src/cpu/sparc/vm/templateTable_sparc.cpp

Fri, 29 Sep 2017 14:30:05 -0400

author
dbuck
date
Fri, 29 Sep 2017 14:30:05 -0400
changeset 8997
f8a45a60bc6b
parent 8368
32b682649973
child 9041
95a08233f46c
permissions
-rw-r--r--

8174962: Better interface invocations
Reviewed-by: jrose, coleenp, ahgross, acorn, vlivanov

     1 /*
     2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "interpreter/interpreterRuntime.hpp"
    28 #include "interpreter/templateTable.hpp"
    29 #include "memory/universe.inline.hpp"
    30 #include "oops/methodData.hpp"
    31 #include "oops/objArrayKlass.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "prims/methodHandles.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/stubRoutines.hpp"
    36 #include "runtime/synchronizer.hpp"
    37 #include "utilities/macros.hpp"
    39 #ifndef CC_INTERP
    40 #define __ _masm->
    42 // Misc helpers
    44 // Do an oop store like *(base + index + offset) = val
    45 // index can be noreg,
    46 static void do_oop_store(InterpreterMacroAssembler* _masm,
    47                          Register base,
    48                          Register index,
    49                          int offset,
    50                          Register val,
    51                          Register tmp,
    52                          BarrierSet::Name barrier,
    53                          bool precise) {
    54   assert(tmp != val && tmp != base && tmp != index, "register collision");
    55   assert(index == noreg || offset == 0, "only one offset");
    56   switch (barrier) {
    57 #if INCLUDE_ALL_GCS
    58     case BarrierSet::G1SATBCT:
    59     case BarrierSet::G1SATBCTLogging:
    60       {
    61         // Load and record the previous value.
    62         __ g1_write_barrier_pre(base, index, offset,
    63                                 noreg /* pre_val */,
    64                                 tmp, true /*preserve_o_regs*/);
    66         // G1 barrier needs uncompressed oop for region cross check.
    67         Register new_val = val;
    68         if (UseCompressedOops && val != G0) {
    69           new_val = tmp;
    70           __ mov(val, new_val);
    71         }
    73         if (index == noreg ) {
    74           assert(Assembler::is_simm13(offset), "fix this code");
    75           __ store_heap_oop(val, base, offset);
    76         } else {
    77           __ store_heap_oop(val, base, index);
    78         }
    80         // No need for post barrier if storing NULL
    81         if (val != G0) {
    82           if (precise) {
    83             if (index == noreg) {
    84               __ add(base, offset, base);
    85             } else {
    86               __ add(base, index, base);
    87             }
    88           }
    89           __ g1_write_barrier_post(base, new_val, tmp);
    90         }
    91       }
    92       break;
    93 #endif // INCLUDE_ALL_GCS
    94     case BarrierSet::CardTableModRef:
    95     case BarrierSet::CardTableExtension:
    96       {
    97         if (index == noreg ) {
    98           assert(Assembler::is_simm13(offset), "fix this code");
    99           __ store_heap_oop(val, base, offset);
   100         } else {
   101           __ store_heap_oop(val, base, index);
   102         }
   103         // No need for post barrier if storing NULL
   104         if (val != G0) {
   105           if (precise) {
   106             if (index == noreg) {
   107               __ add(base, offset, base);
   108             } else {
   109               __ add(base, index, base);
   110             }
   111           }
   112           __ card_write_barrier_post(base, val, tmp);
   113         }
   114       }
   115       break;
   116     case BarrierSet::ModRef:
   117     case BarrierSet::Other:
   118       ShouldNotReachHere();
   119       break;
   120     default      :
   121       ShouldNotReachHere();
   123   }
   124 }
   127 //----------------------------------------------------------------------------------------------------
   128 // Platform-dependent initialization
   130 void TemplateTable::pd_initialize() {
   131   // (none)
   132 }
   135 //----------------------------------------------------------------------------------------------------
   136 // Condition conversion
   137 Assembler::Condition ccNot(TemplateTable::Condition cc) {
   138   switch (cc) {
   139     case TemplateTable::equal        : return Assembler::notEqual;
   140     case TemplateTable::not_equal    : return Assembler::equal;
   141     case TemplateTable::less         : return Assembler::greaterEqual;
   142     case TemplateTable::less_equal   : return Assembler::greater;
   143     case TemplateTable::greater      : return Assembler::lessEqual;
   144     case TemplateTable::greater_equal: return Assembler::less;
   145   }
   146   ShouldNotReachHere();
   147   return Assembler::zero;
   148 }
   150 //----------------------------------------------------------------------------------------------------
   151 // Miscelaneous helper routines
   154 Address TemplateTable::at_bcp(int offset) {
   155   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   156   return Address(Lbcp, offset);
   157 }
   160 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
   161                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
   162                                    int byte_no) {
   163   // With sharing on, may need to test Method* flag.
   164   if (!RewriteBytecodes)  return;
   165   Label L_patch_done;
   167   switch (bc) {
   168   case Bytecodes::_fast_aputfield:
   169   case Bytecodes::_fast_bputfield:
   170   case Bytecodes::_fast_zputfield:
   171   case Bytecodes::_fast_cputfield:
   172   case Bytecodes::_fast_dputfield:
   173   case Bytecodes::_fast_fputfield:
   174   case Bytecodes::_fast_iputfield:
   175   case Bytecodes::_fast_lputfield:
   176   case Bytecodes::_fast_sputfield:
   177     {
   178       // We skip bytecode quickening for putfield instructions when
   179       // the put_code written to the constant pool cache is zero.
   180       // This is required so that every execution of this instruction
   181       // calls out to InterpreterRuntime::resolve_get_put to do
   182       // additional, required work.
   183       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
   184       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
   185       __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1);
   186       __ set(bc, bc_reg);
   187       __ cmp_and_br_short(temp_reg, 0, Assembler::equal, Assembler::pn, L_patch_done);  // don't patch
   188     }
   189     break;
   190   default:
   191     assert(byte_no == -1, "sanity");
   192     if (load_bc_into_bc_reg) {
   193       __ set(bc, bc_reg);
   194     }
   195   }
   197   if (JvmtiExport::can_post_breakpoint()) {
   198     Label L_fast_patch;
   199     __ ldub(at_bcp(0), temp_reg);
   200     __ cmp_and_br_short(temp_reg, Bytecodes::_breakpoint, Assembler::notEqual, Assembler::pt, L_fast_patch);
   201     // perform the quickening, slowly, in the bowels of the breakpoint table
   202     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, bc_reg);
   203     __ ba_short(L_patch_done);
   204     __ bind(L_fast_patch);
   205   }
   207 #ifdef ASSERT
   208   Bytecodes::Code orig_bytecode =  Bytecodes::java_code(bc);
   209   Label L_okay;
   210   __ ldub(at_bcp(0), temp_reg);
   211   __ cmp(temp_reg, orig_bytecode);
   212   __ br(Assembler::equal, false, Assembler::pt, L_okay);
   213   __ delayed()->cmp(temp_reg, bc_reg);
   214   __ br(Assembler::equal, false, Assembler::pt, L_okay);
   215   __ delayed()->nop();
   216   __ stop("patching the wrong bytecode");
   217   __ bind(L_okay);
   218 #endif
   220   // patch bytecode
   221   __ stb(bc_reg, at_bcp(0));
   222   __ bind(L_patch_done);
   223 }
   225 //----------------------------------------------------------------------------------------------------
   226 // Individual instructions
   228 void TemplateTable::nop() {
   229   transition(vtos, vtos);
   230   // nothing to do
   231 }
   233 void TemplateTable::shouldnotreachhere() {
   234   transition(vtos, vtos);
   235   __ stop("shouldnotreachhere bytecode");
   236 }
   238 void TemplateTable::aconst_null() {
   239   transition(vtos, atos);
   240   __ clr(Otos_i);
   241 }
   244 void TemplateTable::iconst(int value) {
   245   transition(vtos, itos);
   246   __ set(value, Otos_i);
   247 }
   250 void TemplateTable::lconst(int value) {
   251   transition(vtos, ltos);
   252   assert(value >= 0, "check this code");
   253 #ifdef _LP64
   254   __ set(value, Otos_l);
   255 #else
   256   __ set(value, Otos_l2);
   257   __ clr( Otos_l1);
   258 #endif
   259 }
   262 void TemplateTable::fconst(int value) {
   263   transition(vtos, ftos);
   264   static float zero = 0.0, one = 1.0, two = 2.0;
   265   float* p;
   266   switch( value ) {
   267    default: ShouldNotReachHere();
   268    case 0:  p = &zero;  break;
   269    case 1:  p = &one;   break;
   270    case 2:  p = &two;   break;
   271   }
   272   AddressLiteral a(p);
   273   __ sethi(a, G3_scratch);
   274   __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f);
   275 }
   278 void TemplateTable::dconst(int value) {
   279   transition(vtos, dtos);
   280   static double zero = 0.0, one = 1.0;
   281   double* p;
   282   switch( value ) {
   283    default: ShouldNotReachHere();
   284    case 0:  p = &zero;  break;
   285    case 1:  p = &one;   break;
   286   }
   287   AddressLiteral a(p);
   288   __ sethi(a, G3_scratch);
   289   __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d);
   290 }
   293 // %%%%% Should factore most snippet templates across platforms
   295 void TemplateTable::bipush() {
   296   transition(vtos, itos);
   297   __ ldsb( at_bcp(1), Otos_i );
   298 }
   300 void TemplateTable::sipush() {
   301   transition(vtos, itos);
   302   __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed);
   303 }
   305 void TemplateTable::ldc(bool wide) {
   306   transition(vtos, vtos);
   307   Label call_ldc, notInt, isString, notString, notClass, exit;
   309   if (wide) {
   310     __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
   311   } else {
   312     __ ldub(Lbcp, 1, O1);
   313   }
   314   __ get_cpool_and_tags(O0, O2);
   316   const int base_offset = ConstantPool::header_size() * wordSize;
   317   const int tags_offset = Array<u1>::base_offset_in_bytes();
   319   // get type from tags
   320   __ add(O2, tags_offset, O2);
   321   __ ldub(O2, O1, O2);
   323   // unresolved class? If so, must resolve
   324   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClass, Assembler::equal, Assembler::pt, call_ldc);
   326   // unresolved class in error state
   327   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClassInError, Assembler::equal, Assembler::pn, call_ldc);
   329   __ cmp(O2, JVM_CONSTANT_Class);      // need to call vm to get java mirror of the class
   330   __ brx(Assembler::notEqual, true, Assembler::pt, notClass);
   331   __ delayed()->add(O0, base_offset, O0);
   333   __ bind(call_ldc);
   334   __ set(wide, O1);
   335   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1);
   336   __ push(atos);
   337   __ ba_short(exit);
   339   __ bind(notClass);
   340  // __ add(O0, base_offset, O0);
   341   __ sll(O1, LogBytesPerWord, O1);
   342   __ cmp(O2, JVM_CONSTANT_Integer);
   343   __ brx(Assembler::notEqual, true, Assembler::pt, notInt);
   344   __ delayed()->cmp(O2, JVM_CONSTANT_String);
   345   __ ld(O0, O1, Otos_i);
   346   __ push(itos);
   347   __ ba_short(exit);
   349   __ bind(notInt);
   350  // __ cmp(O2, JVM_CONSTANT_String);
   351   __ brx(Assembler::notEqual, true, Assembler::pt, notString);
   352   __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
   353   __ bind(isString);
   354   __ stop("string should be rewritten to fast_aldc");
   355   __ ba_short(exit);
   357   __ bind(notString);
   358  // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
   359   __ push(ftos);
   361   __ bind(exit);
   362 }
   364 // Fast path for caching oop constants.
   365 // %%% We should use this to handle Class and String constants also.
   366 // %%% It will simplify the ldc/primitive path considerably.
   367 void TemplateTable::fast_aldc(bool wide) {
   368   transition(vtos, atos);
   370   int index_size = wide ? sizeof(u2) : sizeof(u1);
   371   Label resolved;
   373   // We are resolved if the resolved reference cache entry contains a
   374   // non-null object (CallSite, etc.)
   375   assert_different_registers(Otos_i, G3_scratch);
   376   __ get_cache_index_at_bcp(Otos_i, G3_scratch, 1, index_size);  // load index => G3_scratch
   377   __ load_resolved_reference_at_index(Otos_i, G3_scratch);
   378   __ tst(Otos_i);
   379   __ br(Assembler::notEqual, false, Assembler::pt, resolved);
   380   __ delayed()->set((int)bytecode(), O1);
   382   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
   384   // first time invocation - must resolve first
   385   __ call_VM(Otos_i, entry, O1);
   386   __ bind(resolved);
   387   __ verify_oop(Otos_i);
   388 }
   391 void TemplateTable::ldc2_w() {
   392   transition(vtos, vtos);
   393   Label Long, exit;
   395   __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
   396   __ get_cpool_and_tags(O0, O2);
   398   const int base_offset = ConstantPool::header_size() * wordSize;
   399   const int tags_offset = Array<u1>::base_offset_in_bytes();
   400   // get type from tags
   401   __ add(O2, tags_offset, O2);
   402   __ ldub(O2, O1, O2);
   404   __ sll(O1, LogBytesPerWord, O1);
   405   __ add(O0, O1, G3_scratch);
   407   __ cmp_and_brx_short(O2, JVM_CONSTANT_Double, Assembler::notEqual, Assembler::pt, Long);
   408   // A double can be placed at word-aligned locations in the constant pool.
   409   // Check out Conversions.java for an example.
   410   // Also ConstantPool::header_size() is 20, which makes it very difficult
   411   // to double-align double on the constant pool.  SG, 11/7/97
   412 #ifdef _LP64
   413   __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d);
   414 #else
   415   FloatRegister f = Ftos_d;
   416   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset, f);
   417   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset + sizeof(jdouble)/2,
   418          f->successor());
   419 #endif
   420   __ push(dtos);
   421   __ ba_short(exit);
   423   __ bind(Long);
   424 #ifdef _LP64
   425   __ ldx(G3_scratch, base_offset, Otos_l);
   426 #else
   427   __ ld(G3_scratch, base_offset, Otos_l);
   428   __ ld(G3_scratch, base_offset + sizeof(jlong)/2, Otos_l->successor());
   429 #endif
   430   __ push(ltos);
   432   __ bind(exit);
   433 }
   436 void TemplateTable::locals_index(Register reg, int offset) {
   437   __ ldub( at_bcp(offset), reg );
   438 }
   441 void TemplateTable::locals_index_wide(Register reg) {
   442   // offset is 2, not 1, because Lbcp points to wide prefix code
   443   __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned);
   444 }
   446 void TemplateTable::iload() {
   447   transition(vtos, itos);
   448   // Rewrite iload,iload  pair into fast_iload2
   449   //         iload,caload pair into fast_icaload
   450   if (RewriteFrequentPairs) {
   451     Label rewrite, done;
   453     // get next byte
   454     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch);
   456     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   457     // last two iloads in a pair.  Comparing against fast_iload means that
   458     // the next bytecode is neither an iload or a caload, and therefore
   459     // an iload pair.
   460     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_iload, Assembler::equal, Assembler::pn, done);
   462     __ cmp(G3_scratch, (int)Bytecodes::_fast_iload);
   463     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   464     __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch);
   466     __ cmp(G3_scratch, (int)Bytecodes::_caload);
   467     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   468     __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch);
   470     __ set(Bytecodes::_fast_iload, G4_scratch);  // don't check again
   471     // rewrite
   472     // G4_scratch: fast bytecode
   473     __ bind(rewrite);
   474     patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false);
   475     __ bind(done);
   476   }
   478   // Get the local value into tos
   479   locals_index(G3_scratch);
   480   __ access_local_int( G3_scratch, Otos_i );
   481 }
   483 void TemplateTable::fast_iload2() {
   484   transition(vtos, itos);
   485   locals_index(G3_scratch);
   486   __ access_local_int( G3_scratch, Otos_i );
   487   __ push_i();
   488   locals_index(G3_scratch, 3);  // get next bytecode's local index.
