src/cpu/x86/vm/stubGenerator_x86_32.cpp

Wed, 05 Dec 2007 09:00:00 -0800

author
dcubed
date
Wed, 05 Dec 2007 09:00:00 -0800
changeset 451
f8236e79048a
parent 435
a61af66fc99e
child 454
a73cc31728fe
permissions
-rw-r--r--

6664627: Merge changes made only in hotspot 11 forward to jdk 7
Reviewed-by: jcoomes

     1 /*
     2  * Copyright 1999-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_stubGenerator_x86_32.cpp.incl"
    28 // Declaration and definition of StubGenerator (no .hpp file).
    29 // For a more detailed description of the stub routine structure
    30 // see the comment in stubRoutines.hpp
    32 #define __ _masm->
    34 #ifdef PRODUCT
    35 #define BLOCK_COMMENT(str) /* nothing */
    36 #else
    37 #define BLOCK_COMMENT(str) __ block_comment(str)
    38 #endif
    40 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    42 const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
    43 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
    45 // -------------------------------------------------------------------------------------------------------------------------
    46 // Stub Code definitions
    48 static address handle_unsafe_access() {
    49   JavaThread* thread = JavaThread::current();
    50   address pc  = thread->saved_exception_pc();
    51   // pc is the instruction which we must emulate
    52   // doing a no-op is fine:  return garbage from the load
    53   // therefore, compute npc
    54   address npc = Assembler::locate_next_instruction(pc);
    56   // request an async exception
    57   thread->set_pending_unsafe_access_error();
    59   // return address of next instruction to execute
    60   return npc;
    61 }
    63 class StubGenerator: public StubCodeGenerator {
    64  private:
    66 #ifdef PRODUCT
    67 #define inc_counter_np(counter) (0)
    68 #else
    69   void inc_counter_np_(int& counter) {
    70     __ increment(ExternalAddress((address)&counter));
    71   }
    72 #define inc_counter_np(counter) \
    73   BLOCK_COMMENT("inc_counter " #counter); \
    74   inc_counter_np_(counter);
    75 #endif //PRODUCT
    77   void inc_copy_counter_np(BasicType t) {
    78 #ifndef PRODUCT
    79     switch (t) {
    80     case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
    81     case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
    82     case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
    83     case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
    84     case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
    85     }
    86     ShouldNotReachHere();
    87 #endif //PRODUCT
    88   }
    90   //------------------------------------------------------------------------------------------------------------------------
    91   // Call stubs are used to call Java from C
    92   //
    93   //    [ return_from_Java     ] <--- rsp
    94   //    [ argument word n      ]
    95   //      ...
    96   // -N [ argument word 1      ]
    97   // -7 [ Possible padding for stack alignment ]
    98   // -6 [ Possible padding for stack alignment ]
    99   // -5 [ Possible padding for stack alignment ]
   100   // -4 [ mxcsr save           ] <--- rsp_after_call
   101   // -3 [ saved rbx,            ]
   102   // -2 [ saved rsi            ]
   103   // -1 [ saved rdi            ]
   104   //  0 [ saved rbp,            ] <--- rbp,
   105   //  1 [ return address       ]
   106   //  2 [ ptr. to call wrapper ]
   107   //  3 [ result               ]
   108   //  4 [ result_type          ]
   109   //  5 [ method               ]
   110   //  6 [ entry_point          ]
   111   //  7 [ parameters           ]
   112   //  8 [ parameter_size       ]
   113   //  9 [ thread               ]
   116   address generate_call_stub(address& return_address) {
   117     StubCodeMark mark(this, "StubRoutines", "call_stub");
   118     address start = __ pc();
   120     // stub code parameters / addresses
   121     assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
   122     bool  sse_save = false;
   123     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
   124     const int     locals_count_in_bytes  (4*wordSize);
   125     const Address mxcsr_save    (rbp, -4 * wordSize);
   126     const Address saved_rbx     (rbp, -3 * wordSize);
   127     const Address saved_rsi     (rbp, -2 * wordSize);
   128     const Address saved_rdi     (rbp, -1 * wordSize);
   129     const Address result        (rbp,  3 * wordSize);
   130     const Address result_type   (rbp,  4 * wordSize);
   131     const Address method        (rbp,  5 * wordSize);
   132     const Address entry_point   (rbp,  6 * wordSize);
   133     const Address parameters    (rbp,  7 * wordSize);
   134     const Address parameter_size(rbp,  8 * wordSize);
   135     const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
   136     sse_save =  UseSSE > 0;
   138     // stub code
   139     __ enter();
   140     __ movl(rcx, parameter_size);              // parameter counter
   141     __ shll(rcx, Interpreter::logStackElementSize()); // convert parameter count to bytes
   142     __ addl(rcx, locals_count_in_bytes);       // reserve space for register saves
   143     __ subl(rsp, rcx);
   144     __ andl(rsp, -(StackAlignmentInBytes));    // Align stack
   146     // save rdi, rsi, & rbx, according to C calling conventions
   147     __ movl(saved_rdi, rdi);
   148     __ movl(saved_rsi, rsi);
   149     __ movl(saved_rbx, rbx);
   150     // save and initialize %mxcsr
   151     if (sse_save) {
   152       Label skip_ldmx;
   153       __ stmxcsr(mxcsr_save);
   154       __ movl(rax, mxcsr_save);
   155       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   156       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   157       __ cmp32(rax, mxcsr_std);
   158       __ jcc(Assembler::equal, skip_ldmx);
   159       __ ldmxcsr(mxcsr_std);
   160       __ bind(skip_ldmx);
   161     }
   163     // make sure the control word is correct.
   164     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   166 #ifdef ASSERT
   167     // make sure we have no pending exceptions
   168     { Label L;
   169       __ movl(rcx, thread);
   170       __ cmpl(Address(rcx, Thread::pending_exception_offset()), NULL_WORD);
   171       __ jcc(Assembler::equal, L);
   172       __ stop("StubRoutines::call_stub: entered with pending exception");
   173       __ bind(L);
   174     }
   175 #endif
   177     // pass parameters if any
   178     BLOCK_COMMENT("pass parameters if any");
   179     Label parameters_done;
   180     __ movl(rcx, parameter_size);  // parameter counter
   181     __ testl(rcx, rcx);
   182     __ jcc(Assembler::zero, parameters_done);
   184     // parameter passing loop
   186     Label loop;
   187     // Copy Java parameters in reverse order (receiver last)
   188     // Note that the argument order is inverted in the process
   189     // source is rdx[rcx: N-1..0]
   190     // dest   is rsp[rbx: 0..N-1]
   192     __ movl(rdx, parameters);          // parameter pointer
   193     __ xorl(rbx, rbx);
   195     __ BIND(loop);
   196     if (TaggedStackInterpreter) {
   197       __ movl(rax, Address(rdx, rcx, Interpreter::stackElementScale(),
   198                       -2*wordSize));                          // get tag
   199       __ movl(Address(rsp, rbx, Interpreter::stackElementScale(),
   200                       Interpreter::expr_tag_offset_in_bytes(0)), rax);     // store tag
   201     }
   203     // get parameter
   204     __ movl(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
   205     __ movl(Address(rsp, rbx, Interpreter::stackElementScale(),
   206                     Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
   207     __ increment(rbx);
   208     __ decrement(rcx);
   209     __ jcc(Assembler::notZero, loop);
   211     // call Java function
   212     __ BIND(parameters_done);
   213     __ movl(rbx, method);              // get methodOop
   214     __ movl(rax, entry_point);         // get entry_point
   215     __ movl(rsi, rsp);                 // set sender sp
   216     BLOCK_COMMENT("call Java function");
   217     __ call(rax);
   219     BLOCK_COMMENT("call_stub_return_address:");
   220     return_address = __ pc();
   222     Label common_return;
   224     __ BIND(common_return);
   226     // store result depending on type
   227     // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
   228     __ movl(rdi, result);
   229     Label is_long, is_float, is_double, exit;
   230     __ movl(rsi, result_type);
   231     __ cmpl(rsi, T_LONG);
   232     __ jcc(Assembler::equal, is_long);
   233     __ cmpl(rsi, T_FLOAT);
   234     __ jcc(Assembler::equal, is_float);
   235     __ cmpl(rsi, T_DOUBLE);
   236     __ jcc(Assembler::equal, is_double);
   238     // handle T_INT case
   239     __ movl(Address(rdi, 0), rax);
   240     __ BIND(exit);
   242     // check that FPU stack is empty
   243     __ verify_FPU(0, "generate_call_stub");
   245     // pop parameters
   246     __ leal(rsp, rsp_after_call);
   248     // restore %mxcsr
   249     if (sse_save) {
   250       __ ldmxcsr(mxcsr_save);
   251     }
   253     // restore rdi, rsi and rbx,
   254     __ movl(rbx, saved_rbx);
   255     __ movl(rsi, saved_rsi);
   256     __ movl(rdi, saved_rdi);
   257     __ addl(rsp, 4*wordSize);
   259     // return
   260     __ popl(rbp);
   261     __ ret(0);
   263     // handle return types different from T_INT
   264     __ BIND(is_long);
   265     __ movl(Address(rdi, 0 * wordSize), rax);
   266     __ movl(Address(rdi, 1 * wordSize), rdx);
   267     __ jmp(exit);
   269     __ BIND(is_float);
   270     // interpreter uses xmm0 for return values
   271     if (UseSSE >= 1) {
   272       __ movflt(Address(rdi, 0), xmm0);
   273     } else {
   274       __ fstp_s(Address(rdi, 0));
   275     }
   276     __ jmp(exit);
   278     __ BIND(is_double);
   279     // interpreter uses xmm0 for return values
   280     if (UseSSE >= 2) {
   281       __ movdbl(Address(rdi, 0), xmm0);
   282     } else {
   283       __ fstp_d(Address(rdi, 0));
   284     }
   285     __ jmp(exit);
   287     // If we call compiled code directly from the call stub we will
   288     // need to adjust the return back to the call stub to a specialized
   289     // piece of code that can handle compiled results and cleaning the fpu
   290     // stack. compiled code will be set to return here instead of the
   291     // return above that handles interpreter returns.
