src/cpu/sparc/vm/sharedRuntime_sparc.cpp

Fri, 29 Sep 2017 14:30:05 -0400

author
dbuck
date
Fri, 29 Sep 2017 14:30:05 -0400
changeset 8997
f8a45a60bc6b
parent 8313
c66164388d38
child 9041
95a08233f46c
child 9669
32bc598624bd
permissions
-rw-r--r--

8174962: Better interface invocations
Reviewed-by: jrose, coleenp, ahgross, acorn, vlivanov

     1 /*
     2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.inline.hpp"
    27 #include "code/debugInfoRec.hpp"
    28 #include "code/icBuffer.hpp"
    29 #include "code/vtableStubs.hpp"
    30 #include "interpreter/interpreter.hpp"
    31 #include "oops/compiledICHolder.hpp"
    32 #include "prims/jvmtiRedefineClassesTrace.hpp"
    33 #include "runtime/sharedRuntime.hpp"
    34 #include "runtime/vframeArray.hpp"
    35 #include "vmreg_sparc.inline.hpp"
    36 #ifdef COMPILER1
    37 #include "c1/c1_Runtime1.hpp"
    38 #endif
    39 #ifdef COMPILER2
    40 #include "opto/runtime.hpp"
    41 #endif
    42 #ifdef SHARK
    43 #include "compiler/compileBroker.hpp"
    44 #include "shark/sharkCompiler.hpp"
    45 #endif
    47 #define __ masm->
    50 class RegisterSaver {
    52   // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
    53   // The Oregs are problematic. In the 32bit build the compiler can
    54   // have O registers live with 64 bit quantities. A window save will
    55   // cut the heads off of the registers. We have to do a very extensive
    56   // stack dance to save and restore these properly.
    58   // Note that the Oregs problem only exists if we block at either a polling
    59   // page exception a compiled code safepoint that was not originally a call
    60   // or deoptimize following one of these kinds of safepoints.
    62   // Lots of registers to save.  For all builds, a window save will preserve
    63   // the %i and %l registers.  For the 32-bit longs-in-two entries and 64-bit
    64   // builds a window-save will preserve the %o registers.  In the LION build
    65   // we need to save the 64-bit %o registers which requires we save them
    66   // before the window-save (as then they become %i registers and get their
    67   // heads chopped off on interrupt).  We have to save some %g registers here
    68   // as well.
    69   enum {
    70     // This frame's save area.  Includes extra space for the native call:
    71     // vararg's layout space and the like.  Briefly holds the caller's
    72     // register save area.
    73     call_args_area = frame::register_save_words_sp_offset +
    74                      frame::memory_parameter_word_sp_offset*wordSize,
    75     // Make sure save locations are always 8 byte aligned.
    76     // can't use round_to because it doesn't produce compile time constant
    77     start_of_extra_save_area = ((call_args_area + 7) & ~7),
    78     g1_offset = start_of_extra_save_area, // g-regs needing saving
    79     g3_offset = g1_offset+8,
    80     g4_offset = g3_offset+8,
    81     g5_offset = g4_offset+8,
    82     o0_offset = g5_offset+8,
    83     o1_offset = o0_offset+8,
    84     o2_offset = o1_offset+8,
    85     o3_offset = o2_offset+8,
    86     o4_offset = o3_offset+8,
    87     o5_offset = o4_offset+8,
    88     start_of_flags_save_area = o5_offset+8,
    89     ccr_offset = start_of_flags_save_area,
    90     fsr_offset = ccr_offset + 8,
    91     d00_offset = fsr_offset+8,  // Start of float save area
    92     register_save_size = d00_offset+8*32
    93   };
    96   public:
    98   static int Oexception_offset() { return o0_offset; };
    99   static int G3_offset() { return g3_offset; };
   100   static int G5_offset() { return g5_offset; };
   101   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
   102   static void restore_live_registers(MacroAssembler* masm);
   104   // During deoptimization only the result register need to be restored
   105   // all the other values have already been extracted.
   107   static void restore_result_registers(MacroAssembler* masm);
   108 };
   110 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
   111   // Record volatile registers as callee-save values in an OopMap so their save locations will be
   112   // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
   113   // deoptimization; see compiledVFrame::create_stack_value).  The caller's I, L and O registers
   114   // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
   115   // (as the stub's I's) when the runtime routine called by the stub creates its frame.
   116   int i;
   117   // Always make the frame size 16 byte aligned.
   118   int frame_size = round_to(additional_frame_words + register_save_size, 16);
   119   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
   120   int frame_size_in_slots = frame_size / sizeof(jint);
   121   // CodeBlob frame size is in words.
   122   *total_frame_words = frame_size / wordSize;
   123   // OopMap* map = new OopMap(*total_frame_words, 0);
   124   OopMap* map = new OopMap(frame_size_in_slots, 0);
   126 #if !defined(_LP64)
   128   // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
   129   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   130   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   131   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
   132   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
   133   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
   134   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
   135 #endif /* _LP64 */
   137   __ save(SP, -frame_size, SP);
   139 #ifndef _LP64
   140   // Reload the 64 bit Oregs. Although they are now Iregs we load them
   141   // to Oregs here to avoid interrupts cutting off their heads
   143   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   144   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   145   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
   146   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
   147   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
   148   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
   150   __ stx(O0, SP, o0_offset+STACK_BIAS);
   151   map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
   153   __ stx(O1, SP, o1_offset+STACK_BIAS);
   155   map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
   157   __ stx(O2, SP, o2_offset+STACK_BIAS);
   158   map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
   160   __ stx(O3, SP, o3_offset+STACK_BIAS);
   161   map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
   163   __ stx(O4, SP, o4_offset+STACK_BIAS);
   164   map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
   166   __ stx(O5, SP, o5_offset+STACK_BIAS);
   167   map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
   168 #endif /* _LP64 */
   171 #ifdef _LP64
   172   int debug_offset = 0;
   173 #else
   174   int debug_offset = 4;
   175 #endif
   176   // Save the G's
   177   __ stx(G1, SP, g1_offset+STACK_BIAS);
   178   map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
   180   __ stx(G3, SP, g3_offset+STACK_BIAS);
   181   map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
   183   __ stx(G4, SP, g4_offset+STACK_BIAS);
   184   map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
   186   __ stx(G5, SP, g5_offset+STACK_BIAS);
   187   map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
   189   // This is really a waste but we'll keep things as they were for now
   190   if (true) {
   191 #ifndef _LP64
   192     map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
   193     map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
   194     map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
   195     map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
   196     map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
   197     map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
   198     map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
   199     map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
   200     map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
   201     map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
   202 #endif /* _LP64 */
   203   }
   206   // Save the flags
   207   __ rdccr( G5 );
   208   __ stx(G5, SP, ccr_offset+STACK_BIAS);
   209   __ stxfsr(SP, fsr_offset+STACK_BIAS);
   211   // Save all the FP registers: 32 doubles (32 floats correspond to the 2 halves of the first 16 doubles)
   212   int offset = d00_offset;
   213   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
   214     FloatRegister f = as_FloatRegister(i);
   215     __ stf(FloatRegisterImpl::D,  f, SP, offset+STACK_BIAS);
   216     // Record as callee saved both halves of double registers (2 float registers).
   217     map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
   218     map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
   219     offset += sizeof(double);
   220   }
   222   // And we're done.
   224   return map;
   225 }
   228 // Pop the current frame and restore all the registers that we
   229 // saved.
   230 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
   232   // Restore all the FP registers
   233   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
   234     __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
   235   }
   237   __ ldx(SP, ccr_offset+STACK_BIAS, G1);
   238   __ wrccr (G1) ;
   240   // Restore the G's
   241   // Note that G2 (AKA GThread) must be saved and restored separately.
   242   // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
   244   __ ldx(SP, g1_offset+STACK_BIAS, G1);
   245   __ ldx(SP, g3_offset+STACK_BIAS, G3);
   246   __ ldx(SP, g4_offset+STACK_BIAS, G4);
   247   __ ldx(SP, g5_offset+STACK_BIAS, G5);
   250 #if !defined(_LP64)
   251   // Restore the 64-bit O's.
   252   __ ldx(SP, o0_offset+STACK_BIAS, O0);
   253   __ ldx(SP, o1_offset+STACK_BIAS, O1);
   254   __ ldx(SP, o2_offset+STACK_BIAS, O2);
   255   __ ldx(SP, o3_offset+STACK_BIAS, O3);
   256   __ ldx(SP, o4_offset+STACK_BIAS, O4);
   257   __ ldx(SP, o5_offset+STACK_BIAS, O5);
   259   // And temporarily place them in TLS
   261   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   262   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   263   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
   264   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
   265   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
   266   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
   267 #endif /* _LP64 */
   269   // Restore flags
   271   __ ldxfsr(SP, fsr_offset+STACK_BIAS);
   273   __ restore();
   275 #if !defined(_LP64)
   276   // Now reload the 64bit Oregs after we've restore the window.
   277   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   278   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   279   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
   280   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
   281   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
   282   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
   283 #endif /* _LP64 */
   285 }
   287 // Pop the current frame and restore the registers that might be holding
   288 // a result.
   289 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   291 #if !defined(_LP64)
   292   // 32bit build returns longs in G1
   293   __ ldx(SP, g1_offset+STACK_BIAS, G1);
   295   // Retrieve the 64-bit O's.
   296   __ ldx(SP, o0_offset+STACK_BIAS, O0);
   297   __ ldx(SP, o1_offset+STACK_BIAS, O1);
   298   // and save to TLS
   299   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   300   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   301 #endif /* _LP64 */
   303   __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
   305   __ restore();
   307 #if !defined(_LP64)
   308   // Now reload the 64bit Oregs after we've restore the window.
   309   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   310   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   311 #endif /* _LP64 */
   313 }
   315 // Is vector's size (in bytes) bigger than a size saved by default?
   316 // 8 bytes FP registers are saved by default on SPARC.
   317 bool SharedRuntime::is_wide_vector(int size) {
   318   // Note, MaxVectorSize == 8 on SPARC.
   319   assert(size <= 8, err_msg_res("%d bytes vectors are not supported", size));
   320   return size > 8;
   321 }
   323 // The java_calling_convention describes stack locations as ideal slots on
   324 // a frame with no abi restrictions. Since we must observe abi restrictions
   325 // (like the placement of the register window) the slots must be biased by
   326 // the following value.
   327 static int reg2offset(VMReg r) {
   328   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   329 }
   331 static VMRegPair reg64_to_VMRegPair(Register r) {
   332   VMRegPair ret;
   333   if (wordSize == 8) {
   334     ret.set2(r->as_VMReg());
   335   } else {
   336     ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
   337   }
   338   return ret;
   339 }
   341 // ---------------------------------------------------------------------------
   342 // Read the array of BasicTypes from a signature, and compute where the
   343 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
   344 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
   345 // refer to 4-byte stack slots.  All stack slots are based off of the window
   346 // top.  VMRegImpl::stack0 refers to the first slot past the 16-word window,
   347 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   348 // values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
   349 // integer registers.  Values 64-95 are the (32-bit only) float registers.
   350 // Each 32-bit quantity is given its own number, so the integer registers
   351 // (in either 32- or 64-bit builds) use 2 numbers.  For example, there is
   352 // an O0-low and an O0-high.  Essentially, all int register numbers are doubled.
   354 // Register results are passed in O0-O5, for outgoing call arguments.  To
   355 // convert to incoming arguments, convert all O's to I's.  The regs array
   356 // refer to the low and hi 32-bit words of 64-bit registers or stack slots.
   357 // If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
   358 // 32-bit value was passed).  If both are VMRegImpl::Bad(), it means no value was
   359 // passed (used as a placeholder for the other half of longs and doubles in
   360 // the 64-bit build).  regs[].second() is either VMRegImpl::Bad() or regs[].second() is
   361 // regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
   362 // Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
   363 // == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
   364 // same VMRegPair.
   366 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   367 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   368 // units regardless of build.
   371 // ---------------------------------------------------------------------------
   372 // The compiled Java calling convention.  The Java convention always passes
   373 // 64-bit values in adjacent aligned locations (either registers or stack),
   374 // floats in float registers and doubles in aligned float pairs.  There is
   375 // no backing varargs store for values in registers.
   376 // In the 32-bit build, longs are passed on the stack (cannot be
   377 // passed in I's, because longs in I's get their heads chopped off at
   378 // interrupt).
   379 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   380                                            VMRegPair *regs,
   381                                            int total_args_passed,
   382                                            int is_outgoing) {
   383   assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
   385   const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
   386   const int flt_reg_max = 8;
   388   int int_reg = 0;
   389   int flt_reg = 0;
   390   int slot = 0;
   392   for (int i = 0; i < total_args_passed; i++) {
   393     switch (sig_bt[i]) {
   394     case T_INT:
   395     case T_SHORT:
   396     case T_CHAR:
   397     case T_BYTE:
   398     case T_BOOLEAN:
   399 #ifndef _LP64
   400     case T_OBJECT:
   401     case T_ARRAY:
   402     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   403 #endif // _LP64
   404       if (int_reg < int_reg_max) {
   405         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   406         regs[i].set1(r->as_VMReg());
   407       } else {
   408         regs[i].set1(VMRegImpl::stack2reg(slot++));
   409       }
   410       break;
   412 #ifdef _LP64
   413     case T_LONG:
   414       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
   415       // fall-through
   416     case T_OBJECT:
   417     case T_ARRAY:
   418     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   419       if (int_reg < int_reg_max) {
   420         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   421         regs[i].set2(r->as_VMReg());
   422       } else {
   423         slot = round_to(slot, 2);  // align
   424         regs[i].set2(VMRegImpl::stack2reg(slot));
   425         slot += 2;
   426       }
   427       break;
   428 #else
   429     case T_LONG:
   430       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
   431       // On 32-bit SPARC put longs always on the stack to keep the pressure off
   432       // integer argument registers.  They should be used for oops.
   433       slot = round_to(slot, 2);  // align
   434       regs[i].set2(VMRegImpl::stack2reg(slot));
   435       slot += 2;
   436 #endif
   437       break;
   439     case T_FLOAT:
   440       if (flt_reg < flt_reg_max) {
   441         FloatRegister r = as_FloatRegister(flt_reg++);
   442         regs[i].set1(r->as_VMReg());
   443       } else {
   444         regs[i].set1(VMRegImpl::stack2reg(slot++));
   445       }
   446       break;
   448     case T_DOUBLE:
   449       assert(sig_bt[i+1] == T_VOID, "expecting half");
   450       if (round_to(flt_reg, 2) + 1 < flt_reg_max) {
   451         flt_reg = round_to(flt_reg, 2);  // align
   452         FloatRegister r = as_FloatRegister(flt_reg);
   453         regs[i].set2(r->as_VMReg());
   454         flt_reg += 2;
   455       } else {
   456         slot = round_to(slot, 2);  // align
   457         regs[i].set2(VMRegImpl::stack2reg(slot));
   458         slot += 2;
   459       }
   460       break;
   462     case T_VOID:
   463       regs[i].set_bad();   // Halves of longs & doubles
   464       break;
   466     default:
   467       fatal(err_msg_res("unknown basic type %d", sig_bt[i]));
   468       break;
   469     }
   470   }
   472   // retun the amount of stack space these arguments will need.
   473   return slot;
   474 }
   476 // Helper class mostly to avoid passing masm everywhere, and handle
   477 // store displacement overflow logic.
   478 class AdapterGenerator {
   479   MacroAssembler *masm;
   480   Register Rdisp;
   481   void set_Rdisp(Register r)  { Rdisp = r; }
   483   void patch_callers_callsite();
   485   // base+st_off points to top of argument
   486   int arg_offset(const int st_off) { return st_off; }
   487   int next_arg_offset(const int st_off) {
   488     return st_off - Interpreter::stackElementSize;
   489   }
   491   // Argument slot values may be loaded first into a register because
   492   // they might not fit into displacement.
   493   RegisterOrConstant arg_slot(const int st_off);
   494   RegisterOrConstant next_arg_slot(const int st_off);
   496   // Stores long into offset pointed to by base
   497   void store_c2i_long(Register r, Register base,
   498                       const int st_off, bool is_stack);
   499   void store_c2i_object(Register r, Register base,
   500                         const int st_off);
   501   void store_c2i_int(Register r, Register base,
   502                      const int st_off);
   503   void store_c2i_double(VMReg r_2,
   504                         VMReg r_1, Register base, const int st_off);
   505   void store_c2i_float(FloatRegister f, Register base,
   506                        const int st_off);
   508  public:
   509   void gen_c2i_adapter(int total_args_passed,
   510                               // VMReg max_arg,
   511                               int comp_args_on_stack, // VMRegStackSlots
   512                               const BasicType *sig_bt,
   513                               const VMRegPair *regs,
   514                               Label& skip_fixup);
   515   void gen_i2c_adapter(int total_args_passed,
   516                               // VMReg max_arg,
   517                               int comp_args_on_stack, // VMRegStackSlots
   518                               const BasicType *sig_bt,
   519                               const VMRegPair *regs);
   521   AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
   522 };
   525 // Patch the callers callsite with entry to compiled code if it exists.
