src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Wed, 21 Aug 2013 22:35:56 +0200

author
brutisso
date
Wed, 21 Aug 2013 22:35:56 +0200
changeset 5581
f7d3b4387a16
parent 5550
9720d338b1d5
child 5584
1624a68007bd
permissions
-rw-r--r--

8022872: G1: Use correct GC cause for young GC triggered by humongous allocations
Reviewed-by: tonyp, tschatzl

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/codeCache.hpp"
    27 #include "code/icBuffer.hpp"
    28 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    29 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    30 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    31 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    32 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    33 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    34 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    35 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    36 #include "gc_implementation/g1/g1EvacFailure.hpp"
    37 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    38 #include "gc_implementation/g1/g1Log.hpp"
    39 #include "gc_implementation/g1/g1MarkSweep.hpp"
    40 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    41 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    42 #include "gc_implementation/g1/g1YCTypes.hpp"
    43 #include "gc_implementation/g1/heapRegion.inline.hpp"
    44 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    45 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    46 #include "gc_implementation/g1/vm_operations_g1.hpp"
    47 #include "gc_implementation/shared/gcHeapSummary.hpp"
    48 #include "gc_implementation/shared/gcTimer.hpp"
    49 #include "gc_implementation/shared/gcTrace.hpp"
    50 #include "gc_implementation/shared/gcTraceTime.hpp"
    51 #include "gc_implementation/shared/isGCActiveMark.hpp"
    52 #include "memory/gcLocker.inline.hpp"
    53 #include "memory/genOopClosures.inline.hpp"
    54 #include "memory/generationSpec.hpp"
    55 #include "memory/referenceProcessor.hpp"
    56 #include "oops/oop.inline.hpp"
    57 #include "oops/oop.pcgc.inline.hpp"
    58 #include "runtime/vmThread.hpp"
    60 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    62 // turn it on so that the contents of the young list (scan-only /
    63 // to-be-collected) are printed at "strategic" points before / during
    64 // / after the collection --- this is useful for debugging
    65 #define YOUNG_LIST_VERBOSE 0
    66 // CURRENT STATUS
    67 // This file is under construction.  Search for "FIXME".
    69 // INVARIANTS/NOTES
    70 //
    71 // All allocation activity covered by the G1CollectedHeap interface is
    72 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    73 // and allocate_new_tlab, which are the "entry" points to the
    74 // allocation code from the rest of the JVM.  (Note that this does not
    75 // apply to TLAB allocation, which is not part of this interface: it
    76 // is done by clients of this interface.)
    78 // Notes on implementation of parallelism in different tasks.
    79 //
    80 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
    81 // The number of GC workers is passed to heap_region_par_iterate_chunked().
    82 // It does use run_task() which sets _n_workers in the task.
    83 // G1ParTask executes g1_process_strong_roots() ->
    84 // SharedHeap::process_strong_roots() which calls eventually to
    85 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
    86 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
    87 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
    88 //
    90 // Local to this file.
    92 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    93   SuspendibleThreadSet* _sts;
    94   G1RemSet* _g1rs;
    95   ConcurrentG1Refine* _cg1r;
    96   bool _concurrent;
    97 public:
    98   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    99                               G1RemSet* g1rs,
   100                               ConcurrentG1Refine* cg1r) :
   101     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
   102   {}
   103   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   104     bool oops_into_cset = _g1rs->refine_card(card_ptr, worker_i, false);
   105     // This path is executed by the concurrent refine or mutator threads,
   106     // concurrently, and so we do not care if card_ptr contains references
   107     // that point into the collection set.
   108     assert(!oops_into_cset, "should be");
   110     if (_concurrent && _sts->should_yield()) {
   111       // Caller will actually yield.
   112       return false;
   113     }
   114     // Otherwise, we finished successfully; return true.
   115     return true;
   116   }
   117   void set_concurrent(bool b) { _concurrent = b; }
   118 };
   121 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   122   int _calls;
   123   G1CollectedHeap* _g1h;
   124   CardTableModRefBS* _ctbs;
   125   int _histo[256];
   126 public:
   127   ClearLoggedCardTableEntryClosure() :
   128     _calls(0)
   129   {
   130     _g1h = G1CollectedHeap::heap();
   131     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   132     for (int i = 0; i < 256; i++) _histo[i] = 0;
   133   }
   134   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   135     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   136       _calls++;
   137       unsigned char* ujb = (unsigned char*)card_ptr;
   138       int ind = (int)(*ujb);
   139       _histo[ind]++;
   140       *card_ptr = -1;
   141     }
   142     return true;
   143   }
   144   int calls() { return _calls; }
   145   void print_histo() {
   146     gclog_or_tty->print_cr("Card table value histogram:");
   147     for (int i = 0; i < 256; i++) {
   148       if (_histo[i] != 0) {
   149         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   150       }
   151     }
   152   }
   153 };
   155 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   156   int _calls;
   157   G1CollectedHeap* _g1h;
   158   CardTableModRefBS* _ctbs;
   159 public:
   160   RedirtyLoggedCardTableEntryClosure() :
   161     _calls(0)
   162   {
   163     _g1h = G1CollectedHeap::heap();
   164     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   165   }
   166   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   167     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   168       _calls++;
   169       *card_ptr = 0;
   170     }
   171     return true;
   172   }
   173   int calls() { return _calls; }
   174 };
   176 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   177 public:
   178   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   179     *card_ptr = CardTableModRefBS::dirty_card_val();
   180     return true;
   181   }
   182 };
   184 YoungList::YoungList(G1CollectedHeap* g1h) :
   185     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
   186     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
   187   guarantee(check_list_empty(false), "just making sure...");
   188 }
   190 void YoungList::push_region(HeapRegion *hr) {
   191   assert(!hr->is_young(), "should not already be young");
   192   assert(hr->get_next_young_region() == NULL, "cause it should!");
   194   hr->set_next_young_region(_head);
   195   _head = hr;
   197   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   198   ++_length;
   199 }
   201 void YoungList::add_survivor_region(HeapRegion* hr) {
   202   assert(hr->is_survivor(), "should be flagged as survivor region");
   203   assert(hr->get_next_young_region() == NULL, "cause it should!");
   205   hr->set_next_young_region(_survivor_head);
   206   if (_survivor_head == NULL) {
   207     _survivor_tail = hr;
   208   }
   209   _survivor_head = hr;
   210   ++_survivor_length;
   211 }
   213 void YoungList::empty_list(HeapRegion* list) {
   214   while (list != NULL) {
   215     HeapRegion* next = list->get_next_young_region();
   216     list->set_next_young_region(NULL);
   217     list->uninstall_surv_rate_group();
   218     list->set_not_young();
   219     list = next;
   220   }
   221 }
   223 void YoungList::empty_list() {
   224   assert(check_list_well_formed(), "young list should be well formed");
   226   empty_list(_head);
   227   _head = NULL;
   228   _length = 0;
   230   empty_list(_survivor_head);
   231   _survivor_head = NULL;
   232   _survivor_tail = NULL;
   233   _survivor_length = 0;
   235   _last_sampled_rs_lengths = 0;
   237   assert(check_list_empty(false), "just making sure...");
   238 }
   240 bool YoungList::check_list_well_formed() {
   241   bool ret = true;
   243   uint length = 0;
   244   HeapRegion* curr = _head;
   245   HeapRegion* last = NULL;
   246   while (curr != NULL) {
   247     if (!curr->is_young()) {
   248       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   249                              "incorrectly tagged (y: %d, surv: %d)",
   250                              curr->bottom(), curr->end(),
   251                              curr->is_young(), curr->is_survivor());
   252       ret = false;
   253     }
   254     ++length;
   255     last = curr;
   256     curr = curr->get_next_young_region();
   257   }
   258   ret = ret && (length == _length);
   260   if (!ret) {
   261     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   262     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
   263                            length, _length);
   264   }
   266   return ret;
   267 }
   269 bool YoungList::check_list_empty(bool check_sample) {
   270   bool ret = true;
   272   if (_length != 0) {
   273     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
   274                   _length);
   275     ret = false;
   276   }
   277   if (check_sample && _last_sampled_rs_lengths != 0) {
   278     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   279     ret = false;
   280   }
   281   if (_head != NULL) {
   282     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   283     ret = false;
   284   }
   285   if (!ret) {
   286     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   287   }
   289   return ret;
   290 }
   292 void
   293 YoungList::rs_length_sampling_init() {
   294   _sampled_rs_lengths = 0;
   295   _curr               = _head;
   296 }
   298 bool
   299 YoungList::rs_length_sampling_more() {
   300   return _curr != NULL;
   301 }
   303 void
   304 YoungList::rs_length_sampling_next() {
   305   assert( _curr != NULL, "invariant" );
   306   size_t rs_length = _curr->rem_set()->occupied();
   308   _sampled_rs_lengths += rs_length;
   310   // The current region may not yet have been added to the
   311   // incremental collection set (it gets added when it is
   312   // retired as the current allocation region).
   313   if (_curr->in_collection_set()) {
   314     // Update the collection set policy information for this region
   315     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   316   }
   318   _curr = _curr->get_next_young_region();
   319   if (_curr == NULL) {
   320     _last_sampled_rs_lengths = _sampled_rs_lengths;
   321     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   322   }
   323 }
   325 void
   326 YoungList::reset_auxilary_lists() {
   327   guarantee( is_empty(), "young list should be empty" );
   328   assert(check_list_well_formed(), "young list should be well formed");
   330   // Add survivor regions to SurvRateGroup.
   331   _g1h->g1_policy()->note_start_adding_survivor_regions();
   332   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   334   int young_index_in_cset = 0;
   335   for (HeapRegion* curr = _survivor_head;
   336        curr != NULL;
   337        curr = curr->get_next_young_region()) {
   338     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   340     // The region is a non-empty survivor so let's add it to
   341     // the incremental collection set for the next evacuation
   342     // pause.
   343     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   344     young_index_in_cset += 1;
   345   }
   346   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
   347   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   349   _head   = _survivor_head;
   350   _length = _survivor_length;
   351   if (_survivor_head != NULL) {
   352     assert(_survivor_tail != NULL, "cause it shouldn't be");
   353     assert(_survivor_length > 0, "invariant");
   354     _survivor_tail->set_next_young_region(NULL);
   355   }
   357   // Don't clear the survivor list handles until the start of
   358   // the next evacuation pause - we need it in order to re-tag
   359   // the survivor regions from this evacuation pause as 'young'
   360   // at the start of the next.
   362   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   364   assert(check_list_well_formed(), "young list should be well formed");
   365 }
   367 void YoungList::print() {
   368   HeapRegion* lists[] = {_head,   _survivor_head};
   369   const char* names[] = {"YOUNG", "SURVIVOR"};
   371   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   372     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   373     HeapRegion *curr = lists[list];
   374     if (curr == NULL)
   375       gclog_or_tty->print_cr("  empty");
   376     while (curr != NULL) {
   377       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
   378                              HR_FORMAT_PARAMS(curr),
   379                              curr->prev_top_at_mark_start(),
   380                              curr->next_top_at_mark_start(),
   381                              curr->age_in_surv_rate_group_cond());
   382       curr = curr->get_next_young_region();
   383     }
   384   }
   386   gclog_or_tty->print_cr("");
   387 }
   389 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   390 {
   391   // Claim the right to put the region on the dirty cards region list
   392   // by installing a self pointer.
   393   HeapRegion* next = hr->get_next_dirty_cards_region();
   394   if (next == NULL) {
   395     HeapRegion* res = (HeapRegion*)
   396       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   397                           NULL);
   398     if (res == NULL) {
   399       HeapRegion* head;
   400       do {
   401         // Put the region to the dirty cards region list.
   402         head = _dirty_cards_region_list;
   403         next = (HeapRegion*)
   404           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   405         if (next == head) {
   406           assert(hr->get_next_dirty_cards_region() == hr,
   407                  "hr->get_next_dirty_cards_region() != hr");
   408           if (next == NULL) {
   409             // The last region in the list points to itself.
   410             hr->set_next_dirty_cards_region(hr);
   411           } else {
   412             hr->set_next_dirty_cards_region(next);
   413           }
   414         }
   415       } while (next != head);
   416     }
   417   }
   418 }
   420 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   421 {
   422   HeapRegion* head;
   423   HeapRegion* hr;
   424   do {
   425     head = _dirty_cards_region_list;
   426     if (head == NULL) {
   427       return NULL;
   428     }
   429     HeapRegion* new_head = head->get_next_dirty_cards_region();
   430     if (head == new_head) {
   431       // The last region.
   432       new_head = NULL;
   433     }
   434     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   435                                           head);
   436   } while (hr != head);
   437   assert(hr != NULL, "invariant");
   438   hr->set_next_dirty_cards_region(NULL);
   439   return hr;
   440 }
   442 void G1CollectedHeap::stop_conc_gc_threads() {
   443   _cg1r->stop();
   444   _cmThread->stop();
   445 }
   447 #ifdef ASSERT
   448 // A region is added to the collection set as it is retired
   449 // so an address p can point to a region which will be in the
   450 // collection set but has not yet been retired.  This method
   451 // therefore is only accurate during a GC pause after all
   452 // regions have been retired.  It is used for debugging
   453 // to check if an nmethod has references to objects that can
   454 // be move during a partial collection.  Though it can be
   455 // inaccurate, it is sufficient for G1 because the conservative
   456 // implementation of is_scavengable() for G1 will indicate that
   457 // all nmethods must be scanned during a partial collection.
   458 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   459   HeapRegion* hr = heap_region_containing(p);
   460   return hr != NULL && hr->in_collection_set();
   461 }
   462 #endif
   464 // Returns true if the reference points to an object that
   465 // can move in an incremental collection.
   466 bool G1CollectedHeap::is_scavengable(const void* p) {
   467   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   468   G1CollectorPolicy* g1p = g1h->g1_policy();
   469   HeapRegion* hr = heap_region_containing(p);
   470   if (hr == NULL) {
   471      // null
   472      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
   473      return false;
   474   } else {
   475     return !hr->isHumongous();
   476   }
   477 }
   479 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   480   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   481   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   483   // Count the dirty cards at the start.
   484   CountNonCleanMemRegionClosure count1(this);
   485   ct_bs->mod_card_iterate(&count1);
   486   int orig_count = count1.n();
   488   // First clear the logged cards.
   489   ClearLoggedCardTableEntryClosure clear;
   490   dcqs.set_closure(&clear);
   491   dcqs.apply_closure_to_all_completed_buffers();
   492   dcqs.iterate_closure_all_threads(false);
   493   clear.print_histo();
   495   // Now ensure that there's no dirty cards.
   496   CountNonCleanMemRegionClosure count2(this);
   497   ct_bs->mod_card_iterate(&count2);
   498   if (count2.n() != 0) {
   499     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   500                            count2.n(), orig_count);
   501   }
   502   guarantee(count2.n() == 0, "Card table should be clean.");
   504   RedirtyLoggedCardTableEntryClosure redirty;
   505   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   506   dcqs.apply_closure_to_all_completed_buffers();
   507   dcqs.iterate_closure_all_threads(false);
   508   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   509                          clear.calls(), orig_count);
   510   guarantee(redirty.calls() == clear.calls(),
   511             "Or else mechanism is broken.");
   513   CountNonCleanMemRegionClosure count3(this);
   514   ct_bs->mod_card_iterate(&count3);
   515   if (count3.n() != orig_count) {
   516     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   517                            orig_count, count3.n());
   518     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   519   }
   521   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   522 }
   524 // Private class members.
   526 G1CollectedHeap* G1CollectedHeap::_g1h;
   528 // Private methods.
   530 HeapRegion*
   531 G1CollectedHeap::new_region_try_secondary_free_list() {
   532   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   533   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   534     if (!_secondary_free_list.is_empty()) {
   535       if (G1ConcRegionFreeingVerbose) {
   536         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   537                                "secondary_free_list has %u entries",
   538                                _secondary_free_list.length());
   539       }
   540       // It looks as if there are free regions available on the
   541       // secondary_free_list. Let's move them to the free_list and try
   542       // again to allocate from it.
   543       append_secondary_free_list();
   545       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
   546              "empty we should have moved at least one entry to the free_list");
   547       HeapRegion* res = _free_list.remove_head();
   548       if (G1ConcRegionFreeingVerbose) {
   549         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   550                                "allocated "HR_FORMAT" from secondary_free_list",
   551                                HR_FORMAT_PARAMS(res));
   552       }
   553       return res;
   554     }
   556     // Wait here until we get notified either when (a) there are no
   557     // more free regions coming or (b) some regions have been moved on
   558     // the secondary_free_list.
   559     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   560   }
   562   if (G1ConcRegionFreeingVerbose) {
   563     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   564                            "could not allocate from secondary_free_list");
   565   }
   566   return NULL;
   567 }
   569 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
   570   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   571          "the only time we use this to allocate a humongous region is "
   572          "when we are allocating a single humongous region");
   574   HeapRegion* res;
   575   if (G1StressConcRegionFreeing) {
   576     if (!_secondary_free_list.is_empty()) {
   577       if (G1ConcRegionFreeingVerbose) {
   578         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   579                                "forced to look at the secondary_free_list");
   580       }
   581       res = new_region_try_secondary_free_list();
   582       if (res != NULL) {
   583         return res;
   584       }
   585     }
   586   }
   587   res = _free_list.remove_head_or_null();
   588   if (res == NULL) {
   589     if (G1ConcRegionFreeingVerbose) {
   590       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   591                              "res == NULL, trying the secondary_free_list");
   592     }
   593     res = new_region_try_secondary_free_list();
   594   }
   595   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   596     // Currently, only attempts to allocate GC alloc regions set
   597     // do_expand to true. So, we should only reach here during a
   598     // safepoint. If this assumption changes we might have to
   599     // reconsider the use of _expand_heap_after_alloc_failure.
   600     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   602     ergo_verbose1(ErgoHeapSizing,
   603                   "attempt heap expansion",
   604                   ergo_format_reason("region allocation request failed")
   605                   ergo_format_byte("allocation request"),
   606                   word_size * HeapWordSize);
   607     if (expand(word_size * HeapWordSize)) {
   608       // Given that expand() succeeded in expanding the heap, and we
   609       // always expand the heap by an amount aligned to the heap
   610       // region size, the free list should in theory not be empty. So
   611       // it would probably be OK to use remove_head(). But the extra
   612       // check for NULL is unlikely to be a performance issue here (we
   613       // just expanded the heap!) so let's just be conservative and
   614       // use remove_head_or_null().
   615       res = _free_list.remove_head_or_null();
   616     } else {
   617       _expand_heap_after_alloc_failure = false;
   618     }
   619   }
   620   return res;
   621 }
   623 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
   624                                                         size_t word_size) {
   625   assert(isHumongous(word_size), "word_size should be humongous");
   626   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   628   uint first = G1_NULL_HRS_INDEX;
   629   if (num_regions == 1) {
   630     // Only one region to allocate, no need to go through the slower
   631     // path. The caller will attempt the expansion if this fails, so
   632     // let's not try to expand here too.
   633     HeapRegion* hr = new_region(word_size, false /* do_expand */);
   634     if (hr != NULL) {
   635       first = hr->hrs_index();
   636     } else {
   637       first = G1_NULL_HRS_INDEX;
   638     }
   639   } else {
   640     // We can't allocate humongous regions while cleanupComplete() is
   641     // running, since some of the regions we find to be empty might not
   642     // yet be added to the free list and it is not straightforward to
   643     // know which list they are on so that we can remove them. Note
   644     // that we only need to do this if we need to allocate more than
   645     // one region to satisfy the current humongous allocation
   646     // request. If we are only allocating one region we use the common
   647     // region allocation code (see above).
   648     wait_while_free_regions_coming();
   649     append_secondary_free_list_if_not_empty_with_lock();
   651     if (free_regions() >= num_regions) {
   652       first = _hrs.find_contiguous(num_regions);
   653       if (first != G1_NULL_HRS_INDEX) {
   654         for (uint i = first; i < first + num_regions; ++i) {
   655           HeapRegion* hr = region_at(i);
   656           assert(hr->is_empty(), "sanity");
   657           assert(is_on_master_free_list(hr), "sanity");
   658           hr->set_pending_removal(true);
   659         }
   660         _free_list.remove_all_pending(num_regions);
   661       }
   662     }
   663   }
   664   return first;
   665 }
   667 HeapWord*
   668 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
   669                                                            uint num_regions,
   670                                                            size_t word_size) {
   671   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
   672   assert(isHumongous(word_size), "word_size should be humongous");
   673   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   675   // Index of last region in the series + 1.
   676   uint last = first + num_regions;
   678   // We need to initialize the region(s) we just discovered. This is
   679   // a bit tricky given that it can happen concurrently with
   680   // refinement threads refining cards on these regions and
   681   // potentially wanting to refine the BOT as they are scanning
   682   // those cards (this can happen shortly after a cleanup; see CR
   683   // 6991377). So we have to set up the region(s) carefully and in
   684   // a specific order.
   686   // The word size sum of all the regions we will allocate.
   687   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
   688   assert(word_size <= word_size_sum, "sanity");
   690   // This will be the "starts humongous" region.
   691   HeapRegion* first_hr = region_at(first);
   692   // The header of the new object will be placed at the bottom of
   693   // the first region.
   694   HeapWord* new_obj = first_hr->bottom();
   695   // This will be the new end of the first region in the series that
   696   // should also match the end of the last region in the series.
   697   HeapWord* new_end = new_obj + word_size_sum;
   698   // This will be the new top of the first region that will reflect
   699   // this allocation.
   700   HeapWord* new_top = new_obj + word_size;
   702   // First, we need to zero the header of the space that we will be
   703   // allocating. When we update top further down, some refinement
   704   // threads might try to scan the region. By zeroing the header we
   705   // ensure that any thread that will try to scan the region will
   706   // come across the zero klass word and bail out.
   707   //
   708   // NOTE: It would not have been correct to have used
   709   // CollectedHeap::fill_with_object() and make the space look like
   710   // an int array. The thread that is doing the allocation will
   711   // later update the object header to a potentially different array
   712   // type and, for a very short period of time, the klass and length
   713   // fields will be inconsistent. This could cause a refinement
   714   // thread to calculate the object size incorrectly.
   715   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   717   // We will set up the first region as "starts humongous". This
   718   // will also update the BOT covering all the regions to reflect
   719   // that there is a single object that starts at the bottom of the
   720   // first region.
   721   first_hr->set_startsHumongous(new_top, new_end);
   723   // Then, if there are any, we will set up the "continues
   724   // humongous" regions.
   725   HeapRegion* hr = NULL;
   726   for (uint i = first + 1; i < last; ++i) {
   727     hr = region_at(i);
   728     hr->set_continuesHumongous(first_hr);
   729   }
   730   // If we have "continues humongous" regions (hr != NULL), then the
   731   // end of the last one should match new_end.
   732   assert(hr == NULL || hr->end() == new_end, "sanity");
   734   // Up to this point no concurrent thread would have been able to
   735   // do any scanning on any region in this series. All the top
   736   // fields still point to bottom, so the intersection between
   737   // [bottom,top] and [card_start,card_end] will be empty. Before we
   738   // update the top fields, we'll do a storestore to make sure that
   739   // no thread sees the update to top before the zeroing of the
   740   // object header and the BOT initialization.