   293     BLOCK_COMMENT("call_stub_compiled_return:");
   294     StubRoutines::i486::set_call_stub_compiled_return( __ pc());
   296 #ifdef COMPILER2
   297     if (UseSSE >= 2) {
   298       __ verify_FPU(0, "call_stub_compiled_return");
   299     } else {
   300       for (int i = 1; i < 8; i++) {
   301         __ ffree(i);
   302       }
   304       // UseSSE <= 1 so double result should be left on TOS
   305       __ movl(rsi, result_type);
   306       __ cmpl(rsi, T_DOUBLE);
   307       __ jcc(Assembler::equal, common_return);
   308       if (UseSSE == 0) {
   309         // UseSSE == 0 so float result should be left on TOS
   310         __ cmpl(rsi, T_FLOAT);
   311         __ jcc(Assembler::equal, common_return);
   312       }
   313       __ ffree(0);
   314     }
   315 #endif /* COMPILER2 */
   316     __ jmp(common_return);
   318     return start;
   319   }
   322   //------------------------------------------------------------------------------------------------------------------------
   323   // Return point for a Java call if there's an exception thrown in Java code.
   324   // The exception is caught and transformed into a pending exception stored in
   325   // JavaThread that can be tested from within the VM.
   326   //
   327   // Note: Usually the parameters are removed by the callee. In case of an exception
   328   //       crossing an activation frame boundary, that is not the case if the callee
   329   //       is compiled code => need to setup the rsp.
   330   //
   331   // rax,: exception oop
   333   address generate_catch_exception() {
   334     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   335     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
   336     const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
   337     address start = __ pc();
   339     // get thread directly
   340     __ movl(rcx, thread);
   341 #ifdef ASSERT
   342     // verify that threads correspond
   343     { Label L;
   344       __ get_thread(rbx);
   345       __ cmpl(rbx, rcx);
   346       __ jcc(Assembler::equal, L);
   347       __ stop("StubRoutines::catch_exception: threads must correspond");
   348       __ bind(L);
   349     }
   350 #endif
   351     // set pending exception
   352     __ verify_oop(rax);
   353     __ movl(Address(rcx, Thread::pending_exception_offset()), rax          );
   354     __ lea(Address(rcx, Thread::exception_file_offset   ()),
   355            ExternalAddress((address)__FILE__));
   356     __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
   357     // complete return to VM
   358     assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
   359     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
   361     return start;
   362   }
   365   //------------------------------------------------------------------------------------------------------------------------
   366   // Continuation point for runtime calls returning with a pending exception.
   367   // The pending exception check happened in the runtime or native call stub.
   368   // The pending exception in Thread is converted into a Java-level exception.
   369   //
   370   // Contract with Java-level exception handlers:
   371   // rax,: exception
   372   // rdx: throwing pc
   373   //
   374   // NOTE: At entry of this stub, exception-pc must be on stack !!
   376   address generate_forward_exception() {
   377     StubCodeMark mark(this, "StubRoutines", "forward exception");
   378     address start = __ pc();
   380     // Upon entry, the sp points to the return address returning into Java
   381     // (interpreted or compiled) code; i.e., the return address becomes the
   382     // throwing pc.
   383     //
   384     // Arguments pushed before the runtime call are still on the stack but
   385     // the exception handler will reset the stack pointer -> ignore them.
   386     // A potential result in registers can be ignored as well.
   388 #ifdef ASSERT
   389     // make sure this code is only executed if there is a pending exception
   390     { Label L;
   391       __ get_thread(rcx);
   392       __ cmpl(Address(rcx, Thread::pending_exception_offset()), NULL_WORD);
   393       __ jcc(Assembler::notEqual, L);
   394       __ stop("StubRoutines::forward exception: no pending exception (1)");
   395       __ bind(L);
   396     }
   397 #endif
   399     // compute exception handler into rbx,
   400     __ movl(rax, Address(rsp, 0));
   401     BLOCK_COMMENT("call exception_handler_for_return_address");
   402     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rax);
   403     __ movl(rbx, rax);
   405     // setup rax, & rdx, remove return address & clear pending exception
   406     __ get_thread(rcx);
   407     __ popl(rdx);
   408     __ movl(rax, Address(rcx, Thread::pending_exception_offset()));
   409     __ movl(Address(rcx, Thread::pending_exception_offset()), NULL_WORD);
   411 #ifdef ASSERT
   412     // make sure exception is set
   413     { Label L;
   414       __ testl(rax, rax);
   415       __ jcc(Assembler::notEqual, L);
   416       __ stop("StubRoutines::forward exception: no pending exception (2)");
   417       __ bind(L);
   418     }
   419 #endif
   421     // continue at exception handler (return address removed)
   422     // rax,: exception
   423     // rbx,: exception handler
   424     // rdx: throwing pc
   425     __ verify_oop(rax);
   426     __ jmp(rbx);
   428     return start;
   429   }
   432   //----------------------------------------------------------------------------------------------------
   433   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
   434   //
   435   // xchg exists as far back as 8086, lock needed for MP only
   436   // Stack layout immediately after call:
   437   //
   438   // 0 [ret addr ] <--- rsp
   439   // 1 [  ex     ]
   440   // 2 [  dest   ]
   441   //
   442   // Result:   *dest <- ex, return (old *dest)
   443   //
   444   // Note: win32 does not currently use this code
   446   address generate_atomic_xchg() {
   447     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   448     address start = __ pc();
   450     __ pushl(rdx);
   451     Address exchange(rsp, 2 * wordSize);
   452     Address dest_addr(rsp, 3 * wordSize);
   453     __ movl(rax, exchange);
   454     __ movl(rdx, dest_addr);
   455     __ xchg(rax, Address(rdx, 0));
   456     __ popl(rdx);
   457     __ ret(0);
   459     return start;
   460   }
   462   //----------------------------------------------------------------------------------------------------
   463   // Support for void verify_mxcsr()
   464   //
   465   // This routine is used with -Xcheck:jni to verify that native
   466   // JNI code does not return to Java code without restoring the
   467   // MXCSR register to our expected state.
   470   address generate_verify_mxcsr() {
   471     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
   472     address start = __ pc();
   474     const Address mxcsr_save(rsp, 0);
   476     if (CheckJNICalls && UseSSE > 0 ) {
   477       Label ok_ret;
   478       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   479       __ pushl(rax);
   480       __ subl(rsp, wordSize);      // allocate a temp location
   481       __ stmxcsr(mxcsr_save);
   482       __ movl(rax, mxcsr_save);
   483       __ andl(rax, MXCSR_MASK);
   484       __ cmp32(rax, mxcsr_std);
   485       __ jcc(Assembler::equal, ok_ret);
   487       __ warn("MXCSR changed by native JNI code.");
   489       __ ldmxcsr(mxcsr_std);
   491       __ bind(ok_ret);
   492       __ addl(rsp, wordSize);
   493       __ popl(rax);
   494     }
   496     __ ret(0);
   498     return start;
   499   }
   502   //---------------------------------------------------------------------------
   503   // Support for void verify_fpu_cntrl_wrd()
   504   //
   505   // This routine is used with -Xcheck:jni to verify that native
   506   // JNI code does not return to Java code without restoring the
   507   // FP control word to our expected state.
   509   address generate_verify_fpu_cntrl_wrd() {
   510     StubCodeMark mark(this, "StubRoutines", "verify_spcw");
   511     address start = __ pc();
   513     const Address fpu_cntrl_wrd_save(rsp, 0);
   515     if (CheckJNICalls) {
   516       Label ok_ret;
   517       __ pushl(rax);
   518       __ subl(rsp, wordSize);      // allocate a temp location
   519       __ fnstcw(fpu_cntrl_wrd_save);
   520       __ movl(rax, fpu_cntrl_wrd_save);
   521       __ andl(rax, FPU_CNTRL_WRD_MASK);
   522       ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
   523       __ cmp32(rax, fpu_std);
   524       __ jcc(Assembler::equal, ok_ret);
   526       __ warn("Floating point control word changed by native JNI code.");
   528       __ fldcw(fpu_std);
   530       __ bind(ok_ret);
   531       __ addl(rsp, wordSize);
   532       __ popl(rax);
   533     }
   535     __ ret(0);
   537     return start;
   538   }
   540   //---------------------------------------------------------------------------
   541   // Wrapper for slow-case handling of double-to-integer conversion
   542   // d2i or f2i fast case failed either because it is nan or because
   543   // of under/overflow.