   489   __ access_local_int( G3_scratch, Otos_i );
   490 }
   492 void TemplateTable::fast_iload() {
   493   transition(vtos, itos);
   494   locals_index(G3_scratch);
   495   __ access_local_int( G3_scratch, Otos_i );
   496 }
   498 void TemplateTable::lload() {
   499   transition(vtos, ltos);
   500   locals_index(G3_scratch);
   501   __ access_local_long( G3_scratch, Otos_l );
   502 }
   505 void TemplateTable::fload() {
   506   transition(vtos, ftos);
   507   locals_index(G3_scratch);
   508   __ access_local_float( G3_scratch, Ftos_f );
   509 }
   512 void TemplateTable::dload() {
   513   transition(vtos, dtos);
   514   locals_index(G3_scratch);
   515   __ access_local_double( G3_scratch, Ftos_d );
   516 }
   519 void TemplateTable::aload() {
   520   transition(vtos, atos);
   521   locals_index(G3_scratch);
   522   __ access_local_ptr( G3_scratch, Otos_i);
   523 }
   526 void TemplateTable::wide_iload() {
   527   transition(vtos, itos);
   528   locals_index_wide(G3_scratch);
   529   __ access_local_int( G3_scratch, Otos_i );
   530 }
   533 void TemplateTable::wide_lload() {
   534   transition(vtos, ltos);
   535   locals_index_wide(G3_scratch);
   536   __ access_local_long( G3_scratch, Otos_l );
   537 }
   540 void TemplateTable::wide_fload() {
   541   transition(vtos, ftos);
   542   locals_index_wide(G3_scratch);
   543   __ access_local_float( G3_scratch, Ftos_f );
   544 }
   547 void TemplateTable::wide_dload() {
   548   transition(vtos, dtos);
   549   locals_index_wide(G3_scratch);
   550   __ access_local_double( G3_scratch, Ftos_d );
   551 }
   554 void TemplateTable::wide_aload() {
   555   transition(vtos, atos);
   556   locals_index_wide(G3_scratch);
   557   __ access_local_ptr( G3_scratch, Otos_i );
   558   __ verify_oop(Otos_i);
   559 }
   562 void TemplateTable::iaload() {
   563   transition(itos, itos);
   564   // Otos_i: index
   565   // tos: array
   566   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
   567   __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i);
   568 }
   571 void TemplateTable::laload() {
   572   transition(itos, ltos);
   573   // Otos_i: index
   574   // O2: array
   575   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
   576   __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l);
   577 }
   580 void TemplateTable::faload() {
   581   transition(itos, ftos);
   582   // Otos_i: index
   583   // O2: array
   584   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
   585   __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f);
   586 }
   589 void TemplateTable::daload() {
   590   transition(itos, dtos);
   591   // Otos_i: index
   592   // O2: array
   593   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
   594   __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d);
   595 }
   598 void TemplateTable::aaload() {
   599   transition(itos, atos);
   600   // Otos_i: index
   601   // tos: array
   602   __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
   603   __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
   604   __ verify_oop(Otos_i);
   605 }
   608 void TemplateTable::baload() {
   609   transition(itos, itos);
   610   // Otos_i: index
   611   // tos: array
   612   __ index_check(O2, Otos_i, 0, G3_scratch, O3);
   613   __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i);
   614 }
   617 void TemplateTable::caload() {
   618   transition(itos, itos);
   619   // Otos_i: index
   620   // tos: array
   621   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   622   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
   623 }
   625 void TemplateTable::fast_icaload() {
   626   transition(vtos, itos);
   627   // Otos_i: index
   628   // tos: array
   629   locals_index(G3_scratch);
   630   __ access_local_int( G3_scratch, Otos_i );
   631   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   632   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
   633 }
   636 void TemplateTable::saload() {
   637   transition(itos, itos);
   638   // Otos_i: index
   639   // tos: array
   640   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   641   __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i);
   642 }
   645 void TemplateTable::iload(int n) {
   646   transition(vtos, itos);
   647   __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
   648 }
   651 void TemplateTable::lload(int n) {
   652   transition(vtos, ltos);
   653   assert(n+1 < Argument::n_register_parameters, "would need more code");
   654   __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l);
   655 }
   658 void TemplateTable::fload(int n) {
   659   transition(vtos, ftos);
   660   assert(n < Argument::n_register_parameters, "would need more code");
   661   __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n),     Ftos_f );
   662 }
   665 void TemplateTable::dload(int n) {
   666   transition(vtos, dtos);
   667   FloatRegister dst = Ftos_d;
   668   __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst);
   669 }
   672 void TemplateTable::aload(int n) {
   673   transition(vtos, atos);
   674   __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
   675 }
   678 void TemplateTable::aload_0() {
   679   transition(vtos, atos);
   681   // According to bytecode histograms, the pairs:
   682   //
   683   // _aload_0, _fast_igetfield (itos)
   684   // _aload_0, _fast_agetfield (atos)
   685   // _aload_0, _fast_fgetfield (ftos)
   686   //
   687   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
   688   // bytecode checks the next bytecode and then rewrites the current
   689   // bytecode into a pair bytecode; otherwise it rewrites the current
   690   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
   691   //
   692   if (RewriteFrequentPairs) {
   693     Label rewrite, done;
   695     // get next byte
   696     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch);
   698     // do actual aload_0
   699     aload(0);
   701     // if _getfield then wait with rewrite
   702     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_getfield, Assembler::equal, Assembler::pn, done);
   704     // if _igetfield then rewrite to _fast_iaccess_0
   705     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   706     __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield);
   707     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   708     __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch);
   710     // if _agetfield then rewrite to _fast_aaccess_0
   711     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   712     __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield);
   713     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   714     __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch);
   716     // if _fgetfield then rewrite to _fast_faccess_0
   717     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   718     __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield);
   719     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   720     __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch);
   722     // else rewrite to _fast_aload0
   723     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   724     __ set(Bytecodes::_fast_aload_0, G4_scratch);
   726     // rewrite
   727     // G4_scratch: fast bytecode
   728     __ bind(rewrite);
   729     patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false);
   730     __ bind(done);
   731   } else {
   732     aload(0);
   733   }
   734 }
   737 void TemplateTable::istore() {
   738   transition(itos, vtos);
   739   locals_index(G3_scratch);
   740   __ store_local_int( G3_scratch, Otos_i );
   741 }
   744 void TemplateTable::lstore() {
   745   transition(ltos, vtos);
   746   locals_index(G3_scratch);
   747   __ store_local_long( G3_scratch, Otos_l );
   748 }
   751 void TemplateTable::fstore() {
   752   transition(ftos, vtos);
   753   locals_index(G3_scratch);
   754   __ store_local_float( G3_scratch, Ftos_f );
   755 }
   758 void TemplateTable::dstore() {
   759   transition(dtos, vtos);
   760   locals_index(G3_scratch);
   761   __ store_local_double( G3_scratch, Ftos_d );
   762 }
   765 void TemplateTable::astore() {
   766   transition(vtos, vtos);
   767   __ load_ptr(0, Otos_i);
   768   __ inc(Lesp, Interpreter::stackElementSize);
   769   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   770   locals_index(G3_scratch);
   771   __ store_local_ptr(G3_scratch, Otos_i);
   772 }
   775 void TemplateTable::wide_istore() {
   776   transition(vtos, vtos);
   777   __ pop_i();
   778   locals_index_wide(G3_scratch);
   779   __ store_local_int( G3_scratch, Otos_i );
   780 }
   783 void TemplateTable::wide_lstore() {
   784   transition(vtos, vtos);
   785   __ pop_l();
   786   locals_index_wide(G3_scratch);
   787   __ store_local_long( G3_scratch, Otos_l );
   788 }
   791 void TemplateTable::wide_fstore() {
   792   transition(vtos, vtos);
   793   __ pop_f();
   794   locals_index_wide(G3_scratch);
   795   __ store_local_float( G3_scratch, Ftos_f );
   796 }
   799 void TemplateTable::wide_dstore() {
   800   transition(vtos, vtos);
   801   __ pop_d();
   802   locals_index_wide(G3_scratch);
   803   __ store_local_double( G3_scratch, Ftos_d );
   804 }
   807 void TemplateTable::wide_astore() {
   808   transition(vtos, vtos);
   809   __ load_ptr(0, Otos_i);
   810   __ inc(Lesp, Interpreter::stackElementSize);
   811   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   812   locals_index_wide(G3_scratch);
   813   __ store_local_ptr(G3_scratch, Otos_i);
   814 }
   817 void TemplateTable::iastore() {
   818   transition(itos, vtos);
   819   __ pop_i(O2); // index
   820   // Otos_i: val
   821   // O3: array
   822   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
   823   __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT));
   824 }
   827 void TemplateTable::lastore() {
   828   transition(ltos, vtos);
   829   __ pop_i(O2); // index
   830   // Otos_l: val
   831   // O3: array
   832   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
   833   __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG));
   834 }
   837 void TemplateTable::fastore() {
   838   transition(ftos, vtos);
   839   __ pop_i(O2); // index
   840   // Ftos_f: val
   841   // O3: array
   842   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
   843   __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT));
   844 }
   847 void TemplateTable::dastore() {
   848   transition(dtos, vtos);
   849   __ pop_i(O2); // index
   850   // Fos_d: val
   851   // O3: array
   852   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
   853   __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
   854 }
   857 void TemplateTable::aastore() {
   858   Label store_ok, is_null, done;
   859   transition(vtos, vtos);
   860   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
   861   __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2);         // get index
   862   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3);     // get array
   863   // Otos_i: val
   864   // O2: index
   865   // O3: array
   866   __ verify_oop(Otos_i);
   867   __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1);
   869   // do array store check - check for NULL value first
   870   __ br_null_short( Otos_i, Assembler::pn, is_null );
   872   __ load_klass(O3, O4); // get array klass
   873   __ load_klass(Otos_i, O5); // get value klass
   875   // do fast instanceof cache test
   877   __ ld_ptr(O4,     in_bytes(ObjArrayKlass::element_klass_offset()),  O4);
   879   assert(Otos_i == O0, "just checking");
   881   // Otos_i:    value
   882   // O1:        addr - offset
   883   // O2:        index
   884   // O3:        array
   885   // O4:        array element klass
   886   // O5:        value klass
   888   // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   890   // Generate a fast subtype check.  Branch to store_ok if no
   891   // failure.  Throw if failure.
   892   __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok );
   894   // Not a subtype; so must throw exception
   895   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch );
   897   // Store is OK.
   898   __ bind(store_ok);
   899   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true);
   901   __ ba(done);
   902   __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
   904   __ bind(is_null);
   905   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true);
   907   __ profile_null_seen(G3_scratch);
   908   __ inc(Lesp, 3* Interpreter::stackElementSize);     // adj sp (pops array, index and value)
   909   __ bind(done);
   910 }
   913 void TemplateTable::bastore() {
   914   transition(itos, vtos);
   915   __ pop_i(O2); // index
   916   // Otos_i: val
   917   // O2: index
   918   // O3: array
   919   __ index_check(O3, O2, 0, G3_scratch, O2);
   920   // Need to check whether array is boolean or byte
   921   // since both types share the bastore bytecode.
   922   __ load_klass(O3, G4_scratch);
   923   __ ld(G4_scratch, in_bytes(Klass::layout_helper_offset()), G4_scratch);
   924   __ set(Klass::layout_helper_boolean_diffbit(), G3_scratch);
   925   __ andcc(G3_scratch, G4_scratch, G0);
   926   Label L_skip;
   927   __ br(Assembler::zero, false, Assembler::pn, L_skip);
   928   __ delayed()->nop();
   929   __ and3(Otos_i, 1, Otos_i);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
   930   __ bind(L_skip);
   931   __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE));
   932 }
   935 void TemplateTable::castore() {
   936   transition(itos, vtos);
   937   __ pop_i(O2); // index
   938   // Otos_i: val
   939   // O3: array
   940   __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2);
   941   __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR));
   942 }
   945 void TemplateTable::sastore() {
   946   // %%%%% Factor across platform
   947   castore();
   948 }
   951 void TemplateTable::istore(int n) {
   952   transition(itos, vtos);
   953   __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n));
   954 }
   957 void TemplateTable::lstore(int n) {
   958   transition(ltos, vtos);
   959   assert(n+1 < Argument::n_register_parameters, "only handle register cases");
   960   __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1));
   962 }
   965 void TemplateTable::fstore(int n) {
   966   transition(ftos, vtos);
   967   assert(n < Argument::n_register_parameters, "only handle register cases");
   968   __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n));
   969 }
   972 void TemplateTable::dstore(int n) {
   973   transition(dtos, vtos);
   974   FloatRegister src = Ftos_d;
   975   __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1));
   976 }
   979 void TemplateTable::astore(int n) {
   980   transition(vtos, vtos);
   981   __ load_ptr(0, Otos_i);
   982   __ inc(Lesp, Interpreter::stackElementSize);
   983   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   984   __ store_local_ptr(n, Otos_i);
   985 }
   988 void TemplateTable::pop() {
   989   transition(vtos, vtos);
   990   __ inc(Lesp, Interpreter::stackElementSize);
   991 }
   994 void TemplateTable::pop2() {
   995   transition(vtos, vtos);
   996   __ inc(Lesp, 2 * Interpreter::stackElementSize);
   997 }
  1000 void TemplateTable::dup() {
  1001   transition(vtos, vtos);
  1002   // stack: ..., a
  1003   // load a and tag
  1004   __ load_ptr(0, Otos_i);
  1005   __ push_ptr(Otos_i);
  1006   // stack: ..., a, a
  1010 void TemplateTable::dup_x1() {
  1011   transition(vtos, vtos);
  1012   // stack: ..., a, b
  1013   __ load_ptr( 1, G3_scratch);  // get a
  1014   __ load_ptr( 0, Otos_l1);     // get b
  1015   __ store_ptr(1, Otos_l1);     // put b
  1016   __ store_ptr(0, G3_scratch);  // put a - like swap
  1017   __ push_ptr(Otos_l1);         // push b
  1018   // stack: ..., b, a, b
  1022 void TemplateTable::dup_x2() {
  1023   transition(vtos, vtos);
  1024   // stack: ..., a, b, c
  1025   // get c and push on stack, reuse registers
  1026   __ load_ptr( 0, G3_scratch);  // get c
  1027   __ push_ptr(G3_scratch);      // push c with tag
  1028   // stack: ..., a, b, c, c  (c in reg)  (Lesp - 4)
  1029   // (stack offsets n+1 now)
  1030   __ load_ptr( 3, Otos_l1);     // get a
  1031   __ store_ptr(3, G3_scratch);  // put c at 3
  1032   // stack: ..., c, b, c, c  (a in reg)
  1033   __ load_ptr( 2, G3_scratch);  // get b
  1034   __ store_ptr(2, Otos_l1);     // put a at 2
  1035   // stack: ..., c, a, c, c  (b in reg)
  1036   __ store_ptr(1, G3_scratch);  // put b at 1
  1037   // stack: ..., c, a, b, c
  1041 void TemplateTable::dup2() {
  1042   transition(vtos, vtos);
  1043   __ load_ptr(1, G3_scratch);  // get a
  1044   __ load_ptr(0, Otos_l1);     // get b
  1045   __ push_ptr(G3_scratch);     // push a
  1046   __ push_ptr(Otos_l1);        // push b
  1047   // stack: ..., a, b, a, b
  1051 void TemplateTable::dup2_x1() {
  1052   transition(vtos, vtos);
  1053   // stack: ..., a, b, c
  1054   __ load_ptr( 1, Lscratch);    // get b
  1055   __ load_ptr( 2, Otos_l1);     // get a
  1056   __ store_ptr(2, Lscratch);    // put b at a
  1057   // stack: ..., b, b, c
  1058   __ load_ptr( 0, G3_scratch);  // get c
  1059   __ store_ptr(1, G3_scratch);  // put c at b
  1060   // stack: ..., b, c, c
  1061   __ store_ptr(0, Otos_l1);     // put a at c
  1062   // stack: ..., b, c, a
  1063   __ push_ptr(Lscratch);        // push b
  1064   __ push_ptr(G3_scratch);      // push c
  1065   // stack: ..., b, c, a, b, c
  1069 // The spec says that these types can be a mixture of category 1 (1 word)
  1070 // types and/or category 2 types (long and doubles)
  1071 void TemplateTable::dup2_x2() {
  1072   transition(vtos, vtos);
  1073   // stack: ..., a, b, c, d
  1074   __ load_ptr( 1, Lscratch);    // get c
  1075   __ load_ptr( 3, Otos_l1);     // get a
  1076   __ store_ptr(3, Lscratch);    // put c at 3
  1077   __ store_ptr(1, Otos_l1);     // put a at 1
  1078   // stack: ..., c, b, a, d
  1079   __ load_ptr( 2, G3_scratch);  // get b
  1080   __ load_ptr( 0, Otos_l1);     // get d
  1081   __ store_ptr(0, G3_scratch);  // put b at 0
  1082   __ store_ptr(2, Otos_l1);     // put d at 2
  1083   // stack: ..., c, d, a, b
  1084   __ push_ptr(Lscratch);        // push c
  1085   __ push_ptr(Otos_l1);         // push d
  1086   // stack: ..., c, d, a, b, c, d
  1090 void TemplateTable::swap() {
  1091   transition(vtos, vtos);
  1092   // stack: ..., a, b
  1093   __ load_ptr( 1, G3_scratch);  // get a
  1094   __ load_ptr( 0, Otos_l1);     // get b
  1095   __ store_ptr(0, G3_scratch);  // put b
  1096   __ store_ptr(1, Otos_l1);     // put a
  1097   // stack: ..., b, a
  1101 void TemplateTable::iop2(Operation op) {
  1102   transition(itos, itos);
  1103   __ pop_i(O1);
  1104   switch (op) {
  1105    case  add:  __  add(O1, Otos_i, Otos_i);  break;
  1106    case  sub:  __  sub(O1, Otos_i, Otos_i);  break;
  1107      // %%%%% Mul may not exist: better to call .mul?