   526 void AdapterGenerator::patch_callers_callsite() {
   527   Label L;
   528   __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
   529   __ br_null(G3_scratch, false, Assembler::pt, L);
   530   __ delayed()->nop();
   531   // Call into the VM to patch the caller, then jump to compiled callee
   532   __ save_frame(4);     // Args in compiled layout; do not blow them
   534   // Must save all the live Gregs the list is:
   535   // G1: 1st Long arg (32bit build)
   536   // G2: global allocated to TLS
   537   // G3: used in inline cache check (scratch)
   538   // G4: 2nd Long arg (32bit build);
   539   // G5: used in inline cache check (Method*)
   541   // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
   543 #ifdef _LP64
   544   // mov(s,d)
   545   __ mov(G1, L1);
   546   __ mov(G4, L4);
   547   __ mov(G5_method, L5);
   548   __ mov(G5_method, O0);         // VM needs target method
   549   __ mov(I7, O1);                // VM needs caller's callsite
   550   // Must be a leaf call...
   551   // can be very far once the blob has been relocated
   552   AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
   553   __ relocate(relocInfo::runtime_call_type);
   554   __ jumpl_to(dest, O7, O7);
   555   __ delayed()->mov(G2_thread, L7_thread_cache);
   556   __ mov(L7_thread_cache, G2_thread);
   557   __ mov(L1, G1);
   558   __ mov(L4, G4);
   559   __ mov(L5, G5_method);
   560 #else
   561   __ stx(G1, FP, -8 + STACK_BIAS);
   562   __ stx(G4, FP, -16 + STACK_BIAS);
   563   __ mov(G5_method, L5);
   564   __ mov(G5_method, O0);         // VM needs target method
   565   __ mov(I7, O1);                // VM needs caller's callsite
   566   // Must be a leaf call...
   567   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
   568   __ delayed()->mov(G2_thread, L7_thread_cache);
   569   __ mov(L7_thread_cache, G2_thread);
   570   __ ldx(FP, -8 + STACK_BIAS, G1);
   571   __ ldx(FP, -16 + STACK_BIAS, G4);
   572   __ mov(L5, G5_method);
   573 #endif /* _LP64 */
   575   __ restore();      // Restore args
   576   __ bind(L);
   577 }
   580 RegisterOrConstant AdapterGenerator::arg_slot(const int st_off) {
   581   RegisterOrConstant roc(arg_offset(st_off));
   582   return __ ensure_simm13_or_reg(roc, Rdisp);
   583 }
   585 RegisterOrConstant AdapterGenerator::next_arg_slot(const int st_off) {
   586   RegisterOrConstant roc(next_arg_offset(st_off));
   587   return __ ensure_simm13_or_reg(roc, Rdisp);
   588 }
   591 // Stores long into offset pointed to by base
   592 void AdapterGenerator::store_c2i_long(Register r, Register base,
   593                                       const int st_off, bool is_stack) {
   594 #ifdef _LP64
   595   // In V9, longs are given 2 64-bit slots in the interpreter, but the
   596   // data is passed in only 1 slot.
   597   __ stx(r, base, next_arg_slot(st_off));
   598 #else
   599 #ifdef COMPILER2
   600   // Misaligned store of 64-bit data
   601   __ stw(r, base, arg_slot(st_off));    // lo bits
   602   __ srlx(r, 32, r);
   603   __ stw(r, base, next_arg_slot(st_off));  // hi bits
   604 #else
   605   if (is_stack) {
   606     // Misaligned store of 64-bit data
   607     __ stw(r, base, arg_slot(st_off));    // lo bits
   608     __ srlx(r, 32, r);
   609     __ stw(r, base, next_arg_slot(st_off));  // hi bits
   610   } else {
   611     __ stw(r->successor(), base, arg_slot(st_off)     ); // lo bits
   612     __ stw(r             , base, next_arg_slot(st_off)); // hi bits
   613   }
   614 #endif // COMPILER2
   615 #endif // _LP64
   616 }
   618 void AdapterGenerator::store_c2i_object(Register r, Register base,
   619                       const int st_off) {
   620   __ st_ptr (r, base, arg_slot(st_off));
   621 }
   623 void AdapterGenerator::store_c2i_int(Register r, Register base,
   624                    const int st_off) {
   625   __ st (r, base, arg_slot(st_off));
   626 }
   628 // Stores into offset pointed to by base
   629 void AdapterGenerator::store_c2i_double(VMReg r_2,
   630                       VMReg r_1, Register base, const int st_off) {
   631 #ifdef _LP64
   632   // In V9, doubles are given 2 64-bit slots in the interpreter, but the
   633   // data is passed in only 1 slot.
   634   __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
   635 #else
   636   // Need to marshal 64-bit value from misaligned Lesp loads
   637   __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
   638   __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
   639 #endif
   640 }
   642 void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
   643                                        const int st_off) {
   644   __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
   645 }
   647 void AdapterGenerator::gen_c2i_adapter(
   648                             int total_args_passed,
   649                             // VMReg max_arg,
   650                             int comp_args_on_stack, // VMRegStackSlots
   651                             const BasicType *sig_bt,
   652                             const VMRegPair *regs,
   653                             Label& L_skip_fixup) {
   655   // Before we get into the guts of the C2I adapter, see if we should be here
   656   // at all.  We've come from compiled code and are attempting to jump to the
   657   // interpreter, which means the caller made a static call to get here
   658   // (vcalls always get a compiled target if there is one).  Check for a
   659   // compiled target.  If there is one, we need to patch the caller's call.
   660   // However we will run interpreted if we come thru here. The next pass
   661   // thru the call site will run compiled. If we ran compiled here then
   662   // we can (theorectically) do endless i2c->c2i->i2c transitions during
   663   // deopt/uncommon trap cycles. If we always go interpreted here then
   664   // we can have at most one and don't need to play any tricks to keep
   665   // from endlessly growing the stack.
   666   //
   667   // Actually if we detected that we had an i2c->c2i transition here we
   668   // ought to be able to reset the world back to the state of the interpreted
   669   // call and not bother building another interpreter arg area. We don't
   670   // do that at this point.
   672   patch_callers_callsite();
   674   __ bind(L_skip_fixup);
   676   // Since all args are passed on the stack, total_args_passed*wordSize is the
   677   // space we need.  Add in varargs area needed by the interpreter. Round up
   678   // to stack alignment.
   679   const int arg_size = total_args_passed * Interpreter::stackElementSize;
   680   const int varargs_area =
   681                  (frame::varargs_offset - frame::register_save_words)*wordSize;
   682   const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
   684   const int bias = STACK_BIAS;
   685   const int interp_arg_offset = frame::varargs_offset*wordSize +
   686                         (total_args_passed-1)*Interpreter::stackElementSize;
   688   const Register base = SP;
   690   // Make some extra space on the stack.
   691   __ sub(SP, __ ensure_simm13_or_reg(extraspace, G3_scratch), SP);
   692   set_Rdisp(G3_scratch);
   694   // Write the args into the outgoing interpreter space.
   695   for (int i = 0; i < total_args_passed; i++) {
   696     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
   697     VMReg r_1 = regs[i].first();
   698     VMReg r_2 = regs[i].second();
   699     if (!r_1->is_valid()) {
   700       assert(!r_2->is_valid(), "");
   701       continue;
   702     }
   703     if (r_1->is_stack()) {        // Pretend stack targets are loaded into G1
   704       RegisterOrConstant ld_off = reg2offset(r_1) + extraspace + bias;
   705       ld_off = __ ensure_simm13_or_reg(ld_off, Rdisp);
   706       r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
   707       if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
   708       else                  __ ldx(base, ld_off, G1_scratch);
   709     }
   711     if (r_1->is_Register()) {
   712       Register r = r_1->as_Register()->after_restore();
   713       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
   714         store_c2i_object(r, base, st_off);
   715       } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   716         store_c2i_long(r, base, st_off, r_2->is_stack());
   717       } else {
   718         store_c2i_int(r, base, st_off);
   719       }
   720     } else {
   721       assert(r_1->is_FloatRegister(), "");
   722       if (sig_bt[i] == T_FLOAT) {
   723         store_c2i_float(r_1->as_FloatRegister(), base, st_off);
   724       } else {
   725         assert(sig_bt[i] == T_DOUBLE, "wrong type");
   726         store_c2i_double(r_2, r_1, base, st_off);
   727       }
   728     }
   729   }
   731   // Load the interpreter entry point.
   732   __ ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), G3_scratch);
   734   // Pass O5_savedSP as an argument to the interpreter.
   735   // The interpreter will restore SP to this value before returning.
   736   __ add(SP, __ ensure_simm13_or_reg(extraspace, G1), O5_savedSP);
   738   __ mov((frame::varargs_offset)*wordSize -
   739          1*Interpreter::stackElementSize+bias+BytesPerWord, G1);
   740   // Jump to the interpreter just as if interpreter was doing it.
   741   __ jmpl(G3_scratch, 0, G0);
   742   // Setup Lesp for the call.  Cannot actually set Lesp as the current Lesp
   743   // (really L0) is in use by the compiled frame as a generic temp.  However,
   744   // the interpreter does not know where its args are without some kind of
   745   // arg pointer being passed in.  Pass it in Gargs.
   746   __ delayed()->add(SP, G1, Gargs);
   747 }
   749 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, Register temp2_reg,
   750                         address code_start, address code_end,
   751                         Label& L_ok) {
   752   Label L_fail;
   753   __ set(ExternalAddress(code_start), temp_reg);
   754   __ set(pointer_delta(code_end, code_start, 1), temp2_reg);
   755   __ cmp(pc_reg, temp_reg);
   756   __ brx(Assembler::lessEqualUnsigned, false, Assembler::pn, L_fail);
   757   __ delayed()->add(temp_reg, temp2_reg, temp_reg);
   758   __ cmp(pc_reg, temp_reg);
   759   __ cmp_and_brx_short(pc_reg, temp_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
   760   __ bind(L_fail);
   761 }
   763 void AdapterGenerator::gen_i2c_adapter(
   764                             int total_args_passed,
   765                             // VMReg max_arg,
   766                             int comp_args_on_stack, // VMRegStackSlots
   767                             const BasicType *sig_bt,
   768                             const VMRegPair *regs) {
   770   // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
   771   // layout.  Lesp was saved by the calling I-frame and will be restored on
   772   // return.  Meanwhile, outgoing arg space is all owned by the callee
   773   // C-frame, so we can mangle it at will.  After adjusting the frame size,
   774   // hoist register arguments and repack other args according to the compiled
   775   // code convention.  Finally, end in a jump to the compiled code.  The entry
   776   // point address is the start of the buffer.
   778   // We will only enter here from an interpreted frame and never from after
   779   // passing thru a c2i. Azul allowed this but we do not. If we lose the
   780   // race and use a c2i we will remain interpreted for the race loser(s).
   781   // This removes all sorts of headaches on the x86 side and also eliminates
   782   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
   784   // More detail:
   785   // Adapters can be frameless because they do not require the caller
   786   // to perform additional cleanup work, such as correcting the stack pointer.
   787   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
   788   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
   789   // even if a callee has modified the stack pointer.
   790   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
   791   // routinely repairs its caller's stack pointer (from sender_sp, which is set
   792   // up via the senderSP register).
   793   // In other words, if *either* the caller or callee is interpreted, we can
   794   // get the stack pointer repaired after a call.
   795   // This is why c2i and i2c adapters cannot be indefinitely composed.
   796   // In particular, if a c2i adapter were to somehow call an i2c adapter,
   797   // both caller and callee would be compiled methods, and neither would
   798   // clean up the stack pointer changes performed by the two adapters.
   799   // If this happens, control eventually transfers back to the compiled
   800   // caller, but with an uncorrected stack, causing delayed havoc.
   802   if (VerifyAdapterCalls &&
   803       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
   804     // So, let's test for cascading c2i/i2c adapters right now.
   805     //  assert(Interpreter::contains($return_addr) ||
   806     //         StubRoutines::contains($return_addr),
   807     //         "i2c adapter must return to an interpreter frame");
   808     __ block_comment("verify_i2c { ");
   809     Label L_ok;
   810     if (Interpreter::code() != NULL)
   811       range_check(masm, O7, O0, O1,
   812                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
   813                   L_ok);
   814     if (StubRoutines::code1() != NULL)
   815       range_check(masm, O7, O0, O1,
   816                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
   817                   L_ok);
   818     if (StubRoutines::code2() != NULL)
   819       range_check(masm, O7, O0, O1,
   820                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
   821                   L_ok);
   822     const char* msg = "i2c adapter must return to an interpreter frame";
   823     __ block_comment(msg);
   824     __ stop(msg);
   825     __ bind(L_ok);
   826     __ block_comment("} verify_i2ce ");
   827   }
   829   // As you can see from the list of inputs & outputs there are not a lot
   830   // of temp registers to work with: mostly G1, G3 & G4.
   832   // Inputs:
   833   // G2_thread      - TLS
   834   // G5_method      - Method oop
   835   // G4 (Gargs)     - Pointer to interpreter's args
   836   // O0..O4         - free for scratch
   837   // O5_savedSP     - Caller's saved SP, to be restored if needed
   838   // O6             - Current SP!
   839   // O7             - Valid return address
   840   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
   842   // Outputs:
   843   // G2_thread      - TLS
   844   // O0-O5          - Outgoing args in compiled layout
   845   // O6             - Adjusted or restored SP
   846   // O7             - Valid return address
   847   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
   848   // F0-F7          - more outgoing args
   851   // Gargs is the incoming argument base, and also an outgoing argument.
   852   __ sub(Gargs, BytesPerWord, Gargs);
   854   // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
   855   // WITH O7 HOLDING A VALID RETURN PC
   856   //
   857   // |              |
   858   // :  java stack  :
   859   // |              |
   860   // +--------------+ <--- start of outgoing args
   861   // |   receiver   |   |
   862   // : rest of args :   |---size is java-arg-words
   863   // |              |   |
   864   // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
   865   // |              |   |
   866   // :    unused    :   |---Space for max Java stack, plus stack alignment
   867   // |              |   |
   868   // +--------------+ <--- SP + 16*wordsize
   869   // |              |
   870   // :    window    :
   871   // |              |
   872   // +--------------+ <--- SP
   874   // WE REPACK THE STACK.  We use the common calling convention layout as
   875   // discovered by calling SharedRuntime::calling_convention.  We assume it
   876   // causes an arbitrary shuffle of memory, which may require some register
   877   // temps to do the shuffle.  We hope for (and optimize for) the case where
   878   // temps are not needed.  We may have to resize the stack slightly, in case
   879   // we need alignment padding (32-bit interpreter can pass longs & doubles
   880   // misaligned, but the compilers expect them aligned).
   881   //
   882   // |              |
   883   // :  java stack  :
   884   // |              |
   885   // +--------------+ <--- start of outgoing args
   886   // |  pad, align  |   |
   887   // +--------------+   |
   888   // | ints, longs, |   |
   889   // |    floats,   |   |---Outgoing stack args.
   890   // :    doubles   :   |   First few args in registers.
   891   // |              |   |
   892   // +--------------+ <--- SP' + 16*wordsize
   893   // |              |
   894   // :    window    :
   895   // |              |
   896   // +--------------+ <--- SP'
   898   // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
   899   // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
   900   // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
   902   // Cut-out for having no stack args.  Since up to 6 args are passed
   903   // in registers, we will commonly have no stack args.
   904   if (comp_args_on_stack > 0) {
   905     // Convert VMReg stack slots to words.
   906     int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
   907     // Round up to miminum stack alignment, in wordSize
   908     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   909     // Now compute the distance from Lesp to SP.  This calculation does not
   910     // include the space for total_args_passed because Lesp has not yet popped
   911     // the arguments.
   912     __ sub(SP, (comp_words_on_stack)*wordSize, SP);
   913   }
   915   // Now generate the shuffle code.  Pick up all register args and move the
   916   // rest through G1_scratch.
   917   for (int i = 0; i < total_args_passed; i++) {
   918     if (sig_bt[i] == T_VOID) {
   919       // Longs and doubles are passed in native word order, but misaligned
   920       // in the 32-bit build.
   921       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   922       continue;
   923     }
   925     // Pick up 0, 1 or 2 words from Lesp+offset.  Assume mis-aligned in the
   926     // 32-bit build and aligned in the 64-bit build.  Look for the obvious
   927     // ldx/lddf optimizations.
   929     // Load in argument order going down.
   930     const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
   931     set_Rdisp(G1_scratch);
   933     VMReg r_1 = regs[i].first();
   934     VMReg r_2 = regs[i].second();
   935     if (!r_1->is_valid()) {
   936       assert(!r_2->is_valid(), "");
   937       continue;
   938     }
   939     if (r_1->is_stack()) {        // Pretend stack targets are loaded into F8/F9
   940       r_1 = F8->as_VMReg();        // as part of the load/store shuffle
   941       if (r_2->is_valid()) r_2 = r_1->next();
   942     }
   943     if (r_1->is_Register()) {  // Register argument
   944       Register r = r_1->as_Register()->after_restore();
   945       if (!r_2->is_valid()) {
   946         __ ld(Gargs, arg_slot(ld_off), r);
   947       } else {
   948 #ifdef _LP64
   949         // In V9, longs are given 2 64-bit slots in the interpreter, but the
   950         // data is passed in only 1 slot.