   544   // Input:  FPU TOS: float value
   545   // Output: rax, (rdx): integer (long) result
   547   address generate_d2i_wrapper(BasicType t, address fcn) {
   548     StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
   549     address start = __ pc();
   551   // Capture info about frame layout
   552   enum layout { FPUState_off         = 0,
   553                 rbp_off              = FPUStateSizeInWords,
   554                 rdi_off,
   555                 rsi_off,
   556                 rcx_off,
   557                 rbx_off,
   558                 saved_argument_off,
   559                 saved_argument_off2, // 2nd half of double
   560                 framesize
   561   };
   563   assert(FPUStateSizeInWords == 27, "update stack layout");
   565     // Save outgoing argument to stack across push_FPU_state()
   566     __ subl(rsp, wordSize * 2);
   567     __ fstp_d(Address(rsp, 0));
   569     // Save CPU & FPU state
   570     __ pushl(rbx);
   571     __ pushl(rcx);
   572     __ pushl(rsi);
   573     __ pushl(rdi);
   574     __ pushl(rbp);
   575     __ push_FPU_state();
   577     // push_FPU_state() resets the FP top of stack
   578     // Load original double into FP top of stack
   579     __ fld_d(Address(rsp, saved_argument_off * wordSize));
   580     // Store double into stack as outgoing argument
   581     __ subl(rsp, wordSize*2);
   582     __ fst_d(Address(rsp, 0));
   584     // Prepare FPU for doing math in C-land
   585     __ empty_FPU_stack();
   586     // Call the C code to massage the double.  Result in EAX
   587     if (t == T_INT)
   588       { BLOCK_COMMENT("SharedRuntime::d2i"); }
   589     else if (t == T_LONG)
   590       { BLOCK_COMMENT("SharedRuntime::d2l"); }
   591     __ call_VM_leaf( fcn, 2 );
   593     // Restore CPU & FPU state
   594     __ pop_FPU_state();
   595     __ popl(rbp);
   596     __ popl(rdi);
   597     __ popl(rsi);
   598     __ popl(rcx);
   599     __ popl(rbx);
   600     __ addl(rsp, wordSize * 2);
   602     __ ret(0);
   604     return start;
   605   }
   608   //---------------------------------------------------------------------------
   609   // The following routine generates a subroutine to throw an asynchronous
   610   // UnknownError when an unsafe access gets a fault that could not be
   611   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
   612   address generate_handler_for_unsafe_access() {
   613     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   614     address start = __ pc();
   616     __ pushl(0);                      // hole for return address-to-be
   617     __ pushad();                      // push registers
   618     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
   619     BLOCK_COMMENT("call handle_unsafe_access");
   620     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
   621     __ movl(next_pc, rax);            // stuff next address
   622     __ popad();
   623     __ ret(0);                        // jump to next address
   625     return start;
   626   }
   629   //----------------------------------------------------------------------------------------------------
   630   // Non-destructive plausibility checks for oops
   632   address generate_verify_oop() {
   633     StubCodeMark mark(this, "StubRoutines", "verify_oop");
   634     address start = __ pc();
   636     // Incoming arguments on stack after saving rax,:
   637     //
   638     // [tos    ]: saved rdx
   639     // [tos + 1]: saved EFLAGS
   640     // [tos + 2]: return address
   641     // [tos + 3]: char* error message
   642     // [tos + 4]: oop   object to verify
   643     // [tos + 5]: saved rax, - saved by caller and bashed
   645     Label exit, error;
   646     __ pushfd();
   647     __ increment(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
   648     __ pushl(rdx);                               // save rdx
   649     // make sure object is 'reasonable'
   650     __ movl(rax, Address(rsp, 4 * wordSize));    // get object
   651     __ testl(rax, rax);
   652     __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
   654     // Check if the oop is in the right area of memory
   655     const int oop_mask = Universe::verify_oop_mask();
   656     const int oop_bits = Universe::verify_oop_bits();
   657     __ movl(rdx, rax);
   658     __ andl(rdx, oop_mask);
   659     __ cmpl(rdx, oop_bits);
   660     __ jcc(Assembler::notZero, error);
   662     // make sure klass is 'reasonable'
   663     __ movl(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
   664     __ testl(rax, rax);
   665     __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
   667     // Check if the klass is in the right area of memory
   668     const int klass_mask = Universe::verify_klass_mask();
   669     const int klass_bits = Universe::verify_klass_bits();
   670     __ movl(rdx, rax);
   671     __ andl(rdx, klass_mask);
   672     __ cmpl(rdx, klass_bits);
   673     __ jcc(Assembler::notZero, error);
   675     // make sure klass' klass is 'reasonable'
   676     __ movl(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass' klass
   677     __ testl(rax, rax);
   678     __ jcc(Assembler::zero, error);              // if klass' klass is NULL it is broken
   680     __ movl(rdx, rax);
   681     __ andl(rdx, klass_mask);
   682     __ cmpl(rdx, klass_bits);
   683     __ jcc(Assembler::notZero, error);           // if klass not in right area
   684                                                  // of memory it is broken too.
   686     // return if everything seems ok
   687     __ bind(exit);
   688     __ movl(rax, Address(rsp, 5 * wordSize));    // get saved rax, back
   689     __ popl(rdx);                                // restore rdx
   690     __ popfd();                                  // restore EFLAGS
   691     __ ret(3 * wordSize);                        // pop arguments
   693     // handle errors
   694     __ bind(error);
   695     __ movl(rax, Address(rsp, 5 * wordSize));    // get saved rax, back
   696     __ popl(rdx);                                // get saved rdx back
   697     __ popfd();                                  // get saved EFLAGS off stack -- will be ignored
   698     __ pushad();                                 // push registers (eip = return address & msg are already pushed)
   699     BLOCK_COMMENT("call MacroAssembler::debug");
   700     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug)));
   701     __ popad();
   702     __ ret(3 * wordSize);                        // pop arguments
   703     return start;
   704   }
   706   //
   707   //  Generate pre-barrier for array stores
   708   //
   709   //  Input:
   710   //     start   -  starting address
   711   //     end     -  element count
   712   void  gen_write_ref_array_pre_barrier(Register start, Register count) {
   713     assert_different_registers(start, count);
   714 #if 0 // G1 only
   715     BarrierSet* bs = Universe::heap()->barrier_set();
   716     switch (bs->kind()) {
   717       case BarrierSet::G1SATBCT:
   718       case BarrierSet::G1SATBCTLogging:
   719         {
   720           __ pushad();                      // push registers
   721           __ pushl(count);
   722           __ pushl(start);
   723           __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
   724           __ addl(esp, wordSize * 2);
   725           __ popad();
   726         }
   727         break;
   728       case BarrierSet::CardTableModRef:
   729       case BarrierSet::CardTableExtension:
   730       case BarrierSet::ModRef:
   731         break;
   732       default      :
   733         ShouldNotReachHere();
   735     }
   736 #endif // 0 - G1 only
   737   }
   740   //
   741   // Generate a post-barrier for an array store
   742   //
   743   //     start    -  starting address
   744   //     count    -  element count
   745   //
   746   //  The two input registers are overwritten.
   747   //
   748   void  gen_write_ref_array_post_barrier(Register start, Register count) {
   749     BarrierSet* bs = Universe::heap()->barrier_set();
   750     assert_different_registers(start, count);
   751     switch (bs->kind()) {
   752 #if 0 // G1 only
   753       case BarrierSet::G1SATBCT:
   754       case BarrierSet::G1SATBCTLogging:
   755         {
   756           __ pushad();                      // push registers
   757           __ pushl(count);
   758           __ pushl(start);
   759           __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
   760           __ addl(esp, wordSize * 2);
   761           __ popad();
   763         }
   764         break;
   765 #endif // 0 G1 only
   767       case BarrierSet::CardTableModRef:
   768       case BarrierSet::CardTableExtension:
   769         {
   770           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
   771           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
   773           Label L_loop;
   774           const Register end = count;  // elements count; end == start+count-1
   775           assert_different_registers(start, end);
   777           __ leal(end,   Address(start, count, Address::times_4, -4));
   778           __ shrl(start, CardTableModRefBS::card_shift);
   779           __ shrl(end,   CardTableModRefBS::card_shift);
   780           __ subl(end, start); // end --> count
   781         __ BIND(L_loop);
   782           ExternalAddress base((address)ct->byte_map_base);
   783           Address index(start, count, Address::times_1, 0);
   784           __ movbyte(ArrayAddress(base, index), 0);
   785           __ decrement(count);
   786           __ jcc(Assembler::greaterEqual, L_loop);
   787         }
   788         break;
   789       case BarrierSet::ModRef:
   790         break;
   791       default      :
   792         ShouldNotReachHere();
   794     }
   795   }
   797   // Copy 64 bytes chunks
   798   //
   799   // Inputs:
   800   //   from        - source array address
   801   //   to_from     - destination array address - from
   802   //   qword_count - 8-bytes element count, negative
   803   //
   804   void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
   805     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   806     // Copy 64-byte chunks
   807     __ jmpb(L_copy_64_bytes);
   808     __ align(16);
   809   __ BIND(L_copy_64_bytes_loop);
   810     __ movq(mmx0, Address(from, 0));
   811     __ movq(mmx1, Address(from, 8));
   812     __ movq(mmx2, Address(from, 16));
   813     __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
   814     __ movq(mmx3, Address(from, 24));
   815     __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
   816     __ movq(mmx4, Address(from, 32));
   817     __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
   818     __ movq(mmx5, Address(from, 40));
   819     __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
   820     __ movq(mmx6, Address(from, 48));
   821     __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
   822     __ movq(mmx7, Address(from, 56));
   823     __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
   824     __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
   825     __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
   826     __ addl(from, 64);
   827   __ BIND(L_copy_64_bytes);
   828     __ subl(qword_count, 8);
   829     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   830     __ addl(qword_count, 8);
   831     __ jccb(Assembler::zero, L_exit);
   832     //
   833     // length is too short, just copy qwords
   834     //
   835   __ BIND(L_copy_8_bytes);
   836     __ movq(mmx0, Address(from, 0));
   837     __ movq(Address(from, to_from, Address::times_1), mmx0);
   838     __ addl(from, 8);
   839     __ decrement(qword_count);
   840     __ jcc(Assembler::greater, L_copy_8_bytes);
   841   __ BIND(L_exit);
   842     __ emms();
   843   }
   845   address generate_disjoint_copy(BasicType t, bool aligned,
   846                                  Address::ScaleFactor sf,
   847                                  address* entry, const char *name) {
   848     __ align(CodeEntryAlignment);
   849     StubCodeMark mark(this, "StubRoutines", name);
   850     address start = __ pc();
   852     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
   853     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
   855     int shift = Address::times_4 - sf;
   857     const Register from     = rsi;  // source array address
   858     const Register to       = rdi;  // destination array address
   859     const Register count    = rcx;  // elements count
   860     const Register to_from  = to;   // (to - from)
   861     const Register saved_to = rdx;  // saved destination array address
   863     __ enter(); // required for proper stackwalking of RuntimeStub frame
   864     __ pushl(rsi);
   865     __ pushl(rdi);
   866     __ movl(from , Address(rsp, 12+ 4));
   867     __ movl(to   , Address(rsp, 12+ 8));
