert(native_func != NULL, "must have function");
  1552   // An OopMap for lock (and class if static)
  1553   OopMapSet *oop_maps = new OopMapSet();
  1555   // We have received a description of where all the java arg are located
  1556   // on entry to the wrapper. We need to convert these args to where
  1557   // the jni function will expect them. To figure out where they go
  1558   // we convert the java signature to a C signature by inserting
  1559   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1561   const int total_in_args = method->size_of_parameters();
  1562   int total_c_args = total_in_args;
  1563   if (!is_critical_native) {
  1564     total_c_args += 1;
  1565     if (method->is_static()) {
  1566       total_c_args++;
  1568   } else {
  1569     for (int i = 0; i < total_in_args; i++) {
  1570       if (in_sig_bt[i] == T_ARRAY) {
  1571         total_c_args++;
  1576   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1577   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  1578   BasicType* in_elem_bt = NULL;
  1580   int argc = 0;
  1581   if (!is_critical_native) {
  1582     out_sig_bt[argc++] = T_ADDRESS;
  1583     if (method->is_static()) {
  1584       out_sig_bt[argc++] = T_OBJECT;
  1587     for (int i = 0; i < total_in_args ; i++ ) {
  1588       out_sig_bt[argc++] = in_sig_bt[i];
  1590   } else {
  1591     Thread* THREAD = Thread::current();
  1592     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
  1593     SignatureStream ss(method->signature());
  1594     for (int i = 0; i < total_in_args ; i++ ) {
  1595       if (in_sig_bt[i] == T_ARRAY) {
  1596         // Arrays are passed as int, elem* pair
  1597         out_sig_bt[argc++] = T_INT;
  1598         out_sig_bt[argc++] = T_ADDRESS;
  1599         Symbol* atype = ss.as_symbol(CHECK_NULL);
  1600         const char* at = atype->as_C_string();
  1601         if (strlen(at) == 2) {
  1602           assert(at[0] == '[', "must be");
  1603           switch (at[1]) {
  1604             case 'B': in_elem_bt[i]  = T_BYTE; break;
  1605             case 'C': in_elem_bt[i]  = T_CHAR; break;
  1606             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
  1607             case 'F': in_elem_bt[i]  = T_FLOAT; break;
  1608             case 'I': in_elem_bt[i]  = T_INT; break;
  1609             case 'J': in_elem_bt[i]  = T_LONG; break;
  1610             case 'S': in_elem_bt[i]  = T_SHORT; break;
  1611             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
  1612             default: ShouldNotReachHere();
  1615       } else {
  1616         out_sig_bt[argc++] = in_sig_bt[i];
  1617         in_elem_bt[i] = T_VOID;
  1619       if (in_sig_bt[i] != T_VOID) {
  1620         assert(in_sig_bt[i] == ss.type(), "must match");
  1621         ss.next();
  1626   // Now figure out where the args must be stored and how much stack space
  1627   // they require.
  1628   int out_arg_slots;
  1629   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
  1631   // Compute framesize for the wrapper.  We need to handlize all oops in
  1632   // registers a max of 2 on x86.
  1634   // Calculate the total number of stack slots we will need.
  1636   // First count the abi requirement plus all of the outgoing args
  1637   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1639   // Now the space for the inbound oop handle area
  1640   int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
  1641   if (is_critical_native) {
  1642     // Critical natives may have to call out so they need a save area
  1643     // for register arguments.
  1644     int double_slots = 0;
  1645     int single_slots = 0;
  1646     for ( int i = 0; i < total_in_args; i++) {
  1647       if (in_regs[i].first()->is_Register()) {
  1648         const Register reg = in_regs[i].first()->as_Register();
  1649         switch (in_sig_bt[i]) {
  1650           case T_ARRAY:  // critical array (uses 2 slots on LP64)
  1651           case T_BOOLEAN:
  1652           case T_BYTE:
  1653           case T_SHORT:
  1654           case T_CHAR:
  1655           case T_INT:  single_slots++; break;
  1656           case T_LONG: double_slots++; break;
  1657           default:  ShouldNotReachHere();
  1659       } else if (in_regs[i].first()->is_XMMRegister()) {
  1660         switch (in_sig_bt[i]) {
  1661           case T_FLOAT:  single_slots++; break;
  1662           case T_DOUBLE: double_slots++; break;
  1663           default:  ShouldNotReachHere();
  1665       } else if (in_regs[i].first()->is_FloatRegister()) {
  1666         ShouldNotReachHere();
  1669     total_save_slots = double_slots * 2 + single_slots;
  1670     // align the save area
  1671     if (double_slots != 0) {
  1672       stack_slots = round_to(stack_slots, 2);
  1676   int oop_handle_offset = stack_slots;
  1677   stack_slots += total_save_slots;
  1679   // Now any space we need for handlizing a klass if static method
  1681   int klass_slot_offset = 0;
  1682   int klass_offset = -1;
  1683   int lock_slot_offset = 0;
  1684   bool is_static = false;
  1686   if (method->is_static()) {
  1687     klass_slot_offset = stack_slots;
  1688     stack_slots += VMRegImpl::slots_per_word;
  1689     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  1690     is_static = true;
  1693   // Plus a lock if needed
  1695   if (method->is_synchronized()) {
  1696     lock_slot_offset = stack_slots;
  1697     stack_slots += VMRegImpl::slots_per_word;
  1700   // Now a place (+2) to save return values or temp during shuffling
  1701   // + 2 for return address (which we own) and saved rbp,
  1702   stack_slots += 4;
  1704   // Ok The space we have allocated will look like:
  1705   //
  1706   //
  1707   // FP-> |                     |
  1708   //      |---------------------|
  1709   //      | 2 slots for moves   |
  1710   //      |---------------------|
  1711   //      | lock box (if sync)  |
  1712   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
  1713   //      | klass (if static)   |
  1714   //      |---------------------| <- klass_slot_offset
  1715   //      | oopHandle area      |
  1716   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
  1717   //      | outbound memory     |
  1718   //      | based arguments     |
  1719   //      |                     |
  1720   //      |---------------------|
  1721   //      |                     |
  1722   // SP-> | out_preserved_slots |
  1723   //
  1724   //
  1725   // ****************************************************************************
  1726   // WARNING - on Windows Java Natives use pascal calling convention and pop the
  1727   // arguments off of the stack after the jni call. Before the call we can use
  1728   // instructions that are SP relative. After the jni call we switch to FP
  1729   // relative instructions instead of re-adjusting the stack on windows.
  1730   // ****************************************************************************
  1733   // Now compute actual number of stack words we need rounding to make
  1734   // stack properly aligned.
  1735   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
  1737   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  1739   intptr_t start = (intptr_t)__ pc();
  1741   // First thing make an ic check to see if we should even be here
  1743   // We are free to use all registers as temps without saving them and
  1744   // restoring them except rbp. rbp is the only callee save register
  1745   // as far as the interpreter and the compiler(s) are concerned.
  1748   const Register ic_reg = rax;
  1749   const Register receiver = rcx;
  1750   Label hit;
  1751   Label exception_pending;
  1753   __ verify_oop(receiver);
  1754   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  1755   __ jcc(Assembler::equal, hit);
  1757   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1759   // verified entry must be aligned for code patching.
  1760   // and the first 5 bytes must be in the same cache line
  1761   // if we align at 8 then we will be sure 5 bytes are in the same line
  1762   __ align(8);
  1764   __ bind(hit);
  1766   int vep_offset = ((intptr_t)__ pc()) - start;
  1768 #ifdef COMPILER1
  1769   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
  1770     // Object.hashCode can pull the hashCode from the header word
  1771     // instead of doing a full VM transition once it's been computed.
  1772     // Since hashCode is usually polymorphic at call sites we can't do
  1773     // this optimization at the call site without a lot of work.
