src/share/vm/oops/methodDataOop.cpp

Wed, 05 Dec 2007 09:00:00 -0800

author
dcubed
date
Wed, 05 Dec 2007 09:00:00 -0800
changeset 451
f8236e79048a
parent 435
a61af66fc99e
child 480
48a3fa21394b
permissions
-rw-r--r--

6664627: Merge changes made only in hotspot 11 forward to jdk 7
Reviewed-by: jcoomes

     1 /*
     2  * Copyright 2000-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_methodDataOop.cpp.incl"
    28 // ==================================================================
    29 // DataLayout
    30 //
    31 // Overlay for generic profiling data.
    33 // Some types of data layouts need a length field.
    34 bool DataLayout::needs_array_len(u1 tag) {
    35   return (tag == multi_branch_data_tag);
    36 }
    38 // Perform generic initialization of the data.  More specific
    39 // initialization occurs in overrides of ProfileData::post_initialize.
    40 void DataLayout::initialize(u1 tag, u2 bci, int cell_count) {
    41   _header._bits = (intptr_t)0;
    42   _header._struct._tag = tag;
    43   _header._struct._bci = bci;
    44   for (int i = 0; i < cell_count; i++) {
    45     set_cell_at(i, (intptr_t)0);
    46   }
    47   if (needs_array_len(tag)) {
    48     set_cell_at(ArrayData::array_len_off_set, cell_count - 1); // -1 for header.
    49   }
    50 }
    52 // ==================================================================
    53 // ProfileData
    54 //
    55 // A ProfileData object is created to refer to a section of profiling
    56 // data in a structured way.
    58 // Constructor for invalid ProfileData.
    59 ProfileData::ProfileData() {
    60   _data = NULL;
    61 }
    63 #ifndef PRODUCT
    64 void ProfileData::print_shared(outputStream* st, const char* name) {
    65   st->print("bci: %d", bci());
    66   st->fill_to(tab_width_one);
    67   st->print("%s", name);
    68   tab(st);
    69   int trap = trap_state();
    70   if (trap != 0) {
    71     char buf[100];
    72     st->print("trap(%s) ", Deoptimization::format_trap_state(buf, sizeof(buf), trap));
    73   }
    74   int flags = data()->flags();
    75   if (flags != 0)
    76     st->print("flags(%d) ", flags);
    77 }
    79 void ProfileData::tab(outputStream* st) {
    80   st->fill_to(tab_width_two);
    81 }
    82 #endif // !PRODUCT
    84 // ==================================================================
    85 // BitData
    86 //
    87 // A BitData corresponds to a one-bit flag.  This is used to indicate
    88 // whether a checkcast bytecode has seen a null value.
    91 #ifndef PRODUCT
    92 void BitData::print_data_on(outputStream* st) {
    93   print_shared(st, "BitData");
    94 }
    95 #endif // !PRODUCT
    97 // ==================================================================
    98 // CounterData
    99 //
   100 // A CounterData corresponds to a simple counter.
   102 #ifndef PRODUCT
   103 void CounterData::print_data_on(outputStream* st) {
   104   print_shared(st, "CounterData");
   105   st->print_cr("count(%u)", count());
   106 }
   107 #endif // !PRODUCT
   109 // ==================================================================
   110 // JumpData
   111 //
   112 // A JumpData is used to access profiling information for a direct
   113 // branch.  It is a counter, used for counting the number of branches,
   114 // plus a data displacement, used for realigning the data pointer to
   115 // the corresponding target bci.
   117 void JumpData::post_initialize(BytecodeStream* stream, methodDataOop mdo) {
   118   assert(stream->bci() == bci(), "wrong pos");
   119   int target;
   120   Bytecodes::Code c = stream->code();
   121   if (c == Bytecodes::_goto_w || c == Bytecodes::_jsr_w) {
   122     target = stream->dest_w();
   123   } else {
   124     target = stream->dest();
   125   }
   126   int my_di = mdo->dp_to_di(dp());
   127   int target_di = mdo->bci_to_di(target);
   128   int offset = target_di - my_di;
   129   set_displacement(offset);
   130 }
   132 #ifndef PRODUCT
   133 void JumpData::print_data_on(outputStream* st) {
   134   print_shared(st, "JumpData");
   135   st->print_cr("taken(%u) displacement(%d)", taken(), displacement());
   136 }
   137 #endif // !PRODUCT
   139 // ==================================================================
   140 // ReceiverTypeData
   141 //
   142 // A ReceiverTypeData is used to access profiling information about a
   143 // dynamic type check.  It consists of a counter which counts the total times
   144 // that the check is reached, and a series of (klassOop, count) pairs
   145 // which are used to store a type profile for the receiver of the check.