   868     __ movl(count, Address(rsp, 12+ 12));
   869     if (t == T_OBJECT) {
   870       __ testl(count, count);
   871       __ jcc(Assembler::zero, L_0_count);
   872       gen_write_ref_array_pre_barrier(to, count);
   873       __ movl(saved_to, to);          // save 'to'
   874     }
   876     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
   877     BLOCK_COMMENT("Entry:");
   879     __ subl(to, from); // to --> to_from
   880     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
   881     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
   882     if (!aligned && (t == T_BYTE || t == T_SHORT)) {
   883       // align source address at 4 bytes address boundary
   884       if (t == T_BYTE) {
   885         // One byte misalignment happens only for byte arrays
   886         __ testl(from, 1);
   887         __ jccb(Assembler::zero, L_skip_align1);
   888         __ movb(rax, Address(from, 0));
   889         __ movb(Address(from, to_from, Address::times_1, 0), rax);
   890         __ increment(from);
   891         __ decrement(count);
   892       __ BIND(L_skip_align1);
   893       }
   894       // Two bytes misalignment happens only for byte and short (char) arrays
   895       __ testl(from, 2);
   896       __ jccb(Assembler::zero, L_skip_align2);
   897       __ movw(rax, Address(from, 0));
   898       __ movw(Address(from, to_from, Address::times_1, 0), rax);
   899       __ addl(from, 2);
   900       __ subl(count, 1<<(shift-1));
   901     __ BIND(L_skip_align2);
   902     }
   903     if (!VM_Version::supports_mmx()) {
   904       __ movl(rax, count);     // save 'count'
   905       __ shrl(count, shift);   // bytes count
   906       __ addl(to_from, from);  // restore 'to'
   907       __ rep_movl();
   908       __ subl(to_from, from);  // restore 'to_from'
   909       __ movl(count, rax);     // restore 'count'
   910       __ jmpb(L_copy_2_bytes); // all dwords were copied
   911     } else {
   912       // align to 8 bytes, we know we are 4 byte aligned to start
   913       __ testl(from, 4);
   914       __ jccb(Assembler::zero, L_copy_64_bytes);
   915       __ movl(rax, Address(from, 0));
   916       __ movl(Address(from, to_from, Address::times_1, 0), rax);
   917       __ addl(from, 4);
   918       __ subl(count, 1<<shift);
   919     __ BIND(L_copy_64_bytes);
   920       __ movl(rax, count);
   921       __ shrl(rax, shift+1);  // 8 bytes chunk count
   922       //
   923       // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
   924       //
   925       mmx_copy_forward(from, to_from, rax);
   926     }
   927     // copy tailing dword
   928   __ BIND(L_copy_4_bytes);
   929     __ testl(count, 1<<shift);
   930     __ jccb(Assembler::zero, L_copy_2_bytes);
   931     __ movl(rax, Address(from, 0));
   932     __ movl(Address(from, to_from, Address::times_1, 0), rax);
   933     if (t == T_BYTE || t == T_SHORT) {
   934       __ addl(from, 4);
   935     __ BIND(L_copy_2_bytes);
   936       // copy tailing word
   937       __ testl(count, 1<<(shift-1));
   938       __ jccb(Assembler::zero, L_copy_byte);
   939       __ movw(rax, Address(from, 0));
   940       __ movw(Address(from, to_from, Address::times_1, 0), rax);
   941       if (t == T_BYTE) {
   942         __ addl(from, 2);
   943       __ BIND(L_copy_byte);
   944         // copy tailing byte
   945         __ testl(count, 1);
   946         __ jccb(Assembler::zero, L_exit);
   947         __ movb(rax, Address(from, 0));
   948         __ movb(Address(from, to_from, Address::times_1, 0), rax);
   949       __ BIND(L_exit);
   950       } else {
   951       __ BIND(L_copy_byte);
   952       }
   953     } else {
   954     __ BIND(L_copy_2_bytes);
   955     }
   957     if (t == T_OBJECT) {
   958       __ movl(count, Address(rsp, 12+12)); // reread 'count'
   959       __ movl(to, saved_to); // restore 'to'
   960       gen_write_ref_array_post_barrier(to, count);
   961     __ BIND(L_0_count);
   962     }
   963     inc_copy_counter_np(t);
   964     __ popl(rdi);
   965     __ popl(rsi);
   966     __ leave(); // required for proper stackwalking of RuntimeStub frame
   967     __ xorl(rax, rax); // return 0
   968     __ ret(0);
   969     return start;
   970   }
   973   address generate_conjoint_copy(BasicType t, bool aligned,
   974                                  Address::ScaleFactor sf,
   975                                  address nooverlap_target,
   976                                  address* entry, const char *name) {
   977     __ align(CodeEntryAlignment);
   978     StubCodeMark mark(this, "StubRoutines", name);
   979     address start = __ pc();
   981     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
   982     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
   984     int shift = Address::times_4 - sf;
   986     const Register src   = rax;  // source array address
   987     const Register dst   = rdx;  // destination array address
   988     const Register from  = rsi;  // source array address
   989     const Register to    = rdi;  // destination array address
   990     const Register count = rcx;  // elements count
   991     const Register end   = rax;  // array end address
   993     __ enter(); // required for proper stackwalking of RuntimeStub frame
   994     __ pushl(rsi);
   995     __ pushl(rdi);
   996     __ movl(src  , Address(rsp, 12+ 4));  // from
   997     __ movl(dst  , Address(rsp, 12+ 8));  // to
   998     __ movl(count, Address(rsp, 12+12));  // count
   999     if (t == T_OBJECT) {
  1000        gen_write_ref_array_pre_barrier(dst, count);
  1003     if (entry != NULL) {
  1004       *entry = __ pc(); // Entry point from generic arraycopy stub.
  1005       BLOCK_COMMENT("Entry:");
  1008     if (t == T_OBJECT) {
  1009       __ testl(count, count);
  1010       __ jcc(Assembler::zero, L_0_count);
  1012     __ movl(from, src);
  1013     __ movl(to  , dst);
  1015     // arrays overlap test
  1016     RuntimeAddress nooverlap(nooverlap_target);
  1017     __ cmpl(dst, src);
  1018     __ leal(end, Address(src, count, sf, 0)); // src + count * elem_size
  1019     __ jump_cc(Assembler::belowEqual, nooverlap);
  1020     __ cmpl(dst, end);
  1021     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1023     // copy from high to low
  1024     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1025     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
  1026     if (t == T_BYTE || t == T_SHORT) {
  1027       // Align the end of destination array at 4 bytes address boundary
  1028       __ leal(end, Address(dst, count, sf, 0));
  1029       if (t == T_BYTE) {
  1030         // One byte misalignment happens only for byte arrays
  1031         __ testl(end, 1);
  1032         __ jccb(Assembler::zero, L_skip_align1);
  1033         __ decrement(count);
  1034         __ movb(rdx, Address(from, count, sf, 0));
  1035         __ movb(Address(to, count, sf, 0), rdx);
  1036       __ BIND(L_skip_align1);
  1038       // Two bytes misalignment happens only for byte and short (char) arrays
  1039       __ testl(end, 2);
  1040       __ jccb(Assembler::zero, L_skip_align2);
  1041       __ subl(count, 1<<(shift-1));
  1042       __ movw(rdx, Address(from, count, sf, 0));
  1043       __ movw(Address(to, count, sf, 0), rdx);
  1044     __ BIND(L_skip_align2);
  1045       __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1046       __ jcc(Assembler::below, L_copy_4_bytes);
  1049     if (!VM_Version::supports_mmx()) {
  1050       __ std();
  1051       __ movl(rax, count); // Save 'count'
  1052       __ movl(rdx, to);    // Save 'to'
  1053       __ leal(rsi, Address(from, count, sf, -4));
  1054       __ leal(rdi, Address(to  , count, sf, -4));
  1055       __ shrl(count, shift); // bytes count
  1056       __ rep_movl();
  1057       __ cld();
  1058       __ movl(count, rax); // restore 'count'
  1059       __ andl(count, (1<<shift)-1);      // mask the number of rest elements
  1060       __ movl(from, Address(rsp, 12+4)); // reread 'from'
  1061       __ movl(to, rdx);   // restore 'to'
  1062       __ jmpb(L_copy_2_bytes); // all dword were copied
  1063    } else {
  1064       // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
  1065       __ testl(end, 4);
  1066       __ jccb(Assembler::zero, L_copy_8_bytes);
  1067       __ subl(count, 1<<shift);
  1068       __ movl(rdx, Address(from, count, sf, 0));
  1069       __ movl(Address(to, count, sf, 0), rdx);
  1070       __ jmpb(L_copy_8_bytes);
  1072       __ align(16);
  1073       // Move 8 bytes
  1074     __ BIND(L_copy_8_bytes_loop);
  1075       __ movq(mmx0, Address(from, count, sf, 0));
  1076       __ movq(Address(to, count, sf, 0), mmx0);
  1077     __ BIND(L_copy_8_bytes);
  1078       __ subl(count, 2<<shift);
  1079       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1080       __ addl(count, 2<<shift);
  1081       __ emms();
  1083   __ BIND(L_copy_4_bytes);
  1084     // copy prefix qword
  1085     __ testl(count, 1<<shift);
  1086     __ jccb(Assembler::zero, L_copy_2_bytes);
  1087     __ movl(rdx, Address(from, count, sf, -4));
  1088     __ movl(Address(to, count, sf, -4), rdx);
  1090     if (t == T_BYTE || t == T_SHORT) {
  1091         __ subl(count, (1<<shift));
  1092       __ BIND(L_copy_2_bytes);
  1093         // copy prefix dword
  1094         __ testl(count, 1<<(shift-1));
  1095         __ jccb(Assembler::zero, L_copy_byte);
  1096         __ movw(rdx, Address(from, count, sf, -2));
  1097         __ movw(Address(to, count, sf, -2), rdx);
  1098         if (t == T_BYTE) {
  1099           __ subl(count, 1<<(shift-1));
  1100         __ BIND(L_copy_byte);
  1101           // copy prefix byte
  1102           __ testl(count, 1);
  1103           __ jccb(Assembler::zero, L_exit);
  1104           __ movb(rdx, Address(from, 0));
  1105           __ movb(Address(to, 0), rdx);
  1106         __ BIND(L_exit);
  1107         } else {
  1108         __ BIND(L_copy_byte);
  1110     } else {
  1111     __ BIND(L_copy_2_bytes);
  1113     if (t == T_OBJECT) {
  1114       __ movl(count, Address(rsp, 12+12)); // reread count
  1115       gen_write_ref_array_post_barrier(to, count);
  1116     __ BIND(L_0_count);
  1118     inc_copy_counter_np(t);
  1119     __ popl(rdi);
  1120     __ popl(rsi);
  1121     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1122     __ xorl(rax, rax); // return 0
  1123     __ ret(0);
  1124     return start;
  1128   address generate_disjoint_long_copy(address* entry, const char *name) {
  1129     __ align(CodeEntryAlignment);
  1130     StubCodeMark mark(this, "StubRoutines", name);
  1131     address start = __ pc();
  1133     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1134     const Register from       = rax;  // source array address
  1135     const Register to         = rdx;  // destination array address
  1136     const Register count      = rcx;  // elements count
  1137     const Register to_from    = rdx;  // (to - from)
  1139     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1140     __ movl(from , Address(rsp, 8+0));       // from
  1141     __ movl(to   , Address(rsp, 8+4));       // to
  1142     __ movl(count, Address(rsp, 8+8));       // count
  1144     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
  1145     BLOCK_COMMENT("Entry:");
  1147     __ subl(to, from); // to --> to_from
  1148     if (VM_Version::supports_mmx()) {
  1149       mmx_copy_forward(from, to_from, count);
  1150     } else {
  1151       __ jmpb(L_copy_8_bytes);
  1152       __ align(16);
  1153     __ BIND(L_copy_8_bytes_loop);
  1154       __ fild_d(Address(from, 0));
  1155       __ fistp_d(Address(from, to_from, Address::times_1));
  1156       __ addl(from, 8);
  1157     __ BIND(L_copy_8_bytes);
  1158       __ decrement(count);
  1159       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1161     inc_copy_counter_np(T_LONG);
  1162     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1163     __ xorl(rax, rax); // return 0
  1164     __ ret(0);
  1165     return start;
  1168   address generate_conjoint_long_copy(address nooverlap_target,
  1169                                       address* entry, const char *name) {
  1170     __ align(CodeEntryAlignment);
  1171     StubCodeMark mark(this, "StubRoutines", name);
  1172     address start = __ pc();
  1174     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1175     const Register from       = rax;  // source array address
  1176     const Register to         = rdx;  // destination array address
  1177     const Register count      = rcx;  // elements count
  1178     const Register end_from   = rax;  // source array end address
  1180     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1181     __ movl(from , Address(rsp, 8+0));       // from
  1182     __ movl(to   , Address(rsp, 8+4));       // to
  1183     __ movl(count, Address(rsp, 8+8));       // count
  1185     *entry = __ pc(); // Entry point from generic arraycopy stub.