   741   OrderAccess::storestore();
   743   // Now that the BOT and the object header have been initialized,
   744   // we can update top of the "starts humongous" region.
   745   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   746          "new_top should be in this region");
   747   first_hr->set_top(new_top);
   748   if (_hr_printer.is_active()) {
   749     HeapWord* bottom = first_hr->bottom();
   750     HeapWord* end = first_hr->orig_end();
   751     if ((first + 1) == last) {
   752       // the series has a single humongous region
   753       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   754     } else {
   755       // the series has more than one humongous regions
   756       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   757     }
   758   }
   760   // Now, we will update the top fields of the "continues humongous"
   761   // regions. The reason we need to do this is that, otherwise,
   762   // these regions would look empty and this will confuse parts of
   763   // G1. For example, the code that looks for a consecutive number
   764   // of empty regions will consider them empty and try to
   765   // re-allocate them. We can extend is_empty() to also include
   766   // !continuesHumongous(), but it is easier to just update the top
   767   // fields here. The way we set top for all regions (i.e., top ==
   768   // end for all regions but the last one, top == new_top for the
   769   // last one) is actually used when we will free up the humongous
   770   // region in free_humongous_region().
   771   hr = NULL;
   772   for (uint i = first + 1; i < last; ++i) {
   773     hr = region_at(i);
   774     if ((i + 1) == last) {
   775       // last continues humongous region
   776       assert(hr->bottom() < new_top && new_top <= hr->end(),
   777              "new_top should fall on this region");
   778       hr->set_top(new_top);
   779       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   780     } else {
   781       // not last one
   782       assert(new_top > hr->end(), "new_top should be above this region");
   783       hr->set_top(hr->end());
   784       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   785     }
   786   }
   787   // If we have continues humongous regions (hr != NULL), then the
   788   // end of the last one should match new_end and its top should
   789   // match new_top.
   790   assert(hr == NULL ||
   791          (hr->end() == new_end && hr->top() == new_top), "sanity");
   793   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   794   _summary_bytes_used += first_hr->used();
   795   _humongous_set.add(first_hr);
   797   return new_obj;
   798 }
   800 // If could fit into free regions w/o expansion, try.
   801 // Otherwise, if can expand, do so.
   802 // Otherwise, if using ex regions might help, try with ex given back.
   803 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   804   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   806   verify_region_sets_optional();
   808   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
   809   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
   810   uint x_num = expansion_regions();
   811   uint fs = _hrs.free_suffix();
   812   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
   813   if (first == G1_NULL_HRS_INDEX) {
   814     // The only thing we can do now is attempt expansion.
   815     if (fs + x_num >= num_regions) {
   816       // If the number of regions we're trying to allocate for this
   817       // object is at most the number of regions in the free suffix,
   818       // then the call to humongous_obj_allocate_find_first() above
   819       // should have succeeded and we wouldn't be here.
   820       //
   821       // We should only be trying to expand when the free suffix is
   822       // not sufficient for the object _and_ we have some expansion
   823       // room available.
   824       assert(num_regions > fs, "earlier allocation should have succeeded");
   826       ergo_verbose1(ErgoHeapSizing,
   827                     "attempt heap expansion",
   828                     ergo_format_reason("humongous allocation request failed")
   829                     ergo_format_byte("allocation request"),
   830                     word_size * HeapWordSize);
   831       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
   832         // Even though the heap was expanded, it might not have
   833         // reached the desired size. So, we cannot assume that the
   834         // allocation will succeed.
   835         first = humongous_obj_allocate_find_first(num_regions, word_size);
   836       }
   837     }
   838   }
   840   HeapWord* result = NULL;
   841   if (first != G1_NULL_HRS_INDEX) {
   842     result =
   843       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
   844     assert(result != NULL, "it should always return a valid result");
   846     // A successful humongous object allocation changes the used space
   847     // information of the old generation so we need to recalculate the
   848     // sizes and update the jstat counters here.
   849     g1mm()->update_sizes();
   850   }
   852   verify_region_sets_optional();
   854   return result;
   855 }
   857 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   858   assert_heap_not_locked_and_not_at_safepoint();
   859   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   861   unsigned int dummy_gc_count_before;
   862   int dummy_gclocker_retry_count = 0;
   863   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
   864 }
   866 HeapWord*
   867 G1CollectedHeap::mem_allocate(size_t word_size,
   868                               bool*  gc_overhead_limit_was_exceeded) {
   869   assert_heap_not_locked_and_not_at_safepoint();
   871   // Loop until the allocation is satisfied, or unsatisfied after GC.
   872   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
   873     unsigned int gc_count_before;
   875     HeapWord* result = NULL;
   876     if (!isHumongous(word_size)) {
   877       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
   878     } else {
   879       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
   880     }
   881     if (result != NULL) {
   882       return result;
   883     }
   885     // Create the garbage collection operation...
   886     VM_G1CollectForAllocation op(gc_count_before, word_size);
   887     // ...and get the VM thread to execute it.
   888     VMThread::execute(&op);
   890     if (op.prologue_succeeded() && op.pause_succeeded()) {
   891       // If the operation was successful we'll return the result even
   892       // if it is NULL. If the allocation attempt failed immediately
   893       // after a Full GC, it's unlikely we'll be able to allocate now.
   894       HeapWord* result = op.result();
   895       if (result != NULL && !isHumongous(word_size)) {
   896         // Allocations that take place on VM operations do not do any
   897         // card dirtying and we have to do it here. We only have to do
   898         // this for non-humongous allocations, though.
   899         dirty_young_block(result, word_size);
   900       }
   901       return result;
   902     } else {
   903       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
   904         return NULL;
   905       }
   906       assert(op.result() == NULL,
   907              "the result should be NULL if the VM op did not succeed");
   908     }
   910     // Give a warning if we seem to be looping forever.
   911     if ((QueuedAllocationWarningCount > 0) &&
   912         (try_count % QueuedAllocationWarningCount == 0)) {
   913       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   914     }
   915   }
   917   ShouldNotReachHere();
   918   return NULL;
   919 }
   921 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   922                                            unsigned int *gc_count_before_ret,
   923                                            int* gclocker_retry_count_ret) {
   924   // Make sure you read the note in attempt_allocation_humongous().
   926   assert_heap_not_locked_and_not_at_safepoint();
   927   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   928          "be called for humongous allocation requests");
   930   // We should only get here after the first-level allocation attempt
   931   // (attempt_allocation()) failed to allocate.
   933   // We will loop until a) we manage to successfully perform the
   934   // allocation or b) we successfully schedule a collection which
   935   // fails to perform the allocation. b) is the only case when we'll
   936   // return NULL.
   937   HeapWord* result = NULL;
   938   for (int try_count = 1; /* we'll return */; try_count += 1) {
   939     bool should_try_gc;
   940     unsigned int gc_count_before;
   942     {
   943       MutexLockerEx x(Heap_lock);
   945       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
   946                                                       false /* bot_updates */);
   947       if (result != NULL) {
   948         return result;
   949       }
   951       // If we reach here, attempt_allocation_locked() above failed to
   952       // allocate a new region. So the mutator alloc region should be NULL.
   953       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
   955       if (GC_locker::is_active_and_needs_gc()) {
   956         if (g1_policy()->can_expand_young_list()) {
   957           // No need for an ergo verbose message here,
   958           // can_expand_young_list() does this when it returns true.
   959           result = _mutator_alloc_region.attempt_allocation_force(word_size,
   960                                                       false /* bot_updates */);
   961           if (result != NULL) {
   962             return result;
   963           }
   964         }
   965         should_try_gc = false;
   966       } else {
   967         // The GCLocker may not be active but the GCLocker initiated
   968         // GC may not yet have been performed (GCLocker::needs_gc()
   969         // returns true). In this case we do not try this GC and
   970         // wait until the GCLocker initiated GC is performed, and
   971         // then retry the allocation.
   972         if (GC_locker::needs_gc()) {
   973           should_try_gc = false;
   974         } else {
   975           // Read the GC count while still holding the Heap_lock.
   976           gc_count_before = total_collections();
   977           should_try_gc = true;
   978         }
   979       }
   980     }
   982     if (should_try_gc) {
   983       bool succeeded;
   984       result = do_collection_pause(word_size, gc_count_before, &succeeded,
   985           GCCause::_g1_inc_collection_pause);
   986       if (result != NULL) {
   987         assert(succeeded, "only way to get back a non-NULL result");
   988         return result;
   989       }
   991       if (succeeded) {
   992         // If we get here we successfully scheduled a collection which
   993         // failed to allocate. No point in trying to allocate
   994         // further. We'll just return NULL.
   995         MutexLockerEx x(Heap_lock);
   996         *gc_count_before_ret = total_collections();
   997         return NULL;
   998       }
   999     } else {
  1000       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
  1001         MutexLockerEx x(Heap_lock);
  1002         *gc_count_before_ret = total_collections();
  1003         return NULL;
  1005       // The GCLocker is either active or the GCLocker initiated
  1006       // GC has not yet been performed. Stall until it is and
  1007       // then retry the allocation.
  1008       GC_locker::stall_until_clear();
  1009       (*gclocker_retry_count_ret) += 1;
  1012     // We can reach here if we were unsuccessful in scheduling a
  1013     // collection (because another thread beat us to it) or if we were
  1014     // stalled due to the GC locker. In either can we should retry the
  1015     // allocation attempt in case another thread successfully
  1016     // performed a collection and reclaimed enough space. We do the
  1017     // first attempt (without holding the Heap_lock) here and the
  1018     // follow-on attempt will be at the start of the next loop
  1019     // iteration (after taking the Heap_lock).
  1020     result = _mutator_alloc_region.attempt_allocation(word_size,
  1021                                                       false /* bot_updates */);
  1022     if (result != NULL) {
  1023       return result;
  1026     // Give a warning if we seem to be looping forever.
  1027     if ((QueuedAllocationWarningCount > 0) &&
  1028         (try_count % QueuedAllocationWarningCount == 0)) {
  1029       warning("G1CollectedHeap::attempt_allocation_slow() "
  1030               "retries %d times", try_count);
  1034   ShouldNotReachHere();
  1035   return NULL;
  1038 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1039                                           unsigned int * gc_count_before_ret,
  1040                                           int* gclocker_retry_count_ret) {
  1041   // The structure of this method has a lot of similarities to
  1042   // attempt_allocation_slow(). The reason these two were not merged
  1043   // into a single one is that such a method would require several "if
  1044   // allocation is not humongous do this, otherwise do that"
  1045   // conditional paths which would obscure its flow. In fact, an early
  1046   // version of this code did use a unified method which was harder to
  1047   // follow and, as a result, it had subtle bugs that were hard to
  1048   // track down. So keeping these two methods separate allows each to
  1049   // be more readable. It will be good to keep these two in sync as
  1050   // much as possible.
  1052   assert_heap_not_locked_and_not_at_safepoint();
  1053   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1054          "should only be called for humongous allocations");
  1056   // Humongous objects can exhaust the heap quickly, so we should check if we
  1057   // need to start a marking cycle at each humongous object allocation. We do
  1058   // the check before we do the actual allocation. The reason for doing it
  1059   // before the allocation is that we avoid having to keep track of the newly
  1060   // allocated memory while we do a GC.
  1061   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
  1062                                            word_size)) {
  1063     collect(GCCause::_g1_humongous_allocation);
  1066   // We will loop until a) we manage to successfully perform the
  1067   // allocation or b) we successfully schedule a collection which
  1068   // fails to perform the allocation. b) is the only case when we'll
  1069   // return NULL.
  1070   HeapWord* result = NULL;
  1071   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1072     bool should_try_gc;
  1073     unsigned int gc_count_before;
  1076       MutexLockerEx x(Heap_lock);
  1078       // Given that humongous objects are not allocated in young
  1079       // regions, we'll first try to do the allocation without doing a
  1080       // collection hoping that there's enough space in the heap.
  1081       result = humongous_obj_allocate(word_size);
  1082       if (result != NULL) {
  1083         return result;
  1086       if (GC_locker::is_active_and_needs_gc()) {
  1087         should_try_gc = false;
  1088       } else {
  1089          // The GCLocker may not be active but the GCLocker initiated
  1090         // GC may not yet have been performed (GCLocker::needs_gc()
  1091         // returns true). In this case we do not try this GC and
  1092         // wait until the GCLocker initiated GC is performed, and
  1093         // then retry the allocation.
  1094         if (GC_locker::needs_gc()) {
  1095           should_try_gc = false;
  1096         } else {
  1097           // Read the GC count while still holding the Heap_lock.
  1098           gc_count_before = total_collections();
  1099           should_try_gc = true;
  1104     if (should_try_gc) {
  1105       // If we failed to allocate the humongous object, we should try to
  1106       // do a collection pause (if we're allowed) in case it reclaims
  1107       // enough space for the allocation to succeed after the pause.
  1109       bool succeeded;
  1110       result = do_collection_pause(word_size, gc_count_before, &succeeded,
  1111           GCCause::_g1_humongous_allocation);
  1112       if (result != NULL) {
  1113         assert(succeeded, "only way to get back a non-NULL result");
  1114         return result;
  1117       if (succeeded) {
  1118         // If we get here we successfully scheduled a collection which
  1119         // failed to allocate. No point in trying to allocate
  1120         // further. We'll just return NULL.
  1121         MutexLockerEx x(Heap_lock);
  1122         *gc_count_before_ret = total_collections();
  1123         return NULL;
  1125     } else {
  1126       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
  1127         MutexLockerEx x(Heap_lock);
  1128         *gc_count_before_ret = total_collections();
  1129         return NULL;
  1131       // The GCLocker is either active or the GCLocker initiated
  1132       // GC has not yet been performed. Stall until it is and
  1133       // then retry the allocation.
  1134       GC_locker::stall_until_clear();
  1135       (*gclocker_retry_count_ret) += 1;
  1138     // We can reach here if we were unsuccessful in scheduling a
  1139     // collection (because another thread beat us to it) or if we were
  1140     // stalled due to the GC locker. In either can we should retry the
  1141     // allocation attempt in case another thread successfully
  1142     // performed a collection and reclaimed enough space.  Give a
  1143     // warning if we seem to be looping forever.
  1145     if ((QueuedAllocationWarningCount > 0) &&
  1146         (try_count % QueuedAllocationWarningCount == 0)) {
  1147       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1148               "retries %d times", try_count);
  1152   ShouldNotReachHere();
  1153   return NULL;
  1156 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1157                                        bool expect_null_mutator_alloc_region) {
  1158   assert_at_safepoint(true /* should_be_vm_thread */);
  1159   assert(_mutator_alloc_region.get() == NULL ||
  1160                                              !expect_null_mutator_alloc_region,
  1161          "the current alloc region was unexpectedly found to be non-NULL");
  1163   if (!isHumongous(word_size)) {
  1164     return _mutator_alloc_region.attempt_allocation_locked(word_size,
  1165                                                       false /* bot_updates */);
  1166   } else {
  1167     HeapWord* result = humongous_obj_allocate(word_size);
  1168     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
  1169       g1_policy()->set_initiate_conc_mark_if_possible();
  1171     return result;
  1174   ShouldNotReachHere();
  1177 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1178   G1CollectedHeap* _g1h;
  1179   ModRefBarrierSet* _mr_bs;
  1180 public:
  1181   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
  1182     _g1h(g1h), _mr_bs(mr_bs) {}
  1184   bool doHeapRegion(HeapRegion* r) {
  1185     HeapRegionRemSet* hrrs = r->rem_set();
  1187     if (r->continuesHumongous()) {
  1188       // We'll assert that the strong code root list and RSet is empty
  1189       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
  1190       assert(hrrs->occupied() == 0, "RSet should be empty");
  1191       return false;
  1194     _g1h->reset_gc_time_stamps(r);
  1195     hrrs->clear();
  1196     // You might think here that we could clear just the cards
  1197     // corresponding to the used region.  But no: if we leave a dirty card
  1198     // in a region we might allocate into, then it would prevent that card
  1199     // from being enqueued, and cause it to be missed.
  1200     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1201     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1203     return false;
  1205 };
  1207 void G1CollectedHeap::clear_rsets_post_compaction() {
  1208   PostMCRemSetClearClosure rs_clear(this, mr_bs());
  1209   heap_region_iterate(&rs_clear);
  1212 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1213   G1CollectedHeap*   _g1h;
  1214   UpdateRSOopClosure _cl;
  1215   int                _worker_i;
  1216 public:
  1217   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1218     _cl(g1->g1_rem_set(), worker_i),
  1219     _worker_i(worker_i),
  1220     _g1h(g1)
  1221   { }
  1223   bool doHeapRegion(HeapRegion* r) {
  1224     if (!r->continuesHumongous()) {
  1225       _cl.set_from(r);
  1226       r->oop_iterate(&_cl);
  1228     return false;
  1230 };
  1232 class ParRebuildRSTask: public AbstractGangTask {
  1233   G1CollectedHeap* _g1;
  1234 public:
  1235   ParRebuildRSTask(G1CollectedHeap* g1)
  1236     : AbstractGangTask("ParRebuildRSTask"),
  1237       _g1(g1)
  1238   { }
  1240   void work(uint worker_id) {
  1241     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1242     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1243                                           _g1->workers()->active_workers(),
  1244                                          HeapRegion::RebuildRSClaimValue);
  1246 };
  1248 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1249 private:
  1250   G1HRPrinter* _hr_printer;
  1251 public:
  1252   bool doHeapRegion(HeapRegion* hr) {
  1253     assert(!hr->is_young(), "not expecting to find young regions");
  1254     // We only generate output for non-empty regions.
  1255     if (!hr->is_empty()) {
  1256       if (!hr->isHumongous()) {
  1257         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1258       } else if (hr->startsHumongous()) {
  1259         if (hr->region_num() == 1) {
  1260           // single humongous region
  1261           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1262         } else {
  1263           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1265       } else {
  1266         assert(hr->continuesHumongous(), "only way to get here");
  1267         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1270     return false;
  1273   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1274     : _hr_printer(hr_printer) { }
  1275 };
  1277 void G1CollectedHeap::print_hrs_post_compaction() {
  1278   PostCompactionPrinterClosure cl(hr_printer());
  1279   heap_region_iterate(&cl);
  1282 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1283                                     bool clear_all_soft_refs,
  1284                                     size_t word_size) {
  1285   assert_at_safepoint(true /* should_be_vm_thread */);
  1287   if (GC_locker::check_active_before_gc()) {
  1288     return false;
  1291   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
  1292   gc_timer->register_gc_start(os::elapsed_counter());
  1294   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  1295   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
  1297   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1298   ResourceMark rm;
  1300   print_heap_before_gc();
  1301   trace_heap_before_gc(gc_tracer);
  1303   size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();
  1305   HRSPhaseSetter x(HRSPhaseFullGC);
  1306   verify_region_sets_optional();
  1308   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1309                            collector_policy()->should_clear_all_soft_refs();
  1311   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1314     IsGCActiveMark x;
  1316     // Timing
  1317     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
  1318     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  1319     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  1322       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
  1323       TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1324       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1326       double start = os::elapsedTime();
  1327       g1_policy()->record_full_collection_start();
  1329       // Note: When we have a more flexible GC logging framework that
  1330       // allows us to add optional attributes to a GC log record we
  1331       // could consider timing and reporting how long we wait in the
  1332       // following two methods.
  1333       wait_while_free_regions_coming();
  1334       // If we start the compaction before the CM threads finish
  1335       // scanning the root regions we might trip them over as we'll
  1336       // be moving objects / updating references. So let's wait until
  1337       // they are done. By telling them to abort, they should complete
  1338       // early.
  1339       _cm->root_regions()->abort();
  1340       _cm->root_regions()->wait_until_scan_finished();
  1341       append_secondary_free_list_if_not_empty_with_lock();
  1343       gc_prologue(true);
  1344       increment_total_collections(true /* full gc */);
  1345       increment_old_marking_cycles_started();
  1347       assert(used() == recalculate_used(), "Should be equal");
  1349       verify_before_gc();
  1351       pre_full_gc_dump(gc_timer);
  1353       COMPILER2_PRESENT(DerivedPointerTable::clear());
  1355       // Disable discovery and empty the discovered lists
  1356       // for the CM ref processor.
  1357       ref_processor_cm()->disable_discovery();
  1358       ref_processor_cm()->abandon_partial_discovery();
  1359       ref_processor_cm()->verify_no_references_recorded();
  1361       // Abandon current iterations of concurrent marking and concurrent
  1362       // refinement, if any are in progress. We have to do this before
  1363       // wait_until_scan_finished() below.
  1364       concurrent_mark()->abort();
  1366       // Make sure we'll choose a new allocation region afterwards.
  1367       release_mutator_alloc_region();
  1368       abandon_gc_alloc_regions();
  1369       g1_rem_set()->cleanupHRRS();
  1371       // We should call this after we retire any currently active alloc
  1372       // regions so that all the ALLOC / RETIRE events are generated
  1373       // before the start GC event.
  1374       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1376       // We may have added regions to the current incremental collection
  1377       // set between the last GC or pause and now. We need to clear the
  1378       // incremental collection set and then start rebuilding it afresh
  1379       // after this full GC.
  1380       abandon_collection_set(g1_policy()->inc_cset_head());
  1381       g1_policy()->clear_incremental_cset();
  1382       g1_policy()->stop_incremental_cset_building();
  1384       tear_down_region_sets(false /* free_list_only */);
  1385       g1_policy()->set_gcs_are_young(true);
  1387       // See the comments in g1CollectedHeap.hpp and
  1388       // G1CollectedHeap::ref_processing_init() about
  1389       // how reference processing currently works in G1.
  1391       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1392       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1394       // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1395       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1397       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1398       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1400       // Do collection work
  1402         HandleMark hm;  // Discard invalid handles created during gc
  1403         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1406       assert(free_regions() == 0, "we should not have added any free regions");
  1407       rebuild_region_sets(false /* free_list_only */);
  1409       // Enqueue any discovered reference objects that have
  1410       // not been removed from the discovered lists.
  1411       ref_processor_stw()->enqueue_discovered_references();
  1413       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1415       MemoryService::track_memory_usage();
  1417       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1418       ref_processor_stw()->verify_no_references_recorded();
  1420       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  1421       ClassLoaderDataGraph::purge();
  1422       MetaspaceAux::verify_metrics();
  1424       // Note: since we've just done a full GC, concurrent
  1425       // marking is no longer active. Therefore we need not
  1426       // re-enable reference discovery for the CM ref processor.
  1427       // That will be done at the start of the next marking cycle.
  1428       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1429       ref_processor_cm()->verify_no_references_recorded();
  1431       reset_gc_time_stamp();
  1432       // Since everything potentially moved, we will clear all remembered
  1433       // sets, and clear all cards.  Later we will rebuild remembered
  1434       // sets. We will also reset the GC time stamps of the regions.
  1435       clear_rsets_post_compaction();
  1436       check_gc_time_stamps();
  1438       // Resize the heap if necessary.
  1439       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1441       if (_hr_printer.is_active()) {
  1442         // We should do this after we potentially resize the heap so
  1443         // that all the COMMIT / UNCOMMIT events are generated before
  1444         // the end GC event.
  1446         print_hrs_post_compaction();
  1447         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1450       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  1451       if (hot_card_cache->use_cache()) {
  1452         hot_card_cache->reset_card_counts();
  1453         hot_card_cache->reset_hot_cache();
  1456       // Rebuild remembered sets of all regions.
