src/cpu/x86/vm/stubGenerator_x86_64.cpp

Wed, 05 Dec 2007 09:00:00 -0800

author
dcubed
date
Wed, 05 Dec 2007 09:00:00 -0800
changeset 451
f8236e79048a
parent 435
a61af66fc99e
child 548
ba764ed4b6f2
permissions
-rw-r--r--

6664627: Merge changes made only in hotspot 11 forward to jdk 7
Reviewed-by: jcoomes

     1 /*
     2  * Copyright 2003-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_stubGenerator_x86_64.cpp.incl"
    28 // Declaration and definition of StubGenerator (no .hpp file).
    29 // For a more detailed description of the stub routine structure
    30 // see the comment in stubRoutines.hpp
    32 #define __ _masm->
    34 #ifdef PRODUCT
    35 #define BLOCK_COMMENT(str) /* nothing */
    36 #else
    37 #define BLOCK_COMMENT(str) __ block_comment(str)
    38 #endif
    40 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    41 const int MXCSR_MASK = 0xFFC0;  // Mask out any pending exceptions
    43 // Stub Code definitions
    45 static address handle_unsafe_access() {
    46   JavaThread* thread = JavaThread::current();
    47   address pc = thread->saved_exception_pc();
    48   // pc is the instruction which we must emulate
    49   // doing a no-op is fine:  return garbage from the load
    50   // therefore, compute npc
    51   address npc = Assembler::locate_next_instruction(pc);
    53   // request an async exception
    54   thread->set_pending_unsafe_access_error();
    56   // return address of next instruction to execute
    57   return npc;
    58 }
    60 class StubGenerator: public StubCodeGenerator {
    61  private:
    63 #ifdef PRODUCT
    64 #define inc_counter_np(counter) (0)
    65 #else
    66   void inc_counter_np_(int& counter) {
    67     __ incrementl(ExternalAddress((address)&counter));
    68   }
    69 #define inc_counter_np(counter) \
    70   BLOCK_COMMENT("inc_counter " #counter); \
    71   inc_counter_np_(counter);
    72 #endif
    74   // Call stubs are used to call Java from C
    75   //
    76   // Linux Arguments:
    77   //    c_rarg0:   call wrapper address                   address
    78   //    c_rarg1:   result                                 address
    79   //    c_rarg2:   result type                            BasicType
    80   //    c_rarg3:   method                                 methodOop
    81   //    c_rarg4:   (interpreter) entry point              address
    82   //    c_rarg5:   parameters                             intptr_t*
    83   //    16(rbp): parameter size (in words)              int
    84   //    24(rbp): thread                                 Thread*
    85   //
    86   //     [ return_from_Java     ] <--- rsp
    87   //     [ argument word n      ]
    88   //      ...
    89   // -12 [ argument word 1      ]
    90   // -11 [ saved r15            ] <--- rsp_after_call
    91   // -10 [ saved r14            ]
    92   //  -9 [ saved r13            ]
    93   //  -8 [ saved r12            ]
    94   //  -7 [ saved rbx            ]
    95   //  -6 [ call wrapper         ]
    96   //  -5 [ result               ]
    97   //  -4 [ result type          ]
    98   //  -3 [ method               ]
    99   //  -2 [ entry point          ]
   100   //  -1 [ parameters           ]
   101   //   0 [ saved rbp            ] <--- rbp
   102   //   1 [ return address       ]
   103   //   2 [ parameter size       ]
   104   //   3 [ thread               ]
   105   //
   106   // Windows Arguments:
   107   //    c_rarg0:   call wrapper address                   address
   108   //    c_rarg1:   result                                 address
   109   //    c_rarg2:   result type                            BasicType
   110   //    c_rarg3:   method                                 methodOop
   111   //    48(rbp): (interpreter) entry point              address
   112   //    56(rbp): parameters                             intptr_t*
   113   //    64(rbp): parameter size (in words)              int
   114   //    72(rbp): thread                                 Thread*
   115   //
   116   //     [ return_from_Java     ] <--- rsp
   117   //     [ argument word n      ]
   118   //      ...
   119   //  -8 [ argument word 1      ]
   120   //  -7 [ saved r15            ] <--- rsp_after_call
   121   //  -6 [ saved r14            ]
   122   //  -5 [ saved r13            ]
   123   //  -4 [ saved r12            ]
   124   //  -3 [ saved rdi            ]
   125   //  -2 [ saved rsi            ]
   126   //  -1 [ saved rbx            ]
   127   //   0 [ saved rbp            ] <--- rbp
   128   //   1 [ return address       ]
   129   //   2 [ call wrapper         ]
   130   //   3 [ result               ]
   131   //   4 [ result type          ]
   132   //   5 [ method               ]
   133   //   6 [ entry point          ]
   134   //   7 [ parameters           ]
   135   //   8 [ parameter size       ]
   136   //   9 [ thread               ]
   137   //
   138   //    Windows reserves the callers stack space for arguments 1-4.
   139   //    We spill c_rarg0-c_rarg3 to this space.
   141   // Call stub stack layout word offsets from rbp
   142   enum call_stub_layout {
   143 #ifdef _WIN64
   144     rsp_after_call_off = -7,
   145     r15_off            = rsp_after_call_off,
   146     r14_off            = -6,
   147     r13_off            = -5,
   148     r12_off            = -4,
   149     rdi_off            = -3,
   150     rsi_off            = -2,
   151     rbx_off            = -1,
   152     rbp_off            =  0,
   153     retaddr_off        =  1,
   154     call_wrapper_off   =  2,
   155     result_off         =  3,
   156     result_type_off    =  4,
   157     method_off         =  5,
   158     entry_point_off    =  6,
   159     parameters_off     =  7,
   160     parameter_size_off =  8,
   161     thread_off         =  9
   162 #else
   163     rsp_after_call_off = -12,
   164     mxcsr_off          = rsp_after_call_off,
   165     r15_off            = -11,
   166     r14_off            = -10,
   167     r13_off            = -9,
   168     r12_off            = -8,
   169     rbx_off            = -7,
   170     call_wrapper_off   = -6,
   171     result_off         = -5,
   172     result_type_off    = -4,
   173     method_off         = -3,
   174     entry_point_off    = -2,
   175     parameters_off     = -1,
   176     rbp_off            =  0,
   177     retaddr_off        =  1,
   178     parameter_size_off =  2,
   179     thread_off         =  3
   180 #endif
   181   };
   183   address generate_call_stub(address& return_address) {
   184     assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
   185            (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
   186            "adjust this code");
   187     StubCodeMark mark(this, "StubRoutines", "call_stub");
   188     address start = __ pc();
   190     // same as in generate_catch_exception()!
   191     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
   193     const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
   194     const Address result        (rbp, result_off         * wordSize);
   195     const Address result_type   (rbp, result_type_off    * wordSize);
   196     const Address method        (rbp, method_off         * wordSize);
   197     const Address entry_point   (rbp, entry_point_off    * wordSize);
   198     const Address parameters    (rbp, parameters_off     * wordSize);
   199     const Address parameter_size(rbp, parameter_size_off * wordSize);
   201     // same as in generate_catch_exception()!
   202     const Address thread        (rbp, thread_off         * wordSize);
   204     const Address r15_save(rbp, r15_off * wordSize);
   205     const Address r14_save(rbp, r14_off * wordSize);
   206     const Address r13_save(rbp, r13_off * wordSize);
   207     const Address r12_save(rbp, r12_off * wordSize);
   208     const Address rbx_save(rbp, rbx_off * wordSize);
   210     // stub code
   211     __ enter();
   212     __ subq(rsp, -rsp_after_call_off * wordSize);
   214     // save register parameters
   215 #ifndef _WIN64
   216     __ movq(parameters,   c_rarg5); // parameters
   217     __ movq(entry_point,  c_rarg4); // entry_point
   218 #endif
   220     __ movq(method,       c_rarg3); // method
   221     __ movl(result_type,  c_rarg2); // result type
   222     __ movq(result,       c_rarg1); // result
   223     __ movq(call_wrapper, c_rarg0); // call wrapper
   225     // save regs belonging to calling function
   226     __ movq(rbx_save, rbx);
   227     __ movq(r12_save, r12);
   228     __ movq(r13_save, r13);
   229     __ movq(r14_save, r14);
   230     __ movq(r15_save, r15);
   232 #ifdef _WIN64
   233     const Address rdi_save(rbp, rdi_off * wordSize);
   234     const Address rsi_save(rbp, rsi_off * wordSize);
   236     __ movq(rsi_save, rsi);
   237     __ movq(rdi_save, rdi);
   238 #else
   239     const Address mxcsr_save(rbp, mxcsr_off * wordSize);
   240     {
   241       Label skip_ldmx;
   242       __ stmxcsr(mxcsr_save);
   243       __ movl(rax, mxcsr_save);
   244       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   245       ExternalAddress mxcsr_std(StubRoutines::amd64::mxcsr_std());
   246       __ cmp32(rax, mxcsr_std);
   247       __ jcc(Assembler::equal, skip_ldmx);
   248       __ ldmxcsr(mxcsr_std);
   249       __ bind(skip_ldmx);
   250     }
   251 #endif
   253     // Load up thread register
   254     __ movq(r15_thread, thread);
   256 #ifdef ASSERT
   257     // make sure we have no pending exceptions
   258     {
   259       Label L;
   260       __ cmpq(Address(r15_thread, Thread::pending_exception_offset()), (int)NULL_WORD);
   261       __ jcc(Assembler::equal, L);
   262       __ stop("StubRoutines::call_stub: entered with pending exception");
   263       __ bind(L);
   264     }
   265 #endif
   267     // pass parameters if any
   268     BLOCK_COMMENT("pass parameters if any");
   269     Label parameters_done;
   270     __ movl(c_rarg3, parameter_size);
   271     __ testl(c_rarg3, c_rarg3);
   272     __ jcc(Assembler::zero, parameters_done);
   274     Label loop;
   275     __ movq(c_rarg2, parameters);     // parameter pointer
   276     __ movl(c_rarg1, c_rarg3);        // parameter counter is in c_rarg1
   277     __ BIND(loop);
   278     if (TaggedStackInterpreter) {
   279       __ movq(rax, Address(c_rarg2, 0)); // get tag
   280       __ addq(c_rarg2, wordSize);     // advance to next tag
   281       __ pushq(rax);                  // pass tag
   282     }
   283     __ movq(rax, Address(c_rarg2, 0));  // get parameter
   284     __ addq(c_rarg2, wordSize);       // advance to next parameter
   285     __ decrementl(c_rarg1);           // decrement counter
   286     __ pushq(rax);                    // pass parameter
   287     __ jcc(Assembler::notZero, loop);
   289     // call Java function
   290     __ BIND(parameters_done);
   291     __ movq(rbx, method);             // get methodOop
   292     __ movq(c_rarg1, entry_point);    // get entry_point
   293     __ movq(r13, rsp);                // set sender sp
   294     BLOCK_COMMENT("call Java function");
   295     __ call(c_rarg1);
   297     BLOCK_COMMENT("call_stub_return_address:");
   298     return_address = __ pc();
   300     // store result depending on type (everything that is not
   301     // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
   302     __ movq(c_rarg0, result);
   303     Label is_long, is_float, is_double, exit;
   304     __ movl(c_rarg1, result_type);
   305     __ cmpl(c_rarg1, T_OBJECT);
   306     __ jcc(Assembler::equal, is_long);
   307     __ cmpl(c_rarg1, T_LONG);
   308     __ jcc(Assembler::equal, is_long);
   309     __ cmpl(c_rarg1, T_FLOAT);
   310     __ jcc(Assembler::equal, is_float);
   311     __ cmpl(c_rarg1, T_DOUBLE);
   312     __ jcc(Assembler::equal, is_double);
   314     // handle T_INT case
   315     __ movl(Address(c_rarg0, 0), rax);
   317     __ BIND(exit);
   319     // pop parameters
   320     __ leaq(rsp, rsp_after_call);
   322 #ifdef ASSERT
   323     // verify that threads correspond
   324     {
   325       Label L, S;
   326       __ cmpq(r15_thread, thread);
   327       __ jcc(Assembler::notEqual, S);
   328       __ get_thread(rbx);
   329       __ cmpq(r15_thread, rbx);
   330       __ jcc(Assembler::equal, L);
   331       __ bind(S);
   332       __ jcc(Assembler::equal, L);
   333       __ stop("StubRoutines::call_stub: threads must correspond");
   334       __ bind(L);
   335     }
   336 #endif
   338     // restore regs belonging to calling function
   339     __ movq(r15, r15_save);
   340     __ movq(r14, r14_save);
   341     __ movq(r13, r13_save);
   342     __ movq(r12, r12_save);
   343     __ movq(rbx, rbx_save);
   345 #ifdef _WIN64
   346     __ movq(rdi, rdi_save);
   347     __ movq(rsi, rsi_save);
   348 #else
   349     __ ldmxcsr(mxcsr_save);
   350 #endif
   352     // restore rsp
   353     __ addq(rsp, -rsp_after_call_off * wordSize);
   355     // return
   356     __ popq(rbp);
   357     __ ret(0);
   359     // handle return types different from T_INT
   360     __ BIND(is_long);
   361     __ movq(Address(c_rarg0, 0), rax);
   362     __ jmp(exit);
   364     __ BIND(is_float);
   365     __ movflt(Address(c_rarg0, 0), xmm0);
   366     __ jmp(exit);
   368     __ BIND(is_double);
   369     __ movdbl(Address(c_rarg0, 0), xmm0);
   370     __ jmp(exit);
   372     return start;
   373   }
   375   // Return point for a Java call if there's an exception thrown in
   376   // Java code.  The exception is caught and transformed into a
   377   // pending exception stored in JavaThread that can be tested from
   378   // within the VM.