  1186     BLOCK_COMMENT("Entry:");
  1188     // arrays overlap test
  1189     __ cmpl(to, from);
  1190     RuntimeAddress nooverlap(nooverlap_target);
  1191     __ jump_cc(Assembler::belowEqual, nooverlap);
  1192     __ leal(end_from, Address(from, count, Address::times_8, 0));
  1193     __ cmpl(to, end_from);
  1194     __ movl(from, Address(rsp, 8));  // from
  1195     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1197     __ jmpb(L_copy_8_bytes);
  1199     __ align(16);
  1200   __ BIND(L_copy_8_bytes_loop);
  1201     if (VM_Version::supports_mmx()) {
  1202       __ movq(mmx0, Address(from, count, Address::times_8));
  1203       __ movq(Address(to, count, Address::times_8), mmx0);
  1204     } else {
  1205       __ fild_d(Address(from, count, Address::times_8));
  1206       __ fistp_d(Address(to, count, Address::times_8));
  1208   __ BIND(L_copy_8_bytes);
  1209     __ decrement(count);
  1210     __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1212     if (VM_Version::supports_mmx()) {
  1213       __ emms();
  1215     inc_copy_counter_np(T_LONG);
  1216     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1217     __ xorl(rax, rax); // return 0
  1218     __ ret(0);
  1219     return start;
  1223   // Helper for generating a dynamic type check.
  1224   // The sub_klass must be one of {rbx, rdx, rsi}.
  1225   // The temp is killed.
  1226   void generate_type_check(Register sub_klass,
  1227                            Address& super_check_offset_addr,
  1228                            Address& super_klass_addr,
  1229                            Register temp,
  1230                            Label* L_success_ptr, Label* L_failure_ptr) {
  1231     BLOCK_COMMENT("type_check:");
  1233     Label L_fallthrough;
  1234     bool fall_through_on_success = (L_success_ptr == NULL);
  1235     if (fall_through_on_success) {
  1236       L_success_ptr = &L_fallthrough;
  1237     } else {
  1238       L_failure_ptr = &L_fallthrough;
  1240     Label& L_success = *L_success_ptr;
  1241     Label& L_failure = *L_failure_ptr;
  1243     assert_different_registers(sub_klass, temp);
  1245     // a couple of useful fields in sub_klass:
  1246     int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
  1247                      Klass::secondary_supers_offset_in_bytes());
  1248     int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  1249                      Klass::secondary_super_cache_offset_in_bytes());
  1250     Address secondary_supers_addr(sub_klass, ss_offset);
  1251     Address super_cache_addr(     sub_klass, sc_offset);
  1253     // if the pointers are equal, we are done (e.g., String[] elements)
  1254     __ cmpl(sub_klass, super_klass_addr);
  1255     __ jcc(Assembler::equal, L_success);
  1257     // check the supertype display:
  1258     __ movl(temp, super_check_offset_addr);
  1259     Address super_check_addr(sub_klass, temp, Address::times_1, 0);
  1260     __ movl(temp, super_check_addr); // load displayed supertype
  1261     __ cmpl(temp, super_klass_addr); // test the super type
  1262     __ jcc(Assembler::equal, L_success);
  1264     // if it was a primary super, we can just fail immediately
  1265     __ cmpl(super_check_offset_addr, sc_offset);
  1266     __ jcc(Assembler::notEqual, L_failure);
  1268     // Now do a linear scan of the secondary super-klass chain.
  1269     // This code is rarely used, so simplicity is a virtue here.
  1270     inc_counter_np(SharedRuntime::_partial_subtype_ctr);
  1272       // The repne_scan instruction uses fixed registers, which we must spill.
  1273       // (We need a couple more temps in any case.)
  1274       __ pushl(rax);
  1275       __ pushl(rcx);
  1276       __ pushl(rdi);
  1277       assert_different_registers(sub_klass, rax, rcx, rdi);
  1279       __ movl(rdi, secondary_supers_addr);
  1280       // Load the array length.
  1281       __ movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
  1282       // Skip to start of data.
  1283       __ addl(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
  1284       // Scan rcx words at [edi] for occurance of rax,
  1285       // Set NZ/Z based on last compare
  1286       __ movl(rax, super_klass_addr);
  1287       __ repne_scan();
  1289       // Unspill the temp. registers:
  1290       __ popl(rdi);
  1291       __ popl(rcx);
  1292       __ popl(rax);
  1294     __ jcc(Assembler::notEqual, L_failure);
  1296     // Success.  Cache the super we found and proceed in triumph.
  1297     __ movl(temp, super_klass_addr); // note: rax, is dead
  1298     __ movl(super_cache_addr, temp);
  1300     if (!fall_through_on_success)
  1301       __ jmp(L_success);
  1303     // Fall through on failure!
  1304     __ bind(L_fallthrough);
  1307   //
  1308   //  Generate checkcasting array copy stub
  1309   //
  1310   //  Input:
  1311   //    4(rsp)   - source array address
  1312   //    8(rsp)   - destination array address
  1313   //   12(rsp)   - element count, can be zero
  1314   //   16(rsp)   - size_t ckoff (super_check_offset)
  1315   //   20(rsp)   - oop ckval (super_klass)
  1316   //
  1317   //  Output:
  1318   //    rax, ==  0  -  success
  1319   //    rax, == -1^K - failure, where K is partial transfer count
  1320   //
  1321   address generate_checkcast_copy(const char *name, address* entry) {
  1322     __ align(CodeEntryAlignment);
  1323     StubCodeMark mark(this, "StubRoutines", name);
  1324     address start = __ pc();
  1326     Label L_load_element, L_store_element, L_do_card_marks, L_done;
  1328     // register use:
  1329     //  rax, rdx, rcx -- loop control (end_from, end_to, count)
  1330     //  rdi, rsi      -- element access (oop, klass)
  1331     //  rbx,           -- temp
  1332     const Register from       = rax;    // source array address
  1333     const Register to         = rdx;    // destination array address
  1334     const Register length     = rcx;    // elements count
  1335     const Register elem       = rdi;    // each oop copied
  1336     const Register elem_klass = rsi;    // each elem._klass (sub_klass)
  1337     const Register temp       = rbx;    // lone remaining temp
  1339     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1341     __ pushl(rsi);
  1342     __ pushl(rdi);
  1343     __ pushl(rbx);
  1345     Address   from_arg(rsp, 16+ 4);     // from
  1346     Address     to_arg(rsp, 16+ 8);     // to
  1347     Address length_arg(rsp, 16+12);     // elements count
  1348     Address  ckoff_arg(rsp, 16+16);     // super_check_offset
  1349     Address  ckval_arg(rsp, 16+20);     // super_klass
  1351     // Load up:
  1352     __ movl(from,     from_arg);
  1353     __ movl(to,         to_arg);
  1354     __ movl(length, length_arg);
  1356     *entry = __ pc(); // Entry point from generic arraycopy stub.
  1357     BLOCK_COMMENT("Entry:");
  1359     //---------------------------------------------------------------
  1360     // Assembler stub will be used for this call to arraycopy
  1361     // if the two arrays are subtypes of Object[] but the
  1362     // destination array type is not equal to or a supertype
  1363     // of the source type.  Each element must be separately
  1364     // checked.
  1366     // Loop-invariant addresses.  They are exclusive end pointers.
  1367     Address end_from_addr(from, length, Address::times_4, 0);
  1368     Address   end_to_addr(to,   length, Address::times_4, 0);
  1370     Register end_from = from;           // re-use
  1371     Register end_to   = to;             // re-use
  1372     Register count    = length;         // re-use
  1374     // Loop-variant addresses.  They assume post-incremented count < 0.
  1375     Address from_element_addr(end_from, count, Address::times_4, 0);
  1376     Address   to_element_addr(end_to,   count, Address::times_4, 0);
  1377     Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
  1379     // Copy from low to high addresses, indexed from the end of each array.
  1380     __ leal(end_from, end_from_addr);
  1381     __ leal(end_to,   end_to_addr);
  1382     gen_write_ref_array_pre_barrier(to, count);
  1383     assert(length == count, "");        // else fix next line:
  1384     __ negl(count);                     // negate and test the length
  1385     __ jccb(Assembler::notZero, L_load_element);
  1387     // Empty array:  Nothing to do.
  1388     __ xorl(rax, rax);                  // return 0 on (trivial) success
  1389     __ jmp(L_done);
  1391     // ======== begin loop ========
  1392     // (Loop is rotated; its entry is L_load_element.)
  1393     // Loop control:
  1394     //   for (count = -count; count != 0; count++)
  1395     // Base pointers src, dst are biased by 8*count,to last element.
