src/share/vm/runtime/sharedRuntime.cpp

Wed, 05 Dec 2007 09:00:00 -0800

author
dcubed
date
Wed, 05 Dec 2007 09:00:00 -0800
changeset 451
f8236e79048a
parent 435
a61af66fc99e
child 463
67914967a4b5
permissions
-rw-r--r--

6664627: Merge changes made only in hotspot 11 forward to jdk 7
Reviewed-by: jcoomes

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_sharedRuntime.cpp.incl"
    27 #include <math.h>
    29 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
    30 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
    31                       char*, int, char*, int, char*, int);
    32 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
    33                       char*, int, char*, int, char*, int);
    35 // Implementation of SharedRuntime
    37 #ifndef PRODUCT
    38 // For statistics
    39 int SharedRuntime::_ic_miss_ctr = 0;
    40 int SharedRuntime::_wrong_method_ctr = 0;
    41 int SharedRuntime::_resolve_static_ctr = 0;
    42 int SharedRuntime::_resolve_virtual_ctr = 0;
    43 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
    44 int SharedRuntime::_implicit_null_throws = 0;
    45 int SharedRuntime::_implicit_div0_throws = 0;
    46 int SharedRuntime::_throw_null_ctr = 0;
    48 int SharedRuntime::_nof_normal_calls = 0;
    49 int SharedRuntime::_nof_optimized_calls = 0;
    50 int SharedRuntime::_nof_inlined_calls = 0;
    51 int SharedRuntime::_nof_megamorphic_calls = 0;
    52 int SharedRuntime::_nof_static_calls = 0;
    53 int SharedRuntime::_nof_inlined_static_calls = 0;
    54 int SharedRuntime::_nof_interface_calls = 0;
    55 int SharedRuntime::_nof_optimized_interface_calls = 0;
    56 int SharedRuntime::_nof_inlined_interface_calls = 0;
    57 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
    58 int SharedRuntime::_nof_removable_exceptions = 0;
    60 int SharedRuntime::_new_instance_ctr=0;
    61 int SharedRuntime::_new_array_ctr=0;
    62 int SharedRuntime::_multi1_ctr=0;
    63 int SharedRuntime::_multi2_ctr=0;
    64 int SharedRuntime::_multi3_ctr=0;
    65 int SharedRuntime::_multi4_ctr=0;
    66 int SharedRuntime::_multi5_ctr=0;
    67 int SharedRuntime::_mon_enter_stub_ctr=0;
    68 int SharedRuntime::_mon_exit_stub_ctr=0;
    69 int SharedRuntime::_mon_enter_ctr=0;
    70 int SharedRuntime::_mon_exit_ctr=0;
    71 int SharedRuntime::_partial_subtype_ctr=0;
    72 int SharedRuntime::_jbyte_array_copy_ctr=0;
    73 int SharedRuntime::_jshort_array_copy_ctr=0;
    74 int SharedRuntime::_jint_array_copy_ctr=0;
    75 int SharedRuntime::_jlong_array_copy_ctr=0;
    76 int SharedRuntime::_oop_array_copy_ctr=0;
    77 int SharedRuntime::_checkcast_array_copy_ctr=0;
    78 int SharedRuntime::_unsafe_array_copy_ctr=0;
    79 int SharedRuntime::_generic_array_copy_ctr=0;
    80 int SharedRuntime::_slow_array_copy_ctr=0;
    81 int SharedRuntime::_find_handler_ctr=0;
    82 int SharedRuntime::_rethrow_ctr=0;
    84 int     SharedRuntime::_ICmiss_index                    = 0;
    85 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
    86 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
    88 void SharedRuntime::trace_ic_miss(address at) {
    89   for (int i = 0; i < _ICmiss_index; i++) {
    90     if (_ICmiss_at[i] == at) {
    91       _ICmiss_count[i]++;
    92       return;
    93     }
    94   }
    95   int index = _ICmiss_index++;
    96   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
    97   _ICmiss_at[index] = at;
    98   _ICmiss_count[index] = 1;
    99 }
   101 void SharedRuntime::print_ic_miss_histogram() {
   102   if (ICMissHistogram) {
   103     tty->print_cr ("IC Miss Histogram:");
   104     int tot_misses = 0;
   105     for (int i = 0; i < _ICmiss_index; i++) {
   106       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
   107       tot_misses += _ICmiss_count[i];
   108     }
   109     tty->print_cr ("Total IC misses: %7d", tot_misses);
   110   }
   111 }
   112 #endif // PRODUCT
   115 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
   116   return x * y;
   117 JRT_END
   120 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
   121   if (x == min_jlong && y == CONST64(-1)) {
   122     return x;
   123   } else {
   124     return x / y;
   125   }
   126 JRT_END
   129 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
   130   if (x == min_jlong && y == CONST64(-1)) {
   131     return 0;
   132   } else {
   133     return x % y;
   134   }
   135 JRT_END
   138 const juint  float_sign_mask  = 0x7FFFFFFF;
   139 const juint  float_infinity   = 0x7F800000;
   140 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
   141 const julong double_infinity  = CONST64(0x7FF0000000000000);
   143 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
   144 #ifdef _WIN64
   145   // 64-bit Windows on amd64 returns the wrong values for
   146   // infinity operands.
   147   union { jfloat f; juint i; } xbits, ybits;
   148   xbits.f = x;
   149   ybits.f = y;
   150   // x Mod Infinity == x unless x is infinity
   151   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
   152        ((ybits.i & float_sign_mask) == float_infinity) ) {
   153     return x;
   154   }
   155 #endif
   156   return ((jfloat)fmod((double)x,(double)y));
   157 JRT_END
   160 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
   161 #ifdef _WIN64
   162   union { jdouble d; julong l; } xbits, ybits;
   163   xbits.d = x;
   164   ybits.d = y;
   165   // x Mod Infinity == x unless x is infinity
   166   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
   167        ((ybits.l & double_sign_mask) == double_infinity) ) {
   168     return x;
   169   }
   170 #endif
   171   return ((jdouble)fmod((double)x,(double)y));
   172 JRT_END
   175 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
   176   if (g_isnan(x)) {return 0;}
   177   jlong lltmp = (jlong)x;
   178   jint ltmp   = (jint)lltmp;
   179   if (ltmp == lltmp) {
   180     return ltmp;
   181   } else {
   182     if (x < 0) {
   183       return min_jint;
   184     } else {
   185       return max_jint;
   186     }
   187   }
   188 JRT_END
   191 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
   192   if (g_isnan(x)) {return 0;}
   193   jlong lltmp = (jlong)x;
   194   if (lltmp != min_jlong) {
   195     return lltmp;
   196   } else {
   197     if (x < 0) {
   198       return min_jlong;
   199     } else {
   200       return max_jlong;
   201     }
   202   }
   203 JRT_END
   206 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
   207   if (g_isnan(x)) {return 0;}
   208   jlong lltmp = (jlong)x;
   209   jint ltmp   = (jint)lltmp;
   210   if (ltmp == lltmp) {
   211     return ltmp;
   212   } else {
   213     if (x < 0) {
   214       return min_jint;
   215     } else {
   216       return max_jint;
   217     }
   218   }
   219 JRT_END
   222 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
   223   if (g_isnan(x)) {return 0;}
   224   jlong lltmp = (jlong)x;
   225   if (lltmp != min_jlong) {
   226     return lltmp;
   227   } else {
   228     if (x < 0) {
   229       return min_jlong;
   230     } else {
   231       return max_jlong;
   232     }
   233   }
   234 JRT_END
   237 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
   238   return (jfloat)x;
   239 JRT_END
   242 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
   243   return (jfloat)x;
   244 JRT_END
   247 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
   248   return (jdouble)x;
   249 JRT_END
   251 // Exception handling accross interpreter/compiler boundaries
   252 //
   253 // exception_handler_for_return_address(...) returns the continuation address.
   254 // The continuation address is the entry point of the exception handler of the
   255 // previous frame depending on the return address.