  1108    case  mul:  __ smul(O1, Otos_i, Otos_i);  break;
  1109    case _and:  __ and3(O1, Otos_i, Otos_i);  break;
  1110    case  _or:  __  or3(O1, Otos_i, Otos_i);  break;
  1111    case _xor:  __ xor3(O1, Otos_i, Otos_i);  break;
  1112    case  shl:  __  sll(O1, Otos_i, Otos_i);  break;
  1113    case  shr:  __  sra(O1, Otos_i, Otos_i);  break;
  1114    case ushr:  __  srl(O1, Otos_i, Otos_i);  break;
  1115    default: ShouldNotReachHere();
  1120 void TemplateTable::lop2(Operation op) {
  1121   transition(ltos, ltos);
  1122   __ pop_l(O2);
  1123   switch (op) {
  1124 #ifdef _LP64
  1125    case  add:  __  add(O2, Otos_l, Otos_l);  break;
  1126    case  sub:  __  sub(O2, Otos_l, Otos_l);  break;
  1127    case _and:  __ and3(O2, Otos_l, Otos_l);  break;
  1128    case  _or:  __  or3(O2, Otos_l, Otos_l);  break;
  1129    case _xor:  __ xor3(O2, Otos_l, Otos_l);  break;
  1130 #else
  1131    case  add:  __ addcc(O3, Otos_l2, Otos_l2);  __ addc(O2, Otos_l1, Otos_l1);  break;
  1132    case  sub:  __ subcc(O3, Otos_l2, Otos_l2);  __ subc(O2, Otos_l1, Otos_l1);  break;
  1133    case _and:  __  and3(O3, Otos_l2, Otos_l2);  __ and3(O2, Otos_l1, Otos_l1);  break;
  1134    case  _or:  __   or3(O3, Otos_l2, Otos_l2);  __  or3(O2, Otos_l1, Otos_l1);  break;
  1135    case _xor:  __  xor3(O3, Otos_l2, Otos_l2);  __ xor3(O2, Otos_l1, Otos_l1);  break;
  1136 #endif
  1137    default: ShouldNotReachHere();
  1142 void TemplateTable::idiv() {
  1143   // %%%%% Later: ForSPARC/V7 call .sdiv library routine,
  1144   // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe.
  1146   transition(itos, itos);
  1147   __ pop_i(O1); // get 1st op
  1149   // Y contains upper 32 bits of result, set it to 0 or all ones
  1150   __ wry(G0);
  1151   __ mov(~0, G3_scratch);
  1153   __ tst(O1);
  1154      Label neg;
  1155   __ br(Assembler::negative, true, Assembler::pn, neg);
  1156   __ delayed()->wry(G3_scratch);
  1157   __ bind(neg);
  1159      Label ok;
  1160   __ tst(Otos_i);
  1161   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch );
  1163   const int min_int = 0x80000000;
  1164   Label regular;
  1165   __ cmp(Otos_i, -1);
  1166   __ br(Assembler::notEqual, false, Assembler::pt, regular);
  1167 #ifdef _LP64
  1168   // Don't put set in delay slot
  1169   // Set will turn into multiple instructions in 64 bit mode
  1170   __ delayed()->nop();
  1171   __ set(min_int, G4_scratch);
  1172 #else
  1173   __ delayed()->set(min_int, G4_scratch);
  1174 #endif
  1175   Label done;
  1176   __ cmp(O1, G4_scratch);
  1177   __ br(Assembler::equal, true, Assembler::pt, done);
  1178   __ delayed()->mov(O1, Otos_i);   // (mov only executed if branch taken)
  1180   __ bind(regular);
  1181   __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction!
  1182   __ bind(done);
  1186 void TemplateTable::irem() {
  1187   transition(itos, itos);
  1188   __ mov(Otos_i, O2); // save divisor
  1189   idiv();                               // %%%% Hack: exploits fact that idiv leaves dividend in O1
  1190   __ smul(Otos_i, O2, Otos_i);
  1191   __ sub(O1, Otos_i, Otos_i);
  1195 void TemplateTable::lmul() {
  1196   transition(ltos, ltos);
  1197   __ pop_l(O2);
  1198 #ifdef _LP64
  1199   __ mulx(Otos_l, O2, Otos_l);
  1200 #else
  1201   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lmul));
  1202 #endif
  1207 void TemplateTable::ldiv() {
  1208   transition(ltos, ltos);
  1210   // check for zero
  1211   __ pop_l(O2);
  1212 #ifdef _LP64
  1213   __ tst(Otos_l);
  1214   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1215   __ sdivx(O2, Otos_l, Otos_l);
  1216 #else
  1217   __ orcc(Otos_l1, Otos_l2, G0);
  1218   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1219   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
  1220 #endif
  1224 void TemplateTable::lrem() {
  1225   transition(ltos, ltos);
  1227   // check for zero
  1228   __ pop_l(O2);
  1229 #ifdef _LP64
  1230   __ tst(Otos_l);
  1231   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1232   __ sdivx(O2, Otos_l, Otos_l2);
  1233   __ mulx (Otos_l2, Otos_l, Otos_l2);
  1234   __ sub  (O2, Otos_l2, Otos_l);
  1235 #else
  1236   __ orcc(Otos_l1, Otos_l2, G0);
  1237   __ throw_if_not_icc(Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1238   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
  1239 #endif
  1243 void TemplateTable::lshl() {
  1244   transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra
  1246   __ pop_l(O2);                          // shift value in O2, O3
  1247 #ifdef _LP64
  1248   __ sllx(O2, Otos_i, Otos_l);
  1249 #else
  1250   __ lshl(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1251 #endif
  1255 void TemplateTable::lshr() {
  1256   transition(itos, ltos); // %%%% see lshl comment
  1258   __ pop_l(O2);                          // shift value in O2, O3
  1259 #ifdef _LP64
  1260   __ srax(O2, Otos_i, Otos_l);
  1261 #else
  1262   __ lshr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1263 #endif
  1268 void TemplateTable::lushr() {
  1269   transition(itos, ltos); // %%%% see lshl comment
  1271   __ pop_l(O2);                          // shift value in O2, O3
  1272 #ifdef _LP64
  1273   __ srlx(O2, Otos_i, Otos_l);
  1274 #else
  1275   __ lushr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1276 #endif
  1280 void TemplateTable::fop2(Operation op) {
  1281   transition(ftos, ftos);
  1282   switch (op) {
  1283    case  add:  __  pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1284    case  sub:  __  pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1285    case  mul:  __  pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1286    case  div:  __  pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1287    case  rem:
  1288      assert(Ftos_f == F0, "just checking");
  1289 #ifdef _LP64
  1290      // LP64 calling conventions use F1, F3 for passing 2 floats
  1291      __ pop_f(F1);
  1292      __ fmov(FloatRegisterImpl::S, Ftos_f, F3);
  1293 #else
  1294      __ pop_i(O0);
  1295      __ stf(FloatRegisterImpl::S, Ftos_f, __ d_tmp);
  1296      __ ld( __ d_tmp, O1 );
  1297 #endif
  1298      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem));
  1299      assert( Ftos_f == F0, "fix this code" );
  1300      break;
  1302    default: ShouldNotReachHere();
  1307 void TemplateTable::dop2(Operation op) {
  1308   transition(dtos, dtos);
  1309   switch (op) {
  1310    case  add:  __  pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1311    case  sub:  __  pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1312    case  mul:  __  pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1313    case  div:  __  pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1314    case  rem:
  1315 #ifdef _LP64
  1316      // Pass arguments in D0, D2
  1317      __ fmov(FloatRegisterImpl::D, Ftos_f, F2 );
  1318      __ pop_d( F0 );
  1319 #else
  1320      // Pass arguments in O0O1, O2O3
  1321      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
  1322      __ ldd( __ d_tmp, O2 );
  1323      __ pop_d(Ftos_f);
  1324      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
  1325      __ ldd( __ d_tmp, O0 );
  1326 #endif
  1327      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem));
  1328      assert( Ftos_d == F0, "fix this code" );
  1329      break;
  1331    default: ShouldNotReachHere();
  1336 void TemplateTable::ineg() {
  1337   transition(itos, itos);
  1338   __ neg(Otos_i);
  1342 void TemplateTable::lneg() {
  1343   transition(ltos, ltos);
  1344 #ifdef _LP64
  1345   __ sub(G0, Otos_l, Otos_l);
  1346 #else
  1347   __ lneg(Otos_l1, Otos_l2);
  1348 #endif
  1352 void TemplateTable::fneg() {
  1353   transition(ftos, ftos);
  1354   __ fneg(FloatRegisterImpl::S, Ftos_f, Ftos_f);
  1358 void TemplateTable::dneg() {
  1359   transition(dtos, dtos);
  1360   __ fneg(FloatRegisterImpl::D, Ftos_f, Ftos_f);
  1364 void TemplateTable::iinc() {
  1365   transition(vtos, vtos);
  1366   locals_index(G3_scratch);
  1367   __ ldsb(Lbcp, 2, O2);  // load constant
  1368   __ access_local_int(G3_scratch, Otos_i);
  1369   __ add(Otos_i, O2, Otos_i);
  1370   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
  1374 void TemplateTable::wide_iinc() {
  1375   transition(vtos, vtos);
  1376   locals_index_wide(G3_scratch);
  1377   __ get_2_byte_integer_at_bcp( 4,  O2, O3, InterpreterMacroAssembler::Signed);
  1378   __ access_local_int(G3_scratch, Otos_i);
  1379   __ add(Otos_i, O3, Otos_i);
  1380   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
  1384 void TemplateTable::convert() {
  1385 // %%%%% Factor this first part accross platforms
  1386   #ifdef ASSERT
  1387     TosState tos_in  = ilgl;
  1388     TosState tos_out = ilgl;
  1389     switch (bytecode()) {
  1390       case Bytecodes::_i2l: // fall through
  1391       case Bytecodes::_i2f: // fall through
  1392       case Bytecodes::_i2d: // fall through
  1393       case Bytecodes::_i2b: // fall through
  1394       case Bytecodes::_i2c: // fall through
  1395       case Bytecodes::_i2s: tos_in = itos; break;
  1396       case Bytecodes::_l2i: // fall through
  1397       case Bytecodes::_l2f: // fall through
  1398       case Bytecodes::_l2d: tos_in = ltos; break;
  1399       case Bytecodes::_f2i: // fall through
  1400       case Bytecodes::_f2l: // fall through
  1401       case Bytecodes::_f2d: tos_in = ftos; break;
  1402       case Bytecodes::_d2i: // fall through
  1403       case Bytecodes::_d2l: // fall through
  1404       case Bytecodes::_d2f: tos_in = dtos; break;
  1405       default             : ShouldNotReachHere();
  1407     switch (bytecode()) {
  1408       case Bytecodes::_l2i: // fall through
  1409       case Bytecodes::_f2i: // fall through
  1410       case Bytecodes::_d2i: // fall through
  1411       case Bytecodes::_i2b: // fall through
  1412       case Bytecodes::_i2c: // fall through
  1413       case Bytecodes::_i2s: tos_out = itos; break;
  1414       case Bytecodes::_i2l: // fall through
  1415       case Bytecodes::_f2l: // fall through
  1416       case Bytecodes::_d2l: tos_out = ltos; break;
  1417       case Bytecodes::_i2f: // fall through
  1418       case Bytecodes::_l2f: // fall through
  1419       case Bytecodes::_d2f: tos_out = ftos; break;
  1420       case Bytecodes::_i2d: // fall through
  1421       case Bytecodes::_l2d: // fall through
  1422       case Bytecodes::_f2d: tos_out = dtos; break;
  1423       default             : ShouldNotReachHere();
  1425     transition(tos_in, tos_out);
  1426   #endif
  1429   // Conversion
  1430   Label done;
  1431   switch (bytecode()) {
  1432    case Bytecodes::_i2l:
  1433 #ifdef _LP64
  1434     // Sign extend the 32 bits
  1435     __ sra ( Otos_i, 0, Otos_l );
  1436 #else
  1437     __ addcc(Otos_i, 0, Otos_l2);
  1438     __ br(Assembler::greaterEqual, true, Assembler::pt, done);
  1439     __ delayed()->clr(Otos_l1);
  1440     __ set(~0, Otos_l1);
  1441 #endif
  1442     break;
  1444    case Bytecodes::_i2f:
  1445     __ st(Otos_i, __ d_tmp );
  1446     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
  1447     __ fitof(FloatRegisterImpl::S, F0, Ftos_f);
  1448     break;
  1450    case Bytecodes::_i2d:
  1451     __ st(Otos_i, __ d_tmp);
  1452     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
  1453     __ fitof(FloatRegisterImpl::D, F0, Ftos_f);
  1454     break;
  1456    case Bytecodes::_i2b:
  1457     __ sll(Otos_i, 24, Otos_i);
  1458     __ sra(Otos_i, 24, Otos_i);
  1459     break;
  1461    case Bytecodes::_i2c:
  1462     __ sll(Otos_i, 16, Otos_i);
  1463     __ srl(Otos_i, 16, Otos_i);
  1464     break;
  1466    case Bytecodes::_i2s:
  1467     __ sll(Otos_i, 16, Otos_i);
  1468     __ sra(Otos_i, 16, Otos_i);
  1469     break;
  1471    case Bytecodes::_l2i:
  1472 #ifndef _LP64
  1473     __ mov(Otos_l2, Otos_i);
  1474 #else
  1475     // Sign-extend into the high 32 bits
  1476     __ sra(Otos_l, 0, Otos_i);
  1477 #endif
  1478     break;
  1480    case Bytecodes::_l2f:
  1481    case Bytecodes::_l2d:
  1482     __ st_long(Otos_l, __ d_tmp);
  1483     __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d);
  1485     if (bytecode() == Bytecodes::_l2f) {
  1486       __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f);
  1487     } else {
  1488       __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d);
  1490     break;
  1492   case Bytecodes::_f2i:  {
  1493       Label isNaN;
  1494       // result must be 0 if value is NaN; test by comparing value to itself
  1495       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f);
  1496       __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN);
  1497       __ delayed()->clr(Otos_i);                                     // NaN
  1498       __ ftoi(FloatRegisterImpl::S, Ftos_f, F30);
  1499       __ stf(FloatRegisterImpl::S, F30, __ d_tmp);
  1500       __ ld(__ d_tmp, Otos_i);
  1501       __ bind(isNaN);
  1503     break;
  1505    case Bytecodes::_f2l:
  1506     // must uncache tos
  1507     __ push_f();
  1508 #ifdef _LP64
  1509     __ pop_f(F1);
  1510 #else
  1511     __ pop_i(O0);
  1512 #endif
  1513     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
  1514     break;
  1516    case Bytecodes::_f2d:
  1517     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f);
  1518     break;
  1520    case Bytecodes::_d2i:
  1521    case Bytecodes::_d2l:
  1522     // must uncache tos
  1523     __ push_d();
  1524 #ifdef _LP64
  1525     // LP64 calling conventions pass first double arg in D0
  1526     __ pop_d( Ftos_d );
  1527 #else
  1528     __ pop_i( O0 );
  1529     __ pop_i( O1 );
  1530 #endif
  1531     __ call_VM_leaf(Lscratch,
  1532         bytecode() == Bytecodes::_d2i
  1533           ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i)
  1534           : CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
  1535     break;
  1537     case Bytecodes::_d2f:
  1538       __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f);
  1539     break;
  1541     default: ShouldNotReachHere();
  1543   __ bind(done);
  1547 void TemplateTable::lcmp() {
  1548   transition(ltos, itos);
  1550 #ifdef _LP64
  1551   __ pop_l(O1); // pop off value 1, value 2 is in O0
  1552   __ lcmp( O1, Otos_l, Otos_i );
  1553 #else
  1554   __ pop_l(O2); // cmp O2,3 to O0,1
  1555   __ lcmp( O2, O3, Otos_l1, Otos_l2, Otos_i );
  1556 #endif
  1560 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1562   if (is_float) __ pop_f(F2);
  1563   else          __ pop_d(F2);
  1565   assert(Ftos_f == F0  &&  Ftos_d == F0,  "alias checking:");
  1567   __ float_cmp( is_float, unordered_result, F2, F0, Otos_i );
  1570 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1571   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
  1572   __ verify_thread();
  1574   const Register O2_bumped_count = O2;
  1575   __ profile_taken_branch(G3_scratch, O2_bumped_count);
  1577   // get (wide) offset to O1_disp
  1578   const Register O1_disp = O1;
  1579   if (is_wide)  __ get_4_byte_integer_at_bcp( 1,  G4_scratch, O1_disp,                                    InterpreterMacroAssembler::set_CC);
  1580   else          __ get_2_byte_integer_at_bcp( 1,  G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC);
  1582   // Handle all the JSR stuff here, then exit.