   147 void ReceiverTypeData::follow_contents() {
   148   for (uint row = 0; row < row_limit(); row++) {
   149     if (receiver(row) != NULL) {
   150       MarkSweep::mark_and_push(adr_receiver(row));
   151     }
   152   }
   153 }
   155 #ifndef SERIALGC
   156 void ReceiverTypeData::follow_contents(ParCompactionManager* cm) {
   157   for (uint row = 0; row < row_limit(); row++) {
   158     if (receiver(row) != NULL) {
   159       PSParallelCompact::mark_and_push(cm, adr_receiver(row));
   160     }
   161   }
   162 }
   163 #endif // SERIALGC
   165 void ReceiverTypeData::oop_iterate(OopClosure* blk) {
   166   for (uint row = 0; row < row_limit(); row++) {
   167     if (receiver(row) != NULL) {
   168       blk->do_oop(adr_receiver(row));
   169     }
   170   }
   171 }
   173 void ReceiverTypeData::oop_iterate_m(OopClosure* blk, MemRegion mr) {
   174   for (uint row = 0; row < row_limit(); row++) {
   175     if (receiver(row) != NULL) {
   176       oop* adr = adr_receiver(row);
   177       if (mr.contains(adr)) {
   178         blk->do_oop(adr);
   179       }
   180     }
   181   }
   182 }
   184 void ReceiverTypeData::adjust_pointers() {
   185   for (uint row = 0; row < row_limit(); row++) {
   186     if (receiver(row) != NULL) {
   187       MarkSweep::adjust_pointer(adr_receiver(row));
   188     }
   189   }
   190 }
   192 #ifndef SERIALGC
   193 void ReceiverTypeData::update_pointers() {
   194   for (uint row = 0; row < row_limit(); row++) {
   195     if (receiver_unchecked(row) != NULL) {
   196       PSParallelCompact::adjust_pointer(adr_receiver(row));
   197     }
   198   }
   199 }
   201 void ReceiverTypeData::update_pointers(HeapWord* beg_addr, HeapWord* end_addr) {
   202   // The loop bounds could be computed based on beg_addr/end_addr and the
   203   // boundary test hoisted outside the loop (see klassVTable for an example);
   204   // however, row_limit() is small enough (2) to make that less efficient.
   205   for (uint row = 0; row < row_limit(); row++) {
   206     if (receiver_unchecked(row) != NULL) {
   207       PSParallelCompact::adjust_pointer(adr_receiver(row), beg_addr, end_addr);
   208     }
   209   }
   210 }
   211 #endif // SERIALGC
   213 #ifndef PRODUCT
   214 void ReceiverTypeData::print_receiver_data_on(outputStream* st) {
   215   uint row;
   216   int entries = 0;
   217   for (row = 0; row < row_limit(); row++) {
   218     if (receiver(row) != NULL)  entries++;
   219   }
   220   st->print_cr("count(%u) entries(%u)", count(), entries);
   221   for (row = 0; row < row_limit(); row++) {
   222     if (receiver(row) != NULL) {
   223       tab(st);
   224       receiver(row)->print_value_on(st);
   225       st->print_cr("(%u)", receiver_count(row));
   226     }
   227   }
   228 }
   229 void ReceiverTypeData::print_data_on(outputStream* st) {
   230   print_shared(st, "ReceiverTypeData");
   231   print_receiver_data_on(st);
   232 }
   233 void VirtualCallData::print_data_on(outputStream* st) {
   234   print_shared(st, "VirtualCallData");
   235   print_receiver_data_on(st);
   236 }
   237 #endif // !PRODUCT
   239 // ==================================================================
   240 // RetData
   241 //
   242 // A RetData is used to access profiling information for a ret bytecode.