   379   //
   380   // Note: Usually the parameters are removed by the callee. In case
   381   // of an exception crossing an activation frame boundary, that is
   382   // not the case if the callee is compiled code => need to setup the
   383   // rsp.
   384   //
   385   // rax: exception oop
   387   address generate_catch_exception() {
   388     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   389     address start = __ pc();
   391     // same as in generate_call_stub():
   392     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
   393     const Address thread        (rbp, thread_off         * wordSize);
   395 #ifdef ASSERT
   396     // verify that threads correspond
   397     {
   398       Label L, S;
   399       __ cmpq(r15_thread, thread);
   400       __ jcc(Assembler::notEqual, S);
   401       __ get_thread(rbx);
   402       __ cmpq(r15_thread, rbx);
   403       __ jcc(Assembler::equal, L);
   404       __ bind(S);
   405       __ stop("StubRoutines::catch_exception: threads must correspond");
   406       __ bind(L);
   407     }
   408 #endif
   410     // set pending exception
   411     __ verify_oop(rax);
   413     __ movq(Address(r15_thread, Thread::pending_exception_offset()), rax);
   414     __ lea(rscratch1, ExternalAddress((address)__FILE__));
   415     __ movq(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
   416     __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
   418     // complete return to VM
   419     assert(StubRoutines::_call_stub_return_address != NULL,
   420            "_call_stub_return_address must have been generated before");
   421     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
   423     return start;
   424   }
   426   // Continuation point for runtime calls returning with a pending
   427   // exception.  The pending exception check happened in the runtime
   428   // or native call stub.  The pending exception in Thread is
   429   // converted into a Java-level exception.
   430   //
   431   // Contract with Java-level exception handlers:
   432   // rax: exception
   433   // rdx: throwing pc
   434   //
   435   // NOTE: At entry of this stub, exception-pc must be on stack !!
   437   address generate_forward_exception() {
   438     StubCodeMark mark(this, "StubRoutines", "forward exception");
   439     address start = __ pc();
   441     // Upon entry, the sp points to the return address returning into
   442     // Java (interpreted or compiled) code; i.e., the return address
   443     // becomes the throwing pc.
   444     //
   445     // Arguments pushed before the runtime call are still on the stack
   446     // but the exception handler will reset the stack pointer ->
   447     // ignore them.  A potential result in registers can be ignored as
   448     // well.
   450 #ifdef ASSERT
   451     // make sure this code is only executed if there is a pending exception
   452     {
   453       Label L;
   454       __ cmpq(Address(r15_thread, Thread::pending_exception_offset()), (int) NULL);
   455       __ jcc(Assembler::notEqual, L);
   456       __ stop("StubRoutines::forward exception: no pending exception (1)");
   457       __ bind(L);
   458     }
   459 #endif
   461     // compute exception handler into rbx
   462     __ movq(c_rarg0, Address(rsp, 0));
   463     BLOCK_COMMENT("call exception_handler_for_return_address");
   464     __ call_VM_leaf(CAST_FROM_FN_PTR(address,
   465                          SharedRuntime::exception_handler_for_return_address),
   466                     c_rarg0);
   467     __ movq(rbx, rax);
   469     // setup rax & rdx, remove return address & clear pending exception
   470     __ popq(rdx);
   471     __ movq(rax, Address(r15_thread, Thread::pending_exception_offset()));
   472     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int)NULL_WORD);
   474 #ifdef ASSERT
   475     // make sure exception is set
   476     {
   477       Label L;
   478       __ testq(rax, rax);
   479       __ jcc(Assembler::notEqual, L);
   480       __ stop("StubRoutines::forward exception: no pending exception (2)");
   481       __ bind(L);
   482     }
   483 #endif
   485     // continue at exception handler (return address removed)
   486     // rax: exception
   487     // rbx: exception handler
   488     // rdx: throwing pc
   489     __ verify_oop(rax);
   490     __ jmp(rbx);
   492     return start;
   493   }
   495   // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
   496   //
   497   // Arguments :
   498   //    c_rarg0: exchange_value
   499   //    c_rarg0: dest
   500   //
   501   // Result:
   502   //    *dest <- ex, return (orig *dest)
   503   address generate_atomic_xchg() {
   504     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   505     address start = __ pc();
   507     __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
   508     __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
   509     __ ret(0);
   511     return start;
   512   }
   514   // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
   515   //
   516   // Arguments :
   517   //    c_rarg0: exchange_value
   518   //    c_rarg1: dest
   519   //
   520   // Result:
   521   //    *dest <- ex, return (orig *dest)
   522   address generate_atomic_xchg_ptr() {
   523     StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
   524     address start = __ pc();
   526     __ movq(rax, c_rarg0); // Copy to eax we need a return value anyhow
   527     __ xchgq(rax, Address(c_rarg1, 0)); // automatic LOCK
   528     __ ret(0);
   530     return start;
   531   }
   533   // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
   534   //                                         jint compare_value)
   535   //
   536   // Arguments :
   537   //    c_rarg0: exchange_value
   538   //    c_rarg1: dest
   539   //    c_rarg2: compare_value
   540   //
   541   // Result:
   542   //    if ( compare_value == *dest ) {
   543   //       *dest = exchange_value
   544   //       return compare_value;
   545   //    else
   546   //       return *dest;
   547   address generate_atomic_cmpxchg() {
   548     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
   549     address start = __ pc();
   551     __ movl(rax, c_rarg2);
   552    if ( os::is_MP() ) __ lock();
   553     __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
   554     __ ret(0);
   556     return start;
   557   }
   559   // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
   560   //                                             volatile jlong* dest,
   561   //                                             jlong compare_value)
   562   // Arguments :
   563   //    c_rarg0: exchange_value
   564   //    c_rarg1: dest
   565   //    c_rarg2: compare_value
   566   //
   567   // Result:
   568   //    if ( compare_value == *dest ) {
   569   //       *dest = exchange_value
   570   //       return compare_value;
   571   //    else
   572   //       return *dest;
   573   address generate_atomic_cmpxchg_long() {
   574     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
   575     address start = __ pc();
   577     __ movq(rax, c_rarg2);
   578    if ( os::is_MP() ) __ lock();
   579     __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
   580     __ ret(0);
   582     return start;
   583   }
   585   // Support for jint atomic::add(jint add_value, volatile jint* dest)
   586   //
   587   // Arguments :
   588   //    c_rarg0: add_value
   589   //    c_rarg1: dest
   590   //
   591   // Result:
   592   //    *dest += add_value
   593   //    return *dest;
   594   address generate_atomic_add() {
   595     StubCodeMark mark(this, "StubRoutines", "atomic_add");
   596     address start = __ pc();
   598     __ movl(rax, c_rarg0);
   599    if ( os::is_MP() ) __ lock();
   600     __ xaddl(Address(c_rarg1, 0), c_rarg0);
   601     __ addl(rax, c_rarg0);
   602     __ ret(0);
   604     return start;
   605   }
   607   // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
   608   //
   609   // Arguments :
   610   //    c_rarg0: add_value
   611   //    c_rarg1: dest
   612   //
   613   // Result:
   614   //    *dest += add_value
   615   //    return *dest;
   616   address generate_atomic_add_ptr() {
   617     StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
   618     address start = __ pc();
   620     __ movq(rax, c_rarg0); // Copy to eax we need a return value anyhow
   621    if ( os::is_MP() ) __ lock();
   622     __ xaddl(Address(c_rarg1, 0), c_rarg0);
   623     __ addl(rax, c_rarg0);
   624     __ ret(0);
   626     return start;
   627   }
   629   // Support for intptr_t OrderAccess::fence()
   630   //
   631   // Arguments :
   632   //
   633   // Result:
   634   address generate_orderaccess_fence() {
   635     StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
   636     address start = __ pc();
   637     __ mfence();
   638     __ ret(0);
   640     return start;
   641   }
   643   // Support for intptr_t get_previous_fp()
   644   //
   645   // This routine is used to find the previous frame pointer for the
   646   // caller (current_frame_guess). This is used as part of debugging
   647   // ps() is seemingly lost trying to find frames.
   648   // This code assumes that caller current_frame_guess) has a frame.
   649   address generate_get_previous_fp() {
   650     StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
   651     const Address old_fp(rbp, 0);
   652     const Address older_fp(rax, 0);
   653     address start = __ pc();
   655     __ enter();
   656     __ movq(rax, old_fp); // callers fp
   657     __ movq(rax, older_fp); // the frame for ps()
   658     __ popq(rbp);
   659     __ ret(0);
   661     return start;
   662   }
   664   //----------------------------------------------------------------------------------------------------
   665   // Support for void verify_mxcsr()
   666   //
   667   // This routine is used with -Xcheck:jni to verify that native
   668   // JNI code does not return to Java code without restoring the
   669   // MXCSR register to our expected state.
   671   address generate_verify_mxcsr() {
   672     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
   673     address start = __ pc();
   675     const Address mxcsr_save(rsp, 0);
   677     if (CheckJNICalls) {
   678       Label ok_ret;
   679       __ pushq(rax);
   680       __ subq(rsp, wordSize);      // allocate a temp location
   681       __ stmxcsr(mxcsr_save);
   682       __ movl(rax, mxcsr_save);
   683       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   684       __ cmpl(rax, *(int *)(StubRoutines::amd64::mxcsr_std()));
   685       __ jcc(Assembler::equal, ok_ret);
   687       __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
   689       __ ldmxcsr(ExternalAddress(StubRoutines::amd64::mxcsr_std()));
   691       __ bind(ok_ret);
   692       __ addq(rsp, wordSize);
   693       __ popq(rax);
   694     }
   696     __ ret(0);
   698     return start;
   699   }
   701   address generate_f2i_fixup() {
   702     StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
   703     Address inout(rsp, 5 * wordSize); // return address + 4 saves
   705     address start = __ pc();
   707     Label L;
   709     __ pushq(rax);
   710     __ pushq(c_rarg3);
   711     __ pushq(c_rarg2);
   712     __ pushq(c_rarg1);
   714     __ movl(rax, 0x7f800000);
   715     __ xorl(c_rarg3, c_rarg3);
   716     __ movl(c_rarg2, inout);
   717     __ movl(c_rarg1, c_rarg2);
   718     __ andl(c_rarg1, 0x7fffffff);
   719     __ cmpl(rax, c_rarg1); // NaN? -> 0
   720     __ jcc(Assembler::negative, L);
   721     __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
   722     __ movl(c_rarg3, 0x80000000);
   723     __ movl(rax, 0x7fffffff);
   724     __ cmovl(Assembler::positive, c_rarg3, rax);
   726     __ bind(L);
   727     __ movq(inout, c_rarg3);
   729     __ popq(c_rarg1);
   730     __ popq(c_rarg2);
   731     __ popq(c_rarg3);
   732     __ popq(rax);
   734     __ ret(0);
   736     return start;
   737   }
   739   address generate_f2l_fixup() {
   740     StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
   741     Address inout(rsp, 5 * wordSize); // return address + 4 saves
   742     address start = __ pc();
   744     Label L;
   746     __ pushq(rax);
   747     __ pushq(c_rarg3);
   748     __ pushq(c_rarg2);
   749     __ pushq(c_rarg1);
   751     __ movl(rax, 0x7f800000);
   752     __ xorl(c_rarg3, c_rarg3);
   753     __ movl(c_rarg2, inout);
   754     __ movl(c_rarg1, c_rarg2);
   755     __ andl(c_rarg1, 0x7fffffff);
   756     __ cmpl(rax, c_rarg1); // NaN? -> 0
   757     __ jcc(Assembler::negative, L);
   758     __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
   759     __ mov64(c_rarg3, 0x8000000000000000);
   760     __ mov64(rax, 0x7fffffffffffffff);
   761     __ cmovq(Assembler::positive, c_rarg3, rax);
   763     __ bind(L);
   764     __ movq(inout, c_rarg3);
   766     __ popq(c_rarg1);
   767     __ popq(c_rarg2);
   768     __ popq(c_rarg3);
   769     __ popq(rax);
   771     __ ret(0);
   773     return start;
   774   }
   776   address generate_d2i_fixup() {
   777     StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
   778     Address inout(rsp, 6 * wordSize); // return address + 5 saves
   780     address start = __ pc();
   782     Label L;
   784     __ pushq(rax);
   785     __ pushq(c_rarg3);
   786     __ pushq(c_rarg2);
   787     __ pushq(c_rarg1);
   788     __ pushq(c_rarg0);
   790     __ movl(rax, 0x7ff00000);
   791     __ movq(c_rarg2, inout);
   792     __ movl(c_rarg3, c_rarg2);
   793     __ movq(c_rarg1, c_rarg2);
   794     __ movq(c_rarg0, c_rarg2);
   795     __ negl(c_rarg3);
   796     __ shrq(c_rarg1, 0x20);
   797     __ orl(c_rarg3, c_rarg2);
   798     __ andl(c_rarg1, 0x7fffffff);
   799     __ xorl(c_rarg2, c_rarg2);
   800     __ shrl(c_rarg3, 0x1f);
   801     __ orl(c_rarg1, c_rarg3);
   802     __ cmpl(rax, c_rarg1);
   803     __ jcc(Assembler::negative, L); // NaN -> 0
   804     __ testq(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
   805     __ movl(c_rarg2, 0x80000000);
   806     __ movl(rax, 0x7fffffff);
   807     __ cmovl(Assembler::positive, c_rarg2, rax);
   809     __ bind(L);
   810     __ movq(inout, c_rarg2);
   812     __ popq(c_rarg0);
   813     __ popq(c_rarg1);
   814     __ popq(c_rarg2);
   815     __ popq(c_rarg3);
   816     __ popq(rax);
   818     __ ret(0);
   820     return start;
   821   }
   823   address generate_d2l_fixup() {
   824     StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
   825     Address inout(rsp, 6 * wordSize); // return address + 5 saves
   827     address start = __ pc();
   829     Label L;
   831     __ pushq(rax);
   832     __ pushq(c_rarg3);
   833     __ pushq(c_rarg2);
   834     __ pushq(c_rarg1);
   835     __ pushq(c_rarg0);
   837     __ movl(rax, 0x7ff00000);
   838     __ movq(c_rarg2, inout);
   839     __ movl(c_rarg3, c_rarg2);
   840     __ movq(c_rarg1, c_rarg2);
   841     __ movq(c_rarg0, c_rarg2);
   842     __ negl(c_rarg3);
   843     __ shrq(c_rarg1, 0x20);
   844     __ orl(c_rarg3, c_rarg2);
   845     __ andl(c_rarg1, 0x7fffffff);
   846     __ xorl(c_rarg2, c_rarg2);
   847     __ shrl(c_rarg3, 0x1f);
   848     __ orl(c_rarg1, c_rarg3);
   849     __ cmpl(rax, c_rarg1);
   850     __ jcc(Assembler::negative, L); // NaN -> 0
   851     __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
   852     __ mov64(c_rarg2, 0x8000000000000000);
   853     __ mov64(rax, 0x7fffffffffffffff);
   854     __ cmovq(Assembler::positive, c_rarg2, rax);
   856     __ bind(L);
   857     __ movq(inout, c_rarg2);
   859     __ popq(c_rarg0);
   860     __ popq(c_rarg1);
   861     __ popq(c_rarg2);
   862     __ popq(c_rarg3);
   863     __ popq(rax);
   865     __ ret(0);
   867     return start;
   868   }
   870   address generate_fp_mask(const char *stub_name, int64_t mask) {
   871     StubCodeMark mark(this, "StubRoutines", stub_name);
   873     __ align(16);
   874     address start = __ pc();
   876     __ emit_data64( mask, relocInfo::none );
   877     __ emit_data64( mask, relocInfo::none );
   879     return start;
   880   }
   882   // The following routine generates a subroutine to throw an
   883   // asynchronous UnknownError when an unsafe access gets a fault that
   884   // could not be reasonably prevented by the programmer.  (Example:
   885   // SIGBUS/OBJERR.)