   257 address SharedRuntime::raw_exception_handler_for_return_address(address return_address) {
   258   assert(frame::verify_return_pc(return_address), "must be a return pc");
   260   // the fastest case first
   261   CodeBlob* blob = CodeCache::find_blob(return_address);
   262   if (blob != NULL && blob->is_nmethod()) {
   263     nmethod* code = (nmethod*)blob;
   264     assert(code != NULL, "nmethod must be present");
   265     // native nmethods don't have exception handlers
   266     assert(!code->is_native_method(), "no exception handler");
   267     assert(code->header_begin() != code->exception_begin(), "no exception handler");
   268     if (code->is_deopt_pc(return_address)) {
   269       return SharedRuntime::deopt_blob()->unpack_with_exception();
   270     } else {
   271       return code->exception_begin();
   272     }
   273   }
   275   // Entry code
   276   if (StubRoutines::returns_to_call_stub(return_address)) {
   277     return StubRoutines::catch_exception_entry();
   278   }
   279   // Interpreted code
   280   if (Interpreter::contains(return_address)) {
   281     return Interpreter::rethrow_exception_entry();
   282   }
   284   // Compiled code
   285   if (CodeCache::contains(return_address)) {
   286     CodeBlob* blob = CodeCache::find_blob(return_address);
   287     if (blob->is_nmethod()) {
   288       nmethod* code = (nmethod*)blob;
   289       assert(code != NULL, "nmethod must be present");
   290       assert(code->header_begin() != code->exception_begin(), "no exception handler");
   291       return code->exception_begin();
   292     }
   293     if (blob->is_runtime_stub()) {
   294       ShouldNotReachHere();   // callers are responsible for skipping runtime stub frames
   295     }
   296   }
   297   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
   298 #ifndef PRODUCT
   299   { ResourceMark rm;
   300     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
   301     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
   302     tty->print_cr("b) other problem");
   303   }
   304 #endif // PRODUCT
   305   ShouldNotReachHere();
   306   return NULL;
   307 }
   310 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(address return_address))
   311   return raw_exception_handler_for_return_address(return_address);
   312 JRT_END
   314 address SharedRuntime::get_poll_stub(address pc) {
   315   address stub;
   316   // Look up the code blob
   317   CodeBlob *cb = CodeCache::find_blob(pc);
   319   // Should be an nmethod
   320   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
   322   // Look up the relocation information
   323   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
   324     "safepoint polling: type must be poll" );
   326   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
   327     "Only polling locations are used for safepoint");
   329   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
   330   if (at_poll_return) {
   331     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
   332            "polling page return stub not created yet");
   333     stub = SharedRuntime::polling_page_return_handler_blob()->instructions_begin();
   334   } else {
   335     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
   336            "polling page safepoint stub not created yet");
   337     stub = SharedRuntime::polling_page_safepoint_handler_blob()->instructions_begin();
   338   }
   339 #ifndef PRODUCT
   340   if( TraceSafepoint ) {
   341     char buf[256];
   342     jio_snprintf(buf, sizeof(buf),
   343                  "... found polling page %s exception at pc = "
   344                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
   345                  at_poll_return ? "return" : "loop",
   346                  (intptr_t)pc, (intptr_t)stub);
   347     tty->print_raw_cr(buf);
   348   }
   349 #endif // PRODUCT
   350   return stub;
   351 }
   354 oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
   355   assert(caller.is_interpreted_frame(), "");
   356   int args_size = ArgumentSizeComputer(sig).size() + 1;
   357   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
   358   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
   359   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
   360   return result;
   361 }
   364 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
   365   if (JvmtiExport::can_post_exceptions()) {
   366     vframeStream vfst(thread, true);
   367     methodHandle method = methodHandle(thread, vfst.method());
   368     address bcp = method()->bcp_from(vfst.bci());
   369     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
   370   }
   371   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
   372 }
   374 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
   375   Handle h_exception = Exceptions::new_exception(thread, name, message);
   376   throw_and_post_jvmti_exception(thread, h_exception);
   377 }
   379 // ret_pc points into caller; we are returning caller's exception handler
   380 // for given exception
   381 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
   382                                                     bool force_unwind, bool top_frame_only) {
   383   assert(nm != NULL, "must exist");
   384   ResourceMark rm;
   386   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
   387   // determine handler bci, if any
   388   EXCEPTION_MARK;
   390   int handler_bci = -1;
   391   int scope_depth = 0;
   392   if (!force_unwind) {
   393     int bci = sd->bci();
   394     do {
   395       bool skip_scope_increment = false;
   396       // exception handler lookup
   397       KlassHandle ek (THREAD, exception->klass());
   398       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
   399       if (HAS_PENDING_EXCEPTION) {
   400         // We threw an exception while trying to find the exception handler.
   401         // Transfer the new exception to the exception handle which will
   402         // be set into thread local storage, and do another lookup for an
   403         // exception handler for this exception, this time starting at the
   404         // BCI of the exception handler which caused the exception to be
   405         // thrown (bugs 4307310 and 4546590). Set "exception" reference
   406         // argument to ensure that the correct exception is thrown (4870175).
   407         exception = Handle(THREAD, PENDING_EXCEPTION);
   408         CLEAR_PENDING_EXCEPTION;
   409         if (handler_bci >= 0) {
   410           bci = handler_bci;
   411           handler_bci = -1;
   412           skip_scope_increment = true;
   413         }
   414       }
   415       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
   416         sd = sd->sender();
   417         if (sd != NULL) {
   418           bci = sd->bci();
   419         }
   420         ++scope_depth;
   421       }
   422     } while (!top_frame_only && handler_bci < 0 && sd != NULL);
   423   }
   425   // found handling method => lookup exception handler
   426   int catch_pco = ret_pc - nm->instructions_begin();
   428   ExceptionHandlerTable table(nm);
   429   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
   430   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
   431     // Allow abbreviated catch tables.  The idea is to allow a method
   432     // to materialize its exceptions without committing to the exact
   433     // routing of exceptions.  In particular this is needed for adding
   434     // a synthethic handler to unlock monitors when inlining
   435     // synchonized methods since the unlock path isn't represented in
   436     // the bytecodes.
   437     t = table.entry_for(catch_pco, -1, 0);
   438   }
   440 #ifdef COMPILER1
   441   if (nm->is_compiled_by_c1() && t == NULL && handler_bci == -1) {
   442     // Exception is not handled by this frame so unwind.  Note that
   443     // this is not the same as how C2 does this.  C2 emits a table
   444     // entry that dispatches to the unwind code in the nmethod.
   445     return NULL;
   446   }
   447 #endif /* COMPILER1 */
   450   if (t == NULL) {
   451     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
   452     tty->print_cr("   Exception:");
   453     exception->print();
   454     tty->cr();
   455     tty->print_cr(" Compiled exception table :");
   456     table.print();
   457     nm->print_code();
   458     guarantee(false, "missing exception handler");
   459     return NULL;
   460   }
   462   return nm->instructions_begin() + t->pco();
   463 }
   465 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
   466   // These errors occur only at call sites
   467   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
   468 JRT_END
   470 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
   471   // These errors occur only at call sites
   472   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
   473 JRT_END
   475 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
   476   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   477 JRT_END
   479 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
   480   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   481 JRT_END
   483 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
   484   // This entry point is effectively only used for NullPointerExceptions which occur at inline
   485   // cache sites (when the callee activation is not yet set up) so we are at a call site
   486   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   487 JRT_END
   489 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
   490   // We avoid using the normal exception construction in this case because
   491   // it performs an upcall to Java, and we're already out of stack space.
   492   klassOop k = SystemDictionary::StackOverflowError_klass();
   493   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
   494   Handle exception (thread, exception_oop);
   495   if (StackTraceInThrowable) {
   496     java_lang_Throwable::fill_in_stack_trace(exception);
   497   }
   498   throw_and_post_jvmti_exception(thread, exception);
   499 JRT_END
   501 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
   502                                                            address pc,
   503                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
   504 {
   505   address target_pc = NULL;
   507   if (Interpreter::contains(pc)) {
   508 #ifdef CC_INTERP
   509     // C++ interpreter doesn't throw implicit exceptions
   510     ShouldNotReachHere();
   511 #else
   512     switch (exception_kind) {
   513       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
   514       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
   515       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
   516       default:                      ShouldNotReachHere();
   517     }
   518 #endif // !CC_INTERP
   519   } else {
   520     switch (exception_kind) {
   521       case STACK_OVERFLOW: {
   522         // Stack overflow only occurs upon frame setup; the callee is
   523         // going to be unwound. Dispatch to a shared runtime stub
   524         // which will cause the StackOverflowError to be fabricated
   525         // and processed.
   526         // For stack overflow in deoptimization blob, cleanup thread.
   527         if (thread->deopt_mark() != NULL) {
   528           Deoptimization::cleanup_deopt_info(thread, NULL);
   529         }
   530         return StubRoutines::throw_StackOverflowError_entry();
   531       }
   533       case IMPLICIT_NULL: {
   534         if (VtableStubs::contains(pc)) {
   535           // We haven't yet entered the callee frame. Fabricate an
   536           // exception and begin dispatching it in the caller. Since
   537           // the caller was at a call site, it's safe to destroy all
   538           // caller-saved registers, as these entry points do.
   539           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
   540           guarantee(vt_stub != NULL, "unable to find SEGVing vtable stub");
   541           if (vt_stub->is_abstract_method_error(pc)) {
   542             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
   543             return StubRoutines::throw_AbstractMethodError_entry();
   544           } else {
   545             return StubRoutines::throw_NullPointerException_at_call_entry();
   546           }
   547         } else {
   548           CodeBlob* cb = CodeCache::find_blob(pc);
   549           guarantee(cb != NULL, "exception happened outside interpreter, nmethods and vtable stubs (1)");
   551           // Exception happened in CodeCache. Must be either:
   552           // 1. Inline-cache check in C2I handler blob,
   553           // 2. Inline-cache check in nmethod, or
   554           // 3. Implict null exception in nmethod
   556           if (!cb->is_nmethod()) {
   557             guarantee(cb->is_adapter_blob(),
   558                       "exception happened outside interpreter, nmethods and vtable stubs (2)");
   559             // There is no handler here, so we will simply unwind.
   560             return StubRoutines::throw_NullPointerException_at_call_entry();
   561           }
   563           // Otherwise, it's an nmethod.  Consult its exception handlers.