  1457       if (G1CollectedHeap::use_parallel_gc_threads()) {
  1458         uint n_workers =
  1459           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1460                                                   workers()->active_workers(),
  1461                                                   Threads::number_of_non_daemon_threads());
  1462         assert(UseDynamicNumberOfGCThreads ||
  1463                n_workers == workers()->total_workers(),
  1464                "If not dynamic should be using all the  workers");
  1465         workers()->set_active_workers(n_workers);
  1466         // Set parallel threads in the heap (_n_par_threads) only
  1467         // before a parallel phase and always reset it to 0 after
  1468         // the phase so that the number of parallel threads does
  1469         // no get carried forward to a serial phase where there
  1470         // may be code that is "possibly_parallel".
  1471         set_par_threads(n_workers);
  1473         ParRebuildRSTask rebuild_rs_task(this);
  1474         assert(check_heap_region_claim_values(
  1475                HeapRegion::InitialClaimValue), "sanity check");
  1476         assert(UseDynamicNumberOfGCThreads ||
  1477                workers()->active_workers() == workers()->total_workers(),
  1478                "Unless dynamic should use total workers");
  1479         // Use the most recent number of  active workers
  1480         assert(workers()->active_workers() > 0,
  1481                "Active workers not properly set");
  1482         set_par_threads(workers()->active_workers());
  1483         workers()->run_task(&rebuild_rs_task);
  1484         set_par_threads(0);
  1485         assert(check_heap_region_claim_values(
  1486                HeapRegion::RebuildRSClaimValue), "sanity check");
  1487         reset_heap_region_claim_values();
  1488       } else {
  1489         RebuildRSOutOfRegionClosure rebuild_rs(this);
  1490         heap_region_iterate(&rebuild_rs);
  1493       // Rebuild the strong code root lists for each region
  1494       rebuild_strong_code_roots();
  1496       if (true) { // FIXME
  1497         MetaspaceGC::compute_new_size();
  1500 #ifdef TRACESPINNING
  1501       ParallelTaskTerminator::print_termination_counts();
  1502 #endif
  1504       // Discard all rset updates
  1505       JavaThread::dirty_card_queue_set().abandon_logs();
  1506       assert(!G1DeferredRSUpdate
  1507              || (G1DeferredRSUpdate &&
  1508                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1510       _young_list->reset_sampled_info();
  1511       // At this point there should be no regions in the
  1512       // entire heap tagged as young.
  1513       assert(check_young_list_empty(true /* check_heap */),
  1514              "young list should be empty at this point");
  1516       // Update the number of full collections that have been completed.
  1517       increment_old_marking_cycles_completed(false /* concurrent */);
  1519       _hrs.verify_optional();
  1520       verify_region_sets_optional();
  1522       verify_after_gc();
  1524       // Start a new incremental collection set for the next pause
  1525       assert(g1_policy()->collection_set() == NULL, "must be");
  1526       g1_policy()->start_incremental_cset_building();
  1528       // Clear the _cset_fast_test bitmap in anticipation of adding
  1529       // regions to the incremental collection set for the next
  1530       // evacuation pause.
  1531       clear_cset_fast_test();
  1533       init_mutator_alloc_region();
  1535       double end = os::elapsedTime();
  1536       g1_policy()->record_full_collection_end();
  1538       if (G1Log::fine()) {
  1539         g1_policy()->print_heap_transition();
  1542       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  1543       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  1544       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  1545       // before any GC notifications are raised.
  1546       g1mm()->update_sizes();
  1548       gc_epilogue(true);
  1551     if (G1Log::finer()) {
  1552       g1_policy()->print_detailed_heap_transition(true /* full */);
  1555     print_heap_after_gc();
  1556     trace_heap_after_gc(gc_tracer);
  1558     post_full_gc_dump(gc_timer);
  1560     gc_timer->register_gc_end(os::elapsed_counter());
  1561     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
  1564   return true;
  1567 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1568   // do_collection() will return whether it succeeded in performing
  1569   // the GC. Currently, there is no facility on the
  1570   // do_full_collection() API to notify the caller than the collection
  1571   // did not succeed (e.g., because it was locked out by the GC
  1572   // locker). So, right now, we'll ignore the return value.
  1573   bool dummy = do_collection(true,                /* explicit_gc */
  1574                              clear_all_soft_refs,
  1575                              0                    /* word_size */);
  1578 // This code is mostly copied from TenuredGeneration.
  1579 void
  1580 G1CollectedHeap::
  1581 resize_if_necessary_after_full_collection(size_t word_size) {
  1582   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1584   // Include the current allocation, if any, and bytes that will be
  1585   // pre-allocated to support collections, as "used".
  1586   const size_t used_after_gc = used();
  1587   const size_t capacity_after_gc = capacity();
  1588   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1590   // This is enforced in arguments.cpp.
  1591   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1592          "otherwise the code below doesn't make sense");
  1594   // We don't have floating point command-line arguments
  1595   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1596   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1597   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1598   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1600   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1601   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1603   // We have to be careful here as these two calculations can overflow
  1604   // 32-bit size_t's.
  1605   double used_after_gc_d = (double) used_after_gc;
  1606   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1607   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1609   // Let's make sure that they are both under the max heap size, which
  1610   // by default will make them fit into a size_t.
  1611   double desired_capacity_upper_bound = (double) max_heap_size;
  1612   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1613                                     desired_capacity_upper_bound);
  1614   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1615                                     desired_capacity_upper_bound);
  1617   // We can now safely turn them into size_t's.
  1618   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1619   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1621   // This assert only makes sense here, before we adjust them
  1622   // with respect to the min and max heap size.
  1623   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1624          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1625                  "maximum_desired_capacity = "SIZE_FORMAT,
  1626                  minimum_desired_capacity, maximum_desired_capacity));
  1628   // Should not be greater than the heap max size. No need to adjust
  1629   // it with respect to the heap min size as it's a lower bound (i.e.,
  1630   // we'll try to make the capacity larger than it, not smaller).
  1631   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1632   // Should not be less than the heap min size. No need to adjust it
  1633   // with respect to the heap max size as it's an upper bound (i.e.,
  1634   // we'll try to make the capacity smaller than it, not greater).
  1635   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1637   if (capacity_after_gc < minimum_desired_capacity) {
  1638     // Don't expand unless it's significant
  1639     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1640     ergo_verbose4(ErgoHeapSizing,
  1641                   "attempt heap expansion",
  1642                   ergo_format_reason("capacity lower than "
  1643                                      "min desired capacity after Full GC")
  1644                   ergo_format_byte("capacity")
  1645                   ergo_format_byte("occupancy")
  1646                   ergo_format_byte_perc("min desired capacity"),
  1647                   capacity_after_gc, used_after_gc,
  1648                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1649     expand(expand_bytes);
  1651     // No expansion, now see if we want to shrink
  1652   } else if (capacity_after_gc > maximum_desired_capacity) {
  1653     // Capacity too large, compute shrinking size
  1654     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1655     ergo_verbose4(ErgoHeapSizing,
  1656                   "attempt heap shrinking",
  1657                   ergo_format_reason("capacity higher than "
  1658                                      "max desired capacity after Full GC")
  1659                   ergo_format_byte("capacity")
  1660                   ergo_format_byte("occupancy")
  1661                   ergo_format_byte_perc("max desired capacity"),
  1662                   capacity_after_gc, used_after_gc,
  1663                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1664     shrink(shrink_bytes);
  1669 HeapWord*
  1670 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1671                                            bool* succeeded) {
  1672   assert_at_safepoint(true /* should_be_vm_thread */);
  1674   *succeeded = true;
  1675   // Let's attempt the allocation first.
  1676   HeapWord* result =
  1677     attempt_allocation_at_safepoint(word_size,
  1678                                  false /* expect_null_mutator_alloc_region */);
  1679   if (result != NULL) {
  1680     assert(*succeeded, "sanity");
  1681     return result;
  1684   // In a G1 heap, we're supposed to keep allocation from failing by
  1685   // incremental pauses.  Therefore, at least for now, we'll favor
  1686   // expansion over collection.  (This might change in the future if we can
  1687   // do something smarter than full collection to satisfy a failed alloc.)
  1688   result = expand_and_allocate(word_size);
  1689   if (result != NULL) {
  1690     assert(*succeeded, "sanity");
  1691     return result;
  1694   // Expansion didn't work, we'll try to do a Full GC.
  1695   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1696                                     false, /* clear_all_soft_refs */
  1697                                     word_size);
  1698   if (!gc_succeeded) {
  1699     *succeeded = false;
  1700     return NULL;
  1703   // Retry the allocation
  1704   result = attempt_allocation_at_safepoint(word_size,
  1705                                   true /* expect_null_mutator_alloc_region */);
  1706   if (result != NULL) {
  1707     assert(*succeeded, "sanity");
  1708     return result;
  1711   // Then, try a Full GC that will collect all soft references.
  1712   gc_succeeded = do_collection(false, /* explicit_gc */
  1713                                true,  /* clear_all_soft_refs */
  1714                                word_size);
  1715   if (!gc_succeeded) {
  1716     *succeeded = false;
  1717     return NULL;
  1720   // Retry the allocation once more
  1721   result = attempt_allocation_at_safepoint(word_size,
  1722                                   true /* expect_null_mutator_alloc_region */);
  1723   if (result != NULL) {
  1724     assert(*succeeded, "sanity");
  1725     return result;
  1728   assert(!collector_policy()->should_clear_all_soft_refs(),
  1729          "Flag should have been handled and cleared prior to this point");
  1731   // What else?  We might try synchronous finalization later.  If the total
  1732   // space available is large enough for the allocation, then a more
  1733   // complete compaction phase than we've tried so far might be
  1734   // appropriate.
  1735   assert(*succeeded, "sanity");
  1736   return NULL;
  1739 // Attempting to expand the heap sufficiently
  1740 // to support an allocation of the given "word_size".  If
  1741 // successful, perform the allocation and return the address of the
  1742 // allocated block, or else "NULL".
  1744 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1745   assert_at_safepoint(true /* should_be_vm_thread */);
  1747   verify_region_sets_optional();
  1749   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1750   ergo_verbose1(ErgoHeapSizing,
  1751                 "attempt heap expansion",
  1752                 ergo_format_reason("allocation request failed")
  1753                 ergo_format_byte("allocation request"),
  1754                 word_size * HeapWordSize);
  1755   if (expand(expand_bytes)) {
  1756     _hrs.verify_optional();
  1757     verify_region_sets_optional();
  1758     return attempt_allocation_at_safepoint(word_size,
  1759                                  false /* expect_null_mutator_alloc_region */);
  1761   return NULL;
  1764 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
  1765                                              HeapWord* new_end) {
  1766   assert(old_end != new_end, "don't call this otherwise");
  1767   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
  1769   // Update the committed mem region.
  1770   _g1_committed.set_end(new_end);
  1771   // Tell the card table about the update.
  1772   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1773   // Tell the BOT about the update.
  1774   _bot_shared->resize(_g1_committed.word_size());
  1775   // Tell the hot card cache about the update
  1776   _cg1r->hot_card_cache()->resize_card_counts(capacity());
  1779 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1780   size_t old_mem_size = _g1_storage.committed_size();
  1781   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1782   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1783                                        HeapRegion::GrainBytes);
  1784   ergo_verbose2(ErgoHeapSizing,
  1785                 "expand the heap",
  1786                 ergo_format_byte("requested expansion amount")
  1787                 ergo_format_byte("attempted expansion amount"),
  1788                 expand_bytes, aligned_expand_bytes);
  1790   // First commit the memory.
  1791   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1792   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  1793   if (successful) {
  1794     // Then propagate this update to the necessary data structures.
  1795     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1796     update_committed_space(old_end, new_end);
  1798     FreeRegionList expansion_list("Local Expansion List");
  1799     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
  1800     assert(mr.start() == old_end, "post-condition");
  1801     // mr might be a smaller region than what was requested if
  1802     // expand_by() was unable to allocate the HeapRegion instances
  1803     assert(mr.end() <= new_end, "post-condition");
  1805     size_t actual_expand_bytes = mr.byte_size();
  1806     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1807     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
  1808            "post-condition");
  1809     if (actual_expand_bytes < aligned_expand_bytes) {
  1810       // We could not expand _hrs to the desired size. In this case we
  1811       // need to shrink the committed space accordingly.
  1812       assert(mr.end() < new_end, "invariant");
  1814       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
  1815       // First uncommit the memory.
  1816       _g1_storage.shrink_by(diff_bytes);
  1817       // Then propagate this update to the necessary data structures.
  1818       update_committed_space(new_end, mr.end());
  1820     _free_list.add_as_tail(&expansion_list);
  1822     if (_hr_printer.is_active()) {
  1823       HeapWord* curr = mr.start();
  1824       while (curr < mr.end()) {
  1825         HeapWord* curr_end = curr + HeapRegion::GrainWords;
  1826         _hr_printer.commit(curr, curr_end);
  1827         curr = curr_end;
  1829       assert(curr == mr.end(), "post-condition");
  1831     g1_policy()->record_new_heap_size(n_regions());
  1832   } else {
  1833     ergo_verbose0(ErgoHeapSizing,
  1834                   "did not expand the heap",
  1835                   ergo_format_reason("heap expansion operation failed"));
  1836     // The expansion of the virtual storage space was unsuccessful.
  1837     // Let's see if it was because we ran out of swap.
  1838     if (G1ExitOnExpansionFailure &&
  1839         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
  1840       // We had head room...
  1841       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
  1844   return successful;
  1847 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1848   size_t old_mem_size = _g1_storage.committed_size();
  1849   size_t aligned_shrink_bytes =
  1850     ReservedSpace::page_align_size_down(shrink_bytes);
  1851   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1852                                          HeapRegion::GrainBytes);
  1853   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
  1855   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
  1856   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1857   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
  1859   ergo_verbose3(ErgoHeapSizing,
  1860                 "shrink the heap",
  1861                 ergo_format_byte("requested shrinking amount")
  1862                 ergo_format_byte("aligned shrinking amount")
  1863                 ergo_format_byte("attempted shrinking amount"),
  1864                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  1865   if (num_regions_removed > 0) {
  1866     _g1_storage.shrink_by(shrunk_bytes);
  1867     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1869     if (_hr_printer.is_active()) {
  1870       HeapWord* curr = old_end;
  1871       while (curr > new_end) {
  1872         HeapWord* curr_end = curr;
  1873         curr -= HeapRegion::GrainWords;
  1874         _hr_printer.uncommit(curr, curr_end);
  1878     _expansion_regions += num_regions_removed;
  1879     update_committed_space(old_end, new_end);
  1880     HeapRegionRemSet::shrink_heap(n_regions());
  1881     g1_policy()->record_new_heap_size(n_regions());
  1882   } else {
  1883     ergo_verbose0(ErgoHeapSizing,
  1884                   "did not shrink the heap",
  1885                   ergo_format_reason("heap shrinking operation failed"));
  1889 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1890   verify_region_sets_optional();
  1892   // We should only reach here at the end of a Full GC which means we
  1893   // should not not be holding to any GC alloc regions. The method
  1894   // below will make sure of that and do any remaining clean up.
  1895   abandon_gc_alloc_regions();
  1897   // Instead of tearing down / rebuilding the free lists here, we
  1898   // could instead use the remove_all_pending() method on free_list to
  1899   // remove only the ones that we need to remove.
  1900   tear_down_region_sets(true /* free_list_only */);
  1901   shrink_helper(shrink_bytes);
  1902   rebuild_region_sets(true /* free_list_only */);
  1904   _hrs.verify_optional();
  1905   verify_region_sets_optional();
  1908 // Public methods.
  1910 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1911 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1912 #endif // _MSC_VER
  1915 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1916   SharedHeap(policy_),
  1917   _g1_policy(policy_),
  1918   _dirty_card_queue_set(false),
  1919   _into_cset_dirty_card_queue_set(false),
  1920   _is_alive_closure_cm(this),
  1921   _is_alive_closure_stw(this),
  1922   _ref_processor_cm(NULL),
  1923   _ref_processor_stw(NULL),
  1924   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1925   _bot_shared(NULL),
  1926   _evac_failure_scan_stack(NULL),
  1927   _mark_in_progress(false),
  1928   _cg1r(NULL), _summary_bytes_used(0),
  1929   _g1mm(NULL),
  1930   _refine_cte_cl(NULL),
  1931   _full_collection(false),
  1932   _free_list("Master Free List"),
  1933   _secondary_free_list("Secondary Free List"),
  1934   _old_set("Old Set"),
  1935   _humongous_set("Master Humongous Set"),
  1936   _free_regions_coming(false),
  1937   _young_list(new YoungList(this)),
  1938   _gc_time_stamp(0),
  1939   _retained_old_gc_alloc_region(NULL),
  1940   _survivor_plab_stats(YoungPLABSize, PLABWeight),
  1941   _old_plab_stats(OldPLABSize, PLABWeight),
  1942   _expand_heap_after_alloc_failure(true),
  1943   _surviving_young_words(NULL),
  1944   _old_marking_cycles_started(0),
  1945   _old_marking_cycles_completed(0),
  1946   _concurrent_cycle_started(false),
  1947   _in_cset_fast_test(NULL),
  1948   _in_cset_fast_test_base(NULL),
  1949   _dirty_cards_region_list(NULL),
  1950   _worker_cset_start_region(NULL),
  1951   _worker_cset_start_region_time_stamp(NULL),
  1952   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  1953   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  1954   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  1955   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
  1957   _g1h = this;
  1958   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1959     vm_exit_during_initialization("Failed necessary allocation.");
  1962   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1964   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1965   _task_queues = new RefToScanQueueSet(n_queues);
  1967   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1968   assert(n_rem_sets > 0, "Invariant.");
  1970   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  1971   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
  1972   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
  1974   for (int i = 0; i < n_queues; i++) {
  1975     RefToScanQueue* q = new RefToScanQueue();
  1976     q->initialize();
  1977     _task_queues->register_queue(i, q);
  1978     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
  1980   clear_cset_start_regions();
  1982   // Initialize the G1EvacuationFailureALot counters and flags.
  1983   NOT_PRODUCT(reset_evacuation_should_fail();)
  1985   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1988 jint G1CollectedHeap::initialize() {
  1989   CollectedHeap::pre_initialize();
  1990   os::enable_vtime();
  1992   G1Log::init();
  1994   // Necessary to satisfy locking discipline assertions.
  1996   MutexLocker x(Heap_lock);
  1998   // We have to initialize the printer before committing the heap, as
  1999   // it will be used then.
  2000   _hr_printer.set_active(G1PrintHeapRegions);
  2002   // While there are no constraints in the GC code that HeapWordSize
  2003   // be any particular value, there are multiple other areas in the
  2004   // system which believe this to be true (e.g. oop->object_size in some
  2005   // cases incorrectly returns the size in wordSize units rather than
  2006   // HeapWordSize).
  2007   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  2009   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  2010   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  2012   // Ensure that the sizes are properly aligned.
  2013   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  2014   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  2016   _cg1r = new ConcurrentG1Refine(this);
  2018   // Reserve the maximum.
  2020   // When compressed oops are enabled, the preferred heap base
  2021   // is calculated by subtracting the requested size from the
  2022   // 32Gb boundary and using the result as the base address for
  2023   // heap reservation. If the requested size is not aligned to
  2024   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  2025   // into the ReservedHeapSpace constructor) then the actual
  2026   // base of the reserved heap may end up differing from the
  2027   // address that was requested (i.e. the preferred heap base).
  2028   // If this happens then we could end up using a non-optimal
  2029   // compressed oops mode.
  2031   // Since max_byte_size is aligned to the size of a heap region (checked
  2032   // above).
  2033   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  2035   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
  2036                                                  HeapRegion::GrainBytes);
  2038   // It is important to do this in a way such that concurrent readers can't
  2039   // temporarily think something is in the heap.  (I've actually seen this
  2040   // happen in asserts: DLD.)
  2041   _reserved.set_word_size(0);
  2042   _reserved.set_start((HeapWord*)heap_rs.base());
  2043   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  2045   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
  2047   // Create the gen rem set (and barrier set) for the entire reserved region.
  2048   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  2049   set_barrier_set(rem_set()->bs());
  2050   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  2051     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  2052   } else {
  2053     vm_exit_during_initialization("G1 requires a mod ref bs.");
  2054     return JNI_ENOMEM;
  2057   // Also create a G1 rem set.
  2058   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  2059     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
  2060   } else {
  2061     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  2062     return JNI_ENOMEM;
  2065   // Carve out the G1 part of the heap.
  2067   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  2068   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  2069                            g1_rs.size()/HeapWordSize);
  2071   _g1_storage.initialize(g1_rs, 0);
  2072   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  2073   _hrs.initialize((HeapWord*) _g1_reserved.start(),
  2074                   (HeapWord*) _g1_reserved.end(),
  2075                   _expansion_regions);
  2077   // Do later initialization work for concurrent refinement.
  2078   _cg1r->init();
  2080   // 6843694 - ensure that the maximum region index can fit
  2081   // in the remembered set structures.
  2082   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2083   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2085   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2086   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2087   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  2088             "too many cards per region");
  2090   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
  2092   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  2093                                              heap_word_size(init_byte_size));
  2095   _g1h = this;
  2097   _in_cset_fast_test_length = max_regions();
  2098   _in_cset_fast_test_base =
  2099                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
  2101   // We're biasing _in_cset_fast_test to avoid subtracting the
  2102   // beginning of the heap every time we want to index; basically
  2103   // it's the same with what we do with the card table.
  2104   _in_cset_fast_test = _in_cset_fast_test_base -
  2105                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2107   // Clear the _cset_fast_test bitmap in anticipation of adding
  2108   // regions to the incremental collection set for the first
  2109   // evacuation pause.
  2110   clear_cset_fast_test();
  2112   // Create the ConcurrentMark data structure and thread.
  2113   // (Must do this late, so that "max_regions" is defined.)
  2114   _cm = new ConcurrentMark(this, heap_rs);
  2115   if (_cm == NULL || !_cm->completed_initialization()) {
  2116     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
  2117     return JNI_ENOMEM;
  2119   _cmThread = _cm->cmThread();
  2121   // Initialize the from_card cache structure of HeapRegionRemSet.
  2122   HeapRegionRemSet::init_heap(max_regions());
  2124   // Now expand into the initial heap size.
  2125   if (!expand(init_byte_size)) {
  2126     vm_shutdown_during_initialization("Failed to allocate initial heap.");
  2127     return JNI_ENOMEM;
  2130   // Perform any initialization actions delegated to the policy.
  2131   g1_policy()->init();
  2133   _refine_cte_cl =
  2134     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  2135                                     g1_rem_set(),
  2136                                     concurrent_g1_refine());
  2137   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  2139   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2140                                                SATB_Q_FL_lock,
  2141                                                G1SATBProcessCompletedThreshold,
  2142                                                Shared_SATB_Q_lock);
  2144   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2145                                                 DirtyCardQ_FL_lock,
  2146                                                 concurrent_g1_refine()->yellow_zone(),
  2147                                                 concurrent_g1_refine()->red_zone(),
  2148                                                 Shared_DirtyCardQ_lock);
  2150   if (G1DeferredRSUpdate) {
  2151     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2152                                       DirtyCardQ_FL_lock,
  2153                                       -1, // never trigger processing
  2154                                       -1, // no limit on length
  2155                                       Shared_DirtyCardQ_lock,
  2156                                       &JavaThread::dirty_card_queue_set());
  2159   // Initialize the card queue set used to hold cards containing
  2160   // references into the collection set.
