src/cpu/ppc/vm/sharedRuntime_ppc.cpp

Fri, 29 Sep 2017 14:30:05 -0400

author
dbuck
date
Fri, 29 Sep 2017 14:30:05 -0400
changeset 8997
f8a45a60bc6b
parent 8182
e9e252c83b2b
child 9013
18366fa39fe0
permissions
-rw-r--r--

8174962: Better interface invocations
Reviewed-by: jrose, coleenp, ahgross, acorn, vlivanov

     1 /*
     2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
     3  * Copyright 2012, 2014 SAP AG. All rights reserved.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5  *
     6  * This code is free software; you can redistribute it and/or modify it
     7  * under the terms of the GNU General Public License version 2 only, as
     8  * published by the Free Software Foundation.
     9  *
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13  * version 2 for more details (a copy is included in the LICENSE file that
    14  * accompanied this code).
    15  *
    16  * You should have received a copy of the GNU General Public License version
    17  * 2 along with this work; if not, write to the Free Software Foundation,
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19  *
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21  * or visit www.oracle.com if you need additional information or have any
    22  * questions.
    23  *
    24  */
    26 #include "precompiled.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "code/debugInfoRec.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "oops/compiledICHolder.hpp"
    33 #include "prims/jvmtiRedefineClassesTrace.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/vframeArray.hpp"
    36 #include "vmreg_ppc.inline.hpp"
    37 #include "adfiles/ad_ppc_64.hpp"
    38 #ifdef COMPILER1
    39 #include "c1/c1_Runtime1.hpp"
    40 #endif
    41 #ifdef COMPILER2
    42 #include "opto/runtime.hpp"
    43 #endif
    45 #define __ masm->
    47 #ifdef PRODUCT
    48 #define BLOCK_COMMENT(str) // nothing
    49 #else
    50 #define BLOCK_COMMENT(str) __ block_comment(str)
    51 #endif
    53 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    56 class RegisterSaver {
    57  // Used for saving volatile registers.
    58  public:
    60   // Support different return pc locations.
    61   enum ReturnPCLocation {
    62     return_pc_is_lr,
    63     return_pc_is_r4,
    64     return_pc_is_thread_saved_exception_pc
    65   };
    67   static OopMap* push_frame_reg_args_and_save_live_registers(MacroAssembler* masm,
    68                          int* out_frame_size_in_bytes,
    69                          bool generate_oop_map,
    70                          int return_pc_adjustment,
    71                          ReturnPCLocation return_pc_location);
    72   static void    restore_live_registers_and_pop_frame(MacroAssembler* masm,
    73                          int frame_size_in_bytes,
    74                          bool restore_ctr);
    76   static void push_frame_and_save_argument_registers(MacroAssembler* masm,
    77                          Register r_temp,
    78                          int frame_size,
    79                          int total_args,
    80                          const VMRegPair *regs, const VMRegPair *regs2 = NULL);
    81   static void restore_argument_registers_and_pop_frame(MacroAssembler*masm,
    82                          int frame_size,
    83                          int total_args,
    84                          const VMRegPair *regs, const VMRegPair *regs2 = NULL);
    86   // During deoptimization only the result registers need to be restored
    87   // all the other values have already been extracted.
    88   static void restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes);
    90   // Constants and data structures:
    92   typedef enum {
    93     int_reg           = 0,
    94     float_reg         = 1,
    95     special_reg       = 2
    96   } RegisterType;
    98   typedef enum {
    99     reg_size          = 8,
   100     half_reg_size     = reg_size / 2,
   101   } RegisterConstants;
   103   typedef struct {
   104     RegisterType        reg_type;
   105     int                 reg_num;
   106     VMReg               vmreg;
   107   } LiveRegType;
   108 };
   111 #define RegisterSaver_LiveSpecialReg(regname) \
   112   { RegisterSaver::special_reg, regname->encoding(), regname->as_VMReg() }
   114 #define RegisterSaver_LiveIntReg(regname) \
   115   { RegisterSaver::int_reg,     regname->encoding(), regname->as_VMReg() }
   117 #define RegisterSaver_LiveFloatReg(regname) \
   118   { RegisterSaver::float_reg,   regname->encoding(), regname->as_VMReg() }
   120 static const RegisterSaver::LiveRegType RegisterSaver_LiveRegs[] = {
   121   // Live registers which get spilled to the stack. Register
   122   // positions in this array correspond directly to the stack layout.
   124   //
   125   // live special registers:
   126   //
   127   RegisterSaver_LiveSpecialReg(SR_CTR),
   128   //
   129   // live float registers:
   130   //
   131   RegisterSaver_LiveFloatReg( F0  ),
   132   RegisterSaver_LiveFloatReg( F1  ),
   133   RegisterSaver_LiveFloatReg( F2  ),
   134   RegisterSaver_LiveFloatReg( F3  ),
   135   RegisterSaver_LiveFloatReg( F4  ),
   136   RegisterSaver_LiveFloatReg( F5  ),
   137   RegisterSaver_LiveFloatReg( F6  ),
   138   RegisterSaver_LiveFloatReg( F7  ),
   139   RegisterSaver_LiveFloatReg( F8  ),
   140   RegisterSaver_LiveFloatReg( F9  ),
   141   RegisterSaver_LiveFloatReg( F10 ),
   142   RegisterSaver_LiveFloatReg( F11 ),
   143   RegisterSaver_LiveFloatReg( F12 ),
   144   RegisterSaver_LiveFloatReg( F13 ),
   145   RegisterSaver_LiveFloatReg( F14 ),
   146   RegisterSaver_LiveFloatReg( F15 ),
   147   RegisterSaver_LiveFloatReg( F16 ),
   148   RegisterSaver_LiveFloatReg( F17 ),
   149   RegisterSaver_LiveFloatReg( F18 ),
   150   RegisterSaver_LiveFloatReg( F19 ),
   151   RegisterSaver_LiveFloatReg( F20 ),
   152   RegisterSaver_LiveFloatReg( F21 ),
   153   RegisterSaver_LiveFloatReg( F22 ),
   154   RegisterSaver_LiveFloatReg( F23 ),
   155   RegisterSaver_LiveFloatReg( F24 ),
   156   RegisterSaver_LiveFloatReg( F25 ),
   157   RegisterSaver_LiveFloatReg( F26 ),
   158   RegisterSaver_LiveFloatReg( F27 ),
   159   RegisterSaver_LiveFloatReg( F28 ),
   160   RegisterSaver_LiveFloatReg( F29 ),
   161   RegisterSaver_LiveFloatReg( F30 ),
   162   RegisterSaver_LiveFloatReg( F31 ),
   163   //
   164   // live integer registers:
   165   //
   166   RegisterSaver_LiveIntReg(   R0  ),
   167   //RegisterSaver_LiveIntReg( R1  ), // stack pointer
   168   RegisterSaver_LiveIntReg(   R2  ),
   169   RegisterSaver_LiveIntReg(   R3  ),
   170   RegisterSaver_LiveIntReg(   R4  ),
   171   RegisterSaver_LiveIntReg(   R5  ),
   172   RegisterSaver_LiveIntReg(   R6  ),
   173   RegisterSaver_LiveIntReg(   R7  ),
   174   RegisterSaver_LiveIntReg(   R8  ),
   175   RegisterSaver_LiveIntReg(   R9  ),
   176   RegisterSaver_LiveIntReg(   R10 ),
   177   RegisterSaver_LiveIntReg(   R11 ),
   178   RegisterSaver_LiveIntReg(   R12 ),
   179   //RegisterSaver_LiveIntReg( R13 ), // system thread id
   180   RegisterSaver_LiveIntReg(   R14 ),
   181   RegisterSaver_LiveIntReg(   R15 ),
   182   RegisterSaver_LiveIntReg(   R16 ),
   183   RegisterSaver_LiveIntReg(   R17 ),
   184   RegisterSaver_LiveIntReg(   R18 ),
   185   RegisterSaver_LiveIntReg(   R19 ),
   186   RegisterSaver_LiveIntReg(   R20 ),
   187   RegisterSaver_LiveIntReg(   R21 ),
   188   RegisterSaver_LiveIntReg(   R22 ),
   189   RegisterSaver_LiveIntReg(   R23 ),
   190   RegisterSaver_LiveIntReg(   R24 ),
   191   RegisterSaver_LiveIntReg(   R25 ),
   192   RegisterSaver_LiveIntReg(   R26 ),
   193   RegisterSaver_LiveIntReg(   R27 ),
   194   RegisterSaver_LiveIntReg(   R28 ),
   195   RegisterSaver_LiveIntReg(   R29 ),
   196   RegisterSaver_LiveIntReg(   R31 ),
   197   RegisterSaver_LiveIntReg(   R30 ), // r30 must be the last register
   198 };
   200 OopMap* RegisterSaver::push_frame_reg_args_and_save_live_registers(MacroAssembler* masm,
   201                          int* out_frame_size_in_bytes,
   202                          bool generate_oop_map,
   203                          int return_pc_adjustment,
   204                          ReturnPCLocation return_pc_location) {
   205   // Push an abi_reg_args-frame and store all registers which may be live.
   206   // If requested, create an OopMap: Record volatile registers as
   207   // callee-save values in an OopMap so their save locations will be
   208   // propagated to the RegisterMap of the caller frame during
   209   // StackFrameStream construction (needed for deoptimization; see
   210   // compiledVFrame::create_stack_value).
   211   // If return_pc_adjustment != 0 adjust the return pc by return_pc_adjustment.
   213   int i;
   214   int offset;
   216   // calcualte frame size
   217   const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
   218                                    sizeof(RegisterSaver::LiveRegType);
   219   const int register_save_size   = regstosave_num * reg_size;
   220   const int frame_size_in_bytes  = round_to(register_save_size, frame::alignment_in_bytes)
   221                                    + frame::abi_reg_args_size;
   222   *out_frame_size_in_bytes       = frame_size_in_bytes;
   223   const int frame_size_in_slots  = frame_size_in_bytes / sizeof(jint);
   224   const int register_save_offset = frame_size_in_bytes - register_save_size;
   226   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words.
   227   OopMap* map = generate_oop_map ? new OopMap(frame_size_in_slots, 0) : NULL;
   229   BLOCK_COMMENT("push_frame_reg_args_and_save_live_registers {");
   231   // Save r30 in the last slot of the not yet pushed frame so that we
   232   // can use it as scratch reg.
   233   __ std(R30, -reg_size, R1_SP);
   234   assert(-reg_size == register_save_offset - frame_size_in_bytes + ((regstosave_num-1)*reg_size),
   235          "consistency check");
   237   // save the flags
   238   // Do the save_LR_CR by hand and adjust the return pc if requested.
   239   __ mfcr(R30);
   240   __ std(R30, _abi(cr), R1_SP);
   241   switch (return_pc_location) {
   242     case return_pc_is_lr:    __ mflr(R30);           break;
   243     case return_pc_is_r4:    __ mr(R30, R4);     break;
   244     case return_pc_is_thread_saved_exception_pc:
   245                                  __ ld(R30, thread_(saved_exception_pc)); break;
   246     default: ShouldNotReachHere();
   247   }
   248   if (return_pc_adjustment != 0)
   249     __ addi(R30, R30, return_pc_adjustment);
   250   __ std(R30, _abi(lr), R1_SP);
   252   // push a new frame
   253   __ push_frame(frame_size_in_bytes, R30);
   255   // save all registers (ints and floats)
   256   offset = register_save_offset;
   257   for (int i = 0; i < regstosave_num; i++) {
   258     int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
   259     int reg_type = RegisterSaver_LiveRegs[i].reg_type;
   261     switch (reg_type) {
   262       case RegisterSaver::int_reg: {
   263         if (reg_num != 30) { // We spilled R30 right at the beginning.
   264           __ std(as_Register(reg_num), offset, R1_SP);
   265         }
   266         break;
   267       }
   268       case RegisterSaver::float_reg: {
   269         __ stfd(as_FloatRegister(reg_num), offset, R1_SP);
   270         break;
   271       }
   272       case RegisterSaver::special_reg: {
   273         if (reg_num == SR_CTR_SpecialRegisterEnumValue) {
   274           __ mfctr(R30);
   275           __ std(R30, offset, R1_SP);
   276         } else {
   277           Unimplemented();
   278         }
   279         break;
   280       }
   281       default:
   282         ShouldNotReachHere();
   283     }
   285     if (generate_oop_map) {
   286       map->set_callee_saved(VMRegImpl::stack2reg(offset>>2),
   287                             RegisterSaver_LiveRegs[i].vmreg);
   288       map->set_callee_saved(VMRegImpl::stack2reg((offset + half_reg_size)>>2),
   289                             RegisterSaver_LiveRegs[i].vmreg->next());
   290     }
   291     offset += reg_size;
   292   }
   294   BLOCK_COMMENT("} push_frame_reg_args_and_save_live_registers");
   296   // And we're done.
   297   return map;
   298 }
   301 // Pop the current frame and restore all the registers that we
   302 // saved.
   303 void RegisterSaver::restore_live_registers_and_pop_frame(MacroAssembler* masm,
   304                                                          int frame_size_in_bytes,
   305                                                          bool restore_ctr) {
   306   int i;
   307   int offset;
   308   const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
   309                                    sizeof(RegisterSaver::LiveRegType);
   310   const int register_save_size   = regstosave_num * reg_size;
   311   const int register_save_offset = frame_size_in_bytes - register_save_size;
   313   BLOCK_COMMENT("restore_live_registers_and_pop_frame {");
   315   // restore all registers (ints and floats)
   316   offset = register_save_offset;
   317   for (int i = 0; i < regstosave_num; i++) {
   318     int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
   319     int reg_type = RegisterSaver_LiveRegs[i].reg_type;
   321     switch (reg_type) {
   322       case RegisterSaver::int_reg: {
   323         if (reg_num != 30) // R30 restored at the end, it's the tmp reg!
   324           __ ld(as_Register(reg_num), offset, R1_SP);
   325         break;
   326       }
   327       case RegisterSaver::float_reg: {
   328         __ lfd(as_FloatRegister(reg_num), offset, R1_SP);
   329         break;
   330       }
   331       case RegisterSaver::special_reg: {
   332         if (reg_num == SR_CTR_SpecialRegisterEnumValue) {
   333           if (restore_ctr) { // Nothing to do here if ctr already contains the next address.