   886   address generate_handler_for_unsafe_access() {
   887     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   888     address start = __ pc();
   890     __ pushq(0);                      // hole for return address-to-be
   891     __ pushaq();                      // push registers
   892     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
   894     __ subq(rsp, frame::arg_reg_save_area_bytes);
   895     BLOCK_COMMENT("call handle_unsafe_access");
   896     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
   897     __ addq(rsp, frame::arg_reg_save_area_bytes);
   899     __ movq(next_pc, rax);            // stuff next address
   900     __ popaq();
   901     __ ret(0);                        // jump to next address
   903     return start;
   904   }
   906   // Non-destructive plausibility checks for oops
   907   //
   908   // Arguments:
   909   //    all args on stack!
   910   //
   911   // Stack after saving c_rarg3:
   912   //    [tos + 0]: saved c_rarg3
   913   //    [tos + 1]: saved c_rarg2
   914   //    [tos + 2]: saved flags
   915   //    [tos + 3]: return address
   916   //  * [tos + 4]: error message (char*)
   917   //  * [tos + 5]: object to verify (oop)
   918   //  * [tos + 6]: saved rax - saved by caller and bashed
   919   //  * = popped on exit
   920   address generate_verify_oop() {
   921     StubCodeMark mark(this, "StubRoutines", "verify_oop");
   922     address start = __ pc();
   924     Label exit, error;
   926     __ pushfq();
   927     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
   929     // save c_rarg2 and c_rarg3
   930     __ pushq(c_rarg2);
   931     __ pushq(c_rarg3);
   933     // get object
   934     __ movq(rax, Address(rsp, 5 * wordSize));
   936     // make sure object is 'reasonable'
   937     __ testq(rax, rax);
   938     __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
   939     // Check if the oop is in the right area of memory
   940     __ movq(c_rarg2, rax);
   941     __ movptr(c_rarg3, (int64_t) Universe::verify_oop_mask());
   942     __ andq(c_rarg2, c_rarg3);
   943     __ movptr(c_rarg3, (int64_t) Universe::verify_oop_bits());
   944     __ cmpq(c_rarg2, c_rarg3);
   945     __ jcc(Assembler::notZero, error);
   947     // make sure klass is 'reasonable'
   948     __ movq(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
   949     __ testq(rax, rax);
   950     __ jcc(Assembler::zero, error); // if klass is NULL it is broken
   951     // Check if the klass is in the right area of memory
   952     __ movq(c_rarg2, rax);
   953     __ movptr(c_rarg3, (int64_t) Universe::verify_klass_mask());
   954     __ andq(c_rarg2, c_rarg3);
   955     __ movptr(c_rarg3, (int64_t) Universe::verify_klass_bits());
   956     __ cmpq(c_rarg2, c_rarg3);
   957     __ jcc(Assembler::notZero, error);
   959     // make sure klass' klass is 'reasonable'
   960     __ movq(rax, Address(rax, oopDesc::klass_offset_in_bytes()));
   961     __ testq(rax, rax);
   962     __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
   963     // Check if the klass' klass is in the right area of memory
   964     __ movptr(c_rarg3, (int64_t) Universe::verify_klass_mask());
   965     __ andq(rax, c_rarg3);
   966     __ movptr(c_rarg3, (int64_t) Universe::verify_klass_bits());
   967     __ cmpq(rax, c_rarg3);
   968     __ jcc(Assembler::notZero, error);
   970     // return if everything seems ok
   971     __ bind(exit);
   972     __ movq(rax, Address(rsp, 6 * wordSize));    // get saved rax back
   973     __ popq(c_rarg3);                              // restore c_rarg3
   974     __ popq(c_rarg2);                              // restore c_rarg2
   975     __ popfq();                                  // restore flags
   976     __ ret(3 * wordSize);                        // pop caller saved stuff
   978     // handle errors
   979     __ bind(error);
   980     __ movq(rax, Address(rsp, 6 * wordSize));    // get saved rax back
   981     __ popq(c_rarg3);                              // get saved c_rarg3 back
   982     __ popq(c_rarg2);                              // get saved c_rarg2 back
   983     __ popfq();                                  // get saved flags off stack --
   984                                                  // will be ignored
   986     __ pushaq();                                 // push registers
   987                                                  // (rip is already
   988                                                  // already pushed)
   989     // debug(char* msg, int64_t regs[])
   990     // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
   991     // pushed all the registers, so now the stack looks like:
   992     //     [tos +  0] 16 saved registers
   993     //     [tos + 16] return address
   994     //     [tos + 17] error message (char*)
   996     __ movq(c_rarg0, Address(rsp, 17 * wordSize)); // pass address of error message
   997     __ movq(c_rarg1, rsp);                         // pass address of regs on stack
   998     __ movq(r12, rsp);                           // remember rsp
   999     __ subq(rsp, frame::arg_reg_save_area_bytes);// windows
  1000     __ andq(rsp, -16);                           // align stack as required by ABI
  1001     BLOCK_COMMENT("call MacroAssembler::debug");
  1002     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug)));
  1003     __ movq(rsp, r12);                           // restore rsp
  1004     __ popaq();                                  // pop registers
  1005     __ ret(3 * wordSize);                        // pop caller saved stuff
  1007     return start;
  1010   static address disjoint_byte_copy_entry;
  1011   static address disjoint_short_copy_entry;
  1012   static address disjoint_int_copy_entry;
  1013   static address disjoint_long_copy_entry;
  1014   static address disjoint_oop_copy_entry;
  1016   static address byte_copy_entry;
  1017   static address short_copy_entry;
  1018   static address int_copy_entry;
  1019   static address long_copy_entry;
  1020   static address oop_copy_entry;
  1022   static address checkcast_copy_entry;
  1024   //
  1025   // Verify that a register contains clean 32-bits positive value
  1026   // (high 32-bits are 0) so it could be used in 64-bits shifts.
  1027   //
  1028   //  Input:
  1029   //    Rint  -  32-bits value
  1030   //    Rtmp  -  scratch
  1031   //
  1032   void assert_clean_int(Register Rint, Register Rtmp) {
  1033 #ifdef ASSERT
  1034     Label L;
  1035     assert_different_registers(Rtmp, Rint);
  1036     __ movslq(Rtmp, Rint);
  1037     __ cmpq(Rtmp, Rint);
  1038     __ jccb(Assembler::equal, L);
  1039     __ stop("high 32-bits of int value are not 0");
  1040     __ bind(L);
  1041 #endif
  1044   //  Generate overlap test for array copy stubs
  1045   //
  1046   //  Input:
  1047   //     c_rarg0 - from
  1048   //     c_rarg1 - to
  1049   //     c_rarg2 - element count
  1050   //
  1051   //  Output:
  1052   //     rax   - &from[element count - 1]
  1053   //
  1054   void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
  1055     assert(no_overlap_target != NULL, "must be generated");
  1056     array_overlap_test(no_overlap_target, NULL, sf);
  1058   void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
  1059     array_overlap_test(NULL, &L_no_overlap, sf);
  1061   void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
  1062     const Register from     = c_rarg0;
  1063     const Register to       = c_rarg1;
  1064     const Register count    = c_rarg2;
  1065     const Register end_from = rax;
  1067     __ cmpq(to, from);
  1068     __ leaq(end_from, Address(from, count, sf, 0));
  1069     if (NOLp == NULL) {
  1070       ExternalAddress no_overlap(no_overlap_target);
  1071       __ jump_cc(Assembler::belowEqual, no_overlap);
  1072       __ cmpq(to, end_from);
  1073       __ jump_cc(Assembler::aboveEqual, no_overlap);
  1074     } else {
  1075       __ jcc(Assembler::belowEqual, (*NOLp));
  1076       __ cmpq(to, end_from);
  1077       __ jcc(Assembler::aboveEqual, (*NOLp));
  1081   // Shuffle first three arg regs on Windows into Linux/Solaris locations.
  1082   //
  1083   // Outputs:
  1084   //    rdi - rcx
  1085   //    rsi - rdx
  1086   //    rdx - r8
  1087   //    rcx - r9
  1088   //
  1089   // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
  1090   // are non-volatile.  r9 and r10 should not be used by the caller.
  1091   //
  1092   void setup_arg_regs(int nargs = 3) {
  1093     const Register saved_rdi = r9;
  1094     const Register saved_rsi = r10;
  1095     assert(nargs == 3 || nargs == 4, "else fix");
  1096 #ifdef _WIN64
  1097     assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
  1098            "unexpected argument registers");
  1099     if (nargs >= 4)
  1100       __ movq(rax, r9);  // r9 is also saved_rdi
  1101     __ movq(saved_rdi, rdi);
  1102     __ movq(saved_rsi, rsi);
  1103     __ movq(rdi, rcx); // c_rarg0
  1104     __ movq(rsi, rdx); // c_rarg1
  1105     __ movq(rdx, r8);  // c_rarg2
  1106     if (nargs >= 4)
  1107       __ movq(rcx, rax); // c_rarg3 (via rax)
  1108 #else
  1109     assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
  1110            "unexpected argument registers");
  1111 #endif
  1114   void restore_arg_regs() {
  1115     const Register saved_rdi = r9;
  1116     const Register saved_rsi = r10;
  1117 #ifdef _WIN64
  1118     __ movq(rdi, saved_rdi);
  1119     __ movq(rsi, saved_rsi);
  1120 #endif
  1123   // Generate code for an array write pre barrier
  1124   //
  1125   //     addr    -  starting address
  1126   //     count    -  element count
  1127   //
  1128   //     Destroy no registers!