   243 // It is composed of a count of the number of times that the ret has
   244 // been executed, followed by a series of triples of the form
   245 // (bci, count, di) which count the number of times that some bci was the
   246 // target of the ret and cache a corresponding displacement.
   248 void RetData::post_initialize(BytecodeStream* stream, methodDataOop mdo) {
   249   for (uint row = 0; row < row_limit(); row++) {
   250     set_bci_displacement(row, -1);
   251     set_bci(row, no_bci);
   252   }
   253   // release so other threads see a consistent state.  bci is used as
   254   // a valid flag for bci_displacement.
   255   OrderAccess::release();
   256 }
   258 // This routine needs to atomically update the RetData structure, so the
   259 // caller needs to hold the RetData_lock before it gets here.  Since taking
   260 // the lock can block (and allow GC) and since RetData is a ProfileData is a
   261 // wrapper around a derived oop, taking the lock in _this_ method will
   262 // basically cause the 'this' pointer's _data field to contain junk after the
   263 // lock.  We require the caller to take the lock before making the ProfileData
   264 // structure.  Currently the only caller is InterpreterRuntime::update_mdp_for_ret
   265 address RetData::fixup_ret(int return_bci, methodDataHandle h_mdo) {
   266   // First find the mdp which corresponds to the return bci.
   267   address mdp = h_mdo->bci_to_dp(return_bci);
   269   // Now check to see if any of the cache slots are open.
   270   for (uint row = 0; row < row_limit(); row++) {
   271     if (bci(row) == no_bci) {
   272       set_bci_displacement(row, mdp - dp());
   273       set_bci_count(row, DataLayout::counter_increment);
   274       // Barrier to ensure displacement is written before the bci; allows
   275       // the interpreter to read displacement without fear of race condition.
   276       release_set_bci(row, return_bci);
   277       break;
   278     }
   279   }
   280   return mdp;
   281 }
   284 #ifndef PRODUCT
   285 void RetData::print_data_on(outputStream* st) {
   286   print_shared(st, "RetData");
   287   uint row;
   288   int entries = 0;
   289   for (row = 0; row < row_limit(); row++) {
   290     if (bci(row) != no_bci)  entries++;
   291   }
   292   st->print_cr("count(%u) entries(%u)", count(), entries);
   293   for (row = 0; row < row_limit(); row++) {
   294     if (bci(row) != no_bci) {
   295       tab(st);
   296       st->print_cr("bci(%d: count(%u) displacement(%d))",
   297                    bci(row), bci_count(row), bci_displacement(row));
   298     }
   299   }
   300 }
   301 #endif // !PRODUCT
   303 // ==================================================================
   304 // BranchData
   305 //
   306 // A BranchData is used to access profiling data for a two-way branch.
   307 // It consists of taken and not_taken counts as well as a data displacement
   308 // for the taken case.
   310 void BranchData::post_initialize(BytecodeStream* stream, methodDataOop mdo) {
   311   assert(stream->bci() == bci(), "wrong pos");
   312   int target = stream->dest();
   313   int my_di = mdo->dp_to_di(dp());
   314   int target_di = mdo->bci_to_di(target);
   315   int offset = target_di - my_di;
   316   set_displacement(offset);
   317 }
   319 #ifndef PRODUCT
   320 void BranchData::print_data_on(outputStream* st) {
   321   print_shared(st, "BranchData");
   322   st->print_cr("taken(%u) displacement(%d)",
   323                taken(), displacement());
   324   tab(st);
   325   st->print_cr("not taken(%u)", not_taken());
   326 }
   327 #endif
   329 // ==================================================================
   330 // MultiBranchData
   331 //
   332 // A MultiBranchData is used to access profiling information for
   333 // a multi-way branch (*switch bytecodes).  It consists of a series
   334 // of (count, displacement) pairs, which count the number of times each
   335 // case was taken and specify the data displacment for each branch target.