   334             __ ld(R30, offset, R1_SP);
   335             __ mtctr(R30);
   336           }
   337         } else {
   338           Unimplemented();
   339         }
   340         break;
   341       }
   342       default:
   343         ShouldNotReachHere();
   344     }
   345     offset += reg_size;
   346   }
   348   // pop the frame
   349   __ pop_frame();
   351   // restore the flags
   352   __ restore_LR_CR(R30);
   354   // restore scratch register's value
   355   __ ld(R30, -reg_size, R1_SP);
   357   BLOCK_COMMENT("} restore_live_registers_and_pop_frame");
   358 }
   360 void RegisterSaver::push_frame_and_save_argument_registers(MacroAssembler* masm, Register r_temp,
   361                                                            int frame_size,int total_args, const VMRegPair *regs,
   362                                                            const VMRegPair *regs2) {
   363   __ push_frame(frame_size, r_temp);
   364   int st_off = frame_size - wordSize;
   365   for (int i = 0; i < total_args; i++) {
   366     VMReg r_1 = regs[i].first();
   367     VMReg r_2 = regs[i].second();
   368     if (!r_1->is_valid()) {
   369       assert(!r_2->is_valid(), "");
   370       continue;
   371     }
   372     if (r_1->is_Register()) {
   373       Register r = r_1->as_Register();
   374       __ std(r, st_off, R1_SP);
   375       st_off -= wordSize;
   376     } else if (r_1->is_FloatRegister()) {
   377       FloatRegister f = r_1->as_FloatRegister();
   378       __ stfd(f, st_off, R1_SP);
   379       st_off -= wordSize;
   380     }
   381   }
   382   if (regs2 != NULL) {
   383     for (int i = 0; i < total_args; i++) {
   384       VMReg r_1 = regs2[i].first();
   385       VMReg r_2 = regs2[i].second();
   386       if (!r_1->is_valid()) {
   387         assert(!r_2->is_valid(), "");
   388         continue;
   389       }
   390       if (r_1->is_Register()) {
   391         Register r = r_1->as_Register();
   392         __ std(r, st_off, R1_SP);
   393         st_off -= wordSize;
   394       } else if (r_1->is_FloatRegister()) {
   395         FloatRegister f = r_1->as_FloatRegister();
   396         __ stfd(f, st_off, R1_SP);
   397         st_off -= wordSize;
   398       }
   399     }
   400   }
   401 }
   403 void RegisterSaver::restore_argument_registers_and_pop_frame(MacroAssembler*masm, int frame_size,
   404                                                              int total_args, const VMRegPair *regs,
   405                                                              const VMRegPair *regs2) {
   406   int st_off = frame_size - wordSize;
   407   for (int i = 0; i < total_args; i++) {
   408     VMReg r_1 = regs[i].first();
   409     VMReg r_2 = regs[i].second();
   410     if (r_1->is_Register()) {
   411       Register r = r_1->as_Register();
   412       __ ld(r, st_off, R1_SP);
   413       st_off -= wordSize;
   414     } else if (r_1->is_FloatRegister()) {
   415       FloatRegister f = r_1->as_FloatRegister();
   416       __ lfd(f, st_off, R1_SP);
   417       st_off -= wordSize;
   418     }
   419   }
   420   if (regs2 != NULL)
   421     for (int i = 0; i < total_args; i++) {
   422       VMReg r_1 = regs2[i].first();
   423       VMReg r_2 = regs2[i].second();
   424       if (r_1->is_Register()) {
   425         Register r = r_1->as_Register();
   426         __ ld(r, st_off, R1_SP);
   427         st_off -= wordSize;
   428       } else if (r_1->is_FloatRegister()) {
   429         FloatRegister f = r_1->as_FloatRegister();
   430         __ lfd(f, st_off, R1_SP);
   431         st_off -= wordSize;
   432       }
   433     }
   434   __ pop_frame();
   435 }
   437 // Restore the registers that might be holding a result.
   438 void RegisterSaver::restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes) {
   439   int i;
   440   int offset;
   441   const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
   442                                    sizeof(RegisterSaver::LiveRegType);
   443   const int register_save_size   = regstosave_num * reg_size;
   444   const int register_save_offset = frame_size_in_bytes - register_save_size;
   446   // restore all result registers (ints and floats)
   447   offset = register_save_offset;
   448   for (int i = 0; i < regstosave_num; i++) {
   449     int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
   450     int reg_type = RegisterSaver_LiveRegs[i].reg_type;
   451     switch (reg_type) {
   452       case RegisterSaver::int_reg: {
   453         if (as_Register(reg_num)==R3_RET) // int result_reg
   454           __ ld(as_Register(reg_num), offset, R1_SP);
   455         break;
   456       }
   457       case RegisterSaver::float_reg: {
   458         if (as_FloatRegister(reg_num)==F1_RET) // float result_reg
   459           __ lfd(as_FloatRegister(reg_num), offset, R1_SP);
   460         break;
   461       }
   462       case RegisterSaver::special_reg: {
   463         // Special registers don't hold a result.
   464         break;
   465       }
   466       default:
   467         ShouldNotReachHere();
   468     }
   469     offset += reg_size;
   470   }
   471 }
   473 // Is vector's size (in bytes) bigger than a size saved by default?
   474 bool SharedRuntime::is_wide_vector(int size) {
   475   ResourceMark rm;
   476   // Note, MaxVectorSize == 8 on PPC64.
   477   assert(size <= 8, err_msg_res("%d bytes vectors are not supported", size));
   478   return size > 8;
   479 }
   480 #ifdef COMPILER2
   481 static int reg2slot(VMReg r) {
   482   return r->reg2stack() + SharedRuntime::out_preserve_stack_slots();
   483 }
   485 static int reg2offset(VMReg r) {
   486   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   487 }
   488 #endif
   490 // ---------------------------------------------------------------------------
   491 // Read the array of BasicTypes from a signature, and compute where the
   492 // arguments should go. Values in the VMRegPair regs array refer to 4-byte
   493 // quantities. Values less than VMRegImpl::stack0 are registers, those above
   494 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer
   495 // as framesizes are fixed.
   496 // VMRegImpl::stack0 refers to the first slot 0(sp).
   497 // and VMRegImpl::stack0+1 refers to the memory word 4-bytes higher. Register
   498 // up to RegisterImpl::number_of_registers) are the 64-bit
   499 // integer registers.
   501 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   502 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
   503 // units regardless of build. Of course for i486 there is no 64 bit build
   505 // The Java calling convention is a "shifted" version of the C ABI.
   506 // By skipping the first C ABI register we can call non-static jni methods
   507 // with small numbers of arguments without having to shuffle the arguments
   508 // at all. Since we control the java ABI we ought to at least get some
   509 // advantage out of it.
   511 const VMReg java_iarg_reg[8] = {
   512   R3->as_VMReg(),
   513   R4->as_VMReg(),
   514   R5->as_VMReg(),
   515   R6->as_VMReg(),
   516   R7->as_VMReg(),
   517   R8->as_VMReg(),
   518   R9->as_VMReg(),
   519   R10->as_VMReg()
   520 };
   522 const VMReg java_farg_reg[13] = {
   523   F1->as_VMReg(),
   524   F2->as_VMReg(),
   525   F3->as_VMReg(),
   526   F4->as_VMReg(),
   527   F5->as_VMReg(),
   528   F6->as_VMReg(),
   529   F7->as_VMReg(),
   530   F8->as_VMReg(),
   531   F9->as_VMReg(),
   532   F10->as_VMReg(),
   533   F11->as_VMReg(),
   534   F12->as_VMReg(),
   535   F13->as_VMReg()
   536 };
   538 const int num_java_iarg_registers = sizeof(java_iarg_reg) / sizeof(java_iarg_reg[0]);
   539 const int num_java_farg_registers = sizeof(java_farg_reg) / sizeof(java_farg_reg[0]);
   541 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   542                                            VMRegPair *regs,
   543                                            int total_args_passed,
   544                                            int is_outgoing) {
   545   // C2c calling conventions for compiled-compiled calls.
   546   // Put 8 ints/longs into registers _AND_ 13 float/doubles into
   547   // registers _AND_ put the rest on the stack.
   549   const int inc_stk_for_intfloat   = 1; // 1 slots for ints and floats
   550   const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles
   552   int i;
   553   VMReg reg;
   554   int stk = 0;
   555   int ireg = 0;
   556   int freg = 0;
   558   // We put the first 8 arguments into registers and the rest on the
   559   // stack, float arguments are already in their argument registers
   560   // due to c2c calling conventions (see calling_convention).
   561   for (int i = 0; i < total_args_passed; ++i) {
   562     switch(sig_bt[i]) {
   563     case T_BOOLEAN:
   564     case T_CHAR:
   565     case T_BYTE:
   566     case T_SHORT:
   567     case T_INT:
   568       if (ireg < num_java_iarg_registers) {
   569         // Put int/ptr in register
   570         reg = java_iarg_reg[ireg];
   571         ++ireg;
   572       } else {
   573         // Put int/ptr on stack.
   574         reg = VMRegImpl::stack2reg(stk);
   575         stk += inc_stk_for_intfloat;
   576       }
   577       regs[i].set1(reg);
   578       break;
   579     case T_LONG:
   580       assert(sig_bt[i+1] == T_VOID, "expecting half");
   581       if (ireg < num_java_iarg_registers) {
   582         // Put long in register.
   583         reg = java_iarg_reg[ireg];
   584         ++ireg;
   585       } else {
   586         // Put long on stack. They must be aligned to 2 slots.
   587         if (stk & 0x1) ++stk;
   588         reg = VMRegImpl::stack2reg(stk);
   589         stk += inc_stk_for_longdouble;
   590       }
   591       regs[i].set2(reg);
   592       break;
   593     case T_OBJECT:
   594     case T_ARRAY:
   595     case T_ADDRESS:
   596       if (ireg < num_java_iarg_registers) {
   597         // Put ptr in register.
   598         reg = java_iarg_reg[ireg];
   599         ++ireg;
   600       } else {
   601         // Put ptr on stack. Objects must be aligned to 2 slots too,
   602         // because "64-bit pointers record oop-ishness on 2 aligned
   603         // adjacent registers." (see OopFlow::build_oop_map).
   604         if (stk & 0x1) ++stk;
   605         reg = VMRegImpl::stack2reg(stk);
   606         stk += inc_stk_for_longdouble;
   607       }
   608       regs[i].set2(reg);
   609       break;
   610     case T_FLOAT:
   611       if (freg < num_java_farg_registers) {
   612         // Put float in register.
   613         reg = java_farg_reg[freg];
   614         ++freg;
   615       } else {
   616         // Put float on stack.
   617         reg = VMRegImpl::stack2reg(stk);
   618         stk += inc_stk_for_intfloat;
   619       }
   620       regs[i].set1(reg);
   621       break;
   622     case T_DOUBLE:
   623       assert(sig_bt[i+1] == T_VOID, "expecting half");
   624       if (freg < num_java_farg_registers) {
   625         // Put double in register.
   626         reg = java_farg_reg[freg];
   627         ++freg;
   628       } else {
   629         // Put double on stack. They must be aligned to 2 slots.
   630         if (stk & 0x1) ++stk;
   631         reg = VMRegImpl::stack2reg(stk);
   632         stk += inc_stk_for_longdouble;
   633       }
   634       regs[i].set2(reg);
   635       break;
   636     case T_VOID:
   637       // Do not count halves.
   638       regs[i].set_bad();
   639       break;
   640     default:
   641       ShouldNotReachHere();
   642     }
   643   }
   644   return round_to(stk, 2);
   645 }
   647 #ifdef COMPILER2
   648 // Calling convention for calling C code.
   649 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
   650                                         VMRegPair *regs,
   651                                         VMRegPair *regs2,
   652                                         int total_args_passed) {
   653   // Calling conventions for C runtime calls and calls to JNI native methods.
   654   //
   655   // PPC64 convention: Hoist the first 8 int/ptr/long's in the first 8
   656   // int regs, leaving int regs undefined if the arg is flt/dbl. Hoist
   657   // the first 13 flt/dbl's in the first 13 fp regs but additionally
   658   // copy flt/dbl to the stack if they are beyond the 8th argument.
   660   const VMReg iarg_reg[8] = {
   661     R3->as_VMReg(),
   662     R4->as_VMReg(),
   663     R5->as_VMReg(),
   664     R6->as_VMReg(),
   665     R7->as_VMReg(),
   666     R8->as_VMReg(),
   667     R9->as_VMReg(),
   668     R10->as_VMReg()
   669   };
   671   const VMReg farg_reg[13] = {
   672     F1->as_VMReg(),
   673     F2->as_VMReg(),
   674     F3->as_VMReg(),
   675     F4->as_VMReg(),
   676     F5->as_VMReg(),
   677     F6->as_VMReg(),
   678     F7->as_VMReg(),
   679     F8->as_VMReg(),
   680     F9->as_VMReg(),
   681     F10->as_VMReg(),
   682     F11->as_VMReg(),
   683     F12->as_VMReg(),
   684     F13->as_VMReg()
   685   };
   687   // Check calling conventions consistency.
   688   assert(sizeof(iarg_reg) / sizeof(iarg_reg[0]) == Argument::n_int_register_parameters_c &&
   689          sizeof(farg_reg) / sizeof(farg_reg[0]) == Argument::n_float_register_parameters_c,
   690          "consistency");
   692   // `Stk' counts stack slots. Due to alignment, 32 bit values occupy
   693   // 2 such slots, like 64 bit values do.
   694   const int inc_stk_for_intfloat   = 2; // 2 slots for ints and floats
   695   const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles
   697   int i;
   698   VMReg reg;
   699   // Leave room for C-compatible ABI_REG_ARGS.
   700   int stk = (frame::abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size;
   701   int arg = 0;
   702   int freg = 0;
   704   // Avoid passing C arguments in the wrong stack slots.
   705 #if defined(ABI_ELFv2)
   706   assert((SharedRuntime::out_preserve_stack_slots() + stk) * VMRegImpl::stack_slot_size == 96,
   707          "passing C arguments in wrong stack slots");
   708 #else
   709   assert((SharedRuntime::out_preserve_stack_slots() + stk) * VMRegImpl::stack_slot_size == 112,
   710          "passing C arguments in wrong stack slots");
   711 #endif
   712   // We fill-out regs AND regs2 if an argument must be passed in a
   713   // register AND in a stack slot. If regs2 is NULL in such a
   714   // situation, we bail-out with a fatal error.
   715   for (int i = 0; i < total_args_passed; ++i, ++arg) {
   716     // Initialize regs2 to BAD.
   717     if (regs2 != NULL) regs2[i].set_bad();
   719     switch(sig_bt[i]) {
   721     //
   722     // If arguments 0-7 are integers, they are passed in integer registers.
   723     // Argument i is placed in iarg_reg[i].
   724     //
   725     case T_BOOLEAN:
   726     case T_CHAR:
   727     case T_BYTE:
   728     case T_SHORT:
   729     case T_INT:
   730       // We must cast ints to longs and use full 64 bit stack slots
   731       // here. We do the cast in GraphKit::gen_stub() and just guard
   732       // here against loosing that change.
   733       assert(CCallingConventionRequiresIntsAsLongs,
   734              "argument of type int should be promoted to type long");
   735       guarantee(i > 0 && sig_bt[i-1] == T_LONG,
   736                 "argument of type (bt) should have been promoted to type (T_LONG,bt) for bt in "
   737                 "{T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
   738       // Do not count halves.
   739       regs[i].set_bad();
   740       --arg;
   741       break;
   742     case T_LONG:
   743       guarantee(sig_bt[i+1] == T_VOID    ||
   744                 sig_bt[i+1] == T_BOOLEAN || sig_bt[i+1] == T_CHAR  ||
   745                 sig_bt[i+1] == T_BYTE    || sig_bt[i+1] == T_SHORT ||
   746                 sig_bt[i+1] == T_INT,
   747                 "expecting type (T_LONG,half) or type (T_LONG,bt) with bt in {T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
   748     case T_OBJECT:
   749     case T_ARRAY:
   750     case T_ADDRESS:
   751     case T_METADATA:
   752       // Oops are already boxed if required (JNI).
   753       if (arg < Argument::n_int_register_parameters_c) {
   754         reg = iarg_reg[arg];
   755       } else {
   756         reg = VMRegImpl::stack2reg(stk);
   757         stk += inc_stk_for_longdouble;
   758       }
   759       regs[i].set2(reg);
   760       break;
   762     //
   763     // Floats are treated differently from int regs:  The first 13 float arguments
   764     // are passed in registers (not the float args among the first 13 args).
   765     // Thus argument i is NOT passed in farg_reg[i] if it is float.  It is passed
   766     // in farg_reg[j] if argument i is the j-th float argument of this call.
   767     //
   768     case T_FLOAT:
   769 #if defined(LINUX)
   770       // Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float
   771       // in the least significant word of an argument slot.
   772 #if defined(VM_LITTLE_ENDIAN)
   773 #define FLOAT_WORD_OFFSET_IN_SLOT 0
   774 #else
   775 #define FLOAT_WORD_OFFSET_IN_SLOT 1
   776 #endif
   777 #elif defined(AIX)
   778       // Although AIX runs on big endian CPU, float is in the most
   779       // significant word of an argument slot.
   780 #define FLOAT_WORD_OFFSET_IN_SLOT 0
   781 #else
   782 #error "unknown OS"
   783 #endif
   784       if (freg < Argument::n_float_register_parameters_c) {
   785         // Put float in register ...
   786         reg = farg_reg[freg];
   787         ++freg;
   789         // Argument i for i > 8 is placed on the stack even if it's
   790         // placed in a register (if it's a float arg). Aix disassembly
   791         // shows that xlC places these float args on the stack AND in
   792         // a register. This is not documented, but we follow this
   793         // convention, too.
   794         if (arg >= Argument::n_regs_not_on_stack_c) {
   795           // ... and on the stack.