  1129   //
  1130   void  gen_write_ref_array_pre_barrier(Register addr, Register count) {
  1131 #if 0 // G1 - only
  1132     assert_different_registers(addr, c_rarg1);
  1133     assert_different_registers(count, c_rarg0);
  1134     BarrierSet* bs = Universe::heap()->barrier_set();
  1135     switch (bs->kind()) {
  1136       case BarrierSet::G1SATBCT:
  1137       case BarrierSet::G1SATBCTLogging:
  1139           __ pushaq();                      // push registers
  1140           __ movq(c_rarg0, addr);
  1141           __ movq(c_rarg1, count);
  1142           __ call(RuntimeAddress(BarrierSet::static_write_ref_array_pre));
  1143           __ popaq();
  1145         break;
  1146       case BarrierSet::CardTableModRef:
  1147       case BarrierSet::CardTableExtension:
  1148       case BarrierSet::ModRef:
  1149         break;
  1150       default      :
  1151         ShouldNotReachHere();
  1154 #endif // 0 G1 - only
  1157   //
  1158   // Generate code for an array write post barrier
  1159   //
  1160   //  Input:
  1161   //     start    - register containing starting address of destination array
  1162   //     end      - register containing ending address of destination array
  1163   //     scratch  - scratch register
  1164   //
  1165   //  The input registers are overwritten.
  1166   //  The ending address is inclusive.
  1167   void  gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
  1168     assert_different_registers(start, end, scratch);
  1169     BarrierSet* bs = Universe::heap()->barrier_set();
  1170     switch (bs->kind()) {
  1171 #if 0 // G1 - only
  1172       case BarrierSet::G1SATBCT:
  1173       case BarrierSet::G1SATBCTLogging:
  1176           __ pushaq();                      // push registers (overkill)
  1177           // must compute element count unless barrier set interface is changed (other platforms supply count)
  1178           assert_different_registers(start, end, scratch);
  1179           __ leaq(scratch, Address(end, wordSize));
  1180           __ subq(scratch, start);
  1181           __ shrq(scratch, LogBytesPerWord);
  1182           __ movq(c_rarg0, start);
  1183           __ movq(c_rarg1, scratch);
  1184           __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
  1185           __ popaq();
  1187         break;
  1188 #endif // 0 G1 - only
  1189       case BarrierSet::CardTableModRef:
  1190       case BarrierSet::CardTableExtension:
  1192           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1193           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1195           Label L_loop;
  1197            __ shrq(start, CardTableModRefBS::card_shift);
  1198            __ shrq(end, CardTableModRefBS::card_shift);
  1199            __ subq(end, start); // number of bytes to copy
  1201           const Register count = end; // 'end' register contains bytes count now
  1202           __ lea(scratch, ExternalAddress((address)ct->byte_map_base));
  1203           __ addq(start, scratch);
  1204         __ BIND(L_loop);
  1205           __ movb(Address(start, count, Address::times_1), 0);
  1206           __ decrementq(count);
  1207           __ jcc(Assembler::greaterEqual, L_loop);
  1212   // Copy big chunks forward
  1213   //
  1214   // Inputs:
  1215   //   end_from     - source arrays end address
  1216   //   end_to       - destination array end address
  1217   //   qword_count  - 64-bits element count, negative
  1218   //   to           - scratch
  1219   //   L_copy_32_bytes - entry label
  1220   //   L_copy_8_bytes  - exit  label
  1221   //
  1222   void copy_32_bytes_forward(Register end_from, Register end_to,
  1223                              Register qword_count, Register to,
  1224                              Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
  1225     DEBUG_ONLY(__ stop("enter at entry label, not here"));
  1226     Label L_loop;
  1227     __ align(16);
  1228   __ BIND(L_loop);
  1229     __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
  1230     __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
  1231     __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
  1232     __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
  1233     __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
  1234     __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
  1235     __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
  1236     __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
  1237   __ BIND(L_copy_32_bytes);
  1238     __ addq(qword_count, 4);
  1239     __ jcc(Assembler::lessEqual, L_loop);
  1240     __ subq(qword_count, 4);
  1241     __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
  1245   // Copy big chunks backward
  1246   //
  1247   // Inputs:
  1248   //   from         - source arrays address
  1249   //   dest         - destination array address
  1250   //   qword_count  - 64-bits element count
  1251   //   to           - scratch
  1252   //   L_copy_32_bytes - entry label
  1253   //   L_copy_8_bytes  - exit  label
  1254   //
  1255   void copy_32_bytes_backward(Register from, Register dest,
  1256                               Register qword_count, Register to,
  1257                               Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
  1258     DEBUG_ONLY(__ stop("enter at entry label, not here"));
  1259     Label L_loop;
  1260     __ align(16);
  1261   __ BIND(L_loop);
  1262     __ movq(to, Address(from, qword_count, Address::times_8, 24));
  1263     __ movq(Address(dest, qword_count, Address::times_8, 24), to);
  1264     __ movq(to, Address(from, qword_count, Address::times_8, 16));
  1265     __ movq(Address(dest, qword_count, Address::times_8, 16), to);
  1266     __ movq(to, Address(from, qword_count, Address::times_8,  8));
  1267     __ movq(Address(dest, qword_count, Address::times_8,  8), to);
  1268     __ movq(to, Address(from, qword_count, Address::times_8,  0));
  1269     __ movq(Address(dest, qword_count, Address::times_8,  0), to);
  1270   __ BIND(L_copy_32_bytes);
  1271     __ subq(qword_count, 4);
  1272     __ jcc(Assembler::greaterEqual, L_loop);
  1273     __ addq(qword_count, 4);
  1274     __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
  1278   // Arguments:
  1279   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1280   //             ignored
  1281   //   name    - stub name string
  1282   //
  1283   // Inputs:
  1284   //   c_rarg0   - source array address
  1285   //   c_rarg1   - destination array address
  1286   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1287   //
  1288   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
  1289   // we let the hardware handle it.  The one to eight bytes within words,
  1290   // dwords or qwords that span cache line boundaries will still be loaded
  1291   // and stored atomically.
  1292   //
  1293   // Side Effects:
  1294   //   disjoint_byte_copy_entry is set to the no-overlap entry point
  1295   //   used by generate_conjoint_byte_copy().
  1296   //
  1297   address generate_disjoint_byte_copy(bool aligned, const char *name) {
  1298     __ align(CodeEntryAlignment);
  1299     StubCodeMark mark(this, "StubRoutines", name);
  1300     address start = __ pc();
  1302     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
  1303     Label L_copy_byte, L_exit;
  1304     const Register from        = rdi;  // source array address
  1305     const Register to          = rsi;  // destination array address
  1306     const Register count       = rdx;  // elements count
  1307     const Register byte_count  = rcx;
  1308     const Register qword_count = count;
  1309     const Register end_from    = from; // source array end address
  1310     const Register end_to      = to;   // destination array end address
  1311     // End pointers are inclusive, and if count is not zero they point
  1312     // to the last unit copied:  end_to[0] := end_from[0]
  1314     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1315     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1317     disjoint_byte_copy_entry = __ pc();
  1318     BLOCK_COMMENT("Entry:");
  1319     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1321     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1322                       // r9 and r10 may be used to save non-volatile registers
  1324     // 'from', 'to' and 'count' are now valid
  1325     __ movq(byte_count, count);
  1326     __ shrq(count, 3); // count => qword_count
  1328     // Copy from low to high addresses.  Use 'to' as scratch.
  1329     __ leaq(end_from, Address(from, qword_count, Address::times_8, -8));
  1330     __ leaq(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1331     __ negq(qword_count); // make the count negative
  1332     __ jmp(L_copy_32_bytes);
  1334     // Copy trailing qwords
  1335   __ BIND(L_copy_8_bytes);
  1336     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1337     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1338     __ incrementq(qword_count);
  1339     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1341     // Check for and copy trailing dword
  1342   __ BIND(L_copy_4_bytes);
  1343     __ testq(byte_count, 4);
  1344     __ jccb(Assembler::zero, L_copy_2_bytes);
  1345     __ movl(rax, Address(end_from, 8));
  1346     __ movl(Address(end_to, 8), rax);
  1348     __ addq(end_from, 4);
  1349     __ addq(end_to, 4);
  1351     // Check for and copy trailing word
  1352   __ BIND(L_copy_2_bytes);
  1353     __ testq(byte_count, 2);
  1354     __ jccb(Assembler::zero, L_copy_byte);
  1355     __ movw(rax, Address(end_from, 8));
  1356     __ movw(Address(end_to, 8), rax);
  1358     __ addq(end_from, 2);
  1359     __ addq(end_to, 2);
  1361     // Check for and copy trailing byte
  1362   __ BIND(L_copy_byte);
  1363     __ testq(byte_count, 1);
  1364     __ jccb(Assembler::zero, L_exit);
  1365     __ movb(rax, Address(end_from, 8));
  1366     __ movb(Address(end_to, 8), rax);
  1368   __ BIND(L_exit);
  1369     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
  1370     restore_arg_regs();
  1371     __ xorq(rax, rax); // return 0
  1372     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1373     __ ret(0);
  1375     // Copy in 32-bytes chunks
  1376     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1377     __ jmp(L_copy_4_bytes);
  1379     return start;
  1382   // Arguments:
  1383   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1384   //             ignored
  1385   //   name    - stub name string
  1386   //
  1387   // Inputs:
  1388   //   c_rarg0   - source array address
  1389   //   c_rarg1   - destination array address
  1390   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1391   //
  1392   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
  1393   // we let the hardware handle it.  The one to eight bytes within words,
  1394   // dwords or qwords that span cache line boundaries will still be loaded
  1395   // and stored atomically.
  1396   //
  1397   address generate_conjoint_byte_copy(bool aligned, const char *name) {
  1398     __ align(CodeEntryAlignment);
  1399     StubCodeMark mark(this, "StubRoutines", name);
  1400     address start = __ pc();
  1402     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
  1403     const Register from        = rdi;  // source array address
  1404     const Register to          = rsi;  // destination array address
  1405     const Register count       = rdx;  // elements count
  1406     const Register byte_count  = rcx;
  1407     const Register qword_count = count;
  1409     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1410     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1412     byte_copy_entry = __ pc();
  1413     BLOCK_COMMENT("Entry:");
  1414     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1416     array_overlap_test(disjoint_byte_copy_entry, Address::times_1);
  1417     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1418                       // r9 and r10 may be used to save non-volatile registers
  1420     // 'from', 'to' and 'count' are now valid
  1421     __ movq(byte_count, count);
  1422     __ shrq(count, 3);   // count => qword_count
  1424     // Copy from high to low addresses.
  1426     // Check for and copy trailing byte
  1427     __ testq(byte_count, 1);
  1428     __ jcc(Assembler::zero, L_copy_2_bytes);
  1429     __ movb(rax, Address(from, byte_count, Address::times_1, -1));
  1430     __ movb(Address(to, byte_count, Address::times_1, -1), rax);
  1431     __ decrementq(byte_count); // Adjust for possible trailing word
  1433     // Check for and copy trailing word
  1434   __ BIND(L_copy_2_bytes);
  1435     __ testq(byte_count, 2);
  1436     __ jcc(Assembler::zero, L_copy_4_bytes);
  1437     __ movw(rax, Address(from, byte_count, Address::times_1, -2));
  1438     __ movw(Address(to, byte_count, Address::times_1, -2), rax);
  1440     // Check for and copy trailing dword
  1441   __ BIND(L_copy_4_bytes);
  1442     __ testq(byte_count, 4);
  1443     __ jcc(Assembler::zero, L_copy_32_bytes);
  1444     __ movl(rax, Address(from, qword_count, Address::times_8));
  1445     __ movl(Address(to, qword_count, Address::times_8), rax);
  1446     __ jmp(L_copy_32_bytes);
  1448     // Copy trailing qwords
  1449   __ BIND(L_copy_8_bytes);
  1450     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1451     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1452     __ decrementq(qword_count);
  1453     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1455     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
  1456     restore_arg_regs();
  1457     __ xorq(rax, rax); // return 0
  1458     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1459     __ ret(0);
  1461     // Copy in 32-bytes chunks
  1462     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1464     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
  1465     restore_arg_regs();
  1466     __ xorq(rax, rax); // return 0
  1467     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1468     __ ret(0);
  1470     return start;
  1473   // Arguments:
  1474   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1475   //             ignored
  1476   //   name    - stub name string
  1477   //
  1478   // Inputs:
  1479   //   c_rarg0   - source array address
  1480   //   c_rarg1   - destination array address
  1481   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1482   //
  1483   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
  1484   // let the hardware handle it.  The two or four words within dwords
  1485   // or qwords that span cache line boundaries will still be loaded
  1486   // and stored atomically.
  1487   //
  1488   // Side Effects:
  1489   //   disjoint_short_copy_entry is set to the no-overlap entry point
  1490   //   used by generate_conjoint_short_copy().
  1491   //
  1492   address generate_disjoint_short_copy(bool aligned, const char *name) {
  1493     __ align(CodeEntryAlignment);
  1494     StubCodeMark mark(this, "StubRoutines", name);
  1495     address start = __ pc();
  1497     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
  1498     const Register from        = rdi;  // source array address
  1499     const Register to          = rsi;  // destination array address
  1500     const Register count       = rdx;  // elements count
  1501     const Register word_count  = rcx;
  1502     const Register qword_count = count;
  1503     const Register end_from    = from; // source array end address
  1504     const Register end_to      = to;   // destination array end address
  1505     // End pointers are inclusive, and if count is not zero they point
  1506     // to the last unit copied:  end_to[0] := end_from[0]
  1508     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1509     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1511     disjoint_short_copy_entry = __ pc();
  1512     BLOCK_COMMENT("Entry:");
  1513     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1515     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1516                       // r9 and r10 may be used to save non-volatile registers
  1518     // 'from', 'to' and 'count' are now valid
  1519     __ movq(word_count, count);
  1520     __ shrq(count, 2); // count => qword_count
  1522     // Copy from low to high addresses.  Use 'to' as scratch.