   951         RegisterOrConstant slot = (sig_bt[i] == T_LONG) ?
   952               next_arg_slot(ld_off) : arg_slot(ld_off);
   953         __ ldx(Gargs, slot, r);
   954 #else
   955         fatal("longs should be on stack");
   956 #endif
   957       }
   958     } else {
   959       assert(r_1->is_FloatRegister(), "");
   960       if (!r_2->is_valid()) {
   961         __ ldf(FloatRegisterImpl::S, Gargs,      arg_slot(ld_off), r_1->as_FloatRegister());
   962       } else {
   963 #ifdef _LP64
   964         // In V9, doubles are given 2 64-bit slots in the interpreter, but the
   965         // data is passed in only 1 slot.  This code also handles longs that
   966         // are passed on the stack, but need a stack-to-stack move through a
   967         // spare float register.
   968         RegisterOrConstant slot = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
   969               next_arg_slot(ld_off) : arg_slot(ld_off);
   970         __ ldf(FloatRegisterImpl::D, Gargs,                  slot, r_1->as_FloatRegister());
   971 #else
   972         // Need to marshal 64-bit value from misaligned Lesp loads
   973         __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
   974         __ ldf(FloatRegisterImpl::S, Gargs,      arg_slot(ld_off), r_2->as_FloatRegister());
   975 #endif
   976       }
   977     }
   978     // Was the argument really intended to be on the stack, but was loaded
   979     // into F8/F9?
   980     if (regs[i].first()->is_stack()) {
   981       assert(r_1->as_FloatRegister() == F8, "fix this code");
   982       // Convert stack slot to an SP offset
   983       int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
   984       // Store down the shuffled stack word.  Target address _is_ aligned.
   985       RegisterOrConstant slot = __ ensure_simm13_or_reg(st_off, Rdisp);
   986       if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, slot);
   987       else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, slot);
   988     }
   989   }
   991   // Jump to the compiled code just as if compiled code was doing it.
   992   __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3);
   994   // 6243940 We might end up in handle_wrong_method if
   995   // the callee is deoptimized as we race thru here. If that
   996   // happens we don't want to take a safepoint because the
   997   // caller frame will look interpreted and arguments are now
   998   // "compiled" so it is much better to make this transition
   999   // invisible to the stack walking code. Unfortunately if
  1000   // we try and find the callee by normal means a safepoint
  1001   // is possible. So we stash the desired callee in the thread
  1002   // and the vm will find there should this case occur.
  1003   Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
  1004   __ st_ptr(G5_method, callee_target_addr);
  1005   __ jmpl(G3, 0, G0);
  1006   __ delayed()->nop();
  1009 // ---------------------------------------------------------------
  1010 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
  1011                                                             int total_args_passed,
  1012                                                             // VMReg max_arg,
  1013                                                             int comp_args_on_stack, // VMRegStackSlots
  1014                                                             const BasicType *sig_bt,
  1015                                                             const VMRegPair *regs,
  1016                                                             AdapterFingerPrint* fingerprint) {
  1017   address i2c_entry = __ pc();
  1019   AdapterGenerator agen(masm);
  1021   agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
  1024   // -------------------------------------------------------------------------
  1025   // Generate a C2I adapter.  On entry we know G5 holds the Method*.  The
  1026   // args start out packed in the compiled layout.  They need to be unpacked
  1027   // into the interpreter layout.  This will almost always require some stack
  1028   // space.  We grow the current (compiled) stack, then repack the args.  We
  1029   // finally end in a jump to the generic interpreter entry point.  On exit
  1030   // from the interpreter, the interpreter will restore our SP (lest the
  1031   // compiled code, which relys solely on SP and not FP, get sick).
  1033   address c2i_unverified_entry = __ pc();
  1034   Label L_skip_fixup;
  1036     Register R_temp = G1;  // another scratch register
  1038     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  1040     __ verify_oop(O0);
  1041     __ load_klass(O0, G3_scratch);
  1043     __ ld_ptr(G5_method, CompiledICHolder::holder_klass_offset(), R_temp);
  1044     __ cmp(G3_scratch, R_temp);
  1046     Label ok, ok2;
  1047     __ brx(Assembler::equal, false, Assembler::pt, ok);
  1048     __ delayed()->ld_ptr(G5_method, CompiledICHolder::holder_metadata_offset(), G5_method);
  1049     __ jump_to(ic_miss, G3_scratch);
  1050     __ delayed()->nop();
  1052     __ bind(ok);
  1053     // Method might have been compiled since the call site was patched to
  1054     // interpreted if that is the case treat it as a miss so we can get
  1055     // the call site corrected.
  1056     __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
  1057     __ bind(ok2);
  1058     __ br_null(G3_scratch, false, Assembler::pt, L_skip_fixup);
  1059     __ delayed()->nop();
  1060     __ jump_to(ic_miss, G3_scratch);
  1061     __ delayed()->nop();
  1065   address c2i_entry = __ pc();
  1067   agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, L_skip_fixup);
  1069   __ flush();
  1070   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  1074 // Helper function for native calling conventions
  1075 static VMReg int_stk_helper( int i ) {
  1076   // Bias any stack based VMReg we get by ignoring the window area
  1077   // but not the register parameter save area.
  1078   //
  1079   // This is strange for the following reasons. We'd normally expect
  1080   // the calling convention to return an VMReg for a stack slot
  1081   // completely ignoring any abi reserved area. C2 thinks of that
  1082   // abi area as only out_preserve_stack_slots. This does not include
  1083   // the area allocated by the C abi to store down integer arguments
  1084   // because the java calling convention does not use it. So
  1085   // since c2 assumes that there are only out_preserve_stack_slots
  1086   // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
  1087   // location the c calling convention must add in this bias amount
  1088   // to make up for the fact that the out_preserve_stack_slots is
  1089   // insufficient for C calls. What a mess. I sure hope those 6
  1090   // stack words were worth it on every java call!
  1092   // Another way of cleaning this up would be for out_preserve_stack_slots
  1093   // to take a parameter to say whether it was C or java calling conventions.
  1094   // Then things might look a little better (but not much).
  1096   int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
  1097   if( mem_parm_offset < 0 ) {
  1098     return as_oRegister(i)->as_VMReg();
  1099   } else {
  1100     int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
  1101     // Now return a biased offset that will be correct when out_preserve_slots is added back in
  1102     return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
  1107 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
  1108                                          VMRegPair *regs,
  1109                                          VMRegPair *regs2,
  1110                                          int total_args_passed) {
  1111     assert(regs2 == NULL, "not needed on sparc");
  1113     // Return the number of VMReg stack_slots needed for the args.
  1114     // This value does not include an abi space (like register window
  1115     // save area).
  1117     // The native convention is V8 if !LP64
  1118     // The LP64 convention is the V9 convention which is slightly more sane.
  1120     // We return the amount of VMReg stack slots we need to reserve for all
  1121     // the arguments NOT counting out_preserve_stack_slots. Since we always
  1122     // have space for storing at least 6 registers to memory we start with that.
  1123     // See int_stk_helper for a further discussion.
  1124     int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
  1126 #ifdef _LP64
  1127     // V9 convention: All things "as-if" on double-wide stack slots.
  1128     // Hoist any int/ptr/long's in the first 6 to int regs.
  1129     // Hoist any flt/dbl's in the first 16 dbl regs.
  1130     int j = 0;                  // Count of actual args, not HALVES
  1131     VMRegPair param_array_reg;  // location of the argument in the parameter array
  1132     for (int i = 0; i < total_args_passed; i++, j++) {
  1133       param_array_reg.set_bad();
  1134       switch (sig_bt[i]) {
  1135       case T_BOOLEAN:
  1136       case T_BYTE:
  1137       case T_CHAR:
  1138       case T_INT:
  1139       case T_SHORT:
  1140         regs[i].set1(int_stk_helper(j));
  1141         break;
  1142       case T_LONG:
  1143         assert(sig_bt[i+1] == T_VOID, "expecting half");
  1144       case T_ADDRESS: // raw pointers, like current thread, for VM calls
  1145       case T_ARRAY:
  1146       case T_OBJECT:
  1147       case T_METADATA:
  1148         regs[i].set2(int_stk_helper(j));
  1149         break;
  1150       case T_FLOAT:
  1151         // Per SPARC Compliance Definition 2.4.1, page 3P-12 available here
  1152         // http://www.sparc.org/wp-content/uploads/2014/01/SCD.2.4.1.pdf.gz
  1153         //
  1154         // "When a callee prototype exists, and does not indicate variable arguments,
  1155         // floating-point values assigned to locations %sp+BIAS+128 through %sp+BIAS+248
  1156         // will be promoted to floating-point registers"
  1157         //
  1158         // By "promoted" it means that the argument is located in two places, an unused
  1159         // spill slot in the "parameter array" (starts at %sp+BIAS+128), and a live
  1160         // float register.  In most cases, there are 6 or fewer arguments of any type,
  1161         // and the standard parameter array slots (%sp+BIAS+128 to %sp+BIAS+176 exclusive)
  1162         // serve as shadow slots.  Per the spec floating point registers %d6 to %d16
  1163         // require slots beyond that (up to %sp+BIAS+248).
  1164         //
  1166           // V9ism: floats go in ODD registers and stack slots
  1167           int float_index = 1 + (j << 1);
  1168           param_array_reg.set1(VMRegImpl::stack2reg(float_index));
  1169           if (j < 16) {
  1170             regs[i].set1(as_FloatRegister(float_index)->as_VMReg());
  1171           } else {
  1172             regs[i] = param_array_reg;
  1175         break;
  1176       case T_DOUBLE:
  1178           assert(sig_bt[i + 1] == T_VOID, "expecting half");
  1179           // V9ism: doubles go in EVEN/ODD regs and stack slots
  1180           int double_index = (j << 1);
  1181           param_array_reg.set2(VMRegImpl::stack2reg(double_index));
  1182           if (j < 16) {
  1183             regs[i].set2(as_FloatRegister(double_index)->as_VMReg());
  1184           } else {
  1185             // V9ism: doubles go in EVEN/ODD stack slots
  1186             regs[i] = param_array_reg;
  1189         break;
  1190       case T_VOID:
  1191         regs[i].set_bad();
  1192         j--;
  1193         break; // Do not count HALVES
  1194       default:
  1195         ShouldNotReachHere();
  1197       // Keep track of the deepest parameter array slot.
  1198       if (!param_array_reg.first()->is_valid()) {
  1199         param_array_reg = regs[i];
  1201       if (param_array_reg.first()->is_stack()) {
  1202         int off = param_array_reg.first()->reg2stack();
  1203         if (off > max_stack_slots) max_stack_slots = off;
  1205       if (param_array_reg.second()->is_stack()) {
  1206         int off = param_array_reg.second()->reg2stack();
  1207         if (off > max_stack_slots) max_stack_slots = off;
  1211 #else // _LP64
  1212     // V8 convention: first 6 things in O-regs, rest on stack.
  1213     // Alignment is willy-nilly.
  1214     for (int i = 0; i < total_args_passed; i++) {
  1215       switch (sig_bt[i]) {
  1216       case T_ADDRESS: // raw pointers, like current thread, for VM calls
  1217       case T_ARRAY:
  1218       case T_BOOLEAN:
  1219       case T_BYTE:
  1220       case T_CHAR:
  1221       case T_FLOAT:
  1222       case T_INT:
  1223       case T_OBJECT:
  1224       case T_METADATA:
  1225       case T_SHORT:
  1226         regs[i].set1(int_stk_helper(i));
  1227         break;
  1228       case T_DOUBLE:
  1229       case T_LONG:
  1230         assert(sig_bt[i + 1] == T_VOID, "expecting half");
  1231         regs[i].set_pair(int_stk_helper(i + 1), int_stk_helper(i));
  1232         break;
  1233       case T_VOID: regs[i].set_bad(); break;
  1234       default:
  1235         ShouldNotReachHere();
  1237       if (regs[i].first()->is_stack()) {
  1238         int off = regs[i].first()->reg2stack();
  1239         if (off > max_stack_slots) max_stack_slots = off;
  1241       if (regs[i].second()->is_stack()) {
  1242         int off = regs[i].second()->reg2stack();
  1243         if (off > max_stack_slots) max_stack_slots = off;
  1246 #endif // _LP64
  1248   return round_to(max_stack_slots + 1, 2);
  1253 // ---------------------------------------------------------------------------
  1254 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1255   switch (ret_type) {
  1256   case T_FLOAT:
  1257     __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
  1258     break;
  1259   case T_DOUBLE:
  1260     __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
  1261     break;
  1265 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1266   switch (ret_type) {
  1267   case T_FLOAT:
  1268     __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
  1269     break;
  1270   case T_DOUBLE:
  1271     __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
  1272     break;
  1276 // Check and forward and pending exception.  Thread is stored in
  1277 // L7_thread_cache and possibly NOT in G2_thread.  Since this is a native call, there
  1278 // is no exception handler.  We merely pop this frame off and throw the
  1279 // exception in the caller's frame.
  1280 static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
  1281   Label L;
  1282   __ br_null(Rex_oop, false, Assembler::pt, L);
  1283   __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
  1284   // Since this is a native call, we *know* the proper exception handler
  1285   // without calling into the VM: it's the empty function.  Just pop this
  1286   // frame and then jump to forward_exception_entry; O7 will contain the
  1287   // native caller's return PC.
  1288  AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
  1289   __ jump_to(exception_entry, G3_scratch);
  1290   __ delayed()->restore();      // Pop this frame off.
  1291   __ bind(L);
  1294 // A simple move of integer like type
  1295 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1296   if (src.first()->is_stack()) {
  1297     if (dst.first()->is_stack()) {
  1298       // stack to stack
  1299       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1300       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1301     } else {
  1302       // stack to reg
  1303       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1305   } else if (dst.first()->is_stack()) {
  1306     // reg to stack
  1307     __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1308   } else {
  1309     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1313 // On 64 bit we will store integer like items to the stack as
  1314 // 64 bits items (sparc abi) even though java would only store
  1315 // 32bits for a parameter. On 32bit it will simply be 32 bits
  1316 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
  1317 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1318   if (src.first()->is_stack()) {
  1319     if (dst.first()->is_stack()) {
  1320       // stack to stack
  1321       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1322       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1323     } else {
  1324       // stack to reg
  1325       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1327   } else if (dst.first()->is_stack()) {
  1328     // reg to stack
  1329     // Some compilers (gcc) expect a clean 32 bit value on function entry
  1330     __ signx(src.first()->as_Register(), L5);
  1331     __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1332   } else {
  1333     // Some compilers (gcc) expect a clean 32 bit value on function entry
  1334     __ signx(src.first()->as_Register(), dst.first()->as_Register());
  1339 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1340   if (src.first()->is_stack()) {
  1341     if (dst.first()->is_stack()) {
  1342       // stack to stack
  1343       __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1344       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1345     } else {
  1346       // stack to reg
  1347       __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1349   } else if (dst.first()->is_stack()) {
  1350     // reg to stack
  1351     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1352   } else {
  1353     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1358 // An oop arg. Must pass a handle not the oop itself
  1359 static void object_move(MacroAssembler* masm,
  1360                         OopMap* map,
  1361                         int oop_handle_offset,
  1362                         int framesize_in_slots,
  1363                         VMRegPair src,
  1364                         VMRegPair dst,
  1365                         bool is_receiver,
  1366                         int* receiver_offset) {
  1368   // must pass a handle. First figure out the location we use as a handle
  1370   if (src.first()->is_stack()) {
  1371     // Oop is already on the stack
  1372     Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
  1373     __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
  1374     __ ld_ptr(rHandle, 0, L4);
  1375 #ifdef _LP64
  1376     __ movr( Assembler::rc_z, L4, G0, rHandle );
  1377 #else
  1378     __ tst( L4 );
  1379     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
  1380 #endif
  1381     if (dst.first()->is_stack()) {
  1382       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
  1384     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1385     if (is_receiver) {
  1386       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
  1388     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
  1389   } else {
  1390     // Oop is in an input register pass we must flush it to the stack
  1391     const Register rOop = src.first()->as_Register();
  1392     const Register rHandle = L5;
  1393     int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
  1394     int offset = oop_slot * VMRegImpl::stack_slot_size;
  1395     __ st_ptr(rOop, SP, offset + STACK_BIAS);
  1396     if (is_receiver) {
  1397        *receiver_offset = offset;
  1399     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1400     __ add(SP, offset + STACK_BIAS, rHandle);
  1401 #ifdef _LP64
  1402     __ movr( Assembler::rc_z, rOop, G0, rHandle );
  1403 #else
  1404     __ tst( rOop );
  1405     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
  1406 #endif
  1408     if (dst.first()->is_stack()) {
  1409       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
  1410     } else {
  1411       __ mov(rHandle, dst.first()->as_Register());
  1416 // A float arg may have to do float reg int reg conversion
  1417 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1418   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1420   if (src.first()->is_stack()) {
  1421     if (dst.first()->is_stack()) {
  1422       // stack to stack the easiest of the bunch
  1423       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1424       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1425     } else {
  1426       // stack to reg
  1427       if (dst.first()->is_Register()) {
  1428         __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1429       } else {
  1430         __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1433   } else if (dst.first()->is_stack()) {
  1434     // reg to stack
  1435     if (src.first()->is_Register()) {
  1436       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1437     } else {
  1438       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1440   } else {
  1441     // reg to reg
  1442     if (src.first()->is_Register()) {
  1443       if (dst.first()->is_Register()) {
  1444         // gpr -> gpr
  1445         __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1446       } else {
  1447         // gpr -> fpr
  1448         __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
  1449         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
  1451     } else if (dst.first()->is_Register()) {
  1452       // fpr -> gpr
  1453       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
  1454       __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
  1455     } else {
  1456       // fpr -> fpr
  1457       // In theory these overlap but the ordering is such that this is likely a nop
  1458       if ( src.first() != dst.first()) {
  1459         __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
  1465 static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1466   VMRegPair src_lo(src.first());
  1467   VMRegPair src_hi(src.second());
  1468   VMRegPair dst_lo(dst.first());
  1469   VMRegPair dst_hi(dst.second());
  1470   simple_move32(masm, src_lo, dst_lo);
  1471   simple_move32(masm, src_hi, dst_hi);
  1474 // A long move
  1475 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1477   // Do the simple ones here else do two int moves
  1478   if (src.is_single_phys_reg() ) {
  1479     if (dst.is_single_phys_reg()) {
  1480       __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1481     } else {
  1482       // split src into two separate registers
  1483       // Remember hi means hi address or lsw on sparc
  1484       // Move msw to lsw
  1485       if (dst.second()->is_reg()) {
  1486         // MSW -> MSW
  1487         __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
  1488         // Now LSW -> LSW
  1489         // this will only move lo -> lo and ignore hi
  1490         VMRegPair split(dst.second());
  1491         simple_move32(masm, src, split);
  1492       } else {
  1493         VMRegPair split(src.first(), L4->as_VMReg());
  1494         // MSW -> MSW (lo ie. first word)
  1495         __ srax(src.first()->as_Register(), 32, L4);
  1496         split_long_move(masm, split, dst);
  1499   } else if (dst.is_single_phys_reg()) {
  1500     if (src.is_adjacent_aligned_on_stack(2)) {
  1501       __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1502     } else {
  1503       // dst is a single reg.