  2161   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
  2162                                              DirtyCardQ_FL_lock,
  2163                                              -1, // never trigger processing
  2164                                              -1, // no limit on length
  2165                                              Shared_DirtyCardQ_lock,
  2166                                              &JavaThread::dirty_card_queue_set());
  2168   // In case we're keeping closure specialization stats, initialize those
  2169   // counts and that mechanism.
  2170   SpecializationStats::clear();
  2172   // Here we allocate the dummy full region that is required by the
  2173   // G1AllocRegion class. If we don't pass an address in the reserved
  2174   // space here, lots of asserts fire.
  2176   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
  2177                                              _g1_reserved.start());
  2178   // We'll re-use the same region whether the alloc region will
  2179   // require BOT updates or not and, if it doesn't, then a non-young
  2180   // region will complain that it cannot support allocations without
  2181   // BOT updates. So we'll tag the dummy region as young to avoid that.
  2182   dummy_region->set_young();
  2183   // Make sure it's full.
  2184   dummy_region->set_top(dummy_region->end());
  2185   G1AllocRegion::setup(this, dummy_region);
  2187   init_mutator_alloc_region();
  2189   // Do create of the monitoring and management support so that
  2190   // values in the heap have been properly initialized.
  2191   _g1mm = new G1MonitoringSupport(this);
  2193   return JNI_OK;
  2196 void G1CollectedHeap::ref_processing_init() {
  2197   // Reference processing in G1 currently works as follows:
  2198   //
  2199   // * There are two reference processor instances. One is
  2200   //   used to record and process discovered references
  2201   //   during concurrent marking; the other is used to
  2202   //   record and process references during STW pauses
  2203   //   (both full and incremental).
  2204   // * Both ref processors need to 'span' the entire heap as
  2205   //   the regions in the collection set may be dotted around.
  2206   //
  2207   // * For the concurrent marking ref processor:
  2208   //   * Reference discovery is enabled at initial marking.
  2209   //   * Reference discovery is disabled and the discovered
  2210   //     references processed etc during remarking.
  2211   //   * Reference discovery is MT (see below).
  2212   //   * Reference discovery requires a barrier (see below).
  2213   //   * Reference processing may or may not be MT
  2214   //     (depending on the value of ParallelRefProcEnabled
  2215   //     and ParallelGCThreads).
  2216   //   * A full GC disables reference discovery by the CM
  2217   //     ref processor and abandons any entries on it's
  2218   //     discovered lists.
  2219   //
  2220   // * For the STW processor:
  2221   //   * Non MT discovery is enabled at the start of a full GC.
  2222   //   * Processing and enqueueing during a full GC is non-MT.
  2223   //   * During a full GC, references are processed after marking.
  2224   //
  2225   //   * Discovery (may or may not be MT) is enabled at the start
  2226   //     of an incremental evacuation pause.
  2227   //   * References are processed near the end of a STW evacuation pause.
  2228   //   * For both types of GC:
  2229   //     * Discovery is atomic - i.e. not concurrent.
  2230   //     * Reference discovery will not need a barrier.
  2232   SharedHeap::ref_processing_init();
  2233   MemRegion mr = reserved_region();
  2235   // Concurrent Mark ref processor
  2236   _ref_processor_cm =
  2237     new ReferenceProcessor(mr,    // span
  2238                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2239                                 // mt processing
  2240                            (int) ParallelGCThreads,
  2241                                 // degree of mt processing
  2242                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2243                                 // mt discovery
  2244                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2245                                 // degree of mt discovery
  2246                            false,
  2247                                 // Reference discovery is not atomic
  2248                            &_is_alive_closure_cm,
  2249                                 // is alive closure
  2250                                 // (for efficiency/performance)
  2251                            true);
  2252                                 // Setting next fields of discovered
  2253                                 // lists requires a barrier.
  2255   // STW ref processor
  2256   _ref_processor_stw =
  2257     new ReferenceProcessor(mr,    // span
  2258                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2259                                 // mt processing
  2260                            MAX2((int)ParallelGCThreads, 1),
  2261                                 // degree of mt processing
  2262                            (ParallelGCThreads > 1),
  2263                                 // mt discovery
  2264                            MAX2((int)ParallelGCThreads, 1),
  2265                                 // degree of mt discovery
  2266                            true,
  2267                                 // Reference discovery is atomic
  2268                            &_is_alive_closure_stw,
  2269                                 // is alive closure
  2270                                 // (for efficiency/performance)
  2271                            false);
  2272                                 // Setting next fields of discovered
  2273                                 // lists requires a barrier.
  2276 size_t G1CollectedHeap::capacity() const {
  2277   return _g1_committed.byte_size();
  2280 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  2281   assert(!hr->continuesHumongous(), "pre-condition");
  2282   hr->reset_gc_time_stamp();
  2283   if (hr->startsHumongous()) {
  2284     uint first_index = hr->hrs_index() + 1;
  2285     uint last_index = hr->last_hc_index();
  2286     for (uint i = first_index; i < last_index; i += 1) {
  2287       HeapRegion* chr = region_at(i);
  2288       assert(chr->continuesHumongous(), "sanity");
  2289       chr->reset_gc_time_stamp();
  2294 #ifndef PRODUCT
  2295 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
  2296 private:
  2297   unsigned _gc_time_stamp;
  2298   bool _failures;
  2300 public:
  2301   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
  2302     _gc_time_stamp(gc_time_stamp), _failures(false) { }
  2304   virtual bool doHeapRegion(HeapRegion* hr) {
  2305     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
  2306     if (_gc_time_stamp != region_gc_time_stamp) {
  2307       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
  2308                              "expected %d", HR_FORMAT_PARAMS(hr),
  2309                              region_gc_time_stamp, _gc_time_stamp);
  2310       _failures = true;
  2312     return false;
  2315   bool failures() { return _failures; }
  2316 };
  2318 void G1CollectedHeap::check_gc_time_stamps() {
  2319   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  2320   heap_region_iterate(&cl);
  2321   guarantee(!cl.failures(), "all GC time stamps should have been reset");
  2323 #endif // PRODUCT
  2325 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2326                                                  DirtyCardQueue* into_cset_dcq,
  2327                                                  bool concurrent,
  2328                                                  int worker_i) {
  2329   // Clean cards in the hot card cache
  2330   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  2331   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
  2333   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2334   int n_completed_buffers = 0;
  2335   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2336     n_completed_buffers++;
  2338   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
  2339   dcqs.clear_n_completed_buffers();
  2340   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2344 // Computes the sum of the storage used by the various regions.
  2346 size_t G1CollectedHeap::used() const {
  2347   assert(Heap_lock->owner() != NULL,
  2348          "Should be owned on this thread's behalf.");
  2349   size_t result = _summary_bytes_used;
  2350   // Read only once in case it is set to NULL concurrently
  2351   HeapRegion* hr = _mutator_alloc_region.get();
  2352   if (hr != NULL)
  2353     result += hr->used();
  2354   return result;
  2357 size_t G1CollectedHeap::used_unlocked() const {
  2358   size_t result = _summary_bytes_used;
  2359   return result;
  2362 class SumUsedClosure: public HeapRegionClosure {
  2363   size_t _used;
  2364 public:
  2365   SumUsedClosure() : _used(0) {}
  2366   bool doHeapRegion(HeapRegion* r) {
  2367     if (!r->continuesHumongous()) {
  2368       _used += r->used();
  2370     return false;
  2372   size_t result() { return _used; }
  2373 };
  2375 size_t G1CollectedHeap::recalculate_used() const {
  2376   SumUsedClosure blk;
  2377   heap_region_iterate(&blk);
  2378   return blk.result();
  2381 size_t G1CollectedHeap::unsafe_max_alloc() {
  2382   if (free_regions() > 0) return HeapRegion::GrainBytes;
  2383   // otherwise, is there space in the current allocation region?
  2385   // We need to store the current allocation region in a local variable
  2386   // here. The problem is that this method doesn't take any locks and
  2387   // there may be other threads which overwrite the current allocation
  2388   // region field. attempt_allocation(), for example, sets it to NULL
  2389   // and this can happen *after* the NULL check here but before the call
  2390   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  2391   // to be a problem in the optimized build, since the two loads of the
  2392   // current allocation region field are optimized away.
  2393   HeapRegion* hr = _mutator_alloc_region.get();
  2394   if (hr == NULL) {
  2395     return 0;
  2397   return hr->free();
  2400 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2401   switch (cause) {
  2402     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
  2403     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
  2404     case GCCause::_g1_humongous_allocation: return true;
  2405     default:                                return false;
  2409 #ifndef PRODUCT
  2410 void G1CollectedHeap::allocate_dummy_regions() {
  2411   // Let's fill up most of the region
  2412   size_t word_size = HeapRegion::GrainWords - 1024;
  2413   // And as a result the region we'll allocate will be humongous.
  2414   guarantee(isHumongous(word_size), "sanity");
  2416   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2417     // Let's use the existing mechanism for the allocation
  2418     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
  2419     if (dummy_obj != NULL) {
  2420       MemRegion mr(dummy_obj, word_size);
  2421       CollectedHeap::fill_with_object(mr);
  2422     } else {
  2423       // If we can't allocate once, we probably cannot allocate
  2424       // again. Let's get out of the loop.
  2425       break;
  2429 #endif // !PRODUCT
  2431 void G1CollectedHeap::increment_old_marking_cycles_started() {
  2432   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
  2433     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
  2434     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
  2435     _old_marking_cycles_started, _old_marking_cycles_completed));
  2437   _old_marking_cycles_started++;
  2440 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
  2441   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2443   // We assume that if concurrent == true, then the caller is a
  2444   // concurrent thread that was joined the Suspendible Thread
  2445   // Set. If there's ever a cheap way to check this, we should add an
  2446   // assert here.
  2448   // Given that this method is called at the end of a Full GC or of a
  2449   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2450   // interrupt a concurrent cycle), the number of full collections
  2451   // completed should be either one (in the case where there was no
  2452   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2453   // behind the number of full collections started.
  2455   // This is the case for the inner caller, i.e. a Full GC.
  2456   assert(concurrent ||
  2457          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
  2458          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
  2459          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
  2460                  "is inconsistent with _old_marking_cycles_completed = %u",
  2461                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2463   // This is the case for the outer caller, i.e. the concurrent cycle.
  2464   assert(!concurrent ||
  2465          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
  2466          err_msg("for outer caller (concurrent cycle): "
  2467                  "_old_marking_cycles_started = %u "
  2468                  "is inconsistent with _old_marking_cycles_completed = %u",
  2469                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2471   _old_marking_cycles_completed += 1;
  2473   // We need to clear the "in_progress" flag in the CM thread before
  2474   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2475   // is set) so that if a waiter requests another System.gc() it doesn't
  2476   // incorrectly see that a marking cycle is still in progress.
  2477   if (concurrent) {
  2478     _cmThread->clear_in_progress();
  2481   // This notify_all() will ensure that a thread that called
  2482   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2483   // and it's waiting for a full GC to finish will be woken up. It is
  2484   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2485   FullGCCount_lock->notify_all();
  2488 void G1CollectedHeap::register_concurrent_cycle_start(jlong start_time) {
  2489   _concurrent_cycle_started = true;
  2490   _gc_timer_cm->register_gc_start(start_time);
  2492   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  2493   trace_heap_before_gc(_gc_tracer_cm);
  2496 void G1CollectedHeap::register_concurrent_cycle_end() {
  2497   if (_concurrent_cycle_started) {
  2498     _gc_timer_cm->register_gc_end(os::elapsed_counter());
  2500     if (_cm->has_aborted()) {
  2501       _gc_tracer_cm->report_concurrent_mode_failure();
  2503     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
  2505     _concurrent_cycle_started = false;
  2509 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  2510   if (_concurrent_cycle_started) {
  2511     trace_heap_after_gc(_gc_tracer_cm);
  2515 G1YCType G1CollectedHeap::yc_type() {
  2516   bool is_young = g1_policy()->gcs_are_young();
  2517   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
  2518   bool is_during_mark = mark_in_progress();
  2520   if (is_initial_mark) {
  2521     return InitialMark;
  2522   } else if (is_during_mark) {
  2523     return DuringMark;
  2524   } else if (is_young) {
  2525     return Normal;
  2526   } else {
  2527     return Mixed;
  2531 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2532   assert_heap_not_locked();
  2534   unsigned int gc_count_before;
  2535   unsigned int old_marking_count_before;
  2536   bool retry_gc;
  2538   do {
  2539     retry_gc = false;
  2542       MutexLocker ml(Heap_lock);
  2544       // Read the GC count while holding the Heap_lock
  2545       gc_count_before = total_collections();
  2546       old_marking_count_before = _old_marking_cycles_started;
  2549     if (should_do_concurrent_full_gc(cause)) {
  2550       // Schedule an initial-mark evacuation pause that will start a
  2551       // concurrent cycle. We're setting word_size to 0 which means that
  2552       // we are not requesting a post-GC allocation.
  2553       VM_G1IncCollectionPause op(gc_count_before,
  2554                                  0,     /* word_size */
  2555                                  true,  /* should_initiate_conc_mark */
  2556                                  g1_policy()->max_pause_time_ms(),
  2557                                  cause);
  2559       VMThread::execute(&op);
  2560       if (!op.pause_succeeded()) {
  2561         if (old_marking_count_before == _old_marking_cycles_started) {
  2562           retry_gc = op.should_retry_gc();
  2563         } else {
  2564           // A Full GC happened while we were trying to schedule the
  2565           // initial-mark GC. No point in starting a new cycle given
  2566           // that the whole heap was collected anyway.
  2569         if (retry_gc) {
  2570           if (GC_locker::is_active_and_needs_gc()) {
  2571             GC_locker::stall_until_clear();
  2575     } else {
  2576       if (cause == GCCause::_gc_locker
  2577           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2579         // Schedule a standard evacuation pause. We're setting word_size
  2580         // to 0 which means that we are not requesting a post-GC allocation.
  2581         VM_G1IncCollectionPause op(gc_count_before,
  2582                                    0,     /* word_size */
  2583                                    false, /* should_initiate_conc_mark */
  2584                                    g1_policy()->max_pause_time_ms(),
  2585                                    cause);
  2586         VMThread::execute(&op);
  2587       } else {
  2588         // Schedule a Full GC.
  2589         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
  2590         VMThread::execute(&op);
  2593   } while (retry_gc);
  2596 bool G1CollectedHeap::is_in(const void* p) const {
  2597   if (_g1_committed.contains(p)) {
  2598     // Given that we know that p is in the committed space,
  2599     // heap_region_containing_raw() should successfully
  2600     // return the containing region.
  2601     HeapRegion* hr = heap_region_containing_raw(p);
  2602     return hr->is_in(p);
  2603   } else {
  2604     return false;
  2608 // Iteration functions.
  2610 // Iterates an OopClosure over all ref-containing fields of objects
  2611 // within a HeapRegion.
  2613 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2614   MemRegion _mr;
  2615   ExtendedOopClosure* _cl;
  2616 public:
  2617   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
  2618     : _mr(mr), _cl(cl) {}
  2619   bool doHeapRegion(HeapRegion* r) {
  2620     if (!r->continuesHumongous()) {
  2621       r->oop_iterate(_cl);
  2623     return false;
  2625 };
  2627 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
  2628   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  2629   heap_region_iterate(&blk);
  2632 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
  2633   IterateOopClosureRegionClosure blk(mr, cl);
  2634   heap_region_iterate(&blk);
  2637 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2639 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2640   ObjectClosure* _cl;
  2641 public:
  2642   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2643   bool doHeapRegion(HeapRegion* r) {
  2644     if (! r->continuesHumongous()) {
  2645       r->object_iterate(_cl);
  2647     return false;
  2649 };
  2651 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
  2652   IterateObjectClosureRegionClosure blk(cl);
  2653   heap_region_iterate(&blk);
  2656 // Calls a SpaceClosure on a HeapRegion.
  2658 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2659   SpaceClosure* _cl;
  2660 public:
  2661   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2662   bool doHeapRegion(HeapRegion* r) {
  2663     _cl->do_space(r);
  2664     return false;
  2666 };
  2668 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2669   SpaceClosureRegionClosure blk(cl);
  2670   heap_region_iterate(&blk);
  2673 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2674   _hrs.iterate(cl);
  2677 void
  2678 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2679                                                  uint worker_id,
  2680                                                  uint no_of_par_workers,
  2681                                                  jint claim_value) {
  2682   const uint regions = n_regions();
  2683   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  2684                              no_of_par_workers :
  2685                              1);
  2686   assert(UseDynamicNumberOfGCThreads ||
  2687          no_of_par_workers == workers()->total_workers(),
  2688          "Non dynamic should use fixed number of workers");
  2689   // try to spread out the starting points of the workers
  2690   const HeapRegion* start_hr =
  2691                         start_region_for_worker(worker_id, no_of_par_workers);
  2692   const uint start_index = start_hr->hrs_index();
  2694   // each worker will actually look at all regions
  2695   for (uint count = 0; count < regions; ++count) {
  2696     const uint index = (start_index + count) % regions;
  2697     assert(0 <= index && index < regions, "sanity");
  2698     HeapRegion* r = region_at(index);
  2699     // we'll ignore "continues humongous" regions (we'll process them
  2700     // when we come across their corresponding "start humongous"
  2701     // region) and regions already claimed
  2702     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  2703       continue;
  2705     // OK, try to claim it
  2706     if (r->claimHeapRegion(claim_value)) {
  2707       // success!
  2708       assert(!r->continuesHumongous(), "sanity");
  2709       if (r->startsHumongous()) {
  2710         // If the region is "starts humongous" we'll iterate over its
  2711         // "continues humongous" first; in fact we'll do them
  2712         // first. The order is important. In on case, calling the
  2713         // closure on the "starts humongous" region might de-allocate
  2714         // and clear all its "continues humongous" regions and, as a
  2715         // result, we might end up processing them twice. So, we'll do
  2716         // them first (notice: most closures will ignore them anyway) and
  2717         // then we'll do the "starts humongous" region.
  2718         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
  2719           HeapRegion* chr = region_at(ch_index);
  2721           // if the region has already been claimed or it's not
  2722           // "continues humongous" we're done
  2723           if (chr->claim_value() == claim_value ||
  2724               !chr->continuesHumongous()) {
  2725             break;
  2728           // No one should have claimed it directly. We can given
  2729           // that we claimed its "starts humongous" region.
  2730           assert(chr->claim_value() != claim_value, "sanity");
  2731           assert(chr->humongous_start_region() == r, "sanity");
  2733           if (chr->claimHeapRegion(claim_value)) {
  2734             // we should always be able to claim it; no one else should
  2735             // be trying to claim this region
  2737             bool res2 = cl->doHeapRegion(chr);
  2738             assert(!res2, "Should not abort");
  2740             // Right now, this holds (i.e., no closure that actually
  2741             // does something with "continues humongous" regions
  2742             // clears them). We might have to weaken it in the future,
  2743             // but let's leave these two asserts here for extra safety.
  2744             assert(chr->continuesHumongous(), "should still be the case");
  2745             assert(chr->humongous_start_region() == r, "sanity");
  2746           } else {
  2747             guarantee(false, "we should not reach here");
  2752       assert(!r->continuesHumongous(), "sanity");
  2753       bool res = cl->doHeapRegion(r);
  2754       assert(!res, "Should not abort");
  2759 class ResetClaimValuesClosure: public HeapRegionClosure {
  2760 public:
  2761   bool doHeapRegion(HeapRegion* r) {
  2762     r->set_claim_value(HeapRegion::InitialClaimValue);
  2763     return false;
  2765 };
  2767 void G1CollectedHeap::reset_heap_region_claim_values() {
  2768   ResetClaimValuesClosure blk;
  2769   heap_region_iterate(&blk);
  2772 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2773   ResetClaimValuesClosure blk;
  2774   collection_set_iterate(&blk);
  2777 #ifdef ASSERT
  2778 // This checks whether all regions in the heap have the correct claim
  2779 // value. I also piggy-backed on this a check to ensure that the
  2780 // humongous_start_region() information on "continues humongous"
  2781 // regions is correct.
  2783 class CheckClaimValuesClosure : public HeapRegionClosure {
  2784 private:
  2785   jint _claim_value;
  2786   uint _failures;
  2787   HeapRegion* _sh_region;
  2789 public:
  2790   CheckClaimValuesClosure(jint claim_value) :
  2791     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2792   bool doHeapRegion(HeapRegion* r) {
  2793     if (r->claim_value() != _claim_value) {
  2794       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2795                              "claim value = %d, should be %d",
  2796                              HR_FORMAT_PARAMS(r),
  2797                              r->claim_value(), _claim_value);
  2798       ++_failures;
  2800     if (!r->isHumongous()) {
  2801       _sh_region = NULL;
  2802     } else if (r->startsHumongous()) {
  2803       _sh_region = r;
  2804     } else if (r->continuesHumongous()) {
  2805       if (r->humongous_start_region() != _sh_region) {
  2806         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2807                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2808                                HR_FORMAT_PARAMS(r),
  2809                                r->humongous_start_region(),
  2810                                _sh_region);
  2811         ++_failures;
  2814     return false;
  2816   uint failures() { return _failures; }
  2817 };
  2819 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2820   CheckClaimValuesClosure cl(claim_value);
  2821   heap_region_iterate(&cl);
  2822   return cl.failures() == 0;
  2825 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2826 private:
  2827   jint _claim_value;
  2828   uint _failures;
  2830 public:
  2831   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2832     _claim_value(claim_value), _failures(0) { }
  2834   uint failures() { return _failures; }
  2836   bool doHeapRegion(HeapRegion* hr) {
  2837     assert(hr->in_collection_set(), "how?");
  2838     assert(!hr->isHumongous(), "H-region in CSet");
  2839     if (hr->claim_value() != _claim_value) {
  2840       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2841                              "claim value = %d, should be %d",
  2842                              HR_FORMAT_PARAMS(hr),
  2843                              hr->claim_value(), _claim_value);
  2844       _failures += 1;
  2846     return false;
  2848 };
  2850 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2851   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2852   collection_set_iterate(&cl);
  2853   return cl.failures() == 0;
  2855 #endif // ASSERT
  2857 // Clear the cached CSet starting regions and (more importantly)
  2858 // the time stamps. Called when we reset the GC time stamp.
  2859 void G1CollectedHeap::clear_cset_start_regions() {
  2860   assert(_worker_cset_start_region != NULL, "sanity");
  2861   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2863   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2864   for (int i = 0; i < n_queues; i++) {
  2865     _worker_cset_start_region[i] = NULL;
  2866     _worker_cset_start_region_time_stamp[i] = 0;
  2870 // Given the id of a worker, obtain or calculate a suitable
  2871 // starting region for iterating over the current collection set.
  2872 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
  2873   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2875   HeapRegion* result = NULL;
  2876   unsigned gc_time_stamp = get_gc_time_stamp();
  2878   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2879     // Cached starting region for current worker was set
  2880     // during the current pause - so it's valid.