   564           nmethod* nm = (nmethod*)cb;
   565           if (nm->inlinecache_check_contains(pc)) {
   566             // exception happened inside inline-cache check code
   567             // => the nmethod is not yet active (i.e., the frame
   568             // is not set up yet) => use return address pushed by
   569             // caller => don't push another return address
   570             return StubRoutines::throw_NullPointerException_at_call_entry();
   571           }
   573 #ifndef PRODUCT
   574           _implicit_null_throws++;
   575 #endif
   576           target_pc = nm->continuation_for_implicit_exception(pc);
   577           guarantee(target_pc != 0, "must have a continuation point");
   578         }
   580         break; // fall through
   581       }
   584       case IMPLICIT_DIVIDE_BY_ZERO: {
   585         nmethod* nm = CodeCache::find_nmethod(pc);
   586         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
   587 #ifndef PRODUCT
   588         _implicit_div0_throws++;
   589 #endif
   590         target_pc = nm->continuation_for_implicit_exception(pc);
   591         guarantee(target_pc != 0, "must have a continuation point");
   592         break; // fall through
   593       }
   595       default: ShouldNotReachHere();
   596     }
   598     guarantee(target_pc != NULL, "must have computed destination PC for implicit exception");
   599     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
   601     // for AbortVMOnException flag
   602     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
   603     if (exception_kind == IMPLICIT_NULL) {
   604       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   605     } else {
   606       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   607     }
   608     return target_pc;
   609   }
   611   ShouldNotReachHere();
   612   return NULL;
   613 }
   616 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
   617 {
   618   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
   619 }
   620 JNI_END
   623 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
   624   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
   625 }
   628 #ifndef PRODUCT
   629 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
   630   const frame f = thread->last_frame();
   631   assert(f.is_interpreted_frame(), "must be an interpreted frame");
   632 #ifndef PRODUCT
   633   methodHandle mh(THREAD, f.interpreter_frame_method());
   634   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
   635 #endif // !PRODUCT
   636   return preserve_this_value;
   637 JRT_END
   638 #endif // !PRODUCT
   641 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
   642   os::yield_all(attempts);
   643 JRT_END
   646 // ---------------------------------------------------------------------------------------------------------
   647 // Non-product code
   648 #ifndef PRODUCT
   650 void SharedRuntime::verify_caller_frame(frame caller_frame, methodHandle callee_method) {
   651   ResourceMark rm;
   652   assert (caller_frame.is_interpreted_frame(), "sanity check");
   653   assert (callee_method->has_compiled_code(), "callee must be compiled");
   654   methodHandle caller_method (Thread::current(), caller_frame.interpreter_frame_method());
   655   jint bci = caller_frame.interpreter_frame_bci();
   656   methodHandle method = find_callee_method_inside_interpreter(caller_frame, caller_method, bci);
   657   assert (callee_method == method, "incorrect method");
   658 }
   660 methodHandle SharedRuntime::find_callee_method_inside_interpreter(frame caller_frame, methodHandle caller_method, int bci) {
   661   EXCEPTION_MARK;
   662   Bytecode_invoke* bytecode = Bytecode_invoke_at(caller_method, bci);
   663   methodHandle staticCallee = bytecode->static_target(CATCH); // Non-product code
   665   bytecode = Bytecode_invoke_at(caller_method, bci);
   666   int bytecode_index = bytecode->index();
   667   Bytecodes::Code bc = bytecode->adjusted_invoke_code();
   669   Handle receiver;
   670   if (bc == Bytecodes::_invokeinterface ||
   671       bc == Bytecodes::_invokevirtual ||
   672       bc == Bytecodes::_invokespecial) {
   673     symbolHandle signature (THREAD, staticCallee->signature());
   674     receiver = Handle(THREAD, retrieve_receiver(signature, caller_frame));
   675   } else {
   676     receiver = Handle();
   677   }
   678   CallInfo result;
   679   constantPoolHandle constants (THREAD, caller_method->constants());
   680   LinkResolver::resolve_invoke(result, receiver, constants, bytecode_index, bc, CATCH); // Non-product code
   681   methodHandle calleeMethod = result.selected_method();
   682   return calleeMethod;
   683 }
   685 #endif  // PRODUCT
   688 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
   689   assert(obj->is_oop(), "must be a valid oop");
   690   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
   691   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
   692 JRT_END
   695 jlong SharedRuntime::get_java_tid(Thread* thread) {
   696   if (thread != NULL) {
   697     if (thread->is_Java_thread()) {
   698       oop obj = ((JavaThread*)thread)->threadObj();
   699       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
   700     }
   701   }
   702   return 0;
   703 }
   705 /**
   706  * This function ought to be a void function, but cannot be because
   707  * it gets turned into a tail-call on sparc, which runs into dtrace bug
   708  * 6254741.  Once that is fixed we can remove the dummy return value.
   709  */
   710 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
   711   return dtrace_object_alloc_base(Thread::current(), o);
   712 }
   714 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
   715   assert(DTraceAllocProbes, "wrong call");
   716   Klass* klass = o->blueprint();
   717   int size = o->size();
   718   symbolOop name = klass->name();
   719   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
   720                    name->bytes(), name->utf8_length(), size * HeapWordSize);
   721   return 0;
   722 }
   724 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
   725     JavaThread* thread, methodOopDesc* method))
   726   assert(DTraceMethodProbes, "wrong call");
   727   symbolOop kname = method->klass_name();
   728   symbolOop name = method->name();
   729   symbolOop sig = method->signature();
   730   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
   731       kname->bytes(), kname->utf8_length(),
   732       name->bytes(), name->utf8_length(),
   733       sig->bytes(), sig->utf8_length());
   734   return 0;
   735 JRT_END
   737 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
   738     JavaThread* thread, methodOopDesc* method))
   739   assert(DTraceMethodProbes, "wrong call");
   740   symbolOop kname = method->klass_name();
   741   symbolOop name = method->name();
   742   symbolOop sig = method->signature();
   743   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
   744       kname->bytes(), kname->utf8_length(),
   745       name->bytes(), name->utf8_length(),
   746       sig->bytes(), sig->utf8_length());
   747   return 0;
   748 JRT_END
   751 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
   752 // for a call current in progress, i.e., arguments has been pushed on stack
   753 // put callee has not been invoked yet.  Used by: resolve virtual/static,
   754 // vtable updates, etc.  Caller frame must be compiled.
   755 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
   756   ResourceMark rm(THREAD);
   758   // last java frame on stack (which includes native call frames)
   759   vframeStream vfst(thread, true);  // Do not skip and javaCalls
   761   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
   762 }
   765 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
   766 // for a call current in progress, i.e., arguments has been pushed on stack
   767 // but callee has not been invoked yet.  Caller frame must be compiled.
   768 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
   769                                               vframeStream& vfst,
   770                                               Bytecodes::Code& bc,
   771                                               CallInfo& callinfo, TRAPS) {
   772   Handle receiver;
   773   Handle nullHandle;  //create a handy null handle for exception returns
   775   assert(!vfst.at_end(), "Java frame must exist");
   777   // Find caller and bci from vframe
   778   methodHandle caller (THREAD, vfst.method());
   779   int          bci    = vfst.bci();
   781   // Find bytecode
   782   Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
   783   bc = bytecode->adjusted_invoke_code();
   784   int bytecode_index = bytecode->index();
   786   // Find receiver for non-static call
   787   if (bc != Bytecodes::_invokestatic) {
   788     // This register map must be update since we need to find the receiver for
   789     // compiled frames. The receiver might be in a register.
   790     RegisterMap reg_map2(thread);
   791     frame stubFrame   = thread->last_frame();
   792     // Caller-frame is a compiled frame
   793     frame callerFrame = stubFrame.sender(&reg_map2);
   795     methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
   796     if (callee.is_null()) {
   797       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
   798     }
   799     // Retrieve from a compiled argument list
   800     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
   802     if (receiver.is_null()) {
   803       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
   804     }
   805   }
   807   // Resolve method. This is parameterized by bytecode.
   808   constantPoolHandle constants (THREAD, caller->constants());
   809   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
   810   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
   812 #ifdef ASSERT
   813   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
   814   if (bc != Bytecodes::_invokestatic) {
   815     assert(receiver.not_null(), "should have thrown exception");
   816     KlassHandle receiver_klass (THREAD, receiver->klass());
   817     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
   818                             // klass is already loaded
   819     KlassHandle static_receiver_klass (THREAD, rk);
   820     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
   821     if (receiver_klass->oop_is_instance()) {
   822       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
   823         tty->print_cr("ERROR: Klass not yet initialized!!");
   824         receiver_klass.print();
   825       }
   826       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
   827     }
   828   }
   829 #endif
   831   return receiver;
   832 }
   834 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
   835   ResourceMark rm(THREAD);
   836   // We need first to check if any Java activations (compiled, interpreted)
   837   // exist on the stack since last JavaCall.  If not, we need
   838   // to get the target method from the JavaCall wrapper.
   839   vframeStream vfst(thread, true);  // Do not skip any javaCalls
   840   methodHandle callee_method;
   841   if (vfst.at_end()) {
   842     // No Java frames were found on stack since we did the JavaCall.
   843     // Hence the stack can only contain an entry_frame.  We need to
   844     // find the target method from the stub frame.
   845     RegisterMap reg_map(thread, false);
   846     frame fr = thread->last_frame();
   847     assert(fr.is_runtime_frame(), "must be a runtimeStub");
   848     fr = fr.sender(&reg_map);
   849     assert(fr.is_entry_frame(), "must be");
   850     // fr is now pointing to the entry frame.
   851     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
   852     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
   853   } else {
   854     Bytecodes::Code bc;
   855     CallInfo callinfo;
   856     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
   857     callee_method = callinfo.selected_method();
   858   }
   859   assert(callee_method()->is_method(), "must be");
   860   return callee_method;
   861 }
   863 // Resolves a call.