   796           guarantee(regs2 != NULL, "must pass float in register and stack slot");
   797           VMReg reg2 = VMRegImpl::stack2reg(stk + FLOAT_WORD_OFFSET_IN_SLOT);
   798           regs2[i].set1(reg2);
   799           stk += inc_stk_for_intfloat;
   800         }
   802       } else {
   803         // Put float on stack.
   804         reg = VMRegImpl::stack2reg(stk + FLOAT_WORD_OFFSET_IN_SLOT);
   805         stk += inc_stk_for_intfloat;
   806       }
   807       regs[i].set1(reg);
   808       break;
   809     case T_DOUBLE:
   810       assert(sig_bt[i+1] == T_VOID, "expecting half");
   811       if (freg < Argument::n_float_register_parameters_c) {
   812         // Put double in register ...
   813         reg = farg_reg[freg];
   814         ++freg;
   816         // Argument i for i > 8 is placed on the stack even if it's
   817         // placed in a register (if it's a double arg). Aix disassembly
   818         // shows that xlC places these float args on the stack AND in
   819         // a register. This is not documented, but we follow this
   820         // convention, too.
   821         if (arg >= Argument::n_regs_not_on_stack_c) {
   822           // ... and on the stack.
   823           guarantee(regs2 != NULL, "must pass float in register and stack slot");
   824           VMReg reg2 = VMRegImpl::stack2reg(stk);
   825           regs2[i].set2(reg2);
   826           stk += inc_stk_for_longdouble;
   827         }
   828       } else {
   829         // Put double on stack.
   830         reg = VMRegImpl::stack2reg(stk);
   831         stk += inc_stk_for_longdouble;
   832       }
   833       regs[i].set2(reg);
   834       break;
   836     case T_VOID:
   837       // Do not count halves.
   838       regs[i].set_bad();
   839       --arg;
   840       break;
   841     default:
   842       ShouldNotReachHere();
   843     }
   844   }
   846   return round_to(stk, 2);
   847 }
   848 #endif // COMPILER2
   850 static address gen_c2i_adapter(MacroAssembler *masm,
   851                             int total_args_passed,
   852                             int comp_args_on_stack,
   853                             const BasicType *sig_bt,
   854                             const VMRegPair *regs,
   855                             Label& call_interpreter,
   856                             const Register& ientry) {
   858   address c2i_entrypoint;
   860   const Register sender_SP = R21_sender_SP; // == R21_tmp1
   861   const Register code      = R22_tmp2;
   862   //const Register ientry  = R23_tmp3;
   863   const Register value_regs[] = { R24_tmp4, R25_tmp5, R26_tmp6 };
   864   const int num_value_regs = sizeof(value_regs) / sizeof(Register);
   865   int value_regs_index = 0;
   867   const Register return_pc = R27_tmp7;
   868   const Register tmp       = R28_tmp8;
   870   assert_different_registers(sender_SP, code, ientry, return_pc, tmp);
   872   // Adapter needs TOP_IJAVA_FRAME_ABI.
   873   const int adapter_size = frame::top_ijava_frame_abi_size +
   874                            round_to(total_args_passed * wordSize, frame::alignment_in_bytes);
   876   // regular (verified) c2i entry point
   877   c2i_entrypoint = __ pc();
   879   // Does compiled code exists? If yes, patch the caller's callsite.
   880   __ ld(code, method_(code));
   881   __ cmpdi(CCR0, code, 0);
   882   __ ld(ientry, method_(interpreter_entry)); // preloaded
   883   __ beq(CCR0, call_interpreter);
   886   // Patch caller's callsite, method_(code) was not NULL which means that
   887   // compiled code exists.
   888   __ mflr(return_pc);
   889   __ std(return_pc, _abi(lr), R1_SP);
   890   RegisterSaver::push_frame_and_save_argument_registers(masm, tmp, adapter_size, total_args_passed, regs);
   892   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), R19_method, return_pc);
   894   RegisterSaver::restore_argument_registers_and_pop_frame(masm, adapter_size, total_args_passed, regs);
   895   __ ld(return_pc, _abi(lr), R1_SP);
   896   __ ld(ientry, method_(interpreter_entry)); // preloaded
   897   __ mtlr(return_pc);
   900   // Call the interpreter.
   901   __ BIND(call_interpreter);
   902   __ mtctr(ientry);
   904   // Get a copy of the current SP for loading caller's arguments.
   905   __ mr(sender_SP, R1_SP);
   907   // Add space for the adapter.
   908   __ resize_frame(-adapter_size, R12_scratch2);
   910   int st_off = adapter_size - wordSize;
   912   // Write the args into the outgoing interpreter space.
   913   for (int i = 0; i < total_args_passed; i++) {
   914     VMReg r_1 = regs[i].first();
   915     VMReg r_2 = regs[i].second();
   916     if (!r_1->is_valid()) {
   917       assert(!r_2->is_valid(), "");
   918       continue;
   919     }
   920     if (r_1->is_stack()) {
   921       Register tmp_reg = value_regs[value_regs_index];
   922       value_regs_index = (value_regs_index + 1) % num_value_regs;
   923       // The calling convention produces OptoRegs that ignore the out
   924       // preserve area (JIT's ABI). We must account for it here.
   925       int ld_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   926       if (!r_2->is_valid()) {
   927         __ lwz(tmp_reg, ld_off, sender_SP);
   928       } else {
   929         __ ld(tmp_reg, ld_off, sender_SP);
   930       }
   931       // Pretend stack targets were loaded into tmp_reg.
   932       r_1 = tmp_reg->as_VMReg();
   933     }
   935     if (r_1->is_Register()) {
   936       Register r = r_1->as_Register();
   937       if (!r_2->is_valid()) {
   938         __ stw(r, st_off, R1_SP);
   939         st_off-=wordSize;
   940       } else {
   941         // Longs are given 2 64-bit slots in the interpreter, but the
   942         // data is passed in only 1 slot.
   943         if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   944           DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); )
   945           st_off-=wordSize;
   946         }
   947         __ std(r, st_off, R1_SP);
   948         st_off-=wordSize;
   949       }
   950     } else {
   951       assert(r_1->is_FloatRegister(), "");
   952       FloatRegister f = r_1->as_FloatRegister();
   953       if (!r_2->is_valid()) {
   954         __ stfs(f, st_off, R1_SP);
   955         st_off-=wordSize;
   956       } else {
   957         // In 64bit, doubles are given 2 64-bit slots in the interpreter, but the
   958         // data is passed in only 1 slot.
   959         // One of these should get known junk...
   960         DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); )
   961         st_off-=wordSize;
   962         __ stfd(f, st_off, R1_SP);
   963         st_off-=wordSize;
   964       }
   965     }
   966   }
   968   // Jump to the interpreter just as if interpreter was doing it.
   970 #ifdef CC_INTERP
   971   const Register tos = R17_tos;
   972 #else
   973   const Register tos = R15_esp;
   974   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
   975 #endif
   977   // load TOS
   978   __ addi(tos, R1_SP, st_off);
   980   // Frame_manager expects initial_caller_sp (= SP without resize by c2i) in R21_tmp1.
   981   assert(sender_SP == R21_sender_SP, "passing initial caller's SP in wrong register");
   982   __ bctr();
   984   return c2i_entrypoint;
   985 }
   987 static void gen_i2c_adapter(MacroAssembler *masm,
   988                             int total_args_passed,
   989                             int comp_args_on_stack,
   990                             const BasicType *sig_bt,
   991                             const VMRegPair *regs) {
   993   // Load method's entry-point from method.
   994   __ ld(R12_scratch2, in_bytes(Method::from_compiled_offset()), R19_method);
   995   __ mtctr(R12_scratch2);
   997   // We will only enter here from an interpreted frame and never from after
   998   // passing thru a c2i. Azul allowed this but we do not. If we lose the
   999   // race and use a c2i we will remain interpreted for the race loser(s).
  1000   // This removes all sorts of headaches on the x86 side and also eliminates
  1001   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
  1003   // Note: r13 contains the senderSP on entry. We must preserve it since
  1004   // we may do a i2c -> c2i transition if we lose a race where compiled
  1005   // code goes non-entrant while we get args ready.
  1006   // In addition we use r13 to locate all the interpreter args as
  1007   // we must align the stack to 16 bytes on an i2c entry else we
  1008   // lose alignment we expect in all compiled code and register
  1009   // save code can segv when fxsave instructions find improperly
  1010   // aligned stack pointer.
  1012 #ifdef CC_INTERP
  1013   const Register ld_ptr = R17_tos;
  1014 #else
  1015   const Register ld_ptr = R15_esp;
  1016 #endif
  1018   const Register value_regs[] = { R22_tmp2, R23_tmp3, R24_tmp4, R25_tmp5, R26_tmp6 };
  1019   const int num_value_regs = sizeof(value_regs) / sizeof(Register);
  1020   int value_regs_index = 0;
  1022   int ld_offset = total_args_passed*wordSize;
  1024   // Cut-out for having no stack args. Since up to 2 int/oop args are passed
  1025   // in registers, we will occasionally have no stack args.
  1026   int comp_words_on_stack = 0;
  1027   if (comp_args_on_stack) {
  1028     // Sig words on the stack are greater-than VMRegImpl::stack0. Those in
  1029     // registers are below. By subtracting stack0, we either get a negative
  1030     // number (all values in registers) or the maximum stack slot accessed.
  1032     // Convert 4-byte c2 stack slots to words.
  1033     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
  1034     // Round up to miminum stack alignment, in wordSize.
  1035     comp_words_on_stack = round_to(comp_words_on_stack, 2);
  1036     __ resize_frame(-comp_words_on_stack * wordSize, R11_scratch1);
  1039   // Now generate the shuffle code.  Pick up all register args and move the
  1040   // rest through register value=Z_R12.
  1041   BLOCK_COMMENT("Shuffle arguments");
  1042   for (int i = 0; i < total_args_passed; i++) {
  1043     if (sig_bt[i] == T_VOID) {
  1044       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
  1045       continue;
  1048     // Pick up 0, 1 or 2 words from ld_ptr.
  1049     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
  1050             "scrambled load targets?");
  1051     VMReg r_1 = regs[i].first();
  1052     VMReg r_2 = regs[i].second();
  1053     if (!r_1->is_valid()) {
  1054       assert(!r_2->is_valid(), "");
  1055       continue;
  1057     if (r_1->is_FloatRegister()) {
  1058       if (!r_2->is_valid()) {
  1059         __ lfs(r_1->as_FloatRegister(), ld_offset, ld_ptr);
  1060         ld_offset-=wordSize;
  1061       } else {
  1062         // Skip the unused interpreter slot.
  1063         __ lfd(r_1->as_FloatRegister(), ld_offset-wordSize, ld_ptr);
  1064         ld_offset-=2*wordSize;
  1066     } else {
  1067       Register r;
  1068       if (r_1->is_stack()) {
  1069         // Must do a memory to memory move thru "value".
  1070         r = value_regs[value_regs_index];
  1071         value_regs_index = (value_regs_index + 1) % num_value_regs;
  1072       } else {
  1073         r = r_1->as_Register();
  1075       if (!r_2->is_valid()) {
  1076         // Not sure we need to do this but it shouldn't hurt.
  1077         if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ADDRESS || sig_bt[i] == T_ARRAY) {
  1078           __ ld(r, ld_offset, ld_ptr);
  1079           ld_offset-=wordSize;
  1080         } else {
  1081           __ lwz(r, ld_offset, ld_ptr);
  1082           ld_offset-=wordSize;
  1084       } else {
  1085         // In 64bit, longs are given 2 64-bit slots in the interpreter, but the
  1086         // data is passed in only 1 slot.
  1087         if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
  1088           ld_offset-=wordSize;
  1090         __ ld(r, ld_offset, ld_ptr);
  1091         ld_offset-=wordSize;
  1094       if (r_1->is_stack()) {
  1095         // Now store value where the compiler expects it
  1096         int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots())*VMRegImpl::stack_slot_size;
  1098         if (sig_bt[i] == T_INT   || sig_bt[i] == T_FLOAT ||sig_bt[i] == T_BOOLEAN ||
  1099             sig_bt[i] == T_SHORT || sig_bt[i] == T_CHAR  || sig_bt[i] == T_BYTE) {
  1100           __ stw(r, st_off, R1_SP);
  1101         } else {
  1102           __ std(r, st_off, R1_SP);
  1108   BLOCK_COMMENT("Store method");
  1109   // Store method into thread->callee_target.
  1110   // We might end up in handle_wrong_method if the callee is
  1111   // deoptimized as we race thru here. If that happens we don't want
  1112   // to take a safepoint because the caller frame will look
  1113   // interpreted and arguments are now "compiled" so it is much better
  1114   // to make this transition invisible to the stack walking
  1115   // code. Unfortunately if we try and find the callee by normal means
  1116   // a safepoint is possible. So we stash the desired callee in the
  1117   // thread and the vm will find there should this case occur.
  1118   __ std(R19_method, thread_(callee_target));
  1120   // Jump to the compiled code just as if compiled code was doing it.
  1121   __ bctr();
  1124 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
  1125                                                             int total_args_passed,
  1126                                                             int comp_args_on_stack,
  1127                                                             const BasicType *sig_bt,
  1128                                                             const VMRegPair *regs,
  1129                                                             AdapterFingerPrint* fingerprint) {
  1130   address i2c_entry;
  1131   address c2i_unverified_entry;
  1132   address c2i_entry;
  1135   // entry: i2c
  1137   __ align(CodeEntryAlignment);
  1138   i2c_entry = __ pc();
  1139   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
  1142   // entry: c2i unverified
  1144   __ align(CodeEntryAlignment);
  1145   BLOCK_COMMENT("c2i unverified entry");
  1146   c2i_unverified_entry = __ pc();
  1148   // inline_cache contains a compiledICHolder
  1149   const Register ic             = R19_method;
  1150   const Register ic_klass       = R11_scratch1;
  1151   const Register receiver_klass = R12_scratch2;
  1152   const Register code           = R21_tmp1;
  1153   const Register ientry         = R23_tmp3;
  1155   assert_different_registers(ic, ic_klass, receiver_klass, R3_ARG1, code, ientry);
  1156   assert(R11_scratch1 == R11, "need prologue scratch register");
  1158   Label call_interpreter;
  1160   assert(!MacroAssembler::needs_explicit_null_check(oopDesc::klass_offset_in_bytes()),
  1161          "klass offset should reach into any page");
  1162   // Check for NULL argument if we don't have implicit null checks.
  1163   if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
  1164     if (TrapBasedNullChecks) {
  1165       __ trap_null_check(R3_ARG1);
  1166     } else {
  1167       Label valid;
  1168       __ cmpdi(CCR0, R3_ARG1, 0);
  1169       __ bne_predict_taken(CCR0, valid);
  1170       // We have a null argument, branch to ic_miss_stub.
  1171       __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  1172                        relocInfo::runtime_call_type);
  1173       __ BIND(valid);
  1176   // Assume argument is not NULL, load klass from receiver.
  1177   __ load_klass(receiver_klass, R3_ARG1);
  1179   __ ld(ic_klass, CompiledICHolder::holder_klass_offset(), ic);
  1181   if (TrapBasedICMissChecks) {
  1182     __ trap_ic_miss_check(receiver_klass, ic_klass);
  1183   } else {
  1184     Label valid;
  1185     __ cmpd(CCR0, receiver_klass, ic_klass);
  1186     __ beq_predict_taken(CCR0, valid);
  1187     // We have an unexpected klass, branch to ic_miss_stub.
  1188     __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  1189                      relocInfo::runtime_call_type);
  1190     __ BIND(valid);
  1193   // Argument is valid and klass is as expected, continue.
  1195   // Extract method from inline cache, verified entry point needs it.
  1196   __ ld(R19_method, CompiledICHolder::holder_metadata_offset(), ic);
  1197   assert(R19_method == ic, "the inline cache register is dead here");
  1199   __ ld(code, method_(code));
  1200   __ cmpdi(CCR0, code, 0);
  1201   __ ld(ientry, method_(interpreter_entry)); // preloaded
  1202   __ beq_predict_taken(CCR0, call_interpreter);
  1204   // Branch to ic_miss_stub.
  1205   __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type);
  1207   // entry: c2i
  1209   c2i_entry = gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, call_interpreter, ientry);
  1211   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  1214 #ifdef COMPILER2
  1215 // An oop arg. Must pass a handle not the oop itself.