  2881     // Note: the cached starting heap region may be NULL
  2882     // (when the collection set is empty).
  2883     result = _worker_cset_start_region[worker_i];
  2884     assert(result == NULL || result->in_collection_set(), "sanity");
  2885     return result;
  2888   // The cached entry was not valid so let's calculate
  2889   // a suitable starting heap region for this worker.
  2891   // We want the parallel threads to start their collection
  2892   // set iteration at different collection set regions to
  2893   // avoid contention.
  2894   // If we have:
  2895   //          n collection set regions
  2896   //          p threads
  2897   // Then thread t will start at region floor ((t * n) / p)
  2899   result = g1_policy()->collection_set();
  2900   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2901     uint cs_size = g1_policy()->cset_region_length();
  2902     uint active_workers = workers()->active_workers();
  2903     assert(UseDynamicNumberOfGCThreads ||
  2904              active_workers == workers()->total_workers(),
  2905              "Unless dynamic should use total workers");
  2907     uint end_ind   = (cs_size * worker_i) / active_workers;
  2908     uint start_ind = 0;
  2910     if (worker_i > 0 &&
  2911         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2912       // Previous workers starting region is valid
  2913       // so let's iterate from there
  2914       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2915       result = _worker_cset_start_region[worker_i - 1];
  2918     for (uint i = start_ind; i < end_ind; i++) {
  2919       result = result->next_in_collection_set();
  2923   // Note: the calculated starting heap region may be NULL
  2924   // (when the collection set is empty).
  2925   assert(result == NULL || result->in_collection_set(), "sanity");
  2926   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2927          "should be updated only once per pause");
  2928   _worker_cset_start_region[worker_i] = result;
  2929   OrderAccess::storestore();
  2930   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2931   return result;
  2934 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
  2935                                                      uint no_of_par_workers) {
  2936   uint worker_num =
  2937            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
  2938   assert(UseDynamicNumberOfGCThreads ||
  2939          no_of_par_workers == workers()->total_workers(),
  2940          "Non dynamic should use fixed number of workers");
  2941   const uint start_index = n_regions() * worker_i / worker_num;
  2942   return region_at(start_index);
  2945 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2946   HeapRegion* r = g1_policy()->collection_set();
  2947   while (r != NULL) {
  2948     HeapRegion* next = r->next_in_collection_set();
  2949     if (cl->doHeapRegion(r)) {
  2950       cl->incomplete();
  2951       return;
  2953     r = next;
  2957 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2958                                                   HeapRegionClosure *cl) {
  2959   if (r == NULL) {
  2960     // The CSet is empty so there's nothing to do.
  2961     return;
  2964   assert(r->in_collection_set(),
  2965          "Start region must be a member of the collection set.");
  2966   HeapRegion* cur = r;
  2967   while (cur != NULL) {
  2968     HeapRegion* next = cur->next_in_collection_set();
  2969     if (cl->doHeapRegion(cur) && false) {
  2970       cl->incomplete();
  2971       return;
  2973     cur = next;
  2975   cur = g1_policy()->collection_set();
  2976   while (cur != r) {
  2977     HeapRegion* next = cur->next_in_collection_set();
  2978     if (cl->doHeapRegion(cur) && false) {
  2979       cl->incomplete();
  2980       return;
  2982     cur = next;
  2986 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2987   return n_regions() > 0 ? region_at(0) : NULL;
  2991 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2992   Space* res = heap_region_containing(addr);
  2993   return res;
  2996 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2997   Space* sp = space_containing(addr);
  2998   if (sp != NULL) {
  2999     return sp->block_start(addr);
  3001   return NULL;
  3004 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  3005   Space* sp = space_containing(addr);
  3006   assert(sp != NULL, "block_size of address outside of heap");
  3007   return sp->block_size(addr);
  3010 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  3011   Space* sp = space_containing(addr);
  3012   return sp->block_is_obj(addr);
  3015 bool G1CollectedHeap::supports_tlab_allocation() const {
  3016   return true;
  3019 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  3020   return HeapRegion::GrainBytes;
  3023 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  3024   // Return the remaining space in the cur alloc region, but not less than
  3025   // the min TLAB size.
  3027   // Also, this value can be at most the humongous object threshold,
  3028   // since we can't allow tlabs to grow big enough to accommodate
  3029   // humongous objects.
  3031   HeapRegion* hr = _mutator_alloc_region.get();
  3032   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
  3033   if (hr == NULL) {
  3034     return max_tlab_size;
  3035   } else {
  3036     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
  3040 size_t G1CollectedHeap::max_capacity() const {
  3041   return _g1_reserved.byte_size();
  3044 jlong G1CollectedHeap::millis_since_last_gc() {
  3045   // assert(false, "NYI");
  3046   return 0;
  3049 void G1CollectedHeap::prepare_for_verify() {
  3050   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  3051     ensure_parsability(false);
  3053   g1_rem_set()->prepare_for_verify();
  3056 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
  3057                                               VerifyOption vo) {
  3058   switch (vo) {
  3059   case VerifyOption_G1UsePrevMarking:
  3060     return hr->obj_allocated_since_prev_marking(obj);
  3061   case VerifyOption_G1UseNextMarking:
  3062     return hr->obj_allocated_since_next_marking(obj);
  3063   case VerifyOption_G1UseMarkWord:
  3064     return false;
  3065   default:
  3066     ShouldNotReachHere();
  3068   return false; // keep some compilers happy
  3071 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  3072   switch (vo) {
  3073   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  3074   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  3075   case VerifyOption_G1UseMarkWord:    return NULL;
  3076   default:                            ShouldNotReachHere();
  3078   return NULL; // keep some compilers happy
  3081 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  3082   switch (vo) {
  3083   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  3084   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  3085   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  3086   default:                            ShouldNotReachHere();
  3088   return false; // keep some compilers happy
  3091 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  3092   switch (vo) {
  3093   case VerifyOption_G1UsePrevMarking: return "PTAMS";
  3094   case VerifyOption_G1UseNextMarking: return "NTAMS";
  3095   case VerifyOption_G1UseMarkWord:    return "NONE";
  3096   default:                            ShouldNotReachHere();
  3098   return NULL; // keep some compilers happy
  3101 // TODO: VerifyRootsClosure extends OopsInGenClosure so that we can
  3102 //       pass it as the perm_blk to SharedHeap::process_strong_roots.
  3103 //       When process_strong_roots stop calling perm_blk->younger_refs_iterate
  3104 //       we can change this closure to extend the simpler OopClosure.
  3105 class VerifyRootsClosure: public OopsInGenClosure {
  3106 private:
  3107   G1CollectedHeap* _g1h;
  3108   VerifyOption     _vo;
  3109   bool             _failures;
  3110 public:
  3111   // _vo == UsePrevMarking -> use "prev" marking information,
  3112   // _vo == UseNextMarking -> use "next" marking information,
  3113   // _vo == UseMarkWord    -> use mark word from object header.
  3114   VerifyRootsClosure(VerifyOption vo) :
  3115     _g1h(G1CollectedHeap::heap()),
  3116     _vo(vo),
  3117     _failures(false) { }
  3119   bool failures() { return _failures; }
  3121   template <class T> void do_oop_nv(T* p) {
  3122     T heap_oop = oopDesc::load_heap_oop(p);
  3123     if (!oopDesc::is_null(heap_oop)) {
  3124       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3125       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  3126         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  3127                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  3128         if (_vo == VerifyOption_G1UseMarkWord) {
  3129           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  3131         obj->print_on(gclog_or_tty);
  3132         _failures = true;
  3137   void do_oop(oop* p)       { do_oop_nv(p); }
  3138   void do_oop(narrowOop* p) { do_oop_nv(p); }
  3139 };
  3141 class G1VerifyCodeRootOopClosure: public OopsInGenClosure {
  3142   G1CollectedHeap* _g1h;
  3143   OopClosure* _root_cl;
  3144   nmethod* _nm;
  3145   VerifyOption _vo;
  3146   bool _failures;
  3148   template <class T> void do_oop_work(T* p) {
  3149     // First verify that this root is live
  3150     _root_cl->do_oop(p);
  3152     if (!G1VerifyHeapRegionCodeRoots) {
  3153       // We're not verifying the code roots attached to heap region.
  3154       return;
  3157     // Don't check the code roots during marking verification in a full GC
  3158     if (_vo == VerifyOption_G1UseMarkWord) {
  3159       return;
  3162     // Now verify that the current nmethod (which contains p) is
  3163     // in the code root list of the heap region containing the
  3164     // object referenced by p.
  3166     T heap_oop = oopDesc::load_heap_oop(p);
  3167     if (!oopDesc::is_null(heap_oop)) {
  3168       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3170       // Now fetch the region containing the object
  3171       HeapRegion* hr = _g1h->heap_region_containing(obj);
  3172       HeapRegionRemSet* hrrs = hr->rem_set();
  3173       // Verify that the strong code root list for this region
  3174       // contains the nmethod
  3175       if (!hrrs->strong_code_roots_list_contains(_nm)) {
  3176         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
  3177                               "from nmethod "PTR_FORMAT" not in strong "
  3178                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
  3179                               p, _nm, hr->bottom(), hr->end());
  3180         _failures = true;
  3185 public:
  3186   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
  3187     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
  3189   void do_oop(oop* p) { do_oop_work(p); }
  3190   void do_oop(narrowOop* p) { do_oop_work(p); }
  3192   void set_nmethod(nmethod* nm) { _nm = nm; }
  3193   bool failures() { return _failures; }
  3194 };
  3196 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  3197   G1VerifyCodeRootOopClosure* _oop_cl;
  3199 public:
  3200   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
  3201     _oop_cl(oop_cl) {}
  3203   void do_code_blob(CodeBlob* cb) {
  3204     nmethod* nm = cb->as_nmethod_or_null();
  3205     if (nm != NULL) {
  3206       _oop_cl->set_nmethod(nm);
  3207       nm->oops_do(_oop_cl);
  3210 };
  3212 class YoungRefCounterClosure : public OopClosure {
  3213   G1CollectedHeap* _g1h;
  3214   int              _count;
  3215  public:
  3216   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  3217   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  3218   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
  3220   int count() { return _count; }
  3221   void reset_count() { _count = 0; };
  3222 };
  3224 class VerifyKlassClosure: public KlassClosure {
  3225   YoungRefCounterClosure _young_ref_counter_closure;
  3226   OopClosure *_oop_closure;
  3227  public:
  3228   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  3229   void do_klass(Klass* k) {
  3230     k->oops_do(_oop_closure);
  3232     _young_ref_counter_closure.reset_count();
  3233     k->oops_do(&_young_ref_counter_closure);
  3234     if (_young_ref_counter_closure.count() > 0) {
  3235       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
  3238 };
  3240 class VerifyLivenessOopClosure: public OopClosure {
  3241   G1CollectedHeap* _g1h;
  3242   VerifyOption _vo;
  3243 public:
  3244   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  3245     _g1h(g1h), _vo(vo)
  3246   { }
  3247   void do_oop(narrowOop *p) { do_oop_work(p); }
  3248   void do_oop(      oop *p) { do_oop_work(p); }
  3250   template <class T> void do_oop_work(T *p) {
  3251     oop obj = oopDesc::load_decode_heap_oop(p);
  3252     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  3253               "Dead object referenced by a not dead object");
  3255 };
  3257 class VerifyObjsInRegionClosure: public ObjectClosure {
  3258 private:
  3259   G1CollectedHeap* _g1h;
  3260   size_t _live_bytes;
  3261   HeapRegion *_hr;
  3262   VerifyOption _vo;
  3263 public:
  3264   // _vo == UsePrevMarking -> use "prev" marking information,
  3265   // _vo == UseNextMarking -> use "next" marking information,
  3266   // _vo == UseMarkWord    -> use mark word from object header.
  3267   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  3268     : _live_bytes(0), _hr(hr), _vo(vo) {
  3269     _g1h = G1CollectedHeap::heap();
  3271   void do_object(oop o) {
  3272     VerifyLivenessOopClosure isLive(_g1h, _vo);
  3273     assert(o != NULL, "Huh?");
  3274     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  3275       // If the object is alive according to the mark word,
  3276       // then verify that the marking information agrees.
  3277       // Note we can't verify the contra-positive of the
  3278       // above: if the object is dead (according to the mark
  3279       // word), it may not be marked, or may have been marked
  3280       // but has since became dead, or may have been allocated
  3281       // since the last marking.
  3282       if (_vo == VerifyOption_G1UseMarkWord) {
  3283         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  3286       o->oop_iterate_no_header(&isLive);
  3287       if (!_hr->obj_allocated_since_prev_marking(o)) {
  3288         size_t obj_size = o->size();    // Make sure we don't overflow
  3289         _live_bytes += (obj_size * HeapWordSize);
  3293   size_t live_bytes() { return _live_bytes; }
  3294 };
  3296 class PrintObjsInRegionClosure : public ObjectClosure {
  3297   HeapRegion *_hr;
  3298   G1CollectedHeap *_g1;
  3299 public:
  3300   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  3301     _g1 = G1CollectedHeap::heap();
  3302   };
  3304   void do_object(oop o) {
  3305     if (o != NULL) {
  3306       HeapWord *start = (HeapWord *) o;
  3307       size_t word_sz = o->size();
  3308       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  3309                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  3310                           (void*) o, word_sz,
  3311                           _g1->isMarkedPrev(o),
  3312                           _g1->isMarkedNext(o),
  3313                           _hr->obj_allocated_since_prev_marking(o));
  3314       HeapWord *end = start + word_sz;
  3315       HeapWord *cur;
  3316       int *val;
  3317       for (cur = start; cur < end; cur++) {
  3318         val = (int *) cur;
  3319         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  3323 };
  3325 class VerifyRegionClosure: public HeapRegionClosure {
  3326 private:
  3327   bool             _par;
  3328   VerifyOption     _vo;
  3329   bool             _failures;
  3330 public:
  3331   // _vo == UsePrevMarking -> use "prev" marking information,
  3332   // _vo == UseNextMarking -> use "next" marking information,
  3333   // _vo == UseMarkWord    -> use mark word from object header.
  3334   VerifyRegionClosure(bool par, VerifyOption vo)
  3335     : _par(par),
  3336       _vo(vo),
  3337       _failures(false) {}
  3339   bool failures() {
  3340     return _failures;
  3343   bool doHeapRegion(HeapRegion* r) {
  3344     if (!r->continuesHumongous()) {
  3345       bool failures = false;
  3346       r->verify(_vo, &failures);
  3347       if (failures) {
  3348         _failures = true;
  3349       } else {
  3350         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3351         r->object_iterate(&not_dead_yet_cl);
  3352         if (_vo != VerifyOption_G1UseNextMarking) {
  3353           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3354             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  3355                                    "max_live_bytes "SIZE_FORMAT" "
  3356                                    "< calculated "SIZE_FORMAT,
  3357                                    r->bottom(), r->end(),
  3358                                    r->max_live_bytes(),
  3359                                  not_dead_yet_cl.live_bytes());
  3360             _failures = true;
  3362         } else {
  3363           // When vo == UseNextMarking we cannot currently do a sanity
  3364           // check on the live bytes as the calculation has not been
  3365           // finalized yet.
  3369     return false; // stop the region iteration if we hit a failure
  3371 };
  3373 // This is the task used for parallel verification of the heap regions
  3375 class G1ParVerifyTask: public AbstractGangTask {
  3376 private:
  3377   G1CollectedHeap* _g1h;
  3378   VerifyOption     _vo;
  3379   bool             _failures;
  3381 public:
  3382   // _vo == UsePrevMarking -> use "prev" marking information,
  3383   // _vo == UseNextMarking -> use "next" marking information,
  3384   // _vo == UseMarkWord    -> use mark word from object header.
  3385   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
  3386     AbstractGangTask("Parallel verify task"),
  3387     _g1h(g1h),
  3388     _vo(vo),
  3389     _failures(false) { }
  3391   bool failures() {
  3392     return _failures;
  3395   void work(uint worker_id) {
  3396     HandleMark hm;
  3397     VerifyRegionClosure blk(true, _vo);
  3398     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3399                                           _g1h->workers()->active_workers(),
  3400                                           HeapRegion::ParVerifyClaimValue);
  3401     if (blk.failures()) {
  3402       _failures = true;
  3405 };
  3407 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
  3408   if (SafepointSynchronize::is_at_safepoint()) {
  3409     assert(Thread::current()->is_VM_thread(),
  3410            "Expected to be executed serially by the VM thread at this point");
  3412     if (!silent) { gclog_or_tty->print("Roots "); }
  3413     VerifyRootsClosure rootsCl(vo);
  3414     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
  3415     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
  3416     VerifyKlassClosure klassCl(this, &rootsCl);
  3418     // We apply the relevant closures to all the oops in the
  3419     // system dictionary, the string table and the code cache.
  3420     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
  3422     // Need cleared claim bits for the strong roots processing
  3423     ClassLoaderDataGraph::clear_claimed_marks();
  3425     process_strong_roots(true,      // activate StrongRootsScope
  3426                          false,     // we set "is scavenging" to false,
  3427                                     // so we don't reset the dirty cards.
  3428                          ScanningOption(so),  // roots scanning options
  3429                          &rootsCl,
  3430                          &blobsCl,
  3431                          &klassCl
  3432                          );
  3434     bool failures = rootsCl.failures() || codeRootsCl.failures();
  3436     if (vo != VerifyOption_G1UseMarkWord) {
  3437       // If we're verifying during a full GC then the region sets
  3438       // will have been torn down at the start of the GC. Therefore
  3439       // verifying the region sets will fail. So we only verify
  3440       // the region sets when not in a full GC.
  3441       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3442       verify_region_sets();
  3445     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3446     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3447       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3448              "sanity check");
  3450       G1ParVerifyTask task(this, vo);
  3451       assert(UseDynamicNumberOfGCThreads ||
  3452         workers()->active_workers() == workers()->total_workers(),
  3453         "If not dynamic should be using all the workers");
  3454       int n_workers = workers()->active_workers();
  3455       set_par_threads(n_workers);
  3456       workers()->run_task(&task);
  3457       set_par_threads(0);
  3458       if (task.failures()) {
  3459         failures = true;
  3462       // Checks that the expected amount of parallel work was done.
  3463       // The implication is that n_workers is > 0.
  3464       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3465              "sanity check");
  3467       reset_heap_region_claim_values();
  3469       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3470              "sanity check");
  3471     } else {
  3472       VerifyRegionClosure blk(false, vo);
  3473       heap_region_iterate(&blk);
  3474       if (blk.failures()) {
  3475         failures = true;
  3478     if (!silent) gclog_or_tty->print("RemSet ");
  3479     rem_set()->verify();
  3481     if (failures) {
  3482       gclog_or_tty->print_cr("Heap:");
  3483       // It helps to have the per-region information in the output to
  3484       // help us track down what went wrong. This is why we call
  3485       // print_extended_on() instead of print_on().
  3486       print_extended_on(gclog_or_tty);
  3487       gclog_or_tty->print_cr("");
  3488 #ifndef PRODUCT
  3489       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3490         concurrent_mark()->print_reachable("at-verification-failure",
  3491                                            vo, false /* all */);
  3493 #endif
  3494       gclog_or_tty->flush();
  3496     guarantee(!failures, "there should not have been any failures");
  3497   } else {
  3498     if (!silent)
  3499       gclog_or_tty->print("(SKIPPING roots, heapRegionSets, heapRegions, remset) ");
  3503 void G1CollectedHeap::verify(bool silent) {
  3504   verify(silent, VerifyOption_G1UsePrevMarking);
  3507 double G1CollectedHeap::verify(bool guard, const char* msg) {
  3508   double verify_time_ms = 0.0;
  3510   if (guard && total_collections() >= VerifyGCStartAt) {
  3511     double verify_start = os::elapsedTime();
  3512     HandleMark hm;  // Discard invalid handles created during verification
  3513     prepare_for_verify();
  3514     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
  3515     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  3518   return verify_time_ms;
  3521 void G1CollectedHeap::verify_before_gc() {
  3522   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  3523   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
  3526 void G1CollectedHeap::verify_after_gc() {
  3527   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  3528   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
  3531 class PrintRegionClosure: public HeapRegionClosure {
  3532   outputStream* _st;
  3533 public:
  3534   PrintRegionClosure(outputStream* st) : _st(st) {}
  3535   bool doHeapRegion(HeapRegion* r) {
  3536     r->print_on(_st);
  3537     return false;
  3539 };
  3541 void G1CollectedHeap::print_on(outputStream* st) const {
  3542   st->print(" %-20s", "garbage-first heap");
  3543   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3544             capacity()/K, used_unlocked()/K);
  3545   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3546             _g1_storage.low_boundary(),
  3547             _g1_storage.high(),
  3548             _g1_storage.high_boundary());
  3549   st->cr();
  3550   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3551   uint young_regions = _young_list->length();
  3552   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
  3553             (size_t) young_regions * HeapRegion::GrainBytes / K);
  3554   uint survivor_regions = g1_policy()->recorded_survivor_regions();
  3555   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
  3556             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
  3557   st->cr();
  3558   MetaspaceAux::print_on(st);
  3561 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3562   print_on(st);
  3564   // Print the per-region information.
  3565   st->cr();
  3566   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
  3567                "HS=humongous(starts), HC=humongous(continues), "
  3568                "CS=collection set, F=free, TS=gc time stamp, "
  3569                "PTAMS=previous top-at-mark-start, "
  3570                "NTAMS=next top-at-mark-start)");
  3571   PrintRegionClosure blk(st);
  3572   heap_region_iterate(&blk);
  3575 void G1CollectedHeap::print_on_error(outputStream* st) const {
  3576   this->CollectedHeap::print_on_error(st);
  3578   if (_cm != NULL) {
  3579     st->cr();
  3580     _cm->print_on_error(st);
  3584 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3585   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3586     workers()->print_worker_threads_on(st);
  3588   _cmThread->print_on(st);
  3589   st->cr();
  3590   _cm->print_worker_threads_on(st);
  3591   _cg1r->print_worker_threads_on(st);
  3594 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3595   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3596     workers()->threads_do(tc);
  3598   tc->do_thread(_cmThread);
  3599   _cg1r->threads_do(tc);
  3602 void G1CollectedHeap::print_tracing_info() const {
  3603   // We'll overload this to mean "trace GC pause statistics."
  3604   if (TraceGen0Time || TraceGen1Time) {
  3605     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3606     // to that.
  3607     g1_policy()->print_tracing_info();
  3609   if (G1SummarizeRSetStats) {
  3610     g1_rem_set()->print_summary_info();
  3612   if (G1SummarizeConcMark) {
  3613     concurrent_mark()->print_summary_info();
  3615   g1_policy()->print_yg_surv_rate_info();
  3616   SpecializationStats::print();
  3619 #ifndef PRODUCT
  3620 // Helpful for debugging RSet issues.