   864 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
   865                                            bool is_virtual,
   866                                            bool is_optimized, TRAPS) {
   867   methodHandle callee_method;
   868   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
   869   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
   870     int retry_count = 0;
   871     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
   872            callee_method->method_holder() != SystemDictionary::object_klass()) {
   873       // If has a pending exception then there is no need to re-try to
   874       // resolve this method.
   875       // If the method has been redefined, we need to try again.
   876       // Hack: we have no way to update the vtables of arrays, so don't
   877       // require that java.lang.Object has been updated.
   879       // It is very unlikely that method is redefined more than 100 times
   880       // in the middle of resolve. If it is looping here more than 100 times
   881       // means then there could be a bug here.
   882       guarantee((retry_count++ < 100),
   883                 "Could not resolve to latest version of redefined method");
   884       // method is redefined in the middle of resolve so re-try.
   885       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
   886     }
   887   }
   888   return callee_method;
   889 }
   891 // Resolves a call.  The compilers generate code for calls that go here
   892 // and are patched with the real destination of the call.
   893 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
   894                                            bool is_virtual,
   895                                            bool is_optimized, TRAPS) {
   897   ResourceMark rm(thread);
   898   RegisterMap cbl_map(thread, false);
   899   frame caller_frame = thread->last_frame().sender(&cbl_map);
   901   CodeBlob* cb = caller_frame.cb();
   902   guarantee(cb != NULL && cb->is_nmethod(), "must be called from nmethod");
   903   // make sure caller is not getting deoptimized
   904   // and removed before we are done with it.
   905   // CLEANUP - with lazy deopt shouldn't need this lock
   906   nmethodLocker caller_lock((nmethod*)cb);
   909   // determine call info & receiver
   910   // note: a) receiver is NULL for static calls
   911   //       b) an exception is thrown if receiver is NULL for non-static calls
   912   CallInfo call_info;
   913   Bytecodes::Code invoke_code = Bytecodes::_illegal;
   914   Handle receiver = find_callee_info(thread, invoke_code,
   915                                      call_info, CHECK_(methodHandle()));
   916   methodHandle callee_method = call_info.selected_method();
   918   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
   919          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
   921 #ifndef PRODUCT
   922   // tracing/debugging/statistics
   923   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
   924                 (is_virtual) ? (&_resolve_virtual_ctr) :
   925                                (&_resolve_static_ctr);
   926   Atomic::inc(addr);
   928   if (TraceCallFixup) {
   929     ResourceMark rm(thread);
   930     tty->print("resolving %s%s (%s) call to",
   931       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
   932       Bytecodes::name(invoke_code));
   933     callee_method->print_short_name(tty);
   934     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
   935   }
   936 #endif
   938   // Compute entry points. This might require generation of C2I converter
   939   // frames, so we cannot be holding any locks here. Furthermore, the
   940   // computation of the entry points is independent of patching the call.  We
   941   // always return the entry-point, but we only patch the stub if the call has
   942   // not been deoptimized.  Return values: For a virtual call this is an
   943   // (cached_oop, destination address) pair. For a static call/optimized
   944   // virtual this is just a destination address.
   946   StaticCallInfo static_call_info;
   947   CompiledICInfo virtual_call_info;
   950   // Make sure the callee nmethod does not get deoptimized and removed before
   951   // we are done patching the code.
   952   nmethod* nm = callee_method->code();
   953   nmethodLocker nl_callee(nm);
   954 #ifdef ASSERT
   955   address dest_entry_point = nm == NULL ? 0 : nm->entry_point(); // used below
   956 #endif
   958   if (is_virtual) {
   959     assert(receiver.not_null(), "sanity check");
   960     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
   961     KlassHandle h_klass(THREAD, receiver->klass());
   962     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
   963                      is_optimized, static_bound, virtual_call_info,
   964                      CHECK_(methodHandle()));
   965   } else {
   966     // static call
   967     CompiledStaticCall::compute_entry(callee_method, static_call_info);
   968   }
   970   // grab lock, check for deoptimization and potentially patch caller
   971   {
   972     MutexLocker ml_patch(CompiledIC_lock);
   974     // Now that we are ready to patch if the methodOop was redefined then
   975     // don't update call site and let the caller retry.
   977     if (!callee_method->is_old()) {
   978 #ifdef ASSERT
   979       // We must not try to patch to jump to an already unloaded method.
   980       if (dest_entry_point != 0) {
   981         assert(CodeCache::find_blob(dest_entry_point) != NULL,
   982                "should not unload nmethod while locked");
   983       }
   984 #endif
   985       if (is_virtual) {
   986         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
   987         if (inline_cache->is_clean()) {
   988           inline_cache->set_to_monomorphic(virtual_call_info);
   989         }
   990       } else {
   991         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
   992         if (ssc->is_clean()) ssc->set(static_call_info);
   993       }
   994     }
   996   } // unlock CompiledIC_lock
   998   return callee_method;
   999 }
  1002 // Inline caches exist only in compiled code
  1003 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
  1004 #ifdef ASSERT
  1005   RegisterMap reg_map(thread, false);
  1006   frame stub_frame = thread->last_frame();
  1007   assert(stub_frame.is_runtime_frame(), "sanity check");
  1008   frame caller_frame = stub_frame.sender(&reg_map);
  1009   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
  1010 #endif /* ASSERT */
  1012   methodHandle callee_method;
  1013   JRT_BLOCK
  1014     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
  1015     // Return methodOop through TLS
  1016     thread->set_vm_result(callee_method());
  1017   JRT_BLOCK_END
  1018   // return compiled code entry point after potential safepoints
  1019   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1020   return callee_method->verified_code_entry();
  1021 JRT_END
  1024 // Handle call site that has been made non-entrant
  1025 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
  1026   // 6243940 We might end up in here if the callee is deoptimized
  1027   // as we race to call it.  We don't want to take a safepoint if
  1028   // the caller was interpreted because the caller frame will look
  1029   // interpreted to the stack walkers and arguments are now
  1030   // "compiled" so it is much better to make this transition
  1031   // invisible to the stack walking code. The i2c path will
  1032   // place the callee method in the callee_target. It is stashed
  1033   // there because if we try and find the callee by normal means a
  1034   // safepoint is possible and have trouble gc'ing the compiled args.
  1035   RegisterMap reg_map(thread, false);
  1036   frame stub_frame = thread->last_frame();
  1037   assert(stub_frame.is_runtime_frame(), "sanity check");
  1038   frame caller_frame = stub_frame.sender(&reg_map);
  1039   if (caller_frame.is_interpreted_frame() || caller_frame.is_entry_frame() ) {
  1040     methodOop callee = thread->callee_target();
  1041     guarantee(callee != NULL && callee->is_method(), "bad handshake");
  1042     thread->set_vm_result(callee);
  1043     thread->set_callee_target(NULL);
  1044     return callee->get_c2i_entry();
  1047   // Must be compiled to compiled path which is safe to stackwalk
  1048   methodHandle callee_method;
  1049   JRT_BLOCK
  1050     // Force resolving of caller (if we called from compiled frame)
  1051     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
  1052     thread->set_vm_result(callee_method());
  1053   JRT_BLOCK_END
  1054   // return compiled code entry point after potential safepoints
  1055   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1056   return callee_method->verified_code_entry();
  1057 JRT_END
  1060 // resolve a static call and patch code
  1061 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
  1062   methodHandle callee_method;
  1063   JRT_BLOCK
  1064     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
  1065     thread->set_vm_result(callee_method());
  1066   JRT_BLOCK_END
  1067   // return compiled code entry point after potential safepoints
  1068   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1069   return callee_method->verified_code_entry();
  1070 JRT_END
  1073 // resolve virtual call and update inline cache to monomorphic
  1074 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
  1075   methodHandle callee_method;
  1076   JRT_BLOCK
  1077     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
  1078     thread->set_vm_result(callee_method());
  1079   JRT_BLOCK_END
  1080   // return compiled code entry point after potential safepoints
  1081   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1082   return callee_method->verified_code_entry();
  1083 JRT_END
  1086 // Resolve a virtual call that can be statically bound (e.g., always
  1087 // monomorphic, so it has no inline cache).  Patch code to resolved target.
  1088 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
  1089   methodHandle callee_method;
  1090   JRT_BLOCK
  1091     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
  1092     thread->set_vm_result(callee_method());
  1093   JRT_BLOCK_END
  1094   // return compiled code entry point after potential safepoints
  1095   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1096   return callee_method->verified_code_entry();
  1097 JRT_END
  1103 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
  1104   ResourceMark rm(thread);
  1105   CallInfo call_info;
  1106   Bytecodes::Code bc;
  1108   // receiver is NULL for static calls. An exception is thrown for NULL
  1109   // receivers for non-static calls
  1110   Handle receiver = find_callee_info(thread, bc, call_info,
  1111                                      CHECK_(methodHandle()));
  1112   // Compiler1 can produce virtual call sites that can actually be statically bound
  1113   // If we fell thru to below we would think that the site was going megamorphic
  1114   // when in fact the site can never miss. Worse because we'd think it was megamorphic
  1115   // we'd try and do a vtable dispatch however methods that can be statically bound
  1116   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
  1117   // reresolution of the  call site (as if we did a handle_wrong_method and not an
  1118   // plain ic_miss) and the site will be converted to an optimized virtual call site
  1119   // never to miss again. I don't believe C2 will produce code like this but if it
  1120   // did this would still be the correct thing to do for it too, hence no ifdef.