  1396     __ align(16);
  1398     __ BIND(L_store_element);
  1399     __ movl(to_element_addr, elem);     // store the oop
  1400     __ increment(count);                // increment the count toward zero
  1401     __ jccb(Assembler::zero, L_do_card_marks);
  1403     // ======== loop entry is here ========
  1404     __ BIND(L_load_element);
  1405     __ movl(elem, from_element_addr);   // load the oop
  1406     __ testl(elem, elem);
  1407     __ jccb(Assembler::zero, L_store_element);
  1409     // (Could do a trick here:  Remember last successful non-null
  1410     // element stored and make a quick oop equality check on it.)
  1412     __ movl(elem_klass, elem_klass_addr); // query the object klass
  1413     generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
  1414                         &L_store_element, NULL);
  1415       // (On fall-through, we have failed the element type check.)
  1416     // ======== end loop ========
  1418     // It was a real error; we must depend on the caller to finish the job.
  1419     // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
  1420     // Emit GC store barriers for the oops we have copied (r14 + rdx),
  1421     // and report their number to the caller.
  1422     __ addl(count, length_arg);         // transfers = (length - remaining)
  1423     __ movl(rax, count);                // save the value
  1424     __ notl(rax);                       // report (-1^K) to caller
  1425     __ movl(to, to_arg);                // reload
  1426     assert_different_registers(to, count, rax);
  1427     gen_write_ref_array_post_barrier(to, count);
  1428     __ jmpb(L_done);
  1430     // Come here on success only.
  1431     __ BIND(L_do_card_marks);
  1432     __ movl(count, length_arg);
  1433     gen_write_ref_array_post_barrier(to, count);
  1434     __ xorl(rax, rax);                  // return 0 on success
  1436     // Common exit point (success or failure).
  1437     __ BIND(L_done);
  1438     __ popl(rbx);
  1439     __ popl(rdi);
  1440     __ popl(rsi);
  1441     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
  1442     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1443     __ ret(0);
  1445     return start;
  1448   //
  1449   //  Generate 'unsafe' array copy stub
  1450   //  Though just as safe as the other stubs, it takes an unscaled
  1451   //  size_t argument instead of an element count.
  1452   //
  1453   //  Input:
  1454   //    4(rsp)   - source array address
  1455   //    8(rsp)   - destination array address
  1456   //   12(rsp)   - byte count, can be zero
  1457   //
  1458   //  Output:
  1459   //    rax, ==  0  -  success
  1460   //    rax, == -1  -  need to call System.arraycopy
  1461   //
  1462   // Examines the alignment of the operands and dispatches
  1463   // to a long, int, short, or byte copy loop.
  1464   //
  1465   address generate_unsafe_copy(const char *name,
  1466                                address byte_copy_entry,
  1467                                address short_copy_entry,
  1468                                address int_copy_entry,
  1469                                address long_copy_entry) {
  1471     Label L_long_aligned, L_int_aligned, L_short_aligned;
  1473     __ align(CodeEntryAlignment);
  1474     StubCodeMark mark(this, "StubRoutines", name);
  1475     address start = __ pc();
  1477     const Register from       = rax;  // source array address
  1478     const Register to         = rdx;  // destination array address
  1479     const Register count      = rcx;  // elements count
  1481     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1482     __ pushl(rsi);
  1483     __ pushl(rdi);
  1484     Address  from_arg(rsp, 12+ 4);      // from
  1485     Address    to_arg(rsp, 12+ 8);      // to
  1486     Address count_arg(rsp, 12+12);      // byte count
  1488     // Load up:
  1489     __ movl(from ,  from_arg);
  1490     __ movl(to   ,    to_arg);
  1491     __ movl(count, count_arg);
  1493     // bump this on entry, not on exit:
  1494     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
  1496     const Register bits = rsi;
  1497     __ movl(bits, from);
  1498     __ orl(bits, to);
  1499     __ orl(bits, count);
  1501     __ testl(bits, BytesPerLong-1);
  1502     __ jccb(Assembler::zero, L_long_aligned);
  1504     __ testl(bits, BytesPerInt-1);
  1505     __ jccb(Assembler::zero, L_int_aligned);
  1507     __ testl(bits, BytesPerShort-1);
  1508     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
  1510     __ BIND(L_short_aligned);
  1511     __ shrl(count, LogBytesPerShort); // size => short_count
  1512     __ movl(count_arg, count);          // update 'count'
  1513     __ jump(RuntimeAddress(short_copy_entry));
  1515     __ BIND(L_int_aligned);
  1516     __ shrl(count, LogBytesPerInt); // size => int_count
  1517     __ movl(count_arg, count);          // update 'count'
  1518     __ jump(RuntimeAddress(int_copy_entry));
  1520     __ BIND(L_long_aligned);
  1521     __ shrl(count, LogBytesPerLong); // size => qword_count
  1522     __ movl(count_arg, count);          // update 'count'
  1523     __ popl(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1524     __ popl(rsi);
  1525     __ jump(RuntimeAddress(long_copy_entry));
  1527     return start;
  1531   // Perform range checks on the proposed arraycopy.
  1532   // Smashes src_pos and dst_pos.  (Uses them up for temps.)
  1533   void arraycopy_range_checks(Register src,
  1534                               Register src_pos,
  1535                               Register dst,
  1536                               Register dst_pos,
  1537                               Address& length,
  1538                               Label& L_failed) {
  1539     BLOCK_COMMENT("arraycopy_range_checks:");
  1540     const Register src_end = src_pos;   // source array end position
  1541     const Register dst_end = dst_pos;   // destination array end position
  1542     __ addl(src_end, length); // src_pos + length
  1543     __ addl(dst_end, length); // dst_pos + length
  1545     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
  1546     __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
  1547     __ jcc(Assembler::above, L_failed);
  1549     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
  1550     __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
  1551     __ jcc(Assembler::above, L_failed);
  1553     BLOCK_COMMENT("arraycopy_range_checks done");
  1557   //
  1558   //  Generate generic array copy stubs
  1559   //
  1560   //  Input:
  1561   //     4(rsp)    -  src oop
  1562   //     8(rsp)    -  src_pos
  1563   //    12(rsp)    -  dst oop
  1564   //    16(rsp)    -  dst_pos
  1565   //    20(rsp)    -  element count
  1566   //
  1567   //  Output:
  1568   //    rax, ==  0  -  success
  1569   //    rax, == -1^K - failure, where K is partial transfer count
  1570   //
  1571   address generate_generic_copy(const char *name,
  1572                                 address entry_jbyte_arraycopy,
  1573                                 address entry_jshort_arraycopy,
  1574                                 address entry_jint_arraycopy,
  1575                                 address entry_oop_arraycopy,
  1576                                 address entry_jlong_arraycopy,
  1577                                 address entry_checkcast_arraycopy) {
  1578     Label L_failed, L_failed_0, L_objArray;
  1580     { int modulus = CodeEntryAlignment;
  1581       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
  1582       int advance = target - (__ offset() % modulus);
  1583       if (advance < 0)  advance += modulus;
  1584       if (advance > 0)  __ nop(advance);
  1586     StubCodeMark mark(this, "StubRoutines", name);
  1588     // Short-hop target to L_failed.  Makes for denser prologue code.
  1589     __ BIND(L_failed_0);
  1590     __ jmp(L_failed);
  1591     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
  1593     __ align(CodeEntryAlignment);
  1594     address start = __ pc();
  1596     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1597     __ pushl(rsi);
  1598     __ pushl(rdi);
  1600     // bump this on entry, not on exit:
  1601     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
  1603     // Input values
  1604     Address SRC     (rsp, 12+ 4);
  1605     Address SRC_POS (rsp, 12+ 8);
  1606     Address DST     (rsp, 12+12);
  1607     Address DST_POS (rsp, 12+16);
  1608     Address LENGTH  (rsp, 12+20);
  1610     //-----------------------------------------------------------------------
  1611     // Assembler stub will be used for this call to arraycopy
  1612     // if the following conditions are met:
  1613     //
  1614     // (1) src and dst must not be null.
  1615     // (2) src_pos must not be negative.
  1616     // (3) dst_pos must not be negative.
  1617     // (4) length  must not be negative.
  1618     // (5) src klass and dst klass should be the same and not NULL.
  1619     // (6) src and dst should be arrays.
  1620     // (7) src_pos + length must not exceed length of src.
  1621     // (8) dst_pos + length must not exceed length of dst.
  1622     //
  1624     const Register src     = rax;       // source array oop
  1625     const Register src_pos = rsi;
  1626     const Register dst     = rdx;       // destination array oop
  1627     const Register dst_pos = rdi;
  1628     const Register length  = rcx;       // transfer count
  1630     //  if (src == NULL) return -1;
  1631     __ movl(src, SRC);      // src oop
  1632     __ testl(src, src);
  1633     __ jccb(Assembler::zero, L_failed_0);
  1635     //  if (src_pos < 0) return -1;
  1636     __ movl(src_pos, SRC_POS);  // src_pos
  1637     __ testl(src_pos, src_pos);
  1638     __ jccb(Assembler::negative, L_failed_0);
  1640     //  if (dst == NULL) return -1;
  1641     __ movl(dst, DST);      // dst oop
  1642     __ testl(dst, dst);
  1643     __ jccb(Assembler::zero, L_failed_0);
  1645     //  if (dst_pos < 0) return -1;
  1646     __ movl(dst_pos, DST_POS);  // dst_pos
  1647     __ testl(dst_pos, dst_pos);
  1648     __ jccb(Assembler::negative, L_failed_0);
  1650     //  if (length < 0) return -1;
  1651     __ movl(length, LENGTH);   // length
  1652     __ testl(length, length);
  1653     __ jccb(Assembler::negative, L_failed_0);
  1655     //  if (src->klass() == NULL) return -1;
  1656     Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
  1657     Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
  1658     const Register rcx_src_klass = rcx;    // array klass
  1659     __ movl(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
  1661 #ifdef ASSERT
  1662     //  assert(src->klass() != NULL);
  1663     BLOCK_COMMENT("assert klasses not null");
  1664     { Label L1, L2;
  1665       __ testl(rcx_src_klass, rcx_src_klass);
  1666       __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
  1667       __ bind(L1);
  1668       __ stop("broken null klass");
  1669       __ bind(L2);
  1670       __ cmpl(dst_klass_addr, 0);
  1671       __ jccb(Assembler::equal, L1);      // this would be broken also
  1672       BLOCK_COMMENT("assert done");
  1674 #endif //ASSERT
  1676     // Load layout helper (32-bits)
  1677     //
  1678     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  1679     // 32        30    24            16              8     2                 0
  1680     //
  1681     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  1682     //
  1684     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
  1685                     Klass::layout_helper_offset_in_bytes();
  1686     Address src_klass_lh_addr(rcx_src_klass, lh_offset);
  1688     // Handle objArrays completely differently...