  1216 static void object_move(MacroAssembler* masm,
  1217                         int frame_size_in_slots,
  1218                         OopMap* oop_map, int oop_handle_offset,
  1219                         bool is_receiver, int* receiver_offset,
  1220                         VMRegPair src, VMRegPair dst,
  1221                         Register r_caller_sp, Register r_temp_1, Register r_temp_2) {
  1222   assert(!is_receiver || (is_receiver && (*receiver_offset == -1)),
  1223          "receiver has already been moved");
  1225   // We must pass a handle. First figure out the location we use as a handle.
  1227   if (src.first()->is_stack()) {
  1228     // stack to stack or reg
  1230     const Register r_handle = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register();
  1231     Label skip;
  1232     const int oop_slot_in_callers_frame = reg2slot(src.first());
  1234     guarantee(!is_receiver, "expecting receiver in register");
  1235     oop_map->set_oop(VMRegImpl::stack2reg(oop_slot_in_callers_frame + frame_size_in_slots));
  1237     __ addi(r_handle, r_caller_sp, reg2offset(src.first()));
  1238     __ ld(  r_temp_2, reg2offset(src.first()), r_caller_sp);
  1239     __ cmpdi(CCR0, r_temp_2, 0);
  1240     __ bne(CCR0, skip);
  1241     // Use a NULL handle if oop is NULL.
  1242     __ li(r_handle, 0);
  1243     __ bind(skip);
  1245     if (dst.first()->is_stack()) {
  1246       // stack to stack
  1247       __ std(r_handle, reg2offset(dst.first()), R1_SP);
  1248     } else {
  1249       // stack to reg
  1250       // Nothing to do, r_handle is already the dst register.
  1252   } else {
  1253     // reg to stack or reg
  1254     const Register r_oop      = src.first()->as_Register();
  1255     const Register r_handle   = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register();
  1256     const int oop_slot        = (r_oop->encoding()-R3_ARG1->encoding()) * VMRegImpl::slots_per_word
  1257                                 + oop_handle_offset; // in slots
  1258     const int oop_offset = oop_slot * VMRegImpl::stack_slot_size;
  1259     Label skip;
  1261     if (is_receiver) {
  1262       *receiver_offset = oop_offset;
  1264     oop_map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1266     __ std( r_oop,    oop_offset, R1_SP);
  1267     __ addi(r_handle, R1_SP, oop_offset);
  1269     __ cmpdi(CCR0, r_oop, 0);
  1270     __ bne(CCR0, skip);
  1271     // Use a NULL handle if oop is NULL.
  1272     __ li(r_handle, 0);
  1273     __ bind(skip);
  1275     if (dst.first()->is_stack()) {
  1276       // reg to stack
  1277       __ std(r_handle, reg2offset(dst.first()), R1_SP);
  1278     } else {
  1279       // reg to reg
  1280       // Nothing to do, r_handle is already the dst register.
  1285 static void int_move(MacroAssembler*masm,
  1286                      VMRegPair src, VMRegPair dst,
  1287                      Register r_caller_sp, Register r_temp) {
  1288   assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be long-int");
  1289   assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long");
  1291   if (src.first()->is_stack()) {
  1292     if (dst.first()->is_stack()) {
  1293       // stack to stack
  1294       __ lwa(r_temp, reg2offset(src.first()), r_caller_sp);
  1295       __ std(r_temp, reg2offset(dst.first()), R1_SP);
  1296     } else {
  1297       // stack to reg
  1298       __ lwa(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
  1300   } else if (dst.first()->is_stack()) {
  1301     // reg to stack
  1302     __ extsw(r_temp, src.first()->as_Register());
  1303     __ std(r_temp, reg2offset(dst.first()), R1_SP);
  1304   } else {
  1305     // reg to reg
  1306     __ extsw(dst.first()->as_Register(), src.first()->as_Register());
  1310 static void long_move(MacroAssembler*masm,
  1311                       VMRegPair src, VMRegPair dst,
  1312                       Register r_caller_sp, Register r_temp) {
  1313   assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be long");
  1314   assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long");
  1316   if (src.first()->is_stack()) {
  1317     if (dst.first()->is_stack()) {
  1318       // stack to stack
  1319       __ ld( r_temp, reg2offset(src.first()), r_caller_sp);
  1320       __ std(r_temp, reg2offset(dst.first()), R1_SP);
  1321     } else {
  1322       // stack to reg
  1323       __ ld(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
  1325   } else if (dst.first()->is_stack()) {
  1326     // reg to stack
  1327     __ std(src.first()->as_Register(), reg2offset(dst.first()), R1_SP);
  1328   } else {
  1329     // reg to reg
  1330     if (dst.first()->as_Register() != src.first()->as_Register())
  1331       __ mr(dst.first()->as_Register(), src.first()->as_Register());
  1335 static void float_move(MacroAssembler*masm,
  1336                        VMRegPair src, VMRegPair dst,
  1337                        Register r_caller_sp, Register r_temp) {
  1338   assert(src.first()->is_valid() && !src.second()->is_valid(), "incoming must be float");
  1339   assert(dst.first()->is_valid() && !dst.second()->is_valid(), "outgoing must be float");
  1341   if (src.first()->is_stack()) {
  1342     if (dst.first()->is_stack()) {
  1343       // stack to stack
  1344       __ lwz(r_temp, reg2offset(src.first()), r_caller_sp);
  1345       __ stw(r_temp, reg2offset(dst.first()), R1_SP);
  1346     } else {
  1347       // stack to reg
  1348       __ lfs(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp);
  1350   } else if (dst.first()->is_stack()) {
  1351     // reg to stack
  1352     __ stfs(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP);
  1353   } else {
  1354     // reg to reg
  1355     if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister())
  1356       __ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
  1360 static void double_move(MacroAssembler*masm,
  1361                         VMRegPair src, VMRegPair dst,
  1362                         Register r_caller_sp, Register r_temp) {
  1363   assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be double");
  1364   assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be double");
  1366   if (src.first()->is_stack()) {
  1367     if (dst.first()->is_stack()) {
  1368       // stack to stack
  1369       __ ld( r_temp, reg2offset(src.first()), r_caller_sp);
  1370       __ std(r_temp, reg2offset(dst.first()), R1_SP);
  1371     } else {
  1372       // stack to reg
  1373       __ lfd(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp);
  1375   } else if (dst.first()->is_stack()) {
  1376     // reg to stack
  1377     __ stfd(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP);
  1378   } else {
  1379     // reg to reg
  1380     if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister())
  1381       __ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
  1385 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1386   switch (ret_type) {
  1387     case T_BOOLEAN:
  1388     case T_CHAR:
  1389     case T_BYTE:
  1390     case T_SHORT:
  1391     case T_INT:
  1392       __ stw (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1393       break;
  1394     case T_ARRAY:
  1395     case T_OBJECT:
  1396     case T_LONG:
  1397       __ std (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1398       break;
  1399     case T_FLOAT:
  1400       __ stfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1401       break;
  1402     case T_DOUBLE:
  1403       __ stfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1404       break;
  1405     case T_VOID:
  1406       break;
  1407     default:
  1408       ShouldNotReachHere();
  1409       break;
  1413 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1414   switch (ret_type) {
  1415     case T_BOOLEAN:
  1416     case T_CHAR:
  1417     case T_BYTE:
  1418     case T_SHORT:
  1419     case T_INT:
  1420       __ lwz(R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1421       break;
  1422     case T_ARRAY:
  1423     case T_OBJECT:
  1424     case T_LONG:
  1425       __ ld (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1426       break;
  1427     case T_FLOAT:
  1428       __ lfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1429       break;
  1430     case T_DOUBLE:
  1431       __ lfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1432       break;
  1433     case T_VOID:
  1434       break;
  1435     default:
  1436       ShouldNotReachHere();
  1437       break;
  1441 static void save_or_restore_arguments(MacroAssembler* masm,
  1442                                       const int stack_slots,
  1443                                       const int total_in_args,
  1444                                       const int arg_save_area,
  1445                                       OopMap* map,
  1446                                       VMRegPair* in_regs,
  1447                                       BasicType* in_sig_bt) {
  1448   // If map is non-NULL then the code should store the values,
  1449   // otherwise it should load them.
  1450   int slot = arg_save_area;
  1451   // Save down double word first.
  1452   for (int i = 0; i < total_in_args; i++) {
  1453     if (in_regs[i].first()->is_FloatRegister() && in_sig_bt[i] == T_DOUBLE) {
  1454       int offset = slot * VMRegImpl::stack_slot_size;
  1455       slot += VMRegImpl::slots_per_word;
  1456       assert(slot <= stack_slots, "overflow (after DOUBLE stack slot)");
  1457       if (map != NULL) {
  1458         __ stfd(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
  1459       } else {
  1460         __ lfd(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
  1462     } else if (in_regs[i].first()->is_Register() &&
  1463         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
  1464       int offset = slot * VMRegImpl::stack_slot_size;
  1465       if (map != NULL) {
  1466         __ std(in_regs[i].first()->as_Register(), offset, R1_SP);
  1467         if (in_sig_bt[i] == T_ARRAY) {
  1468           map->set_oop(VMRegImpl::stack2reg(slot));
  1470       } else {
  1471         __ ld(in_regs[i].first()->as_Register(), offset, R1_SP);
  1473       slot += VMRegImpl::slots_per_word;
  1474       assert(slot <= stack_slots, "overflow (after LONG/ARRAY stack slot)");
  1477   // Save or restore single word registers.
  1478   for (int i = 0; i < total_in_args; i++) {
  1479     // PPC64: pass ints as longs: must only deal with floats here.
  1480     if (in_regs[i].first()->is_FloatRegister()) {
  1481       if (in_sig_bt[i] == T_FLOAT) {
  1482         int offset = slot * VMRegImpl::stack_slot_size;
  1483         slot++;
  1484         assert(slot <= stack_slots, "overflow (after FLOAT stack slot)");
  1485         if (map != NULL) {
  1486           __ stfs(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
  1487         } else {
  1488           __ lfs(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
  1491     } else if (in_regs[i].first()->is_stack()) {
  1492       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
  1493         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1494         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
  1500 // Check GC_locker::needs_gc and enter the runtime if it's true. This
  1501 // keeps a new JNI critical region from starting until a GC has been
  1502 // forced. Save down any oops in registers and describe them in an
  1503 // OopMap.
  1504 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
  1505                                                const int stack_slots,
  1506                                                const int total_in_args,
  1507                                                const int arg_save_area,
  1508                                                OopMapSet* oop_maps,
  1509                                                VMRegPair* in_regs,
  1510                                                BasicType* in_sig_bt,
  1511                                                Register tmp_reg ) {
  1512   __ block_comment("check GC_locker::needs_gc");
  1513   Label cont;
  1514   __ lbz(tmp_reg, (RegisterOrConstant)(intptr_t)GC_locker::needs_gc_address());
  1515   __ cmplwi(CCR0, tmp_reg, 0);
  1516   __ beq(CCR0, cont);
  1518   // Save down any values that are live in registers and call into the
  1519   // runtime to halt for a GC.
  1520   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1521   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1522                             arg_save_area, map, in_regs, in_sig_bt);
  1524   __ mr(R3_ARG1, R16_thread);
  1525   __ set_last_Java_frame(R1_SP, noreg);
  1527   __ block_comment("block_for_jni_critical");
  1528   address entry_point = CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical);
  1529 #if defined(ABI_ELFv2)
  1530   __ call_c(entry_point, relocInfo::runtime_call_type);
  1531 #else
  1532   __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::runtime_call_type);
  1533 #endif
  1534   address start           = __ pc() - __ offset(),
  1535           calls_return_pc = __ last_calls_return_pc();
  1536   oop_maps->add_gc_map(calls_return_pc - start, map);
  1538   __ reset_last_Java_frame();
  1540   // Reload all the register arguments.
  1541   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1542                             arg_save_area, NULL, in_regs, in_sig_bt);
  1544   __ BIND(cont);
  1546 #ifdef ASSERT
  1547   if (StressCriticalJNINatives) {
  1548     // Stress register saving.
  1549     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1550     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1551                               arg_save_area, map, in_regs, in_sig_bt);
  1552     // Destroy argument registers.
  1553     for (int i = 0; i < total_in_args; i++) {
  1554       if (in_regs[i].first()->is_Register()) {
  1555         const Register reg = in_regs[i].first()->as_Register();
  1556         __ neg(reg, reg);
  1557       } else if (in_regs[i].first()->is_FloatRegister()) {
  1558         __ fneg(in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
  1562     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1563                               arg_save_area, NULL, in_regs, in_sig_bt);
  1565 #endif
  1568 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst, Register r_caller_sp, Register r_temp) {
  1569   if (src.first()->is_stack()) {
  1570     if (dst.first()->is_stack()) {
  1571       // stack to stack
  1572       __ ld(r_temp, reg2offset(src.first()), r_caller_sp);
  1573       __ std(r_temp, reg2offset(dst.first()), R1_SP);
  1574     } else {
  1575       // stack to reg
  1576       __ ld(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
  1578   } else if (dst.first()->is_stack()) {
  1579     // reg to stack
  1580     __ std(src.first()->as_Register(), reg2offset(dst.first()), R1_SP);
  1581   } else {
  1582     if (dst.first() != src.first()) {
  1583       __ mr(dst.first()->as_Register(), src.first()->as_Register());
  1588 // Unpack an array argument into a pointer to the body and the length
  1589 // if the array is non-null, otherwise pass 0 for both.
  1590 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type,
  1591                                   VMRegPair body_arg, VMRegPair length_arg, Register r_caller_sp,
  1592                                   Register tmp_reg, Register tmp2_reg) {
  1593   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
  1594          "possible collision");
  1595   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
  1596          "possible collision");
  1598   // Pass the length, ptr pair.
  1599   Label set_out_args;
  1600   VMRegPair tmp, tmp2;
  1601   tmp.set_ptr(tmp_reg->as_VMReg());
  1602   tmp2.set_ptr(tmp2_reg->as_VMReg());
  1603   if (reg.first()->is_stack()) {
  1604     // Load the arg up from the stack.
  1605     move_ptr(masm, reg, tmp, r_caller_sp, /*unused*/ R0);
  1606     reg = tmp;
  1608   __ li(tmp2_reg, 0); // Pass zeros if Array=null.
  1609   if (tmp_reg != reg.first()->as_Register()) __ li(tmp_reg, 0);
  1610   __ cmpdi(CCR0, reg.first()->as_Register(), 0);
  1611   __ beq(CCR0, set_out_args);
  1612   __ lwa(tmp2_reg, arrayOopDesc::length_offset_in_bytes(), reg.first()->as_Register());
  1613   __ addi(tmp_reg, reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type));
  1614   __ bind(set_out_args);
  1615   move_ptr(masm, tmp, body_arg, r_caller_sp, /*unused*/ R0);
  1616   move_ptr(masm, tmp2, length_arg, r_caller_sp, /*unused*/ R0); // Same as move32_64 on PPC64.
  1619 static void verify_oop_args(MacroAssembler* masm,
  1620                             methodHandle method,
  1621                             const BasicType* sig_bt,
  1622                             const VMRegPair* regs) {
  1623   Register temp_reg = R19_method;  // not part of any compiled calling seq
  1624   if (VerifyOops) {
  1625     for (int i = 0; i < method->size_of_parameters(); i++) {
  1626       if (sig_bt[i] == T_OBJECT ||
  1627           sig_bt[i] == T_ARRAY) {
  1628         VMReg r = regs[i].first();
  1629         assert(r->is_valid(), "bad oop arg");
  1630         if (r->is_stack()) {
  1631           __ ld(temp_reg, reg2offset(r), R1_SP);
  1632           __ verify_oop(temp_reg);
  1633         } else {
  1634           __ verify_oop(r->as_Register());
  1641 static void gen_special_dispatch(MacroAssembler* masm,
  1642                                  methodHandle method,
  1643                                  const BasicType* sig_bt,
  1644                                  const VMRegPair* regs) {
  1645   verify_oop_args(masm, method, sig_bt, regs);
  1646   vmIntrinsics::ID iid = method->intrinsic_id();
  1648   // Now write the args into the outgoing interpreter space
  1649   bool     has_receiver   = false;
  1650   Register receiver_reg   = noreg;
  1651   int      member_arg_pos = -1;
  1652   Register member_reg     = noreg;
  1653   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
  1654   if (ref_kind != 0) {
  1655     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
  1656     member_reg = R19_method;  // known to be free at this point
  1657     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
  1658   } else if (iid == vmIntrinsics::_invokeBasic) {
  1659     has_receiver = true;
  1660   } else {
  1661     fatal(err_msg_res("unexpected intrinsic id %d", iid));
  1664   if (member_reg != noreg) {
  1665     // Load the member_arg into register, if necessary.