  1121   //
  1122   if (call_info.resolved_method()->can_be_statically_bound()) {
  1123     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
  1124     if (TraceCallFixup) {
  1125       RegisterMap reg_map(thread, false);
  1126       frame caller_frame = thread->last_frame().sender(&reg_map);
  1127       ResourceMark rm(thread);
  1128       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
  1129       callee_method->print_short_name(tty);
  1130       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
  1131       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1133     return callee_method;
  1136   methodHandle callee_method = call_info.selected_method();
  1138   bool should_be_mono = false;
  1140 #ifndef PRODUCT
  1141   Atomic::inc(&_ic_miss_ctr);
  1143   // Statistics & Tracing
  1144   if (TraceCallFixup) {
  1145     ResourceMark rm(thread);
  1146     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
  1147     callee_method->print_short_name(tty);
  1148     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1151   if (ICMissHistogram) {
  1152     MutexLocker m(VMStatistic_lock);
  1153     RegisterMap reg_map(thread, false);
  1154     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
  1155     // produce statistics under the lock
  1156     trace_ic_miss(f.pc());
  1158 #endif
  1160   // install an event collector so that when a vtable stub is created the
  1161   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
  1162   // event can't be posted when the stub is created as locks are held
  1163   // - instead the event will be deferred until the event collector goes
  1164   // out of scope.
  1165   JvmtiDynamicCodeEventCollector event_collector;
  1167   // Update inline cache to megamorphic. Skip update if caller has been
  1168   // made non-entrant or we are called from interpreted.
  1169   { MutexLocker ml_patch (CompiledIC_lock);
  1170     RegisterMap reg_map(thread, false);
  1171     frame caller_frame = thread->last_frame().sender(&reg_map);
  1172     CodeBlob* cb = caller_frame.cb();
  1173     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
  1174       // Not a non-entrant nmethod, so find inline_cache
  1175       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
  1176       bool should_be_mono = false;
  1177       if (inline_cache->is_optimized()) {
  1178         if (TraceCallFixup) {
  1179           ResourceMark rm(thread);
  1180           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
  1181           callee_method->print_short_name(tty);
  1182           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1184         should_be_mono = true;
  1185       } else {
  1186         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
  1187         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
  1189           if (receiver()->klass() == ic_oop->holder_klass()) {
  1190             // This isn't a real miss. We must have seen that compiled code
  1191             // is now available and we want the call site converted to a
  1192             // monomorphic compiled call site.
  1193             // We can't assert for callee_method->code() != NULL because it
  1194             // could have been deoptimized in the meantime
  1195             if (TraceCallFixup) {
  1196               ResourceMark rm(thread);
  1197               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
  1198               callee_method->print_short_name(tty);
  1199               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1201             should_be_mono = true;
  1206       if (should_be_mono) {
  1208         // We have a path that was monomorphic but was going interpreted
  1209         // and now we have (or had) a compiled entry. We correct the IC
  1210         // by using a new icBuffer.
  1211         CompiledICInfo info;
  1212         KlassHandle receiver_klass(THREAD, receiver()->klass());
  1213         inline_cache->compute_monomorphic_entry(callee_method,
  1214                                                 receiver_klass,
  1215                                                 inline_cache->is_optimized(),
  1216                                                 false,
  1217                                                 info, CHECK_(methodHandle()));
  1218         inline_cache->set_to_monomorphic(info);
  1219       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
  1220         // Change to megamorphic
  1221         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
  1222       } else {
  1223         // Either clean or megamorphic
  1226   } // Release CompiledIC_lock
  1228   return callee_method;
  1231 //
  1232 // Resets a call-site in compiled code so it will get resolved again.
  1233 // This routines handles both virtual call sites, optimized virtual call
  1234 // sites, and static call sites. Typically used to change a call sites
  1235 // destination from compiled to interpreted.
  1236 //
  1237 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
  1238   ResourceMark rm(thread);
  1239   RegisterMap reg_map(thread, false);
  1240   frame stub_frame = thread->last_frame();
  1241   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
  1242   frame caller = stub_frame.sender(&reg_map);
  1244   // Do nothing if the frame isn't a live compiled frame.
  1245   // nmethod could be deoptimized by the time we get here
  1246   // so no update to the caller is needed.
  1248   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
  1250     address pc = caller.pc();
  1251     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
  1253     // Default call_addr is the location of the "basic" call.
  1254     // Determine the address of the call we a reresolving. With
  1255     // Inline Caches we will always find a recognizable call.
  1256     // With Inline Caches disabled we may or may not find a
  1257     // recognizable call. We will always find a call for static
  1258     // calls and for optimized virtual calls. For vanilla virtual
  1259     // calls it depends on the state of the UseInlineCaches switch.
  1260     //
  1261     // With Inline Caches disabled we can get here for a virtual call
  1262     // for two reasons:
  1263     //   1 - calling an abstract method. The vtable for abstract methods
  1264     //       will run us thru handle_wrong_method and we will eventually
  1265     //       end up in the interpreter to throw the ame.
  1266     //   2 - a racing deoptimization. We could be doing a vanilla vtable
  1267     //       call and between the time we fetch the entry address and
  1268     //       we jump to it the target gets deoptimized. Similar to 1
  1269     //       we will wind up in the interprter (thru a c2i with c2).
  1270     //
  1271     address call_addr = NULL;
  1273       // Get call instruction under lock because another thread may be
  1274       // busy patching it.
  1275       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1276       // Location of call instruction
  1277       if (NativeCall::is_call_before(pc)) {
  1278         NativeCall *ncall = nativeCall_before(pc);
  1279         call_addr = ncall->instruction_address();
  1283     // Check for static or virtual call
  1284     bool is_static_call = false;
  1285     nmethod* caller_nm = CodeCache::find_nmethod(pc);
  1286     // Make sure nmethod doesn't get deoptimized and removed until
  1287     // this is done with it.
  1288     // CLEANUP - with lazy deopt shouldn't need this lock
  1289     nmethodLocker nmlock(caller_nm);
  1291     if (call_addr != NULL) {
  1292       RelocIterator iter(caller_nm, call_addr, call_addr+1);
  1293       int ret = iter.next(); // Get item
  1294       if (ret) {
  1295         assert(iter.addr() == call_addr, "must find call");
  1296         if (iter.type() == relocInfo::static_call_type) {
  1297           is_static_call = true;
  1298         } else {
  1299           assert(iter.type() == relocInfo::virtual_call_type ||
  1300                  iter.type() == relocInfo::opt_virtual_call_type
  1301                 , "unexpected relocInfo. type");
  1303       } else {
  1304         assert(!UseInlineCaches, "relocation info. must exist for this address");
  1307       // Cleaning the inline cache will force a new resolve. This is more robust
  1308       // than directly setting it to the new destination, since resolving of calls
  1309       // is always done through the same code path. (experience shows that it
  1310       // leads to very hard to track down bugs, if an inline cache gets updated
  1311       // to a wrong method). It should not be performance critical, since the
  1312       // resolve is only done once.
  1314       MutexLocker ml(CompiledIC_lock);
  1315       //
  1316       // We do not patch the call site if the nmethod has been made non-entrant
  1317       // as it is a waste of time
  1318       //
  1319       if (caller_nm->is_in_use()) {
  1320         if (is_static_call) {
  1321           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
  1322           ssc->set_to_clean();
  1323         } else {
  1324           // compiled, dispatched call (which used to call an interpreted method)
  1325           CompiledIC* inline_cache = CompiledIC_at(call_addr);
  1326           inline_cache->set_to_clean();
  1333   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
  1336 #ifndef PRODUCT
  1337   Atomic::inc(&_wrong_method_ctr);
  1339   if (TraceCallFixup) {
  1340     ResourceMark rm(thread);
  1341     tty->print("handle_wrong_method reresolving call to");
  1342     callee_method->print_short_name(tty);
  1343     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1345 #endif
  1347   return callee_method;
  1350 // ---------------------------------------------------------------------------
  1351 // We are calling the interpreter via a c2i. Normally this would mean that
  1352 // we were called by a compiled method. However we could have lost a race
  1353 // where we went int -> i2c -> c2i and so the caller could in fact be
  1354 // interpreted. If the caller is compiled we attampt to patch the caller
  1355 // so he no longer calls into the interpreter.
  1356 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
  1357   methodOop moop(method);
  1359   address entry_point = moop->from_compiled_entry();
  1361   // It's possible that deoptimization can occur at a call site which hasn't
  1362   // been resolved yet, in which case this function will be called from
  1363   // an nmethod that has been patched for deopt and we can ignore the
  1364   // request for a fixup.
  1365   // Also it is possible that we lost a race in that from_compiled_entry
  1366   // is now back to the i2c in that case we don't need to patch and if
  1367   // we did we'd leap into space because the callsite needs to use
  1368   // "to interpreter" stub in order to load up the methodOop. Don't
  1369   // ask me how I know this...
  1370   //
  1372   CodeBlob* cb = CodeCache::find_blob(caller_pc);
  1373   if ( !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
  1374     return;
  1377   // There is a benign race here. We could be attempting to patch to a compiled
  1378   // entry point at the same time the callee is being deoptimized. If that is
  1379   // the case then entry_point may in fact point to a c2i and we'd patch the
  1380   // call site with the same old data. clear_code will set code() to NULL
  1381   // at the end of it. If we happen to see that NULL then we can skip trying
  1382   // to patch. If we hit the window where the callee has a c2i in the
  1383   // from_compiled_entry and the NULL isn't present yet then we lose the race
  1384   // and patch the code with the same old data. Asi es la vida.