  1504       // Remember lo is low address not msb for stack slots
  1505       // and lo is the "real" register for registers
  1506       // src is
  1508       VMRegPair split;
  1510       if (src.first()->is_reg()) {
  1511         // src.lo (msw) is a reg, src.hi is stk/reg
  1512         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
  1513         split.set_pair(dst.first(), src.first());
  1514       } else {
  1515         // msw is stack move to L5
  1516         // lsw is stack move to dst.lo (real reg)
  1517         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
  1518         split.set_pair(dst.first(), L5->as_VMReg());
  1521       // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
  1522       // msw   -> src.lo/L5,  lsw -> dst.lo
  1523       split_long_move(masm, src, split);
  1525       // So dst now has the low order correct position the
  1526       // msw half
  1527       __ sllx(split.first()->as_Register(), 32, L5);
  1529       const Register d = dst.first()->as_Register();
  1530       __ or3(L5, d, d);
  1532   } else {
  1533     // For LP64 we can probably do better.
  1534     split_long_move(masm, src, dst);
  1538 // A double move
  1539 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1541   // The painful thing here is that like long_move a VMRegPair might be
  1542   // 1: a single physical register
  1543   // 2: two physical registers (v8)
  1544   // 3: a physical reg [lo] and a stack slot [hi] (v8)
  1545   // 4: two stack slots
  1547   // Since src is always a java calling convention we know that the src pair
  1548   // is always either all registers or all stack (and aligned?)
  1550   // in a register [lo] and a stack slot [hi]
  1551   if (src.first()->is_stack()) {
  1552     if (dst.first()->is_stack()) {
  1553       // stack to stack the easiest of the bunch
  1554       // ought to be a way to do this where if alignment is ok we use ldd/std when possible
  1555       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1556       __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1557       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1558       __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1559     } else {
  1560       // stack to reg
  1561       if (dst.second()->is_stack()) {
  1562         // stack -> reg, stack -> stack
  1563         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1564         if (dst.first()->is_Register()) {
  1565           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1566         } else {
  1567           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1569         // This was missing. (very rare case)
  1570         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1571       } else {
  1572         // stack -> reg
  1573         // Eventually optimize for alignment QQQ
  1574         if (dst.first()->is_Register()) {
  1575           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1576           __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
  1577         } else {
  1578           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1579           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
  1583   } else if (dst.first()->is_stack()) {
  1584     // reg to stack
  1585     if (src.first()->is_Register()) {
  1586       // Eventually optimize for alignment QQQ
  1587       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1588       if (src.second()->is_stack()) {
  1589         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1590         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1591       } else {
  1592         __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
  1594     } else {
  1595       // fpr to stack
  1596       if (src.second()->is_stack()) {
  1597         ShouldNotReachHere();
  1598       } else {
  1599         // Is the stack aligned?
  1600         if (reg2offset(dst.first()) & 0x7) {
  1601           // No do as pairs
  1602           __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1603           __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
  1604         } else {
  1605           __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1609   } else {
  1610     // reg to reg
  1611     if (src.first()->is_Register()) {
  1612       if (dst.first()->is_Register()) {
  1613         // gpr -> gpr
  1614         __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1615         __ mov(src.second()->as_Register(), dst.second()->as_Register());
  1616       } else {
  1617         // gpr -> fpr
  1618         // ought to be able to do a single store
  1619         __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
  1620         __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
  1621         // ought to be able to do a single load
  1622         __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
  1623         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
  1625     } else if (dst.first()->is_Register()) {
  1626       // fpr -> gpr
  1627       // ought to be able to do a single store
  1628       __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
  1629       // ought to be able to do a single load
  1630       // REMEMBER first() is low address not LSB
  1631       __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
  1632       if (dst.second()->is_Register()) {
  1633         __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
  1634       } else {
  1635         __ ld(FP, -4 + STACK_BIAS, L4);
  1636         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1638     } else {
  1639       // fpr -> fpr
  1640       // In theory these overlap but the ordering is such that this is likely a nop
  1641       if ( src.first() != dst.first()) {
  1642         __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
  1648 // Creates an inner frame if one hasn't already been created, and
  1649 // saves a copy of the thread in L7_thread_cache
  1650 static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
  1651   if (!*already_created) {
  1652     __ save_frame(0);
  1653     // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
  1654     // Don't use save_thread because it smashes G2 and we merely want to save a
  1655     // copy
  1656     __ mov(G2_thread, L7_thread_cache);
  1657     *already_created = true;
  1662 static void save_or_restore_arguments(MacroAssembler* masm,
  1663                                       const int stack_slots,
  1664                                       const int total_in_args,
  1665                                       const int arg_save_area,
  1666                                       OopMap* map,
  1667                                       VMRegPair* in_regs,
  1668                                       BasicType* in_sig_bt) {
  1669   // if map is non-NULL then the code should store the values,
  1670   // otherwise it should load them.
  1671   if (map != NULL) {
  1672     // Fill in the map
  1673     for (int i = 0; i < total_in_args; i++) {
  1674       if (in_sig_bt[i] == T_ARRAY) {
  1675         if (in_regs[i].first()->is_stack()) {
  1676           int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1677           map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
  1678         } else if (in_regs[i].first()->is_Register()) {
  1679           map->set_oop(in_regs[i].first());
  1680         } else {
  1681           ShouldNotReachHere();
  1687   // Save or restore double word values
  1688   int handle_index = 0;
  1689   for (int i = 0; i < total_in_args; i++) {
  1690     int slot = handle_index + arg_save_area;
  1691     int offset = slot * VMRegImpl::stack_slot_size;
  1692     if (in_sig_bt[i] == T_LONG && in_regs[i].first()->is_Register()) {
  1693       const Register reg = in_regs[i].first()->as_Register();
  1694       if (reg->is_global()) {
  1695         handle_index += 2;
  1696         assert(handle_index <= stack_slots, "overflow");
  1697         if (map != NULL) {
  1698           __ stx(reg, SP, offset + STACK_BIAS);
  1699         } else {
  1700           __ ldx(SP, offset + STACK_BIAS, reg);
  1703     } else if (in_sig_bt[i] == T_DOUBLE && in_regs[i].first()->is_FloatRegister()) {
  1704       handle_index += 2;
  1705       assert(handle_index <= stack_slots, "overflow");
  1706       if (map != NULL) {
  1707         __ stf(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
  1708       } else {
  1709         __ ldf(FloatRegisterImpl::D, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
  1713   // Save floats
  1714   for (int i = 0; i < total_in_args; i++) {
  1715     int slot = handle_index + arg_save_area;
  1716     int offset = slot * VMRegImpl::stack_slot_size;
  1717     if (in_sig_bt[i] == T_FLOAT && in_regs[i].first()->is_FloatRegister()) {
  1718       handle_index++;
  1719       assert(handle_index <= stack_slots, "overflow");
  1720       if (map != NULL) {
  1721         __ stf(FloatRegisterImpl::S, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
  1722       } else {
  1723         __ ldf(FloatRegisterImpl::S, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
  1731 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
  1732 // keeps a new JNI critical region from starting until a GC has been
  1733 // forced.  Save down any oops in registers and describe them in an
  1734 // OopMap.
  1735 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
  1736                                                const int stack_slots,
  1737                                                const int total_in_args,
  1738                                                const int arg_save_area,
  1739                                                OopMapSet* oop_maps,
  1740                                                VMRegPair* in_regs,
  1741                                                BasicType* in_sig_bt) {
  1742   __ block_comment("check GC_locker::needs_gc");
  1743   Label cont;
  1744   AddressLiteral sync_state(GC_locker::needs_gc_address());
  1745   __ load_bool_contents(sync_state, G3_scratch);
  1746   __ cmp_zero_and_br(Assembler::equal, G3_scratch, cont);
  1747   __ delayed()->nop();
  1749   // Save down any values that are live in registers and call into the
  1750   // runtime to halt for a GC
  1751   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1752   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1753                             arg_save_area, map, in_regs, in_sig_bt);
  1755   __ mov(G2_thread, L7_thread_cache);
  1757   __ set_last_Java_frame(SP, noreg);
  1759   __ block_comment("block_for_jni_critical");
  1760   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical), relocInfo::runtime_call_type);
  1761   __ delayed()->mov(L7_thread_cache, O0);
  1762   oop_maps->add_gc_map( __ offset(), map);
  1764   __ restore_thread(L7_thread_cache); // restore G2_thread
  1765   __ reset_last_Java_frame();
  1767   // Reload all the register arguments
  1768   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1769                             arg_save_area, NULL, in_regs, in_sig_bt);
  1771   __ bind(cont);
  1772 #ifdef ASSERT
  1773   if (StressCriticalJNINatives) {
  1774     // Stress register saving
  1775     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1776     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1777                               arg_save_area, map, in_regs, in_sig_bt);
  1778     // Destroy argument registers
  1779     for (int i = 0; i < total_in_args; i++) {
  1780       if (in_regs[i].first()->is_Register()) {
  1781         const Register reg = in_regs[i].first()->as_Register();
  1782         if (reg->is_global()) {
  1783           __ mov(G0, reg);
  1785       } else if (in_regs[i].first()->is_FloatRegister()) {
  1786         __ fneg(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
  1790     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1791                               arg_save_area, NULL, in_regs, in_sig_bt);
  1793 #endif
  1796 // Unpack an array argument into a pointer to the body and the length
  1797 // if the array is non-null, otherwise pass 0 for both.
  1798 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
  1799   // Pass the length, ptr pair
  1800   Label is_null, done;
  1801   if (reg.first()->is_stack()) {
  1802     VMRegPair tmp  = reg64_to_VMRegPair(L2);
  1803     // Load the arg up from the stack
  1804     move_ptr(masm, reg, tmp);
  1805     reg = tmp;
  1807   __ cmp(reg.first()->as_Register(), G0);
  1808   __ brx(Assembler::equal, false, Assembler::pt, is_null);
  1809   __ delayed()->add(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type), L4);
  1810   move_ptr(masm, reg64_to_VMRegPair(L4), body_arg);
  1811   __ ld(reg.first()->as_Register(), arrayOopDesc::length_offset_in_bytes(), L4);
  1812   move32_64(masm, reg64_to_VMRegPair(L4), length_arg);
  1813   __ ba_short(done);
  1814   __ bind(is_null);
  1815   // Pass zeros
  1816   move_ptr(masm, reg64_to_VMRegPair(G0), body_arg);
  1817   move32_64(masm, reg64_to_VMRegPair(G0), length_arg);
  1818   __ bind(done);
  1821 static void verify_oop_args(MacroAssembler* masm,
  1822                             methodHandle method,
  1823                             const BasicType* sig_bt,
  1824                             const VMRegPair* regs) {
  1825   Register temp_reg = G5_method;  // not part of any compiled calling seq
  1826   if (VerifyOops) {
  1827     for (int i = 0; i < method->size_of_parameters(); i++) {
  1828       if (sig_bt[i] == T_OBJECT ||
  1829           sig_bt[i] == T_ARRAY) {
  1830         VMReg r = regs[i].first();
  1831         assert(r->is_valid(), "bad oop arg");
  1832         if (r->is_stack()) {
  1833           RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
  1834           ld_off = __ ensure_simm13_or_reg(ld_off, temp_reg);
  1835           __ ld_ptr(SP, ld_off, temp_reg);
  1836           __ verify_oop(temp_reg);
  1837         } else {
  1838           __ verify_oop(r->as_Register());
  1845 static void gen_special_dispatch(MacroAssembler* masm,
  1846                                  methodHandle method,
  1847                                  const BasicType* sig_bt,
  1848                                  const VMRegPair* regs) {
  1849   verify_oop_args(masm, method, sig_bt, regs);
  1850   vmIntrinsics::ID iid = method->intrinsic_id();
  1852   // Now write the args into the outgoing interpreter space
  1853   bool     has_receiver   = false;
  1854   Register receiver_reg   = noreg;
  1855   int      member_arg_pos = -1;
  1856   Register member_reg     = noreg;
  1857   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
  1858   if (ref_kind != 0) {
  1859     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
  1860     member_reg = G5_method;  // known to be free at this point
  1861     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
  1862   } else if (iid == vmIntrinsics::_invokeBasic) {
  1863     has_receiver = true;
  1864   } else {
  1865     fatal(err_msg_res("unexpected intrinsic id %d", iid));
  1868   if (member_reg != noreg) {
  1869     // Load the member_arg into register, if necessary.
  1870     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
  1871     VMReg r = regs[member_arg_pos].first();
  1872     if (r->is_stack()) {
  1873       RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
  1874       ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
  1875       __ ld_ptr(SP, ld_off, member_reg);
  1876     } else {
  1877       // no data motion is needed
  1878       member_reg = r->as_Register();
  1882   if (has_receiver) {
  1883     // Make sure the receiver is loaded into a register.
  1884     assert(method->size_of_parameters() > 0, "oob");
  1885     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
  1886     VMReg r = regs[0].first();
  1887     assert(r->is_valid(), "bad receiver arg");
  1888     if (r->is_stack()) {
  1889       // Porting note:  This assumes that compiled calling conventions always
  1890       // pass the receiver oop in a register.  If this is not true on some
  1891       // platform, pick a temp and load the receiver from stack.
  1892       fatal("receiver always in a register");
  1893       receiver_reg = G3_scratch;  // known to be free at this point
  1894       RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
  1895       ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
  1896       __ ld_ptr(SP, ld_off, receiver_reg);
  1897     } else {
  1898       // no data motion is needed
  1899       receiver_reg = r->as_Register();
  1903   // Figure out which address we are really jumping to:
  1904   MethodHandles::generate_method_handle_dispatch(masm, iid,
  1905                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
  1908 // ---------------------------------------------------------------------------
  1909 // Generate a native wrapper for a given method.  The method takes arguments
  1910 // in the Java compiled code convention, marshals them to the native
  1911 // convention (handlizes oops, etc), transitions to native, makes the call,
  1912 // returns to java state (possibly blocking), unhandlizes any result and
  1913 // returns.
  1914 //
  1915 // Critical native functions are a shorthand for the use of
  1916 // GetPrimtiveArrayCritical and disallow the use of any other JNI
  1917 // functions.  The wrapper is expected to unpack the arguments before
  1918 // passing them to the callee and perform checks before and after the
  1919 // native call to ensure that they GC_locker
  1920 // lock_critical/unlock_critical semantics are followed.  Some other
  1921 // parts of JNI setup are skipped like the tear down of the JNI handle
  1922 // block and the check for pending exceptions it's impossible for them
  1923 // to be thrown.
  1924 //
  1925 // They are roughly structured like this:
  1926 //    if (GC_locker::needs_gc())
  1927 //      SharedRuntime::block_for_jni_critical();
  1928 //    tranistion to thread_in_native
  1929 //    unpack arrray arguments and call native entry point
  1930 //    check for safepoint in progress
  1931 //    check if any thread suspend flags are set
  1932 //      call into JVM and possible unlock the JNI critical
  1933 //      if a GC was suppressed while in the critical native.