   337 int MultiBranchData::compute_cell_count(BytecodeStream* stream) {
   338   int cell_count = 0;
   339   if (stream->code() == Bytecodes::_tableswitch) {
   340     Bytecode_tableswitch* sw = Bytecode_tableswitch_at(stream->bcp());
   341     cell_count = 1 + per_case_cell_count * (1 + sw->length()); // 1 for default
   342   } else {
   343     Bytecode_lookupswitch* sw = Bytecode_lookupswitch_at(stream->bcp());
   344     cell_count = 1 + per_case_cell_count * (sw->number_of_pairs() + 1); // 1 for default
   345   }
   346   return cell_count;
   347 }
   349 void MultiBranchData::post_initialize(BytecodeStream* stream,
   350                                       methodDataOop mdo) {
   351   assert(stream->bci() == bci(), "wrong pos");
   352   int target;
   353   int my_di;
   354   int target_di;
   355   int offset;
   356   if (stream->code() == Bytecodes::_tableswitch) {
   357     Bytecode_tableswitch* sw = Bytecode_tableswitch_at(stream->bcp());
   358     int len = sw->length();
   359     assert(array_len() == per_case_cell_count * (len + 1), "wrong len");
   360     for (int count = 0; count < len; count++) {
   361       target = sw->dest_offset_at(count) + bci();
   362       my_di = mdo->dp_to_di(dp());
   363       target_di = mdo->bci_to_di(target);
   364       offset = target_di - my_di;
   365       set_displacement_at(count, offset);
   366     }
   367     target = sw->default_offset() + bci();
   368     my_di = mdo->dp_to_di(dp());
   369     target_di = mdo->bci_to_di(target);
   370     offset = target_di - my_di;
   371     set_default_displacement(offset);
   373   } else {
   374     Bytecode_lookupswitch* sw = Bytecode_lookupswitch_at(stream->bcp());
   375     int npairs = sw->number_of_pairs();
   376     assert(array_len() == per_case_cell_count * (npairs + 1), "wrong len");
   377     for (int count = 0; count < npairs; count++) {
   378       LookupswitchPair *pair = sw->pair_at(count);
   379       target = pair->offset() + bci();
   380       my_di = mdo->dp_to_di(dp());
   381       target_di = mdo->bci_to_di(target);
   382       offset = target_di - my_di;
   383       set_displacement_at(count, offset);
   384     }
   385     target = sw->default_offset() + bci();
   386     my_di = mdo->dp_to_di(dp());
   387     target_di = mdo->bci_to_di(target);
   388     offset = target_di - my_di;
   389     set_default_displacement(offset);
   390   }
   391 }
   393 #ifndef PRODUCT
   394 void MultiBranchData::print_data_on(outputStream* st) {
   395   print_shared(st, "MultiBranchData");
   396   st->print_cr("default_count(%u) displacement(%d)",
   397                default_count(), default_displacement());
   398   int cases = number_of_cases();
   399   for (int i = 0; i < cases; i++) {
   400     tab(st);
   401     st->print_cr("count(%u) displacement(%d)",
   402                  count_at(i), displacement_at(i));
   403   }
   404 }
   405 #endif
   407 // ==================================================================
   408 // methodDataOop
   409 //
   410 // A methodDataOop holds information which has been collected about
   411 // a method.