  1386   if (moop->code() == NULL) return;
  1388   if (((nmethod*)cb)->is_in_use()) {
  1390     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
  1391     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1392     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
  1393       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
  1394       //
  1395       // bug 6281185. We might get here after resolving a call site to a vanilla
  1396       // virtual call. Because the resolvee uses the verified entry it may then
  1397       // see compiled code and attempt to patch the site by calling us. This would
  1398       // then incorrectly convert the call site to optimized and its downhill from
  1399       // there. If you're lucky you'll get the assert in the bugid, if not you've
  1400       // just made a call site that could be megamorphic into a monomorphic site
  1401       // for the rest of its life! Just another racing bug in the life of
  1402       // fixup_callers_callsite ...
  1403       //
  1404       RelocIterator iter(cb, call->instruction_address(), call->next_instruction_address());
  1405       iter.next();
  1406       assert(iter.has_current(), "must have a reloc at java call site");
  1407       relocInfo::relocType typ = iter.reloc()->type();
  1408       if ( typ != relocInfo::static_call_type &&
  1409            typ != relocInfo::opt_virtual_call_type &&
  1410            typ != relocInfo::static_stub_type) {
  1411         return;
  1413       address destination = call->destination();
  1414       if (destination != entry_point) {
  1415         CodeBlob* callee = CodeCache::find_blob(destination);
  1416         // callee == cb seems weird. It means calling interpreter thru stub.
  1417         if (callee == cb || callee->is_adapter_blob()) {
  1418           // static call or optimized virtual
  1419           if (TraceCallFixup) {
  1420             tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1421             moop->print_short_name(tty);
  1422             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1424           call->set_destination_mt_safe(entry_point);
  1425         } else {
  1426           if (TraceCallFixup) {
  1427             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1428             moop->print_short_name(tty);
  1429             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1431           // assert is too strong could also be resolve destinations.
  1432           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
  1434       } else {
  1435           if (TraceCallFixup) {
  1436             tty->print("already patched  callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1437             moop->print_short_name(tty);
  1438             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1444 IRT_END
  1447 // same as JVM_Arraycopy, but called directly from compiled code
  1448 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
  1449                                                 oopDesc* dest, jint dest_pos,
  1450                                                 jint length,
  1451                                                 JavaThread* thread)) {
  1452 #ifndef PRODUCT
  1453   _slow_array_copy_ctr++;
  1454 #endif
  1455   // Check if we have null pointers
  1456   if (src == NULL || dest == NULL) {
  1457     THROW(vmSymbols::java_lang_NullPointerException());
  1459   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
  1460   // even though the copy_array API also performs dynamic checks to ensure
  1461   // that src and dest are truly arrays (and are conformable).
  1462   // The copy_array mechanism is awkward and could be removed, but
  1463   // the compilers don't call this function except as a last resort,
  1464   // so it probably doesn't matter.
  1465   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
  1466                                         (arrayOopDesc*)dest, dest_pos,
  1467                                         length, thread);
  1469 JRT_END
  1471 char* SharedRuntime::generate_class_cast_message(
  1472     JavaThread* thread, const char* objName) {
  1474   // Get target class name from the checkcast instruction
  1475   vframeStream vfst(thread, true);
  1476   assert(!vfst.at_end(), "Java frame must exist");
  1477   Bytecode_checkcast* cc = Bytecode_checkcast_at(
  1478     vfst.method()->bcp_from(vfst.bci()));
  1479   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
  1480     cc->index(), thread));
  1481   return generate_class_cast_message(objName, targetKlass->external_name());
  1484 char* SharedRuntime::generate_class_cast_message(
  1485     const char* objName, const char* targetKlassName) {
  1486   const char* desc = " cannot be cast to ";
  1487   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
  1489   char* message = NEW_C_HEAP_ARRAY(char, msglen);
  1490   if (NULL == message) {
  1491     // out of memory - can't use a detailed message.  Since caller is
  1492     // using a resource mark to free memory, returning this should be
  1493     // safe (caller won't explicitly delete it).
  1494     message = const_cast<char*>(objName);
  1495   } else {
  1496     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
  1498   return message;
  1501 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
  1502   (void) JavaThread::current()->reguard_stack();
  1503 JRT_END
  1506 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
  1507 #ifndef PRODUCT
  1508 int SharedRuntime::_monitor_enter_ctr=0;
  1509 #endif
  1510 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
  1511   oop obj(_obj);
  1512 #ifndef PRODUCT
  1513   _monitor_enter_ctr++;             // monitor enter slow
  1514 #endif
  1515   if (PrintBiasedLockingStatistics) {
  1516     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  1518   Handle h_obj(THREAD, obj);
  1519   if (UseBiasedLocking) {
  1520     // Retry fast entry if bias is revoked to avoid unnecessary inflation
  1521     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
  1522   } else {
  1523     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
  1525   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
  1526 JRT_END
  1528 #ifndef PRODUCT
  1529 int SharedRuntime::_monitor_exit_ctr=0;
  1530 #endif
  1531 // Handles the uncommon cases of monitor unlocking in compiled code
  1532 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
  1533    oop obj(_obj);
  1534 #ifndef PRODUCT
  1535   _monitor_exit_ctr++;              // monitor exit slow
  1536 #endif
  1537   Thread* THREAD = JavaThread::current();
  1538   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
  1539   // testing was unable to ever fire the assert that guarded it so I have removed it.
  1540   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
  1541 #undef MIGHT_HAVE_PENDING
  1542 #ifdef MIGHT_HAVE_PENDING
  1543   // Save and restore any pending_exception around the exception mark.
  1544   // While the slow_exit must not throw an exception, we could come into
  1545   // this routine with one set.
  1546   oop pending_excep = NULL;
  1547   const char* pending_file;
  1548   int pending_line;
  1549   if (HAS_PENDING_EXCEPTION) {
  1550     pending_excep = PENDING_EXCEPTION;
  1551     pending_file  = THREAD->exception_file();
  1552     pending_line  = THREAD->exception_line();
  1553     CLEAR_PENDING_EXCEPTION;
  1555 #endif /* MIGHT_HAVE_PENDING */
  1558     // Exit must be non-blocking, and therefore no exceptions can be thrown.
  1559     EXCEPTION_MARK;
  1560     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
  1563 #ifdef MIGHT_HAVE_PENDING
  1564   if (pending_excep != NULL) {
  1565     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
  1567 #endif /* MIGHT_HAVE_PENDING */
  1568 JRT_END
  1570 #ifndef PRODUCT
  1572 void SharedRuntime::print_statistics() {
  1573   ttyLocker ttyl;
  1574   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
  1576   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
  1577   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
  1578   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
  1580   SharedRuntime::print_ic_miss_histogram();
  1582   if (CountRemovableExceptions) {
  1583     if (_nof_removable_exceptions > 0) {
  1584       Unimplemented(); // this counter is not yet incremented
  1585       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
  1589   // Dump the JRT_ENTRY counters
  1590   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
  1591   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
  1592   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
  1593   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
  1594   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
  1595   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
  1596   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
  1598   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
  1599   tty->print_cr("%5d wrong method", _wrong_method_ctr );
  1600   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
  1601   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
  1602   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
  1604   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
  1605   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
  1606   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
  1607   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
  1608   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
  1609   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
  1610   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
  1611   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
  1612   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
  1613   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
  1614   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
  1615   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
  1616   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
  1617   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
  1618   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
  1619   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
  1621   if (xtty != NULL)  xtty->tail("statistics");
  1624 inline double percent(int x, int y) {
  1625   return 100.0 * x / MAX2(y, 1);
  1628 class MethodArityHistogram {
  1629  public:
  1630   enum { MAX_ARITY = 256 };
  1631  private:
  1632   static int _arity_histogram[MAX_ARITY];     // histogram of #args
  1633   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
  1634   static int _max_arity;                      // max. arity seen
  1635   static int _max_size;                       // max. arg size seen
  1637   static void add_method_to_histogram(nmethod* nm) {
  1638     methodOop m = nm->method();
  1639     ArgumentCount args(m->signature());
  1640     int arity   = args.size() + (m->is_static() ? 0 : 1);
  1641     int argsize = m->size_of_parameters();
  1642     arity   = MIN2(arity, MAX_ARITY-1);
  1643     argsize = MIN2(argsize, MAX_ARITY-1);
  1644     int count = nm->method()->compiled_invocation_count();
  1645     _arity_histogram[arity]  += count;
  1646     _size_histogram[argsize] += count;
  1647     _max_arity = MAX2(_max_arity, arity);
  1648     _max_size  = MAX2(_max_size, argsize);
  1651   void print_histogram_helper(int n, int* histo, const char* name) {
  1652     const int N = MIN2(5, n);
  1653     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1654     double sum = 0;
  1655     double weighted_sum = 0;
  1656     int i;
  1657     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
  1658     double rest = sum;
  1659     double percent = sum / 100;
  1660     for (i = 0; i <= N; i++) {
  1661       rest -= histo[i];
  1662       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
  1664     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
  1665     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
  1668   void print_histogram() {
  1669     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1670     print_histogram_helper(_max_arity, _arity_histogram, "arity");
  1671     tty->print_cr("\nSame for parameter size (in words):");
  1672     print_histogram_helper(_max_size, _size_histogram, "size");
  1673     tty->cr();
  1676  public:
  1677   MethodArityHistogram() {
  1678     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  1679     _max_arity = _max_size = 0;
  1680     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
  1681     CodeCache::nmethods_do(add_method_to_histogram);
  1682     print_histogram();
  1684 };
  1686 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
  1687 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
  1688 int MethodArityHistogram::_max_arity;
  1689 int MethodArityHistogram::_max_size;
  1691 void SharedRuntime::print_call_statistics(int comp_total) {
  1692   tty->print_cr("Calls from compiled code:");
  1693   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
  1694   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
  1695   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
  1696   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
  1697   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
  1698   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
  1699   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
  1700   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
  1701   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
  1702   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
  1703   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
  1704   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
  1705   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
  1706   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
  1707   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
  1708   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
  1709   tty->cr();
  1710   tty->print_cr("Note 1: counter updates are not MT-safe.");
  1711   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
  1712   tty->print_cr("        %% in nested categories are relative to their category");
  1713   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
  1714   tty->cr();
  1716   MethodArityHistogram h;
  1718 #endif
  1721 // ---------------------------------------------------------------------------
  1722 // Implementation of AdapterHandlerLibrary
  1723 const char* AdapterHandlerEntry::name = "I2C/C2I adapters";
  1724 GrowableArray<uint64_t>* AdapterHandlerLibrary::_fingerprints = NULL;
  1725 GrowableArray<AdapterHandlerEntry* >* AdapterHandlerLibrary::_handlers = NULL;
  1726 const int AdapterHandlerLibrary_size = 16*K;
  1727 u_char                   AdapterHandlerLibrary::_buffer[AdapterHandlerLibrary_size + 32];
  1729 void AdapterHandlerLibrary::initialize() {
  1730   if (_fingerprints != NULL) return;
  1731   _fingerprints = new(ResourceObj::C_HEAP)GrowableArray<uint64_t>(32, true);
  1732   _handlers = new(ResourceObj::C_HEAP)GrowableArray<AdapterHandlerEntry*>(32, true);
  1733   // Index 0 reserved for the slow path handler
  1734   _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
  1735   _handlers->append(NULL);
  1737   // Create a special handler for abstract methods.  Abstract methods
  1738   // are never compiled so an i2c entry is somewhat meaningless, but
  1739   // fill it in with something appropriate just in case.  Pass handle
  1740   // wrong method for the c2i transitions.