  1583   // It's much shorter and cleaner than intermingling with the
  1584   // non-JSR normal-branch stuff occurring below.
  1585   if( is_jsr ) {
  1586     // compute return address as bci in Otos_i
  1587     __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
  1588     __ sub(Lbcp, G3_scratch, G3_scratch);
  1589     __ sub(G3_scratch, in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3), Otos_i);
  1591     // Bump Lbcp to target of JSR
  1592     __ add(Lbcp, O1_disp, Lbcp);
  1593     // Push returnAddress for "ret" on stack
  1594     __ push_ptr(Otos_i);
  1595     // And away we go!
  1596     __ dispatch_next(vtos);
  1597     return;
  1600   // Normal (non-jsr) branch handling
  1602   // Save the current Lbcp
  1603   const Register l_cur_bcp = Lscratch;
  1604   __ mov( Lbcp, l_cur_bcp );
  1606   bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
  1607   if ( increment_invocation_counter_for_backward_branches ) {
  1608     Label Lforward;
  1609     // check branch direction
  1610     __ br( Assembler::positive, false,  Assembler::pn, Lforward );
  1611     // Bump bytecode pointer by displacement (take the branch)
  1612     __ delayed()->add( O1_disp, Lbcp, Lbcp );     // add to bc addr
  1614     const Register Rcounters = G3_scratch;
  1615     __ get_method_counters(Lmethod, Rcounters, Lforward);
  1617     if (TieredCompilation) {
  1618       Label Lno_mdo, Loverflow;
  1619       int increment = InvocationCounter::count_increment;
  1620       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1621       if (ProfileInterpreter) {
  1622         // If no method data exists, go to profile_continue.
  1623         __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
  1624         __ br_null_short(G4_scratch, Assembler::pn, Lno_mdo);
  1626         // Increment backedge counter in the MDO
  1627         Address mdo_backedge_counter(G4_scratch, in_bytes(MethodData::backedge_counter_offset()) +
  1628                                                  in_bytes(InvocationCounter::counter_offset()));
  1629         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, G3_scratch, O0,
  1630                                    Assembler::notZero, &Lforward);
  1631         __ ba_short(Loverflow);
  1634       // If there's no MDO, increment counter in MethodCounters*
  1635       __ bind(Lno_mdo);
  1636       Address backedge_counter(Rcounters,
  1637               in_bytes(MethodCounters::backedge_counter_offset()) +
  1638               in_bytes(InvocationCounter::counter_offset()));
  1639       __ increment_mask_and_jump(backedge_counter, increment, mask, G4_scratch, O0,
  1640                                  Assembler::notZero, &Lforward);
  1641       __ bind(Loverflow);
  1643       // notify point for loop, pass branch bytecode
  1644       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), l_cur_bcp);
  1646       // Was an OSR adapter generated?
  1647       // O0 = osr nmethod
  1648       __ br_null_short(O0, Assembler::pn, Lforward);
  1650       // Has the nmethod been invalidated already?
  1651       __ ld(O0, nmethod::entry_bci_offset(), O2);
  1652       __ cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, Lforward);
  1654       // migrate the interpreter frame off of the stack
  1656       __ mov(G2_thread, L7);
  1657       // save nmethod
  1658       __ mov(O0, L6);
  1659       __ set_last_Java_frame(SP, noreg);
  1660       __ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
  1661       __ reset_last_Java_frame();
  1662       __ mov(L7, G2_thread);
  1664       // move OSR nmethod to I1
  1665       __ mov(L6, I1);
  1667       // OSR buffer to I0
  1668       __ mov(O0, I0);
  1670       // remove the interpreter frame
  1671       __ restore(I5_savedSP, 0, SP);
  1673       // Jump to the osr code.
  1674       __ ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
  1675       __ jmp(O2, G0);
  1676       __ delayed()->nop();
  1678     } else {
  1679       // Update Backedge branch separately from invocations
  1680       const Register G4_invoke_ctr = G4;
  1681       __ increment_backedge_counter(Rcounters, G4_invoke_ctr, G1_scratch);
  1682       if (ProfileInterpreter) {
  1683         __ test_invocation_counter_for_mdp(G4_invoke_ctr, G3_scratch, Lforward);
  1684         if (UseOnStackReplacement) {
  1685           __ test_backedge_count_for_osr(O2_bumped_count, l_cur_bcp, G3_scratch);
  1687       } else {
  1688         if (UseOnStackReplacement) {
  1689           __ test_backedge_count_for_osr(G4_invoke_ctr, l_cur_bcp, G3_scratch);
  1694     __ bind(Lforward);
  1695   } else
  1696     // Bump bytecode pointer by displacement (take the branch)
  1697     __ add( O1_disp, Lbcp, Lbcp );// add to bc addr
  1699   // continue with bytecode @ target
  1700   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
  1701   // %%%%% and changing dispatch_next to dispatch_only
  1702   __ dispatch_next(vtos);
  1706 // Note Condition in argument is TemplateTable::Condition
  1707 // arg scope is within class scope
  1709 void TemplateTable::if_0cmp(Condition cc) {
  1710   // no pointers, integer only!
  1711   transition(itos, vtos);
  1712   // assume branch is more often taken than not (loops use backward branches)
  1713   __ cmp( Otos_i, 0);
  1714   __ if_cmp(ccNot(cc), false);
  1718 void TemplateTable::if_icmp(Condition cc) {
  1719   transition(itos, vtos);
  1720   __ pop_i(O1);
  1721   __ cmp(O1, Otos_i);
  1722   __ if_cmp(ccNot(cc), false);
  1726 void TemplateTable::if_nullcmp(Condition cc) {
  1727   transition(atos, vtos);
  1728   __ tst(Otos_i);
  1729   __ if_cmp(ccNot(cc), true);
  1733 void TemplateTable::if_acmp(Condition cc) {
  1734   transition(atos, vtos);
  1735   __ pop_ptr(O1);
  1736   __ verify_oop(O1);
  1737   __ verify_oop(Otos_i);
  1738   __ cmp(O1, Otos_i);
  1739   __ if_cmp(ccNot(cc), true);
  1744 void TemplateTable::ret() {
  1745   transition(vtos, vtos);
  1746   locals_index(G3_scratch);
  1747   __ access_local_returnAddress(G3_scratch, Otos_i);
  1748   // Otos_i contains the bci, compute the bcp from that
  1750 #ifdef _LP64
  1751 #ifdef ASSERT
  1752   // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC
  1753   // the result.  The return address (really a BCI) was stored with an
  1754   // 'astore' because JVM specs claim it's a pointer-sized thing.  Hence in
  1755   // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit
  1756   // loaded value.
  1757   { Label zzz ;
  1758      __ set (65536, G3_scratch) ;
  1759      __ cmp (Otos_i, G3_scratch) ;
  1760      __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz);
  1761      __ delayed()->nop();
  1762      __ stop("BCI is in the wrong register half?");
  1763      __ bind (zzz) ;
  1765 #endif
  1766 #endif
  1768   __ profile_ret(vtos, Otos_i, G4_scratch);
  1770   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
  1771   __ add(G3_scratch, Otos_i, G3_scratch);
  1772   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
  1773   __ dispatch_next(vtos);
  1777 void TemplateTable::wide_ret() {
  1778   transition(vtos, vtos);
  1779   locals_index_wide(G3_scratch);
  1780   __ access_local_returnAddress(G3_scratch, Otos_i);
  1781   // Otos_i contains the bci, compute the bcp from that
  1783   __ profile_ret(vtos, Otos_i, G4_scratch);
  1785   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
  1786   __ add(G3_scratch, Otos_i, G3_scratch);
  1787   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
  1788   __ dispatch_next(vtos);
  1792 void TemplateTable::tableswitch() {
  1793   transition(itos, vtos);
  1794   Label default_case, continue_execution;
  1796   // align bcp
  1797   __ add(Lbcp, BytesPerInt, O1);
  1798   __ and3(O1, -BytesPerInt, O1);
  1799   // load lo, hi
  1800   __ ld(O1, 1 * BytesPerInt, O2);       // Low Byte
  1801   __ ld(O1, 2 * BytesPerInt, O3);       // High Byte
  1802 #ifdef _LP64
  1803   // Sign extend the 32 bits
  1804   __ sra ( Otos_i, 0, Otos_i );
  1805 #endif /* _LP64 */
  1807   // check against lo & hi
  1808   __ cmp( Otos_i, O2);
  1809   __ br( Assembler::less, false, Assembler::pn, default_case);
  1810   __ delayed()->cmp( Otos_i, O3 );
  1811   __ br( Assembler::greater, false, Assembler::pn, default_case);
  1812   // lookup dispatch offset
  1813   __ delayed()->sub(Otos_i, O2, O2);
  1814   __ profile_switch_case(O2, O3, G3_scratch, G4_scratch);
  1815   __ sll(O2, LogBytesPerInt, O2);
  1816   __ add(O2, 3 * BytesPerInt, O2);
  1817   __ ba(continue_execution);
  1818   __ delayed()->ld(O1, O2, O2);
  1819   // handle default
  1820   __ bind(default_case);
  1821   __ profile_switch_default(O3);
  1822   __ ld(O1, 0, O2); // get default offset
  1823   // continue execution
  1824   __ bind(continue_execution);
  1825   __ add(Lbcp, O2, Lbcp);
  1826   __ dispatch_next(vtos);
  1830 void TemplateTable::lookupswitch() {
  1831   transition(itos, itos);
  1832   __ stop("lookupswitch bytecode should have been rewritten");
  1835 void TemplateTable::fast_linearswitch() {
  1836   transition(itos, vtos);
  1837     Label loop_entry, loop, found, continue_execution;
  1838   // align bcp
  1839   __ add(Lbcp, BytesPerInt, O1);
  1840   __ and3(O1, -BytesPerInt, O1);
  1841  // set counter
  1842   __ ld(O1, BytesPerInt, O2);
  1843   __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs
  1844   __ add(O1, 2 * BytesPerInt, O3); // set first pair addr
  1845   __ ba(loop_entry);
  1846   __ delayed()->add(O3, O2, O2); // counter now points past last pair
  1848   // table search
  1849   __ bind(loop);
  1850   __ cmp(O4, Otos_i);
  1851   __ br(Assembler::equal, true, Assembler::pn, found);
  1852   __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4
  1853   __ inc(O3, 2 * BytesPerInt);
  1855   __ bind(loop_entry);
  1856   __ cmp(O2, O3);
  1857   __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop);
  1858   __ delayed()->ld(O3, 0, O4);
  1860   // default case
  1861   __ ld(O1, 0, O4); // get default offset
  1862   if (ProfileInterpreter) {
  1863     __ profile_switch_default(O3);
  1864     __ ba_short(continue_execution);
  1867   // entry found -> get offset
  1868   __ bind(found);
  1869   if (ProfileInterpreter) {
  1870     __ sub(O3, O1, O3);
  1871     __ sub(O3, 2*BytesPerInt, O3);
  1872     __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs
  1873     __ profile_switch_case(O3, O1, O2, G3_scratch);
  1875     __ bind(continue_execution);
  1877   __ add(Lbcp, O4, Lbcp);
  1878   __ dispatch_next(vtos);
  1882 void TemplateTable::fast_binaryswitch() {
  1883   transition(itos, vtos);
  1884   // Implementation using the following core algorithm: (copied from Intel)
  1885   //
  1886   // int binary_search(int key, LookupswitchPair* array, int n) {
  1887   //   // Binary search according to "Methodik des Programmierens" by
  1888   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1889   //   int i = 0;
  1890   //   int j = n;
  1891   //   while (i+1 < j) {
  1892   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1893   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1894   //     // where a stands for the array and assuming that the (inexisting)
  1895   //     // element a[n] is infinitely big.
  1896   //     int h = (i + j) >> 1;
  1897   //     // i < h < j
  1898   //     if (key < array[h].fast_match()) {
  1899   //       j = h;
  1900   //     } else {
  1901   //       i = h;
  1902   //     }
  1903   //   }
  1904   //   // R: a[i] <= key < a[i+1] or Q
  1905   //   // (i.e., if key is within array, i is the correct index)
  1906   //   return i;
  1907   // }
  1909   // register allocation
  1910   assert(Otos_i == O0, "alias checking");
  1911   const Register Rkey     = Otos_i;                    // already set (tosca)
  1912   const Register Rarray   = O1;
  1913   const Register Ri       = O2;
  1914   const Register Rj       = O3;
  1915   const Register Rh       = O4;
  1916   const Register Rscratch = O5;
  1918   const int log_entry_size = 3;
  1919   const int entry_size = 1 << log_entry_size;
  1921   Label found;
  1922   // Find Array start
  1923   __ add(Lbcp, 3 * BytesPerInt, Rarray);
  1924   __ and3(Rarray, -BytesPerInt, Rarray);
  1925   // initialize i & j (in delay slot)
  1926   __ clr( Ri );
  1928   // and start
  1929   Label entry;
  1930   __ ba(entry);
  1931   __ delayed()->ld( Rarray, -BytesPerInt, Rj);
  1932   // (Rj is already in the native byte-ordering.)