   413 int methodDataOopDesc::bytecode_cell_count(Bytecodes::Code code) {
   414   switch (code) {
   415   case Bytecodes::_checkcast:
   416   case Bytecodes::_instanceof:
   417   case Bytecodes::_aastore:
   418     if (TypeProfileCasts) {
   419       return ReceiverTypeData::static_cell_count();
   420     } else {
   421       return BitData::static_cell_count();
   422     }
   423   case Bytecodes::_invokespecial:
   424   case Bytecodes::_invokestatic:
   425     return CounterData::static_cell_count();
   426   case Bytecodes::_goto:
   427   case Bytecodes::_goto_w:
   428   case Bytecodes::_jsr:
   429   case Bytecodes::_jsr_w:
   430     return JumpData::static_cell_count();
   431   case Bytecodes::_invokevirtual:
   432   case Bytecodes::_invokeinterface:
   433     return VirtualCallData::static_cell_count();
   434   case Bytecodes::_ret:
   435     return RetData::static_cell_count();
   436   case Bytecodes::_ifeq:
   437   case Bytecodes::_ifne:
   438   case Bytecodes::_iflt:
   439   case Bytecodes::_ifge:
   440   case Bytecodes::_ifgt:
   441   case Bytecodes::_ifle:
   442   case Bytecodes::_if_icmpeq:
   443   case Bytecodes::_if_icmpne:
   444   case Bytecodes::_if_icmplt:
   445   case Bytecodes::_if_icmpge:
   446   case Bytecodes::_if_icmpgt:
   447   case Bytecodes::_if_icmple:
   448   case Bytecodes::_if_acmpeq:
   449   case Bytecodes::_if_acmpne:
   450   case Bytecodes::_ifnull:
   451   case Bytecodes::_ifnonnull:
   452     return BranchData::static_cell_count();
   453   case Bytecodes::_lookupswitch:
   454   case Bytecodes::_tableswitch:
   455     return variable_cell_count;
   456   }
   457   return no_profile_data;
   458 }
   460 // Compute the size of the profiling information corresponding to
   461 // the current bytecode.
   462 int methodDataOopDesc::compute_data_size(BytecodeStream* stream) {
   463   int cell_count = bytecode_cell_count(stream->code());
   464   if (cell_count == no_profile_data) {
   465     return 0;
   466   }
   467   if (cell_count == variable_cell_count) {
   468     cell_count = MultiBranchData::compute_cell_count(stream);
   469   }
   470   // Note:  cell_count might be zero, meaning that there is just
   471   //        a DataLayout header, with no extra cells.
   472   assert(cell_count >= 0, "sanity");
   473   return DataLayout::compute_size_in_bytes(cell_count);
   474 }
   476 int methodDataOopDesc::compute_extra_data_count(int data_size, int empty_bc_count) {
   477   if (ProfileTraps) {
   478     // Assume that up to 3% of BCIs with no MDP will need to allocate one.
   479     int extra_data_count = (uint)(empty_bc_count * 3) / 128 + 1;
   480     // If the method is large, let the extra BCIs grow numerous (to ~1%).
   481     int one_percent_of_data
   482       = (uint)data_size / (DataLayout::header_size_in_bytes()*128);
   483     if (extra_data_count < one_percent_of_data)
   484       extra_data_count = one_percent_of_data;
   485     if (extra_data_count > empty_bc_count)
   486       extra_data_count = empty_bc_count;  // no need for more
   487     return extra_data_count;
   488   } else {
   489     return 0;
   490   }
   491 }
   493 // Compute the size of the methodDataOop necessary to store
   494 // profiling information about a given method.  Size is in bytes.
   495 int methodDataOopDesc::compute_allocation_size_in_bytes(methodHandle method) {
   496   int data_size = 0;
   497   BytecodeStream stream(method);
   498   Bytecodes::Code c;
   499   int empty_bc_count = 0;  // number of bytecodes lacking data
   500   while ((c = stream.next()) >= 0) {
   501     int size_in_bytes = compute_data_size(&stream);
   502     data_size += size_in_bytes;
   503     if (size_in_bytes == 0)  empty_bc_count += 1;
   504   }
   505   int object_size = in_bytes(data_offset()) + data_size;
   507   // Add some extra DataLayout cells (at least one) to track stray traps.
   508   int extra_data_count = compute_extra_data_count(data_size, empty_bc_count);
   509   object_size += extra_data_count * DataLayout::compute_size_in_bytes(0);
   511   return object_size;
   512 }
   514 // Compute the size of the methodDataOop necessary to store
   515 // profiling information about a given method.  Size is in words
   516 int methodDataOopDesc::compute_allocation_size_in_words(methodHandle method) {
   517   int byte_size = compute_allocation_size_in_bytes(method);
   518   int word_size = align_size_up(byte_size, BytesPerWord) / BytesPerWord;
   519   return align_object_size(word_size);
   520 }
   522 // Initialize an individual data segment.  Returns the size of
   523 // the segment in bytes.