  1666     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
  1667     VMReg r = regs[member_arg_pos].first();
  1668     if (r->is_stack()) {
  1669       __ ld(member_reg, reg2offset(r), R1_SP);
  1670     } else {
  1671       // no data motion is needed
  1672       member_reg = r->as_Register();
  1676   if (has_receiver) {
  1677     // Make sure the receiver is loaded into a register.
  1678     assert(method->size_of_parameters() > 0, "oob");
  1679     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
  1680     VMReg r = regs[0].first();
  1681     assert(r->is_valid(), "bad receiver arg");
  1682     if (r->is_stack()) {
  1683       // Porting note:  This assumes that compiled calling conventions always
  1684       // pass the receiver oop in a register.  If this is not true on some
  1685       // platform, pick a temp and load the receiver from stack.
  1686       fatal("receiver always in a register");
  1687       receiver_reg = R11_scratch1;  // TODO (hs24): is R11_scratch1 really free at this point?
  1688       __ ld(receiver_reg, reg2offset(r), R1_SP);
  1689     } else {
  1690       // no data motion is needed
  1691       receiver_reg = r->as_Register();
  1695   // Figure out which address we are really jumping to:
  1696   MethodHandles::generate_method_handle_dispatch(masm, iid,
  1697                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
  1700 #endif // COMPILER2
  1702 // ---------------------------------------------------------------------------
  1703 // Generate a native wrapper for a given method. The method takes arguments
  1704 // in the Java compiled code convention, marshals them to the native
  1705 // convention (handlizes oops, etc), transitions to native, makes the call,
  1706 // returns to java state (possibly blocking), unhandlizes any result and
  1707 // returns.
  1708 //
  1709 // Critical native functions are a shorthand for the use of
  1710 // GetPrimtiveArrayCritical and disallow the use of any other JNI
  1711 // functions.  The wrapper is expected to unpack the arguments before
  1712 // passing them to the callee and perform checks before and after the
  1713 // native call to ensure that they GC_locker
  1714 // lock_critical/unlock_critical semantics are followed.  Some other
  1715 // parts of JNI setup are skipped like the tear down of the JNI handle
  1716 // block and the check for pending exceptions it's impossible for them
  1717 // to be thrown.
  1718 //
  1719 // They are roughly structured like this:
  1720 //   if (GC_locker::needs_gc())
  1721 //     SharedRuntime::block_for_jni_critical();
  1722 //   tranistion to thread_in_native
  1723 //   unpack arrray arguments and call native entry point
  1724 //   check for safepoint in progress
  1725 //   check if any thread suspend flags are set
  1726 //     call into JVM and possible unlock the JNI critical
  1727 //     if a GC was suppressed while in the critical native.
  1728 //   transition back to thread_in_Java
  1729 //   return to caller
  1730 //
  1731 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
  1732                                                 methodHandle method,
  1733                                                 int compile_id,
  1734                                                 BasicType *in_sig_bt,
  1735                                                 VMRegPair *in_regs,
  1736                                                 BasicType ret_type) {
  1737 #ifdef COMPILER2
  1738   if (method->is_method_handle_intrinsic()) {
  1739     vmIntrinsics::ID iid = method->intrinsic_id();
  1740     intptr_t start = (intptr_t)__ pc();
  1741     int vep_offset = ((intptr_t)__ pc()) - start;
  1742     gen_special_dispatch(masm,
  1743                          method,
  1744                          in_sig_bt,
  1745                          in_regs);
  1746     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
  1747     __ flush();
  1748     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
  1749     return nmethod::new_native_nmethod(method,
  1750                                        compile_id,
  1751                                        masm->code(),
  1752                                        vep_offset,
  1753                                        frame_complete,
  1754                                        stack_slots / VMRegImpl::slots_per_word,
  1755                                        in_ByteSize(-1),
  1756                                        in_ByteSize(-1),
  1757                                        (OopMapSet*)NULL);
  1760   bool is_critical_native = true;
  1761   address native_func = method->critical_native_function();
  1762   if (native_func == NULL) {
  1763     native_func = method->native_function();
  1764     is_critical_native = false;
  1766   assert(native_func != NULL, "must have function");
  1768   // First, create signature for outgoing C call
  1769   // --------------------------------------------------------------------------
  1771   int total_in_args = method->size_of_parameters();
  1772   // We have received a description of where all the java args are located
  1773   // on entry to the wrapper. We need to convert these args to where
  1774   // the jni function will expect them. To figure out where they go
  1775   // we convert the java signature to a C signature by inserting
  1776   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1777   //
  1778   // Additionally, on ppc64 we must convert integers to longs in the C
  1779   // signature. We do this in advance in order to have no trouble with
  1780   // indexes into the bt-arrays.
  1781   // So convert the signature and registers now, and adjust the total number
  1782   // of in-arguments accordingly.
  1783   int i2l_argcnt = convert_ints_to_longints_argcnt(total_in_args, in_sig_bt); // PPC64: pass ints as longs.
  1785   // Calculate the total number of C arguments and create arrays for the
  1786   // signature and the outgoing registers.
  1787   // On ppc64, we have two arrays for the outgoing registers, because
  1788   // some floating-point arguments must be passed in registers _and_
  1789   // in stack locations.
  1790   bool method_is_static = method->is_static();
  1791   int  total_c_args     = i2l_argcnt;
  1793   if (!is_critical_native) {
  1794     int n_hidden_args = method_is_static ? 2 : 1;
  1795     total_c_args += n_hidden_args;
  1796   } else {
  1797     // No JNIEnv*, no this*, but unpacked arrays (base+length).
  1798     for (int i = 0; i < total_in_args; i++) {
  1799       if (in_sig_bt[i] == T_ARRAY) {
  1800         total_c_args += 2; // PPC64: T_LONG, T_INT, T_ADDRESS (see convert_ints_to_longints and c_calling_convention)
  1805   BasicType *out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1806   VMRegPair *out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  1807   VMRegPair *out_regs2  = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  1808   BasicType* in_elem_bt = NULL;
  1810   // Create the signature for the C call:
  1811   //   1) add the JNIEnv*
  1812   //   2) add the class if the method is static
  1813   //   3) copy the rest of the incoming signature (shifted by the number of
  1814   //      hidden arguments).
  1816   int argc = 0;
  1817   if (!is_critical_native) {
  1818     convert_ints_to_longints(i2l_argcnt, total_in_args, in_sig_bt, in_regs); // PPC64: pass ints as longs.
  1820     out_sig_bt[argc++] = T_ADDRESS;
  1821     if (method->is_static()) {
  1822       out_sig_bt[argc++] = T_OBJECT;
  1825     for (int i = 0; i < total_in_args ; i++ ) {
  1826       out_sig_bt[argc++] = in_sig_bt[i];
  1828   } else {
  1829     Thread* THREAD = Thread::current();
  1830     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
  1831     SignatureStream ss(method->signature());
  1832     int o = 0;
  1833     for (int i = 0; i < total_in_args ; i++, o++) {
  1834       if (in_sig_bt[i] == T_ARRAY) {
  1835         // Arrays are passed as int, elem* pair
  1836         Symbol* atype = ss.as_symbol(CHECK_NULL);
  1837         const char* at = atype->as_C_string();
  1838         if (strlen(at) == 2) {
  1839           assert(at[0] == '[', "must be");
  1840           switch (at[1]) {
  1841             case 'B': in_elem_bt[o] = T_BYTE; break;
  1842             case 'C': in_elem_bt[o] = T_CHAR; break;
  1843             case 'D': in_elem_bt[o] = T_DOUBLE; break;
  1844             case 'F': in_elem_bt[o] = T_FLOAT; break;
  1845             case 'I': in_elem_bt[o] = T_INT; break;
  1846             case 'J': in_elem_bt[o] = T_LONG; break;
  1847             case 'S': in_elem_bt[o] = T_SHORT; break;
  1848             case 'Z': in_elem_bt[o] = T_BOOLEAN; break;
  1849             default: ShouldNotReachHere();
  1852       } else {
  1853         in_elem_bt[o] = T_VOID;
  1854         switch(in_sig_bt[i]) { // PPC64: pass ints as longs.
  1855           case T_BOOLEAN:
  1856           case T_CHAR:
  1857           case T_BYTE:
  1858           case T_SHORT:
  1859           case T_INT: in_elem_bt[++o] = T_VOID; break;
  1860           default: break;
  1863       if (in_sig_bt[i] != T_VOID) {
  1864         assert(in_sig_bt[i] == ss.type(), "must match");
  1865         ss.next();
  1868     assert(i2l_argcnt==o, "must match");
  1870     convert_ints_to_longints(i2l_argcnt, total_in_args, in_sig_bt, in_regs); // PPC64: pass ints as longs.
  1872     for (int i = 0; i < total_in_args ; i++ ) {
  1873       if (in_sig_bt[i] == T_ARRAY) {
  1874         // Arrays are passed as int, elem* pair.
  1875         out_sig_bt[argc++] = T_LONG; // PPC64: pass ints as longs.
  1876         out_sig_bt[argc++] = T_INT;
  1877         out_sig_bt[argc++] = T_ADDRESS;
  1878       } else {
  1879         out_sig_bt[argc++] = in_sig_bt[i];
  1885   // Compute the wrapper's frame size.
  1886   // --------------------------------------------------------------------------
  1888   // Now figure out where the args must be stored and how much stack space
  1889   // they require.
  1890   //
  1891   // Compute framesize for the wrapper. We need to handlize all oops in
  1892   // incoming registers.
  1893   //
  1894   // Calculate the total number of stack slots we will need:
  1895   //   1) abi requirements
  1896   //   2) outgoing arguments
  1897   //   3) space for inbound oop handle area
  1898   //   4) space for handlizing a klass if static method
  1899   //   5) space for a lock if synchronized method
  1900   //   6) workspace for saving return values, int <-> float reg moves, etc.
  1901   //   7) alignment
  1902   //
  1903   // Layout of the native wrapper frame:
  1904   // (stack grows upwards, memory grows downwards)
  1905   //
  1906   // NW     [ABI_REG_ARGS]             <-- 1) R1_SP
  1907   //        [outgoing arguments]       <-- 2) R1_SP + out_arg_slot_offset
  1908   //        [oopHandle area]           <-- 3) R1_SP + oop_handle_offset (save area for critical natives)
  1909   //        klass                      <-- 4) R1_SP + klass_offset
  1910   //        lock                       <-- 5) R1_SP + lock_offset
  1911   //        [workspace]                <-- 6) R1_SP + workspace_offset
  1912   //        [alignment] (optional)     <-- 7)
  1913   // caller [JIT_TOP_ABI_48]           <-- r_callers_sp
  1914   //
  1915   // - *_slot_offset Indicates offset from SP in number of stack slots.
  1916   // - *_offset      Indicates offset from SP in bytes.
  1918   int stack_slots = c_calling_convention(out_sig_bt, out_regs, out_regs2, total_c_args) // 1+2)
  1919                   + SharedRuntime::out_preserve_stack_slots(); // See c_calling_convention.
  1921   // Now the space for the inbound oop handle area.
  1922   int total_save_slots = num_java_iarg_registers * VMRegImpl::slots_per_word;
  1923   if (is_critical_native) {
  1924     // Critical natives may have to call out so they need a save area
  1925     // for register arguments.
  1926     int double_slots = 0;
  1927     int single_slots = 0;
  1928     for (int i = 0; i < total_in_args; i++) {
  1929       if (in_regs[i].first()->is_Register()) {
  1930         const Register reg = in_regs[i].first()->as_Register();
  1931         switch (in_sig_bt[i]) {
  1932           case T_BOOLEAN:
  1933           case T_BYTE:
  1934           case T_SHORT:
  1935           case T_CHAR:
  1936           case T_INT:  /*single_slots++;*/ break; // PPC64: pass ints as longs.
  1937           case T_ARRAY:
  1938           case T_LONG: double_slots++; break;
  1939           default:  ShouldNotReachHere();
  1941       } else if (in_regs[i].first()->is_FloatRegister()) {
  1942         switch (in_sig_bt[i]) {
  1943           case T_FLOAT:  single_slots++; break;
  1944           case T_DOUBLE: double_slots++; break;
  1945           default:  ShouldNotReachHere();
  1949     total_save_slots = double_slots * 2 + round_to(single_slots, 2); // round to even
  1952   int oop_handle_slot_offset = stack_slots;
  1953   stack_slots += total_save_slots;                                                // 3)
  1955   int klass_slot_offset = 0;
  1956   int klass_offset      = -1;
  1957   if (method_is_static && !is_critical_native) {                                  // 4)
  1958     klass_slot_offset  = stack_slots;
  1959     klass_offset       = klass_slot_offset * VMRegImpl::stack_slot_size;
  1960     stack_slots       += VMRegImpl::slots_per_word;
  1963   int lock_slot_offset = 0;
  1964   int lock_offset      = -1;
  1965   if (method->is_synchronized()) {                                                // 5)
  1966     lock_slot_offset   = stack_slots;
  1967     lock_offset        = lock_slot_offset * VMRegImpl::stack_slot_size;
  1968     stack_slots       += VMRegImpl::slots_per_word;
  1971   int workspace_slot_offset = stack_slots;                                        // 6)
  1972   stack_slots         += 2;
  1974   // Now compute actual number of stack words we need.
  1975   // Rounding to make stack properly aligned.
  1976   stack_slots = round_to(stack_slots,                                             // 7)
  1977                          frame::alignment_in_bytes / VMRegImpl::stack_slot_size);
  1978   int frame_size_in_bytes = stack_slots * VMRegImpl::stack_slot_size;
  1981   // Now we can start generating code.
  1982   // --------------------------------------------------------------------------
  1984   intptr_t start_pc = (intptr_t)__ pc();
  1985   intptr_t vep_start_pc;
  1986   intptr_t frame_done_pc;
  1987   intptr_t oopmap_pc;
  1989   Label    ic_miss;
  1990   Label    handle_pending_exception;
  1992   Register r_callers_sp = R21;
  1993   Register r_temp_1     = R22;
  1994   Register r_temp_2     = R23;
  1995   Register r_temp_3     = R24;
  1996   Register r_temp_4     = R25;
  1997   Register r_temp_5     = R26;
  1998   Register r_temp_6     = R27;
  1999   Register r_return_pc  = R28;
  2001   Register r_carg1_jnienv        = noreg;
  2002   Register r_carg2_classorobject = noreg;
  2003   if (!is_critical_native) {
  2004     r_carg1_jnienv        = out_regs[0].first()->as_Register();
  2005     r_carg2_classorobject = out_regs[1].first()->as_Register();
  2009   // Generate the Unverified Entry Point (UEP).
  2010   // --------------------------------------------------------------------------
  2011   assert(start_pc == (intptr_t)__ pc(), "uep must be at start");
  2013   // Check ic: object class == cached class?
  2014   if (!method_is_static) {
  2015   Register ic = as_Register(Matcher::inline_cache_reg_encode());
  2016   Register receiver_klass = r_temp_1;
  2018   __ cmpdi(CCR0, R3_ARG1, 0);
  2019   __ beq(CCR0, ic_miss);
  2020   __ verify_oop(R3_ARG1);
  2021   __ load_klass(receiver_klass, R3_ARG1);
  2023   __ cmpd(CCR0, receiver_klass, ic);
  2024   __ bne(CCR0, ic_miss);
  2028   // Generate the Verified Entry Point (VEP).
  2029   // --------------------------------------------------------------------------
  2030   vep_start_pc = (intptr_t)__ pc();
  2032   __ save_LR_CR(r_temp_1);
  2033   __ generate_stack_overflow_check(frame_size_in_bytes); // Check before creating frame.