  1523     __ leaq(end_from, Address(from, qword_count, Address::times_8, -8));
  1524     __ leaq(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1525     __ negq(qword_count);
  1526     __ jmp(L_copy_32_bytes);
  1528     // Copy trailing qwords
  1529   __ BIND(L_copy_8_bytes);
  1530     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1531     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1532     __ incrementq(qword_count);
  1533     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1535     // Original 'dest' is trashed, so we can't use it as a
  1536     // base register for a possible trailing word copy
  1538     // Check for and copy trailing dword
  1539   __ BIND(L_copy_4_bytes);
  1540     __ testq(word_count, 2);
  1541     __ jccb(Assembler::zero, L_copy_2_bytes);
  1542     __ movl(rax, Address(end_from, 8));
  1543     __ movl(Address(end_to, 8), rax);
  1545     __ addq(end_from, 4);
  1546     __ addq(end_to, 4);
  1548     // Check for and copy trailing word
  1549   __ BIND(L_copy_2_bytes);
  1550     __ testq(word_count, 1);
  1551     __ jccb(Assembler::zero, L_exit);
  1552     __ movw(rax, Address(end_from, 8));
  1553     __ movw(Address(end_to, 8), rax);
  1555   __ BIND(L_exit);
  1556     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
  1557     restore_arg_regs();
  1558     __ xorq(rax, rax); // return 0
  1559     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1560     __ ret(0);
  1562     // Copy in 32-bytes chunks
  1563     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1564     __ jmp(L_copy_4_bytes);
  1566     return start;
  1569   // Arguments:
  1570   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1571   //             ignored
  1572   //   name    - stub name string
  1573   //
  1574   // Inputs:
  1575   //   c_rarg0   - source array address
  1576   //   c_rarg1   - destination array address
  1577   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1578   //
  1579   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
  1580   // let the hardware handle it.  The two or four words within dwords
  1581   // or qwords that span cache line boundaries will still be loaded
  1582   // and stored atomically.
  1583   //
  1584   address generate_conjoint_short_copy(bool aligned, const char *name) {
  1585     __ align(CodeEntryAlignment);
  1586     StubCodeMark mark(this, "StubRoutines", name);
  1587     address start = __ pc();
  1589     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
  1590     const Register from        = rdi;  // source array address
  1591     const Register to          = rsi;  // destination array address
  1592     const Register count       = rdx;  // elements count
  1593     const Register word_count  = rcx;
  1594     const Register qword_count = count;
  1596     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1597     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1599     short_copy_entry = __ pc();
  1600     BLOCK_COMMENT("Entry:");
  1601     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1603     array_overlap_test(disjoint_short_copy_entry, Address::times_2);
  1604     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1605                       // r9 and r10 may be used to save non-volatile registers
  1607     // 'from', 'to' and 'count' are now valid
  1608     __ movq(word_count, count);
  1609     __ shrq(count, 2); // count => qword_count
  1611     // Copy from high to low addresses.  Use 'to' as scratch.
  1613     // Check for and copy trailing word
  1614     __ testq(word_count, 1);
  1615     __ jccb(Assembler::zero, L_copy_4_bytes);
  1616     __ movw(rax, Address(from, word_count, Address::times_2, -2));
  1617     __ movw(Address(to, word_count, Address::times_2, -2), rax);
  1619     // Check for and copy trailing dword
  1620   __ BIND(L_copy_4_bytes);
  1621     __ testq(word_count, 2);
  1622     __ jcc(Assembler::zero, L_copy_32_bytes);
  1623     __ movl(rax, Address(from, qword_count, Address::times_8));
  1624     __ movl(Address(to, qword_count, Address::times_8), rax);
  1625     __ jmp(L_copy_32_bytes);
  1627     // Copy trailing qwords
  1628   __ BIND(L_copy_8_bytes);
  1629     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1630     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1631     __ decrementq(qword_count);
  1632     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1634     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
  1635     restore_arg_regs();
  1636     __ xorq(rax, rax); // return 0
  1637     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1638     __ ret(0);
  1640     // Copy in 32-bytes chunks
  1641     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1643     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
  1644     restore_arg_regs();
  1645     __ xorq(rax, rax); // return 0
  1646     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1647     __ ret(0);
  1649     return start;
  1652   // Arguments:
  1653   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1654   //             ignored
  1655   //   name    - stub name string
  1656   //
  1657   // Inputs:
  1658   //   c_rarg0   - source array address
  1659   //   c_rarg1   - destination array address
  1660   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1661   //
  1662   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
  1663   // the hardware handle it.  The two dwords within qwords that span
  1664   // cache line boundaries will still be loaded and stored atomicly.
  1665   //
  1666   // Side Effects:
  1667   //   disjoint_int_copy_entry is set to the no-overlap entry point
  1668   //   used by generate_conjoint_int_copy().
  1669   //
  1670   address generate_disjoint_int_copy(bool aligned, const char *name) {
  1671     __ align(CodeEntryAlignment);
  1672     StubCodeMark mark(this, "StubRoutines", name);
  1673     address start = __ pc();
  1675     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
  1676     const Register from        = rdi;  // source array address
  1677     const Register to          = rsi;  // destination array address
  1678     const Register count       = rdx;  // elements count
  1679     const Register dword_count = rcx;
  1680     const Register qword_count = count;
  1681     const Register end_from    = from; // source array end address
  1682     const Register end_to      = to;   // destination array end address
  1683     // End pointers are inclusive, and if count is not zero they point
  1684     // to the last unit copied:  end_to[0] := end_from[0]
  1686     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1687     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1689     disjoint_int_copy_entry = __ pc();
  1690     BLOCK_COMMENT("Entry:");
  1691     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1693     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1694                       // r9 and r10 may be used to save non-volatile registers
  1696     // 'from', 'to' and 'count' are now valid
  1697     __ movq(dword_count, count);
  1698     __ shrq(count, 1); // count => qword_count
  1700     // Copy from low to high addresses.  Use 'to' as scratch.
  1701     __ leaq(end_from, Address(from, qword_count, Address::times_8, -8));
  1702     __ leaq(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1703     __ negq(qword_count);
  1704     __ jmp(L_copy_32_bytes);
  1706     // Copy trailing qwords
  1707   __ BIND(L_copy_8_bytes);
  1708     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1709     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1710     __ incrementq(qword_count);
  1711     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1713     // Check for and copy trailing dword
  1714   __ BIND(L_copy_4_bytes);
  1715     __ testq(dword_count, 1); // Only byte test since the value is 0 or 1
  1716     __ jccb(Assembler::zero, L_exit);
  1717     __ movl(rax, Address(end_from, 8));
  1718     __ movl(Address(end_to, 8), rax);
  1720   __ BIND(L_exit);
  1721     inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
  1722     restore_arg_regs();
  1723     __ xorq(rax, rax); // return 0
  1724     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1725     __ ret(0);
  1727     // Copy 32-bytes chunks
  1728     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1729     __ jmp(L_copy_4_bytes);
  1731     return start;
  1734   // Arguments:
  1735   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1736   //             ignored
  1737   //   name    - stub name string
  1738   //
  1739   // Inputs:
  1740   //   c_rarg0   - source array address
  1741   //   c_rarg1   - destination array address
  1742   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1743   //
  1744   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
  1745   // the hardware handle it.  The two dwords within qwords that span
  1746   // cache line boundaries will still be loaded and stored atomicly.
  1747   //
  1748   address generate_conjoint_int_copy(bool aligned, const char *name) {
  1749     __ align(CodeEntryAlignment);
  1750     StubCodeMark mark(this, "StubRoutines", name);
  1751     address start = __ pc();
  1753     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes;
  1754     const Register from        = rdi;  // source array address
  1755     const Register to          = rsi;  // destination array address
  1756     const Register count       = rdx;  // elements count
  1757     const Register dword_count = rcx;
  1758     const Register qword_count = count;
  1760     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1761     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1763     int_copy_entry = __ pc();
  1764     BLOCK_COMMENT("Entry:");
  1765     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1767     array_overlap_test(disjoint_int_copy_entry, Address::times_4);
  1768     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1769                       // r9 and r10 may be used to save non-volatile registers
  1771     // 'from', 'to' and 'count' are now valid
  1772     __ movq(dword_count, count);
  1773     __ shrq(count, 1); // count => qword_count
  1775     // Copy from high to low addresses.  Use 'to' as scratch.
  1777     // Check for and copy trailing dword
  1778     __ testq(dword_count, 1);
  1779     __ jcc(Assembler::zero, L_copy_32_bytes);
  1780     __ movl(rax, Address(from, dword_count, Address::times_4, -4));
  1781     __ movl(Address(to, dword_count, Address::times_4, -4), rax);
  1782     __ jmp(L_copy_32_bytes);
  1784     // Copy trailing qwords
  1785   __ BIND(L_copy_8_bytes);
  1786     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1787     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1788     __ decrementq(qword_count);
  1789     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1791     inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
  1792     restore_arg_regs();
  1793     __ xorq(rax, rax); // return 0
  1794     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1795     __ ret(0);
  1797     // Copy in 32-bytes chunks
  1798     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1800     inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
  1801     restore_arg_regs();
  1802     __ xorq(rax, rax); // return 0
  1803     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1804     __ ret(0);
  1806     return start;
  1809   // Arguments:
  1810   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
  1811   //             ignored
  1812   //   is_oop  - true => oop array, so generate store check code
  1813   //   name    - stub name string
  1814   //
  1815   // Inputs:
  1816   //   c_rarg0   - source array address
  1817   //   c_rarg1   - destination array address
  1818   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1819   //
  1820   // Side Effects:
  1821   //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
  1822   //   no-overlap entry point used by generate_conjoint_long_oop_copy().
  1823   //
  1824   address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
  1825     __ align(CodeEntryAlignment);
  1826     StubCodeMark mark(this, "StubRoutines", name);
  1827     address start = __ pc();
  1829     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
  1830     const Register from        = rdi;  // source array address
  1831     const Register to          = rsi;  // destination array address
  1832     const Register qword_count = rdx;  // elements count
  1833     const Register end_from    = from; // source array end address
  1834     const Register end_to      = rcx;  // destination array end address
  1835     const Register saved_to    = to;
  1836     // End pointers are inclusive, and if count is not zero they point
  1837     // to the last unit copied:  end_to[0] := end_from[0]
  1839     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1840     // Save no-overlap entry point for generate_conjoint_long_oop_copy()
  1841     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1843     if (is_oop) {
  1844       disjoint_oop_copy_entry  = __ pc();
  1845       // no registers are destroyed by this call
  1846       gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
  1847     } else {
  1848       disjoint_long_copy_entry = __ pc();
  1850     BLOCK_COMMENT("Entry:");
  1851     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1853     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1854                       // r9 and r10 may be used to save non-volatile registers
  1856     // 'from', 'to' and 'qword_count' are now valid
  1858     // Copy from low to high addresses.  Use 'to' as scratch.
  1859     __ leaq(end_from, Address(from, qword_count, Address::times_8, -8));
  1860     __ leaq(end_to,   Address(to, qword_count, Address::times_8, -8));
  1861     __ negq(qword_count);
  1862     __ jmp(L_copy_32_bytes);
  1864     // Copy trailing qwords
  1865   __ BIND(L_copy_8_bytes);
  1866     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1867     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1868     __ incrementq(qword_count);
  1869     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1871     if (is_oop) {
  1872       __ jmp(L_exit);
  1873     } else {
  1874       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  1875       restore_arg_regs();
  1876       __ xorq(rax, rax); // return 0
  1877       __ leave(); // required for proper stackwalking of RuntimeStub frame
  1878       __ ret(0);
  1881     // Copy 64-byte chunks
  1882     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1884     if (is_oop) {
  1885     __ BIND(L_exit);
  1886       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
  1887       inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
  1888     } else {
  1889       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  1891     restore_arg_regs();
  1892     __ xorq(rax, rax); // return 0
  1893     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1894     __ ret(0);
  1896     return start;
  1899   // Arguments:
  1900   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
  1901   //             ignored
  1902   //   is_oop  - true => oop array, so generate store check code
  1903   //   name    - stub name string
  1904   //
  1905   // Inputs:
  1906   //   c_rarg0   - source array address
  1907   //   c_rarg1   - destination array address
  1908   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1909   //
  1910   address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
  1911     __ align(CodeEntryAlignment);
  1912     StubCodeMark mark(this, "StubRoutines", name);
  1913     address start = __ pc();
  1915     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
  1916     const Register from        = rdi;  // source array address
  1917     const Register to          = rsi;  // destination array address
  1918     const Register qword_count = rdx;  // elements count
  1919     const Register saved_count = rcx;
  1921     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1922     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1924     address disjoint_copy_entry = NULL;
  1925     if (is_oop) {
  1926       disjoint_copy_entry = disjoint_oop_copy_entry;
  1927       oop_copy_entry  = __ pc();
  1928     } else {
  1929       disjoint_copy_entry = disjoint_long_copy_entry;
  1930       long_copy_entry = __ pc();
  1932     BLOCK_COMMENT("Entry:");
  1933     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1935     array_overlap_test(disjoint_copy_entry, Address::times_8);
  1936     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1937                       // r9 and r10 may be used to save non-volatile registers
  1939     // 'from', 'to' and 'qword_count' are now valid
  1941     if (is_oop) {
  1942       // Save to and count for store barrier
  1943       __ movq(saved_count, qword_count);
  1944       // No registers are destroyed by this call
  1945       gen_write_ref_array_pre_barrier(to, saved_count);
  1948     // Copy from high to low addresses.  Use rcx as scratch.