   524 int methodDataOopDesc::initialize_data(BytecodeStream* stream,
   525                                        int data_index) {
   526   int cell_count = -1;
   527   int tag = DataLayout::no_tag;
   528   DataLayout* data_layout = data_layout_at(data_index);
   529   Bytecodes::Code c = stream->code();
   530   switch (c) {
   531   case Bytecodes::_checkcast:
   532   case Bytecodes::_instanceof:
   533   case Bytecodes::_aastore:
   534     if (TypeProfileCasts) {
   535       cell_count = ReceiverTypeData::static_cell_count();
   536       tag = DataLayout::receiver_type_data_tag;
   537     } else {
   538       cell_count = BitData::static_cell_count();
   539       tag = DataLayout::bit_data_tag;
   540     }
   541     break;
   542   case Bytecodes::_invokespecial:
   543   case Bytecodes::_invokestatic:
   544     cell_count = CounterData::static_cell_count();
   545     tag = DataLayout::counter_data_tag;
   546     break;
   547   case Bytecodes::_goto:
   548   case Bytecodes::_goto_w:
   549   case Bytecodes::_jsr:
   550   case Bytecodes::_jsr_w:
   551     cell_count = JumpData::static_cell_count();
   552     tag = DataLayout::jump_data_tag;
   553     break;
   554   case Bytecodes::_invokevirtual:
   555   case Bytecodes::_invokeinterface:
   556     cell_count = VirtualCallData::static_cell_count();
   557     tag = DataLayout::virtual_call_data_tag;
   558     break;
   559   case Bytecodes::_ret:
   560     cell_count = RetData::static_cell_count();
   561     tag = DataLayout::ret_data_tag;
   562     break;
   563   case Bytecodes::_ifeq:
   564   case Bytecodes::_ifne:
   565   case Bytecodes::_iflt:
   566   case Bytecodes::_ifge:
   567   case Bytecodes::_ifgt:
   568   case Bytecodes::_ifle:
   569   case Bytecodes::_if_icmpeq:
   570   case Bytecodes::_if_icmpne:
   571   case Bytecodes::_if_icmplt:
   572   case Bytecodes::_if_icmpge:
   573   case Bytecodes::_if_icmpgt:
   574   case Bytecodes::_if_icmple:
   575   case Bytecodes::_if_acmpeq:
   576   case Bytecodes::_if_acmpne:
   577   case Bytecodes::_ifnull:
   578   case Bytecodes::_ifnonnull:
   579     cell_count = BranchData::static_cell_count();
   580     tag = DataLayout::branch_data_tag;
   581     break;
   582   case Bytecodes::_lookupswitch:
   583   case Bytecodes::_tableswitch:
   584     cell_count = MultiBranchData::compute_cell_count(stream);
   585     tag = DataLayout::multi_branch_data_tag;
   586     break;
   587   }
   588   assert(tag == DataLayout::multi_branch_data_tag ||
   589          cell_count == bytecode_cell_count(c), "cell counts must agree");
   590   if (cell_count >= 0) {
   591     assert(tag != DataLayout::no_tag, "bad tag");
   592     assert(bytecode_has_profile(c), "agree w/ BHP");
   593     data_layout->initialize(tag, stream->bci(), cell_count);
   594     return DataLayout::compute_size_in_bytes(cell_count);
   595   } else {
   596     assert(!bytecode_has_profile(c), "agree w/ !BHP");
   597     return 0;
   598   }
   599 }
   601 // Get the data at an arbitrary (sort of) data index.