  1934 //    transition back to thread_in_Java
  1935 //    return to caller
  1936 //
  1937 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
  1938                                                 methodHandle method,
  1939                                                 int compile_id,
  1940                                                 BasicType* in_sig_bt,
  1941                                                 VMRegPair* in_regs,
  1942                                                 BasicType ret_type) {
  1943   if (method->is_method_handle_intrinsic()) {
  1944     vmIntrinsics::ID iid = method->intrinsic_id();
  1945     intptr_t start = (intptr_t)__ pc();
  1946     int vep_offset = ((intptr_t)__ pc()) - start;
  1947     gen_special_dispatch(masm,
  1948                          method,
  1949                          in_sig_bt,
  1950                          in_regs);
  1951     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
  1952     __ flush();
  1953     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
  1954     return nmethod::new_native_nmethod(method,
  1955                                        compile_id,
  1956                                        masm->code(),
  1957                                        vep_offset,
  1958                                        frame_complete,
  1959                                        stack_slots / VMRegImpl::slots_per_word,
  1960                                        in_ByteSize(-1),
  1961                                        in_ByteSize(-1),
  1962                                        (OopMapSet*)NULL);
  1964   bool is_critical_native = true;
  1965   address native_func = method->critical_native_function();
  1966   if (native_func == NULL) {
  1967     native_func = method->native_function();
  1968     is_critical_native = false;
  1970   assert(native_func != NULL, "must have function");
  1972   // Native nmethod wrappers never take possesion of the oop arguments.
  1973   // So the caller will gc the arguments. The only thing we need an
  1974   // oopMap for is if the call is static
  1975   //
  1976   // An OopMap for lock (and class if static), and one for the VM call itself
  1977   OopMapSet *oop_maps = new OopMapSet();
  1978   intptr_t start = (intptr_t)__ pc();
  1980   // First thing make an ic check to see if we should even be here
  1982     Label L;
  1983     const Register temp_reg = G3_scratch;
  1984     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  1985     __ verify_oop(O0);
  1986     __ load_klass(O0, temp_reg);
  1987     __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
  1989     __ jump_to(ic_miss, temp_reg);
  1990     __ delayed()->nop();
  1991     __ align(CodeEntryAlignment);
  1992     __ bind(L);
  1995   int vep_offset = ((intptr_t)__ pc()) - start;
  1997 #ifdef COMPILER1
  1998   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
  1999     // Object.hashCode can pull the hashCode from the header word
  2000     // instead of doing a full VM transition once it's been computed.
  2001     // Since hashCode is usually polymorphic at call sites we can't do
  2002     // this optimization at the call site without a lot of work.
  2003     Label slowCase;
  2004     Register receiver             = O0;
  2005     Register result               = O0;
  2006     Register header               = G3_scratch;
  2007     Register hash                 = G3_scratch; // overwrite header value with hash value
  2008     Register mask                 = G1;         // to get hash field from header
  2010     // Read the header and build a mask to get its hash field.  Give up if the object is not unlocked.
  2011     // We depend on hash_mask being at most 32 bits and avoid the use of
  2012     // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  2013     // vm: see markOop.hpp.
  2014     __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
  2015     __ sethi(markOopDesc::hash_mask, mask);
  2016     __ btst(markOopDesc::unlocked_value, header);
  2017     __ br(Assembler::zero, false, Assembler::pn, slowCase);
  2018     if (UseBiasedLocking) {
  2019       // Check if biased and fall through to runtime if so
  2020       __ delayed()->nop();
  2021       __ btst(markOopDesc::biased_lock_bit_in_place, header);
  2022       __ br(Assembler::notZero, false, Assembler::pn, slowCase);
  2024     __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
  2026     // Check for a valid (non-zero) hash code and get its value.
  2027 #ifdef _LP64
  2028     __ srlx(header, markOopDesc::hash_shift, hash);
  2029 #else
  2030     __ srl(header, markOopDesc::hash_shift, hash);
  2031 #endif
  2032     __ andcc(hash, mask, hash);
  2033     __ br(Assembler::equal, false, Assembler::pn, slowCase);
  2034     __ delayed()->nop();
  2036     // leaf return.
  2037     __ retl();
  2038     __ delayed()->mov(hash, result);
  2039     __ bind(slowCase);
  2041 #endif // COMPILER1
  2044   // We have received a description of where all the java arg are located
  2045   // on entry to the wrapper. We need to convert these args to where
  2046   // the jni function will expect them. To figure out where they go
  2047   // we convert the java signature to a C signature by inserting
  2048   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  2050   const int total_in_args = method->size_of_parameters();
  2051   int total_c_args = total_in_args;
  2052   int total_save_slots = 6 * VMRegImpl::slots_per_word;
  2053   if (!is_critical_native) {
  2054     total_c_args += 1;
  2055     if (method->is_static()) {
  2056       total_c_args++;
  2058   } else {
  2059     for (int i = 0; i < total_in_args; i++) {
  2060       if (in_sig_bt[i] == T_ARRAY) {
  2061         // These have to be saved and restored across the safepoint
  2062         total_c_args++;
  2067   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  2068   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  2069   BasicType* in_elem_bt = NULL;
  2071   int argc = 0;
  2072   if (!is_critical_native) {
  2073     out_sig_bt[argc++] = T_ADDRESS;
  2074     if (method->is_static()) {
  2075       out_sig_bt[argc++] = T_OBJECT;
  2078     for (int i = 0; i < total_in_args ; i++ ) {
  2079       out_sig_bt[argc++] = in_sig_bt[i];
  2081   } else {
  2082     Thread* THREAD = Thread::current();
  2083     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
  2084     SignatureStream ss(method->signature());
  2085     for (int i = 0; i < total_in_args ; i++ ) {
  2086       if (in_sig_bt[i] == T_ARRAY) {
  2087         // Arrays are passed as int, elem* pair
  2088         out_sig_bt[argc++] = T_INT;
  2089         out_sig_bt[argc++] = T_ADDRESS;
  2090         Symbol* atype = ss.as_symbol(CHECK_NULL);
  2091         const char* at = atype->as_C_string();
  2092         if (strlen(at) == 2) {
  2093           assert(at[0] == '[', "must be");
  2094           switch (at[1]) {
  2095             case 'B': in_elem_bt[i]  = T_BYTE; break;
  2096             case 'C': in_elem_bt[i]  = T_CHAR; break;
  2097             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
  2098             case 'F': in_elem_bt[i]  = T_FLOAT; break;
  2099             case 'I': in_elem_bt[i]  = T_INT; break;
  2100             case 'J': in_elem_bt[i]  = T_LONG; break;
  2101             case 'S': in_elem_bt[i]  = T_SHORT; break;
  2102             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
  2103             default: ShouldNotReachHere();
  2106       } else {
  2107         out_sig_bt[argc++] = in_sig_bt[i];
  2108         in_elem_bt[i] = T_VOID;
  2110       if (in_sig_bt[i] != T_VOID) {
  2111         assert(in_sig_bt[i] == ss.type(), "must match");
  2112         ss.next();
  2117   // Now figure out where the args must be stored and how much stack space
  2118   // they require (neglecting out_preserve_stack_slots but space for storing
  2119   // the 1st six register arguments). It's weird see int_stk_helper.
  2120   //
  2121   int out_arg_slots;
  2122   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
  2124   if (is_critical_native) {
  2125     // Critical natives may have to call out so they need a save area
  2126     // for register arguments.
  2127     int double_slots = 0;
  2128     int single_slots = 0;
  2129     for ( int i = 0; i < total_in_args; i++) {
  2130       if (in_regs[i].first()->is_Register()) {
  2131         const Register reg = in_regs[i].first()->as_Register();
  2132         switch (in_sig_bt[i]) {
  2133           case T_ARRAY:
  2134           case T_BOOLEAN:
  2135           case T_BYTE:
  2136           case T_SHORT:
  2137           case T_CHAR:
  2138           case T_INT:  assert(reg->is_in(), "don't need to save these"); break;
  2139           case T_LONG: if (reg->is_global()) double_slots++; break;
  2140           default:  ShouldNotReachHere();
  2142       } else if (in_regs[i].first()->is_FloatRegister()) {
  2143         switch (in_sig_bt[i]) {
  2144           case T_FLOAT:  single_slots++; break;
  2145           case T_DOUBLE: double_slots++; break;
  2146           default:  ShouldNotReachHere();
  2150     total_save_slots = double_slots * 2 + single_slots;
  2153   // Compute framesize for the wrapper.  We need to handlize all oops in
  2154   // registers. We must create space for them here that is disjoint from
  2155   // the windowed save area because we have no control over when we might
  2156   // flush the window again and overwrite values that gc has since modified.
  2157   // (The live window race)
  2158   //
  2159   // We always just allocate 6 word for storing down these object. This allow
  2160   // us to simply record the base and use the Ireg number to decide which
  2161   // slot to use. (Note that the reg number is the inbound number not the
  2162   // outbound number).
  2163   // We must shuffle args to match the native convention, and include var-args space.
  2165   // Calculate the total number of stack slots we will need.
  2167   // First count the abi requirement plus all of the outgoing args
  2168   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2170   // Now the space for the inbound oop handle area
  2172   int oop_handle_offset = round_to(stack_slots, 2);
  2173   stack_slots += total_save_slots;
  2175   // Now any space we need for handlizing a klass if static method
  2177   int klass_slot_offset = 0;
  2178   int klass_offset = -1;
  2179   int lock_slot_offset = 0;
  2180   bool is_static = false;
  2182   if (method->is_static()) {
  2183     klass_slot_offset = stack_slots;
  2184     stack_slots += VMRegImpl::slots_per_word;
  2185     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  2186     is_static = true;
  2189   // Plus a lock if needed
  2191   if (method->is_synchronized()) {
  2192     lock_slot_offset = stack_slots;
  2193     stack_slots += VMRegImpl::slots_per_word;
  2196   // Now a place to save return value or as a temporary for any gpr -> fpr moves
  2197   stack_slots += 2;
  2199   // Ok The space we have allocated will look like:
  2200   //
  2201   //
  2202   // FP-> |                     |
  2203   //      |---------------------|
  2204   //      | 2 slots for moves   |
  2205   //      |---------------------|
  2206   //      | lock box (if sync)  |
  2207   //      |---------------------| <- lock_slot_offset
  2208   //      | klass (if static)   |
  2209   //      |---------------------| <- klass_slot_offset
  2210   //      | oopHandle area      |
  2211   //      |---------------------| <- oop_handle_offset
  2212   //      | outbound memory     |
  2213   //      | based arguments     |
  2214   //      |                     |
  2215   //      |---------------------|
  2216   //      | vararg area         |
  2217   //      |---------------------|
  2218   //      |                     |
  2219   // SP-> | out_preserved_slots |
  2220   //
  2221   //
  2224   // Now compute actual number of stack words we need rounding to make
  2225   // stack properly aligned.
  2226   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
  2228   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2230   // Generate stack overflow check before creating frame
  2231   __ generate_stack_overflow_check(stack_size);
  2233   // Generate a new frame for the wrapper.
  2234   __ save(SP, -stack_size, SP);
  2236   int frame_complete = ((intptr_t)__ pc()) - start;
  2238   __ verify_thread();
  2240   if (is_critical_native) {
  2241     check_needs_gc_for_critical_native(masm, stack_slots,  total_in_args,
  2242                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
  2245   //
  2246   // We immediately shuffle the arguments so that any vm call we have to
  2247   // make from here on out (sync slow path, jvmti, etc.) we will have
  2248   // captured the oops from our caller and have a valid oopMap for
  2249   // them.
  2251   // -----------------
  2252   // The Grand Shuffle
  2253   //
  2254   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
  2255   // (derived from JavaThread* which is in L7_thread_cache) and, if static,
  2256   // the class mirror instead of a receiver.  This pretty much guarantees that
  2257   // register layout will not match.  We ignore these extra arguments during
  2258   // the shuffle. The shuffle is described by the two calling convention
  2259   // vectors we have in our possession. We simply walk the java vector to
  2260   // get the source locations and the c vector to get the destinations.
  2261   // Because we have a new window and the argument registers are completely
  2262   // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
  2263   // here.
  2265   // This is a trick. We double the stack slots so we can claim
  2266   // the oops in the caller's frame. Since we are sure to have
  2267   // more args than the caller doubling is enough to make
  2268   // sure we can capture all the incoming oop args from the
  2269   // caller.
  2270   //
  2271   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  2272   // Record sp-based slot for receiver on stack for non-static methods
  2273   int receiver_offset = -1;
  2275   // We move the arguments backward because the floating point registers
  2276   // destination will always be to a register with a greater or equal register
  2277   // number or the stack.
  2279 #ifdef ASSERT
  2280   bool reg_destroyed[RegisterImpl::number_of_registers];
  2281   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
  2282   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  2283     reg_destroyed[r] = false;
  2285   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
  2286     freg_destroyed[f] = false;
  2289 #endif /* ASSERT */
  2291   for ( int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0 ; i--, c_arg-- ) {
  2293 #ifdef ASSERT
  2294     if (in_regs[i].first()->is_Register()) {
  2295       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
  2296     } else if (in_regs[i].first()->is_FloatRegister()) {
  2297       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
  2299     if (out_regs[c_arg].first()->is_Register()) {
  2300       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  2301     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
  2302       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
  2304 #endif /* ASSERT */
  2306     switch (in_sig_bt[i]) {
  2307       case T_ARRAY:
  2308         if (is_critical_native) {
  2309           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg], out_regs[c_arg - 1]);
  2310           c_arg--;
  2311           break;
  2313       case T_OBJECT:
  2314         assert(!is_critical_native, "no oop arguments");
  2315         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  2316                     ((i == 0) && (!is_static)),
  2317                     &receiver_offset);
  2318         break;
  2319       case T_VOID:
  2320         break;
  2322       case T_FLOAT:
  2323         float_move(masm, in_regs[i], out_regs[c_arg]);
  2324         break;
  2326       case T_DOUBLE:
  2327         assert( i + 1 < total_in_args &&
  2328                 in_sig_bt[i + 1] == T_VOID &&
  2329                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  2330         double_move(masm, in_regs[i], out_regs[c_arg]);
  2331         break;
  2333       case T_LONG :
  2334         long_move(masm, in_regs[i], out_regs[c_arg]);
  2335         break;
  2337       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2339       default:
  2340         move32_64(masm, in_regs[i], out_regs[c_arg]);
  2344   // Pre-load a static method's oop into O1.  Used both by locking code and
  2345   // the normal JNI call code.
  2346   if (method->is_static() && !is_critical_native) {
  2347     __ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()), O1);
  2349     // Now handlize the static class mirror in O1.  It's known not-null.
  2350     __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
  2351     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  2352     __ add(SP, klass_offset + STACK_BIAS, O1);
  2356   const Register L6_handle = L6;
  2358   if (method->is_synchronized()) {
  2359     assert(!is_critical_native, "unhandled");
  2360     __ mov(O1, L6_handle);
  2363   // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
  2364   // except O6/O7. So if we must call out we must push a new frame. We immediately
  2365   // push a new frame and flush the windows.
  2366 #ifdef _LP64
  2367   intptr_t thepc = (intptr_t) __ pc();
  2369     address here = __ pc();
  2370     // Call the next instruction
  2371     __ call(here + 8, relocInfo::none);
  2372     __ delayed()->nop();
  2374 #else
  2375   intptr_t thepc = __ load_pc_address(O7, 0);
  2376 #endif /* _LP64 */
  2378   // We use the same pc/oopMap repeatedly when we call out
  2379   oop_maps->add_gc_map(thepc - start, map);
  2381   // O7 now has the pc loaded that we will use when we finally call to native.
  2383   // Save thread in L7; it crosses a bunch of VM calls below
  2384   // Don't use save_thread because it smashes G2 and we merely
  2385   // want to save a copy
  2386   __ mov(G2_thread, L7_thread_cache);
  2389   // If we create an inner frame once is plenty
  2390   // when we create it we must also save G2_thread
  2391   bool inner_frame_created = false;
  2393   // dtrace method entry support
  2395     SkipIfEqual skip_if(
  2396       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
  2397     // create inner frame
  2398     __ save_frame(0);
  2399     __ mov(G2_thread, L7_thread_cache);
  2400     __ set_metadata_constant(method(), O1);
  2401     __ call_VM_leaf(L7_thread_cache,
  2402          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  2403          G2_thread, O1);
  2404     __ restore();
  2407   // RedefineClasses() tracing support for obsolete method entry
  2408   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2409     // create inner frame
  2410     __ save_frame(0);
  2411     __ mov(G2_thread, L7_thread_cache);
  2412     __ set_metadata_constant(method(), O1);
  2413     __ call_VM_leaf(L7_thread_cache,
  2414          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  2415          G2_thread, O1);
  2416     __ restore();
  2419   // We are in the jni frame unless saved_frame is true in which case
  2420   // we are in one frame deeper (the "inner" frame). If we are in the
  2421   // "inner" frames the args are in the Iregs and if the jni frame then
  2422   // they are in the Oregs.
  2423   // If we ever need to go to the VM (for locking, jvmti) then
  2424   // we will always be in the "inner" frame.