  1934   // binary search loop
  1935   { Label loop;
  1936     __ bind( loop );
  1937     // int h = (i + j) >> 1;
  1938     __ sra( Rh, 1, Rh );
  1939     // if (key < array[h].fast_match()) {
  1940     //   j = h;
  1941     // } else {
  1942     //   i = h;
  1943     // }
  1944     __ sll( Rh, log_entry_size, Rscratch );
  1945     __ ld( Rarray, Rscratch, Rscratch );
  1946     // (Rscratch is already in the native byte-ordering.)
  1947     __ cmp( Rkey, Rscratch );
  1948     __ movcc( Assembler::less,         false, Assembler::icc, Rh, Rj );  // j = h if (key <  array[h].fast_match())
  1949     __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri );  // i = h if (key >= array[h].fast_match())
  1951     // while (i+1 < j)
  1952     __ bind( entry );
  1953     __ add( Ri, 1, Rscratch );
  1954     __ cmp(Rscratch, Rj);
  1955     __ br( Assembler::less, true, Assembler::pt, loop );
  1956     __ delayed()->add( Ri, Rj, Rh ); // start h = i + j  >> 1;
  1959   // end of binary search, result index is i (must check again!)
  1960   Label default_case;
  1961   Label continue_execution;
  1962   if (ProfileInterpreter) {
  1963     __ mov( Ri, Rh );              // Save index in i for profiling
  1965   __ sll( Ri, log_entry_size, Ri );
  1966   __ ld( Rarray, Ri, Rscratch );
  1967   // (Rscratch is already in the native byte-ordering.)
  1968   __ cmp( Rkey, Rscratch );
  1969   __ br( Assembler::notEqual, true, Assembler::pn, default_case );
  1970   __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j
  1972   // entry found -> j = offset
  1973   __ inc( Ri, BytesPerInt );
  1974   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
  1975   __ ld( Rarray, Ri, Rj );
  1976   // (Rj is already in the native byte-ordering.)
  1978   if (ProfileInterpreter) {
  1979     __ ba_short(continue_execution);
  1982   __ bind(default_case); // fall through (if not profiling)
  1983   __ profile_switch_default(Ri);
  1985   __ bind(continue_execution);
  1986   __ add( Lbcp, Rj, Lbcp );
  1987   __ dispatch_next( vtos );
  1991 void TemplateTable::_return(TosState state) {
  1992   transition(state, state);
  1993   assert(_desc->calls_vm(), "inconsistent calls_vm information");
  1995   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  1996     assert(state == vtos, "only valid state");
  1997     __ mov(G0, G3_scratch);
  1998     __ access_local_ptr(G3_scratch, Otos_i);
  1999     __ load_klass(Otos_i, O2);
  2000     __ set(JVM_ACC_HAS_FINALIZER, G3);
  2001     __ ld(O2, in_bytes(Klass::access_flags_offset()), O2);
  2002     __ andcc(G3, O2, G0);
  2003     Label skip_register_finalizer;
  2004     __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer);
  2005     __ delayed()->nop();
  2007     // Call out to do finalizer registration
  2008     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i);
  2010     __ bind(skip_register_finalizer);
  2013   // Narrow result if state is itos but result type is smaller.
  2014   // Need to narrow in the return bytecode rather than in generate_return_entry
  2015   // since compiled code callers expect the result to already be narrowed.
  2016   if (state == itos) {
  2017     __ narrow(Otos_i);
  2019   __ remove_activation(state, /* throw_monitor_exception */ true);
  2021   // The caller's SP was adjusted upon method entry to accomodate
  2022   // the callee's non-argument locals. Undo that adjustment.
  2023   __ ret();                             // return to caller
  2024   __ delayed()->restore(I5_savedSP, G0, SP);
  2028 // ----------------------------------------------------------------------------
  2029 // Volatile variables demand their effects be made known to all CPU's in
  2030 // order.  Store buffers on most chips allow reads & writes to reorder; the
  2031 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  2032 // memory barrier (i.e., it's not sufficient that the interpreter does not
  2033 // reorder volatile references, the hardware also must not reorder them).
  2034 //
  2035 // According to the new Java Memory Model (JMM):
  2036 // (1) All volatiles are serialized wrt to each other.
  2037 // ALSO reads & writes act as aquire & release, so:
  2038 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  2039 // the read float up to before the read.  It's OK for non-volatile memory refs
  2040 // that happen before the volatile read to float down below it.
  2041 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  2042 // that happen BEFORE the write float down to after the write.  It's OK for
  2043 // non-volatile memory refs that happen after the volatile write to float up
  2044 // before it.
  2045 //
  2046 // We only put in barriers around volatile refs (they are expensive), not
  2047 // _between_ memory refs (that would require us to track the flavor of the
  2048 // previous memory refs).  Requirements (2) and (3) require some barriers
  2049 // before volatile stores and after volatile loads.  These nearly cover
  2050 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  2051 // case is placed after volatile-stores although it could just as well go
  2052 // before volatile-loads.
  2053 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) {
  2054   // Helper function to insert a is-volatile test and memory barrier
  2055   // All current sparc implementations run in TSO, needing only StoreLoad
  2056   if ((order_constraint & Assembler::StoreLoad) == 0) return;
  2057   __ membar( order_constraint );
  2060 // ----------------------------------------------------------------------------
  2061 void TemplateTable::resolve_cache_and_index(int byte_no,
  2062                                             Register Rcache,
  2063                                             Register index,
  2064                                             size_t index_size) {
  2065   // Depends on cpCacheOop layout!
  2066   Label resolved;
  2068     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2069     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, Lbyte_code, byte_no, 1, index_size);
  2070     __ cmp(Lbyte_code, (int) bytecode());  // have we resolved this bytecode?
  2071     __ br(Assembler::equal, false, Assembler::pt, resolved);
  2072     __ delayed()->set((int)bytecode(), O1);
  2074   address entry;
  2075   switch (bytecode()) {
  2076     case Bytecodes::_getstatic      : // fall through
  2077     case Bytecodes::_putstatic      : // fall through
  2078     case Bytecodes::_getfield       : // fall through
  2079     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
  2080     case Bytecodes::_invokevirtual  : // fall through
  2081     case Bytecodes::_invokespecial  : // fall through
  2082     case Bytecodes::_invokestatic   : // fall through
  2083     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
  2084     case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);  break;
  2085     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
  2086     default:
  2087       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
  2088       break;
  2090   // first time invocation - must resolve first
  2091   __ call_VM(noreg, entry, O1);
  2092   // Update registers with resolved info
  2093   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2094   __ bind(resolved);
  2097 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2098                                                Register method,
  2099                                                Register itable_index,
  2100                                                Register flags,
  2101                                                bool is_invokevirtual,
  2102                                                bool is_invokevfinal,
  2103                                                bool is_invokedynamic) {
  2104   // Uses both G3_scratch and G4_scratch
  2105   Register cache = G3_scratch;
  2106   Register index = G4_scratch;
  2107   assert_different_registers(cache, method, itable_index);
  2109   // determine constant pool cache field offsets
  2110   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
  2111   const int method_offset = in_bytes(
  2112       ConstantPoolCache::base_offset() +
  2113       ((byte_no == f2_byte)
  2114        ? ConstantPoolCacheEntry::f2_offset()
  2115        : ConstantPoolCacheEntry::f1_offset()
  2117     );
  2118   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
  2119                                     ConstantPoolCacheEntry::flags_offset());
  2120   // access constant pool cache fields
  2121   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
  2122                                     ConstantPoolCacheEntry::f2_offset());
  2124   if (is_invokevfinal) {
  2125     __ get_cache_and_index_at_bcp(cache, index, 1);
  2126     __ ld_ptr(Address(cache, method_offset), method);
  2127   } else {
  2128     size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
  2129     resolve_cache_and_index(byte_no, cache, index, index_size);
  2130     __ ld_ptr(Address(cache, method_offset), method);
  2133   if (itable_index != noreg) {
  2134     // pick up itable or appendix index from f2 also:
  2135     __ ld_ptr(Address(cache, index_offset), itable_index);
  2137   __ ld_ptr(Address(cache, flags_offset), flags);
  2140 // The Rcache register must be set before call
  2141 void TemplateTable::load_field_cp_cache_entry(Register Robj,
  2142                                               Register Rcache,
  2143                                               Register index,
  2144                                               Register Roffset,
  2145                                               Register Rflags,
  2146                                               bool is_static) {
  2147   assert_different_registers(Rcache, Rflags, Roffset);
  2149   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2151   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2152   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2153   if (is_static) {
  2154     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj);
  2155     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  2156     __ ld_ptr( Robj, mirror_offset, Robj);
  2160 // The registers Rcache and index expected to be set before call.
  2161 // Correct values of the Rcache and index registers are preserved.
  2162 void TemplateTable::jvmti_post_field_access(Register Rcache,
  2163                                             Register index,
  2164                                             bool is_static,
  2165                                             bool has_tos) {
  2166   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2168   if (JvmtiExport::can_post_field_access()) {
  2169     // Check to see if a field access watch has been set before we take
  2170     // the time to call into the VM.
  2171     Label Label1;
  2172     assert_different_registers(Rcache, index, G1_scratch);
  2173     AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr());
  2174     __ load_contents(get_field_access_count_addr, G1_scratch);
  2175     __ cmp_and_br_short(G1_scratch, 0, Assembler::equal, Assembler::pt, Label1);
  2177     __ add(Rcache, in_bytes(cp_base_offset), Rcache);
  2179     if (is_static) {
  2180       __ clr(Otos_i);
  2181     } else {
  2182       if (has_tos) {
  2183       // save object pointer before call_VM() clobbers it
  2184         __ push_ptr(Otos_i);  // put object on tos where GC wants it.
  2185       } else {
  2186         // Load top of stack (do not pop the value off the stack);
  2187         __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
  2189       __ verify_oop(Otos_i);
  2191     // Otos_i: object pointer or NULL if static
  2192     // Rcache: cache entry pointer
  2193     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
  2194                Otos_i, Rcache);
  2195     if (!is_static && has_tos) {
  2196       __ pop_ptr(Otos_i);  // restore object pointer
  2197       __ verify_oop(Otos_i);
  2199     __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2200     __ bind(Label1);
  2204 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2205   transition(vtos, vtos);
  2207   Register Rcache = G3_scratch;
  2208   Register index  = G4_scratch;
  2209   Register Rclass = Rcache;
  2210   Register Roffset= G4_scratch;
  2211   Register Rflags = G1_scratch;
  2212   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2214   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
  2215   jvmti_post_field_access(Rcache, index, is_static, false);
  2216   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
  2218   if (!is_static) {
  2219     pop_and_check_object(Rclass);
  2220   } else {
  2221     __ verify_oop(Rclass);
  2224   Label exit;
  2226   Assembler::Membar_mask_bits membar_bits =
  2227     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2229   if (__ membar_has_effect(membar_bits)) {
  2230     // Get volatile flag
  2231     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
  2232     __ and3(Rflags, Lscratch, Lscratch);
  2235   Label checkVolatile;
  2237   // compute field type
  2238   Label notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj;
  2239   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
  2240   // Make sure we don't need to mask Rflags after the above shift
  2241   ConstantPoolCacheEntry::verify_tos_state_shift();
  2243   // Check atos before itos for getstatic, more likely (in Queens at least)
  2244   __ cmp(Rflags, atos);
  2245   __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2246   __ delayed() ->cmp(Rflags, itos);
  2248   // atos
  2249   __ load_heap_oop(Rclass, Roffset, Otos_i);
  2250   __ verify_oop(Otos_i);
  2251   __ push(atos);
  2252   if (!is_static) {
  2253     patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch);
  2255   __ ba(checkVolatile);
  2256   __ delayed()->tst(Lscratch);
  2258   __ bind(notObj);
  2260   // cmp(Rflags, itos);
  2261   __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2262   __ delayed() ->cmp(Rflags, ltos);
  2264   // itos
  2265   __ ld(Rclass, Roffset, Otos_i);
  2266   __ push(itos);
  2267   if (!is_static) {
  2268     patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch);
  2270   __ ba(checkVolatile);
  2271   __ delayed()->tst(Lscratch);
  2273   __ bind(notInt);
  2275   // cmp(Rflags, ltos);
  2276   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
  2277   __ delayed() ->cmp(Rflags, btos);
  2279   // ltos
  2280   // load must be atomic
  2281   __ ld_long(Rclass, Roffset, Otos_l);
  2282   __ push(ltos);
  2283   if (!is_static) {
  2284     patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch);
  2286   __ ba(checkVolatile);
  2287   __ delayed()->tst(Lscratch);
  2289   __ bind(notLong);
  2291   // cmp(Rflags, btos);
  2292   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
  2293   __ delayed() ->cmp(Rflags, ztos);
  2295   // btos
  2296   __ ldsb(Rclass, Roffset, Otos_i);
  2297   __ push(itos);
  2298   if (!is_static) {
  2299     patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
  2301   __ ba(checkVolatile);
  2302   __ delayed()->tst(Lscratch);
  2304   __ bind(notByte);
  2306   // cmp(Rflags, ztos);
  2307   __ br(Assembler::notEqual, false, Assembler::pt, notBool);
  2308   __ delayed() ->cmp(Rflags, ctos);
  2310   // ztos
  2311   __ ldsb(Rclass, Roffset, Otos_i);
  2312   __ push(itos);
  2313   if (!is_static) {
  2314     // use btos rewriting, no truncating to t/f bit is needed for getfield.
  2315     patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
  2317   __ ba(checkVolatile);
  2318   __ delayed()->tst(Lscratch);
  2320   __ bind(notBool);
  2322   // cmp(Rflags, ctos);
  2323   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
  2324   __ delayed() ->cmp(Rflags, stos);
  2326   // ctos
  2327   __ lduh(Rclass, Roffset, Otos_i);
  2328   __ push(itos);
  2329   if (!is_static) {
  2330     patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch);
  2332   __ ba(checkVolatile);
  2333   __ delayed()->tst(Lscratch);
  2335   __ bind(notChar);
  2337   // cmp(Rflags, stos);
  2338   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
  2339   __ delayed() ->cmp(Rflags, ftos);
  2341   // stos
  2342   __ ldsh(Rclass, Roffset, Otos_i);
  2343   __ push(itos);
  2344   if (!is_static) {
  2345     patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch);
  2347   __ ba(checkVolatile);
  2348   __ delayed()->tst(Lscratch);
  2350   __ bind(notShort);
  2353   // cmp(Rflags, ftos);
  2354   __ br(Assembler::notEqual, false, Assembler::pt, notFloat);
  2355   __ delayed() ->tst(Lscratch);
  2357   // ftos
  2358   __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f);
  2359   __ push(ftos);
  2360   if (!is_static) {
  2361     patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch);
  2363   __ ba(checkVolatile);
  2364   __ delayed()->tst(Lscratch);
  2366   __ bind(notFloat);
  2369   // dtos
  2370   __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d);
  2371   __ push(dtos);
  2372   if (!is_static) {
  2373     patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch);
  2376   __ bind(checkVolatile);
  2377   if (__ membar_has_effect(membar_bits)) {
  2378     // __ tst(Lscratch); executed in delay slot
  2379     __ br(Assembler::zero, false, Assembler::pt, exit);
  2380     __ delayed()->nop();
  2381     volatile_barrier(membar_bits);
  2384   __ bind(exit);
  2388 void TemplateTable::getfield(int byte_no) {
  2389   getfield_or_static(byte_no, false);
  2392 void TemplateTable::getstatic(int byte_no) {
  2393   getfield_or_static(byte_no, true);
  2397 void TemplateTable::fast_accessfield(TosState state) {
  2398   transition(atos, state);
  2399   Register Rcache  = G3_scratch;
  2400   Register index   = G4_scratch;
  2401   Register Roffset = G4_scratch;
  2402   Register Rflags  = Rcache;
  2403   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2405   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2406   jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true);
  2408   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2410   __ null_check(Otos_i);
  2411   __ verify_oop(Otos_i);
  2413   Label exit;
  2415   Assembler::Membar_mask_bits membar_bits =
  2416     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2417   if (__ membar_has_effect(membar_bits)) {
  2418     // Get volatile flag
  2419     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
  2420     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
  2423   switch (bytecode()) {
  2424     case Bytecodes::_fast_bgetfield:
  2425       __ ldsb(Otos_i, Roffset, Otos_i);
  2426       break;
  2427     case Bytecodes::_fast_cgetfield:
  2428       __ lduh(Otos_i, Roffset, Otos_i);
  2429       break;
  2430     case Bytecodes::_fast_sgetfield:
  2431       __ ldsh(Otos_i, Roffset, Otos_i);
  2432       break;
  2433     case Bytecodes::_fast_igetfield:
  2434       __ ld(Otos_i, Roffset, Otos_i);
  2435       break;
  2436     case Bytecodes::_fast_lgetfield:
  2437       __ ld_long(Otos_i, Roffset, Otos_l);
  2438       break;
  2439     case Bytecodes::_fast_fgetfield:
  2440       __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f);
  2441       break;
  2442     case Bytecodes::_fast_dgetfield:
  2443       __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
  2444       break;
  2445     case Bytecodes::_fast_agetfield:
  2446       __ load_heap_oop(Otos_i, Roffset, Otos_i);
  2447       break;
  2448     default:
  2449       ShouldNotReachHere();
  2452   if (__ membar_has_effect(membar_bits)) {
  2453     __ btst(Lscratch, Rflags);
  2454     __ br(Assembler::zero, false, Assembler::pt, exit);
  2455     __ delayed()->nop();
  2456     volatile_barrier(membar_bits);
  2457     __ bind(exit);
  2460   if (state == atos) {
  2461     __ verify_oop(Otos_i);    // does not blow flags!