   602 ProfileData* methodDataOopDesc::data_at(int data_index) {
   603   if (out_of_bounds(data_index)) {
   604     return NULL;
   605   }
   606   DataLayout* data_layout = data_layout_at(data_index);
   608   switch (data_layout->tag()) {
   609   case DataLayout::no_tag:
   610   default:
   611     ShouldNotReachHere();
   612     return NULL;
   613   case DataLayout::bit_data_tag:
   614     return new BitData(data_layout);
   615   case DataLayout::counter_data_tag:
   616     return new CounterData(data_layout);
   617   case DataLayout::jump_data_tag:
   618     return new JumpData(data_layout);
   619   case DataLayout::receiver_type_data_tag:
   620     return new ReceiverTypeData(data_layout);
   621   case DataLayout::virtual_call_data_tag:
   622     return new VirtualCallData(data_layout);
   623   case DataLayout::ret_data_tag:
   624     return new RetData(data_layout);
   625   case DataLayout::branch_data_tag:
   626     return new BranchData(data_layout);
   627   case DataLayout::multi_branch_data_tag:
   628     return new MultiBranchData(data_layout);
   629   };
   630 }
   632 // Iteration over data.
   633 ProfileData* methodDataOopDesc::next_data(ProfileData* current) {
   634   int current_index = dp_to_di(current->dp());
   635   int next_index = current_index + current->size_in_bytes();
   636   ProfileData* next = data_at(next_index);
   637   return next;
   638 }
   640 // Give each of the data entries a chance to perform specific
   641 // data initialization.
   642 void methodDataOopDesc::post_initialize(BytecodeStream* stream) {
   643   ResourceMark rm;
   644   ProfileData* data;
   645   for (data = first_data(); is_valid(data); data = next_data(data)) {
   646     stream->set_start(data->bci());
   647     stream->next();
   648     data->post_initialize(stream, this);
   649   }
   650 }
   652 // Initialize the methodDataOop corresponding to a given method.
   653 void methodDataOopDesc::initialize(methodHandle method) {
   654   ResourceMark rm;
   656   // Set the method back-pointer.
   657   _method = method();
   658   set_creation_mileage(mileage_of(method()));
   660   // Initialize flags and trap history.
   661   _nof_decompiles = 0;
   662   _nof_overflow_recompiles = 0;
   663   _nof_overflow_traps = 0;
   664   assert(sizeof(_trap_hist) % sizeof(HeapWord) == 0, "align");
   665   Copy::zero_to_words((HeapWord*) &_trap_hist,
   666                       sizeof(_trap_hist) / sizeof(HeapWord));
   668   // Go through the bytecodes and allocate and initialize the
   669   // corresponding data cells.
   670   int data_size = 0;
   671   int empty_bc_count = 0;  // number of bytecodes lacking data
   672   BytecodeStream stream(method);
   673   Bytecodes::Code c;
   674   while ((c = stream.next()) >= 0) {
   675     int size_in_bytes = initialize_data(&stream, data_size);
   676     data_size += size_in_bytes;
   677     if (size_in_bytes == 0)  empty_bc_count += 1;
   678   }
   679   _data_size = data_size;
   680   int object_size = in_bytes(data_offset()) + data_size;
   682   // Add some extra DataLayout cells (at least one) to track stray traps.
   683   int extra_data_count = compute_extra_data_count(data_size, empty_bc_count);
   684   object_size += extra_data_count * DataLayout::compute_size_in_bytes(0);
   686   // Set an initial hint. Don't use set_hint_di() because
   687   // first_di() may be out of bounds if data_size is 0.
   688   // In that situation, _hint_di is never used, but at
   689   // least well-defined.
   690   _hint_di = first_di();
   692   post_initialize(&stream);
   694   set_object_is_parsable(object_size);
   695 }
   697 // Get a measure of how much mileage the method has on it.
   698 int methodDataOopDesc::mileage_of(methodOop method) {
   699   int mileage = 0;
   700   int iic = method->interpreter_invocation_count();
   701   if (mileage < iic)  mileage = iic;
   703   InvocationCounter* ic = method->invocation_counter();
   704   InvocationCounter* bc = method->backedge_counter();
   706   int icval = ic->count();
   707   if (ic->carry()) icval += CompileThreshold;
   708   if (mileage < icval)  mileage = icval;
   709   int bcval = bc->count();
   710   if (bc->carry()) bcval += CompileThreshold;
   711   if (mileage < bcval)  mileage = bcval;
   712   return mileage;
   713 }
   715 bool methodDataOopDesc::is_mature() const {
   716   uint current = mileage_of(_method);
   717   uint initial = creation_mileage();
   718   if (current < initial)
   719     return true;  // some sort of overflow
   720   uint target;
   721   if (ProfileMaturityPercentage <= 0)
   722     target = (uint) -ProfileMaturityPercentage;  // absolute value
   723   else
   724     target = (uint)( (ProfileMaturityPercentage * CompileThreshold) / 100 );
   725   return (current >= initial + target);
   726 }
   728 // Translate a bci to its corresponding data index (di).