  2034   __ mr(r_callers_sp, R1_SP);                       // Remember frame pointer.
  2035   __ push_frame(frame_size_in_bytes, r_temp_1);          // Push the c2n adapter's frame.
  2036   frame_done_pc = (intptr_t)__ pc();
  2038   // Native nmethod wrappers never take possesion of the oop arguments.
  2039   // So the caller will gc the arguments.
  2040   // The only thing we need an oopMap for is if the call is static.
  2041   //
  2042   // An OopMap for lock (and class if static), and one for the VM call itself.
  2043   OopMapSet *oop_maps = new OopMapSet();
  2044   OopMap    *oop_map  = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  2046   if (is_critical_native) {
  2047     check_needs_gc_for_critical_native(masm, stack_slots, total_in_args, oop_handle_slot_offset, oop_maps, in_regs, in_sig_bt, r_temp_1);
  2050   // Move arguments from register/stack to register/stack.
  2051   // --------------------------------------------------------------------------
  2052   //
  2053   // We immediately shuffle the arguments so that for any vm call we have
  2054   // to make from here on out (sync slow path, jvmti, etc.) we will have
  2055   // captured the oops from our caller and have a valid oopMap for them.
  2056   //
  2057   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
  2058   // (derived from JavaThread* which is in R16_thread) and, if static,
  2059   // the class mirror instead of a receiver. This pretty much guarantees that
  2060   // register layout will not match. We ignore these extra arguments during
  2061   // the shuffle. The shuffle is described by the two calling convention
  2062   // vectors we have in our possession. We simply walk the java vector to
  2063   // get the source locations and the c vector to get the destinations.
  2065   // Record sp-based slot for receiver on stack for non-static methods.
  2066   int receiver_offset = -1;
  2068   // We move the arguments backward because the floating point registers
  2069   // destination will always be to a register with a greater or equal
  2070   // register number or the stack.
  2071   //   in  is the index of the incoming Java arguments
  2072   //   out is the index of the outgoing C arguments
  2074 #ifdef ASSERT
  2075   bool reg_destroyed[RegisterImpl::number_of_registers];
  2076   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
  2077   for (int r = 0 ; r < RegisterImpl::number_of_registers ; r++) {
  2078     reg_destroyed[r] = false;
  2080   for (int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++) {
  2081     freg_destroyed[f] = false;
  2083 #endif // ASSERT
  2085   for (int in = total_in_args - 1, out = total_c_args - 1; in >= 0 ; in--, out--) {
  2087 #ifdef ASSERT
  2088     if (in_regs[in].first()->is_Register()) {
  2089       assert(!reg_destroyed[in_regs[in].first()->as_Register()->encoding()], "ack!");
  2090     } else if (in_regs[in].first()->is_FloatRegister()) {
  2091       assert(!freg_destroyed[in_regs[in].first()->as_FloatRegister()->encoding()], "ack!");
  2093     if (out_regs[out].first()->is_Register()) {
  2094       reg_destroyed[out_regs[out].first()->as_Register()->encoding()] = true;
  2095     } else if (out_regs[out].first()->is_FloatRegister()) {
  2096       freg_destroyed[out_regs[out].first()->as_FloatRegister()->encoding()] = true;
  2098     if (out_regs2[out].first()->is_Register()) {
  2099       reg_destroyed[out_regs2[out].first()->as_Register()->encoding()] = true;
  2100     } else if (out_regs2[out].first()->is_FloatRegister()) {
  2101       freg_destroyed[out_regs2[out].first()->as_FloatRegister()->encoding()] = true;
  2103 #endif // ASSERT
  2105     switch (in_sig_bt[in]) {
  2106       case T_BOOLEAN:
  2107       case T_CHAR:
  2108       case T_BYTE:
  2109       case T_SHORT:
  2110       case T_INT:
  2111         guarantee(in > 0 && in_sig_bt[in-1] == T_LONG,
  2112                   "expecting type (T_LONG,bt) for bt in {T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
  2113         break;
  2114       case T_LONG:
  2115         if (in_sig_bt[in+1] == T_VOID) {
  2116           long_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
  2117         } else {
  2118           guarantee(in_sig_bt[in+1] == T_BOOLEAN || in_sig_bt[in+1] == T_CHAR  ||
  2119                     in_sig_bt[in+1] == T_BYTE    || in_sig_bt[in+1] == T_SHORT ||
  2120                     in_sig_bt[in+1] == T_INT,
  2121                  "expecting type (T_LONG,bt) for bt in {T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
  2122           int_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
  2124         break;
  2125       case T_ARRAY:
  2126         if (is_critical_native) {
  2127           int body_arg = out;
  2128           out -= 2; // Point to length arg. PPC64: pass ints as longs.
  2129           unpack_array_argument(masm, in_regs[in], in_elem_bt[in], out_regs[body_arg], out_regs[out],
  2130                                 r_callers_sp, r_temp_1, r_temp_2);
  2131           break;
  2133       case T_OBJECT:
  2134         assert(!is_critical_native, "no oop arguments");
  2135         object_move(masm, stack_slots,
  2136                     oop_map, oop_handle_slot_offset,
  2137                     ((in == 0) && (!method_is_static)), &receiver_offset,
  2138                     in_regs[in], out_regs[out],
  2139                     r_callers_sp, r_temp_1, r_temp_2);
  2140         break;
  2141       case T_VOID:
  2142         break;
  2143       case T_FLOAT:
  2144         float_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
  2145         if (out_regs2[out].first()->is_valid()) {
  2146           float_move(masm, in_regs[in], out_regs2[out], r_callers_sp, r_temp_1);
  2148         break;
  2149       case T_DOUBLE:
  2150         double_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
  2151         if (out_regs2[out].first()->is_valid()) {
  2152           double_move(masm, in_regs[in], out_regs2[out], r_callers_sp, r_temp_1);
  2154         break;
  2155       case T_ADDRESS:
  2156         fatal("found type (T_ADDRESS) in java args");
  2157         break;
  2158       default:
  2159         ShouldNotReachHere();
  2160         break;
  2164   // Pre-load a static method's oop into ARG2.
  2165   // Used both by locking code and the normal JNI call code.
  2166   if (method_is_static && !is_critical_native) {
  2167     __ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()),
  2168                         r_carg2_classorobject);
  2170     // Now handlize the static class mirror in carg2. It's known not-null.
  2171     __ std(r_carg2_classorobject, klass_offset, R1_SP);
  2172     oop_map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  2173     __ addi(r_carg2_classorobject, R1_SP, klass_offset);
  2176   // Get JNIEnv* which is first argument to native.
  2177   if (!is_critical_native) {
  2178     __ addi(r_carg1_jnienv, R16_thread, in_bytes(JavaThread::jni_environment_offset()));
  2181   // NOTE:
  2182   //
  2183   // We have all of the arguments setup at this point.
  2184   // We MUST NOT touch any outgoing regs from this point on.
  2185   // So if we must call out we must push a new frame.
  2187   // Get current pc for oopmap, and load it patchable relative to global toc.
  2188   oopmap_pc = (intptr_t) __ pc();
  2189   __ calculate_address_from_global_toc(r_return_pc, (address)oopmap_pc, true, true, true, true);
  2191   // We use the same pc/oopMap repeatedly when we call out.
  2192   oop_maps->add_gc_map(oopmap_pc - start_pc, oop_map);
  2194   // r_return_pc now has the pc loaded that we will use when we finally call
  2195   // to native.
  2197   // Make sure that thread is non-volatile; it crosses a bunch of VM calls below.
  2198   assert(R16_thread->is_nonvolatile(), "thread must be in non-volatile register");
  2201 # if 0
  2202   // DTrace method entry
  2203 # endif
  2205   // Lock a synchronized method.
  2206   // --------------------------------------------------------------------------
  2208   if (method->is_synchronized()) {
  2209     assert(!is_critical_native, "unhandled");
  2210     ConditionRegister r_flag = CCR1;
  2211     Register          r_oop  = r_temp_4;
  2212     const Register    r_box  = r_temp_5;
  2213     Label             done, locked;
  2215     // Load the oop for the object or class. r_carg2_classorobject contains
  2216     // either the handlized oop from the incoming arguments or the handlized
  2217     // class mirror (if the method is static).
  2218     __ ld(r_oop, 0, r_carg2_classorobject);
  2220     // Get the lock box slot's address.
  2221     __ addi(r_box, R1_SP, lock_offset);
  2223 #   ifdef ASSERT
  2224     if (UseBiasedLocking) {
  2225       // Making the box point to itself will make it clear it went unused
  2226       // but also be obviously invalid.
  2227       __ std(r_box, 0, r_box);
  2229 #   endif // ASSERT
  2231     // Try fastpath for locking.
  2232     // fast_lock kills r_temp_1, r_temp_2, r_temp_3.
  2233     __ compiler_fast_lock_object(r_flag, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3);
  2234     __ beq(r_flag, locked);
  2236     // None of the above fast optimizations worked so we have to get into the
  2237     // slow case of monitor enter. Inline a special case of call_VM that
  2238     // disallows any pending_exception.
  2240     // Save argument registers and leave room for C-compatible ABI_REG_ARGS.
  2241     int frame_size = frame::abi_reg_args_size +
  2242                      round_to(total_c_args * wordSize, frame::alignment_in_bytes);
  2243     __ mr(R11_scratch1, R1_SP);
  2244     RegisterSaver::push_frame_and_save_argument_registers(masm, R12_scratch2, frame_size, total_c_args, out_regs, out_regs2);
  2246     // Do the call.
  2247     __ set_last_Java_frame(R11_scratch1, r_return_pc);
  2248     assert(r_return_pc->is_nonvolatile(), "expecting return pc to be in non-volatile register");
  2249     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), r_oop, r_box, R16_thread);
  2250     __ reset_last_Java_frame();
  2252     RegisterSaver::restore_argument_registers_and_pop_frame(masm, frame_size, total_c_args, out_regs, out_regs2);
  2254     __ asm_assert_mem8_is_zero(thread_(pending_exception),
  2255        "no pending exception allowed on exit from SharedRuntime::complete_monitor_locking_C", 0);
  2257     __ bind(locked);
  2261   // Publish thread state
  2262   // --------------------------------------------------------------------------
  2264   // Use that pc we placed in r_return_pc a while back as the current frame anchor.
  2265   __ set_last_Java_frame(R1_SP, r_return_pc);
  2267   // Transition from _thread_in_Java to _thread_in_native.
  2268   __ li(R0, _thread_in_native);
  2269   __ release();
  2270   // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
  2271   __ stw(R0, thread_(thread_state));
  2272   if (UseMembar) {
  2273     __ fence();
  2277   // The JNI call
  2278   // --------------------------------------------------------------------------
  2279 #if defined(ABI_ELFv2)
  2280   __ call_c(native_func, relocInfo::runtime_call_type);
  2281 #else
  2282   FunctionDescriptor* fd_native_method = (FunctionDescriptor*) native_func;
  2283   __ call_c(fd_native_method, relocInfo::runtime_call_type);
  2284 #endif
  2287   // Now, we are back from the native code.
  2290   // Unpack the native result.
  2291   // --------------------------------------------------------------------------
  2293   // For int-types, we do any needed sign-extension required.
  2294   // Care must be taken that the return values (R3_RET and F1_RET)
  2295   // will survive any VM calls for blocking or unlocking.
  2296   // An OOP result (handle) is done specially in the slow-path code.
  2298   switch (ret_type) {
  2299     case T_VOID:    break;        // Nothing to do!
  2300     case T_FLOAT:   break;        // Got it where we want it (unless slow-path).
  2301     case T_DOUBLE:  break;        // Got it where we want it (unless slow-path).
  2302     case T_LONG:    break;        // Got it where we want it (unless slow-path).
  2303     case T_OBJECT:  break;        // Really a handle.
  2304                                   // Cannot de-handlize until after reclaiming jvm_lock.
  2305     case T_ARRAY:   break;
  2307     case T_BOOLEAN: {             // 0 -> false(0); !0 -> true(1)
  2308       Label skip_modify;
  2309       __ cmpwi(CCR0, R3_RET, 0);
  2310       __ beq(CCR0, skip_modify);
  2311       __ li(R3_RET, 1);
  2312       __ bind(skip_modify);
  2313       break;
  2315     case T_BYTE: {                // sign extension
  2316       __ extsb(R3_RET, R3_RET);
  2317       break;
  2319     case T_CHAR: {                // unsigned result
  2320       __ andi(R3_RET, R3_RET, 0xffff);
  2321       break;
  2323     case T_SHORT: {               // sign extension
  2324       __ extsh(R3_RET, R3_RET);
  2325       break;
  2327     case T_INT:                   // nothing to do
  2328       break;
  2329     default:
  2330       ShouldNotReachHere();
  2331       break;
  2335   // Publish thread state
  2336   // --------------------------------------------------------------------------
  2338   // Switch thread to "native transition" state before reading the
  2339   // synchronization state. This additional state is necessary because reading
  2340   // and testing the synchronization state is not atomic w.r.t. GC, as this
  2341   // scenario demonstrates:
  2342   //   - Java thread A, in _thread_in_native state, loads _not_synchronized
  2343   //     and is preempted.
  2344   //   - VM thread changes sync state to synchronizing and suspends threads
  2345   //     for GC.
  2346   //   - Thread A is resumed to finish this native method, but doesn't block
  2347   //     here since it didn't see any synchronization in progress, and escapes.
  2349   // Transition from _thread_in_native to _thread_in_native_trans.
  2350   __ li(R0, _thread_in_native_trans);
  2351   __ release();
  2352   // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
  2353   __ stw(R0, thread_(thread_state));
  2356   // Must we block?
  2357   // --------------------------------------------------------------------------
  2359   // Block, if necessary, before resuming in _thread_in_Java state.
  2360   // In order for GC to work, don't clear the last_Java_sp until after blocking.
  2361   Label after_transition;
  2363     Label no_block, sync;
  2365     if (os::is_MP()) {
  2366       if (UseMembar) {
  2367         // Force this write out before the read below.
  2368         __ fence();
  2369       } else {
  2370         // Write serialization page so VM thread can do a pseudo remote membar.
  2371         // We use the current thread pointer to calculate a thread specific
  2372         // offset to write to within the page. This minimizes bus traffic
  2373         // due to cache line collision.
  2374         __ serialize_memory(R16_thread, r_temp_4, r_temp_5);
  2378     Register sync_state_addr = r_temp_4;
  2379     Register sync_state      = r_temp_5;
  2380     Register suspend_flags   = r_temp_6;
  2382     __ load_const(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/ sync_state);
  2384     // TODO: PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
  2385     __ lwz(sync_state, 0, sync_state_addr);
  2387     // TODO: PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
  2388     __ lwz(suspend_flags, thread_(suspend_flags));
  2390     __ acquire();
  2392     Label do_safepoint;
  2393     // No synchronization in progress nor yet synchronized.
  2394     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
  2395     // Not suspended.
  2396     __ cmpwi(CCR1, suspend_flags, 0);
  2398     __ bne(CCR0, sync);
  2399     __ beq(CCR1, no_block);
  2401     // Block. Save any potential method result value before the operation and
  2402     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
  2403     // lets us share the oopMap we used when we went native rather than create
  2404     // a distinct one for this pc.
  2405     __ bind(sync);
  2407     address entry_point = is_critical_native
  2408       ? CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)
  2409       : CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans);
  2410     save_native_result(masm, ret_type, workspace_slot_offset);
  2411     __ call_VM_leaf(entry_point, R16_thread);
  2412     restore_native_result(masm, ret_type, workspace_slot_offset);
  2414     if (is_critical_native) {
  2415       __ b(after_transition); // No thread state transition here.
  2417     __ bind(no_block);
  2420   // Publish thread state.
  2421   // --------------------------------------------------------------------------
  2423   // Thread state is thread_in_native_trans. Any safepoint blocking has
  2424   // already happened so we can now change state to _thread_in_Java.
  2426   // Transition from _thread_in_native_trans to _thread_in_Java.
  2427   __ li(R0, _thread_in_Java);
  2428   __ release();
  2429   // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
  2430   __ stw(R0, thread_(thread_state));
  2431   if (UseMembar) {
  2432     __ fence();
  2434   __ bind(after_transition);
  2436   // Reguard any pages if necessary.