  2465 void TemplateTable::jvmti_post_fast_field_mod() {
  2466   if (JvmtiExport::can_post_field_modification()) {
  2467     // Check to see if a field modification watch has been set before we take
  2468     // the time to call into the VM.
  2469     Label done;
  2470     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
  2471     __ load_contents(get_field_modification_count_addr, G4_scratch);
  2472     __ cmp_and_br_short(G4_scratch, 0, Assembler::equal, Assembler::pt, done);
  2473     __ pop_ptr(G4_scratch);     // copy the object pointer from tos
  2474     __ verify_oop(G4_scratch);
  2475     __ push_ptr(G4_scratch);    // put the object pointer back on tos
  2476     __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1);
  2477     // Save tos values before call_VM() clobbers them. Since we have
  2478     // to do it for every data type, we use the saved values as the
  2479     // jvalue object.
  2480     switch (bytecode()) {  // save tos values before call_VM() clobbers them
  2481     case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break;
  2482     case Bytecodes::_fast_bputfield: // fall through
  2483     case Bytecodes::_fast_zputfield: // fall through
  2484     case Bytecodes::_fast_sputfield: // fall through
  2485     case Bytecodes::_fast_cputfield: // fall through
  2486     case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break;
  2487     case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break;
  2488     case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break;
  2489     // get words in right order for use as jvalue object
  2490     case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break;
  2492     // setup pointer to jvalue object
  2493     __ mov(Lesp, G3_scratch);  __ inc(G3_scratch, wordSize);
  2494     // G4_scratch:  object pointer
  2495     // G1_scratch: cache entry pointer
  2496     // G3_scratch: jvalue object on the stack
  2497     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch);
  2498     switch (bytecode()) {             // restore tos values
  2499     case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break;
  2500     case Bytecodes::_fast_bputfield: // fall through
  2501     case Bytecodes::_fast_zputfield: // fall through
  2502     case Bytecodes::_fast_sputfield: // fall through
  2503     case Bytecodes::_fast_cputfield: // fall through
  2504     case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break;
  2505     case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break;
  2506     case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break;
  2507     case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break;
  2509     __ bind(done);
  2513 // The registers Rcache and index expected to be set before call.
  2514 // The function may destroy various registers, just not the Rcache and index registers.
  2515 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) {
  2516   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2518   if (JvmtiExport::can_post_field_modification()) {
  2519     // Check to see if a field modification watch has been set before we take
  2520     // the time to call into the VM.
  2521     Label Label1;
  2522     assert_different_registers(Rcache, index, G1_scratch);
  2523     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
  2524     __ load_contents(get_field_modification_count_addr, G1_scratch);
  2525     __ cmp_and_br_short(G1_scratch, 0, Assembler::zero, Assembler::pt, Label1);
  2527     // The Rcache and index registers have been already set.
  2528     // This allows to eliminate this call but the Rcache and index
  2529     // registers must be correspondingly used after this line.
  2530     __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1);
  2532     __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch);
  2533     if (is_static) {
  2534       // Life is simple.  Null out the object pointer.
  2535       __ clr(G4_scratch);
  2536     } else {
  2537       Register Rflags = G1_scratch;
  2538       // Life is harder. The stack holds the value on top, followed by the
  2539       // object.  We don't know the size of the value, though; it could be
  2540       // one or two words depending on its type. As a result, we must find
  2541       // the type to determine where the object is.
  2543       Label two_word, valsizeknown;
  2544       __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2545       __ mov(Lesp, G4_scratch);
  2546       __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
  2547       // Make sure we don't need to mask Rflags after the above shift
  2548       ConstantPoolCacheEntry::verify_tos_state_shift();
  2549       __ cmp(Rflags, ltos);
  2550       __ br(Assembler::equal, false, Assembler::pt, two_word);
  2551       __ delayed()->cmp(Rflags, dtos);
  2552       __ br(Assembler::equal, false, Assembler::pt, two_word);
  2553       __ delayed()->nop();
  2554       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1));
  2555       __ ba_short(valsizeknown);
  2556       __ bind(two_word);
  2558       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2));
  2560       __ bind(valsizeknown);
  2561       // setup object pointer
  2562       __ ld_ptr(G4_scratch, 0, G4_scratch);
  2563       __ verify_oop(G4_scratch);
  2565     // setup pointer to jvalue object
  2566     __ mov(Lesp, G1_scratch);  __ inc(G1_scratch, wordSize);
  2567     // G4_scratch:  object pointer or NULL if static
  2568     // G3_scratch: cache entry pointer
  2569     // G1_scratch: jvalue object on the stack
  2570     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
  2571                G4_scratch, G3_scratch, G1_scratch);
  2572     __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2573     __ bind(Label1);
  2577 void TemplateTable::pop_and_check_object(Register r) {
  2578   __ pop_ptr(r);
  2579   __ null_check(r);  // for field access must check obj.
  2580   __ verify_oop(r);
  2583 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2584   transition(vtos, vtos);
  2585   Register Rcache = G3_scratch;
  2586   Register index  = G4_scratch;
  2587   Register Rclass = Rcache;
  2588   Register Roffset= G4_scratch;
  2589   Register Rflags = G1_scratch;
  2590   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2592   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
  2593   jvmti_post_field_mod(Rcache, index, is_static);
  2594   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
  2596   Assembler::Membar_mask_bits read_bits =
  2597     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
  2598   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
  2600   Label notVolatile, checkVolatile, exit;
  2601   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
  2602     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
  2603     __ and3(Rflags, Lscratch, Lscratch);
  2605     if (__ membar_has_effect(read_bits)) {
  2606       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
  2607       volatile_barrier(read_bits);
  2608       __ bind(notVolatile);
  2612   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
  2613   // Make sure we don't need to mask Rflags after the above shift
  2614   ConstantPoolCacheEntry::verify_tos_state_shift();
  2616   // compute field type
  2617   Label notInt, notShort, notChar, notObj, notByte, notBool, notLong, notFloat;
  2619   if (is_static) {
  2620     // putstatic with object type most likely, check that first
  2621     __ cmp(Rflags, atos);
  2622     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2623     __ delayed()->cmp(Rflags, itos);
  2625     // atos
  2627       __ pop_ptr();
  2628       __ verify_oop(Otos_i);
  2629       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2630       __ ba(checkVolatile);
  2631       __ delayed()->tst(Lscratch);
  2634     __ bind(notObj);
  2635     // cmp(Rflags, itos);
  2636     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2637     __ delayed()->cmp(Rflags, btos);
  2639     // itos
  2641       __ pop_i();
  2642       __ st(Otos_i, Rclass, Roffset);
  2643       __ ba(checkVolatile);
  2644       __ delayed()->tst(Lscratch);
  2647     __ bind(notInt);
  2648   } else {
  2649     // putfield with int type most likely, check that first
  2650     __ cmp(Rflags, itos);
  2651     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2652     __ delayed()->cmp(Rflags, atos);
  2654     // itos
  2656       __ pop_i();
  2657       pop_and_check_object(Rclass);
  2658       __ st(Otos_i, Rclass, Roffset);
  2659       patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch, true, byte_no);
  2660       __ ba(checkVolatile);
  2661       __ delayed()->tst(Lscratch);
  2664     __ bind(notInt);
  2665     // cmp(Rflags, atos);
  2666     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2667     __ delayed()->cmp(Rflags, btos);
  2669     // atos
  2671       __ pop_ptr();
  2672       pop_and_check_object(Rclass);
  2673       __ verify_oop(Otos_i);
  2674       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2675       patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch, true, byte_no);
  2676       __ ba(checkVolatile);
  2677       __ delayed()->tst(Lscratch);
  2680     __ bind(notObj);
  2683   // cmp(Rflags, btos);
  2684   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
  2685   __ delayed()->cmp(Rflags, ztos);
  2687   // btos
  2689     __ pop_i();
  2690     if (!is_static) pop_and_check_object(Rclass);
  2691     __ stb(Otos_i, Rclass, Roffset);
  2692     if (!is_static) {
  2693       patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch, true, byte_no);
  2695     __ ba(checkVolatile);
  2696     __ delayed()->tst(Lscratch);
  2699   __ bind(notByte);
  2701   // cmp(Rflags, btos);
  2702   __ br(Assembler::notEqual, false, Assembler::pt, notBool);
  2703   __ delayed()->cmp(Rflags, ltos);
  2705   // ztos
  2707     __ pop_i();
  2708     if (!is_static) pop_and_check_object(Rclass);
  2709     __ and3(Otos_i, 1, Otos_i);
  2710     __ stb(Otos_i, Rclass, Roffset);
  2711     if (!is_static) {
  2712       patch_bytecode(Bytecodes::_fast_zputfield, G3_scratch, G4_scratch, true, byte_no);
  2714     __ ba(checkVolatile);
  2715     __ delayed()->tst(Lscratch);
  2718   __ bind(notBool);
  2719   // cmp(Rflags, ltos);
  2720   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
  2721   __ delayed()->cmp(Rflags, ctos);
  2723   // ltos
  2725     __ pop_l();
  2726     if (!is_static) pop_and_check_object(Rclass);
  2727     __ st_long(Otos_l, Rclass, Roffset);
  2728     if (!is_static) {
  2729       patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch, true, byte_no);
  2731     __ ba(checkVolatile);
  2732     __ delayed()->tst(Lscratch);
  2735   __ bind(notLong);
  2736   // cmp(Rflags, ctos);
  2737   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
  2738   __ delayed()->cmp(Rflags, stos);
  2740   // ctos (char)
  2742     __ pop_i();
  2743     if (!is_static) pop_and_check_object(Rclass);
  2744     __ sth(Otos_i, Rclass, Roffset);
  2745     if (!is_static) {
  2746       patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch, true, byte_no);
  2748     __ ba(checkVolatile);
  2749     __ delayed()->tst(Lscratch);
  2752   __ bind(notChar);
  2753   // cmp(Rflags, stos);
  2754   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
  2755   __ delayed()->cmp(Rflags, ftos);
  2757   // stos (short)
  2759     __ pop_i();
  2760     if (!is_static) pop_and_check_object(Rclass);
  2761     __ sth(Otos_i, Rclass, Roffset);
  2762     if (!is_static) {
  2763       patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch, true, byte_no);
  2765     __ ba(checkVolatile);
  2766     __ delayed()->tst(Lscratch);
  2769   __ bind(notShort);
  2770   // cmp(Rflags, ftos);
  2771   __ br(Assembler::notZero, false, Assembler::pt, notFloat);
  2772   __ delayed()->nop();
  2774   // ftos
  2776     __ pop_f();
  2777     if (!is_static) pop_and_check_object(Rclass);
  2778     __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
  2779     if (!is_static) {
  2780       patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch, true, byte_no);
  2782     __ ba(checkVolatile);
  2783     __ delayed()->tst(Lscratch);
  2786   __ bind(notFloat);
  2788   // dtos
  2790     __ pop_d();
  2791     if (!is_static) pop_and_check_object(Rclass);
  2792     __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
  2793     if (!is_static) {
  2794       patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch, true, byte_no);
  2798   __ bind(checkVolatile);
  2799   __ tst(Lscratch);
  2801   if (__ membar_has_effect(write_bits)) {
  2802     // __ tst(Lscratch); in delay slot
  2803     __ br(Assembler::zero, false, Assembler::pt, exit);
  2804     __ delayed()->nop();
  2805     volatile_barrier(Assembler::StoreLoad);
  2806     __ bind(exit);
  2810 void TemplateTable::fast_storefield(TosState state) {
  2811   transition(state, vtos);
  2812   Register Rcache = G3_scratch;
  2813   Register Rclass = Rcache;
  2814   Register Roffset= G4_scratch;
  2815   Register Rflags = G1_scratch;
  2816   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2818   jvmti_post_fast_field_mod();
  2820   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1);
  2822   Assembler::Membar_mask_bits read_bits =
  2823     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
  2824   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
  2826   Label notVolatile, checkVolatile, exit;
  2827   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
  2828     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2829     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
  2830     __ and3(Rflags, Lscratch, Lscratch);
  2831     if (__ membar_has_effect(read_bits)) {
  2832       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
  2833       volatile_barrier(read_bits);
  2834       __ bind(notVolatile);
  2838   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2839   pop_and_check_object(Rclass);
  2841   switch (bytecode()) {
  2842     case Bytecodes::_fast_zputfield: __ and3(Otos_i, 1, Otos_i);  // fall through to bputfield
  2843     case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break;
  2844     case Bytecodes::_fast_cputfield: /* fall through */
  2845     case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break;
  2846     case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset);  break;
  2847     case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break;
  2848     case Bytecodes::_fast_fputfield:
  2849       __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
  2850       break;
  2851     case Bytecodes::_fast_dputfield:
  2852       __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
  2853       break;
  2854     case Bytecodes::_fast_aputfield:
  2855       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2856       break;
  2857     default:
  2858       ShouldNotReachHere();
  2861   if (__ membar_has_effect(write_bits)) {
  2862     __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, exit);
  2863     volatile_barrier(Assembler::StoreLoad);
  2864     __ bind(exit);
  2869 void TemplateTable::putfield(int byte_no) {
  2870   putfield_or_static(byte_no, false);
  2873 void TemplateTable::putstatic(int byte_no) {
  2874   putfield_or_static(byte_no, true);
  2878 void TemplateTable::fast_xaccess(TosState state) {
  2879   transition(vtos, state);
  2880   Register Rcache = G3_scratch;
  2881   Register Roffset = G4_scratch;
  2882   Register Rflags  = G4_scratch;
  2883   Register Rreceiver = Lscratch;
  2885   __ ld_ptr(Llocals, 0, Rreceiver);
  2887   // access constant pool cache  (is resolved)
  2888   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2);
  2889   __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2890   __ add(Lbcp, 1, Lbcp);       // needed to report exception at the correct bcp
  2892   __ verify_oop(Rreceiver);
  2893   __ null_check(Rreceiver);
  2894   if (state == atos) {
  2895     __ load_heap_oop(Rreceiver, Roffset, Otos_i);
  2896   } else if (state == itos) {
  2897     __ ld (Rreceiver, Roffset, Otos_i) ;
  2898   } else if (state == ftos) {
  2899     __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f);
  2900   } else {
  2901     ShouldNotReachHere();
  2904   Assembler::Membar_mask_bits membar_bits =
  2905     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2906   if (__ membar_has_effect(membar_bits)) {
  2908     // Get is_volatile value in Rflags and check if membar is needed
  2909     __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2911     // Test volatile
  2912     Label notVolatile;
  2913     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
  2914     __ btst(Rflags, Lscratch);
  2915     __ br(Assembler::zero, false, Assembler::pt, notVolatile);
  2916     __ delayed()->nop();
  2917     volatile_barrier(membar_bits);
  2918     __ bind(notVolatile);
  2921   __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  2922   __ sub(Lbcp, 1, Lbcp);
  2925 //----------------------------------------------------------------------------------------------------