  1689     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  1690     __ cmpl(src_klass_lh_addr, objArray_lh);
  1691     __ jcc(Assembler::equal, L_objArray);
  1693     //  if (src->klass() != dst->klass()) return -1;
  1694     __ cmpl(rcx_src_klass, dst_klass_addr);
  1695     __ jccb(Assembler::notEqual, L_failed_0);
  1697     const Register rcx_lh = rcx;  // layout helper
  1698     assert(rcx_lh == rcx_src_klass, "known alias");
  1699     __ movl(rcx_lh, src_klass_lh_addr);
  1701     //  if (!src->is_Array()) return -1;
  1702     __ cmpl(rcx_lh, Klass::_lh_neutral_value);
  1703     __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
  1705     // At this point, it is known to be a typeArray (array_tag 0x3).
  1706 #ifdef ASSERT
  1707     { Label L;
  1708       __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
  1709       __ jcc(Assembler::greaterEqual, L); // signed cmp
  1710       __ stop("must be a primitive array");
  1711       __ bind(L);
  1713 #endif
  1715     assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
  1716     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1718     // typeArrayKlass
  1719     //
  1720     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  1721     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  1722     //
  1723     const Register rsi_offset = rsi; // array offset
  1724     const Register src_array  = src; // src array offset
  1725     const Register dst_array  = dst; // dst array offset
  1726     const Register rdi_elsize = rdi; // log2 element size
  1728     __ movl(rsi_offset, rcx_lh);
  1729     __ shrl(rsi_offset, Klass::_lh_header_size_shift);
  1730     __ andl(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
  1731     __ addl(src_array, rsi_offset);  // src array offset
  1732     __ addl(dst_array, rsi_offset);  // dst array offset
  1733     __ andl(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
  1735     // next registers should be set before the jump to corresponding stub
  1736     const Register from       = src; // source array address
  1737     const Register to         = dst; // destination array address
  1738     const Register count      = rcx; // elements count
  1739     // some of them should be duplicated on stack
  1740 #define FROM   Address(rsp, 12+ 4)
  1741 #define TO     Address(rsp, 12+ 8)   // Not used now
  1742 #define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
  1744     BLOCK_COMMENT("scale indexes to element size");
  1745     __ movl(rsi, SRC_POS);  // src_pos
  1746     __ shll(rsi); // src_pos << rcx (log2 elsize)
  1747     assert(src_array == from, "");
  1748     __ addl(from, rsi);     // from = src_array + SRC_POS << log2 elsize
  1749     __ movl(rdi, DST_POS);  // dst_pos
  1750     __ shll(rdi); // dst_pos << rcx (log2 elsize)
  1751     assert(dst_array == to, "");
  1752     __ addl(to,  rdi);      // to   = dst_array + DST_POS << log2 elsize
  1753     __ movl(FROM, from);    // src_addr
  1754     __ movl(rdi_elsize, rcx_lh); // log2 elsize
  1755     __ movl(count, LENGTH); // elements count
  1757     BLOCK_COMMENT("choose copy loop based on element size");
  1758     __ cmpl(rdi_elsize, 0);
  1760     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
  1761     __ cmpl(rdi_elsize, LogBytesPerShort);
  1762     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
  1763     __ cmpl(rdi_elsize, LogBytesPerInt);
  1764     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
  1765 #ifdef ASSERT
  1766     __ cmpl(rdi_elsize, LogBytesPerLong);
  1767     __ jccb(Assembler::notEqual, L_failed);
  1768 #endif
  1769     __ popl(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1770     __ popl(rsi);
  1771     __ jump(RuntimeAddress(entry_jlong_arraycopy));
  1773   __ BIND(L_failed);
  1774     __ xorl(rax, rax);
  1775     __ notl(rax); // return -1
  1776     __ popl(rdi);
  1777     __ popl(rsi);
  1778     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1779     __ ret(0);
  1781     // objArrayKlass
  1782   __ BIND(L_objArray);
  1783     // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
  1785     Label L_plain_copy, L_checkcast_copy;
  1786     //  test array classes for subtyping
  1787     __ cmpl(rcx_src_klass, dst_klass_addr); // usual case is exact equality
  1788     __ jccb(Assembler::notEqual, L_checkcast_copy);
  1790     // Identically typed arrays can be copied without element-wise checks.
  1791     assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
  1792     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1794   __ BIND(L_plain_copy);
  1795     __ movl(count, LENGTH); // elements count
  1796     __ movl(src_pos, SRC_POS);  // reload src_pos
  1797     __ leal(from, Address(src, src_pos, Address::times_4,
  1798                   arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
  1799     __ movl(dst_pos, DST_POS);  // reload dst_pos
  1800     __ leal(to,   Address(dst, dst_pos, Address::times_4,
  1801                   arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
  1802     __ movl(FROM,  from);   // src_addr
  1803     __ movl(TO,    to);     // dst_addr
  1804     __ movl(COUNT, count);  // count
  1805     __ jump(RuntimeAddress(entry_oop_arraycopy));
  1807   __ BIND(L_checkcast_copy);
  1808     // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
  1810       // Handy offsets:
  1811       int  ek_offset = (klassOopDesc::header_size() * HeapWordSize +
  1812                         objArrayKlass::element_klass_offset_in_bytes());
  1813       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  1814                         Klass::super_check_offset_offset_in_bytes());
  1816       Register rsi_dst_klass = rsi;
  1817       Register rdi_temp      = rdi;
  1818       assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
  1819       assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
  1820       Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
  1822       // Before looking at dst.length, make sure dst is also an objArray.
  1823       __ movl(rsi_dst_klass, dst_klass_addr);
  1824       __ cmpl(dst_klass_lh_addr, objArray_lh);
  1825       __ jccb(Assembler::notEqual, L_failed);
  1827       // It is safe to examine both src.length and dst.length.
  1828       __ movl(src_pos, SRC_POS);        // reload rsi
  1829       arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1830       // (Now src_pos and dst_pos are killed, but not src and dst.)
  1832       // We'll need this temp (don't forget to pop it after the type check).
  1833       __ pushl(rbx);
  1834       Register rbx_src_klass = rbx;
  1836       __ movl(rbx_src_klass, rcx_src_klass); // spill away from rcx
  1837       __ movl(rsi_dst_klass, dst_klass_addr);
  1838       Address super_check_offset_addr(rsi_dst_klass, sco_offset);
  1839       Label L_fail_array_check;
  1840       generate_type_check(rbx_src_klass,
  1841                           super_check_offset_addr, dst_klass_addr,
  1842                           rdi_temp, NULL, &L_fail_array_check);
  1843       // (On fall-through, we have passed the array type check.)
  1844       __ popl(rbx);
  1845       __ jmp(L_plain_copy);
  1847       __ BIND(L_fail_array_check);
  1848       // Reshuffle arguments so we can call checkcast_arraycopy:
  1850       // match initial saves for checkcast_arraycopy
  1851       // pushl(rsi);    // already done; see above
  1852       // pushl(rdi);    // already done; see above
  1853       // pushl(rbx);    // already done; see above
  1855       // Marshal outgoing arguments now, freeing registers.
  1856       Address   from_arg(rsp, 16+ 4);   // from
  1857       Address     to_arg(rsp, 16+ 8);   // to
  1858       Address length_arg(rsp, 16+12);   // elements count
  1859       Address  ckoff_arg(rsp, 16+16);   // super_check_offset
  1860       Address  ckval_arg(rsp, 16+20);   // super_klass
  1862       Address SRC_POS_arg(rsp, 16+ 8);
  1863       Address DST_POS_arg(rsp, 16+16);
  1864       Address  LENGTH_arg(rsp, 16+20);
  1865       // push rbx, changed the incoming offsets (why not just use rbp,??)
  1866       // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
  1868       __ movl(rbx, Address(rsi_dst_klass, ek_offset));
  1869       __ movl(length, LENGTH_arg);    // reload elements count
  1870       __ movl(src_pos, SRC_POS_arg);  // reload src_pos
  1871       __ movl(dst_pos, DST_POS_arg);  // reload dst_pos
  1873       __ movl(ckval_arg, rbx);          // destination element type
  1874       __ movl(rbx, Address(rbx, sco_offset));
  1875       __ movl(ckoff_arg, rbx);          // corresponding class check offset
  1877       __ movl(length_arg, length);      // outgoing length argument
  1879       __ leal(from, Address(src, src_pos, Address::times_4,
  1880                             arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1881       __ movl(from_arg, from);
  1883       __ leal(to, Address(dst, dst_pos, Address::times_4,
  1884                           arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1885       __ movl(to_arg, to);
  1886       __ jump(RuntimeAddress(entry_checkcast_arraycopy));
  1889     return start;
  1892   void generate_arraycopy_stubs() {
  1893     address entry;
  1894     address entry_jbyte_arraycopy;
  1895     address entry_jshort_arraycopy;
  1896     address entry_jint_arraycopy;
  1897     address entry_oop_arraycopy;
  1898     address entry_jlong_arraycopy;
  1899     address entry_checkcast_arraycopy;
  1901     StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
  1902         generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
  1903                                "arrayof_jbyte_disjoint_arraycopy");
  1904     StubRoutines::_arrayof_jbyte_arraycopy =
  1905         generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
  1906                                NULL, "arrayof_jbyte_arraycopy");
  1907     StubRoutines::_jbyte_disjoint_arraycopy =
  1908         generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
  1909                                "jbyte_disjoint_arraycopy");
  1910     StubRoutines::_jbyte_arraycopy =
  1911         generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
  1912                                &entry_jbyte_arraycopy, "jbyte_arraycopy");
  1914     StubRoutines::_arrayof_jshort_disjoint_arraycopy =
  1915         generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
  1916                                "arrayof_jshort_disjoint_arraycopy");
  1917     StubRoutines::_arrayof_jshort_arraycopy =
  1918         generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
  1919                                NULL, "arrayof_jshort_arraycopy");
  1920     StubRoutines::_jshort_disjoint_arraycopy =
  1921         generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
  1922                                "jshort_disjoint_arraycopy");
  1923     StubRoutines::_jshort_arraycopy =
  1924         generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
  1925                                &entry_jshort_arraycopy, "jshort_arraycopy");
  1927     // Next arrays are always aligned on 4 bytes at least.