  2437   // --------------------------------------------------------------------------
  2439   Label no_reguard;
  2440   __ lwz(r_temp_1, thread_(stack_guard_state));
  2441   __ cmpwi(CCR0, r_temp_1, JavaThread::stack_guard_yellow_disabled);
  2442   __ bne(CCR0, no_reguard);
  2444   save_native_result(masm, ret_type, workspace_slot_offset);
  2445   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
  2446   restore_native_result(masm, ret_type, workspace_slot_offset);
  2448   __ bind(no_reguard);
  2451   // Unlock
  2452   // --------------------------------------------------------------------------
  2454   if (method->is_synchronized()) {
  2456     ConditionRegister r_flag   = CCR1;
  2457     const Register r_oop       = r_temp_4;
  2458     const Register r_box       = r_temp_5;
  2459     const Register r_exception = r_temp_6;
  2460     Label done;
  2462     // Get oop and address of lock object box.
  2463     if (method_is_static) {
  2464       assert(klass_offset != -1, "");
  2465       __ ld(r_oop, klass_offset, R1_SP);
  2466     } else {
  2467       assert(receiver_offset != -1, "");
  2468       __ ld(r_oop, receiver_offset, R1_SP);
  2470     __ addi(r_box, R1_SP, lock_offset);
  2472     // Try fastpath for unlocking.
  2473     __ compiler_fast_unlock_object(r_flag, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3);
  2474     __ beq(r_flag, done);
  2476     // Save and restore any potential method result value around the unlocking operation.
  2477     save_native_result(masm, ret_type, workspace_slot_offset);
  2479     // Must save pending exception around the slow-path VM call. Since it's a
  2480     // leaf call, the pending exception (if any) can be kept in a register.
  2481     __ ld(r_exception, thread_(pending_exception));
  2482     assert(r_exception->is_nonvolatile(), "exception register must be non-volatile");
  2483     __ li(R0, 0);
  2484     __ std(R0, thread_(pending_exception));
  2486     // Slow case of monitor enter.
  2487     // Inline a special case of call_VM that disallows any pending_exception.
  2488     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), r_oop, r_box);
  2490     __ asm_assert_mem8_is_zero(thread_(pending_exception),
  2491        "no pending exception allowed on exit from SharedRuntime::complete_monitor_unlocking_C", 0);
  2493     restore_native_result(masm, ret_type, workspace_slot_offset);
  2495     // Check_forward_pending_exception jump to forward_exception if any pending
  2496     // exception is set. The forward_exception routine expects to see the
  2497     // exception in pending_exception and not in a register. Kind of clumsy,
  2498     // since all folks who branch to forward_exception must have tested
  2499     // pending_exception first and hence have it in a register already.
  2500     __ std(r_exception, thread_(pending_exception));
  2502     __ bind(done);
  2505 # if 0
  2506   // DTrace method exit
  2507 # endif
  2509   // Clear "last Java frame" SP and PC.
  2510   // --------------------------------------------------------------------------
  2512   __ reset_last_Java_frame();
  2514   // Unpack oop result.
  2515   // --------------------------------------------------------------------------
  2517   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  2518     Label skip_unboxing;
  2519     __ cmpdi(CCR0, R3_RET, 0);
  2520     __ beq(CCR0, skip_unboxing);
  2521     __ ld(R3_RET, 0, R3_RET);
  2522     __ bind(skip_unboxing);
  2523     __ verify_oop(R3_RET);
  2527   // Reset handle block.
  2528   // --------------------------------------------------------------------------
  2529   if (!is_critical_native) {
  2530   __ ld(r_temp_1, thread_(active_handles));
  2531   // TODO: PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
  2532   __ li(r_temp_2, 0);
  2533   __ stw(r_temp_2, JNIHandleBlock::top_offset_in_bytes(), r_temp_1);
  2536   // Check for pending exceptions.
  2537   // --------------------------------------------------------------------------
  2538   __ ld(r_temp_2, thread_(pending_exception));
  2539   __ cmpdi(CCR0, r_temp_2, 0);
  2540   __ bne(CCR0, handle_pending_exception);
  2543   // Return
  2544   // --------------------------------------------------------------------------
  2546   __ pop_frame();
  2547   __ restore_LR_CR(R11);
  2548   __ blr();
  2551   // Handler for pending exceptions (out-of-line).
  2552   // --------------------------------------------------------------------------
  2554   // Since this is a native call, we know the proper exception handler
  2555   // is the empty function. We just pop this frame and then jump to
  2556   // forward_exception_entry.
  2557   if (!is_critical_native) {
  2558   __ align(InteriorEntryAlignment);
  2559   __ bind(handle_pending_exception);
  2561   __ pop_frame();
  2562   __ restore_LR_CR(R11);
  2563   __ b64_patchable((address)StubRoutines::forward_exception_entry(),
  2564                        relocInfo::runtime_call_type);
  2567   // Handler for a cache miss (out-of-line).
  2568   // --------------------------------------------------------------------------
  2570   if (!method_is_static) {
  2571   __ align(InteriorEntryAlignment);
  2572   __ bind(ic_miss);
  2574   __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  2575                        relocInfo::runtime_call_type);
  2578   // Done.
  2579   // --------------------------------------------------------------------------
  2581   __ flush();
  2583   nmethod *nm = nmethod::new_native_nmethod(method,
  2584                                             compile_id,
  2585                                             masm->code(),
  2586                                             vep_start_pc-start_pc,
  2587                                             frame_done_pc-start_pc,
  2588                                             stack_slots / VMRegImpl::slots_per_word,
  2589                                             (method_is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  2590                                             in_ByteSize(lock_offset),
  2591                                             oop_maps);
  2593   if (is_critical_native) {
  2594     nm->set_lazy_critical_native(true);
  2597   return nm;
  2598 #else
  2599   ShouldNotReachHere();
  2600   return NULL;
  2601 #endif // COMPILER2
  2604 // This function returns the adjust size (in number of words) to a c2i adapter
  2605 // activation for use during deoptimization.
  2606 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
  2607   return round_to((callee_locals - callee_parameters) * Interpreter::stackElementWords, frame::alignment_in_bytes);
  2610 uint SharedRuntime::out_preserve_stack_slots() {
  2611 #ifdef COMPILER2
  2612   return frame::jit_out_preserve_size / VMRegImpl::stack_slot_size;
  2613 #else
  2614   return 0;
  2615 #endif
  2618 #ifdef COMPILER2
  2619 // Frame generation for deopt and uncommon trap blobs.
  2620 static void push_skeleton_frame(MacroAssembler* masm, bool deopt,
  2621                                 /* Read */
  2622                                 Register unroll_block_reg,
  2623                                 /* Update */
  2624                                 Register frame_sizes_reg,
  2625                                 Register number_of_frames_reg,
  2626                                 Register pcs_reg,
  2627                                 /* Invalidate */
  2628                                 Register frame_size_reg,
  2629                                 Register pc_reg) {
  2631   __ ld(pc_reg, 0, pcs_reg);
  2632   __ ld(frame_size_reg, 0, frame_sizes_reg);
  2633   __ std(pc_reg, _abi(lr), R1_SP);
  2634   __ push_frame(frame_size_reg, R0/*tmp*/);
  2635 #ifdef CC_INTERP
  2636   __ std(R1_SP, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
  2637 #else
  2638 #ifdef ASSERT
  2639   __ load_const_optimized(pc_reg, 0x5afe);
  2640   __ std(pc_reg, _ijava_state_neg(ijava_reserved), R1_SP);
  2641 #endif
  2642   __ std(R1_SP, _ijava_state_neg(sender_sp), R1_SP);
  2643 #endif // CC_INTERP
  2644   __ addi(number_of_frames_reg, number_of_frames_reg, -1);
  2645   __ addi(frame_sizes_reg, frame_sizes_reg, wordSize);
  2646   __ addi(pcs_reg, pcs_reg, wordSize);
  2649 // Loop through the UnrollBlock info and create new frames.
  2650 static void push_skeleton_frames(MacroAssembler* masm, bool deopt,
  2651                                  /* read */
  2652                                  Register unroll_block_reg,
  2653                                  /* invalidate */
  2654                                  Register frame_sizes_reg,
  2655                                  Register number_of_frames_reg,
  2656                                  Register pcs_reg,
  2657                                  Register frame_size_reg,
  2658                                  Register pc_reg) {
  2659   Label loop;
  2661  // _number_of_frames is of type int (deoptimization.hpp)
  2662   __ lwa(number_of_frames_reg,
  2663              Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(),
  2664              unroll_block_reg);
  2665   __ ld(pcs_reg,
  2666             Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(),
  2667             unroll_block_reg);
  2668   __ ld(frame_sizes_reg,
  2669             Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(),
  2670             unroll_block_reg);
  2672   // stack: (caller_of_deoptee, ...).
  2674   // At this point we either have an interpreter frame or a compiled
  2675   // frame on top of stack. If it is a compiled frame we push a new c2i
  2676   // adapter here
  2678   // Memorize top-frame stack-pointer.
  2679   __ mr(frame_size_reg/*old_sp*/, R1_SP);
  2681   // Resize interpreter top frame OR C2I adapter.
  2683   // At this moment, the top frame (which is the caller of the deoptee) is
  2684   // an interpreter frame or a newly pushed C2I adapter or an entry frame.
  2685   // The top frame has a TOP_IJAVA_FRAME_ABI and the frame contains the
  2686   // outgoing arguments.
  2687   //
  2688   // In order to push the interpreter frame for the deoptee, we need to
  2689   // resize the top frame such that we are able to place the deoptee's
  2690   // locals in the frame.
  2691   // Additionally, we have to turn the top frame's TOP_IJAVA_FRAME_ABI
  2692   // into a valid PARENT_IJAVA_FRAME_ABI.
  2694   __ lwa(R11_scratch1,
  2695              Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(),
  2696              unroll_block_reg);
  2697   __ neg(R11_scratch1, R11_scratch1);
  2699   // R11_scratch1 contains size of locals for frame resizing.
  2700   // R12_scratch2 contains top frame's lr.
  2702   // Resize frame by complete frame size prevents TOC from being
  2703   // overwritten by locals. A more stack space saving way would be
  2704   // to copy the TOC to its location in the new abi.
  2705   __ addi(R11_scratch1, R11_scratch1, - frame::parent_ijava_frame_abi_size);
  2707   // now, resize the frame
  2708   __ resize_frame(R11_scratch1, pc_reg/*tmp*/);
  2710   // In the case where we have resized a c2i frame above, the optional
  2711   // alignment below the locals has size 32 (why?).
  2712   __ std(R12_scratch2, _abi(lr), R1_SP);
  2714   // Initialize initial_caller_sp.
  2715 #ifdef CC_INTERP
  2716   __ std(frame_size_reg/*old_sp*/, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
  2717 #else
  2718 #ifdef ASSERT
  2719  __ load_const_optimized(pc_reg, 0x5afe);
  2720  __ std(pc_reg, _ijava_state_neg(ijava_reserved), R1_SP);
  2721 #endif
  2722  __ std(frame_size_reg, _ijava_state_neg(sender_sp), R1_SP);
  2723 #endif // CC_INTERP
  2725 #ifdef ASSERT
  2726   // Make sure that there is at least one entry in the array.
  2727   __ cmpdi(CCR0, number_of_frames_reg, 0);
  2728   __ asm_assert_ne("array_size must be > 0", 0x205);
  2729 #endif
  2731   // Now push the new interpreter frames.
  2732   //
  2733   __ bind(loop);
  2734   // Allocate a new frame, fill in the pc.
  2735   push_skeleton_frame(masm, deopt,
  2736                       unroll_block_reg,
  2737                       frame_sizes_reg,
  2738                       number_of_frames_reg,
  2739                       pcs_reg,
  2740                       frame_size_reg,
  2741                       pc_reg);
  2742   __ cmpdi(CCR0, number_of_frames_reg, 0);
  2743   __ bne(CCR0, loop);
  2745   // Get the return address pointing into the frame manager.
  2746   __ ld(R0, 0, pcs_reg);
  2747   // Store it in the top interpreter frame.
  2748   __ std(R0, _abi(lr), R1_SP);
  2749   // Initialize frame_manager_lr of interpreter top frame.
  2750 #ifdef CC_INTERP
  2751   __ std(R0, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
  2752 #endif
  2754 #endif
  2756 void SharedRuntime::generate_deopt_blob() {
  2757   // Allocate space for the code
  2758   ResourceMark rm;
  2759   // Setup code generation tools
  2760   CodeBuffer buffer("deopt_blob", 2048, 1024);
  2761   InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer);
  2762   Label exec_mode_initialized;
  2763   int frame_size_in_words;
  2764   OopMap* map = NULL;
  2765   OopMapSet *oop_maps = new OopMapSet();
  2767   // size of ABI112 plus spill slots for R3_RET and F1_RET.
  2768   const int frame_size_in_bytes = frame::abi_reg_args_spill_size;
  2769   const int frame_size_in_slots = frame_size_in_bytes / sizeof(jint);
  2770   int first_frame_size_in_bytes = 0; // frame size of "unpack frame" for call to fetch_unroll_info.
  2772   const Register exec_mode_reg = R21_tmp1;
  2774   const address start = __ pc();
  2776 #ifdef COMPILER2
  2777   // --------------------------------------------------------------------------
  2778   // Prolog for non exception case!
  2780   // We have been called from the deopt handler of the deoptee.
  2781   //
  2782   // deoptee:
  2783   //                      ...
  2784   //                      call X
  2785   //                      ...
  2786   //  deopt_handler:      call_deopt_stub
  2787   //  cur. return pc  --> ...
  2788   //
  2789   // So currently SR_LR points behind the call in the deopt handler.
  2790   // We adjust it such that it points to the start of the deopt handler.
  2791   // The return_pc has been stored in the frame of the deoptee and
  2792   // will replace the address of the deopt_handler in the call
  2793   // to Deoptimization::fetch_unroll_info below.
  2794   // We can't grab a free register here, because all registers may
  2795   // contain live values, so let the RegisterSaver do the adjustment
  2796   // of the return pc.
  2797   const int return_pc_adjustment_no_exception = -HandlerImpl::size_deopt_handler();
  2799   // Push the "unpack frame"
  2800   // Save everything in sight.
  2801   map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
  2802                                                                    &first_frame_size_in_bytes,
  2803                                                                    /*generate_oop_map=*/ true,
  2804                                                                    return_pc_adjustment_no_exception,
  2805                                                                    RegisterSaver::return_pc_is_lr);
  2806   assert(map != NULL, "OopMap must have been created");
  2808   __ li(exec_mode_reg, Deoptimization::Unpack_deopt);
  2809   // Save exec mode for unpack_frames.
  2810   __ b(exec_mode_initialized);
  2812   // --------------------------------------------------------------------------
  2813   // Prolog for exception case
  2815   // An exception is pending.
  2816   // We have been called with a return (interpreter) or a jump (exception blob).
  2817   //
  2818   // - R3_ARG1: exception oop
  2819   // - R4_ARG2: exception pc
  2821   int exception_offset = __ pc() - start;
  2823   BLOCK_COMMENT("Prolog for exception case");
  2825   // The RegisterSaves doesn't need to adjust the return pc for this situation.
  2826   const int return_pc_adjustment_exception = 0;
  2828   // Push the "unpack frame".
  2829   // Save everything in sight.
  2830   assert(R4 == R4_ARG2, "exception pc must be in r4");
  2831   RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
  2832                                                              &first_frame_size_in_bytes,
  2833                                                              /*generate_oop_map=*/ false,
  2834                                                              return_pc_adjustment_exception,
  2835                                                              RegisterSaver::return_pc_is_r4);
  2837   // Deopt during an exception. Save exec mode for unpack_frames.
  2838   __ li(exec_mode_reg, Deoptimization::Unpack_exception);
  2840   // Store exception oop and pc in thread (location known to GC).
  2841   // This is needed since the call to "fetch_unroll_info()" may safepoint.