  2926 // Calls
  2928 void TemplateTable::count_calls(Register method, Register temp) {
  2929   // implemented elsewhere
  2930   ShouldNotReachHere();
  2933 void TemplateTable::prepare_invoke(int byte_no,
  2934                                    Register method,  // linked method (or i-klass)
  2935                                    Register ra,      // return address
  2936                                    Register index,   // itable index, MethodType, etc.
  2937                                    Register recv,    // if caller wants to see it
  2938                                    Register flags    // if caller wants to test it
  2939                                    ) {
  2940   // determine flags
  2941   const Bytecodes::Code code = bytecode();
  2942   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2943   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2944   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
  2945   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2946   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2947   const bool load_receiver       = (recv != noreg);
  2948   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
  2949   assert(recv  == noreg || recv  == O0, "");
  2950   assert(flags == noreg || flags == O1, "");
  2952   // setup registers & access constant pool cache
  2953   if (recv  == noreg)  recv  = O0;
  2954   if (flags == noreg)  flags = O1;
  2955   const Register temp = O2;
  2956   assert_different_registers(method, ra, index, recv, flags, temp);
  2958   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2960   __ mov(SP, O5_savedSP);  // record SP that we wanted the callee to restore
  2962   // maybe push appendix to arguments
  2963   if (is_invokedynamic || is_invokehandle) {
  2964     Label L_no_push;
  2965     __ set((1 << ConstantPoolCacheEntry::has_appendix_shift), temp);
  2966     __ btst(flags, temp);
  2967     __ br(Assembler::zero, false, Assembler::pt, L_no_push);
  2968     __ delayed()->nop();
  2969     // Push the appendix as a trailing parameter.
  2970     // This must be done before we get the receiver,
  2971     // since the parameter_size includes it.
  2972     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
  2973     __ load_resolved_reference_at_index(temp, index);
  2974     __ verify_oop(temp);
  2975     __ push_ptr(temp);  // push appendix (MethodType, CallSite, etc.)
  2976     __ bind(L_no_push);
  2979   // load receiver if needed (after appendix is pushed so parameter size is correct)
  2980   if (load_receiver) {
  2981     __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, temp);  // get parameter size
  2982     __ load_receiver(temp, recv);  //  __ argument_address uses Gargs but we need Lesp
  2983     __ verify_oop(recv);
  2986   // compute return type
  2987   __ srl(flags, ConstantPoolCacheEntry::tos_state_shift, ra);
  2988   // Make sure we don't need to mask flags after the above shift
  2989   ConstantPoolCacheEntry::verify_tos_state_shift();
  2990   // load return address
  2992     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
  2993     AddressLiteral table(table_addr);
  2994     __ set(table, temp);
  2995     __ sll(ra, LogBytesPerWord, ra);
  2996     __ ld_ptr(Address(temp, ra), ra);
  3001 void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
  3002   Register Rcall = Rindex;
  3003   assert_different_registers(Rcall, G5_method, Gargs, Rret);
  3005   // get target Method* & entry point
  3006   __ lookup_virtual_method(Rrecv, Rindex, G5_method);
  3007   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
  3008   __ call_from_interpreter(Rcall, Gargs, Rret);
  3011 void TemplateTable::invokevirtual(int byte_no) {
  3012   transition(vtos, vtos);
  3013   assert(byte_no == f2_byte, "use this argument");
  3015   Register Rscratch = G3_scratch;
  3016   Register Rtemp    = G4_scratch;
  3017   Register Rret     = Lscratch;
  3018   Register O0_recv  = O0;
  3019   Label notFinal;
  3021   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false);
  3022   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  3024   // Check for vfinal
  3025   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), G4_scratch);
  3026   __ btst(Rret, G4_scratch);
  3027   __ br(Assembler::zero, false, Assembler::pt, notFinal);
  3028   __ delayed()->and3(Rret, 0xFF, G4_scratch);      // gets number of parameters
  3030   patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp);
  3032   invokevfinal_helper(Rscratch, Rret);
  3034   __ bind(notFinal);
  3036   __ mov(G5_method, Rscratch);  // better scratch register
  3037   __ load_receiver(G4_scratch, O0_recv);  // gets receiverOop
  3038   // receiver is in O0_recv
  3039   __ verify_oop(O0_recv);
  3041   // get return address
  3042   AddressLiteral table(Interpreter::invoke_return_entry_table());
  3043   __ set(table, Rtemp);
  3044   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
  3045   // Make sure we don't need to mask Rret after the above shift
  3046   ConstantPoolCacheEntry::verify_tos_state_shift();
  3047   __ sll(Rret,  LogBytesPerWord, Rret);
  3048   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  3050   // get receiver klass
  3051   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
  3052   __ load_klass(O0_recv, O0_recv);
  3053   __ verify_klass_ptr(O0_recv);
  3055   __ profile_virtual_call(O0_recv, O4);
  3057   generate_vtable_call(O0_recv, Rscratch, Rret);
  3060 void TemplateTable::fast_invokevfinal(int byte_no) {
  3061   transition(vtos, vtos);
  3062   assert(byte_no == f2_byte, "use this argument");
  3064   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true,
  3065                              /*is_invokevfinal*/true, false);
  3066   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  3067   invokevfinal_helper(G3_scratch, Lscratch);
  3070 void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
  3071   Register Rtemp = G4_scratch;
  3073   // Load receiver from stack slot
  3074   __ ld_ptr(G5_method, in_bytes(Method::const_offset()), G4_scratch);
  3075   __ lduh(G4_scratch, in_bytes(ConstMethod::size_of_parameters_offset()), G4_scratch);
  3076   __ load_receiver(G4_scratch, O0);
  3078   // receiver NULL check
  3079   __ null_check(O0);
  3081   __ profile_final_call(O4);
  3082   __ profile_arguments_type(G5_method, Rscratch, Gargs, true);
  3084   // get return address
  3085   AddressLiteral table(Interpreter::invoke_return_entry_table());
  3086   __ set(table, Rtemp);
  3087   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
  3088   // Make sure we don't need to mask Rret after the above shift
  3089   ConstantPoolCacheEntry::verify_tos_state_shift();
  3090   __ sll(Rret,  LogBytesPerWord, Rret);
  3091   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  3094   // do the call
  3095   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3099 void TemplateTable::invokespecial(int byte_no) {
  3100   transition(vtos, vtos);
  3101   assert(byte_no == f1_byte, "use this argument");
  3103   const Register Rret     = Lscratch;
  3104   const Register O0_recv  = O0;
  3105   const Register Rscratch = G3_scratch;
  3107   prepare_invoke(byte_no, G5_method, Rret, noreg, O0_recv);  // get receiver also for null check
  3108   __ null_check(O0_recv);
  3110   // do the call
  3111   __ profile_call(O4);
  3112   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
  3113   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3117 void TemplateTable::invokestatic(int byte_no) {
  3118   transition(vtos, vtos);
  3119   assert(byte_no == f1_byte, "use this argument");
  3121   const Register Rret     = Lscratch;
  3122   const Register Rscratch = G3_scratch;
  3124   prepare_invoke(byte_no, G5_method, Rret);  // get f1 Method*
  3126   // do the call
  3127   __ profile_call(O4);
  3128   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
  3129   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3132 void TemplateTable::invokeinterface_object_method(Register RKlass,
  3133                                                   Register Rcall,
  3134                                                   Register Rret,
  3135                                                   Register Rflags) {
  3136   Register Rscratch = G4_scratch;
  3137   Register Rindex = Lscratch;
  3139   assert_different_registers(Rscratch, Rindex, Rret);
  3141   Label notFinal;
  3143   // Check for vfinal
  3144   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), Rscratch);
  3145   __ btst(Rflags, Rscratch);
  3146   __ br(Assembler::zero, false, Assembler::pt, notFinal);
  3147   __ delayed()->nop();
  3149   __ profile_final_call(O4);
  3151   // do the call - the index (f2) contains the Method*
  3152   assert_different_registers(G5_method, Gargs, Rcall);
  3153   __ mov(Rindex, G5_method);
  3154   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
  3155   __ call_from_interpreter(Rcall, Gargs, Rret);
  3156   __ bind(notFinal);
  3158   __ profile_virtual_call(RKlass, O4);
  3159   generate_vtable_call(RKlass, Rindex, Rret);
  3163 void TemplateTable::invokeinterface(int byte_no) {
  3164   transition(vtos, vtos);
  3165   assert(byte_no == f1_byte, "use this argument");
  3167   const Register Rinterface  = G1_scratch;
  3168   const Register Rmethod     = Lscratch;
  3169   const Register Rret        = G3_scratch;
  3170   const Register O0_recv     = O0;
  3171   const Register O1_flags    = O1;
  3172   const Register O2_Klass    = O2;
  3173   const Register Rscratch    = G4_scratch;
  3174   assert_different_registers(Rscratch, G5_method);
  3176   prepare_invoke(byte_no, Rinterface, Rret, Rmethod, O0_recv, O1_flags);
  3178   // get receiver klass
  3179   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
  3180   __ load_klass(O0_recv, O2_Klass);
  3182   // Special case of invokeinterface called for virtual method of
  3183   // java.lang.Object.  See cpCacheOop.cpp for details.
  3184   // This code isn't produced by javac, but could be produced by
  3185   // another compliant java compiler.
  3186   Label notMethod;
  3187   __ set((1 << ConstantPoolCacheEntry::is_forced_virtual_shift), Rscratch);
  3188   __ btst(O1_flags, Rscratch);
  3189   __ br(Assembler::zero, false, Assembler::pt, notMethod);
  3190   __ delayed()->nop();
  3192   invokeinterface_object_method(O2_Klass, Rinterface, Rret, O1_flags);
  3194   __ bind(notMethod);
  3196   Register Rtemp = O1_flags;
  3198   Label L_no_such_interface;
  3200   // Receiver subtype check against REFC.
  3201   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3202                              O2_Klass, Rinterface, noreg,
  3203                              // outputs: temp reg1, temp reg2, temp reg3
  3204                              G5_method, Rscratch, Rtemp,
  3205                              L_no_such_interface,
  3206                              /*return_method=*/false);
  3208   __ profile_virtual_call(O2_Klass, O4);
  3210   //
  3211   // find entry point to call
  3212   //
  3214   // Get declaring interface class from method
  3215   __ ld_ptr(Rmethod, Method::const_offset(), Rinterface);
  3216   __ ld_ptr(Rinterface, ConstMethod::constants_offset(), Rinterface);
  3217   __ ld_ptr(Rinterface, ConstantPool::pool_holder_offset_in_bytes(), Rinterface);
  3219   // Get itable index from method
  3220   const Register Rindex = G5_method;
  3221   __ ld(Rmethod, Method::itable_index_offset(), Rindex);
  3222   __ sub(Rindex, Method::itable_index_max, Rindex);
  3223   __ neg(Rindex);
  3225   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3226                              O2_Klass, Rinterface, Rindex,
  3227                              // outputs: method, scan temp reg, temp reg
  3228                              G5_method, Rscratch, Rtemp,
  3229                              L_no_such_interface);
  3231   // Check for abstract method error.
  3233     Label ok;
  3234     __ br_notnull_short(G5_method, Assembler::pt, ok);
  3235     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3236     __ should_not_reach_here();
  3237     __ bind(ok);
  3240   Register Rcall = Rinterface;
  3241   assert_different_registers(Rcall, G5_method, Gargs, Rret);
  3243   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
  3244   __ call_from_interpreter(Rcall, Gargs, Rret);
  3246   __ bind(L_no_such_interface);
  3247   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
  3248   __ should_not_reach_here();
  3251 void TemplateTable::invokehandle(int byte_no) {
  3252   transition(vtos, vtos);
  3253   assert(byte_no == f1_byte, "use this argument");
  3255   if (!EnableInvokeDynamic) {
  3256     // rewriter does not generate this bytecode
  3257     __ should_not_reach_here();
  3258     return;
  3261   const Register Rret       = Lscratch;
  3262   const Register G4_mtype   = G4_scratch;
  3263   const Register O0_recv    = O0;
  3264   const Register Rscratch   = G3_scratch;
  3266   prepare_invoke(byte_no, G5_method, Rret, G4_mtype, O0_recv);
  3267   __ null_check(O0_recv);
  3269   // G4: MethodType object (from cpool->resolved_references[f1], if necessary)
  3270   // G5: MH.invokeExact_MT method (from f2)
  3272   // Note:  G4_mtype is already pushed (if necessary) by prepare_invoke
  3274   // do the call
  3275   __ verify_oop(G4_mtype);
  3276   __ profile_final_call(O4);  // FIXME: profile the LambdaForm also
  3277   __ profile_arguments_type(G5_method, Rscratch, Gargs, true);
  3278   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3282 void TemplateTable::invokedynamic(int byte_no) {
  3283   transition(vtos, vtos);
  3284   assert(byte_no == f1_byte, "use this argument");
  3286   if (!EnableInvokeDynamic) {
  3287     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3288     // The verifier will stop it.  However, if we get past the verifier,
  3289     // this will stop the thread in a reasonable way, without crashing the JVM.
  3290     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3291                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3292     // the call_VM checks for exception, so we should never return here.
  3293     __ should_not_reach_here();
  3294     return;
  3297   const Register Rret        = Lscratch;
  3298   const Register G4_callsite = G4_scratch;
  3299   const Register Rscratch    = G3_scratch;
  3301   prepare_invoke(byte_no, G5_method, Rret, G4_callsite);
  3303   // G4: CallSite object (from cpool->resolved_references[f1])
  3304   // G5: MH.linkToCallSite method (from f2)
  3306   // Note:  G4_callsite is already pushed by prepare_invoke
  3308   // %%% should make a type profile for any invokedynamic that takes a ref argument
  3309   // profile this call
  3310   __ profile_call(O4);
  3312   // do the call
  3313   __ verify_oop(G4_callsite);
  3314   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
  3315   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3319 //----------------------------------------------------------------------------------------------------
  3320 // Allocation
  3322 void TemplateTable::_new() {
  3323   transition(vtos, atos);
  3325   Label slow_case;
  3326   Label done;
  3327   Label initialize_header;
  3328   Label initialize_object;  // including clearing the fields
  3330   Register RallocatedObject = Otos_i;
  3331   Register RinstanceKlass = O1;
  3332   Register Roffset = O3;
  3333   Register Rscratch = O4;
  3335   __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3336   __ get_cpool_and_tags(Rscratch, G3_scratch);
  3337   // make sure the class we're about to instantiate has been resolved
  3338   // This is done before loading InstanceKlass to be consistent with the order
  3339   // how Constant Pool is updated (see ConstantPool::klass_at_put)
  3340   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
  3341   __ ldub(G3_scratch, Roffset, G3_scratch);
  3342   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3343   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
  3344   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3345   // get InstanceKlass
  3346   //__ sll(Roffset, LogBytesPerWord, Roffset);        // executed in delay slot
  3347   __ add(Roffset, sizeof(ConstantPool), Roffset);
  3348   __ ld_ptr(Rscratch, Roffset, RinstanceKlass);
  3350   // make sure klass is fully initialized:
  3351   __ ldub(RinstanceKlass, in_bytes(InstanceKlass::init_state_offset()), G3_scratch);
  3352   __ cmp(G3_scratch, InstanceKlass::fully_initialized);
  3353   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
  3354   __ delayed()->ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
  3356   // get instance_size in InstanceKlass (already aligned)
  3357   //__ ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
  3359   // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class
  3360   __ btst(Klass::_lh_instance_slow_path_bit, Roffset);
  3361   __ br(Assembler::notZero, false, Assembler::pn, slow_case);
  3362   __ delayed()->nop();
  3364   // allocate the instance
  3365   // 1) Try to allocate in the TLAB
  3366   // 2) if fail, and the TLAB is not full enough to discard, allocate in the shared Eden
  3367   // 3) if the above fails (or is not applicable), go to a slow case
  3368   // (creates a new TLAB, etc.)