  1774     Label slowCase;
  1775     Register receiver = rcx;
  1776     Register result = rax;
  1777     __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
  1779     // check if locked
  1780     __ testptr(result, markOopDesc::unlocked_value);
  1781     __ jcc (Assembler::zero, slowCase);
  1783     if (UseBiasedLocking) {
  1784       // Check if biased and fall through to runtime if so
  1785       __ testptr(result, markOopDesc::biased_lock_bit_in_place);
  1786       __ jcc (Assembler::notZero, slowCase);
  1789     // get hash
  1790     __ andptr(result, markOopDesc::hash_mask_in_place);
  1791     // test if hashCode exists
  1792     __ jcc  (Assembler::zero, slowCase);
  1793     __ shrptr(result, markOopDesc::hash_shift);
  1794     __ ret(0);
  1795     __ bind (slowCase);
  1797 #endif // COMPILER1
  1799   // The instruction at the verified entry point must be 5 bytes or longer
  1800   // because it can be patched on the fly by make_non_entrant. The stack bang
  1801   // instruction fits that requirement.
  1803   // Generate stack overflow check
  1805   if (UseStackBanging) {
  1806     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  1807   } else {
  1808     // need a 5 byte instruction to allow MT safe patching to non-entrant
  1809     __ fat_nop();
  1812   // Generate a new frame for the wrapper.
  1813   __ enter();
  1814   // -2 because return address is already present and so is saved rbp
  1815   __ subptr(rsp, stack_size - 2*wordSize);
  1817   // Frame is now completed as far as size and linkage.
  1818   int frame_complete = ((intptr_t)__ pc()) - start;
  1820   if (UseRTMLocking) {
  1821     // Abort RTM transaction before calling JNI
  1822     // because critical section will be large and will be
  1823     // aborted anyway. Also nmethod could be deoptimized.
  1824     __ xabort(0);
  1827   // Calculate the difference between rsp and rbp,. We need to know it
  1828   // after the native call because on windows Java Natives will pop
  1829   // the arguments and it is painful to do rsp relative addressing
  1830   // in a platform independent way. So after the call we switch to
  1831   // rbp, relative addressing.
  1833   int fp_adjustment = stack_size - 2*wordSize;
  1835 #ifdef COMPILER2
  1836   // C2 may leave the stack dirty if not in SSE2+ mode
  1837   if (UseSSE >= 2) {
  1838     __ verify_FPU(0, "c2i transition should have clean FPU stack");
  1839   } else {
  1840     __ empty_FPU_stack();
  1842 #endif /* COMPILER2 */
  1844   // Compute the rbp, offset for any slots used after the jni call
  1846   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
  1848   // We use rdi as a thread pointer because it is callee save and
  1849   // if we load it once it is usable thru the entire wrapper
  1850   const Register thread = rdi;
  1852   // We use rsi as the oop handle for the receiver/klass
  1853   // It is callee save so it survives the call to native
  1855   const Register oop_handle_reg = rsi;
  1857   __ get_thread(thread);
  1859   if (is_critical_native) {
  1860     check_needs_gc_for_critical_native(masm, thread, stack_slots, total_c_args, total_in_args,
  1861                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
  1864   //
  1865   // We immediately shuffle the arguments so that any vm call we have to
  1866   // make from here on out (sync slow path, jvmti, etc.) we will have
  1867   // captured the oops from our caller and have a valid oopMap for
  1868   // them.
  1870   // -----------------
  1871   // The Grand Shuffle
  1872   //
  1873   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
  1874   // and, if static, the class mirror instead of a receiver.  This pretty much
  1875   // guarantees that register layout will not match (and x86 doesn't use reg
  1876   // parms though amd does).  Since the native abi doesn't use register args
  1877   // and the java conventions does we don't have to worry about collisions.
  1878   // All of our moved are reg->stack or stack->stack.
  1879   // We ignore the extra arguments during the shuffle and handle them at the
  1880   // last moment. The shuffle is described by the two calling convention
  1881   // vectors we have in our possession. We simply walk the java vector to
  1882   // get the source locations and the c vector to get the destinations.
  1884   int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 );
  1886   // Record rsp-based slot for receiver on stack for non-static methods
  1887   int receiver_offset = -1;
  1889   // This is a trick. We double the stack slots so we can claim
  1890   // the oops in the caller's frame. Since we are sure to have
  1891   // more args than the caller doubling is enough to make
  1892   // sure we can capture all the incoming oop args from the
  1893   // caller.
  1894   //
  1895   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1897   // Mark location of rbp,
  1898   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
  1900   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
  1901   // Are free to temporaries if we have to do  stack to steck moves.
  1902   // All inbound args are referenced based on rbp, and all outbound args via rsp.
  1904   for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
  1905     switch (in_sig_bt[i]) {
  1906       case T_ARRAY:
  1907         if (is_critical_native) {
  1908           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
  1909           c_arg++;
  1910           break;
  1912       case T_OBJECT:
  1913         assert(!is_critical_native, "no oop arguments");
  1914         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  1915                     ((i == 0) && (!is_static)),
  1916                     &receiver_offset);
  1917         break;
  1918       case T_VOID:
  1919         break;
  1921       case T_FLOAT:
  1922         float_move(masm, in_regs[i], out_regs[c_arg]);
  1923           break;
  1925       case T_DOUBLE:
  1926         assert( i + 1 < total_in_args &&
  1927                 in_sig_bt[i + 1] == T_VOID &&
  1928                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  1929         double_move(masm, in_regs[i], out_regs[c_arg]);
  1930         break;
  1932       case T_LONG :
  1933         long_move(masm, in_regs[i], out_regs[c_arg]);
  1934         break;
  1936       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  1938       default:
  1939         simple_move32(masm, in_regs[i], out_regs[c_arg]);
  1943   // Pre-load a static method's oop into rsi.  Used both by locking code and
  1944   // the normal JNI call code.
  1945   if (method->is_static() && !is_critical_native) {
  1947     //  load opp into a register
  1948     __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
  1950     // Now handlize the static class mirror it's known not-null.
  1951     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
  1952     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  1954     // Now get the handle
  1955     __ lea(oop_handle_reg, Address(rsp, klass_offset));
  1956     // store the klass handle as second argument
  1957     __ movptr(Address(rsp, wordSize), oop_handle_reg);
  1960   // Change state to native (we save the return address in the thread, since it might not
  1961   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  1962   // points into the right code segment. It does not have to be the correct return pc.
  1963   // We use the same pc/oopMap repeatedly when we call out
  1965   intptr_t the_pc = (intptr_t) __ pc();
  1966   oop_maps->add_gc_map(the_pc - start, map);
  1968   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
  1971   // We have all of the arguments setup at this point. We must not touch any register
  1972   // argument registers at this point (what if we save/restore them there are no oop?
  1975     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
  1976     __ mov_metadata(rax, method());
  1977     __ call_VM_leaf(
  1978          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  1979          thread, rax);
  1982   // RedefineClasses() tracing support for obsolete method entry
  1983   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  1984     __ mov_metadata(rax, method());
  1985     __ call_VM_leaf(
  1986          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  1987          thread, rax);
  1990   // These are register definitions we need for locking/unlocking
  1991   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
  1992   const Register obj_reg  = rcx;  // Will contain the oop
  1993   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
  1995   Label slow_path_lock;
  1996   Label lock_done;
  1998   // Lock a synchronized method
  1999   if (method->is_synchronized()) {
  2000     assert(!is_critical_native, "unhandled");
  2003     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
  2005     // Get the handle (the 2nd argument)
  2006     __ movptr(oop_handle_reg, Address(rsp, wordSize));
  2008     // Get address of the box
  2010     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
  2012     // Load the oop from the handle
  2013     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  2015     if (UseBiasedLocking) {
  2016       // Note that oop_handle_reg is trashed during this call
  2017       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
  2020     // Load immediate 1 into swap_reg %rax,
  2021     __ movptr(swap_reg, 1);
  2023     // Load (object->mark() | 1) into swap_reg %rax,
  2024     __ orptr(swap_reg, Address(obj_reg, 0));
  2026     // Save (object->mark() | 1) into BasicLock's displaced header
  2027     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  2029     if (os::is_MP()) {
  2030       __ lock();
  2033     // src -> dest iff dest == rax, else rax, <- dest
  2034     // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
  2035     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
  2036     __ jcc(Assembler::equal, lock_done);
  2038     // Test if the oopMark is an obvious stack pointer, i.e.,
  2039     //  1) (mark & 3) == 0, and
  2040     //  2) rsp <= mark < mark + os::pagesize()
  2041     // These 3 tests can be done by evaluating the following
  2042     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
  2043     // assuming both stack pointer and pagesize have their
  2044     // least significant 2 bits clear.