  2842   __ std(R3_ARG1, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
  2843   __ std(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()),  R16_thread);
  2845   // fall through
  2847   // --------------------------------------------------------------------------
  2848   __ BIND(exec_mode_initialized);
  2851   const Register unroll_block_reg = R22_tmp2;
  2853   // We need to set `last_Java_frame' because `fetch_unroll_info' will
  2854   // call `last_Java_frame()'. The value of the pc in the frame is not
  2855   // particularly important. It just needs to identify this blob.
  2856   __ set_last_Java_frame(R1_SP, noreg);
  2858   // With EscapeAnalysis turned on, this call may safepoint!
  2859   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), R16_thread);
  2860   address calls_return_pc = __ last_calls_return_pc();
  2861   // Set an oopmap for the call site that describes all our saved registers.
  2862   oop_maps->add_gc_map(calls_return_pc - start, map);
  2864   __ reset_last_Java_frame();
  2865   // Save the return value.
  2866   __ mr(unroll_block_reg, R3_RET);
  2868   // Restore only the result registers that have been saved
  2869   // by save_volatile_registers(...).
  2870   RegisterSaver::restore_result_registers(masm, first_frame_size_in_bytes);
  2872   // In excp_deopt_mode, restore and clear exception oop which we
  2873   // stored in the thread during exception entry above. The exception
  2874   // oop will be the return value of this stub.
  2875   Label skip_restore_excp;
  2876   __ cmpdi(CCR0, exec_mode_reg, Deoptimization::Unpack_exception);
  2877   __ bne(CCR0, skip_restore_excp);
  2878   __ ld(R3_RET, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
  2879   __ ld(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()), R16_thread);
  2880   __ li(R0, 0);
  2881   __ std(R0, in_bytes(JavaThread::exception_pc_offset()),  R16_thread);
  2882   __ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
  2883   __ BIND(skip_restore_excp);
  2885   // reload narrro_oop_base
  2886   if (UseCompressedOops && Universe::narrow_oop_base() != 0) {
  2887     __ load_const_optimized(R30, Universe::narrow_oop_base());
  2890   __ pop_frame();
  2892   // stack: (deoptee, optional i2c, caller of deoptee, ...).
  2894   // pop the deoptee's frame
  2895   __ pop_frame();
  2897   // stack: (caller_of_deoptee, ...).
  2899   // Loop through the `UnrollBlock' info and create interpreter frames.
  2900   push_skeleton_frames(masm, true/*deopt*/,
  2901                        unroll_block_reg,
  2902                        R23_tmp3,
  2903                        R24_tmp4,
  2904                        R25_tmp5,
  2905                        R26_tmp6,
  2906                        R27_tmp7);
  2908   // stack: (skeletal interpreter frame, ..., optional skeletal
  2909   // interpreter frame, optional c2i, caller of deoptee, ...).
  2912   // push an `unpack_frame' taking care of float / int return values.
  2913   __ push_frame(frame_size_in_bytes, R0/*tmp*/);
  2915   // stack: (unpack frame, skeletal interpreter frame, ..., optional
  2916   // skeletal interpreter frame, optional c2i, caller of deoptee,
  2917   // ...).
  2919   // Spill live volatile registers since we'll do a call.
  2920   __ std( R3_RET, _abi_reg_args_spill(spill_ret),  R1_SP);
  2921   __ stfd(F1_RET, _abi_reg_args_spill(spill_fret), R1_SP);
  2923   // Let the unpacker layout information in the skeletal frames just
  2924   // allocated.
  2925   __ get_PC_trash_LR(R3_RET);
  2926   __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R3_RET);
  2927   // This is a call to a LEAF method, so no oop map is required.
  2928   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames),
  2929                   R16_thread/*thread*/, exec_mode_reg/*exec_mode*/);
  2930   __ reset_last_Java_frame();
  2932   // Restore the volatiles saved above.
  2933   __ ld( R3_RET, _abi_reg_args_spill(spill_ret),  R1_SP);
  2934   __ lfd(F1_RET, _abi_reg_args_spill(spill_fret), R1_SP);
  2936   // Pop the unpack frame.
  2937   __ pop_frame();
  2938   __ restore_LR_CR(R0);
  2940   // stack: (top interpreter frame, ..., optional interpreter frame,
  2941   // optional c2i, caller of deoptee, ...).
  2943   // Initialize R14_state.
  2944 #ifdef CC_INTERP
  2945   __ ld(R14_state, 0, R1_SP);
  2946   __ addi(R14_state, R14_state, -frame::interpreter_frame_cinterpreterstate_size_in_bytes());
  2947   // Also inititialize R15_prev_state.
  2948   __ restore_prev_state();
  2949 #else
  2950   __ restore_interpreter_state(R11_scratch1);
  2951   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
  2952 #endif // CC_INTERP
  2955   // Return to the interpreter entry point.
  2956   __ blr();
  2957   __ flush();
  2958 #else // COMPILER2
  2959   __ unimplemented("deopt blob needed only with compiler");
  2960   int exception_offset = __ pc() - start;
  2961 #endif // COMPILER2
  2963   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, 0, first_frame_size_in_bytes / wordSize);
  2966 #ifdef COMPILER2
  2967 void SharedRuntime::generate_uncommon_trap_blob() {
  2968   // Allocate space for the code.
  2969   ResourceMark rm;
  2970   // Setup code generation tools.
  2971   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
  2972   InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer);
  2973   address start = __ pc();
  2975   Register unroll_block_reg = R21_tmp1;
  2976   Register klass_index_reg  = R22_tmp2;
  2977   Register unc_trap_reg     = R23_tmp3;
  2979   OopMapSet* oop_maps = new OopMapSet();
  2980   int frame_size_in_bytes = frame::abi_reg_args_size;
  2981   OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0);
  2983   // stack: (deoptee, optional i2c, caller_of_deoptee, ...).
  2985   // Push a dummy `unpack_frame' and call
  2986   // `Deoptimization::uncommon_trap' to pack the compiled frame into a
  2987   // vframe array and return the `UnrollBlock' information.
  2989   // Save LR to compiled frame.
  2990   __ save_LR_CR(R11_scratch1);
  2992   // Push an "uncommon_trap" frame.
  2993   __ push_frame_reg_args(0, R11_scratch1);
  2995   // stack: (unpack frame, deoptee, optional i2c, caller_of_deoptee, ...).
  2997   // Set the `unpack_frame' as last_Java_frame.
  2998   // `Deoptimization::uncommon_trap' expects it and considers its
  2999   // sender frame as the deoptee frame.
  3000   // Remember the offset of the instruction whose address will be
  3001   // moved to R11_scratch1.
  3002   address gc_map_pc = __ get_PC_trash_LR(R11_scratch1);
  3004   __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1);
  3006   __ mr(klass_index_reg, R3);
  3007   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap),
  3008                   R16_thread, klass_index_reg);
  3010   // Set an oopmap for the call site.
  3011   oop_maps->add_gc_map(gc_map_pc - start, map);
  3013   __ reset_last_Java_frame();
  3015   // Pop the `unpack frame'.
  3016   __ pop_frame();
  3018   // stack: (deoptee, optional i2c, caller_of_deoptee, ...).
  3020   // Save the return value.
  3021   __ mr(unroll_block_reg, R3_RET);
  3023   // Pop the uncommon_trap frame.
  3024   __ pop_frame();
  3026   // stack: (caller_of_deoptee, ...).
  3028   // Allocate new interpreter frame(s) and possibly a c2i adapter
  3029   // frame.
  3030   push_skeleton_frames(masm, false/*deopt*/,
  3031                        unroll_block_reg,
  3032                        R22_tmp2,
  3033                        R23_tmp3,
  3034                        R24_tmp4,
  3035                        R25_tmp5,
  3036                        R26_tmp6);
  3038   // stack: (skeletal interpreter frame, ..., optional skeletal
  3039   // interpreter frame, optional c2i, caller of deoptee, ...).
  3041   // Push a dummy `unpack_frame' taking care of float return values.
  3042   // Call `Deoptimization::unpack_frames' to layout information in the
  3043   // interpreter frames just created.
  3045   // Push a simple "unpack frame" here.
  3046   __ push_frame_reg_args(0, R11_scratch1);
  3048   // stack: (unpack frame, skeletal interpreter frame, ..., optional
  3049   // skeletal interpreter frame, optional c2i, caller of deoptee,
  3050   // ...).
  3052   // Set the "unpack_frame" as last_Java_frame.
  3053   __ get_PC_trash_LR(R11_scratch1);
  3054   __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1);
  3056   // Indicate it is the uncommon trap case.
  3057   __ li(unc_trap_reg, Deoptimization::Unpack_uncommon_trap);
  3058   // Let the unpacker layout information in the skeletal frames just
  3059   // allocated.
  3060   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames),
  3061                   R16_thread, unc_trap_reg);
  3063   __ reset_last_Java_frame();
  3064   // Pop the `unpack frame'.
  3065   __ pop_frame();
  3066   // Restore LR from top interpreter frame.
  3067   __ restore_LR_CR(R11_scratch1);
  3069   // stack: (top interpreter frame, ..., optional interpreter frame,
  3070   // optional c2i, caller of deoptee, ...).
  3072 #ifdef CC_INTERP
  3073   // Initialize R14_state, ...
  3074   __ ld(R11_scratch1, 0, R1_SP);
  3075   __ addi(R14_state, R11_scratch1, -frame::interpreter_frame_cinterpreterstate_size_in_bytes());
  3076   // also initialize R15_prev_state.
  3077   __ restore_prev_state();
  3078 #else
  3079   __ restore_interpreter_state(R11_scratch1);
  3080   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
  3081 #endif // CC_INTERP
  3083   // Return to the interpreter entry point.
  3084   __ blr();
  3086   masm->flush();
  3088   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, frame_size_in_bytes/wordSize);
  3090 #endif // COMPILER2
  3092 // Generate a special Compile2Runtime blob that saves all registers, and setup oopmap.
  3093 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
  3094   assert(StubRoutines::forward_exception_entry() != NULL,
  3095          "must be generated before");
  3097   ResourceMark rm;
  3098   OopMapSet *oop_maps = new OopMapSet();
  3099   OopMap* map;
  3101   // Allocate space for the code. Setup code generation tools.
  3102   CodeBuffer buffer("handler_blob", 2048, 1024);
  3103   MacroAssembler* masm = new MacroAssembler(&buffer);
  3105   address start = __ pc();
  3106   int frame_size_in_bytes = 0;
  3108   RegisterSaver::ReturnPCLocation return_pc_location;
  3109   bool cause_return = (poll_type == POLL_AT_RETURN);
  3110   if (cause_return) {
  3111     // Nothing to do here. The frame has already been popped in MachEpilogNode.
  3112     // Register LR already contains the return pc.
  3113     return_pc_location = RegisterSaver::return_pc_is_lr;
  3114   } else {
  3115     // Use thread()->saved_exception_pc() as return pc.
  3116     return_pc_location = RegisterSaver::return_pc_is_thread_saved_exception_pc;
  3119   // Save registers, fpu state, and flags.
  3120   map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
  3121                                                                    &frame_size_in_bytes,
  3122                                                                    /*generate_oop_map=*/ true,
  3123                                                                    /*return_pc_adjustment=*/0,
  3124                                                                    return_pc_location);
  3126   // The following is basically a call_VM. However, we need the precise
  3127   // address of the call in order to generate an oopmap. Hence, we do all the
  3128   // work outselves.
  3129   __ set_last_Java_frame(/*sp=*/R1_SP, /*pc=*/noreg);
  3131   // The return address must always be correct so that the frame constructor
  3132   // never sees an invalid pc.
  3134   // Do the call
  3135   __ call_VM_leaf(call_ptr, R16_thread);
  3136   address calls_return_pc = __ last_calls_return_pc();
  3138   // Set an oopmap for the call site. This oopmap will map all
  3139   // oop-registers and debug-info registers as callee-saved. This
  3140   // will allow deoptimization at this safepoint to find all possible
  3141   // debug-info recordings, as well as let GC find all oops.
  3142   oop_maps->add_gc_map(calls_return_pc - start, map);
  3144   Label noException;
  3146   // Clear the last Java frame.
  3147   __ reset_last_Java_frame();
  3149   BLOCK_COMMENT("  Check pending exception.");
  3150   const Register pending_exception = R0;
  3151   __ ld(pending_exception, thread_(pending_exception));
  3152   __ cmpdi(CCR0, pending_exception, 0);
  3153   __ beq(CCR0, noException);
  3155   // Exception pending
  3156   RegisterSaver::restore_live_registers_and_pop_frame(masm,
  3157                                                       frame_size_in_bytes,
  3158                                                       /*restore_ctr=*/true);
  3160   BLOCK_COMMENT("  Jump to forward_exception_entry.");
  3161   // Jump to forward_exception_entry, with the issuing PC in LR
  3162   // so it looks like the original nmethod called forward_exception_entry.
  3163   __ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  3165   // No exception case.
  3166   __ BIND(noException);
  3169   // Normal exit, restore registers and exit.
  3170   RegisterSaver::restore_live_registers_and_pop_frame(masm,
  3171                                                       frame_size_in_bytes,
  3172                                                       /*restore_ctr=*/true);
  3174   __ blr();
  3176   // Make sure all code is generated
  3177   masm->flush();
  3179   // Fill-out other meta info
  3180   // CodeBlob frame size is in words.
  3181   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_bytes / wordSize);
  3184 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss)
  3185 //
  3186 // Generate a stub that calls into the vm to find out the proper destination
  3187 // of a java call. All the argument registers are live at this point
  3188 // but since this is generic code we don't know what they are and the caller
  3189 // must do any gc of the args.
  3190 //
  3191 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
  3193   // allocate space for the code
  3194   ResourceMark rm;
  3196   CodeBuffer buffer(name, 1000, 512);
  3197   MacroAssembler* masm = new MacroAssembler(&buffer);
  3199   int frame_size_in_bytes;
  3201   OopMapSet *oop_maps = new OopMapSet();
  3202   OopMap* map = NULL;
  3204   address start = __ pc();
  3206   map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
  3207                                                                    &frame_size_in_bytes,
  3208                                                                    /*generate_oop_map*/ true,
  3209                                                                    /*return_pc_adjustment*/ 0,
  3210                                                                    RegisterSaver::return_pc_is_lr);
  3212   // Use noreg as last_Java_pc, the return pc will be reconstructed
  3213   // from the physical frame.
  3214   __ set_last_Java_frame(/*sp*/R1_SP, noreg);
  3216   int frame_complete = __ offset();
  3218   // Pass R19_method as 2nd (optional) argument, used by
  3219   // counter_overflow_stub.
  3220   __ call_VM_leaf(destination, R16_thread, R19_method);
  3221   address calls_return_pc = __ last_calls_return_pc();
  3222   // Set an oopmap for the call site.
  3223   // We need this not only for callee-saved registers, but also for volatile
  3224   // registers that the compiler might be keeping live across a safepoint.
  3225   // Create the oopmap for the call's return pc.
  3226   oop_maps->add_gc_map(calls_return_pc - start, map);
  3228   // R3_RET contains the address we are going to jump to assuming no exception got installed.
  3230   // clear last_Java_sp
  3231   __ reset_last_Java_frame();
  3233   // Check for pending exceptions.
  3234   BLOCK_COMMENT("Check for pending exceptions.");
  3235   Label pending;
  3236   __ ld(R11_scratch1, thread_(pending_exception));
  3237   __ cmpdi(CCR0, R11_scratch1, 0);
  3238   __ bne(CCR0, pending);
  3240   __ mtctr(R3_RET); // Ctr will not be touched by restore_live_registers_and_pop_frame.
  3242   RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ false);
  3244   // Get the returned method.
  3245   __ get_vm_result_2(R19_method);
  3247   __ bctr();
  3250   // Pending exception after the safepoint.
  3251   __ BIND(pending);
  3253   RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ true);
  3255   // exception pending => remove activation and forward to exception handler
  3257   __ li(R11_scratch1, 0);
  3258   __ ld(R3_ARG1, thread_(pending_exception));
  3259   __ std(R11_scratch1, in_bytes(JavaThread::vm_result_offset()), R16_thread);
  3260   __ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  3262   // -------------
  3263   // Make sure all code is generated.
  3264   masm->flush();
  3266   // return the blob
  3267   // frame_size_words or bytes??
  3268   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_bytes/wordSize,
  3269                                        oop_maps, true);

mercurial