  3370   const bool allow_shared_alloc =
  3371     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3373   if(UseTLAB) {
  3374     Register RoldTopValue = RallocatedObject;
  3375     Register RtlabWasteLimitValue = G3_scratch;
  3376     Register RnewTopValue = G1_scratch;
  3377     Register RendValue = Rscratch;
  3378     Register RfreeValue = RnewTopValue;
  3380     // check if we can allocate in the TLAB
  3381     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject
  3382     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue);
  3383     __ add(RoldTopValue, Roffset, RnewTopValue);
  3385     // if there is enough space, we do not CAS and do not clear
  3386     __ cmp(RnewTopValue, RendValue);
  3387     if(ZeroTLAB) {
  3388       // the fields have already been cleared
  3389       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header);
  3390     } else {
  3391       // initialize both the header and fields
  3392       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object);
  3394     __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3396     if (allow_shared_alloc) {
  3397       // Check if tlab should be discarded (refill_waste_limit >= free)
  3398       __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), RtlabWasteLimitValue);
  3399       __ sub(RendValue, RoldTopValue, RfreeValue);
  3400 #ifdef _LP64
  3401       __ srlx(RfreeValue, LogHeapWordSize, RfreeValue);
  3402 #else
  3403       __ srl(RfreeValue, LogHeapWordSize, RfreeValue);
  3404 #endif
  3405       __ cmp_and_brx_short(RtlabWasteLimitValue, RfreeValue, Assembler::greaterEqualUnsigned, Assembler::pt, slow_case); // tlab waste is small
  3407       // increment waste limit to prevent getting stuck on this slow path
  3408       __ add(RtlabWasteLimitValue, ThreadLocalAllocBuffer::refill_waste_limit_increment(), RtlabWasteLimitValue);
  3409       __ st_ptr(RtlabWasteLimitValue, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  3410     } else {
  3411       // No allocation in the shared eden.
  3412       __ ba_short(slow_case);
  3416   // Allocation in the shared Eden
  3417   if (allow_shared_alloc) {
  3418     Register RoldTopValue = G1_scratch;
  3419     Register RtopAddr = G3_scratch;
  3420     Register RnewTopValue = RallocatedObject;
  3421     Register RendValue = Rscratch;
  3423     __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr);
  3425     Label retry;
  3426     __ bind(retry);
  3427     __ set((intptr_t)Universe::heap()->end_addr(), RendValue);
  3428     __ ld_ptr(RendValue, 0, RendValue);
  3429     __ ld_ptr(RtopAddr, 0, RoldTopValue);
  3430     __ add(RoldTopValue, Roffset, RnewTopValue);
  3432     // RnewTopValue contains the top address after the new object
  3433     // has been allocated.
  3434     __ cmp_and_brx_short(RnewTopValue, RendValue, Assembler::greaterUnsigned, Assembler::pn, slow_case);
  3436     __ cas_ptr(RtopAddr, RoldTopValue, RnewTopValue);
  3438     // if someone beat us on the allocation, try again, otherwise continue
  3439     __ cmp_and_brx_short(RoldTopValue, RnewTopValue, Assembler::notEqual, Assembler::pn, retry);
  3441     // bump total bytes allocated by this thread
  3442     // RoldTopValue and RtopAddr are dead, so can use G1 and G3
  3443     __ incr_allocated_bytes(Roffset, G1_scratch, G3_scratch);
  3446   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3447     // clear object fields
  3448     __ bind(initialize_object);
  3449     __ deccc(Roffset, sizeof(oopDesc));
  3450     __ br(Assembler::zero, false, Assembler::pt, initialize_header);
  3451     __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch);
  3453     // initialize remaining object fields
  3454     if (UseBlockZeroing) {
  3455       // Use BIS for zeroing
  3456       __ bis_zeroing(G3_scratch, Roffset, G1_scratch, initialize_header);
  3457     } else {
  3458       Label loop;
  3459       __ subcc(Roffset, wordSize, Roffset);
  3460       __ bind(loop);
  3461       //__ subcc(Roffset, wordSize, Roffset);      // executed above loop or in delay slot
  3462       __ st_ptr(G0, G3_scratch, Roffset);
  3463       __ br(Assembler::notEqual, false, Assembler::pt, loop);
  3464       __ delayed()->subcc(Roffset, wordSize, Roffset);
  3466     __ ba_short(initialize_header);
  3469   // slow case
  3470   __ bind(slow_case);
  3471   __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned);
  3472   __ get_constant_pool(O1);
  3474   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2);
  3476   __ ba_short(done);
  3478   // Initialize the header: mark, klass
  3479   __ bind(initialize_header);
  3481   if (UseBiasedLocking) {
  3482     __ ld_ptr(RinstanceKlass, in_bytes(Klass::prototype_header_offset()), G4_scratch);
  3483   } else {
  3484     __ set((intptr_t)markOopDesc::prototype(), G4_scratch);
  3486   __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes());       // mark
  3487   __ store_klass_gap(G0, RallocatedObject);         // klass gap if compressed
  3488   __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms)
  3491     SkipIfEqual skip_if(
  3492       _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero);
  3493     // Trigger dtrace event
  3494     __ push(atos);
  3495     __ call_VM_leaf(noreg,
  3496        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0);
  3497     __ pop(atos);
  3500   // continue
  3501   __ bind(done);
  3506 void TemplateTable::newarray() {
  3507   transition(itos, atos);
  3508   __ ldub(Lbcp, 1, O1);
  3509      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i);
  3513 void TemplateTable::anewarray() {
  3514   transition(itos, atos);
  3515   __ get_constant_pool(O1);
  3516   __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned);
  3517      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i);
  3521 void TemplateTable::arraylength() {
  3522   transition(atos, itos);
  3523   Label ok;
  3524   __ verify_oop(Otos_i);
  3525   __ tst(Otos_i);
  3526   __ throw_if_not_1_x( Assembler::notZero, ok );
  3527   __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i);
  3528   __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
  3532 void TemplateTable::checkcast() {
  3533   transition(atos, atos);
  3534   Label done, is_null, quicked, cast_ok, resolved;
  3535   Register Roffset = G1_scratch;
  3536   Register RobjKlass = O5;
  3537   Register RspecifiedKlass = O4;
  3539   // Check for casting a NULL
  3540   __ br_null_short(Otos_i, Assembler::pn, is_null);
  3542   // Get value klass in RobjKlass
  3543   __ load_klass(Otos_i, RobjKlass); // get value klass
  3545   // Get constant pool tag
  3546   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3548   // See if the checkcast has been quickened
  3549   __ get_cpool_and_tags(Lscratch, G3_scratch);
  3550   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
  3551   __ ldub(G3_scratch, Roffset, G3_scratch);
  3552   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3553   __ br(Assembler::equal, true, Assembler::pt, quicked);
  3554   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3556   __ push_ptr(); // save receiver for result, and for GC
  3557   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3558   __ get_vm_result_2(RspecifiedKlass);
  3559   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
  3561   __ ba_short(resolved);
  3563   // Extract target class from constant pool
  3564   __ bind(quicked);
  3565   __ add(Roffset, sizeof(ConstantPool), Roffset);
  3566   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
  3567   __ bind(resolved);
  3568   __ load_klass(Otos_i, RobjKlass); // get value klass
  3570   // Generate a fast subtype check.  Branch to cast_ok if no
  3571   // failure.  Throw exception if failure.
  3572   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok );
  3574   // Not a subtype; so must throw exception
  3575   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch );
  3577   __ bind(cast_ok);
  3579   if (ProfileInterpreter) {
  3580     __ ba_short(done);
  3582   __ bind(is_null);
  3583   __ profile_null_seen(G3_scratch);
  3584   __ bind(done);
  3588 void TemplateTable::instanceof() {
  3589   Label done, is_null, quicked, resolved;
  3590   transition(atos, itos);
  3591   Register Roffset = G1_scratch;
  3592   Register RobjKlass = O5;
  3593   Register RspecifiedKlass = O4;
  3595   // Check for casting a NULL
  3596   __ br_null_short(Otos_i, Assembler::pt, is_null);
  3598   // Get value klass in RobjKlass
  3599   __ load_klass(Otos_i, RobjKlass); // get value klass
  3601   // Get constant pool tag
  3602   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3604   // See if the checkcast has been quickened
  3605   __ get_cpool_and_tags(Lscratch, G3_scratch);
  3606   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
  3607   __ ldub(G3_scratch, Roffset, G3_scratch);
  3608   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3609   __ br(Assembler::equal, true, Assembler::pt, quicked);
  3610   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3612   __ push_ptr(); // save receiver for result, and for GC
  3613   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3614   __ get_vm_result_2(RspecifiedKlass);
  3615   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
  3617   __ ba_short(resolved);
  3619   // Extract target class from constant pool
  3620   __ bind(quicked);
  3621   __ add(Roffset, sizeof(ConstantPool), Roffset);
  3622   __ get_constant_pool(Lscratch);
  3623   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
  3624   __ bind(resolved);
  3625   __ load_klass(Otos_i, RobjKlass); // get value klass
  3627   // Generate a fast subtype check.  Branch to cast_ok if no
  3628   // failure.  Return 0 if failure.
  3629   __ or3(G0, 1, Otos_i);      // set result assuming quick tests succeed
  3630   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done );
  3631   // Not a subtype; return 0;
  3632   __ clr( Otos_i );
  3634   if (ProfileInterpreter) {
  3635     __ ba_short(done);
  3637   __ bind(is_null);
  3638   __ profile_null_seen(G3_scratch);
  3639   __ bind(done);
  3642 void TemplateTable::_breakpoint() {
  3644    // Note: We get here even if we are single stepping..
  3645    // jbug inists on setting breakpoints at every bytecode
  3646    // even if we are in single step mode.
  3648    transition(vtos, vtos);
  3649    // get the unpatched byte code
  3650    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp);
  3651    __ mov(O0, Lbyte_code);
  3653    // post the breakpoint event
  3654    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp);
  3656    // complete the execution of original bytecode
  3657    __ dispatch_normal(vtos);
  3661 //----------------------------------------------------------------------------------------------------
  3662 // Exceptions
  3664 void TemplateTable::athrow() {
  3665   transition(atos, vtos);
  3667   // This works because exception is cached in Otos_i which is same as O0,
  3668   // which is same as what throw_exception_entry_expects
  3669   assert(Otos_i == Oexception, "see explanation above");
  3671   __ verify_oop(Otos_i);
  3672   __ null_check(Otos_i);
  3673   __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
  3677 //----------------------------------------------------------------------------------------------------
  3678 // Synchronization
  3681 // See frame_sparc.hpp for monitor block layout.
  3682 // Monitor elements are dynamically allocated by growing stack as needed.
  3684 void TemplateTable::monitorenter() {
  3685   transition(atos, vtos);
  3686   __ verify_oop(Otos_i);
  3687   // Try to acquire a lock on the object
  3688   // Repeat until succeeded (i.e., until
  3689   // monitorenter returns true).
  3691   {   Label ok;
  3692     __ tst(Otos_i);
  3693     __ throw_if_not_1_x( Assembler::notZero,  ok);
  3694     __ delayed()->mov(Otos_i, Lscratch); // save obj
  3695     __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
  3698   assert(O0 == Otos_i, "Be sure where the object to lock is");
  3700   // find a free slot in the monitor block
  3703   // initialize entry pointer
  3704   __ clr(O1); // points to free slot or NULL
  3707     Label entry, loop, exit;
  3708     __ add( __ top_most_monitor(), O2 ); // last one to check
  3709     __ ba( entry );
  3710     __ delayed()->mov( Lmonitors, O3 ); // first one to check
  3713     __ bind( loop );
  3715     __ verify_oop(O4);          // verify each monitor's oop
  3716     __ tst(O4); // is this entry unused?
  3717     __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1);
  3719     __ cmp(O4, O0); // check if current entry is for same object
  3720     __ brx( Assembler::equal, false, Assembler::pn, exit );
  3721     __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one
  3723     __ bind( entry );
  3725     __ cmp( O3, O2 );
  3726     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
  3727     __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4);
  3729     __ bind( exit );
  3732   { Label allocated;
  3734     // found free slot?
  3735     __ br_notnull_short(O1, Assembler::pn, allocated);
  3737     __ add_monitor_to_stack( false, O2, O3 );
  3738     __ mov(Lmonitors, O1);
  3740     __ bind(allocated);
  3743   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  3744   // The object has already been poped from the stack, so the expression stack looks correct.
  3745   __ inc(Lbcp);
  3747   __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object
  3748   __ lock_object(O1, O0);
  3750   // check if there's enough space on the stack for the monitors after locking
  3751   __ generate_stack_overflow_check(0);
  3753   // The bcp has already been incremented. Just need to dispatch to next instruction.
  3754   __ dispatch_next(vtos);
  3758 void TemplateTable::monitorexit() {
  3759   transition(atos, vtos);
  3760   __ verify_oop(Otos_i);
  3761   __ tst(Otos_i);
  3762   __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch );
  3764   assert(O0 == Otos_i, "just checking");
  3766   { Label entry, loop, found;
  3767     __ add( __ top_most_monitor(), O2 ); // last one to check
  3768     __ ba(entry);
  3769     // use Lscratch to hold monitor elem to check, start with most recent monitor,
  3770     // By using a local it survives the call to the C routine.
  3771     __ delayed()->mov( Lmonitors, Lscratch );
  3773     __ bind( loop );
  3775     __ verify_oop(O4);          // verify each monitor's oop
  3776     __ cmp(O4, O0); // check if current entry is for desired object
  3777     __ brx( Assembler::equal, true, Assembler::pt, found );
  3778     __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit
  3780     __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next
  3782     __ bind( entry );
  3784     __ cmp( Lscratch, O2 );
  3785     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
  3786     __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4);
  3788     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  3789     __ should_not_reach_here();
  3791     __ bind(found);
  3793   __ unlock_object(O1);
  3797 //----------------------------------------------------------------------------------------------------
  3798 // Wide instructions
  3800 void TemplateTable::wide() {
  3801   transition(vtos, vtos);
  3802   __ ldub(Lbcp, 1, G3_scratch);// get next bc
  3803   __ sll(G3_scratch, LogBytesPerWord, G3_scratch);
  3804   AddressLiteral ep(Interpreter::_wentry_point);
  3805   __ set(ep, G4_scratch);
  3806   __ ld_ptr(G4_scratch, G3_scratch, G3_scratch);
  3807   __ jmp(G3_scratch, G0);
  3808   __ delayed()->nop();
  3809   // Note: the Lbcp increment step is part of the individual wide bytecode implementations
  3813 //----------------------------------------------------------------------------------------------------
  3814 // Multi arrays
  3816 void TemplateTable::multianewarray() {
  3817   transition(vtos, atos);
  3818      // put ndims * wordSize into Lscratch
  3819   __ ldub( Lbcp,     3,               Lscratch);
  3820   __ sll(  Lscratch, Interpreter::logStackElementSize, Lscratch);
  3821      // Lesp points past last_dim, so set to O1 to first_dim address
  3822   __ add(  Lesp,     Lscratch,        O1);
  3823      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1);
  3824   __ add(  Lesp,     Lscratch,        Lesp); // pop all dimensions off the stack
  3826 #endif /* !CC_INTERP */

mercurial