  2045     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
  2047     __ subptr(swap_reg, rsp);
  2048     __ andptr(swap_reg, 3 - os::vm_page_size());
  2050     // Save the test result, for recursive case, the result is zero
  2051     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  2052     __ jcc(Assembler::notEqual, slow_path_lock);
  2053     // Slow path will re-enter here
  2054     __ bind(lock_done);
  2056     if (UseBiasedLocking) {
  2057       // Re-fetch oop_handle_reg as we trashed it above
  2058       __ movptr(oop_handle_reg, Address(rsp, wordSize));
  2063   // Finally just about ready to make the JNI call
  2066   // get JNIEnv* which is first argument to native
  2067   if (!is_critical_native) {
  2068     __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
  2069     __ movptr(Address(rsp, 0), rdx);
  2072   // Now set thread in native
  2073   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
  2075   __ call(RuntimeAddress(native_func));
  2077   // Verify or restore cpu control state after JNI call
  2078   __ restore_cpu_control_state_after_jni();
  2080   // WARNING - on Windows Java Natives use pascal calling convention and pop the
  2081   // arguments off of the stack. We could just re-adjust the stack pointer here
  2082   // and continue to do SP relative addressing but we instead switch to FP
  2083   // relative addressing.
  2085   // Unpack native results.
  2086   switch (ret_type) {
  2087   case T_BOOLEAN: __ c2bool(rax);            break;
  2088   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
  2089   case T_BYTE   : __ sign_extend_byte (rax); break;
  2090   case T_SHORT  : __ sign_extend_short(rax); break;
  2091   case T_INT    : /* nothing to do */        break;
  2092   case T_DOUBLE :
  2093   case T_FLOAT  :
  2094     // Result is in st0 we'll save as needed
  2095     break;
  2096   case T_ARRAY:                 // Really a handle
  2097   case T_OBJECT:                // Really a handle
  2098       break; // can't de-handlize until after safepoint check
  2099   case T_VOID: break;
  2100   case T_LONG: break;
  2101   default       : ShouldNotReachHere();
  2104   // Switch thread to "native transition" state before reading the synchronization state.
  2105   // This additional state is necessary because reading and testing the synchronization
  2106   // state is not atomic w.r.t. GC, as this scenario demonstrates:
  2107   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  2108   //     VM thread changes sync state to synchronizing and suspends threads for GC.
  2109   //     Thread A is resumed to finish this native method, but doesn't block here since it
  2110   //     didn't see any synchronization is progress, and escapes.
  2111   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  2113   if(os::is_MP()) {
  2114     if (UseMembar) {
  2115       // Force this write out before the read below
  2116       __ membar(Assembler::Membar_mask_bits(
  2117            Assembler::LoadLoad | Assembler::LoadStore |
  2118            Assembler::StoreLoad | Assembler::StoreStore));
  2119     } else {
  2120       // Write serialization page so VM thread can do a pseudo remote membar.
  2121       // We use the current thread pointer to calculate a thread specific
  2122       // offset to write to within the page. This minimizes bus traffic
  2123       // due to cache line collision.
  2124       __ serialize_memory(thread, rcx);
  2128   if (AlwaysRestoreFPU) {
  2129     // Make sure the control word is correct.
  2130     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  2133   Label after_transition;
  2135   // check for safepoint operation in progress and/or pending suspend requests
  2136   { Label Continue;
  2138     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
  2139              SafepointSynchronize::_not_synchronized);
  2141     Label L;
  2142     __ jcc(Assembler::notEqual, L);
  2143     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  2144     __ jcc(Assembler::equal, Continue);
  2145     __ bind(L);
  2147     // Don't use call_VM as it will see a possible pending exception and forward it
  2148     // and never return here preventing us from clearing _last_native_pc down below.
  2149     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  2150     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  2151     // by hand.
  2152     //
  2153     save_native_result(masm, ret_type, stack_slots);
  2154     __ push(thread);
  2155     if (!is_critical_native) {
  2156       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  2157                                               JavaThread::check_special_condition_for_native_trans)));
  2158     } else {
  2159       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  2160                                               JavaThread::check_special_condition_for_native_trans_and_transition)));
  2162     __ increment(rsp, wordSize);
  2163     // Restore any method result value
  2164     restore_native_result(masm, ret_type, stack_slots);
  2166     if (is_critical_native) {
  2167       // The call above performed the transition to thread_in_Java so
  2168       // skip the transition logic below.
  2169       __ jmpb(after_transition);
  2172     __ bind(Continue);
  2175   // change thread state
  2176   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  2177   __ bind(after_transition);
  2179   Label reguard;
  2180   Label reguard_done;
  2181   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  2182   __ jcc(Assembler::equal, reguard);
  2184   // slow path reguard  re-enters here
  2185   __ bind(reguard_done);
  2187   // Handle possible exception (will unlock if necessary)
  2189   // native result if any is live
  2191   // Unlock
  2192   Label slow_path_unlock;
  2193   Label unlock_done;
  2194   if (method->is_synchronized()) {
  2196     Label done;
  2198     // Get locked oop from the handle we passed to jni
  2199     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  2201     if (UseBiasedLocking) {
  2202       __ biased_locking_exit(obj_reg, rbx, done);
  2205     // Simple recursive lock?
  2207     __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
  2208     __ jcc(Assembler::equal, done);
  2210     // Must save rax, if if it is live now because cmpxchg must use it
  2211     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  2212       save_native_result(masm, ret_type, stack_slots);
  2215     //  get old displaced header
  2216     __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
  2218     // get address of the stack lock
  2219     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
  2221     // Atomic swap old header if oop still contains the stack lock
  2222     if (os::is_MP()) {
  2223     __ lock();
  2226     // src -> dest iff dest == rax, else rax, <- dest
  2227     // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
  2228     __ cmpxchgptr(rbx, Address(obj_reg, 0));
  2229     __ jcc(Assembler::notEqual, slow_path_unlock);
  2231     // slow path re-enters here
  2232     __ bind(unlock_done);
  2233     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  2234       restore_native_result(masm, ret_type, stack_slots);
  2237     __ bind(done);
  2242     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
  2243     // Tell dtrace about this method exit
  2244     save_native_result(masm, ret_type, stack_slots);
  2245     __ mov_metadata(rax, method());
  2246     __ call_VM_leaf(
  2247          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2248          thread, rax);
  2249     restore_native_result(masm, ret_type, stack_slots);
  2252   // We can finally stop using that last_Java_frame we setup ages ago
  2254   __ reset_last_Java_frame(thread, false);
  2256   // Unpack oop result
  2257   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  2258       Label L;
  2259       __ cmpptr(rax, (int32_t)NULL_WORD);
  2260       __ jcc(Assembler::equal, L);
  2261       __ movptr(rax, Address(rax, 0));
  2262       __ bind(L);
  2263       __ verify_oop(rax);
  2266   if (!is_critical_native) {
  2267     // reset handle block
  2268     __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
  2269     __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
  2271     // Any exception pending?