  3622 class PrintRSetsClosure : public HeapRegionClosure {
  3623 private:
  3624   const char* _msg;
  3625   size_t _occupied_sum;
  3627 public:
  3628   bool doHeapRegion(HeapRegion* r) {
  3629     HeapRegionRemSet* hrrs = r->rem_set();
  3630     size_t occupied = hrrs->occupied();
  3631     _occupied_sum += occupied;
  3633     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3634                            HR_FORMAT_PARAMS(r));
  3635     if (occupied == 0) {
  3636       gclog_or_tty->print_cr("  RSet is empty");
  3637     } else {
  3638       hrrs->print();
  3640     gclog_or_tty->print_cr("----------");
  3641     return false;
  3644   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3645     gclog_or_tty->cr();
  3646     gclog_or_tty->print_cr("========================================");
  3647     gclog_or_tty->print_cr(msg);
  3648     gclog_or_tty->cr();
  3651   ~PrintRSetsClosure() {
  3652     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3653     gclog_or_tty->print_cr("========================================");
  3654     gclog_or_tty->cr();
  3656 };
  3658 void G1CollectedHeap::print_cset_rsets() {
  3659   PrintRSetsClosure cl("Printing CSet RSets");
  3660   collection_set_iterate(&cl);
  3663 void G1CollectedHeap::print_all_rsets() {
  3664   PrintRSetsClosure cl("Printing All RSets");;
  3665   heap_region_iterate(&cl);
  3667 #endif // PRODUCT
  3669 G1CollectedHeap* G1CollectedHeap::heap() {
  3670   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3671          "not a garbage-first heap");
  3672   return _g1h;
  3675 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3676   // always_do_update_barrier = false;
  3677   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3678   // Fill TLAB's and such
  3679   ensure_parsability(true);
  3682 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3684   if (G1SummarizeRSetStats &&
  3685       (G1SummarizeRSetStatsPeriod > 0) &&
  3686       // we are at the end of the GC. Total collections has already been increased.
  3687       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
  3688     g1_rem_set()->print_periodic_summary_info();
  3691   // FIXME: what is this about?
  3692   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3693   // is set.
  3694   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3695                         "derived pointer present"));
  3696   // always_do_update_barrier = true;
  3698   // We have just completed a GC. Update the soft reference
  3699   // policy with the new heap occupancy
  3700   Universe::update_heap_info_at_gc();
  3703 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3704                                                unsigned int gc_count_before,
  3705                                                bool* succeeded,
  3706                                                GCCause::Cause gc_cause) {
  3707   assert_heap_not_locked_and_not_at_safepoint();
  3708   g1_policy()->record_stop_world_start();
  3709   VM_G1IncCollectionPause op(gc_count_before,
  3710                              word_size,
  3711                              false, /* should_initiate_conc_mark */
  3712                              g1_policy()->max_pause_time_ms(),
  3713                              gc_cause);
  3714   VMThread::execute(&op);
  3716   HeapWord* result = op.result();
  3717   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3718   assert(result == NULL || ret_succeeded,
  3719          "the result should be NULL if the VM did not succeed");
  3720   *succeeded = ret_succeeded;
  3722   assert_heap_not_locked();
  3723   return result;
  3726 void
  3727 G1CollectedHeap::doConcurrentMark() {
  3728   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3729   if (!_cmThread->in_progress()) {
  3730     _cmThread->set_started();
  3731     CGC_lock->notify();
  3735 size_t G1CollectedHeap::pending_card_num() {
  3736   size_t extra_cards = 0;
  3737   JavaThread *curr = Threads::first();
  3738   while (curr != NULL) {
  3739     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3740     extra_cards += dcq.size();
  3741     curr = curr->next();
  3743   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3744   size_t buffer_size = dcqs.buffer_size();
  3745   size_t buffer_num = dcqs.completed_buffers_num();
  3747   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  3748   // in bytes - not the number of 'entries'. We need to convert
  3749   // into a number of cards.
  3750   return (buffer_size * buffer_num + extra_cards) / oopSize;
  3753 size_t G1CollectedHeap::cards_scanned() {
  3754   return g1_rem_set()->cardsScanned();
  3757 void
  3758 G1CollectedHeap::setup_surviving_young_words() {
  3759   assert(_surviving_young_words == NULL, "pre-condition");
  3760   uint array_length = g1_policy()->young_cset_region_length();
  3761   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
  3762   if (_surviving_young_words == NULL) {
  3763     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
  3764                           "Not enough space for young surv words summary.");
  3766   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
  3767 #ifdef ASSERT
  3768   for (uint i = 0;  i < array_length; ++i) {
  3769     assert( _surviving_young_words[i] == 0, "memset above" );
  3771 #endif // !ASSERT
  3774 void
  3775 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3776   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3777   uint array_length = g1_policy()->young_cset_region_length();
  3778   for (uint i = 0; i < array_length; ++i) {
  3779     _surviving_young_words[i] += surv_young_words[i];
  3783 void
  3784 G1CollectedHeap::cleanup_surviving_young_words() {
  3785   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3786   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
  3787   _surviving_young_words = NULL;
  3790 #ifdef ASSERT
  3791 class VerifyCSetClosure: public HeapRegionClosure {
  3792 public:
  3793   bool doHeapRegion(HeapRegion* hr) {
  3794     // Here we check that the CSet region's RSet is ready for parallel
  3795     // iteration. The fields that we'll verify are only manipulated
  3796     // when the region is part of a CSet and is collected. Afterwards,
  3797     // we reset these fields when we clear the region's RSet (when the
  3798     // region is freed) so they are ready when the region is
  3799     // re-allocated. The only exception to this is if there's an
  3800     // evacuation failure and instead of freeing the region we leave
  3801     // it in the heap. In that case, we reset these fields during
  3802     // evacuation failure handling.
  3803     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3805     // Here's a good place to add any other checks we'd like to
  3806     // perform on CSet regions.
  3807     return false;
  3809 };
  3810 #endif // ASSERT
  3812 #if TASKQUEUE_STATS
  3813 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3814   st->print_raw_cr("GC Task Stats");
  3815   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3816   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3819 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3820   print_taskqueue_stats_hdr(st);
  3822   TaskQueueStats totals;
  3823   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3824   for (int i = 0; i < n; ++i) {
  3825     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3826     totals += task_queue(i)->stats;
  3828   st->print_raw("tot "); totals.print(st); st->cr();
  3830   DEBUG_ONLY(totals.verify());
  3833 void G1CollectedHeap::reset_taskqueue_stats() {
  3834   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3835   for (int i = 0; i < n; ++i) {
  3836     task_queue(i)->stats.reset();
  3839 #endif // TASKQUEUE_STATS
  3841 void G1CollectedHeap::log_gc_header() {
  3842   if (!G1Log::fine()) {
  3843     return;
  3846   gclog_or_tty->date_stamp(PrintGCDateStamps);
  3847   gclog_or_tty->stamp(PrintGCTimeStamps);
  3849   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
  3850     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
  3851     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
  3853   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
  3856 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  3857   if (!G1Log::fine()) {
  3858     return;
  3861   if (G1Log::finer()) {
  3862     if (evacuation_failed()) {
  3863       gclog_or_tty->print(" (to-space exhausted)");
  3865     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3866     g1_policy()->phase_times()->note_gc_end();
  3867     g1_policy()->phase_times()->print(pause_time_sec);
  3868     g1_policy()->print_detailed_heap_transition();
  3869   } else {
  3870     if (evacuation_failed()) {
  3871       gclog_or_tty->print("--");
  3873     g1_policy()->print_heap_transition();
  3874     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3876   gclog_or_tty->flush();
  3879 bool
  3880 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3881   assert_at_safepoint(true /* should_be_vm_thread */);
  3882   guarantee(!is_gc_active(), "collection is not reentrant");
  3884   if (GC_locker::check_active_before_gc()) {
  3885     return false;
  3888   _gc_timer_stw->register_gc_start(os::elapsed_counter());
  3890   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
  3892   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3893   ResourceMark rm;
  3895   print_heap_before_gc();
  3896   trace_heap_before_gc(_gc_tracer_stw);
  3898   HRSPhaseSetter x(HRSPhaseEvacuation);
  3899   verify_region_sets_optional();
  3900   verify_dirty_young_regions();
  3902   // This call will decide whether this pause is an initial-mark
  3903   // pause. If it is, during_initial_mark_pause() will return true
  3904   // for the duration of this pause.
  3905   g1_policy()->decide_on_conc_mark_initiation();
  3907   // We do not allow initial-mark to be piggy-backed on a mixed GC.
  3908   assert(!g1_policy()->during_initial_mark_pause() ||
  3909           g1_policy()->gcs_are_young(), "sanity");
  3911   // We also do not allow mixed GCs during marking.
  3912   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  3914   // Record whether this pause is an initial mark. When the current
  3915   // thread has completed its logging output and it's safe to signal
  3916   // the CM thread, the flag's value in the policy has been reset.
  3917   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
  3919   // Inner scope for scope based logging, timers, and stats collection
  3921     EvacuationInfo evacuation_info;
  3923     if (g1_policy()->during_initial_mark_pause()) {
  3924       // We are about to start a marking cycle, so we increment the
  3925       // full collection counter.
  3926       increment_old_marking_cycles_started();
  3927       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
  3930     _gc_tracer_stw->report_yc_type(yc_type());
  3932     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  3934     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3935                                 workers()->active_workers() : 1);
  3936     double pause_start_sec = os::elapsedTime();
  3937     g1_policy()->phase_times()->note_gc_start(active_workers);
  3938     log_gc_header();
  3940     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3941     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3943     // If the secondary_free_list is not empty, append it to the
  3944     // free_list. No need to wait for the cleanup operation to finish;
  3945     // the region allocation code will check the secondary_free_list
  3946     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3947     // set, skip this step so that the region allocation code has to
  3948     // get entries from the secondary_free_list.
  3949     if (!G1StressConcRegionFreeing) {
  3950       append_secondary_free_list_if_not_empty_with_lock();
  3953     assert(check_young_list_well_formed(), "young list should be well formed");
  3954     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3955            "sanity check");
  3957     // Don't dynamically change the number of GC threads this early.  A value of
  3958     // 0 is used to indicate serial work.  When parallel work is done,
  3959     // it will be set.
  3961     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3962       IsGCActiveMark x;
  3964       gc_prologue(false);
  3965       increment_total_collections(false /* full gc */);
  3966       increment_gc_time_stamp();
  3968       verify_before_gc();
  3970       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3972       // Please see comment in g1CollectedHeap.hpp and
  3973       // G1CollectedHeap::ref_processing_init() to see how
  3974       // reference processing currently works in G1.
  3976       // Enable discovery in the STW reference processor
  3977       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  3978                                             true /*verify_no_refs*/);
  3981         // We want to temporarily turn off discovery by the
  3982         // CM ref processor, if necessary, and turn it back on
  3983         // on again later if we do. Using a scoped
  3984         // NoRefDiscovery object will do this.
  3985         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  3987         // Forget the current alloc region (we might even choose it to be part
  3988         // of the collection set!).
  3989         release_mutator_alloc_region();
  3991         // We should call this after we retire the mutator alloc
  3992         // region(s) so that all the ALLOC / RETIRE events are generated
  3993         // before the start GC event.
  3994         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  3996         // This timing is only used by the ergonomics to handle our pause target.
  3997         // It is unclear why this should not include the full pause. We will
  3998         // investigate this in CR 7178365.
  3999         //
  4000         // Preserving the old comment here if that helps the investigation:
  4001         //
  4002         // The elapsed time induced by the start time below deliberately elides
  4003         // the possible verification above.
  4004         double sample_start_time_sec = os::elapsedTime();
  4006 #if YOUNG_LIST_VERBOSE
  4007         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  4008         _young_list->print();
  4009         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4010 #endif // YOUNG_LIST_VERBOSE
  4012         g1_policy()->record_collection_pause_start(sample_start_time_sec);
  4014         double scan_wait_start = os::elapsedTime();
  4015         // We have to wait until the CM threads finish scanning the
  4016         // root regions as it's the only way to ensure that all the
  4017         // objects on them have been correctly scanned before we start
  4018         // moving them during the GC.
  4019         bool waited = _cm->root_regions()->wait_until_scan_finished();
  4020         double wait_time_ms = 0.0;
  4021         if (waited) {
  4022           double scan_wait_end = os::elapsedTime();
  4023           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
  4025         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
  4027 #if YOUNG_LIST_VERBOSE
  4028         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  4029         _young_list->print();
  4030 #endif // YOUNG_LIST_VERBOSE
  4032         if (g1_policy()->during_initial_mark_pause()) {
  4033           concurrent_mark()->checkpointRootsInitialPre();
  4036 #if YOUNG_LIST_VERBOSE
  4037         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  4038         _young_list->print();
  4039         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4040 #endif // YOUNG_LIST_VERBOSE
  4042         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
  4044         _cm->note_start_of_gc();
  4045         // We should not verify the per-thread SATB buffers given that
  4046         // we have not filtered them yet (we'll do so during the
  4047         // GC). We also call this after finalize_cset() to
  4048         // ensure that the CSet has been finalized.
  4049         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4050                                  true  /* verify_enqueued_buffers */,
  4051                                  false /* verify_thread_buffers */,
  4052                                  true  /* verify_fingers */);
  4054         if (_hr_printer.is_active()) {
  4055           HeapRegion* hr = g1_policy()->collection_set();
  4056           while (hr != NULL) {
  4057             G1HRPrinter::RegionType type;
  4058             if (!hr->is_young()) {
  4059               type = G1HRPrinter::Old;
  4060             } else if (hr->is_survivor()) {
  4061               type = G1HRPrinter::Survivor;
  4062             } else {
  4063               type = G1HRPrinter::Eden;
  4065             _hr_printer.cset(hr);
  4066             hr = hr->next_in_collection_set();
  4070 #ifdef ASSERT
  4071         VerifyCSetClosure cl;
  4072         collection_set_iterate(&cl);
  4073 #endif // ASSERT
  4075         setup_surviving_young_words();
  4077         // Initialize the GC alloc regions.
  4078         init_gc_alloc_regions(evacuation_info);
  4080         // Actually do the work...
  4081         evacuate_collection_set(evacuation_info);
  4083         // We do this to mainly verify the per-thread SATB buffers
  4084         // (which have been filtered by now) since we didn't verify
  4085         // them earlier. No point in re-checking the stacks / enqueued
  4086         // buffers given that the CSet has not changed since last time
  4087         // we checked.
  4088         _cm->verify_no_cset_oops(false /* verify_stacks */,
  4089                                  false /* verify_enqueued_buffers */,
  4090                                  true  /* verify_thread_buffers */,
  4091                                  true  /* verify_fingers */);
  4093         free_collection_set(g1_policy()->collection_set(), evacuation_info);
  4094         g1_policy()->clear_collection_set();
  4096         cleanup_surviving_young_words();
  4098         // Start a new incremental collection set for the next pause.
  4099         g1_policy()->start_incremental_cset_building();
  4101         // Clear the _cset_fast_test bitmap in anticipation of adding
  4102         // regions to the incremental collection set for the next
  4103         // evacuation pause.
  4104         clear_cset_fast_test();
  4106         _young_list->reset_sampled_info();
  4108         // Don't check the whole heap at this point as the
  4109         // GC alloc regions from this pause have been tagged
  4110         // as survivors and moved on to the survivor list.
  4111         // Survivor regions will fail the !is_young() check.
  4112         assert(check_young_list_empty(false /* check_heap */),
  4113           "young list should be empty");
  4115 #if YOUNG_LIST_VERBOSE
  4116         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  4117         _young_list->print();
  4118 #endif // YOUNG_LIST_VERBOSE
  4120         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  4121                                              _young_list->first_survivor_region(),
  4122                                              _young_list->last_survivor_region());
  4124         _young_list->reset_auxilary_lists();
  4126         if (evacuation_failed()) {
  4127           _summary_bytes_used = recalculate_used();
  4128           uint n_queues = MAX2((int)ParallelGCThreads, 1);
  4129           for (uint i = 0; i < n_queues; i++) {
  4130             if (_evacuation_failed_info_array[i].has_failed()) {
  4131               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
  4134         } else {
  4135           // The "used" of the the collection set have already been subtracted
  4136           // when they were freed.  Add in the bytes evacuated.
  4137           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
  4140         if (g1_policy()->during_initial_mark_pause()) {
  4141           // We have to do this before we notify the CM threads that
  4142           // they can start working to make sure that all the
  4143           // appropriate initialization is done on the CM object.
  4144           concurrent_mark()->checkpointRootsInitialPost();
  4145           set_marking_started();
  4146           // Note that we don't actually trigger the CM thread at
  4147           // this point. We do that later when we're sure that
  4148           // the current thread has completed its logging output.
  4151         allocate_dummy_regions();
  4153 #if YOUNG_LIST_VERBOSE
  4154         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  4155         _young_list->print();
  4156         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4157 #endif // YOUNG_LIST_VERBOSE
  4159         init_mutator_alloc_region();
  4162           size_t expand_bytes = g1_policy()->expansion_amount();
  4163           if (expand_bytes > 0) {
  4164             size_t bytes_before = capacity();
  4165             // No need for an ergo verbose message here,
  4166             // expansion_amount() does this when it returns a value > 0.
  4167             if (!expand(expand_bytes)) {
  4168               // We failed to expand the heap so let's verify that
  4169               // committed/uncommitted amount match the backing store
  4170               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  4171               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  4176         // We redo the verification but now wrt to the new CSet which
  4177         // has just got initialized after the previous CSet was freed.
  4178         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4179                                  true  /* verify_enqueued_buffers */,
  4180                                  true  /* verify_thread_buffers */,
  4181                                  true  /* verify_fingers */);
  4182         _cm->note_end_of_gc();
  4184         // This timing is only used by the ergonomics to handle our pause target.
  4185         // It is unclear why this should not include the full pause. We will
  4186         // investigate this in CR 7178365.
  4187         double sample_end_time_sec = os::elapsedTime();
  4188         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
  4189         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
  4191         MemoryService::track_memory_usage();
  4193         // In prepare_for_verify() below we'll need to scan the deferred
  4194         // update buffers to bring the RSets up-to-date if
  4195         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  4196         // the update buffers we'll probably need to scan cards on the
  4197         // regions we just allocated to (i.e., the GC alloc
  4198         // regions). However, during the last GC we called
  4199         // set_saved_mark() on all the GC alloc regions, so card
  4200         // scanning might skip the [saved_mark_word()...top()] area of
  4201         // those regions (i.e., the area we allocated objects into
  4202         // during the last GC). But it shouldn't. Given that
  4203         // saved_mark_word() is conditional on whether the GC time stamp
  4204         // on the region is current or not, by incrementing the GC time
  4205         // stamp here we invalidate all the GC time stamps on all the
  4206         // regions and saved_mark_word() will simply return top() for
  4207         // all the regions. This is a nicer way of ensuring this rather
  4208         // than iterating over the regions and fixing them. In fact, the
  4209         // GC time stamp increment here also ensures that
  4210         // saved_mark_word() will return top() between pauses, i.e.,
  4211         // during concurrent refinement. So we don't need the
  4212         // is_gc_active() check to decided which top to use when
  4213         // scanning cards (see CR 7039627).
  4214         increment_gc_time_stamp();
  4216         verify_after_gc();
  4218         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  4219         ref_processor_stw()->verify_no_references_recorded();
  4221         // CM reference discovery will be re-enabled if necessary.
  4224       // We should do this after we potentially expand the heap so
  4225       // that all the COMMIT events are generated before the end GC
  4226       // event, and after we retire the GC alloc regions so that all
  4227       // RETIRE events are generated before the end GC event.
  4228       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  4230       if (mark_in_progress()) {
  4231         concurrent_mark()->update_g1_committed();
  4234 #ifdef TRACESPINNING
  4235       ParallelTaskTerminator::print_termination_counts();
  4236 #endif
  4238       gc_epilogue(false);
  4241     // Print the remainder of the GC log output.
  4242     log_gc_footer(os::elapsedTime() - pause_start_sec);
  4244     // It is not yet to safe to tell the concurrent mark to
  4245     // start as we have some optional output below. We don't want the
  4246     // output from the concurrent mark thread interfering with this
  4247     // logging output either.
  4249     _hrs.verify_optional();
  4250     verify_region_sets_optional();
  4252     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  4253     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  4255     print_heap_after_gc();
  4256     trace_heap_after_gc(_gc_tracer_stw);
  4258     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  4259     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  4260     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  4261     // before any GC notifications are raised.
  4262     g1mm()->update_sizes();
  4264     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
  4265     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
  4266     _gc_timer_stw->register_gc_end(os::elapsed_counter());
  4267     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  4269   // It should now be safe to tell the concurrent mark thread to start
  4270   // without its logging output interfering with the logging output
  4271   // that came from the pause.
  4273   if (should_start_conc_mark) {
  4274     // CAUTION: after the doConcurrentMark() call below,
  4275     // the concurrent marking thread(s) could be running
  4276     // concurrently with us. Make sure that anything after
  4277     // this point does not assume that we are the only GC thread
  4278     // running. Note: of course, the actual marking work will
  4279     // not start until the safepoint itself is released in
  4280     // ConcurrentGCThread::safepoint_desynchronize().
  4281     doConcurrentMark();
  4284   return true;
  4287 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  4289   size_t gclab_word_size;
  4290   switch (purpose) {
  4291     case GCAllocForSurvived:
  4292       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
  4293       break;
  4294     case GCAllocForTenured:
  4295       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4296       break;
  4297     default:
  4298       assert(false, "unknown GCAllocPurpose");
  4299       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4300       break;
  4303   // Prevent humongous PLAB sizes for two reasons:
  4304   // * PLABs are allocated using a similar paths as oops, but should
  4305   //   never be in a humongous region
  4306   // * Allowing humongous PLABs needlessly churns the region free lists
  4307   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
  4310 void G1CollectedHeap::init_mutator_alloc_region() {
  4311   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  4312   _mutator_alloc_region.init();
  4315 void G1CollectedHeap::release_mutator_alloc_region() {
  4316   _mutator_alloc_region.release();
  4317   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  4320 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
  4321   assert_at_safepoint(true /* should_be_vm_thread */);
  4323   _survivor_gc_alloc_region.init();
  4324   _old_gc_alloc_region.init();
  4325   HeapRegion* retained_region = _retained_old_gc_alloc_region;
  4326   _retained_old_gc_alloc_region = NULL;
  4328   // We will discard the current GC alloc region if:
  4329   // a) it's in the collection set (it can happen!),
  4330   // b) it's already full (no point in using it),
  4331   // c) it's empty (this means that it was emptied during
  4332   // a cleanup and it should be on the free list now), or
  4333   // d) it's humongous (this means that it was emptied
  4334   // during a cleanup and was added to the free list, but
  4335   // has been subsequently used to allocate a humongous
  4336   // object that may be less than the region size).
  4337   if (retained_region != NULL &&
  4338       !retained_region->in_collection_set() &&
  4339       !(retained_region->top() == retained_region->end()) &&
  4340       !retained_region->is_empty() &&
  4341       !retained_region->isHumongous()) {
  4342     retained_region->set_saved_mark();
  4343     // The retained region was added to the old region set when it was
  4344     // retired. We have to remove it now, since we don't allow regions
  4345     // we allocate to in the region sets. We'll re-add it later, when
  4346     // it's retired again.
  4347     _old_set.remove(retained_region);
  4348     bool during_im = g1_policy()->during_initial_mark_pause();
  4349     retained_region->note_start_of_copying(during_im);
  4350     _old_gc_alloc_region.set(retained_region);
  4351     _hr_printer.reuse(retained_region);
  4352     evacuation_info.set_alloc_regions_used_before(retained_region->used());
  4356 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
  4357   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
  4358                                          _old_gc_alloc_region.count());
  4359   _survivor_gc_alloc_region.release();
  4360   // If we have an old GC alloc region to release, we'll save it in
  4361   // _retained_old_gc_alloc_region. If we don't
  4362   // _retained_old_gc_alloc_region will become NULL. This is what we
  4363   // want either way so no reason to check explicitly for either
  4364   // condition.