  1950     __ jmp(L_copy_32_bytes);
  1952     // Copy trailing qwords
  1953   __ BIND(L_copy_8_bytes);
  1954     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1955     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1956     __ decrementq(qword_count);
  1957     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1959     if (is_oop) {
  1960       __ jmp(L_exit);
  1961     } else {
  1962       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  1963       restore_arg_regs();
  1964       __ xorq(rax, rax); // return 0
  1965       __ leave(); // required for proper stackwalking of RuntimeStub frame
  1966       __ ret(0);
  1969     // Copy in 32-bytes chunks
  1970     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1972     if (is_oop) {
  1973     __ BIND(L_exit);
  1974       __ leaq(rcx, Address(to, saved_count, Address::times_8, -8));
  1975       gen_write_ref_array_post_barrier(to, rcx, rax);
  1976       inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
  1977     } else {
  1978       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  1980     restore_arg_regs();
  1981     __ xorq(rax, rax); // return 0
  1982     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1983     __ ret(0);
  1985     return start;
  1989   // Helper for generating a dynamic type check.
  1990   // Smashes no registers.
  1991   void generate_type_check(Register sub_klass,
  1992                            Register super_check_offset,
  1993                            Register super_klass,
  1994                            Label& L_success) {
  1995     assert_different_registers(sub_klass, super_check_offset, super_klass);
  1997     BLOCK_COMMENT("type_check:");
  1999     Label L_miss;
  2001     // a couple of useful fields in sub_klass:
  2002     int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
  2003                      Klass::secondary_supers_offset_in_bytes());
  2004     int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  2005                      Klass::secondary_super_cache_offset_in_bytes());
  2006     Address secondary_supers_addr(sub_klass, ss_offset);
  2007     Address super_cache_addr(     sub_klass, sc_offset);
  2009     // if the pointers are equal, we are done (e.g., String[] elements)
  2010     __ cmpq(super_klass, sub_klass);
  2011     __ jcc(Assembler::equal, L_success);
  2013     // check the supertype display:
  2014     Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  2015     __ cmpq(super_klass, super_check_addr); // test the super type
  2016     __ jcc(Assembler::equal, L_success);
  2018     // if it was a primary super, we can just fail immediately
  2019     __ cmpl(super_check_offset, sc_offset);
  2020     __ jcc(Assembler::notEqual, L_miss);
  2022     // Now do a linear scan of the secondary super-klass chain.
  2023     // The repne_scan instruction uses fixed registers, which we must spill.
  2024     // (We need a couple more temps in any case.)
  2025     // This code is rarely used, so simplicity is a virtue here.
  2026     inc_counter_np(SharedRuntime::_partial_subtype_ctr);
  2028       __ pushq(rax);
  2029       __ pushq(rcx);
  2030       __ pushq(rdi);
  2031       assert_different_registers(sub_klass, super_klass, rax, rcx, rdi);
  2033       __ movq(rdi, secondary_supers_addr);
  2034       // Load the array length.
  2035       __ movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
  2036       // Skip to start of data.
  2037       __ addq(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
  2038       // Scan rcx words at [rdi] for occurance of rax
  2039       // Set NZ/Z based on last compare
  2040       __ movq(rax, super_klass);
  2041       __ repne_scan();
  2043       // Unspill the temp. registers:
  2044       __ popq(rdi);
  2045       __ popq(rcx);
  2046       __ popq(rax);
  2048       __ jcc(Assembler::notEqual, L_miss);
  2051     // Success.  Cache the super we found and proceed in triumph.
  2052     __ movq(super_cache_addr, super_klass); // note: rax is dead
  2053     __ jmp(L_success);
  2055     // Fall through on failure!
  2056     __ BIND(L_miss);
  2059   //
  2060   //  Generate checkcasting array copy stub
  2061   //
  2062   //  Input:
  2063   //    c_rarg0   - source array address
  2064   //    c_rarg1   - destination array address
  2065   //    c_rarg2   - element count, treated as ssize_t, can be zero
  2066   //    c_rarg3   - size_t ckoff (super_check_offset)
  2067   // not Win64
  2068   //    c_rarg4   - oop ckval (super_klass)
  2069   // Win64
  2070   //    rsp+40    - oop ckval (super_klass)
  2071   //
  2072   //  Output:
  2073   //    rax ==  0  -  success
  2074   //    rax == -1^K - failure, where K is partial transfer count
  2075   //
  2076   address generate_checkcast_copy(const char *name) {
  2078     Label L_load_element, L_store_element, L_do_card_marks, L_done;
  2080     // Input registers (after setup_arg_regs)
  2081     const Register from        = rdi;   // source array address
  2082     const Register to          = rsi;   // destination array address
  2083     const Register length      = rdx;   // elements count
  2084     const Register ckoff       = rcx;   // super_check_offset
  2085     const Register ckval       = r8;    // super_klass
  2087     // Registers used as temps (r13, r14 are save-on-entry)
  2088     const Register end_from    = from;  // source array end address
  2089     const Register end_to      = r13;   // destination array end address
  2090     const Register count       = rdx;   // -(count_remaining)
  2091     const Register r14_length  = r14;   // saved copy of length
  2092     // End pointers are inclusive, and if length is not zero they point
  2093     // to the last unit copied:  end_to[0] := end_from[0]
  2095     const Register rax_oop    = rax;    // actual oop copied
  2096     const Register r11_klass  = r11;    // oop._klass
  2098     //---------------------------------------------------------------
  2099     // Assembler stub will be used for this call to arraycopy
  2100     // if the two arrays are subtypes of Object[] but the
  2101     // destination array type is not equal to or a supertype
  2102     // of the source type.  Each element must be separately
  2103     // checked.
  2105     __ align(CodeEntryAlignment);
  2106     StubCodeMark mark(this, "StubRoutines", name);
  2107     address start = __ pc();
  2109     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2111     checkcast_copy_entry  = __ pc();
  2112     BLOCK_COMMENT("Entry:");
  2114 #ifdef ASSERT
  2115     // caller guarantees that the arrays really are different
  2116     // otherwise, we would have to make conjoint checks
  2117     { Label L;
  2118       array_overlap_test(L, Address::times_8);
  2119       __ stop("checkcast_copy within a single array");
  2120       __ bind(L);
  2122 #endif //ASSERT
  2124     // allocate spill slots for r13, r14
  2125     enum {
  2126       saved_r13_offset,
  2127       saved_r14_offset,
  2128       saved_rbp_offset,
  2129       saved_rip_offset,
  2130       saved_rarg0_offset
  2131     };
  2132     __ subq(rsp, saved_rbp_offset * wordSize);
  2133     __ movq(Address(rsp, saved_r13_offset * wordSize), r13);
  2134     __ movq(Address(rsp, saved_r14_offset * wordSize), r14);
  2135     setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
  2136                        // ckoff => rcx, ckval => r8
  2137                        // r9 and r10 may be used to save non-volatile registers
  2138 #ifdef _WIN64
  2139     // last argument (#4) is on stack on Win64
  2140     const int ckval_offset = saved_rarg0_offset + 4;
  2141     __ movq(ckval, Address(rsp, ckval_offset * wordSize));
  2142 #endif
  2144     // check that int operands are properly extended to size_t
  2145     assert_clean_int(length, rax);
  2146     assert_clean_int(ckoff, rax);
  2148 #ifdef ASSERT
  2149     BLOCK_COMMENT("assert consistent ckoff/ckval");
  2150     // The ckoff and ckval must be mutually consistent,
  2151     // even though caller generates both.
  2152     { Label L;
  2153       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  2154                         Klass::super_check_offset_offset_in_bytes());
  2155       __ cmpl(ckoff, Address(ckval, sco_offset));
  2156       __ jcc(Assembler::equal, L);
  2157       __ stop("super_check_offset inconsistent");
  2158       __ bind(L);
  2160 #endif //ASSERT
  2162     // Loop-invariant addresses.  They are exclusive end pointers.
  2163     Address end_from_addr(from, length, Address::times_8, 0);
  2164     Address   end_to_addr(to,   length, Address::times_8, 0);
  2165     // Loop-variant addresses.  They assume post-incremented count < 0.
  2166     Address from_element_addr(end_from, count, Address::times_8, 0);
  2167     Address   to_element_addr(end_to,   count, Address::times_8, 0);
  2168     Address oop_klass_addr(rax_oop, oopDesc::klass_offset_in_bytes());
  2170     gen_write_ref_array_pre_barrier(to, count);
  2172     // Copy from low to high addresses, indexed from the end of each array.
  2173     __ leaq(end_from, end_from_addr);
  2174     __ leaq(end_to,   end_to_addr);
  2175     __ movq(r14_length, length);        // save a copy of the length
  2176     assert(length == count, "");        // else fix next line:
  2177     __ negq(count);                     // negate and test the length
  2178     __ jcc(Assembler::notZero, L_load_element);
  2180     // Empty array:  Nothing to do.
  2181     __ xorq(rax, rax);                  // return 0 on (trivial) success
  2182     __ jmp(L_done);
  2184     // ======== begin loop ========
  2185     // (Loop is rotated; its entry is L_load_element.)
  2186     // Loop control:
  2187     //   for (count = -count; count != 0; count++)
  2188     // Base pointers src, dst are biased by 8*(count-1),to last element.
  2189     __ align(16);
  2191     __ BIND(L_store_element);
  2192     __ movq(to_element_addr, rax_oop);  // store the oop
  2193     __ incrementq(count);               // increment the count toward zero
  2194     __ jcc(Assembler::zero, L_do_card_marks);
  2196     // ======== loop entry is here ========
  2197     __ BIND(L_load_element);
  2198     __ movq(rax_oop, from_element_addr); // load the oop
  2199     __ testq(rax_oop, rax_oop);
  2200     __ jcc(Assembler::zero, L_store_element);
  2202     __ movq(r11_klass, oop_klass_addr); // query the object klass
  2203     generate_type_check(r11_klass, ckoff, ckval, L_store_element);
  2204     // ======== end loop ========
  2206     // It was a real error; we must depend on the caller to finish the job.
  2207     // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
  2208     // Emit GC store barriers for the oops we have copied (r14 + rdx),
  2209     // and report their number to the caller.
  2210     assert_different_registers(rax, r14_length, count, to, end_to, rcx);
  2211     __ leaq(end_to, to_element_addr);
  2212     gen_write_ref_array_post_barrier(to, end_to, rcx);
  2213     __ movq(rax, r14_length);           // original oops
  2214     __ addq(rax, count);                // K = (original - remaining) oops
  2215     __ notq(rax);                       // report (-1^K) to caller
  2216     __ jmp(L_done);
  2218     // Come here on success only.
  2219     __ BIND(L_do_card_marks);
  2220     __ addq(end_to, -wordSize);         // make an inclusive end pointer
  2221     gen_write_ref_array_post_barrier(to, end_to, rcx);
  2222     __ xorq(rax, rax);                  // return 0 on success
  2224     // Common exit point (success or failure).
  2225     __ BIND(L_done);
  2226     __ movq(r13, Address(rsp, saved_r13_offset * wordSize));
  2227     __ movq(r14, Address(rsp, saved_r14_offset * wordSize));
  2228     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
  2229     restore_arg_regs();
  2230     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2231     __ ret(0);
  2233     return start;
  2236   //
  2237   //  Generate 'unsafe' array copy stub
  2238   //  Though just as safe as the other stubs, it takes an unscaled
  2239   //  size_t argument instead of an element count.
  2240   //
  2241   //  Input:
  2242   //    c_rarg0   - source array address
  2243   //    c_rarg1   - destination array address
  2244   //    c_rarg2   - byte count, treated as ssize_t, can be zero
  2245   //
  2246   // Examines the alignment of the operands and dispatches
  2247   // to a long, int, short, or byte copy loop.
  2248   //
  2249   address generate_unsafe_copy(const char *name) {
  2251     Label L_long_aligned, L_int_aligned, L_short_aligned;
  2253     // Input registers (before setup_arg_regs)
  2254     const Register from        = c_rarg0;  // source array address
  2255     const Register to          = c_rarg1;  // destination array address
  2256     const Register size        = c_rarg2;  // byte count (size_t)
  2258     // Register used as a temp
  2259     const Register bits        = rax;      // test copy of low bits
  2261     __ align(CodeEntryAlignment);
  2262     StubCodeMark mark(this, "StubRoutines", name);
  2263     address start = __ pc();
  2265     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2267     // bump this on entry, not on exit:
  2268     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
  2270     __ movq(bits, from);
  2271     __ orq(bits, to);
  2272     __ orq(bits, size);
  2274     __ testb(bits, BytesPerLong-1);
  2275     __ jccb(Assembler::zero, L_long_aligned);
  2277     __ testb(bits, BytesPerInt-1);
  2278     __ jccb(Assembler::zero, L_int_aligned);
  2280     __ testb(bits, BytesPerShort-1);
  2281     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
  2283     __ BIND(L_short_aligned);
  2284     __ shrq(size, LogBytesPerShort); // size => short_count
  2285     __ jump(RuntimeAddress(short_copy_entry));
  2287     __ BIND(L_int_aligned);
  2288     __ shrq(size, LogBytesPerInt); // size => int_count
  2289     __ jump(RuntimeAddress(int_copy_entry));
  2291     __ BIND(L_long_aligned);
  2292     __ shrq(size, LogBytesPerLong); // size => qword_count
  2293     __ jump(RuntimeAddress(long_copy_entry));
  2295     return start;
  2298   // Perform range checks on the proposed arraycopy.