   729 address methodDataOopDesc::bci_to_dp(int bci) {
   730   ResourceMark rm;
   731   ProfileData* data = data_before(bci);
   732   ProfileData* prev = NULL;
   733   for ( ; is_valid(data); data = next_data(data)) {
   734     if (data->bci() >= bci) {
   735       if (data->bci() == bci)  set_hint_di(dp_to_di(data->dp()));
   736       else if (prev != NULL)   set_hint_di(dp_to_di(prev->dp()));
   737       return data->dp();
   738     }
   739     prev = data;
   740   }
   741   return (address)limit_data_position();
   742 }
   744 // Translate a bci to its corresponding data, or NULL.
   745 ProfileData* methodDataOopDesc::bci_to_data(int bci) {
   746   ProfileData* data = data_before(bci);
   747   for ( ; is_valid(data); data = next_data(data)) {
   748     if (data->bci() == bci) {
   749       set_hint_di(dp_to_di(data->dp()));
   750       return data;
   751     } else if (data->bci() > bci) {
   752       break;
   753     }
   754   }
   755   return bci_to_extra_data(bci, false);
   756 }
   758 // Translate a bci to its corresponding extra data, or NULL.
   759 ProfileData* methodDataOopDesc::bci_to_extra_data(int bci, bool create_if_missing) {
   760   DataLayout* dp    = extra_data_base();
   761   DataLayout* end   = extra_data_limit();
   762   DataLayout* avail = NULL;
   763   for (; dp < end; dp = next_extra(dp)) {
   764     // No need for "OrderAccess::load_acquire" ops,
   765     // since the data structure is monotonic.
   766     if (dp->tag() == DataLayout::no_tag)  break;
   767     if (dp->bci() == bci) {
   768       assert(dp->tag() == DataLayout::bit_data_tag, "sane");
   769       return new BitData(dp);
   770     }
   771   }
   772   if (create_if_missing && dp < end) {
   773     // Allocate this one.  There is no mutual exclusion,
   774     // so two threads could allocate different BCIs to the
   775     // same data layout.  This means these extra data
   776     // records, like most other MDO contents, must not be
   777     // trusted too much.
   778     DataLayout temp;
   779     temp.initialize(DataLayout::bit_data_tag, bci, 0);
   780     dp->release_set_header(temp.header());
   781     assert(dp->tag() == DataLayout::bit_data_tag, "sane");
   782     //NO: assert(dp->bci() == bci, "no concurrent allocation");
   783     return new BitData(dp);
   784   }
   785   return NULL;
   786 }
   788 #ifndef PRODUCT
   789 void methodDataOopDesc::print_data_on(outputStream* st) {
   790   ResourceMark rm;
   791   ProfileData* data = first_data();
   792   for ( ; is_valid(data); data = next_data(data)) {
   793     st->print("%d", dp_to_di(data->dp()));
   794     st->fill_to(6);
   795     data->print_data_on(st);
   796   }
   797   DataLayout* dp    = extra_data_base();
   798   DataLayout* end   = extra_data_limit();
   799   for (; dp < end; dp = next_extra(dp)) {
   800     // No need for "OrderAccess::load_acquire" ops,
   801     // since the data structure is monotonic.
   802     if (dp->tag() == DataLayout::no_tag)  break;
   803     if (dp == extra_data_base())
   804       st->print_cr("--- Extra data:");
   805     data = new BitData(dp);
   806     st->print("%d", dp_to_di(data->dp()));
   807     st->fill_to(6);
   808     data->print_data_on(st);
   809   }
   810 }
   811 #endif
   813 void methodDataOopDesc::verify_data_on(outputStream* st) {
   814   NEEDS_CLEANUP;
   815   // not yet implemented.
   816 }

mercurial