  4365   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
  4367   if (ResizePLAB) {
  4368     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
  4369     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
  4373 void G1CollectedHeap::abandon_gc_alloc_regions() {
  4374   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  4375   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  4376   _retained_old_gc_alloc_region = NULL;
  4379 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  4380   _drain_in_progress = false;
  4381   set_evac_failure_closure(cl);
  4382   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
  4385 void G1CollectedHeap::finalize_for_evac_failure() {
  4386   assert(_evac_failure_scan_stack != NULL &&
  4387          _evac_failure_scan_stack->length() == 0,
  4388          "Postcondition");
  4389   assert(!_drain_in_progress, "Postcondition");
  4390   delete _evac_failure_scan_stack;
  4391   _evac_failure_scan_stack = NULL;
  4394 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4395   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4397   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  4399   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4400     set_par_threads();
  4401     workers()->run_task(&rsfp_task);
  4402     set_par_threads(0);
  4403   } else {
  4404     rsfp_task.work(0);
  4407   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4409   // Reset the claim values in the regions in the collection set.
  4410   reset_cset_heap_region_claim_values();
  4412   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4414   // Now restore saved marks, if any.
  4415   assert(_objs_with_preserved_marks.size() ==
  4416             _preserved_marks_of_objs.size(), "Both or none.");
  4417   while (!_objs_with_preserved_marks.is_empty()) {
  4418     oop obj = _objs_with_preserved_marks.pop();
  4419     markOop m = _preserved_marks_of_objs.pop();
  4420     obj->set_mark(m);
  4422   _objs_with_preserved_marks.clear(true);
  4423   _preserved_marks_of_objs.clear(true);
  4426 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4427   _evac_failure_scan_stack->push(obj);
  4430 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4431   assert(_evac_failure_scan_stack != NULL, "precondition");
  4433   while (_evac_failure_scan_stack->length() > 0) {
  4434      oop obj = _evac_failure_scan_stack->pop();
  4435      _evac_failure_closure->set_region(heap_region_containing(obj));
  4436      obj->oop_iterate_backwards(_evac_failure_closure);
  4440 oop
  4441 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
  4442                                                oop old) {
  4443   assert(obj_in_cs(old),
  4444          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4445                  (HeapWord*) old));
  4446   markOop m = old->mark();
  4447   oop forward_ptr = old->forward_to_atomic(old);
  4448   if (forward_ptr == NULL) {
  4449     // Forward-to-self succeeded.
  4450     assert(_par_scan_state != NULL, "par scan state");
  4451     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4452     uint queue_num = _par_scan_state->queue_num();
  4454     _evacuation_failed = true;
  4455     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
  4456     if (_evac_failure_closure != cl) {
  4457       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4458       assert(!_drain_in_progress,
  4459              "Should only be true while someone holds the lock.");
  4460       // Set the global evac-failure closure to the current thread's.
  4461       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4462       set_evac_failure_closure(cl);
  4463       // Now do the common part.
  4464       handle_evacuation_failure_common(old, m);
  4465       // Reset to NULL.
  4466       set_evac_failure_closure(NULL);
  4467     } else {
  4468       // The lock is already held, and this is recursive.
  4469       assert(_drain_in_progress, "This should only be the recursive case.");
  4470       handle_evacuation_failure_common(old, m);
  4472     return old;
  4473   } else {
  4474     // Forward-to-self failed. Either someone else managed to allocate
  4475     // space for this object (old != forward_ptr) or they beat us in
  4476     // self-forwarding it (old == forward_ptr).
  4477     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4478            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4479                    "should not be in the CSet",
  4480                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4481     return forward_ptr;
  4485 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4486   preserve_mark_if_necessary(old, m);
  4488   HeapRegion* r = heap_region_containing(old);
  4489   if (!r->evacuation_failed()) {
  4490     r->set_evacuation_failed(true);
  4491     _hr_printer.evac_failure(r);
  4494   push_on_evac_failure_scan_stack(old);
  4496   if (!_drain_in_progress) {
  4497     // prevent recursion in copy_to_survivor_space()
  4498     _drain_in_progress = true;
  4499     drain_evac_failure_scan_stack();
  4500     _drain_in_progress = false;
  4504 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4505   assert(evacuation_failed(), "Oversaving!");
  4506   // We want to call the "for_promotion_failure" version only in the
  4507   // case of a promotion failure.
  4508   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4509     _objs_with_preserved_marks.push(obj);
  4510     _preserved_marks_of_objs.push(m);
  4514 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4515                                                   size_t word_size) {
  4516   if (purpose == GCAllocForSurvived) {
  4517     HeapWord* result = survivor_attempt_allocation(word_size);
  4518     if (result != NULL) {
  4519       return result;
  4520     } else {
  4521       // Let's try to allocate in the old gen in case we can fit the
  4522       // object there.
  4523       return old_attempt_allocation(word_size);
  4525   } else {
  4526     assert(purpose ==  GCAllocForTenured, "sanity");
  4527     HeapWord* result = old_attempt_allocation(word_size);
  4528     if (result != NULL) {
  4529       return result;
  4530     } else {
  4531       // Let's try to allocate in the survivors in case we can fit the
  4532       // object there.
  4533       return survivor_attempt_allocation(word_size);
  4537   ShouldNotReachHere();
  4538   // Trying to keep some compilers happy.
  4539   return NULL;
  4542 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
  4543   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
  4545 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
  4546   : _g1h(g1h),
  4547     _refs(g1h->task_queue(queue_num)),
  4548     _dcq(&g1h->dirty_card_queue_set()),
  4549     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  4550     _g1_rem(g1h->g1_rem_set()),
  4551     _hash_seed(17), _queue_num(queue_num),
  4552     _term_attempts(0),
  4553     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
  4554     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
  4555     _age_table(false),
  4556     _strong_roots_time(0), _term_time(0),
  4557     _alloc_buffer_waste(0), _undo_waste(0) {
  4558   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  4559   // we "sacrifice" entry 0 to keep track of surviving bytes for
  4560   // non-young regions (where the age is -1)
  4561   // We also add a few elements at the beginning and at the end in
  4562   // an attempt to eliminate cache contention
  4563   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  4564   uint array_length = PADDING_ELEM_NUM +
  4565                       real_length +
  4566                       PADDING_ELEM_NUM;
  4567   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  4568   if (_surviving_young_words_base == NULL)
  4569     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
  4570                           "Not enough space for young surv histo.");
  4571   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  4572   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
  4574   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  4575   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
  4577   _start = os::elapsedTime();
  4580 void
  4581 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  4583   st->print_raw_cr("GC Termination Stats");
  4584   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  4585                    " ------waste (KiB)------");
  4586   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  4587                    "  total   alloc    undo");
  4588   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  4589                    " ------- ------- -------");
  4592 void
  4593 G1ParScanThreadState::print_termination_stats(int i,
  4594                                               outputStream* const st) const
  4596   const double elapsed_ms = elapsed_time() * 1000.0;
  4597   const double s_roots_ms = strong_roots_time() * 1000.0;
  4598   const double term_ms    = term_time() * 1000.0;
  4599   st->print_cr("%3d %9.2f %9.2f %6.2f "
  4600                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
  4601                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
  4602                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
  4603                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
  4604                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
  4605                alloc_buffer_waste() * HeapWordSize / K,
  4606                undo_waste() * HeapWordSize / K);
  4609 #ifdef ASSERT
  4610 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  4611   assert(ref != NULL, "invariant");
  4612   assert(UseCompressedOops, "sanity");
  4613   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  4614   oop p = oopDesc::load_decode_heap_oop(ref);
  4615   assert(_g1h->is_in_g1_reserved(p),
  4616          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4617   return true;
  4620 bool G1ParScanThreadState::verify_ref(oop* ref) const {
  4621   assert(ref != NULL, "invariant");
  4622   if (has_partial_array_mask(ref)) {
  4623     // Must be in the collection set--it's already been copied.
  4624     oop p = clear_partial_array_mask(ref);
  4625     assert(_g1h->obj_in_cs(p),
  4626            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4627   } else {
  4628     oop p = oopDesc::load_decode_heap_oop(ref);
  4629     assert(_g1h->is_in_g1_reserved(p),
  4630            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4632   return true;
  4635 bool G1ParScanThreadState::verify_task(StarTask ref) const {
  4636   if (ref.is_narrow()) {
  4637     return verify_ref((narrowOop*) ref);
  4638   } else {
  4639     return verify_ref((oop*) ref);
  4642 #endif // ASSERT
  4644 void G1ParScanThreadState::trim_queue() {
  4645   assert(_evac_cl != NULL, "not set");
  4646   assert(_evac_failure_cl != NULL, "not set");
  4647   assert(_partial_scan_cl != NULL, "not set");
  4649   StarTask ref;
  4650   do {
  4651     // Drain the overflow stack first, so other threads can steal.
  4652     while (refs()->pop_overflow(ref)) {
  4653       deal_with_reference(ref);
  4656     while (refs()->pop_local(ref)) {
  4657       deal_with_reference(ref);
  4659   } while (!refs()->is_empty());
  4662 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
  4663                                      G1ParScanThreadState* par_scan_state) :
  4664   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  4665   _par_scan_state(par_scan_state),
  4666   _worker_id(par_scan_state->queue_num()),
  4667   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
  4668   _mark_in_progress(_g1->mark_in_progress()) { }
  4670 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4671 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
  4672 #ifdef ASSERT
  4673   HeapRegion* hr = _g1->heap_region_containing(obj);
  4674   assert(hr != NULL, "sanity");
  4675   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
  4676 #endif // ASSERT
  4678   // We know that the object is not moving so it's safe to read its size.
  4679   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  4682 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4683 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4684   ::mark_forwarded_object(oop from_obj, oop to_obj) {
  4685 #ifdef ASSERT
  4686   assert(from_obj->is_forwarded(), "from obj should be forwarded");
  4687   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  4688   assert(from_obj != to_obj, "should not be self-forwarded");
  4690   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  4691   assert(from_hr != NULL, "sanity");
  4692   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
  4694   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  4695   assert(to_hr != NULL, "sanity");
  4696   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
  4697 #endif // ASSERT
  4699   // The object might be in the process of being copied by another
  4700   // worker so we cannot trust that its to-space image is
  4701   // well-formed. So we have to read its size from its from-space
  4702   // image which we know should not be changing.
  4703   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
  4706 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4707 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4708   ::copy_to_survivor_space(oop old) {
  4709   size_t word_sz = old->size();
  4710   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  4711   // +1 to make the -1 indexes valid...
  4712   int       young_index = from_region->young_index_in_cset()+1;
  4713   assert( (from_region->is_young() && young_index >  0) ||
  4714          (!from_region->is_young() && young_index == 0), "invariant" );
  4715   G1CollectorPolicy* g1p = _g1->g1_policy();
  4716   markOop m = old->mark();
  4717   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  4718                                            : m->age();
  4719   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  4720                                                              word_sz);
  4721   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  4722 #ifndef PRODUCT
  4723   // Should this evacuation fail?
  4724   if (_g1->evacuation_should_fail()) {
  4725     if (obj_ptr != NULL) {
  4726       _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4727       obj_ptr = NULL;
  4730 #endif // !PRODUCT
  4732   if (obj_ptr == NULL) {
  4733     // This will either forward-to-self, or detect that someone else has
  4734     // installed a forwarding pointer.
  4735     return _g1->handle_evacuation_failure_par(_par_scan_state, old);
  4738   oop obj = oop(obj_ptr);
  4740   // We're going to allocate linearly, so might as well prefetch ahead.
  4741   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  4743   oop forward_ptr = old->forward_to_atomic(obj);
  4744   if (forward_ptr == NULL) {
  4745     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  4746     if (g1p->track_object_age(alloc_purpose)) {
  4747       // We could simply do obj->incr_age(). However, this causes a
  4748       // performance issue. obj->incr_age() will first check whether
  4749       // the object has a displaced mark by checking its mark word;
  4750       // getting the mark word from the new location of the object
  4751       // stalls. So, given that we already have the mark word and we
  4752       // are about to install it anyway, it's better to increase the
  4753       // age on the mark word, when the object does not have a
  4754       // displaced mark word. We're not expecting many objects to have
  4755       // a displaced marked word, so that case is not optimized
  4756       // further (it could be...) and we simply call obj->incr_age().
  4758       if (m->has_displaced_mark_helper()) {
  4759         // in this case, we have to install the mark word first,
  4760         // otherwise obj looks to be forwarded (the old mark word,
  4761         // which contains the forward pointer, was copied)
  4762         obj->set_mark(m);
  4763         obj->incr_age();
  4764       } else {
  4765         m = m->incr_age();
  4766         obj->set_mark(m);
  4768       _par_scan_state->age_table()->add(obj, word_sz);
  4769     } else {
  4770       obj->set_mark(m);
  4773     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  4774     surv_young_words[young_index] += word_sz;
  4776     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4777       // We keep track of the next start index in the length field of
  4778       // the to-space object. The actual length can be found in the
  4779       // length field of the from-space object.
  4780       arrayOop(obj)->set_length(0);
  4781       oop* old_p = set_partial_array_mask(old);
  4782       _par_scan_state->push_on_queue(old_p);
  4783     } else {
  4784       // No point in using the slower heap_region_containing() method,
  4785       // given that we know obj is in the heap.
  4786       _scanner.set_region(_g1->heap_region_containing_raw(obj));
  4787       obj->oop_iterate_backwards(&_scanner);
  4789   } else {
  4790     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4791     obj = forward_ptr;
  4793   return obj;
  4796 template <class T>
  4797 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  4798   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
  4799     _scanned_klass->record_modified_oops();
  4803 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4804 template <class T>
  4805 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4806 ::do_oop_work(T* p) {
  4807   oop obj = oopDesc::load_decode_heap_oop(p);
  4808   assert(barrier != G1BarrierRS || obj != NULL,
  4809          "Precondition: G1BarrierRS implies obj is non-NULL");
  4811   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
  4813   // here the null check is implicit in the cset_fast_test() test
  4814   if (_g1->in_cset_fast_test(obj)) {
  4815     oop forwardee;
  4816     if (obj->is_forwarded()) {
  4817       forwardee = obj->forwardee();
  4818     } else {
  4819       forwardee = copy_to_survivor_space(obj);
  4821     assert(forwardee != NULL, "forwardee should not be NULL");
  4822     oopDesc::encode_store_heap_oop(p, forwardee);
  4823     if (do_mark_object && forwardee != obj) {
  4824       // If the object is self-forwarded we don't need to explicitly
  4825       // mark it, the evacuation failure protocol will do so.
  4826       mark_forwarded_object(obj, forwardee);
  4829     // When scanning the RS, we only care about objs in CS.
  4830     if (barrier == G1BarrierRS) {
  4831       _par_scan_state->update_rs(_from, p, _worker_id);
  4832     } else if (barrier == G1BarrierKlass) {
  4833       do_klass_barrier(p, forwardee);
  4835   } else {
  4836     // The object is not in collection set. If we're a root scanning
  4837     // closure during an initial mark pause (i.e. do_mark_object will
  4838     // be true) then attempt to mark the object.
  4839     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
  4840       mark_object(obj);
  4844   if (barrier == G1BarrierEvac && obj != NULL) {
  4845     _par_scan_state->update_rs(_from, p, _worker_id);
  4848   if (do_gen_barrier && obj != NULL) {
  4849     par_do_barrier(p);
  4853 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
  4854 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
  4856 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  4857   assert(has_partial_array_mask(p), "invariant");
  4858   oop from_obj = clear_partial_array_mask(p);
  4860   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
  4861   assert(from_obj->is_objArray(), "must be obj array");
  4862   objArrayOop from_obj_array = objArrayOop(from_obj);
  4863   // The from-space object contains the real length.
  4864   int length                 = from_obj_array->length();
  4866   assert(from_obj->is_forwarded(), "must be forwarded");
  4867   oop to_obj                 = from_obj->forwardee();
  4868   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
  4869   objArrayOop to_obj_array   = objArrayOop(to_obj);
  4870   // We keep track of the next start index in the length field of the
  4871   // to-space object.
  4872   int next_index             = to_obj_array->length();
  4873   assert(0 <= next_index && next_index < length,
  4874          err_msg("invariant, next index: %d, length: %d", next_index, length));
  4876   int start                  = next_index;
  4877   int end                    = length;
  4878   int remainder              = end - start;
  4879   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
  4880   if (remainder > 2 * ParGCArrayScanChunk) {
  4881     end = start + ParGCArrayScanChunk;
  4882     to_obj_array->set_length(end);
  4883     // Push the remainder before we process the range in case another
  4884     // worker has run out of things to do and can steal it.
  4885     oop* from_obj_p = set_partial_array_mask(from_obj);
  4886     _par_scan_state->push_on_queue(from_obj_p);
  4887   } else {
  4888     assert(length == end, "sanity");
  4889     // We'll process the final range for this object. Restore the length
  4890     // so that the heap remains parsable in case of evacuation failure.
  4891     to_obj_array->set_length(end);
  4893   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
  4894   // Process indexes [start,end). It will also process the header
  4895   // along with the first chunk (i.e., the chunk with start == 0).
  4896   // Note that at this point the length field of to_obj_array is not
  4897   // correct given that we are using it to keep track of the next
  4898   // start index. oop_iterate_range() (thankfully!) ignores the length
  4899   // field and only relies on the start / end parameters.  It does
  4900   // however return the size of the object which will be incorrect. So
  4901   // we have to ignore it even if we wanted to use it.
  4902   to_obj_array->oop_iterate_range(&_scanner, start, end);
  4905 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4906 protected:
  4907   G1CollectedHeap*              _g1h;
  4908   G1ParScanThreadState*         _par_scan_state;
  4909   RefToScanQueueSet*            _queues;
  4910   ParallelTaskTerminator*       _terminator;
  4912   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4913   RefToScanQueueSet*      queues()         { return _queues; }
  4914   ParallelTaskTerminator* terminator()     { return _terminator; }
  4916 public:
  4917   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4918                                 G1ParScanThreadState* par_scan_state,
  4919                                 RefToScanQueueSet* queues,
  4920                                 ParallelTaskTerminator* terminator)
  4921     : _g1h(g1h), _par_scan_state(par_scan_state),
  4922       _queues(queues), _terminator(terminator) {}
  4924   void do_void();
  4926 private:
  4927   inline bool offer_termination();
  4928 };
  4930 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4931   G1ParScanThreadState* const pss = par_scan_state();
  4932   pss->start_term_time();
  4933   const bool res = terminator()->offer_termination();
  4934   pss->end_term_time();
  4935   return res;
  4938 void G1ParEvacuateFollowersClosure::do_void() {
  4939   StarTask stolen_task;
  4940   G1ParScanThreadState* const pss = par_scan_state();
  4941   pss->trim_queue();
  4943   do {
  4944     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  4945       assert(pss->verify_task(stolen_task), "sanity");
  4946       if (stolen_task.is_narrow()) {
  4947         pss->deal_with_reference((narrowOop*) stolen_task);
  4948       } else {
  4949         pss->deal_with_reference((oop*) stolen_task);
  4952       // We've just processed a reference and we might have made
  4953       // available new entries on the queues. So we have to make sure
  4954       // we drain the queues as necessary.
  4955       pss->trim_queue();
  4957   } while (!offer_termination());
  4959   pss->retire_alloc_buffers();
  4962 class G1KlassScanClosure : public KlassClosure {
  4963  G1ParCopyHelper* _closure;
  4964  bool             _process_only_dirty;
  4965  int              _count;
  4966  public:
  4967   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
  4968       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  4969   void do_klass(Klass* klass) {
  4970     // If the klass has not been dirtied we know that there's
  4971     // no references into  the young gen and we can skip it.
  4972    if (!_process_only_dirty || klass->has_modified_oops()) {
  4973       // Clean the klass since we're going to scavenge all the metadata.
  4974       klass->clear_modified_oops();
  4976       // Tell the closure that this klass is the Klass to scavenge
  4977       // and is the one to dirty if oops are left pointing into the young gen.
  4978       _closure->set_scanned_klass(klass);
  4980       klass->oops_do(_closure);
  4982       _closure->set_scanned_klass(NULL);
  4984     _count++;
  4986 };
  4988 class G1ParTask : public AbstractGangTask {
  4989 protected:
  4990   G1CollectedHeap*       _g1h;
  4991   RefToScanQueueSet      *_queues;
  4992   ParallelTaskTerminator _terminator;
  4993   uint _n_workers;
  4995   Mutex _stats_lock;
  4996   Mutex* stats_lock() { return &_stats_lock; }
  4998   size_t getNCards() {
  4999     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  5000       / G1BlockOffsetSharedArray::N_bytes;
  5003 public:
  5004   G1ParTask(G1CollectedHeap* g1h,
  5005             RefToScanQueueSet *task_queues)
  5006     : AbstractGangTask("G1 collection"),
  5007       _g1h(g1h),
  5008       _queues(task_queues),
  5009       _terminator(0, _queues),
  5010       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  5011   {}
  5013   RefToScanQueueSet* queues() { return _queues; }
  5015   RefToScanQueue *work_queue(int i) {
  5016     return queues()->queue(i);
  5019   ParallelTaskTerminator* terminator() { return &_terminator; }
  5021   virtual void set_for_termination(int active_workers) {
  5022     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
  5023     // in the young space (_par_seq_tasks) in the G1 heap
  5024     // for SequentialSubTasksDone.
  5025     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
  5026     // both of which need setting by set_n_termination().
  5027     _g1h->SharedHeap::set_n_termination(active_workers);
  5028     _g1h->set_n_termination(active_workers);
  5029     terminator()->reset_for_reuse(active_workers);
  5030     _n_workers = active_workers;
  5033   void work(uint worker_id) {
  5034     if (worker_id >= _n_workers) return;  // no work needed this round
  5036     double start_time_ms = os::elapsedTime() * 1000.0;
  5037     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
  5040       ResourceMark rm;
  5041       HandleMark   hm;
  5043       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  5045       G1ParScanThreadState            pss(_g1h, worker_id);
  5046       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
  5047       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  5048       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
  5050       pss.set_evac_closure(&scan_evac_cl);
  5051       pss.set_evac_failure_closure(&evac_failure_cl);
  5052       pss.set_partial_scan_closure(&partial_scan_cl);
  5054       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
  5055       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
  5057       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
  5058       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
  5060       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
  5061       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
  5062       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
  5064       OopClosure*                    scan_root_cl = &only_scan_root_cl;
  5065       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
  5067       if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5068         // We also need to mark copied objects.
  5069         scan_root_cl = &scan_mark_root_cl;
  5070         scan_klasses_cl = &scan_mark_klasses_cl_s;
  5073       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
  5075       // Don't scan the scavengable methods in the code cache as part
  5076       // of strong root scanning. The code roots that point into a
  5077       // region in the collection set are scanned when we scan the
  5078       // region's RSet.