  2299   // Kills temp, but nothing else.
  2300   // Also, clean the sign bits of src_pos and dst_pos.
  2301   void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
  2302                               Register src_pos, // source position (c_rarg1)
  2303                               Register dst,     // destination array oo (c_rarg2)
  2304                               Register dst_pos, // destination position (c_rarg3)
  2305                               Register length,
  2306                               Register temp,
  2307                               Label& L_failed) {
  2308     BLOCK_COMMENT("arraycopy_range_checks:");
  2310     //  if (src_pos + length > arrayOop(src)->length())  FAIL;
  2311     __ movl(temp, length);
  2312     __ addl(temp, src_pos);             // src_pos + length
  2313     __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
  2314     __ jcc(Assembler::above, L_failed);
  2316     //  if (dst_pos + length > arrayOop(dst)->length())  FAIL;
  2317     __ movl(temp, length);
  2318     __ addl(temp, dst_pos);             // dst_pos + length
  2319     __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
  2320     __ jcc(Assembler::above, L_failed);
  2322     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
  2323     // Move with sign extension can be used since they are positive.
  2324     __ movslq(src_pos, src_pos);
  2325     __ movslq(dst_pos, dst_pos);
  2327     BLOCK_COMMENT("arraycopy_range_checks done");
  2330   //
  2331   //  Generate generic array copy stubs
  2332   //
  2333   //  Input:
  2334   //    c_rarg0    -  src oop
  2335   //    c_rarg1    -  src_pos (32-bits)
  2336   //    c_rarg2    -  dst oop
  2337   //    c_rarg3    -  dst_pos (32-bits)
  2338   // not Win64
  2339   //    c_rarg4    -  element count (32-bits)
  2340   // Win64
  2341   //    rsp+40     -  element count (32-bits)
  2342   //
  2343   //  Output:
  2344   //    rax ==  0  -  success
  2345   //    rax == -1^K - failure, where K is partial transfer count
  2346   //
  2347   address generate_generic_copy(const char *name) {
  2349     Label L_failed, L_failed_0, L_objArray;
  2350     Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
  2352     // Input registers
  2353     const Register src        = c_rarg0;  // source array oop
  2354     const Register src_pos    = c_rarg1;  // source position
  2355     const Register dst        = c_rarg2;  // destination array oop
  2356     const Register dst_pos    = c_rarg3;  // destination position
  2357     // elements count is on stack on Win64
  2358 #ifdef _WIN64
  2359 #define C_RARG4 Address(rsp, 6 * wordSize)
  2360 #else
  2361 #define C_RARG4 c_rarg4
  2362 #endif
  2364     { int modulus = CodeEntryAlignment;
  2365       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
  2366       int advance = target - (__ offset() % modulus);
  2367       if (advance < 0)  advance += modulus;
  2368       if (advance > 0)  __ nop(advance);
  2370     StubCodeMark mark(this, "StubRoutines", name);
  2372     // Short-hop target to L_failed.  Makes for denser prologue code.
  2373     __ BIND(L_failed_0);
  2374     __ jmp(L_failed);
  2375     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
  2377     __ align(CodeEntryAlignment);
  2378     address start = __ pc();
  2380     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2382     // bump this on entry, not on exit:
  2383     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
  2385     //-----------------------------------------------------------------------
  2386     // Assembler stub will be used for this call to arraycopy
  2387     // if the following conditions are met:
  2388     //
  2389     // (1) src and dst must not be null.
  2390     // (2) src_pos must not be negative.
  2391     // (3) dst_pos must not be negative.
  2392     // (4) length  must not be negative.
  2393     // (5) src klass and dst klass should be the same and not NULL.
  2394     // (6) src and dst should be arrays.
  2395     // (7) src_pos + length must not exceed length of src.
  2396     // (8) dst_pos + length must not exceed length of dst.
  2397     //
  2399     //  if (src == NULL) return -1;
  2400     __ testq(src, src);         // src oop
  2401     size_t j1off = __ offset();
  2402     __ jccb(Assembler::zero, L_failed_0);
  2404     //  if (src_pos < 0) return -1;
  2405     __ testl(src_pos, src_pos); // src_pos (32-bits)
  2406     __ jccb(Assembler::negative, L_failed_0);
  2408     //  if (dst == NULL) return -1;
  2409     __ testq(dst, dst);         // dst oop
  2410     __ jccb(Assembler::zero, L_failed_0);
  2412     //  if (dst_pos < 0) return -1;
  2413     __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
  2414     size_t j4off = __ offset();
  2415     __ jccb(Assembler::negative, L_failed_0);
  2417     // The first four tests are very dense code,
  2418     // but not quite dense enough to put four
  2419     // jumps in a 16-byte instruction fetch buffer.
  2420     // That's good, because some branch predicters
  2421     // do not like jumps so close together.
  2422     // Make sure of this.
  2423     guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
  2425     // registers used as temp
  2426     const Register r11_length    = r11; // elements count to copy
  2427     const Register r10_src_klass = r10; // array klass
  2429     //  if (length < 0) return -1;
  2430     __ movl(r11_length, C_RARG4);       // length (elements count, 32-bits value)
  2431     __ testl(r11_length, r11_length);
  2432     __ jccb(Assembler::negative, L_failed_0);
  2434     Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
  2435     Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
  2436     __ movq(r10_src_klass, src_klass_addr);
  2437 #ifdef ASSERT
  2438     //  assert(src->klass() != NULL);
  2439     BLOCK_COMMENT("assert klasses not null");
  2440     { Label L1, L2;
  2441       __ testq(r10_src_klass, r10_src_klass);
  2442       __ jcc(Assembler::notZero, L2);   // it is broken if klass is NULL
  2443       __ bind(L1);
  2444       __ stop("broken null klass");
  2445       __ bind(L2);
  2446       __ cmpq(dst_klass_addr, 0);
  2447       __ jcc(Assembler::equal, L1);     // this would be broken also
  2448       BLOCK_COMMENT("assert done");
  2450 #endif
  2452     // Load layout helper (32-bits)
  2453     //
  2454     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  2455     // 32        30    24            16              8     2                 0
  2456     //
  2457     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  2458     //
  2460     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
  2461                     Klass::layout_helper_offset_in_bytes();
  2463     const Register rax_lh = rax;  // layout helper
  2465     __ movl(rax_lh, Address(r10_src_klass, lh_offset));
  2467     // Handle objArrays completely differently...
  2468     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  2469     __ cmpl(rax_lh, objArray_lh);
  2470     __ jcc(Assembler::equal, L_objArray);
  2472     //  if (src->klass() != dst->klass()) return -1;
  2473     __ cmpq(r10_src_klass, dst_klass_addr);
  2474     __ jcc(Assembler::notEqual, L_failed);
  2476     //  if (!src->is_Array()) return -1;
  2477     __ cmpl(rax_lh, Klass::_lh_neutral_value);
  2478     __ jcc(Assembler::greaterEqual, L_failed);
  2480     // At this point, it is known to be a typeArray (array_tag 0x3).
  2481 #ifdef ASSERT
  2482     { Label L;
  2483       __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
  2484       __ jcc(Assembler::greaterEqual, L);
  2485       __ stop("must be a primitive array");
  2486       __ bind(L);
  2488 #endif
  2490     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2491                            r10, L_failed);
  2493     // typeArrayKlass
  2494     //
  2495     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  2496     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  2497     //
  2499     const Register r10_offset = r10;    // array offset
  2500     const Register rax_elsize = rax_lh; // element size
  2502     __ movl(r10_offset, rax_lh);
  2503     __ shrl(r10_offset, Klass::_lh_header_size_shift);
  2504     __ andq(r10_offset, Klass::_lh_header_size_mask);   // array_offset
  2505     __ addq(src, r10_offset);           // src array offset
  2506     __ addq(dst, r10_offset);           // dst array offset
  2507     BLOCK_COMMENT("choose copy loop based on element size");
  2508     __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
  2510     // next registers should be set before the jump to corresponding stub
  2511     const Register from     = c_rarg0;  // source array address
  2512     const Register to       = c_rarg1;  // destination array address
  2513     const Register count    = c_rarg2;  // elements count
  2515     // 'from', 'to', 'count' registers should be set in such order
  2516     // since they are the same as 'src', 'src_pos', 'dst'.
  2518   __ BIND(L_copy_bytes);
  2519     __ cmpl(rax_elsize, 0);
  2520     __ jccb(Assembler::notEqual, L_copy_shorts);
  2521     __ leaq(from, Address(src, src_pos, Address::times_1, 0));// src_addr
  2522     __ leaq(to,   Address(dst, dst_pos, Address::times_1, 0));// dst_addr
  2523     __ movslq(count, r11_length); // length
  2524     __ jump(RuntimeAddress(byte_copy_entry));
  2526   __ BIND(L_copy_shorts);
  2527     __ cmpl(rax_elsize, LogBytesPerShort);
  2528     __ jccb(Assembler::notEqual, L_copy_ints);
  2529     __ leaq(from, Address(src, src_pos, Address::times_2, 0));// src_addr
  2530     __ leaq(to,   Address(dst, dst_pos, Address::times_2, 0));// dst_addr
  2531     __ movslq(count, r11_length); // length
  2532     __ jump(RuntimeAddress(short_copy_entry));
  2534   __ BIND(L_copy_ints);
  2535     __ cmpl(rax_elsize, LogBytesPerInt);
  2536     __ jccb(Assembler::notEqual, L_copy_longs);
  2537     __ leaq(from, Address(src, src_pos, Address::times_4, 0));// src_addr
  2538     __ leaq(to,   Address(dst, dst_pos, Address::times_4, 0));// dst_addr
  2539     __ movslq(count, r11_length); // length
  2540     __ jump(RuntimeAddress(int_copy_entry));
  2542   __ BIND(L_copy_longs);
  2543 #ifdef ASSERT
  2544     { Label L;
  2545       __ cmpl(rax_elsize, LogBytesPerLong);
  2546       __ jcc(Assembler::equal, L);
  2547       __ stop("must be long copy, but elsize is wrong");
  2548       __ bind(L);
  2550 #endif
  2551     __ leaq(from, Address(src, src_pos, Address::times_8, 0));// src_addr
  2552     __ leaq(to,   Address(dst, dst_pos, Address::times_8, 0));// dst_addr
  2553     __ movslq(count, r11_length); // length
  2554     __ jump(RuntimeAddress(long_copy_entry));
  2556     // objArrayKlass
  2557   __ BIND(L_objArray);
  2558     // live at this point:  r10_src_klass, src[_pos], dst[_pos]
  2560     Label L_plain_copy, L_checkcast_copy;
  2561     //  test array classes for subtyping
  2562     __ cmpq(r10_src_klass, dst_klass_addr); // usual case is exact equality
  2563     __ jcc(Assembler::notEqual, L_checkcast_copy);
  2565     // Identically typed arrays can be copied without element-wise checks.
  2566     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2567                            r10, L_failed);
  2569     __ leaq(from, Address(src, src_pos, Address::times_8,
  2570                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
  2571     __ leaq(to,   Address(dst, dst_pos, Address::times_8,
  2572                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
  2573     __ movslq(count, r11_length); // length
  2574   __ BIND(L_plain_copy);
  2575     __ jump(RuntimeAddress(oop_copy_entry));
  2577   __ BIND(L_checkcast_copy);
  2578     // live at this point:  r10_src_klass, !r11_length
  2580       // assert(r11_length == C_RARG4); // will reload from here
  2581       Register r11_dst_klass = r11;
  2582       __ movq(r11_dst_klass, dst_klass_addr);
  2584       // Before looking at dst.length, make sure dst is also an objArray.
  2585       __ cmpl(Address(r11_dst_klass, lh_offset), objArray_lh);
  2586       __ jcc(Assembler::notEqual, L_failed);
  2588       // It is safe to examine both src.length and dst.length.
  2589 #ifndef _WIN64
  2590       arraycopy_range_checks(src, src_pos, dst, dst_pos, C_RARG4,
  2591                              rax, L_failed);
  2592 #else
  2593       __ movl(r11_length, C_RARG4);     // reload
  2594       arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2595                              rax, L_failed);
  2596       __ movl(r11_dst_klass, dst_klass_addr); // reload
  2597 #endif
  2599       // Marshal the base address arguments now, freeing registers.