  2272     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2273     __ jcc(Assembler::notEqual, exception_pending);
  2276   // no exception, we're almost done
  2278   // check that only result value is on FPU stack
  2279   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
  2281   // Fixup floating pointer results so that result looks like a return from a compiled method
  2282   if (ret_type == T_FLOAT) {
  2283     if (UseSSE >= 1) {
  2284       // Pop st0 and store as float and reload into xmm register
  2285       __ fstp_s(Address(rbp, -4));
  2286       __ movflt(xmm0, Address(rbp, -4));
  2288   } else if (ret_type == T_DOUBLE) {
  2289     if (UseSSE >= 2) {
  2290       // Pop st0 and store as double and reload into xmm register
  2291       __ fstp_d(Address(rbp, -8));
  2292       __ movdbl(xmm0, Address(rbp, -8));
  2296   // Return
  2298   __ leave();
  2299   __ ret(0);
  2301   // Unexpected paths are out of line and go here
  2303   // Slow path locking & unlocking
  2304   if (method->is_synchronized()) {
  2306     // BEGIN Slow path lock
  2308     __ bind(slow_path_lock);
  2310     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
  2311     // args are (oop obj, BasicLock* lock, JavaThread* thread)
  2312     __ push(thread);
  2313     __ push(lock_reg);
  2314     __ push(obj_reg);
  2315     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
  2316     __ addptr(rsp, 3*wordSize);
  2318 #ifdef ASSERT
  2319     { Label L;
  2320     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
  2321     __ jcc(Assembler::equal, L);
  2322     __ stop("no pending exception allowed on exit from monitorenter");
  2323     __ bind(L);
  2325 #endif
  2326     __ jmp(lock_done);
  2328     // END Slow path lock
  2330     // BEGIN Slow path unlock
  2331     __ bind(slow_path_unlock);
  2333     // Slow path unlock
  2335     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  2336       save_native_result(masm, ret_type, stack_slots);
  2338     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
  2340     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
  2341     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
  2344     // should be a peal
  2345     // +wordSize because of the push above
  2346     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
  2347     __ push(rax);
  2349     __ push(obj_reg);
  2350     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
  2351     __ addptr(rsp, 2*wordSize);
  2352 #ifdef ASSERT
  2354       Label L;
  2355       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2356       __ jcc(Assembler::equal, L);
  2357       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
  2358       __ bind(L);
  2360 #endif /* ASSERT */
  2362     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
  2364     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  2365       restore_native_result(masm, ret_type, stack_slots);
  2367     __ jmp(unlock_done);
  2368     // END Slow path unlock
  2372   // SLOW PATH Reguard the stack if needed
  2374   __ bind(reguard);
  2375   save_native_result(masm, ret_type, stack_slots);
  2377     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  2379   restore_native_result(masm, ret_type, stack_slots);
  2380   __ jmp(reguard_done);
  2383   // BEGIN EXCEPTION PROCESSING
  2385   if (!is_critical_native) {
  2386     // Forward  the exception
  2387     __ bind(exception_pending);
  2389     // remove possible return value from FPU register stack
  2390     __ empty_FPU_stack();
  2392     // pop our frame
  2393     __ leave();
  2394     // and forward the exception
  2395     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2398   __ flush();
  2400   nmethod *nm = nmethod::new_native_nmethod(method,
  2401                                             compile_id,
  2402                                             masm->code(),
  2403                                             vep_offset,
  2404                                             frame_complete,
  2405                                             stack_slots / VMRegImpl::slots_per_word,
  2406                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  2407                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
  2408                                             oop_maps);
  2410   if (is_critical_native) {
  2411     nm->set_lazy_critical_native(true);
  2414   return nm;
  2418 #ifdef HAVE_DTRACE_H
  2419 // ---------------------------------------------------------------------------
  2420 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  2421 // in the Java compiled code convention, marshals them to the native
  2422 // abi and then leaves nops at the position you would expect to call a native
  2423 // function. When the probe is enabled the nops are replaced with a trap
  2424 // instruction that dtrace inserts and the trace will cause a notification
  2425 // to dtrace.
  2426 //
  2427 // The probes are only able to take primitive types and java/lang/String as
  2428 // arguments.  No other java types are allowed. Strings are converted to utf8
  2429 // strings so that from dtrace point of view java strings are converted to C
  2430 // strings. There is an arbitrary fixed limit on the total space that a method
  2431 // can use for converting the strings. (256 chars per string in the signature).
  2432 // So any java string larger then this is truncated.
  2434 nmethod *SharedRuntime::generate_dtrace_nmethod(
  2435     MacroAssembler *masm, methodHandle method) {
  2437   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  2438   // be single threaded in this method.
  2439   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  2441   // Fill in the signature array, for the calling-convention call.
  2442   int total_args_passed = method->size_of_parameters();
  2444   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2445   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2447   // The signature we are going to use for the trap that dtrace will see
  2448   // java/lang/String is converted. We drop "this" and any other object
  2449   // is converted to NULL.  (A one-slot java/lang/Long object reference
  2450   // is converted to a two-slot long, which is why we double the allocation).
  2451   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  2452   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  2454   int i=0;
  2455   int total_strings = 0;
  2456   int first_arg_to_pass = 0;
  2457   int total_c_args = 0;
  2459   if( !method->is_static() ) {  // Pass in receiver first
  2460     in_sig_bt[i++] = T_OBJECT;
  2461     first_arg_to_pass = 1;
  2464   // We need to convert the java args to where a native (non-jni) function
  2465   // would expect them. To figure out where they go we convert the java
  2466   // signature to a C signature.
  2468   SignatureStream ss(method->signature());
  2469   for ( ; !ss.at_return_type(); ss.next()) {
  2470     BasicType bt = ss.type();
  2471     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  2472     out_sig_bt[total_c_args++] = bt;
  2473     if( bt == T_OBJECT) {
  2474       Symbol* s = ss.as_symbol_or_null();   // symbol is created
  2475       if (s == vmSymbols::java_lang_String()) {
  2476         total_strings++;
  2477         out_sig_bt[total_c_args-1] = T_ADDRESS;
  2478       } else if (s == vmSymbols::java_lang_Boolean() ||
  2479                  s == vmSymbols::java_lang_Character() ||
  2480                  s == vmSymbols::java_lang_Byte() ||
  2481                  s == vmSymbols::java_lang_Short() ||
  2482                  s == vmSymbols::java_lang_Integer() ||
  2483                  s == vmSymbols::java_lang_Float()) {
  2484         out_sig_bt[total_c_args-1] = T_INT;
  2485       } else if (s == vmSymbols::java_lang_Long() ||
  2486                  s == vmSymbols::java_lang_Double()) {
  2487         out_sig_bt[total_c_args-1] = T_LONG;
  2488         out_sig_bt[total_c_args++] = T_VOID;
  2490     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  2491       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2492       out_sig_bt[total_c_args++] = T_VOID;
  2496   assert(i==total_args_passed, "validly parsed signature");
  2498   // Now get the compiled-Java layout as input arguments
  2499   int comp_args_on_stack;
  2500   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2501       in_sig_bt, in_regs, total_args_passed, false);
  2503   // Now figure out where the args must be stored and how much stack space
  2504   // they require (neglecting out_preserve_stack_slots).
  2506   int out_arg_slots;
  2507   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
  2509   // Calculate the total number of stack slots we will need.
  2511   // First count the abi requirement plus all of the outgoing args
  2512   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2514   // Now space for the string(s) we must convert
  2516   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
  2517   for (i = 0; i < total_strings ; i++) {
  2518     string_locs[i] = stack_slots;
  2519     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
  2522   // + 2 for return address (which we own) and saved rbp,
  2524   stack_slots += 2;
  2526   // Ok The space we have allocated will look like:
  2527   //
  2528   //
  2529   // FP-> |                     |
  2530   //      |---------------------|
  2531   //      | string[n]           |
  2532   //      |---------------------| <- string_locs[n]
  2533   //      | string[n-1]         |
  2534   //      |---------------------| <- string_locs[n-1]
  2535   //      | ...                 |
  2536   //      | ...                 |
  2537   //      |---------------------| <- string_locs[1]
  2538   //      | string[0]           |
  2539   //      |---------------------| <- string_locs[0]
  2540   //      | outbound memory     |
  2541   //      | based arguments     |
  2542   //      |                     |
  2543   //      |---------------------|
  2544   //      |                     |
  2545   // SP-> | out_preserved_slots |
  2546   //
  2547   //
  2549   // Now compute actual number of stack words we need rounding to make
  2550   // stack properly aligned.