  1741   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
  1742   _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
  1743   assert(_handlers->length() == AbstractMethodHandler, "in wrong slot");
  1744   _handlers->append(new AdapterHandlerEntry(StubRoutines::throw_AbstractMethodError_entry(),
  1745                                             wrong_method, wrong_method));
  1748 int AdapterHandlerLibrary::get_create_adapter_index(methodHandle method) {
  1749   // Use customized signature handler.  Need to lock around updates to the
  1750   // _fingerprints array (it is not safe for concurrent readers and a single
  1751   // writer: this can be fixed if it becomes a problem).
  1753   // Shouldn't be here if running -Xint
  1754   if (Arguments::mode() == Arguments::_int) {
  1755     ShouldNotReachHere();
  1758   // Get the address of the ic_miss handlers before we grab the
  1759   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
  1760   // was caused by the initialization of the stubs happening
  1761   // while we held the lock and then notifying jvmti while
  1762   // holding it. This just forces the initialization to be a little
  1763   // earlier.
  1764   address ic_miss = SharedRuntime::get_ic_miss_stub();
  1765   assert(ic_miss != NULL, "must have handler");
  1767   int result;
  1768   BufferBlob *B = NULL;
  1769   uint64_t fingerprint;
  1771     MutexLocker mu(AdapterHandlerLibrary_lock);
  1772     // make sure data structure is initialized
  1773     initialize();
  1775     if (method->is_abstract()) {
  1776       return AbstractMethodHandler;
  1779     // Lookup method signature's fingerprint
  1780     fingerprint = Fingerprinter(method).fingerprint();
  1781     assert( fingerprint != CONST64( 0), "no zero fingerprints allowed" );
  1782     // Fingerprints are small fixed-size condensed representations of
  1783     // signatures.  If the signature is too large, it won't fit in a
  1784     // fingerprint.  Signatures which cannot support a fingerprint get a new i2c
  1785     // adapter gen'd each time, instead of searching the cache for one.  This -1
  1786     // game can be avoided if I compared signatures instead of using
  1787     // fingerprints.  However, -1 fingerprints are very rare.
  1788     if( fingerprint != UCONST64(-1) ) { // If this is a cache-able fingerprint
  1789       // Turns out i2c adapters do not care what the return value is.  Mask it
  1790       // out so signatures that only differ in return type will share the same
  1791       // adapter.
  1792       fingerprint &= ~(SignatureIterator::result_feature_mask << SignatureIterator::static_feature_size);
  1793       // Search for a prior existing i2c/c2i adapter
  1794       int index = _fingerprints->find(fingerprint);
  1795       if( index >= 0 ) return index; // Found existing handlers?
  1796     } else {
  1797       // Annoyingly, I end up adding -1 fingerprints to the array of handlers,
  1798       // because I need a unique handler index.  It cannot be scanned for
  1799       // because all -1's look alike.  Instead, the matching index is passed out
  1800       // and immediately used to collect the 2 return values (the c2i and i2c
  1801       // adapters).
  1804     // Create I2C & C2I handlers
  1805     ResourceMark rm;
  1806     // Improve alignment slightly
  1807     u_char *buf = (u_char*)(((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
  1808     CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
  1809     short buffer_locs[20];
  1810     buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
  1811                                            sizeof(buffer_locs)/sizeof(relocInfo));
  1812     MacroAssembler _masm(&buffer);
  1814     // Fill in the signature array, for the calling-convention call.
  1815     int total_args_passed = method->size_of_parameters(); // All args on stack
  1817     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
  1818     VMRegPair  * regs   = NEW_RESOURCE_ARRAY(VMRegPair  ,total_args_passed);
  1819     int i=0;
  1820     if( !method->is_static() )  // Pass in receiver first
  1821       sig_bt[i++] = T_OBJECT;
  1822     for( SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
  1823       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  1824       if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  1825         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  1827     assert( i==total_args_passed, "" );
  1829     // Now get the re-packed compiled-Java layout.
  1830     int comp_args_on_stack;
  1832     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
  1833     comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  1835     AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
  1836                                                                         total_args_passed,
  1837                                                                         comp_args_on_stack,
  1838                                                                         sig_bt,
  1839                                                                         regs);
  1841     B = BufferBlob::create(AdapterHandlerEntry::name, &buffer);
  1842     if (B == NULL)  return -2;          // Out of CodeCache space
  1843     entry->relocate(B->instructions_begin());
  1844 #ifndef PRODUCT
  1845     // debugging suppport
  1846     if (PrintAdapterHandlers) {
  1847       tty->cr();
  1848       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = 0x%llx, %d bytes generated)",
  1849                     _handlers->length(), (method->is_static() ? "static" : "receiver"),
  1850                     method->signature()->as_C_string(), fingerprint, buffer.code_size() );
  1851       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
  1852       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + buffer.code_size());
  1854 #endif
  1856     // add handlers to library
  1857     _fingerprints->append(fingerprint);
  1858     _handlers->append(entry);
  1859     // set handler index
  1860     assert(_fingerprints->length() == _handlers->length(), "sanity check");
  1861     result = _fingerprints->length() - 1;
  1863   // Outside of the lock
  1864   if (B != NULL) {
  1865     char blob_id[256];
  1866     jio_snprintf(blob_id,
  1867                  sizeof(blob_id),
  1868                  "%s(" PTR64_FORMAT ")@" PTR_FORMAT,
  1869                  AdapterHandlerEntry::name,
  1870                  fingerprint,
  1871                  B->instructions_begin());
  1872     VTune::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
  1873     Forte::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
  1875     if (JvmtiExport::should_post_dynamic_code_generated()) {
  1876       JvmtiExport::post_dynamic_code_generated(blob_id,
  1877                                                B->instructions_begin(),
  1878                                                B->instructions_end());
  1881   return result;
  1884 void AdapterHandlerEntry::relocate(address new_base) {
  1885     ptrdiff_t delta = new_base - _i2c_entry;
  1886     _i2c_entry += delta;
  1887     _c2i_entry += delta;
  1888     _c2i_unverified_entry += delta;
  1891 // Create a native wrapper for this native method.  The wrapper converts the
  1892 // java compiled calling convention to the native convention, handlizes
  1893 // arguments, and transitions to native.  On return from the native we transition
  1894 // back to java blocking if a safepoint is in progress.
  1895 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
  1896   ResourceMark rm;
  1897   nmethod* nm = NULL;
  1899   if (PrintCompilation) {
  1900     ttyLocker ttyl;
  1901     tty->print("---   n%s ", (method->is_synchronized() ? "s" : " "));
  1902     method->print_short_name(tty);
  1903     if (method->is_static()) {
  1904       tty->print(" (static)");
  1906     tty->cr();
  1909   assert(method->has_native_function(), "must have something valid to call!");
  1912     // perform the work while holding the lock, but perform any printing outside the lock
  1913     MutexLocker mu(AdapterHandlerLibrary_lock);
  1914     // See if somebody beat us to it
  1915     nm = method->code();
  1916     if (nm) {
  1917       return nm;
  1920     // Improve alignment slightly
  1921     u_char* buf = (u_char*)(((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
  1922     CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
  1923     // Need a few relocation entries
  1924     double locs_buf[20];
  1925     buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  1926     MacroAssembler _masm(&buffer);
  1928     // Fill in the signature array, for the calling-convention call.