  2426   // Lock a synchronized method
  2427   int lock_offset = -1;         // Set if locked
  2428   if (method->is_synchronized()) {
  2429     Register Roop = O1;
  2430     const Register L3_box = L3;
  2432     create_inner_frame(masm, &inner_frame_created);
  2434     __ ld_ptr(I1, 0, O1);
  2435     Label done;
  2437     lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
  2438     __ add(FP, lock_offset+STACK_BIAS, L3_box);
  2439 #ifdef ASSERT
  2440     if (UseBiasedLocking) {
  2441       // making the box point to itself will make it clear it went unused
  2442       // but also be obviously invalid
  2443       __ st_ptr(L3_box, L3_box, 0);
  2445 #endif // ASSERT
  2446     //
  2447     // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
  2448     //
  2449     __ compiler_lock_object(Roop, L1,    L3_box, L2);
  2450     __ br(Assembler::equal, false, Assembler::pt, done);
  2451     __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
  2454     // None of the above fast optimizations worked so we have to get into the
  2455     // slow case of monitor enter.  Inline a special case of call_VM that
  2456     // disallows any pending_exception.
  2457     __ mov(Roop, O0);            // Need oop in O0
  2458     __ mov(L3_box, O1);
  2460     // Record last_Java_sp, in case the VM code releases the JVM lock.
  2462     __ set_last_Java_frame(FP, I7);
  2464     // do the call
  2465     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
  2466     __ delayed()->mov(L7_thread_cache, O2);
  2468     __ restore_thread(L7_thread_cache); // restore G2_thread
  2469     __ reset_last_Java_frame();
  2471 #ifdef ASSERT
  2472     { Label L;
  2473     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
  2474     __ br_null_short(O0, Assembler::pt, L);
  2475     __ stop("no pending exception allowed on exit from IR::monitorenter");
  2476     __ bind(L);
  2478 #endif
  2479     __ bind(done);
  2483   // Finally just about ready to make the JNI call
  2485   __ flushw();
  2486   if (inner_frame_created) {
  2487     __ restore();
  2488   } else {
  2489     // Store only what we need from this frame
  2490     // QQQ I think that non-v9 (like we care) we don't need these saves
  2491     // either as the flush traps and the current window goes too.
  2492     __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
  2493     __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
  2496   // get JNIEnv* which is first argument to native
  2497   if (!is_critical_native) {
  2498     __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
  2501   // Use that pc we placed in O7 a while back as the current frame anchor
  2502   __ set_last_Java_frame(SP, O7);
  2504   // We flushed the windows ages ago now mark them as flushed before transitioning.
  2505   __ set(JavaFrameAnchor::flushed, G3_scratch);
  2506   __ st(G3_scratch, G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
  2508   // Transition from _thread_in_Java to _thread_in_native.
  2509   __ set(_thread_in_native, G3_scratch);
  2511 #ifdef _LP64
  2512   AddressLiteral dest(native_func);
  2513   __ relocate(relocInfo::runtime_call_type);
  2514   __ jumpl_to(dest, O7, O7);
  2515 #else
  2516   __ call(native_func, relocInfo::runtime_call_type);
  2517 #endif
  2518   __ delayed()->st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2520   __ restore_thread(L7_thread_cache); // restore G2_thread
  2522   // Unpack native results.  For int-types, we do any needed sign-extension
  2523   // and move things into I0.  The return value there will survive any VM
  2524   // calls for blocking or unlocking.  An FP or OOP result (handle) is done
  2525   // specially in the slow-path code.
  2526   switch (ret_type) {
  2527   case T_VOID:    break;        // Nothing to do!
  2528   case T_FLOAT:   break;        // Got it where we want it (unless slow-path)
  2529   case T_DOUBLE:  break;        // Got it where we want it (unless slow-path)
  2530   // In 64 bits build result is in O0, in O0, O1 in 32bit build
  2531   case T_LONG:
  2532 #ifndef _LP64
  2533                   __ mov(O1, I1);
  2534 #endif
  2535                   // Fall thru
  2536   case T_OBJECT:                // Really a handle
  2537   case T_ARRAY:
  2538   case T_INT:
  2539                   __ mov(O0, I0);
  2540                   break;
  2541   case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
  2542   case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, I0);   break;
  2543   case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, I0);   break; // cannot use and3, 0xFFFF too big as immediate value!
  2544   case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, I0);   break;
  2545     break;                      // Cannot de-handlize until after reclaiming jvm_lock
  2546   default:
  2547     ShouldNotReachHere();
  2550   Label after_transition;
  2551   // must we block?
  2553   // Block, if necessary, before resuming in _thread_in_Java state.
  2554   // In order for GC to work, don't clear the last_Java_sp until after blocking.
  2555   { Label no_block;
  2556     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
  2558     // Switch thread to "native transition" state before reading the synchronization state.
  2559     // This additional state is necessary because reading and testing the synchronization
  2560     // state is not atomic w.r.t. GC, as this scenario demonstrates:
  2561     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  2562     //     VM thread changes sync state to synchronizing and suspends threads for GC.
  2563     //     Thread A is resumed to finish this native method, but doesn't block here since it
  2564     //     didn't see any synchronization is progress, and escapes.
  2565     __ set(_thread_in_native_trans, G3_scratch);
  2566     __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2567     if(os::is_MP()) {
  2568       if (UseMembar) {
  2569         // Force this write out before the read below
  2570         __ membar(Assembler::StoreLoad);
  2571       } else {
  2572         // Write serialization page so VM thread can do a pseudo remote membar.
  2573         // We use the current thread pointer to calculate a thread specific
  2574         // offset to write to within the page. This minimizes bus traffic
  2575         // due to cache line collision.
  2576         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
  2579     __ load_contents(sync_state, G3_scratch);
  2580     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
  2582     Label L;
  2583     Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
  2584     __ br(Assembler::notEqual, false, Assembler::pn, L);
  2585     __ delayed()->ld(suspend_state, G3_scratch);
  2586     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
  2587     __ bind(L);
  2589     // Block.  Save any potential method result value before the operation and
  2590     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
  2591     // lets us share the oopMap we used when we went native rather the create
  2592     // a distinct one for this pc
  2593     //
  2594     save_native_result(masm, ret_type, stack_slots);
  2595     if (!is_critical_native) {
  2596       __ call_VM_leaf(L7_thread_cache,
  2597                       CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  2598                       G2_thread);
  2599     } else {
  2600       __ call_VM_leaf(L7_thread_cache,
  2601                       CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition),
  2602                       G2_thread);
  2605     // Restore any method result value
  2606     restore_native_result(masm, ret_type, stack_slots);
  2608     if (is_critical_native) {
  2609       // The call above performed the transition to thread_in_Java so
  2610       // skip the transition logic below.
  2611       __ ba(after_transition);
  2612       __ delayed()->nop();
  2615     __ bind(no_block);
  2618   // thread state is thread_in_native_trans. Any safepoint blocking has already
  2619   // happened so we can now change state to _thread_in_Java.
  2620   __ set(_thread_in_Java, G3_scratch);
  2621   __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2622   __ bind(after_transition);
  2624   Label no_reguard;
  2625   __ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
  2626   __ cmp_and_br_short(G3_scratch, JavaThread::stack_guard_yellow_disabled, Assembler::notEqual, Assembler::pt, no_reguard);
  2628     save_native_result(masm, ret_type, stack_slots);
  2629   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
  2630   __ delayed()->nop();
  2632   __ restore_thread(L7_thread_cache); // restore G2_thread
  2633     restore_native_result(masm, ret_type, stack_slots);
  2635   __ bind(no_reguard);
  2637   // Handle possible exception (will unlock if necessary)
  2639   // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
  2641   // Unlock
  2642   if (method->is_synchronized()) {
  2643     Label done;
  2644     Register I2_ex_oop = I2;
  2645     const Register L3_box = L3;
  2646     // Get locked oop from the handle we passed to jni
  2647     __ ld_ptr(L6_handle, 0, L4);
  2648     __ add(SP, lock_offset+STACK_BIAS, L3_box);
  2649     // Must save pending exception around the slow-path VM call.  Since it's a
  2650     // leaf call, the pending exception (if any) can be kept in a register.
  2651     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
  2652     // Now unlock
  2653     //                       (Roop, Rmark, Rbox,   Rscratch)
  2654     __ compiler_unlock_object(L4,   L1,    L3_box, L2);
  2655     __ br(Assembler::equal, false, Assembler::pt, done);
  2656     __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
  2658     // save and restore any potential method result value around the unlocking
  2659     // operation.  Will save in I0 (or stack for FP returns).
  2660     save_native_result(masm, ret_type, stack_slots);
  2662     // Must clear pending-exception before re-entering the VM.  Since this is
  2663     // a leaf call, pending-exception-oop can be safely kept in a register.
  2664     __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
  2666     // slow case of monitor enter.  Inline a special case of call_VM that
  2667     // disallows any pending_exception.
  2668     __ mov(L3_box, O1);
  2670     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
  2671     __ delayed()->mov(L4, O0);              // Need oop in O0
  2673     __ restore_thread(L7_thread_cache); // restore G2_thread
  2675 #ifdef ASSERT
  2676     { Label L;
  2677     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
  2678     __ br_null_short(O0, Assembler::pt, L);
  2679     __ stop("no pending exception allowed on exit from IR::monitorexit");
  2680     __ bind(L);
  2682 #endif
  2683     restore_native_result(masm, ret_type, stack_slots);
  2684     // check_forward_pending_exception jump to forward_exception if any pending
  2685     // exception is set.  The forward_exception routine expects to see the
  2686     // exception in pending_exception and not in a register.  Kind of clumsy,
  2687     // since all folks who branch to forward_exception must have tested
  2688     // pending_exception first and hence have it in a register already.
  2689     __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
  2690     __ bind(done);
  2693   // Tell dtrace about this method exit
  2695     SkipIfEqual skip_if(
  2696       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
  2697     save_native_result(masm, ret_type, stack_slots);
  2698     __ set_metadata_constant(method(), O1);
  2699     __ call_VM_leaf(L7_thread_cache,
  2700        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2701        G2_thread, O1);
  2702     restore_native_result(masm, ret_type, stack_slots);
  2705   // Clear "last Java frame" SP and PC.
  2706   __ verify_thread(); // G2_thread must be correct
  2707   __ reset_last_Java_frame();
  2709   // Unpack oop result
  2710   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  2711       Label L;
  2712       __ addcc(G0, I0, G0);
  2713       __ brx(Assembler::notZero, true, Assembler::pt, L);
  2714       __ delayed()->ld_ptr(I0, 0, I0);
  2715       __ mov(G0, I0);
  2716       __ bind(L);
  2717       __ verify_oop(I0);
  2720   if (!is_critical_native) {
  2721     // reset handle block
  2722     __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
  2723     __ st(G0, L5, JNIHandleBlock::top_offset_in_bytes());
  2725     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
  2726     check_forward_pending_exception(masm, G3_scratch);
  2730   // Return
  2732 #ifndef _LP64
  2733   if (ret_type == T_LONG) {
  2735     // Must leave proper result in O0,O1 and G1 (c2/tiered only)
  2736     __ sllx(I0, 32, G1);          // Shift bits into high G1
  2737     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  2738     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  2740 #endif
  2742   __ ret();
  2743   __ delayed()->restore();
  2745   __ flush();
  2747   nmethod *nm = nmethod::new_native_nmethod(method,
  2748                                             compile_id,
  2749                                             masm->code(),
  2750                                             vep_offset,
  2751                                             frame_complete,
  2752                                             stack_slots / VMRegImpl::slots_per_word,
  2753                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  2754                                             in_ByteSize(lock_offset),
  2755                                             oop_maps);
  2757   if (is_critical_native) {
  2758     nm->set_lazy_critical_native(true);
  2760   return nm;
  2764 #ifdef HAVE_DTRACE_H
  2765 // ---------------------------------------------------------------------------
  2766 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  2767 // in the Java compiled code convention, marshals them to the native
  2768 // abi and then leaves nops at the position you would expect to call a native
  2769 // function. When the probe is enabled the nops are replaced with a trap
  2770 // instruction that dtrace inserts and the trace will cause a notification
  2771 // to dtrace.
  2772 //
  2773 // The probes are only able to take primitive types and java/lang/String as
  2774 // arguments.  No other java types are allowed. Strings are converted to utf8
  2775 // strings so that from dtrace point of view java strings are converted to C
  2776 // strings. There is an arbitrary fixed limit on the total space that a method
  2777 // can use for converting the strings. (256 chars per string in the signature).
  2778 // So any java string larger then this is truncated.
  2780 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
  2781 static bool offsets_initialized = false;
  2783 nmethod *SharedRuntime::generate_dtrace_nmethod(
  2784     MacroAssembler *masm, methodHandle method) {
  2787   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  2788   // be single threaded in this method.
  2789   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  2791   // Fill in the signature array, for the calling-convention call.
  2792   int total_args_passed = method->size_of_parameters();
  2794   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2795   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2797   // The signature we are going to use for the trap that dtrace will see
  2798   // java/lang/String is converted. We drop "this" and any other object
  2799   // is converted to NULL.  (A one-slot java/lang/Long object reference
  2800   // is converted to a two-slot long, which is why we double the allocation).
  2801   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  2802   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  2804   int i=0;
  2805   int total_strings = 0;
  2806   int first_arg_to_pass = 0;
  2807   int total_c_args = 0;
  2809   // Skip the receiver as dtrace doesn't want to see it
  2810   if( !method->is_static() ) {
  2811     in_sig_bt[i++] = T_OBJECT;
  2812     first_arg_to_pass = 1;
  2815   SignatureStream ss(method->signature());
  2816   for ( ; !ss.at_return_type(); ss.next()) {
  2817     BasicType bt = ss.type();
  2818     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  2819     out_sig_bt[total_c_args++] = bt;
  2820     if( bt == T_OBJECT) {
  2821       Symbol* s = ss.as_symbol_or_null();
  2822       if (s == vmSymbols::java_lang_String()) {
  2823         total_strings++;
  2824         out_sig_bt[total_c_args-1] = T_ADDRESS;
  2825       } else if (s == vmSymbols::java_lang_Boolean() ||
  2826                  s == vmSymbols::java_lang_Byte()) {
  2827         out_sig_bt[total_c_args-1] = T_BYTE;
  2828       } else if (s == vmSymbols::java_lang_Character() ||
  2829                  s == vmSymbols::java_lang_Short()) {
  2830         out_sig_bt[total_c_args-1] = T_SHORT;
  2831       } else if (s == vmSymbols::java_lang_Integer() ||
  2832                  s == vmSymbols::java_lang_Float()) {
  2833         out_sig_bt[total_c_args-1] = T_INT;
  2834       } else if (s == vmSymbols::java_lang_Long() ||
  2835                  s == vmSymbols::java_lang_Double()) {
  2836         out_sig_bt[total_c_args-1] = T_LONG;
  2837         out_sig_bt[total_c_args++] = T_VOID;
  2839     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  2840       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2841       // We convert double to long
  2842       out_sig_bt[total_c_args-1] = T_LONG;
  2843       out_sig_bt[total_c_args++] = T_VOID;
  2844     } else if ( bt == T_FLOAT) {
  2845       // We convert float to int
  2846       out_sig_bt[total_c_args-1] = T_INT;
  2850   assert(i==total_args_passed, "validly parsed signature");
  2852   // Now get the compiled-Java layout as input arguments
  2853   int comp_args_on_stack;
  2854   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2855       in_sig_bt, in_regs, total_args_passed, false);
  2857   // We have received a description of where all the java arg are located
  2858   // on entry to the wrapper. We need to convert these args to where
  2859   // the a  native (non-jni) function would expect them. To figure out
  2860   // where they go we convert the java signature to a C signature and remove
  2861   // T_VOID for any long/double we might have received.
  2864   // Now figure out where the args must be stored and how much stack space
  2865   // they require (neglecting out_preserve_stack_slots but space for storing
  2866   // the 1st six register arguments). It's weird see int_stk_helper.
  2867   //
  2868   int out_arg_slots;
  2869   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
  2871   // Calculate the total number of stack slots we will need.
  2873   // First count the abi requirement plus all of the outgoing args
  2874   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2876   // Plus a temp for possible converion of float/double/long register args
  2878   int conversion_temp = stack_slots;
  2879   stack_slots += 2;
  2882   // Now space for the string(s) we must convert
  2884   int string_locs = stack_slots;
  2885   stack_slots += total_strings *
  2886                    (max_dtrace_string_size / VMRegImpl::stack_slot_size);
  2888   // Ok The space we have allocated will look like:
  2889   //
  2890   //
  2891   // FP-> |                     |
  2892   //      |---------------------|
  2893   //      | string[n]           |
  2894   //      |---------------------| <- string_locs[n]
  2895   //      | string[n-1]         |
  2896   //      |---------------------| <- string_locs[n-1]
  2897   //      | ...                 |
  2898   //      | ...                 |
  2899   //      |---------------------| <- string_locs[1]
  2900   //      | string[0]           |
  2901   //      |---------------------| <- string_locs[0]
  2902   //      | temp                |
  2903   //      |---------------------| <- conversion_temp
  2904   //      | outbound memory     |
  2905   //      | based arguments     |
  2906   //      |                     |
  2907   //      |---------------------|
  2908   //      |                     |
  2909   // SP-> | out_preserved_slots |
  2910   //
  2911   //
  2913   // Now compute actual number of stack words we need rounding to make
  2914   // stack properly aligned.