  2551   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
  2553   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2555   intptr_t start = (intptr_t)__ pc();
  2557   // First thing make an ic check to see if we should even be here
  2559   // We are free to use all registers as temps without saving them and
  2560   // restoring them except rbp. rbp, is the only callee save register
  2561   // as far as the interpreter and the compiler(s) are concerned.
  2563   const Register ic_reg = rax;
  2564   const Register receiver = rcx;
  2565   Label hit;
  2566   Label exception_pending;
  2569   __ verify_oop(receiver);
  2570   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  2571   __ jcc(Assembler::equal, hit);
  2573   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  2575   // verified entry must be aligned for code patching.
  2576   // and the first 5 bytes must be in the same cache line
  2577   // if we align at 8 then we will be sure 5 bytes are in the same line
  2578   __ align(8);
  2580   __ bind(hit);
  2582   int vep_offset = ((intptr_t)__ pc()) - start;
  2585   // The instruction at the verified entry point must be 5 bytes or longer
  2586   // because it can be patched on the fly by make_non_entrant. The stack bang
  2587   // instruction fits that requirement.
  2589   // Generate stack overflow check
  2592   if (UseStackBanging) {
  2593     if (stack_size <= StackShadowPages*os::vm_page_size()) {
  2594       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  2595     } else {
  2596       __ movl(rax, stack_size);
  2597       __ bang_stack_size(rax, rbx);
  2599   } else {
  2600     // need a 5 byte instruction to allow MT safe patching to non-entrant
  2601     __ fat_nop();
  2604   assert(((int)__ pc() - start - vep_offset) >= 5,
  2605          "valid size for make_non_entrant");
  2607   // Generate a new frame for the wrapper.
  2608   __ enter();
  2610   // -2 because return address is already present and so is saved rbp,
  2611   if (stack_size - 2*wordSize != 0) {
  2612     __ subl(rsp, stack_size - 2*wordSize);
  2615   // Frame is now completed as far a size and linkage.
  2617   int frame_complete = ((intptr_t)__ pc()) - start;
  2619   // First thing we do store all the args as if we are doing the call.
  2620   // Since the C calling convention is stack based that ensures that
  2621   // all the Java register args are stored before we need to convert any
  2622   // string we might have.
  2624   int sid = 0;
  2625   int c_arg, j_arg;
  2626   int string_reg = 0;
  2628   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2629        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2631     VMRegPair src = in_regs[j_arg];
  2632     VMRegPair dst = out_regs[c_arg];
  2633     assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
  2634            "stack based abi assumed");
  2636     switch (in_sig_bt[j_arg]) {
  2638       case T_ARRAY:
  2639       case T_OBJECT:
  2640         if (out_sig_bt[c_arg] == T_ADDRESS) {
  2641           // Any register based arg for a java string after the first
  2642           // will be destroyed by the call to get_utf so we store
  2643           // the original value in the location the utf string address
  2644           // will eventually be stored.
  2645           if (src.first()->is_reg()) {
  2646             if (string_reg++ != 0) {
  2647               simple_move32(masm, src, dst);
  2650         } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2651           // need to unbox a one-word value
  2652           Register in_reg = rax;
  2653           if ( src.first()->is_reg() ) {
  2654             in_reg = src.first()->as_Register();
  2655           } else {
  2656             simple_move32(masm, src, in_reg->as_VMReg());
  2658           Label skipUnbox;
  2659           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
  2660           if ( out_sig_bt[c_arg] == T_LONG ) {
  2661             __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
  2663           __ testl(in_reg, in_reg);
  2664           __ jcc(Assembler::zero, skipUnbox);
  2665           assert(dst.first()->is_stack() &&
  2666                  (!dst.second()->is_valid() || dst.second()->is_stack()),
  2667                  "value(s) must go into stack slots");
  2669           BasicType bt = out_sig_bt[c_arg];
  2670           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2671           if ( bt == T_LONG ) {
  2672             __ movl(rbx, Address(in_reg,
  2673                                  box_offset + VMRegImpl::stack_slot_size));
  2674             __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
  2676           __ movl(in_reg,  Address(in_reg, box_offset));
  2677           __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
  2678           __ bind(skipUnbox);
  2679         } else {
  2680           // Convert the arg to NULL
  2681           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
  2683         if (out_sig_bt[c_arg] == T_LONG) {
  2684           assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2685           ++c_arg; // Move over the T_VOID To keep the loop indices in sync
  2687         break;
  2689       case T_VOID:
  2690         break;
  2692       case T_FLOAT:
  2693         float_move(masm, src, dst);
  2694         break;
  2696       case T_DOUBLE:
  2697         assert( j_arg + 1 < total_args_passed &&
  2698                 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
  2699         double_move(masm, src, dst);
  2700         break;
  2702       case T_LONG :
  2703         long_move(masm, src, dst);
  2704         break;
  2706       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2708       default:
  2709         simple_move32(masm, src, dst);
  2713   // Now we must convert any string we have to utf8
  2714   //
  2716   for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
  2717        sid < total_strings ; j_arg++, c_arg++ ) {
  2719     if (out_sig_bt[c_arg] == T_ADDRESS) {
  2721       Address utf8_addr = Address(
  2722           rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  2723       __ leal(rax, utf8_addr);
  2725       // The first string we find might still be in the original java arg
  2726       // register
  2727       VMReg orig_loc = in_regs[j_arg].first();
  2728       Register string_oop;
  2730       // This is where the argument will eventually reside
  2731       Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
  2733       if (sid == 1 && orig_loc->is_reg()) {
  2734         string_oop = orig_loc->as_Register();
  2735         assert(string_oop != rax, "smashed arg");
  2736       } else {
  2738         if (orig_loc->is_reg()) {
  2739           // Get the copy of the jls object
  2740           __ movl(rcx, dest);
  2741         } else {
  2742           // arg is still in the original location
  2743           __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
  2745         string_oop = rcx;
  2748       Label nullString;
  2749       __ movl(dest, NULL_WORD);
  2750       __ testl(string_oop, string_oop);
  2751       __ jcc(Assembler::zero, nullString);
  2753       // Now we can store the address of the utf string as the argument
  2754       __ movl(dest, rax);
  2756       // And do the conversion
  2757       __ call_VM_leaf(CAST_FROM_FN_PTR(
  2758              address, SharedRuntime::get_utf), string_oop, rax);
  2759       __ bind(nullString);
  2762     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  2763       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2764       ++c_arg; // Move over the T_VOID To keep the loop indices in sync
  2769   // Ok now we are done. Need to place the nop that dtrace wants in order to
  2770   // patch in the trap
  2772   int patch_offset = ((intptr_t)__ pc()) - start;
  2774   __ nop();
  2777   // Return
  2779   __ leave();
  2780   __ ret(0);
  2782   __ flush();
  2784   nmethod *nm = nmethod::new_dtrace_nmethod(
  2785       method, masm->code(), vep_offset, patch_offset, frame_complete,
  2786       stack_slots / VMRegImpl::slots_per_word);
  2787   return nm;
  2791 #endif // HAVE_DTRACE_H
  2793 // this function returns the adjust size (in number of words) to a c2i adapter
  2794 // activation for use during deoptimization
  2795 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
  2796   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
  2800 uint SharedRuntime::out_preserve_stack_slots() {
  2801   return 0;
  2804 //------------------------------generate_deopt_blob----------------------------
  2805 void SharedRuntime::generate_deopt_blob() {
  2806   // allocate space for the code
  2807   ResourceMark rm;
  2808   // setup code generation tools
  2809   CodeBuffer   buffer("deopt_blob", 1024, 1024);
  2810   MacroAssembler* masm = new MacroAssembler(&buffer);
  2811   int frame_size_in_words;
  2812   OopMap* map = NULL;
  2813   // Account for the extra args we place on the stack
  2814   // by the time we call fetch_unroll_info
  2815   const int additional_words = 2; // deopt kind, thread
  2817   OopMapSet *oop_maps = new OopMapSet();
  2819   // -------------
  2820   // This code enters when returning to a de-optimized nmethod.  A return
  2821   // address has been pushed on the the stack, and return values are in
  2822   // registers.