  1929     int total_args_passed = method->size_of_parameters();
  1931     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
  1932     VMRegPair  * regs   = NEW_RESOURCE_ARRAY(VMRegPair  ,total_args_passed);
  1933     int i=0;
  1934     if( !method->is_static() )  // Pass in receiver first
  1935       sig_bt[i++] = T_OBJECT;
  1936     SignatureStream ss(method->signature());
  1937     for( ; !ss.at_return_type(); ss.next()) {
  1938       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  1939       if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  1940         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  1942     assert( i==total_args_passed, "" );
  1943     BasicType ret_type = ss.type();
  1945     // Now get the compiled-Java layout as input arguments
  1946     int comp_args_on_stack;
  1947     comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  1949     // Generate the compiled-to-native wrapper code
  1950     nm = SharedRuntime::generate_native_wrapper(&_masm,
  1951                                                 method,
  1952                                                 total_args_passed,
  1953                                                 comp_args_on_stack,
  1954                                                 sig_bt,regs,
  1955                                                 ret_type);
  1958   // Must unlock before calling set_code
  1959   // Install the generated code.
  1960   if (nm != NULL) {
  1961     method->set_code(method, nm);
  1962     nm->post_compiled_method_load_event();
  1963   } else {
  1964     // CodeCache is full, disable compilation
  1965     // Ought to log this but compile log is only per compile thread
  1966     // and we're some non descript Java thread.
  1967     UseInterpreter = true;
  1968     if (UseCompiler || AlwaysCompileLoopMethods ) {
  1969 #ifndef PRODUCT
  1970       warning("CodeCache is full. Compiler has been disabled");
  1971       if (CompileTheWorld || ExitOnFullCodeCache) {
  1972         before_exit(JavaThread::current());
  1973         exit_globals(); // will delete tty
  1974         vm_direct_exit(CompileTheWorld ? 0 : 1);
  1976 #endif
  1977       UseCompiler               = false;
  1978       AlwaysCompileLoopMethods  = false;
  1981   return nm;
  1984 // -------------------------------------------------------------------------
  1985 // Java-Java calling convention
  1986 // (what you use when Java calls Java)
  1988 //------------------------------name_for_receiver----------------------------------
  1989 // For a given signature, return the VMReg for parameter 0.
  1990 VMReg SharedRuntime::name_for_receiver() {
  1991   VMRegPair regs;
  1992   BasicType sig_bt = T_OBJECT;
  1993   (void) java_calling_convention(&sig_bt, &regs, 1, true);
  1994   // Return argument 0 register.  In the LP64 build pointers
  1995   // take 2 registers, but the VM wants only the 'main' name.
  1996   return regs.first();
  1999 VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool is_static, int* arg_size) {
  2000   // This method is returning a data structure allocating as a
  2001   // ResourceObject, so do not put any ResourceMarks in here.
  2002   char *s = sig->as_C_string();
  2003   int len = (int)strlen(s);
  2004   *s++; len--;                  // Skip opening paren
  2005   char *t = s+len;
  2006   while( *(--t) != ')' ) ;      // Find close paren
  2008   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
  2009   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
  2010   int cnt = 0;
  2011   if (!is_static) {
  2012     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
  2015   while( s < t ) {
  2016     switch( *s++ ) {            // Switch on signature character
  2017     case 'B': sig_bt[cnt++] = T_BYTE;    break;
  2018     case 'C': sig_bt[cnt++] = T_CHAR;    break;
  2019     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
  2020     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
  2021     case 'I': sig_bt[cnt++] = T_INT;     break;
  2022     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
  2023     case 'S': sig_bt[cnt++] = T_SHORT;   break;
  2024     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
  2025     case 'V': sig_bt[cnt++] = T_VOID;    break;
  2026     case 'L':                   // Oop
  2027       while( *s++ != ';'  ) ;   // Skip signature
  2028       sig_bt[cnt++] = T_OBJECT;
  2029       break;
  2030     case '[': {                 // Array
  2031       do {                      // Skip optional size
  2032         while( *s >= '0' && *s <= '9' ) s++;
  2033       } while( *s++ == '[' );   // Nested arrays?
  2034       // Skip element type
  2035       if( s[-1] == 'L' )
  2036         while( *s++ != ';'  ) ; // Skip signature
  2037       sig_bt[cnt++] = T_ARRAY;
  2038       break;
  2040     default : ShouldNotReachHere();
  2043   assert( cnt < 256, "grow table size" );
  2045   int comp_args_on_stack;
  2046   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
  2048   // the calling convention doesn't count out_preserve_stack_slots so
  2049   // we must add that in to get "true" stack offsets.
  2051   if (comp_args_on_stack) {
  2052     for (int i = 0; i < cnt; i++) {
  2053       VMReg reg1 = regs[i].first();
  2054       if( reg1->is_stack()) {
  2055         // Yuck
  2056         reg1 = reg1->bias(out_preserve_stack_slots());
  2058       VMReg reg2 = regs[i].second();
  2059       if( reg2->is_stack()) {
  2060         // Yuck
  2061         reg2 = reg2->bias(out_preserve_stack_slots());
  2063       regs[i].set_pair(reg2, reg1);
  2067   // results
  2068   *arg_size = cnt;
  2069   return regs;
  2072 // OSR Migration Code
  2073 //
  2074 // This code is used convert interpreter frames into compiled frames.  It is
  2075 // called from very start of a compiled OSR nmethod.  A temp array is
  2076 // allocated to hold the interesting bits of the interpreter frame.  All
  2077 // active locks are inflated to allow them to move.  The displaced headers and
  2078 // active interpeter locals are copied into the temp buffer.  Then we return
  2079 // back to the compiled code.  The compiled code then pops the current
  2080 // interpreter frame off the stack and pushes a new compiled frame.  Then it
  2081 // copies the interpreter locals and displaced headers where it wants.
  2082 // Finally it calls back to free the temp buffer.
  2083 //
  2084 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
  2086 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
  2088 #ifdef IA64
  2089   ShouldNotReachHere(); // NYI
  2090 #endif /* IA64 */
  2092   //
  2093   // This code is dependent on the memory layout of the interpreter local
  2094   // array and the monitors. On all of our platforms the layout is identical
  2095   // so this code is shared. If some platform lays the their arrays out
  2096   // differently then this code could move to platform specific code or
  2097   // the code here could be modified to copy items one at a time using
  2098   // frame accessor methods and be platform independent.
  2100   frame fr = thread->last_frame();
  2101   assert( fr.is_interpreted_frame(), "" );
  2102   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
  2104   // Figure out how many monitors are active.
  2105   int active_monitor_count = 0;
  2106   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
  2107        kptr < fr.interpreter_frame_monitor_begin();
  2108        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
  2109     if( kptr->obj() != NULL ) active_monitor_count++;
  2112   // QQQ we could place number of active monitors in the array so that compiled code
  2113   // could double check it.
  2115   methodOop moop = fr.interpreter_frame_method();
  2116   int max_locals = moop->max_locals();
  2117   // Allocate temp buffer, 1 word per local & 2 per active monitor
  2118   int buf_size_words = max_locals + active_monitor_count*2;
  2119   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
  2121   // Copy the locals.  Order is preserved so that loading of longs works.
  2122   // Since there's no GC I can copy the oops blindly.
  2123   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
  2124   if (TaggedStackInterpreter) {
  2125     for (int i = 0; i < max_locals; i++) {
  2126       // copy only each local separately to the buffer avoiding the tag
  2127       buf[i] = *fr.interpreter_frame_local_at(max_locals-i-1);
  2129   } else {
  2130     Copy::disjoint_words(
  2131                        (HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
  2132                        (HeapWord*)&buf[0],
  2133                        max_locals);
  2136   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
  2137   int i = max_locals;
  2138   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
  2139        kptr2 < fr.interpreter_frame_monitor_begin();
  2140        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
  2141     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
  2142       BasicLock *lock = kptr2->lock();
  2143       // Inflate so the displaced header becomes position-independent
  2144       if (lock->displaced_header()->is_unlocked())
  2145         ObjectSynchronizer::inflate_helper(kptr2->obj());
  2146       // Now the displaced header is free to move
  2147       buf[i++] = (intptr_t)lock->displaced_header();
  2148       buf[i++] = (intptr_t)kptr2->obj();
  2151   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
  2153   return buf;
  2154 JRT_END
  2156 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
  2157   FREE_C_HEAP_ARRAY(intptr_t,buf);
  2158 JRT_END
  2160 #ifndef PRODUCT
  2161 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
  2163   for (int i = 0 ; i < _handlers->length() ; i++) {
  2164     AdapterHandlerEntry* a = get_entry(i);
  2165     if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
  2167   return false;
  2170 void AdapterHandlerLibrary::print_handler(CodeBlob* b) {
  2172   for (int i = 0 ; i < _handlers->length() ; i++) {
  2173     AdapterHandlerEntry* a = get_entry(i);
  2174     if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) {
  2175       tty->print("Adapter for signature: ");
  2176       // Fingerprinter::print(_fingerprints->at(i));
  2177       tty->print("0x%" FORMAT64_MODIFIER "x", _fingerprints->at(i));
  2178       tty->print_cr(" i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
  2179                     a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
  2181       return;
  2184   assert(false, "Should have found handler");
  2186 #endif /* PRODUCT */

mercurial