  2915   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
  2917   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2919   intptr_t start = (intptr_t)__ pc();
  2921   // First thing make an ic check to see if we should even be here
  2924     Label L;
  2925     const Register temp_reg = G3_scratch;
  2926     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  2927     __ verify_oop(O0);
  2928     __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
  2929     __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
  2931     __ jump_to(ic_miss, temp_reg);
  2932     __ delayed()->nop();
  2933     __ align(CodeEntryAlignment);
  2934     __ bind(L);
  2937   int vep_offset = ((intptr_t)__ pc()) - start;
  2940   // The instruction at the verified entry point must be 5 bytes or longer
  2941   // because it can be patched on the fly by make_non_entrant. The stack bang
  2942   // instruction fits that requirement.
  2944   // Generate stack overflow check before creating frame
  2945   __ generate_stack_overflow_check(stack_size);
  2947   assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
  2948          "valid size for make_non_entrant");
  2950   // Generate a new frame for the wrapper.
  2951   __ save(SP, -stack_size, SP);
  2953   // Frame is now completed as far a size and linkage.
  2955   int frame_complete = ((intptr_t)__ pc()) - start;
  2957 #ifdef ASSERT
  2958   bool reg_destroyed[RegisterImpl::number_of_registers];
  2959   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
  2960   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  2961     reg_destroyed[r] = false;
  2963   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
  2964     freg_destroyed[f] = false;
  2967 #endif /* ASSERT */
  2969   VMRegPair zero;
  2970   const Register g0 = G0; // without this we get a compiler warning (why??)
  2971   zero.set2(g0->as_VMReg());
  2973   int c_arg, j_arg;
  2975   Register conversion_off = noreg;
  2977   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2978        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2980     VMRegPair src = in_regs[j_arg];
  2981     VMRegPair dst = out_regs[c_arg];
  2983 #ifdef ASSERT
  2984     if (src.first()->is_Register()) {
  2985       assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
  2986     } else if (src.first()->is_FloatRegister()) {
  2987       assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
  2988                                                FloatRegisterImpl::S)], "ack!");
  2990     if (dst.first()->is_Register()) {
  2991       reg_destroyed[dst.first()->as_Register()->encoding()] = true;
  2992     } else if (dst.first()->is_FloatRegister()) {
  2993       freg_destroyed[dst.first()->as_FloatRegister()->encoding(
  2994                                                  FloatRegisterImpl::S)] = true;
  2996 #endif /* ASSERT */
  2998     switch (in_sig_bt[j_arg]) {
  2999       case T_ARRAY:
  3000       case T_OBJECT:
  3002           if (out_sig_bt[c_arg] == T_BYTE  || out_sig_bt[c_arg] == T_SHORT ||
  3003               out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  3004             // need to unbox a one-slot value
  3005             Register in_reg = L0;
  3006             Register tmp = L2;
  3007             if ( src.first()->is_reg() ) {
  3008               in_reg = src.first()->as_Register();
  3009             } else {
  3010               assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
  3011                      "must be");
  3012               __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
  3014             // If the final destination is an acceptable register
  3015             if ( dst.first()->is_reg() ) {
  3016               if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
  3017                 tmp = dst.first()->as_Register();
  3021             Label skipUnbox;
  3022             if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
  3023               __ mov(G0, tmp->successor());
  3025             __ br_null(in_reg, true, Assembler::pn, skipUnbox);
  3026             __ delayed()->mov(G0, tmp);
  3028             BasicType bt = out_sig_bt[c_arg];
  3029             int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  3030             switch (bt) {
  3031                 case T_BYTE:
  3032                   __ ldub(in_reg, box_offset, tmp); break;
  3033                 case T_SHORT:
  3034                   __ lduh(in_reg, box_offset, tmp); break;
  3035                 case T_INT:
  3036                   __ ld(in_reg, box_offset, tmp); break;
  3037                 case T_LONG:
  3038                   __ ld_long(in_reg, box_offset, tmp); break;
  3039                 default: ShouldNotReachHere();
  3042             __ bind(skipUnbox);
  3043             // If tmp wasn't final destination copy to final destination
  3044             if (tmp == L2) {
  3045               VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
  3046               if (out_sig_bt[c_arg] == T_LONG) {
  3047                 long_move(masm, tmp_as_VM, dst);
  3048               } else {
  3049                 move32_64(masm, tmp_as_VM, out_regs[c_arg]);
  3052             if (out_sig_bt[c_arg] == T_LONG) {
  3053               assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  3054               ++c_arg; // move over the T_VOID to keep the loop indices in sync
  3056           } else if (out_sig_bt[c_arg] == T_ADDRESS) {
  3057             Register s =
  3058                 src.first()->is_reg() ? src.first()->as_Register() : L2;
  3059             Register d =
  3060                 dst.first()->is_reg() ? dst.first()->as_Register() : L2;
  3062             // We store the oop now so that the conversion pass can reach
  3063             // while in the inner frame. This will be the only store if
  3064             // the oop is NULL.
  3065             if (s != L2) {
  3066               // src is register
  3067               if (d != L2) {
  3068                 // dst is register
  3069                 __ mov(s, d);
  3070               } else {
  3071                 assert(Assembler::is_simm13(reg2offset(dst.first()) +
  3072                           STACK_BIAS), "must be");
  3073                 __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
  3075             } else {
  3076                 // src not a register
  3077                 assert(Assembler::is_simm13(reg2offset(src.first()) +
  3078                            STACK_BIAS), "must be");
  3079                 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
  3080                 if (d == L2) {
  3081                   assert(Assembler::is_simm13(reg2offset(dst.first()) +
  3082                              STACK_BIAS), "must be");
  3083                   __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
  3086           } else if (out_sig_bt[c_arg] != T_VOID) {
  3087             // Convert the arg to NULL
  3088             if (dst.first()->is_reg()) {
  3089               __ mov(G0, dst.first()->as_Register());
  3090             } else {
  3091               assert(Assembler::is_simm13(reg2offset(dst.first()) +
  3092                          STACK_BIAS), "must be");
  3093               __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
  3097         break;
  3098       case T_VOID:
  3099         break;
  3101       case T_FLOAT:
  3102         if (src.first()->is_stack()) {
  3103           // Stack to stack/reg is simple
  3104           move32_64(masm, src, dst);
  3105         } else {
  3106           if (dst.first()->is_reg()) {
  3107             // freg -> reg
  3108             int off =
  3109               STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  3110             Register d = dst.first()->as_Register();
  3111             if (Assembler::is_simm13(off)) {
  3112               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3113                      SP, off);
  3114               __ ld(SP, off, d);
  3115             } else {
  3116               if (conversion_off == noreg) {
  3117                 __ set(off, L6);
  3118                 conversion_off = L6;
  3120               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3121                      SP, conversion_off);
  3122               __ ld(SP, conversion_off , d);
  3124           } else {
  3125             // freg -> mem
  3126             int off = STACK_BIAS + reg2offset(dst.first());
  3127             if (Assembler::is_simm13(off)) {
  3128               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3129                      SP, off);
  3130             } else {
  3131               if (conversion_off == noreg) {
  3132                 __ set(off, L6);
  3133                 conversion_off = L6;
  3135               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3136                      SP, conversion_off);
  3140         break;
  3142       case T_DOUBLE:
  3143         assert( j_arg + 1 < total_args_passed &&
  3144                 in_sig_bt[j_arg + 1] == T_VOID &&
  3145                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  3146         if (src.first()->is_stack()) {
  3147           // Stack to stack/reg is simple
  3148           long_move(masm, src, dst);
  3149         } else {
  3150           Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
  3152           // Destination could be an odd reg on 32bit in which case
  3153           // we can't load direct to the destination.
  3155           if (!d->is_even() && wordSize == 4) {
  3156             d = L2;
  3158           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  3159           if (Assembler::is_simm13(off)) {
  3160             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
  3161                    SP, off);
  3162             __ ld_long(SP, off, d);
  3163           } else {
  3164             if (conversion_off == noreg) {
  3165               __ set(off, L6);
  3166               conversion_off = L6;
  3168             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
  3169                    SP, conversion_off);
  3170             __ ld_long(SP, conversion_off, d);
  3172           if (d == L2) {
  3173             long_move(masm, reg64_to_VMRegPair(L2), dst);
  3176         break;
  3178       case T_LONG :
  3179         // 32bit can't do a split move of something like g1 -> O0, O1
  3180         // so use a memory temp
  3181         if (src.is_single_phys_reg() && wordSize == 4) {
  3182           Register tmp = L2;
  3183           if (dst.first()->is_reg() &&
  3184               (wordSize == 8 || dst.first()->as_Register()->is_even())) {
  3185             tmp = dst.first()->as_Register();
  3188           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  3189           if (Assembler::is_simm13(off)) {
  3190             __ stx(src.first()->as_Register(), SP, off);
  3191             __ ld_long(SP, off, tmp);
  3192           } else {
  3193             if (conversion_off == noreg) {
  3194               __ set(off, L6);
  3195               conversion_off = L6;
  3197             __ stx(src.first()->as_Register(), SP, conversion_off);
  3198             __ ld_long(SP, conversion_off, tmp);
  3201           if (tmp == L2) {
  3202             long_move(masm, reg64_to_VMRegPair(L2), dst);
  3204         } else {
  3205           long_move(masm, src, dst);
  3207         break;
  3209       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  3211       default:
  3212         move32_64(masm, src, dst);
  3217   // If we have any strings we must store any register based arg to the stack
  3218   // This includes any still live xmm registers too.
  3220   if (total_strings > 0 ) {
  3222     // protect all the arg registers
  3223     __ save_frame(0);
  3224     __ mov(G2_thread, L7_thread_cache);
  3225     const Register L2_string_off = L2;
  3227     // Get first string offset
  3228     __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
  3230     for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
  3231       if (out_sig_bt[c_arg] == T_ADDRESS) {
  3233         VMRegPair dst = out_regs[c_arg];
  3234         const Register d = dst.first()->is_reg() ?
  3235             dst.first()->as_Register()->after_save() : noreg;
  3237         // It's a string the oop and it was already copied to the out arg
  3238         // position
  3239         if (d != noreg) {
  3240           __ mov(d, O0);
  3241         } else {
  3242           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
  3243                  "must be");
  3244           __ ld_ptr(FP,  reg2offset(dst.first()) + STACK_BIAS, O0);
  3246         Label skip;
  3248         __ br_null(O0, false, Assembler::pn, skip);
  3249         __ delayed()->add(FP, L2_string_off, O1);
  3251         if (d != noreg) {
  3252           __ mov(O1, d);
  3253         } else {
  3254           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
  3255                  "must be");
  3256           __ st_ptr(O1, FP,  reg2offset(dst.first()) + STACK_BIAS);
  3259         __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
  3260                 relocInfo::runtime_call_type);
  3261         __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
  3263         __ bind(skip);
  3268     __ mov(L7_thread_cache, G2_thread);
  3269     __ restore();
  3274   // Ok now we are done. Need to place the nop that dtrace wants in order to
  3275   // patch in the trap
  3277   int patch_offset = ((intptr_t)__ pc()) - start;
  3279   __ nop();
  3282   // Return
  3284   __ ret();
  3285   __ delayed()->restore();
  3287   __ flush();
  3289   nmethod *nm = nmethod::new_dtrace_nmethod(
  3290       method, masm->code(), vep_offset, patch_offset, frame_complete,
  3291       stack_slots / VMRegImpl::slots_per_word);
  3292   return nm;
  3296 #endif // HAVE_DTRACE_H
  3298 // this function returns the adjust size (in number of words) to a c2i adapter
  3299 // activation for use during deoptimization
  3300 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
  3301   assert(callee_locals >= callee_parameters,
  3302           "test and remove; got more parms than locals");
  3303   if (callee_locals < callee_parameters)
  3304     return 0;                   // No adjustment for negative locals
  3305   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
  3306   return round_to(diff, WordsPerLong);
  3309 // "Top of Stack" slots that may be unused by the calling convention but must
  3310 // otherwise be preserved.
  3311 // On Intel these are not necessary and the value can be zero.
  3312 // On Sparc this describes the words reserved for storing a register window
  3313 // when an interrupt occurs.
  3314 uint SharedRuntime::out_preserve_stack_slots() {
  3315   return frame::register_save_words * VMRegImpl::slots_per_word;
  3318 static void gen_new_frame(MacroAssembler* masm, bool deopt) {
  3319 //
  3320 // Common out the new frame generation for deopt and uncommon trap
  3321 //
  3322   Register        G3pcs              = G3_scratch; // Array of new pcs (input)
  3323   Register        Oreturn0           = O0;
  3324   Register        Oreturn1           = O1;
  3325   Register        O2UnrollBlock      = O2;
  3326   Register        O3array            = O3;         // Array of frame sizes (input)
  3327   Register        O4array_size       = O4;         // number of frames (input)
  3328   Register        O7frame_size       = O7;         // number of frames (input)
  3330   __ ld_ptr(O3array, 0, O7frame_size);
  3331   __ sub(G0, O7frame_size, O7frame_size);
  3332   __ save(SP, O7frame_size, SP);
  3333   __ ld_ptr(G3pcs, 0, I7);                      // load frame's new pc
  3335   #ifdef ASSERT
  3336   // make sure that the frames are aligned properly
  3337 #ifndef _LP64
  3338   __ btst(wordSize*2-1, SP);
  3339   __ breakpoint_trap(Assembler::notZero, Assembler::ptr_cc);
  3340 #endif
  3341   #endif
  3343   // Deopt needs to pass some extra live values from frame to frame
  3345   if (deopt) {
  3346     __ mov(Oreturn0->after_save(), Oreturn0);
  3347     __ mov(Oreturn1->after_save(), Oreturn1);
  3350   __ mov(O4array_size->after_save(), O4array_size);
  3351   __ sub(O4array_size, 1, O4array_size);
  3352   __ mov(O3array->after_save(), O3array);
  3353   __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
  3354   __ add(G3pcs, wordSize, G3pcs);               // point to next pc value
  3356   #ifdef ASSERT
  3357   // trash registers to show a clear pattern in backtraces
  3358   __ set(0xDEAD0000, I0);
  3359   __ add(I0,  2, I1);
  3360   __ add(I0,  4, I2);
  3361   __ add(I0,  6, I3);
  3362   __ add(I0,  8, I4);
  3363   // Don't touch I5 could have valuable savedSP
  3364   __ set(0xDEADBEEF, L0);
  3365   __ mov(L0, L1);
  3366   __ mov(L0, L2);
  3367   __ mov(L0, L3);
  3368   __ mov(L0, L4);
  3369   __ mov(L0, L5);
  3371   // trash the return value as there is nothing to return yet
  3372   __ set(0xDEAD0001, O7);
  3373   #endif
  3375   __ mov(SP, O5_savedSP);
  3379 static void make_new_frames(MacroAssembler* masm, bool deopt) {
  3380   //
  3381   // loop through the UnrollBlock info and create new frames
  3382   //
  3383   Register        G3pcs              = G3_scratch;
  3384   Register        Oreturn0           = O0;
  3385   Register        Oreturn1           = O1;
  3386   Register        O2UnrollBlock      = O2;
  3387   Register        O3array            = O3;
  3388   Register        O4array_size       = O4;
  3389   Label           loop;
  3391 #ifdef ASSERT
  3392   // Compilers generate code that bang the stack by as much as the
  3393   // interpreter would need. So this stack banging should never
  3394   // trigger a fault. Verify that it does not on non product builds.
  3395   if (UseStackBanging) {
  3396     // Get total frame size for interpreted frames
  3397     __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
  3398     __ bang_stack_size(O4, O3, G3_scratch);
  3400 #endif
  3402   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
  3403   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
  3404   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
  3406   // Adjust old interpreter frame to make space for new frame's extra java locals
  3407   //
  3408   // We capture the original sp for the transition frame only because it is needed in
  3409   // order to properly calculate interpreter_sp_adjustment. Even though in real life
  3410   // every interpreter frame captures a savedSP it is only needed at the transition
  3411   // (fortunately). If we had to have it correct everywhere then we would need to
  3412   // be told the sp_adjustment for each frame we create. If the frame size array
  3413   // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
  3414   // for each frame we create and keep up the illusion every where.
  3415   //
  3417   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
  3418   __ mov(SP, O5_savedSP);       // remember initial sender's original sp before adjustment
  3419   __ sub(SP, O7, SP);
  3421 #ifdef ASSERT
  3422   // make sure that there is at least one entry in the array
  3423   __ tst(O4array_size);
  3424   __ breakpoint_trap(Assembler::zero, Assembler::icc);
  3425 #endif
  3427   // Now push the new interpreter frames
  3428   __ bind(loop);
  3430   // allocate a new frame, filling the registers
  3432   gen_new_frame(masm, deopt);        // allocate an interpreter frame
  3434   __ cmp_zero_and_br(Assembler::notZero, O4array_size, loop);
  3435   __ delayed()->add(O3array, wordSize, O3array);
  3436   __ ld_ptr(G3pcs, 0, O7);                      // load final frame new pc
  3440 //------------------------------generate_deopt_blob----------------------------
  3441 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
  3442 // instead.