  2823   // If we are doing a normal deopt then we were called from the patched
  2824   // nmethod from the point we returned to the nmethod. So the return
  2825   // address on the stack is wrong by NativeCall::instruction_size
  2826   // We will adjust the value to it looks like we have the original return
  2827   // address on the stack (like when we eagerly deoptimized).
  2828   // In the case of an exception pending with deoptimized then we enter
  2829   // with a return address on the stack that points after the call we patched
  2830   // into the exception handler. We have the following register state:
  2831   //    rax,: exception
  2832   //    rbx,: exception handler
  2833   //    rdx: throwing pc
  2834   // So in this case we simply jam rdx into the useless return address and
  2835   // the stack looks just like we want.
  2836   //
  2837   // At this point we need to de-opt.  We save the argument return
  2838   // registers.  We call the first C routine, fetch_unroll_info().  This
  2839   // routine captures the return values and returns a structure which
  2840   // describes the current frame size and the sizes of all replacement frames.
  2841   // The current frame is compiled code and may contain many inlined
  2842   // functions, each with their own JVM state.  We pop the current frame, then
  2843   // push all the new frames.  Then we call the C routine unpack_frames() to
  2844   // populate these frames.  Finally unpack_frames() returns us the new target
  2845   // address.  Notice that callee-save registers are BLOWN here; they have
  2846   // already been captured in the vframeArray at the time the return PC was
  2847   // patched.
  2848   address start = __ pc();
  2849   Label cont;
  2851   // Prolog for non exception case!
  2853   // Save everything in sight.
  2855   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2856   // Normal deoptimization
  2857   __ push(Deoptimization::Unpack_deopt);
  2858   __ jmp(cont);
  2860   int reexecute_offset = __ pc() - start;
  2862   // Reexecute case
  2863   // return address is the pc describes what bci to do re-execute at
  2865   // No need to update map as each call to save_live_registers will produce identical oopmap
  2866   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2868   __ push(Deoptimization::Unpack_reexecute);
  2869   __ jmp(cont);
  2871   int exception_offset = __ pc() - start;
  2873   // Prolog for exception case
  2875   // all registers are dead at this entry point, except for rax, and
  2876   // rdx which contain the exception oop and exception pc
  2877   // respectively.  Set them in TLS and fall thru to the
  2878   // unpack_with_exception_in_tls entry point.
  2880   __ get_thread(rdi);
  2881   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
  2882   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
  2884   int exception_in_tls_offset = __ pc() - start;
  2886   // new implementation because exception oop is now passed in JavaThread
  2888   // Prolog for exception case
  2889   // All registers must be preserved because they might be used by LinearScan
  2890   // Exceptiop oop and throwing PC are passed in JavaThread
  2891   // tos: stack at point of call to method that threw the exception (i.e. only
  2892   // args are on the stack, no return address)
  2894   // make room on stack for the return address
  2895   // It will be patched later with the throwing pc. The correct value is not
  2896   // available now because loading it from memory would destroy registers.
  2897   __ push(0);
  2899   // Save everything in sight.
  2901   // No need to update map as each call to save_live_registers will produce identical oopmap
  2902   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2904   // Now it is safe to overwrite any register
  2906   // store the correct deoptimization type
  2907   __ push(Deoptimization::Unpack_exception);
  2909   // load throwing pc from JavaThread and patch it as the return address
  2910   // of the current frame. Then clear the field in JavaThread
  2911   __ get_thread(rdi);
  2912   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
  2913   __ movptr(Address(rbp, wordSize), rdx);
  2914   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
  2916 #ifdef ASSERT
  2917   // verify that there is really an exception oop in JavaThread
  2918   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
  2919   __ verify_oop(rax);
  2921   // verify that there is no pending exception
  2922   Label no_pending_exception;
  2923   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
  2924   __ testptr(rax, rax);
  2925   __ jcc(Assembler::zero, no_pending_exception);
  2926   __ stop("must not have pending exception here");
  2927   __ bind(no_pending_exception);
  2928 #endif
  2930   __ bind(cont);
  2932   // Compiled code leaves the floating point stack dirty, empty it.
  2933   __ empty_FPU_stack();
  2936   // Call C code.  Need thread and this frame, but NOT official VM entry
  2937   // crud.  We cannot block on this call, no GC can happen.
  2938   __ get_thread(rcx);
  2939   __ push(rcx);
  2940   // fetch_unroll_info needs to call last_java_frame()
  2941   __ set_last_Java_frame(rcx, noreg, noreg, NULL);
  2943   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
  2945   // Need to have an oopmap that tells fetch_unroll_info where to
  2946   // find any register it might need.
  2948   oop_maps->add_gc_map( __ pc()-start, map);
  2950   // Discard arg to fetch_unroll_info
  2951   __ pop(rcx);
  2953   __ get_thread(rcx);
  2954   __ reset_last_Java_frame(rcx, false);
  2956   // Load UnrollBlock into EDI
  2957   __ mov(rdi, rax);
  2959   // Move the unpack kind to a safe place in the UnrollBlock because
  2960   // we are very short of registers
  2962   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
  2963   // retrieve the deopt kind from where we left it.
  2964   __ pop(rax);
  2965   __ movl(unpack_kind, rax);                      // save the unpack_kind value
  2967    Label noException;
  2968   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
  2969   __ jcc(Assembler::notEqual, noException);
  2970   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
  2971   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
  2972   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
  2973   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
  2975   __ verify_oop(rax);
  2977   // Overwrite the result registers with the exception results.
  2978   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
  2979   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
  2981   __ bind(noException);
  2983   // Stack is back to only having register save data on the stack.
  2984   // Now restore the result registers. Everything else is either dead or captured
  2985   // in the vframeArray.
  2987   RegisterSaver::restore_result_registers(masm);
  2989   // Non standard control word may be leaked out through a safepoint blob, and we can
  2990   // deopt at a poll point with the non standard control word. However, we should make
  2991   // sure the control word is correct after restore_result_registers.
  2992   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  2994   // All of the register save area has been popped of the stack. Only the
  2995   // return address remains.
  2997   // Pop all the frames we must move/replace.
  2998   //
  2999   // Frame picture (youngest to oldest)
  3000   // 1: self-frame (no frame link)
  3001   // 2: deopting frame  (no frame link)
  3002   // 3: caller of deopting frame (could be compiled/interpreted).
  3003   //
  3004   // Note: by leaving the return address of self-frame on the stack
  3005   // and using the size of frame 2 to adjust the stack
  3006   // when we are done the return to frame 3 will still be on the stack.
  3008   // Pop deoptimized frame
  3009   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  3011   // sp should be pointing at the return address to the caller (3)
  3013   // Pick up the initial fp we should save
  3014   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
  3015   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
  3017 #ifdef ASSERT
  3018   // Compilers generate code that bang the stack by as much as the
  3019   // interpreter would need. So this stack banging should never
  3020   // trigger a fault. Verify that it does not on non product builds.