  1928     StubRoutines::_jint_disjoint_arraycopy =
  1929         generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
  1930                                "jint_disjoint_arraycopy");
  1931     StubRoutines::_jint_arraycopy =
  1932         generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
  1933                                &entry_jint_arraycopy, "jint_arraycopy");
  1935     StubRoutines::_oop_disjoint_arraycopy =
  1936         generate_disjoint_copy(T_OBJECT, true, Address::times_4, &entry,
  1937                                "oop_disjoint_arraycopy");
  1938     StubRoutines::_oop_arraycopy =
  1939         generate_conjoint_copy(T_OBJECT, true, Address::times_4,  entry,
  1940                                &entry_oop_arraycopy, "oop_arraycopy");
  1942     StubRoutines::_jlong_disjoint_arraycopy =
  1943         generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
  1944     StubRoutines::_jlong_arraycopy =
  1945         generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
  1946                                     "jlong_arraycopy");
  1948     StubRoutines::_arrayof_jint_disjoint_arraycopy  =
  1949         StubRoutines::_jint_disjoint_arraycopy;
  1950     StubRoutines::_arrayof_oop_disjoint_arraycopy   =
  1951         StubRoutines::_oop_disjoint_arraycopy;
  1952     StubRoutines::_arrayof_jlong_disjoint_arraycopy =
  1953         StubRoutines::_jlong_disjoint_arraycopy;
  1955     StubRoutines::_arrayof_jint_arraycopy  = StubRoutines::_jint_arraycopy;
  1956     StubRoutines::_arrayof_oop_arraycopy   = StubRoutines::_oop_arraycopy;
  1957     StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
  1959     StubRoutines::_checkcast_arraycopy =
  1960         generate_checkcast_copy("checkcast_arraycopy",
  1961                                   &entry_checkcast_arraycopy);
  1963     StubRoutines::_unsafe_arraycopy =
  1964         generate_unsafe_copy("unsafe_arraycopy",
  1965                                entry_jbyte_arraycopy,
  1966                                entry_jshort_arraycopy,
  1967                                entry_jint_arraycopy,
  1968                                entry_jlong_arraycopy);
  1970     StubRoutines::_generic_arraycopy =
  1971         generate_generic_copy("generic_arraycopy",
  1972                                entry_jbyte_arraycopy,
  1973                                entry_jshort_arraycopy,
  1974                                entry_jint_arraycopy,
  1975                                entry_oop_arraycopy,
  1976                                entry_jlong_arraycopy,
  1977                                entry_checkcast_arraycopy);
  1980  public:
  1981   // Information about frame layout at time of blocking runtime call.
  1982   // Note that we only have to preserve callee-saved registers since
  1983   // the compilers are responsible for supplying a continuation point
  1984   // if they expect all registers to be preserved.
  1985   enum layout {
  1986     thread_off,    // last_java_sp
  1987     rbp_off,       // callee saved register
  1988     ret_pc,
  1989     framesize
  1990   };
  1992  private:
  1994 #undef  __
  1995 #define __ masm->
  1997   //------------------------------------------------------------------------------------------------------------------------
  1998   // Continuation point for throwing of implicit exceptions that are not handled in
  1999   // the current activation. Fabricates an exception oop and initiates normal
  2000   // exception dispatching in this frame.
  2001   //
  2002   // Previously the compiler (c2) allowed for callee save registers on Java calls.
  2003   // This is no longer true after adapter frames were removed but could possibly
  2004   // be brought back in the future if the interpreter code was reworked and it
  2005   // was deemed worthwhile. The comment below was left to describe what must
  2006   // happen here if callee saves were resurrected. As it stands now this stub
  2007   // could actually be a vanilla BufferBlob and have now oopMap at all.
  2008   // Since it doesn't make much difference we've chosen to leave it the
  2009   // way it was in the callee save days and keep the comment.
  2011   // If we need to preserve callee-saved values we need a callee-saved oop map and
  2012   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
  2013   // If the compiler needs all registers to be preserved between the fault
  2014   // point and the exception handler then it must assume responsibility for that in
  2015   // AbstractCompiler::continuation_for_implicit_null_exception or
  2016   // continuation_for_implicit_division_by_zero_exception. All other implicit
  2017   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
  2018   // either at call sites or otherwise assume that stack unwinding will be initiated,
  2019   // so caller saved registers were assumed volatile in the compiler.
  2020   address generate_throw_exception(const char* name, address runtime_entry,
  2021                                    bool restore_saved_exception_pc) {
  2023     int insts_size = 256;
  2024     int locs_size  = 32;
  2026     CodeBuffer code(name, insts_size, locs_size);
  2027     OopMapSet* oop_maps  = new OopMapSet();
  2028     MacroAssembler* masm = new MacroAssembler(&code);
  2030     address start = __ pc();
  2032     // This is an inlined and slightly modified version of call_VM
  2033     // which has the ability to fetch the return PC out of
  2034     // thread-local storage and also sets up last_Java_sp slightly
  2035     // differently than the real call_VM
  2036     Register java_thread = rbx;
  2037     __ get_thread(java_thread);
  2038     if (restore_saved_exception_pc) {
  2039       __ movl(rax, Address(java_thread, in_bytes(JavaThread::saved_exception_pc_offset())));
  2040       __ pushl(rax);
  2043     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2045     // pc and rbp, already pushed
  2046     __ subl(rsp, (framesize-2) * wordSize); // prolog
  2048     // Frame is now completed as far as size and linkage.
  2050     int frame_complete = __ pc() - start;
  2052     // push java thread (becomes first argument of C function)
  2053     __ movl(Address(rsp, thread_off * wordSize), java_thread);
  2055     // Set up last_Java_sp and last_Java_fp
  2056     __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
  2058     // Call runtime
  2059     BLOCK_COMMENT("call runtime_entry");
  2060     __ call(RuntimeAddress(runtime_entry));
  2061     // Generate oop map
  2062     OopMap* map =  new OopMap(framesize, 0);
  2063     oop_maps->add_gc_map(__ pc() - start, map);
  2065     // restore the thread (cannot use the pushed argument since arguments
  2066     // may be overwritten by C code generated by an optimizing compiler);
  2067     // however can use the register value directly if it is callee saved.
  2068     __ get_thread(java_thread);
  2070     __ reset_last_Java_frame(java_thread, true, false);
  2072     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2074     // check for pending exceptions
  2075 #ifdef ASSERT
  2076     Label L;
  2077     __ cmpl(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
  2078     __ jcc(Assembler::notEqual, L);
  2079     __ should_not_reach_here();
  2080     __ bind(L);
  2081 #endif /* ASSERT */
  2082     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2085     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
  2086     return stub->entry_point();
  2090   void create_control_words() {
  2091     // Round to nearest, 53-bit mode, exceptions masked
  2092     StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
  2093     // Round to zero, 53-bit mode, exception mased
  2094     StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
  2095     // Round to nearest, 24-bit mode, exceptions masked
  2096     StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
  2097     // Round to nearest, 64-bit mode, exceptions masked
  2098     StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
  2099     // Round to nearest, 64-bit mode, exceptions masked
  2100     StubRoutines::_mxcsr_std           = 0x1F80;
  2101     // Note: the following two constants are 80-bit values
  2102     //       layout is critical for correct loading by FPU.
  2103     // Bias for strict fp multiply/divide
  2104     StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
  2105     StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
  2106     StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
  2107     // Un-Bias for strict fp multiply/divide
  2108     StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
  2109     StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
  2110     StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
  2113   //---------------------------------------------------------------------------
  2114   // Initialization
  2116   void generate_initial() {
  2117     // Generates all stubs and initializes the entry points
  2119     //------------------------------------------------------------------------------------------------------------------------
  2120     // entry points that exist in all platforms
  2121     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
  2122     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
  2123     StubRoutines::_forward_exception_entry      = generate_forward_exception();
  2125     StubRoutines::_call_stub_entry              =
  2126       generate_call_stub(StubRoutines::_call_stub_return_address);
  2127     // is referenced by megamorphic call
  2128     StubRoutines::_catch_exception_entry        = generate_catch_exception();
  2130     // These are currently used by Solaris/Intel
  2131     StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
  2133     StubRoutines::_handler_for_unsafe_access_entry =
  2134       generate_handler_for_unsafe_access();
  2136     // platform dependent
  2137     create_control_words();
  2139     StubRoutines::i486::_verify_mxcsr_entry                 = generate_verify_mxcsr();
  2140     StubRoutines::i486::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
  2141     StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
  2142                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
  2143     StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
  2144                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
  2148   void generate_all() {
  2149     // Generates all stubs and initializes the entry points
  2151     // These entry points require SharedInfo::stack0 to be set up in non-core builds
  2152     // and need to be relocatable, so they each fabricate a RuntimeStub internally.
  2153     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError),  false);
  2154     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError),  false);
  2155     StubRoutines::_throw_ArithmeticException_entry         = generate_throw_exception("ArithmeticException throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException),  true);
  2156     StubRoutines::_throw_NullPointerException_entry        = generate_throw_exception("NullPointerException throw_exception",         CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
  2157     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
  2158     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError),   false);
  2160     //------------------------------------------------------------------------------------------------------------------------
  2161     // entry points that are platform specific
  2163     // support for verify_oop (must happen after universe_init)
  2164     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
  2166     // arraycopy stubs used by compilers
  2167     generate_arraycopy_stubs();
  2171  public:
  2172   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  2173     if (all) {
  2174       generate_all();
  2175     } else {
  2176       generate_initial();
  2179 }; // end class declaration
  2182 void StubGenerator_generate(CodeBuffer* code, bool all) {
  2183   StubGenerator g(code, all);

mercurial