  2600       __ leaq(from, Address(src, src_pos, Address::times_8,
  2601                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  2602       __ leaq(to,   Address(dst, dst_pos, Address::times_8,
  2603                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  2604       __ movl(count, C_RARG4);          // length (reloaded)
  2605       Register sco_temp = c_rarg3;      // this register is free now
  2606       assert_different_registers(from, to, count, sco_temp,
  2607                                  r11_dst_klass, r10_src_klass);
  2608       assert_clean_int(count, sco_temp);
  2610       // Generate the type check.
  2611       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  2612                         Klass::super_check_offset_offset_in_bytes());
  2613       __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
  2614       assert_clean_int(sco_temp, rax);
  2615       generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
  2617       // Fetch destination element klass from the objArrayKlass header.
  2618       int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
  2619                        objArrayKlass::element_klass_offset_in_bytes());
  2620       __ movq(r11_dst_klass, Address(r11_dst_klass, ek_offset));
  2621       __ movl(sco_temp,      Address(r11_dst_klass, sco_offset));
  2622       assert_clean_int(sco_temp, rax);
  2624       // the checkcast_copy loop needs two extra arguments:
  2625       assert(c_rarg3 == sco_temp, "#3 already in place");
  2626       __ movq(C_RARG4, r11_dst_klass);  // dst.klass.element_klass
  2627       __ jump(RuntimeAddress(checkcast_copy_entry));
  2630   __ BIND(L_failed);
  2631     __ xorq(rax, rax);
  2632     __ notq(rax); // return -1
  2633     __ leave();   // required for proper stackwalking of RuntimeStub frame
  2634     __ ret(0);
  2636     return start;
  2639 #undef length_arg
  2641   void generate_arraycopy_stubs() {
  2642     // Call the conjoint generation methods immediately after
  2643     // the disjoint ones so that short branches from the former
  2644     // to the latter can be generated.
  2645     StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
  2646     StubRoutines::_jbyte_arraycopy           = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
  2648     StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
  2649     StubRoutines::_jshort_arraycopy          = generate_conjoint_short_copy(false, "jshort_arraycopy");
  2651     StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_copy(false, "jint_disjoint_arraycopy");
  2652     StubRoutines::_jint_arraycopy            = generate_conjoint_int_copy(false, "jint_arraycopy");
  2654     StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, false, "jlong_disjoint_arraycopy");
  2655     StubRoutines::_jlong_arraycopy           = generate_conjoint_long_oop_copy(false, false, "jlong_arraycopy");
  2657     StubRoutines::_oop_disjoint_arraycopy    = generate_disjoint_long_oop_copy(false, true, "oop_disjoint_arraycopy");
  2658     StubRoutines::_oop_arraycopy             = generate_conjoint_long_oop_copy(false, true, "oop_arraycopy");
  2660     StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
  2661     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy");
  2662     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy");
  2664     // We don't generate specialized code for HeapWord-aligned source
  2665     // arrays, so just use the code we've already generated
  2666     StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = StubRoutines::_jbyte_disjoint_arraycopy;
  2667     StubRoutines::_arrayof_jbyte_arraycopy           = StubRoutines::_jbyte_arraycopy;
  2669     StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
  2670     StubRoutines::_arrayof_jshort_arraycopy          = StubRoutines::_jshort_arraycopy;
  2672     StubRoutines::_arrayof_jint_disjoint_arraycopy   = StubRoutines::_jint_disjoint_arraycopy;
  2673     StubRoutines::_arrayof_jint_arraycopy            = StubRoutines::_jint_arraycopy;
  2675     StubRoutines::_arrayof_jlong_disjoint_arraycopy  = StubRoutines::_jlong_disjoint_arraycopy;
  2676     StubRoutines::_arrayof_jlong_arraycopy           = StubRoutines::_jlong_arraycopy;
  2678     StubRoutines::_arrayof_oop_disjoint_arraycopy    = StubRoutines::_oop_disjoint_arraycopy;
  2679     StubRoutines::_arrayof_oop_arraycopy             = StubRoutines::_oop_arraycopy;
  2682 #undef __
  2683 #define __ masm->
  2685   // Continuation point for throwing of implicit exceptions that are
  2686   // not handled in the current activation. Fabricates an exception
  2687   // oop and initiates normal exception dispatching in this
  2688   // frame. Since we need to preserve callee-saved values (currently
  2689   // only for C2, but done for C1 as well) we need a callee-saved oop
  2690   // map and therefore have to make these stubs into RuntimeStubs
  2691   // rather than BufferBlobs.  If the compiler needs all registers to
  2692   // be preserved between the fault point and the exception handler
  2693   // then it must assume responsibility for that in
  2694   // AbstractCompiler::continuation_for_implicit_null_exception or
  2695   // continuation_for_implicit_division_by_zero_exception. All other
  2696   // implicit exceptions (e.g., NullPointerException or
  2697   // AbstractMethodError on entry) are either at call sites or
  2698   // otherwise assume that stack unwinding will be initiated, so
  2699   // caller saved registers were assumed volatile in the compiler.
  2700   address generate_throw_exception(const char* name,
  2701                                    address runtime_entry,
  2702                                    bool restore_saved_exception_pc) {
  2703     // Information about frame layout at time of blocking runtime call.
  2704     // Note that we only have to preserve callee-saved registers since
  2705     // the compilers are responsible for supplying a continuation point
  2706     // if they expect all registers to be preserved.
  2707     enum layout {
  2708       rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  2709       rbp_off2,
  2710       return_off,
  2711       return_off2,
  2712       framesize // inclusive of return address
  2713     };
  2715     int insts_size = 512;
  2716     int locs_size  = 64;
  2718     CodeBuffer code(name, insts_size, locs_size);
  2719     OopMapSet* oop_maps  = new OopMapSet();
  2720     MacroAssembler* masm = new MacroAssembler(&code);
  2722     address start = __ pc();
  2724     // This is an inlined and slightly modified version of call_VM
  2725     // which has the ability to fetch the return PC out of
  2726     // thread-local storage and also sets up last_Java_sp slightly
  2727     // differently than the real call_VM
  2728     if (restore_saved_exception_pc) {
  2729       __ movq(rax,
  2730               Address(r15_thread,
  2731                       in_bytes(JavaThread::saved_exception_pc_offset())));
  2732       __ pushq(rax);
  2735     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2737     assert(is_even(framesize/2), "sp not 16-byte aligned");
  2739     // return address and rbp are already in place
  2740     __ subq(rsp, (framesize-4) << LogBytesPerInt); // prolog
  2742     int frame_complete = __ pc() - start;
  2744     // Set up last_Java_sp and last_Java_fp
  2745     __ set_last_Java_frame(rsp, rbp, NULL);
  2747     // Call runtime
  2748     __ movq(c_rarg0, r15_thread);
  2749     BLOCK_COMMENT("call runtime_entry");
  2750     __ call(RuntimeAddress(runtime_entry));
  2752     // Generate oop map
  2753     OopMap* map = new OopMap(framesize, 0);
  2755     oop_maps->add_gc_map(__ pc() - start, map);
  2757     __ reset_last_Java_frame(true, false);
  2759     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2761     // check for pending exceptions
  2762 #ifdef ASSERT
  2763     Label L;
  2764     __ cmpq(Address(r15_thread, Thread::pending_exception_offset()),
  2765             (int) NULL);
  2766     __ jcc(Assembler::notEqual, L);
  2767     __ should_not_reach_here();
  2768     __ bind(L);
  2769 #endif // ASSERT
  2770     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2773     // codeBlob framesize is in words (not VMRegImpl::slot_size)
  2774     RuntimeStub* stub =
  2775       RuntimeStub::new_runtime_stub(name,
  2776                                     &code,
  2777                                     frame_complete,
  2778                                     (framesize >> (LogBytesPerWord - LogBytesPerInt)),
  2779                                     oop_maps, false);
  2780     return stub->entry_point();
  2783   // Initialization
  2784   void generate_initial() {
  2785     // Generates all stubs and initializes the entry points
  2787     // This platform-specific stub is needed by generate_call_stub()
  2788     StubRoutines::amd64::_mxcsr_std        = generate_fp_mask("mxcsr_std",        0x0000000000001F80);
  2790     // entry points that exist in all platforms Note: This is code
  2791     // that could be shared among different platforms - however the
  2792     // benefit seems to be smaller than the disadvantage of having a
  2793     // much more complicated generator structure. See also comment in
  2794     // stubRoutines.hpp.
  2796     StubRoutines::_forward_exception_entry = generate_forward_exception();
  2798     StubRoutines::_call_stub_entry =
  2799       generate_call_stub(StubRoutines::_call_stub_return_address);
  2801     // is referenced by megamorphic call
  2802     StubRoutines::_catch_exception_entry = generate_catch_exception();
  2804     // atomic calls
  2805     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
  2806     StubRoutines::_atomic_xchg_ptr_entry     = generate_atomic_xchg_ptr();
  2807     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
  2808     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
  2809     StubRoutines::_atomic_add_entry          = generate_atomic_add();
  2810     StubRoutines::_atomic_add_ptr_entry      = generate_atomic_add_ptr();
  2811     StubRoutines::_fence_entry               = generate_orderaccess_fence();
  2813     StubRoutines::_handler_for_unsafe_access_entry =
  2814       generate_handler_for_unsafe_access();
  2816     // platform dependent
  2817     StubRoutines::amd64::_get_previous_fp_entry = generate_get_previous_fp();
  2819     StubRoutines::amd64::_verify_mxcsr_entry    = generate_verify_mxcsr();
  2822   void generate_all() {
  2823     // Generates all stubs and initializes the entry points
  2825     // These entry points require SharedInfo::stack0 to be set up in
  2826     // non-core builds and need to be relocatable, so they each
  2827     // fabricate a RuntimeStub internally.
  2828     StubRoutines::_throw_AbstractMethodError_entry =
  2829       generate_throw_exception("AbstractMethodError throw_exception",
  2830                                CAST_FROM_FN_PTR(address,
  2831                                                 SharedRuntime::
  2832                                                 throw_AbstractMethodError),
  2833                                false);
  2835     StubRoutines::_throw_IncompatibleClassChangeError_entry =
  2836       generate_throw_exception("IncompatibleClassChangeError throw_exception",
  2837                                CAST_FROM_FN_PTR(address,
  2838                                                 SharedRuntime::
  2839                                                 throw_IncompatibleClassChangeError),
  2840                                false);
  2842     StubRoutines::_throw_ArithmeticException_entry =
  2843       generate_throw_exception("ArithmeticException throw_exception",
  2844                                CAST_FROM_FN_PTR(address,
  2845                                                 SharedRuntime::
  2846                                                 throw_ArithmeticException),
  2847                                true);
  2849     StubRoutines::_throw_NullPointerException_entry =
  2850       generate_throw_exception("NullPointerException throw_exception",
  2851                                CAST_FROM_FN_PTR(address,
  2852                                                 SharedRuntime::
  2853                                                 throw_NullPointerException),
  2854                                true);
  2856     StubRoutines::_throw_NullPointerException_at_call_entry =
  2857       generate_throw_exception("NullPointerException at call throw_exception",
  2858                                CAST_FROM_FN_PTR(address,
  2859                                                 SharedRuntime::
  2860                                                 throw_NullPointerException_at_call),
  2861                                false);
  2863     StubRoutines::_throw_StackOverflowError_entry =
  2864       generate_throw_exception("StackOverflowError throw_exception",
  2865                                CAST_FROM_FN_PTR(address,
  2866                                                 SharedRuntime::
  2867                                                 throw_StackOverflowError),
  2868                                false);
  2870     // entry points that are platform specific
  2871     StubRoutines::amd64::_f2i_fixup = generate_f2i_fixup();
  2872     StubRoutines::amd64::_f2l_fixup = generate_f2l_fixup();
  2873     StubRoutines::amd64::_d2i_fixup = generate_d2i_fixup();
  2874     StubRoutines::amd64::_d2l_fixup = generate_d2l_fixup();
  2876     StubRoutines::amd64::_float_sign_mask  = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
  2877     StubRoutines::amd64::_float_sign_flip  = generate_fp_mask("float_sign_flip",  0x8000000080000000);
  2878     StubRoutines::amd64::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
  2879     StubRoutines::amd64::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
  2881     // support for verify_oop (must happen after universe_init)
  2882     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
  2884     // arraycopy stubs used by compilers
  2885     generate_arraycopy_stubs();
  2888  public:
  2889   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  2890     if (all) {
  2891       generate_all();
  2892     } else {
  2893       generate_initial();
  2896 }; // end class declaration
  2898 address StubGenerator::disjoint_byte_copy_entry  = NULL;
  2899 address StubGenerator::disjoint_short_copy_entry = NULL;
  2900 address StubGenerator::disjoint_int_copy_entry   = NULL;
  2901 address StubGenerator::disjoint_long_copy_entry  = NULL;
  2902 address StubGenerator::disjoint_oop_copy_entry   = NULL;
  2904 address StubGenerator::byte_copy_entry  = NULL;
  2905 address StubGenerator::short_copy_entry = NULL;
  2906 address StubGenerator::int_copy_entry   = NULL;
  2907 address StubGenerator::long_copy_entry  = NULL;
  2908 address StubGenerator::oop_copy_entry   = NULL;
  2910 address StubGenerator::checkcast_copy_entry = NULL;
  2912 void StubGenerator_generate(CodeBuffer* code, bool all) {
  2913   StubGenerator g(code, all);

mercurial