  3021   if (UseStackBanging) {
  3022     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  3023     __ bang_stack_size(rbx, rcx);
  3025 #endif
  3027   // Load array of frame pcs into ECX
  3028   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  3030   __ pop(rsi); // trash the old pc
  3032   // Load array of frame sizes into ESI
  3033   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  3035   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
  3037   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  3038   __ movl(counter, rbx);
  3040   // Now adjust the caller's stack to make up for the extra locals
  3041   // but record the original sp so that we can save it in the skeletal interpreter
  3042   // frame and the stack walking of interpreter_sender will get the unextended sp
  3043   // value and not the "real" sp value.
  3045   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
  3046   __ movptr(sp_temp, rsp);
  3047   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
  3048   __ subptr(rsp, rbx);
  3050   // Push interpreter frames in a loop
  3051   Label loop;
  3052   __ bind(loop);
  3053   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  3054 #ifdef CC_INTERP
  3055   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  3056 #ifdef ASSERT
  3057   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  3058   __ push(0xDEADDEAD);
  3059 #else /* ASSERT */
  3060   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  3061 #endif /* ASSERT */
  3062 #else /* CC_INTERP */
  3063   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
  3064 #endif /* CC_INTERP */
  3065   __ pushptr(Address(rcx, 0));          // save return address
  3066   __ enter();                           // save old & set new rbp,
  3067   __ subptr(rsp, rbx);                  // Prolog!
  3068   __ movptr(rbx, sp_temp);              // sender's sp
  3069 #ifdef CC_INTERP
  3070   __ movptr(Address(rbp,
  3071                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  3072           rbx); // Make it walkable
  3073 #else /* CC_INTERP */
  3074   // This value is corrected by layout_activation_impl
  3075   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  3076   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
  3077 #endif /* CC_INTERP */
  3078   __ movptr(sp_temp, rsp);              // pass to next frame
  3079   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  3080   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  3081   __ decrementl(counter);             // decrement counter
  3082   __ jcc(Assembler::notZero, loop);
  3083   __ pushptr(Address(rcx, 0));          // save final return address
  3085   // Re-push self-frame
  3086   __ enter();                           // save old & set new rbp,
  3088   //  Return address and rbp, are in place
  3089   // We'll push additional args later. Just allocate a full sized
  3090   // register save area
  3091   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
  3093   // Restore frame locals after moving the frame
  3094   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
  3095   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
  3096   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
  3097   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
  3098   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
  3100   // Set up the args to unpack_frame
  3102   __ pushl(unpack_kind);                     // get the unpack_kind value
  3103   __ get_thread(rcx);
  3104   __ push(rcx);
  3106   // set last_Java_sp, last_Java_fp
  3107   __ set_last_Java_frame(rcx, noreg, rbp, NULL);
  3109   // Call C code.  Need thread but NOT official VM entry
  3110   // crud.  We cannot block on this call, no GC can happen.  Call should
  3111   // restore return values to their stack-slots with the new SP.
  3112   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  3113   // Set an oopmap for the call site
  3114   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
  3116   // rax, contains the return result type
  3117   __ push(rax);
  3119   __ get_thread(rcx);
  3120   __ reset_last_Java_frame(rcx, false);
  3122   // Collect return values
  3123   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
  3124   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
  3126   // Clear floating point stack before returning to interpreter
  3127   __ empty_FPU_stack();
  3129   // Check if we should push the float or double return value.
  3130   Label results_done, yes_double_value;
  3131   __ cmpl(Address(rsp, 0), T_DOUBLE);
  3132   __ jcc (Assembler::zero, yes_double_value);
  3133   __ cmpl(Address(rsp, 0), T_FLOAT);
  3134   __ jcc (Assembler::notZero, results_done);
  3136   // return float value as expected by interpreter
  3137   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
  3138   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
  3139   __ jmp(results_done);
  3141   // return double value as expected by interpreter
  3142   __ bind(yes_double_value);
  3143   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
  3144   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
  3146   __ bind(results_done);
  3148   // Pop self-frame.
  3149   __ leave();                              // Epilog!
  3151   // Jump to interpreter
  3152   __ ret(0);
  3154   // -------------
  3155   // make sure all code is generated
  3156   masm->flush();
  3158   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
  3159   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  3163 #ifdef COMPILER2
  3164 //------------------------------generate_uncommon_trap_blob--------------------
  3165 void SharedRuntime::generate_uncommon_trap_blob() {
  3166   // allocate space for the code
  3167   ResourceMark rm;
  3168   // setup code generation tools
  3169   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
  3170   MacroAssembler* masm = new MacroAssembler(&buffer);
  3172   enum frame_layout {
  3173     arg0_off,      // thread                     sp + 0 // Arg location for
  3174     arg1_off,      // unloaded_class_index       sp + 1 // calling C
  3175     // The frame sender code expects that rbp will be in the "natural" place and
  3176     // will override any oopMap setting for it. We must therefore force the layout
  3177     // so that it agrees with the frame sender code.
  3178     rbp_off,       // callee saved register      sp + 2
  3179     return_off,    // slot for return address    sp + 3
  3180     framesize
  3181   };
  3183   address start = __ pc();
  3185   if (UseRTMLocking) {
  3186     // Abort RTM transaction before possible nmethod deoptimization.
  3187     __ xabort(0);
  3190   // Push self-frame.
  3191   __ subptr(rsp, return_off*wordSize);     // Epilog!
  3193   // rbp, is an implicitly saved callee saved register (i.e. the calling
  3194   // convention will save restore it in prolog/epilog) Other than that
  3195   // there are no callee save registers no that adapter frames are gone.
  3196   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
  3198   // Clear the floating point exception stack
  3199   __ empty_FPU_stack();
  3201   // set last_Java_sp
  3202   __ get_thread(rdx);
  3203   __ set_last_Java_frame(rdx, noreg, noreg, NULL);
  3205   // Call C code.  Need thread but NOT official VM entry
  3206   // crud.  We cannot block on this call, no GC can happen.  Call should
  3207   // capture callee-saved registers as well as return values.
  3208   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
  3209   // argument already in ECX
  3210   __ movl(Address(rsp, arg1_off*wordSize),rcx);
  3211   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
  3213   // Set an oopmap for the call site
  3214   OopMapSet *oop_maps = new OopMapSet();
  3215   OopMap* map =  new OopMap( framesize, 0 );
  3216   // No oopMap for rbp, it is known implicitly
  3218   oop_maps->add_gc_map( __ pc()-start, map);
  3220   __ get_thread(rcx);
  3222   __ reset_last_Java_frame(rcx, false);
  3224   // Load UnrollBlock into EDI
  3225   __ movptr(rdi, rax);
  3227   // Pop all the frames we must move/replace.
  3228   //
  3229   // Frame picture (youngest to oldest)
  3230   // 1: self-frame (no frame link)
  3231   // 2: deopting frame  (no frame link)
  3232   // 3: caller of deopting frame (could be compiled/interpreted).
  3234   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
  3235   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
  3237   // Pop deoptimized frame
  3238   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  3239   __ addptr(rsp, rcx);
  3241   // sp should be pointing at the return address to the caller (3)
  3243   // Pick up the initial fp we should save
  3244   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
  3245   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
  3247 #ifdef ASSERT
  3248   // Compilers generate code that bang the stack by as much as the
  3249   // interpreter would need. So this stack banging should never
  3250   // trigger a fault. Verify that it does not on non product builds.
  3251   if (UseStackBanging) {
  3252     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  3253     __ bang_stack_size(rbx, rcx);
  3255 #endif
  3257   // Load array of frame pcs into ECX
  3258   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  3260   __ pop(rsi); // trash the pc
  3262   // Load array of frame sizes into ESI
  3263   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  3265   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
  3267   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  3268   __ movl(counter, rbx);
  3270   // Now adjust the caller's stack to make up for the extra locals
  3271   // but record the original sp so that we can save it in the skeletal interpreter
  3272   // frame and the stack walking of interpreter_sender will get the unextended sp
  3273   // value and not the "real" sp value.