  3443 void SharedRuntime::generate_deopt_blob() {
  3444   // allocate space for the code
  3445   ResourceMark rm;
  3446   // setup code generation tools
  3447   int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
  3448 #ifdef ASSERT
  3449   if (UseStackBanging) {
  3450     pad += StackShadowPages*16 + 32;
  3452 #endif
  3453 #ifdef _LP64
  3454   CodeBuffer buffer("deopt_blob", 2100+pad, 512);
  3455 #else
  3456   // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
  3457   // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
  3458   CodeBuffer buffer("deopt_blob", 1600+pad, 512);
  3459 #endif /* _LP64 */
  3460   MacroAssembler* masm               = new MacroAssembler(&buffer);
  3461   FloatRegister   Freturn0           = F0;
  3462   Register        Greturn1           = G1;
  3463   Register        Oreturn0           = O0;
  3464   Register        Oreturn1           = O1;
  3465   Register        O2UnrollBlock      = O2;
  3466   Register        L0deopt_mode       = L0;
  3467   Register        G4deopt_mode       = G4_scratch;
  3468   int             frame_size_words;
  3469   Address         saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
  3470 #if !defined(_LP64) && defined(COMPILER2)
  3471   Address         saved_Greturn1_addr(FP, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
  3472 #endif
  3473   Label           cont;
  3475   OopMapSet *oop_maps = new OopMapSet();
  3477   //
  3478   // This is the entry point for code which is returning to a de-optimized
  3479   // frame.
  3480   // The steps taken by this frame are as follows:
  3481   //   - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
  3482   //     and all potentially live registers (at a pollpoint many registers can be live).
  3483   //
  3484   //   - call the C routine: Deoptimization::fetch_unroll_info (this function
  3485   //     returns information about the number and size of interpreter frames
  3486   //     which are equivalent to the frame which is being deoptimized)
  3487   //   - deallocate the unpack frame, restoring only results values. Other
  3488   //     volatile registers will now be captured in the vframeArray as needed.
  3489   //   - deallocate the deoptimization frame
  3490   //   - in a loop using the information returned in the previous step
  3491   //     push new interpreter frames (take care to propagate the return
  3492   //     values through each new frame pushed)
  3493   //   - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
  3494   //   - call the C routine: Deoptimization::unpack_frames (this function
  3495   //     lays out values on the interpreter frame which was just created)
  3496   //   - deallocate the dummy unpack_frame
  3497   //   - ensure that all the return values are correctly set and then do
  3498   //     a return to the interpreter entry point
  3499   //
  3500   // Refer to the following methods for more information:
  3501   //   - Deoptimization::fetch_unroll_info
  3502   //   - Deoptimization::unpack_frames
  3504   OopMap* map = NULL;
  3506   int start = __ offset();
  3508   // restore G2, the trampoline destroyed it
  3509   __ get_thread();
  3511   // On entry we have been called by the deoptimized nmethod with a call that
  3512   // replaced the original call (or safepoint polling location) so the deoptimizing
  3513   // pc is now in O7. Return values are still in the expected places
  3515   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3516   __ ba(cont);
  3517   __ delayed()->mov(Deoptimization::Unpack_deopt, L0deopt_mode);
  3519   int exception_offset = __ offset() - start;
  3521   // restore G2, the trampoline destroyed it
  3522   __ get_thread();
  3524   // On entry we have been jumped to by the exception handler (or exception_blob
  3525   // for server).  O0 contains the exception oop and O7 contains the original
  3526   // exception pc.  So if we push a frame here it will look to the
  3527   // stack walking code (fetch_unroll_info) just like a normal call so
  3528   // state will be extracted normally.
  3530   // save exception oop in JavaThread and fall through into the
  3531   // exception_in_tls case since they are handled in same way except
  3532   // for where the pending exception is kept.
  3533   __ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
  3535   //
  3536   // Vanilla deoptimization with an exception pending in exception_oop
  3537   //
  3538   int exception_in_tls_offset = __ offset() - start;
  3540   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
  3541   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3543   // Restore G2_thread
  3544   __ get_thread();
  3546 #ifdef ASSERT
  3548     // verify that there is really an exception oop in exception_oop
  3549     Label has_exception;
  3550     __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
  3551     __ br_notnull_short(Oexception, Assembler::pt, has_exception);
  3552     __ stop("no exception in thread");
  3553     __ bind(has_exception);
  3555     // verify that there is no pending exception
  3556     Label no_pending_exception;
  3557     Address exception_addr(G2_thread, Thread::pending_exception_offset());
  3558     __ ld_ptr(exception_addr, Oexception);
  3559     __ br_null_short(Oexception, Assembler::pt, no_pending_exception);
  3560     __ stop("must not have pending exception here");
  3561     __ bind(no_pending_exception);
  3563 #endif
  3565   __ ba(cont);
  3566   __ delayed()->mov(Deoptimization::Unpack_exception, L0deopt_mode);;
  3568   //
  3569   // Reexecute entry, similar to c2 uncommon trap
  3570   //
  3571   int reexecute_offset = __ offset() - start;
  3573   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
  3574   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3576   __ mov(Deoptimization::Unpack_reexecute, L0deopt_mode);
  3578   __ bind(cont);
  3580   __ set_last_Java_frame(SP, noreg);
  3582   // do the call by hand so we can get the oopmap
  3584   __ mov(G2_thread, L7_thread_cache);
  3585   __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
  3586   __ delayed()->mov(G2_thread, O0);
  3588   // Set an oopmap for the call site this describes all our saved volatile registers
  3590   oop_maps->add_gc_map( __ offset()-start, map);
  3592   __ mov(L7_thread_cache, G2_thread);
  3594   __ reset_last_Java_frame();
  3596   // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
  3597   // so this move will survive
  3599   __ mov(L0deopt_mode, G4deopt_mode);
  3601   __ mov(O0, O2UnrollBlock->after_save());
  3603   RegisterSaver::restore_result_registers(masm);
  3605   Label noException;
  3606   __ cmp_and_br_short(G4deopt_mode, Deoptimization::Unpack_exception, Assembler::notEqual, Assembler::pt, noException);
  3608   // Move the pending exception from exception_oop to Oexception so
  3609   // the pending exception will be picked up the interpreter.
  3610   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
  3611   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
  3612   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
  3613   __ bind(noException);
  3615   // deallocate the deoptimization frame taking care to preserve the return values
  3616   __ mov(Oreturn0,     Oreturn0->after_save());
  3617   __ mov(Oreturn1,     Oreturn1->after_save());
  3618   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
  3619   __ restore();
  3621   // Allocate new interpreter frame(s) and possible c2i adapter frame
  3623   make_new_frames(masm, true);
  3625   // push a dummy "unpack_frame" taking care of float return values and
  3626   // call Deoptimization::unpack_frames to have the unpacker layout
  3627   // information in the interpreter frames just created and then return
  3628   // to the interpreter entry point
  3629   __ save(SP, -frame_size_words*wordSize, SP);
  3630   __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
  3631 #if !defined(_LP64)
  3632 #if defined(COMPILER2)
  3633   // 32-bit 1-register longs return longs in G1
  3634   __ stx(Greturn1, saved_Greturn1_addr);
  3635 #endif
  3636   __ set_last_Java_frame(SP, noreg);
  3637   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4deopt_mode);
  3638 #else
  3639   // LP64 uses g4 in set_last_Java_frame
  3640   __ mov(G4deopt_mode, O1);
  3641   __ set_last_Java_frame(SP, G0);
  3642   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
  3643 #endif
  3644   __ reset_last_Java_frame();
  3645   __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
  3647 #if !defined(_LP64) && defined(COMPILER2)
  3648   // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
  3649   // I0/I1 if the return value is long.
  3650   Label not_long;
  3651   __ cmp_and_br_short(O0,T_LONG, Assembler::notEqual, Assembler::pt, not_long);
  3652   __ ldd(saved_Greturn1_addr,I0);
  3653   __ bind(not_long);
  3654 #endif
  3655   __ ret();
  3656   __ delayed()->restore();
  3658   masm->flush();
  3659   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
  3660   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  3663 #ifdef COMPILER2
  3665 //------------------------------generate_uncommon_trap_blob--------------------
  3666 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
  3667 // instead.
  3668 void SharedRuntime::generate_uncommon_trap_blob() {
  3669   // allocate space for the code
  3670   ResourceMark rm;
  3671   // setup code generation tools
  3672   int pad = VerifyThread ? 512 : 0;
  3673 #ifdef ASSERT
  3674   if (UseStackBanging) {
  3675     pad += StackShadowPages*16 + 32;
  3677 #endif
  3678 #ifdef _LP64
  3679   CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
  3680 #else
  3681   // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
  3682   // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
  3683   CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
  3684 #endif
  3685   MacroAssembler* masm               = new MacroAssembler(&buffer);
  3686   Register        O2UnrollBlock      = O2;
  3687   Register        O2klass_index      = O2;
  3689   //
  3690   // This is the entry point for all traps the compiler takes when it thinks
  3691   // it cannot handle further execution of compilation code. The frame is
  3692   // deoptimized in these cases and converted into interpreter frames for
  3693   // execution
  3694   // The steps taken by this frame are as follows:
  3695   //   - push a fake "unpack_frame"
  3696   //   - call the C routine Deoptimization::uncommon_trap (this function
  3697   //     packs the current compiled frame into vframe arrays and returns
  3698   //     information about the number and size of interpreter frames which
  3699   //     are equivalent to the frame which is being deoptimized)
  3700   //   - deallocate the "unpack_frame"
  3701   //   - deallocate the deoptimization frame
  3702   //   - in a loop using the information returned in the previous step
  3703   //     push interpreter frames;
  3704   //   - create a dummy "unpack_frame"
  3705   //   - call the C routine: Deoptimization::unpack_frames (this function
  3706   //     lays out values on the interpreter frame which was just created)
  3707   //   - deallocate the dummy unpack_frame
  3708   //   - return to the interpreter entry point
  3709   //
  3710   //  Refer to the following methods for more information:
  3711   //   - Deoptimization::uncommon_trap
  3712   //   - Deoptimization::unpack_frame
  3714   // the unloaded class index is in O0 (first parameter to this blob)
  3716   // push a dummy "unpack_frame"
  3717   // and call Deoptimization::uncommon_trap to pack the compiled frame into
  3718   // vframe array and return the UnrollBlock information
  3719   __ save_frame(0);
  3720   __ set_last_Java_frame(SP, noreg);
  3721   __ mov(I0, O2klass_index);
  3722   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
  3723   __ reset_last_Java_frame();
  3724   __ mov(O0, O2UnrollBlock->after_save());
  3725   __ restore();
  3727   // deallocate the deoptimized frame taking care to preserve the return values
  3728   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
  3729   __ restore();
  3731   // Allocate new interpreter frame(s) and possible c2i adapter frame
  3733   make_new_frames(masm, false);
  3735   // push a dummy "unpack_frame" taking care of float return values and
  3736   // call Deoptimization::unpack_frames to have the unpacker layout
  3737   // information in the interpreter frames just created and then return
  3738   // to the interpreter entry point
  3739   __ save_frame(0);
  3740   __ set_last_Java_frame(SP, noreg);
  3741   __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
  3742   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
  3743   __ reset_last_Java_frame();
  3744   __ ret();
  3745   __ delayed()->restore();
  3747   masm->flush();
  3748   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
  3751 #endif // COMPILER2
  3753 //------------------------------generate_handler_blob-------------------
  3754 //
  3755 // Generate a special Compile2Runtime blob that saves all registers, and sets
  3756 // up an OopMap.
  3757 //
  3758 // This blob is jumped to (via a breakpoint and the signal handler) from a
  3759 // safepoint in compiled code.  On entry to this blob, O7 contains the
  3760 // address in the original nmethod at which we should resume normal execution.
  3761 // Thus, this blob looks like a subroutine which must preserve lots of
  3762 // registers and return normally.  Note that O7 is never register-allocated,
  3763 // so it is guaranteed to be free here.
  3764 //
  3766 // The hardest part of what this blob must do is to save the 64-bit %o
  3767 // registers in the 32-bit build.  A simple 'save' turn the %o's to %i's and
  3768 // an interrupt will chop off their heads.  Making space in the caller's frame
  3769 // first will let us save the 64-bit %o's before save'ing, but we cannot hand
  3770 // the adjusted FP off to the GC stack-crawler: this will modify the caller's
  3771 // SP and mess up HIS OopMaps.  So we first adjust the caller's SP, then save
  3772 // the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
  3773 // Tricky, tricky, tricky...
  3775 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
  3776   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3778   // allocate space for the code
  3779   ResourceMark rm;
  3780   // setup code generation tools
  3781   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
  3782   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
  3783   // even larger with TraceJumps
  3784   int pad = TraceJumps ? 512 : 0;
  3785   CodeBuffer buffer("handler_blob", 1600 + pad, 512);
  3786   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3787   int             frame_size_words;
  3788   OopMapSet *oop_maps = new OopMapSet();
  3789   OopMap* map = NULL;
  3791   int start = __ offset();
  3793   bool cause_return = (poll_type == POLL_AT_RETURN);
  3794   // If this causes a return before the processing, then do a "restore"
  3795   if (cause_return) {
  3796     __ restore();
  3797   } else {
  3798     // Make it look like we were called via the poll
  3799     // so that frame constructor always sees a valid return address
  3800     __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
  3801     __ sub(O7, frame::pc_return_offset, O7);
  3804   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3806   // setup last_Java_sp (blows G4)
  3807   __ set_last_Java_frame(SP, noreg);
  3809   // call into the runtime to handle illegal instructions exception
  3810   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
  3811   __ mov(G2_thread, O0);
  3812   __ save_thread(L7_thread_cache);
  3813   __ call(call_ptr);
  3814   __ delayed()->nop();
  3816   // Set an oopmap for the call site.
  3817   // We need this not only for callee-saved registers, but also for volatile
  3818   // registers that the compiler might be keeping live across a safepoint.
  3820   oop_maps->add_gc_map( __ offset() - start, map);
  3822   __ restore_thread(L7_thread_cache);
  3823   // clear last_Java_sp
  3824   __ reset_last_Java_frame();
  3826   // Check for exceptions
  3827   Label pending;
  3829   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
  3830   __ br_notnull_short(O1, Assembler::pn, pending);
  3832   RegisterSaver::restore_live_registers(masm);
  3834   // We are back the the original state on entry and ready to go.
  3836   __ retl();
  3837   __ delayed()->nop();
  3839   // Pending exception after the safepoint
  3841   __ bind(pending);
  3843   RegisterSaver::restore_live_registers(masm);
  3845   // We are back the the original state on entry.
  3847   // Tail-call forward_exception_entry, with the issuing PC in O7,
  3848   // so it looks like the original nmethod called forward_exception_entry.
  3849   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
  3850   __ JMP(O0, 0);
  3851   __ delayed()->nop();
  3853   // -------------
  3854   // make sure all code is generated
  3855   masm->flush();
  3857   // return exception blob
  3858   return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
  3861 //
  3862 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  3863 //
  3864 // Generate a stub that calls into vm to find out the proper destination
  3865 // of a java call. All the argument registers are live at this point
  3866 // but since this is generic code we don't know what they are and the caller
  3867 // must do any gc of the args.
  3868 //
  3869 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
  3870   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3872   // allocate space for the code
  3873   ResourceMark rm;
  3874   // setup code generation tools
  3875   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
  3876   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
  3877   // even larger with TraceJumps
  3878   int pad = TraceJumps ? 512 : 0;
  3879   CodeBuffer buffer(name, 1600 + pad, 512);
  3880   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3881   int             frame_size_words;
  3882   OopMapSet *oop_maps = new OopMapSet();
  3883   OopMap* map = NULL;
  3885   int start = __ offset();
  3887   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3889   int frame_complete = __ offset();
  3891   // setup last_Java_sp (blows G4)
  3892   __ set_last_Java_frame(SP, noreg);
  3894   // call into the runtime to handle illegal instructions exception
  3895   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
  3896   __ mov(G2_thread, O0);
  3897   __ save_thread(L7_thread_cache);
  3898   __ call(destination, relocInfo::runtime_call_type);
  3899   __ delayed()->nop();
  3901   // O0 contains the address we are going to jump to assuming no exception got installed
  3903   // Set an oopmap for the call site.
  3904   // We need this not only for callee-saved registers, but also for volatile
  3905   // registers that the compiler might be keeping live across a safepoint.
  3907   oop_maps->add_gc_map( __ offset() - start, map);
  3909   __ restore_thread(L7_thread_cache);
  3910   // clear last_Java_sp
  3911   __ reset_last_Java_frame();
  3913   // Check for exceptions
  3914   Label pending;
  3916   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
  3917   __ br_notnull_short(O1, Assembler::pn, pending);
  3919   // get the returned Method*
  3921   __ get_vm_result_2(G5_method);
  3922   __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
  3924   // O0 is where we want to jump, overwrite G3 which is saved and scratch
  3926   __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
  3928   RegisterSaver::restore_live_registers(masm);
  3930   // We are back the the original state on entry and ready to go.
  3932   __ JMP(G3, 0);
  3933   __ delayed()->nop();
  3935   // Pending exception after the safepoint
  3937   __ bind(pending);
  3939   RegisterSaver::restore_live_registers(masm);
  3941   // We are back the the original state on entry.
  3943   // Tail-call forward_exception_entry, with the issuing PC in O7,
  3944   // so it looks like the original nmethod called forward_exception_entry.
  3945   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
  3946   __ JMP(O0, 0);
  3947   __ delayed()->nop();
  3949   // -------------
  3950   // make sure all code is generated
  3951   masm->flush();
  3953   // return the  blob
  3954   // frame_size_words or bytes??
  3955   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);

mercurial