  3275   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
  3276   __ movptr(sp_temp, rsp);
  3277   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
  3278   __ subptr(rsp, rbx);
  3280   // Push interpreter frames in a loop
  3281   Label loop;
  3282   __ bind(loop);
  3283   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  3284 #ifdef CC_INTERP
  3285   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  3286 #ifdef ASSERT
  3287   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  3288   __ push(0xDEADDEAD);                  // (parm to RecursiveInterpreter...)
  3289 #else /* ASSERT */
  3290   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  3291 #endif /* ASSERT */
  3292 #else /* CC_INTERP */
  3293   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
  3294 #endif /* CC_INTERP */
  3295   __ pushptr(Address(rcx, 0));          // save return address
  3296   __ enter();                           // save old & set new rbp,
  3297   __ subptr(rsp, rbx);                  // Prolog!
  3298   __ movptr(rbx, sp_temp);              // sender's sp
  3299 #ifdef CC_INTERP
  3300   __ movptr(Address(rbp,
  3301                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  3302           rbx); // Make it walkable
  3303 #else /* CC_INTERP */
  3304   // This value is corrected by layout_activation_impl
  3305   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
  3306   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
  3307 #endif /* CC_INTERP */
  3308   __ movptr(sp_temp, rsp);              // pass to next frame
  3309   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  3310   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  3311   __ decrementl(counter);             // decrement counter
  3312   __ jcc(Assembler::notZero, loop);
  3313   __ pushptr(Address(rcx, 0));            // save final return address
  3315   // Re-push self-frame
  3316   __ enter();                           // save old & set new rbp,
  3317   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
  3320   // set last_Java_sp, last_Java_fp
  3321   __ get_thread(rdi);
  3322   __ set_last_Java_frame(rdi, noreg, rbp, NULL);
  3324   // Call C code.  Need thread but NOT official VM entry
  3325   // crud.  We cannot block on this call, no GC can happen.  Call should
  3326   // restore return values to their stack-slots with the new SP.
  3327   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
  3328   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
  3329   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  3330   // Set an oopmap for the call site
  3331   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
  3333   __ get_thread(rdi);
  3334   __ reset_last_Java_frame(rdi, true);
  3336   // Pop self-frame.
  3337   __ leave();     // Epilog!
  3339   // Jump to interpreter
  3340   __ ret(0);
  3342   // -------------
  3343   // make sure all code is generated
  3344   masm->flush();
  3346    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
  3348 #endif // COMPILER2
  3350 //------------------------------generate_handler_blob------
  3351 //
  3352 // Generate a special Compile2Runtime blob that saves all registers,
  3353 // setup oopmap, and calls safepoint code to stop the compiled code for
  3354 // a safepoint.
  3355 //
  3356 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
  3358   // Account for thread arg in our frame
  3359   const int additional_words = 1;
  3360   int frame_size_in_words;
  3362   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3364   ResourceMark rm;
  3365   OopMapSet *oop_maps = new OopMapSet();
  3366   OopMap* map;
  3368   // allocate space for the code
  3369   // setup code generation tools
  3370   CodeBuffer   buffer("handler_blob", 1024, 512);
  3371   MacroAssembler* masm = new MacroAssembler(&buffer);
  3373   const Register java_thread = rdi; // callee-saved for VC++
  3374   address start   = __ pc();
  3375   address call_pc = NULL;
  3376   bool cause_return = (poll_type == POLL_AT_RETURN);
  3377   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
  3379   if (UseRTMLocking) {
  3380     // Abort RTM transaction before calling runtime
  3381     // because critical section will be large and will be
  3382     // aborted anyway. Also nmethod could be deoptimized.
  3383     __ xabort(0);
  3386   // If cause_return is true we are at a poll_return and there is
  3387   // the return address on the stack to the caller on the nmethod
  3388   // that is safepoint. We can leave this return on the stack and
  3389   // effectively complete the return and safepoint in the caller.
  3390   // Otherwise we push space for a return address that the safepoint
  3391   // handler will install later to make the stack walking sensible.
  3392   if (!cause_return)
  3393     __ push(rbx);  // Make room for return address (or push it again)
  3395   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors);
  3397   // The following is basically a call_VM. However, we need the precise
  3398   // address of the call in order to generate an oopmap. Hence, we do all the
  3399   // work ourselves.
  3401   // Push thread argument and setup last_Java_sp
  3402   __ get_thread(java_thread);
  3403   __ push(java_thread);
  3404   __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
  3406   // if this was not a poll_return then we need to correct the return address now.
  3407   if (!cause_return) {
  3408     __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
  3409     __ movptr(Address(rbp, wordSize), rax);
  3412   // do the call
  3413   __ call(RuntimeAddress(call_ptr));
  3415   // Set an oopmap for the call site.  This oopmap will map all
  3416   // oop-registers and debug-info registers as callee-saved.  This
  3417   // will allow deoptimization at this safepoint to find all possible
  3418   // debug-info recordings, as well as let GC find all oops.
  3420   oop_maps->add_gc_map( __ pc() - start, map);
  3422   // Discard arg
  3423   __ pop(rcx);
  3425   Label noException;
  3427   // Clear last_Java_sp again
  3428   __ get_thread(java_thread);
  3429   __ reset_last_Java_frame(java_thread, false);
  3431   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3432   __ jcc(Assembler::equal, noException);
  3434   // Exception pending
  3435   RegisterSaver::restore_live_registers(masm, save_vectors);
  3437   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3439   __ bind(noException);
  3441   // Normal exit, register restoring and exit
  3442   RegisterSaver::restore_live_registers(masm, save_vectors);
  3444   __ ret(0);
  3446   // make sure all code is generated
  3447   masm->flush();
  3449   // Fill-out other meta info
  3450   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
  3453 //
  3454 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  3455 //
  3456 // Generate a stub that calls into vm to find out the proper destination
  3457 // of a java call. All the argument registers are live at this point
  3458 // but since this is generic code we don't know what they are and the caller
  3459 // must do any gc of the args.
  3460 //
  3461 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
  3462   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3464   // allocate space for the code
  3465   ResourceMark rm;
  3467   CodeBuffer buffer(name, 1000, 512);
  3468   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3470   int frame_size_words;
  3471   enum frame_layout {
  3472                 thread_off,
  3473                 extra_words };
  3475   OopMapSet *oop_maps = new OopMapSet();
  3476   OopMap* map = NULL;
  3478   int start = __ offset();
  3480   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
  3482   int frame_complete = __ offset();
  3484   const Register thread = rdi;
  3485   __ get_thread(rdi);
  3487   __ push(thread);
  3488   __ set_last_Java_frame(thread, noreg, rbp, NULL);
  3490   __ call(RuntimeAddress(destination));
  3493   // Set an oopmap for the call site.
  3494   // We need this not only for callee-saved registers, but also for volatile
  3495   // registers that the compiler might be keeping live across a safepoint.
  3497   oop_maps->add_gc_map( __ offset() - start, map);
  3499   // rax, contains the address we are going to jump to assuming no exception got installed
  3501   __ addptr(rsp, wordSize);
  3503   // clear last_Java_sp
  3504   __ reset_last_Java_frame(thread, true);
  3505   // check for pending exceptions
  3506   Label pending;
  3507   __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3508   __ jcc(Assembler::notEqual, pending);
  3510   // get the returned Method*
  3511   __ get_vm_result_2(rbx, thread);
  3512   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
  3514   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
  3516   RegisterSaver::restore_live_registers(masm);
  3518   // We are back the the original state on entry and ready to go.
  3520   __ jmp(rax);
  3522   // Pending exception after the safepoint
  3524   __ bind(pending);
  3526   RegisterSaver::restore_live_registers(masm);
  3528   // exception pending => remove activation and forward to exception handler
  3530   __ get_thread(thread);
  3531   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
  3532   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
  3533   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3535   // -------------
  3536   // make sure all code is generated
  3537   masm->flush();
  3539   // return the  blob
  3540   // frame_size_words or bytes??
  3541   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);

mercurial