  5079       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings;
  5081       pss.start_strong_roots();
  5082       _g1h->g1_process_strong_roots(/* is scavenging */ true,
  5083                                     SharedHeap::ScanningOption(so),
  5084                                     scan_root_cl,
  5085                                     &push_heap_rs_cl,
  5086                                     scan_klasses_cl,
  5087                                     worker_id);
  5088       pss.end_strong_roots();
  5091         double start = os::elapsedTime();
  5092         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  5093         evac.do_void();
  5094         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  5095         double term_ms = pss.term_time()*1000.0;
  5096         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
  5097         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
  5099       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  5100       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  5102       if (ParallelGCVerbose) {
  5103         MutexLocker x(stats_lock());
  5104         pss.print_termination_stats(worker_id);
  5107       assert(pss.refs()->is_empty(), "should be empty");
  5109       // Close the inner scope so that the ResourceMark and HandleMark
  5110       // destructors are executed here and are included as part of the
  5111       // "GC Worker Time".
  5114     double end_time_ms = os::elapsedTime() * 1000.0;
  5115     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
  5117 };
  5119 // *** Common G1 Evacuation Stuff
  5121 // This method is run in a GC worker.
  5123 void
  5124 G1CollectedHeap::
  5125 g1_process_strong_roots(bool is_scavenging,
  5126                         ScanningOption so,
  5127                         OopClosure* scan_non_heap_roots,
  5128                         OopsInHeapRegionClosure* scan_rs,
  5129                         G1KlassScanClosure* scan_klasses,
  5130                         int worker_i) {
  5132   // First scan the strong roots
  5133   double ext_roots_start = os::elapsedTime();
  5134   double closure_app_time_sec = 0.0;
  5136   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  5138   assert(so & SO_CodeCache || scan_rs != NULL, "must scan code roots somehow");
  5139   // Walk the code cache/strong code roots w/o buffering, because StarTask
  5140   // cannot handle unaligned oop locations.
  5141   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */);
  5143   process_strong_roots(false, // no scoping; this is parallel code
  5144                        is_scavenging, so,
  5145                        &buf_scan_non_heap_roots,
  5146                        &eager_scan_code_roots,
  5147                        scan_klasses
  5148                        );
  5150   // Now the CM ref_processor roots.
  5151   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  5152     // We need to treat the discovered reference lists of the
  5153     // concurrent mark ref processor as roots and keep entries
  5154     // (which are added by the marking threads) on them live
  5155     // until they can be processed at the end of marking.
  5156     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
  5159   // Finish up any enqueued closure apps (attributed as object copy time).
  5160   buf_scan_non_heap_roots.done();
  5162   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
  5164   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  5166   double ext_root_time_ms =
  5167     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  5169   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  5171   // During conc marking we have to filter the per-thread SATB buffers
  5172   // to make sure we remove any oops into the CSet (which will show up
  5173   // as implicitly live).
  5174   double satb_filtering_ms = 0.0;
  5175   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
  5176     if (mark_in_progress()) {
  5177       double satb_filter_start = os::elapsedTime();
  5179       JavaThread::satb_mark_queue_set().filter_thread_buffers();
  5181       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
  5184   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
  5186   // If this is an initial mark pause, and we're not scanning
  5187   // the entire code cache, we need to mark the oops in the
  5188   // strong code root lists for the regions that are not in
  5189   // the collection set.
  5190   // Note all threads participate in this set of root tasks.
  5191   double mark_strong_code_roots_ms = 0.0;
  5192   if (g1_policy()->during_initial_mark_pause() && !(so & SO_CodeCache)) {
  5193     double mark_strong_roots_start = os::elapsedTime();
  5194     mark_strong_code_roots(worker_i);
  5195     mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0;
  5197   g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms);
  5199   // Now scan the complement of the collection set.
  5200   if (scan_rs != NULL) {
  5201     g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i);
  5203   _process_strong_tasks->all_tasks_completed();
  5206 void
  5207 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) {
  5208   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  5209   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs);
  5212 // Weak Reference Processing support
  5214 // An always "is_alive" closure that is used to preserve referents.
  5215 // If the object is non-null then it's alive.  Used in the preservation
  5216 // of referent objects that are pointed to by reference objects
  5217 // discovered by the CM ref processor.
  5218 class G1AlwaysAliveClosure: public BoolObjectClosure {
  5219   G1CollectedHeap* _g1;
  5220 public:
  5221   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5222   bool do_object_b(oop p) {
  5223     if (p != NULL) {
  5224       return true;
  5226     return false;
  5228 };
  5230 bool G1STWIsAliveClosure::do_object_b(oop p) {
  5231   // An object is reachable if it is outside the collection set,
  5232   // or is inside and copied.
  5233   return !_g1->obj_in_cs(p) || p->is_forwarded();
  5236 // Non Copying Keep Alive closure
  5237 class G1KeepAliveClosure: public OopClosure {
  5238   G1CollectedHeap* _g1;
  5239 public:
  5240   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5241   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  5242   void do_oop(      oop* p) {
  5243     oop obj = *p;
  5245     if (_g1->obj_in_cs(obj)) {
  5246       assert( obj->is_forwarded(), "invariant" );
  5247       *p = obj->forwardee();
  5250 };
  5252 // Copying Keep Alive closure - can be called from both
  5253 // serial and parallel code as long as different worker
  5254 // threads utilize different G1ParScanThreadState instances
  5255 // and different queues.
  5257 class G1CopyingKeepAliveClosure: public OopClosure {
  5258   G1CollectedHeap*         _g1h;
  5259   OopClosure*              _copy_non_heap_obj_cl;
  5260   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
  5261   G1ParScanThreadState*    _par_scan_state;
  5263 public:
  5264   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  5265                             OopClosure* non_heap_obj_cl,
  5266                             OopsInHeapRegionClosure* metadata_obj_cl,
  5267                             G1ParScanThreadState* pss):
  5268     _g1h(g1h),
  5269     _copy_non_heap_obj_cl(non_heap_obj_cl),
  5270     _copy_metadata_obj_cl(metadata_obj_cl),
  5271     _par_scan_state(pss)
  5272   {}
  5274   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  5275   virtual void do_oop(      oop* p) { do_oop_work(p); }
  5277   template <class T> void do_oop_work(T* p) {
  5278     oop obj = oopDesc::load_decode_heap_oop(p);
  5280     if (_g1h->obj_in_cs(obj)) {
  5281       // If the referent object has been forwarded (either copied
  5282       // to a new location or to itself in the event of an
  5283       // evacuation failure) then we need to update the reference
  5284       // field and, if both reference and referent are in the G1
  5285       // heap, update the RSet for the referent.
  5286       //
  5287       // If the referent has not been forwarded then we have to keep
  5288       // it alive by policy. Therefore we have copy the referent.
  5289       //
  5290       // If the reference field is in the G1 heap then we can push
  5291       // on the PSS queue. When the queue is drained (after each
  5292       // phase of reference processing) the object and it's followers
  5293       // will be copied, the reference field set to point to the
  5294       // new location, and the RSet updated. Otherwise we need to
  5295       // use the the non-heap or metadata closures directly to copy
  5296       // the referent object and update the pointer, while avoiding
  5297       // updating the RSet.
  5299       if (_g1h->is_in_g1_reserved(p)) {
  5300         _par_scan_state->push_on_queue(p);
  5301       } else {
  5302         assert(!ClassLoaderDataGraph::contains((address)p),
  5303                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
  5304                               PTR_FORMAT, p));
  5305           _copy_non_heap_obj_cl->do_oop(p);
  5309 };
  5311 // Serial drain queue closure. Called as the 'complete_gc'
  5312 // closure for each discovered list in some of the
  5313 // reference processing phases.
  5315 class G1STWDrainQueueClosure: public VoidClosure {
  5316 protected:
  5317   G1CollectedHeap* _g1h;
  5318   G1ParScanThreadState* _par_scan_state;
  5320   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  5322 public:
  5323   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  5324     _g1h(g1h),
  5325     _par_scan_state(pss)
  5326   { }
  5328   void do_void() {
  5329     G1ParScanThreadState* const pss = par_scan_state();
  5330     pss->trim_queue();
  5332 };
  5334 // Parallel Reference Processing closures
  5336 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  5337 // processing during G1 evacuation pauses.
  5339 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  5340 private:
  5341   G1CollectedHeap*   _g1h;
  5342   RefToScanQueueSet* _queues;
  5343   FlexibleWorkGang*  _workers;
  5344   int                _active_workers;
  5346 public:
  5347   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  5348                         FlexibleWorkGang* workers,
  5349                         RefToScanQueueSet *task_queues,
  5350                         int n_workers) :
  5351     _g1h(g1h),
  5352     _queues(task_queues),
  5353     _workers(workers),
  5354     _active_workers(n_workers)
  5356     assert(n_workers > 0, "shouldn't call this otherwise");
  5359   // Executes the given task using concurrent marking worker threads.
  5360   virtual void execute(ProcessTask& task);
  5361   virtual void execute(EnqueueTask& task);
  5362 };
  5364 // Gang task for possibly parallel reference processing
  5366 class G1STWRefProcTaskProxy: public AbstractGangTask {
  5367   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5368   ProcessTask&     _proc_task;
  5369   G1CollectedHeap* _g1h;
  5370   RefToScanQueueSet *_task_queues;
  5371   ParallelTaskTerminator* _terminator;
  5373 public:
  5374   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  5375                      G1CollectedHeap* g1h,
  5376                      RefToScanQueueSet *task_queues,
  5377                      ParallelTaskTerminator* terminator) :
  5378     AbstractGangTask("Process reference objects in parallel"),
  5379     _proc_task(proc_task),
  5380     _g1h(g1h),
  5381     _task_queues(task_queues),
  5382     _terminator(terminator)
  5383   {}
  5385   virtual void work(uint worker_id) {
  5386     // The reference processing task executed by a single worker.
  5387     ResourceMark rm;
  5388     HandleMark   hm;
  5390     G1STWIsAliveClosure is_alive(_g1h);
  5392     G1ParScanThreadState pss(_g1h, worker_id);
  5394     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5395     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5396     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5398     pss.set_evac_closure(&scan_evac_cl);
  5399     pss.set_evac_failure_closure(&evac_failure_cl);
  5400     pss.set_partial_scan_closure(&partial_scan_cl);
  5402     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5403     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
  5405     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5406     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
  5408     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5409     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
  5411     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5412       // We also need to mark copied objects.
  5413       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5414       copy_metadata_cl = &copy_mark_metadata_cl;
  5417     // Keep alive closure.
  5418     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
  5420     // Complete GC closure
  5421     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5423     // Call the reference processing task's work routine.
  5424     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5426     // Note we cannot assert that the refs array is empty here as not all
  5427     // of the processing tasks (specifically phase2 - pp2_work) execute
  5428     // the complete_gc closure (which ordinarily would drain the queue) so
  5429     // the queue may not be empty.
  5431 };
  5433 // Driver routine for parallel reference processing.
  5434 // Creates an instance of the ref processing gang
  5435 // task and has the worker threads execute it.
  5436 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5437   assert(_workers != NULL, "Need parallel worker threads.");
  5439   ParallelTaskTerminator terminator(_active_workers, _queues);
  5440   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5442   _g1h->set_par_threads(_active_workers);
  5443   _workers->run_task(&proc_task_proxy);
  5444   _g1h->set_par_threads(0);
  5447 // Gang task for parallel reference enqueueing.
  5449 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5450   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5451   EnqueueTask& _enq_task;
  5453 public:
  5454   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5455     AbstractGangTask("Enqueue reference objects in parallel"),
  5456     _enq_task(enq_task)
  5457   { }
  5459   virtual void work(uint worker_id) {
  5460     _enq_task.work(worker_id);
  5462 };
  5464 // Driver routine for parallel reference enqueueing.
  5465 // Creates an instance of the ref enqueueing gang
  5466 // task and has the worker threads execute it.
  5468 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5469   assert(_workers != NULL, "Need parallel worker threads.");
  5471   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5473   _g1h->set_par_threads(_active_workers);
  5474   _workers->run_task(&enq_task_proxy);
  5475   _g1h->set_par_threads(0);
  5478 // End of weak reference support closures
  5480 // Abstract task used to preserve (i.e. copy) any referent objects
  5481 // that are in the collection set and are pointed to by reference
  5482 // objects discovered by the CM ref processor.
  5484 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5485 protected:
  5486   G1CollectedHeap* _g1h;
  5487   RefToScanQueueSet      *_queues;
  5488   ParallelTaskTerminator _terminator;
  5489   uint _n_workers;
  5491 public:
  5492   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5493     AbstractGangTask("ParPreserveCMReferents"),
  5494     _g1h(g1h),
  5495     _queues(task_queues),
  5496     _terminator(workers, _queues),
  5497     _n_workers(workers)
  5498   { }
  5500   void work(uint worker_id) {
  5501     ResourceMark rm;
  5502     HandleMark   hm;
  5504     G1ParScanThreadState            pss(_g1h, worker_id);
  5505     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5506     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5507     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5509     pss.set_evac_closure(&scan_evac_cl);
  5510     pss.set_evac_failure_closure(&evac_failure_cl);
  5511     pss.set_partial_scan_closure(&partial_scan_cl);
  5513     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5516     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5517     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
  5519     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5520     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
  5522     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5523     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
  5525     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5526       // We also need to mark copied objects.
  5527       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5528       copy_metadata_cl = &copy_mark_metadata_cl;
  5531     // Is alive closure
  5532     G1AlwaysAliveClosure always_alive(_g1h);
  5534     // Copying keep alive closure. Applied to referent objects that need
  5535     // to be copied.
  5536     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
  5538     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5540     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5541     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5543     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5544     // So this must be true - but assert just in case someone decides to
  5545     // change the worker ids.
  5546     assert(0 <= worker_id && worker_id < limit, "sanity");
  5547     assert(!rp->discovery_is_atomic(), "check this code");
  5549     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5550     for (uint idx = worker_id; idx < limit; idx += stride) {
  5551       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5553       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5554       while (iter.has_next()) {
  5555         // Since discovery is not atomic for the CM ref processor, we
  5556         // can see some null referent objects.
  5557         iter.load_ptrs(DEBUG_ONLY(true));
  5558         oop ref = iter.obj();
  5560         // This will filter nulls.
  5561         if (iter.is_referent_alive()) {
  5562           iter.make_referent_alive();
  5564         iter.move_to_next();
  5568     // Drain the queue - which may cause stealing
  5569     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5570     drain_queue.do_void();
  5571     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5572     assert(pss.refs()->is_empty(), "should be");
  5574 };
  5576 // Weak Reference processing during an evacuation pause (part 1).
  5577 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
  5578   double ref_proc_start = os::elapsedTime();
  5580   ReferenceProcessor* rp = _ref_processor_stw;
  5581   assert(rp->discovery_enabled(), "should have been enabled");
  5583   // Any reference objects, in the collection set, that were 'discovered'
  5584   // by the CM ref processor should have already been copied (either by
  5585   // applying the external root copy closure to the discovered lists, or
  5586   // by following an RSet entry).
  5587   //
  5588   // But some of the referents, that are in the collection set, that these
  5589   // reference objects point to may not have been copied: the STW ref
  5590   // processor would have seen that the reference object had already
  5591   // been 'discovered' and would have skipped discovering the reference,
  5592   // but would not have treated the reference object as a regular oop.
  5593   // As a result the copy closure would not have been applied to the
  5594   // referent object.
  5595   //
  5596   // We need to explicitly copy these referent objects - the references
  5597   // will be processed at the end of remarking.
  5598   //
  5599   // We also need to do this copying before we process the reference
  5600   // objects discovered by the STW ref processor in case one of these
  5601   // referents points to another object which is also referenced by an
  5602   // object discovered by the STW ref processor.
  5604   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5605            no_of_gc_workers == workers()->active_workers(),
  5606            "Need to reset active GC workers");
  5608   set_par_threads(no_of_gc_workers);
  5609   G1ParPreserveCMReferentsTask keep_cm_referents(this,
  5610                                                  no_of_gc_workers,
  5611                                                  _task_queues);
  5613   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5614     workers()->run_task(&keep_cm_referents);
  5615   } else {
  5616     keep_cm_referents.work(0);
  5619   set_par_threads(0);
  5621   // Closure to test whether a referent is alive.
  5622   G1STWIsAliveClosure is_alive(this);
  5624   // Even when parallel reference processing is enabled, the processing
  5625   // of JNI refs is serial and performed serially by the current thread
  5626   // rather than by a worker. The following PSS will be used for processing
  5627   // JNI refs.
  5629   // Use only a single queue for this PSS.
  5630   G1ParScanThreadState pss(this, 0);
  5632   // We do not embed a reference processor in the copying/scanning
  5633   // closures while we're actually processing the discovered
  5634   // reference objects.
  5635   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
  5636   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5637   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
  5639   pss.set_evac_closure(&scan_evac_cl);
  5640   pss.set_evac_failure_closure(&evac_failure_cl);
  5641   pss.set_partial_scan_closure(&partial_scan_cl);
  5643   assert(pss.refs()->is_empty(), "pre-condition");
  5645   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5646   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
  5648   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5649   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
  5651   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5652   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
  5654   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5655     // We also need to mark copied objects.
  5656     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5657     copy_metadata_cl = &copy_mark_metadata_cl;
  5660   // Keep alive closure.
  5661   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
  5663   // Serial Complete GC closure
  5664   G1STWDrainQueueClosure drain_queue(this, &pss);
  5666   // Setup the soft refs policy...
  5667   rp->setup_policy(false);
  5669   ReferenceProcessorStats stats;
  5670   if (!rp->processing_is_mt()) {
  5671     // Serial reference processing...
  5672     stats = rp->process_discovered_references(&is_alive,
  5673                                               &keep_alive,
  5674                                               &drain_queue,
  5675                                               NULL,
  5676                                               _gc_timer_stw);
  5677   } else {
  5678     // Parallel reference processing
  5679     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5680     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5682     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5683     stats = rp->process_discovered_references(&is_alive,
  5684                                               &keep_alive,
  5685                                               &drain_queue,
  5686                                               &par_task_executor,
  5687                                               _gc_timer_stw);
  5690   _gc_tracer_stw->report_gc_reference_stats(stats);
  5691   // We have completed copying any necessary live referent objects
  5692   // (that were not copied during the actual pause) so we can
  5693   // retire any active alloc buffers
  5694   pss.retire_alloc_buffers();
  5695   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5697   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5698   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
  5701 // Weak Reference processing during an evacuation pause (part 2).
  5702 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
  5703   double ref_enq_start = os::elapsedTime();
  5705   ReferenceProcessor* rp = _ref_processor_stw;
  5706   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5708   // Now enqueue any remaining on the discovered lists on to
  5709   // the pending list.
  5710   if (!rp->processing_is_mt()) {
  5711     // Serial reference processing...
  5712     rp->enqueue_discovered_references();
  5713   } else {
  5714     // Parallel reference enqueueing
  5716     assert(no_of_gc_workers == workers()->active_workers(),
  5717            "Need to reset active workers");
  5718     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5719     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5721     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5722     rp->enqueue_discovered_references(&par_task_executor);
  5725   rp->verify_no_references_recorded();
  5726   assert(!rp->discovery_enabled(), "should have been disabled");
  5728   // FIXME
  5729   // CM's reference processing also cleans up the string and symbol tables.
  5730   // Should we do that here also? We could, but it is a serial operation
  5731   // and could significantly increase the pause time.
  5733   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5734   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
  5737 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
  5738   _expand_heap_after_alloc_failure = true;
  5739   _evacuation_failed = false;
  5741   // Should G1EvacuationFailureALot be in effect for this GC?
  5742   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
  5744   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5746   // Disable the hot card cache.
  5747   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  5748   hot_card_cache->reset_hot_cache_claimed_index();
  5749   hot_card_cache->set_use_cache(false);
  5751   uint n_workers;
  5752   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5753     n_workers =
  5754       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  5755                                      workers()->active_workers(),
  5756                                      Threads::number_of_non_daemon_threads());
  5757     assert(UseDynamicNumberOfGCThreads ||
  5758            n_workers == workers()->total_workers(),
  5759            "If not dynamic should be using all the  workers");
  5760     workers()->set_active_workers(n_workers);
  5761     set_par_threads(n_workers);
  5762   } else {
  5763     assert(n_par_threads() == 0,
  5764            "Should be the original non-parallel value");
  5765     n_workers = 1;
  5768   G1ParTask g1_par_task(this, _task_queues);
  5770   init_for_evac_failure(NULL);
  5772   rem_set()->prepare_for_younger_refs_iterate(true);
  5774   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5775   double start_par_time_sec = os::elapsedTime();
  5776   double end_par_time_sec;
  5779     StrongRootsScope srs(this);
  5781     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5782       // The individual threads will set their evac-failure closures.
  5783       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5784       // These tasks use ShareHeap::_process_strong_tasks
  5785       assert(UseDynamicNumberOfGCThreads ||
  5786              workers()->active_workers() == workers()->total_workers(),
  5787              "If not dynamic should be using all the  workers");
  5788       workers()->run_task(&g1_par_task);
  5789     } else {
  5790       g1_par_task.set_for_termination(n_workers);
  5791       g1_par_task.work(0);
  5793     end_par_time_sec = os::elapsedTime();
  5795     // Closing the inner scope will execute the destructor
  5796     // for the StrongRootsScope object. We record the current
  5797     // elapsed time before closing the scope so that time
  5798     // taken for the SRS destructor is NOT included in the
  5799     // reported parallel time.
  5802   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  5803   g1_policy()->phase_times()->record_par_time(par_time_ms);
  5805   double code_root_fixup_time_ms =
  5806         (os::elapsedTime() - end_par_time_sec) * 1000.0;
  5807   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
  5809   set_par_threads(0);
  5811   // Process any discovered reference objects - we have
  5812   // to do this _before_ we retire the GC alloc regions
  5813   // as we may have to copy some 'reachable' referent
  5814   // objects (and their reachable sub-graphs) that were
  5815   // not copied during the pause.
  5816   process_discovered_references(n_workers);
  5818   // Weak root processing.
  5820     G1STWIsAliveClosure is_alive(this);
  5821     G1KeepAliveClosure keep_alive(this);
  5822     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  5825   release_gc_alloc_regions(n_workers, evacuation_info);
  5826   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5828   // Reset and re-enable the hot card cache.
  5829   // Note the counts for the cards in the regions in the
  5830   // collection set are reset when the collection set is freed.
  5831   hot_card_cache->reset_hot_cache();
  5832   hot_card_cache->set_use_cache(true);
  5834   // Migrate the strong code roots attached to each region in
  5835   // the collection set. Ideally we would like to do this
  5836   // after we have finished the scanning/evacuation of the
  5837   // strong code roots for a particular heap region.
  5838   migrate_strong_code_roots();
  5840   if (g1_policy()->during_initial_mark_pause()) {
  5841     // Reset the claim values set during marking the strong code roots
  5842     reset_heap_region_claim_values();
  5845   finalize_for_evac_failure();
  5847   if (evacuation_failed()) {
  5848     remove_self_forwarding_pointers();
  5850     // Reset the G1EvacuationFailureALot counters and flags
  5851     // Note: the values are reset only when an actual
  5852     // evacuation failure occurs.
  5853     NOT_PRODUCT(reset_evacuation_should_fail();)
  5856   // Enqueue any remaining references remaining on the STW
  5857   // reference processor's discovered lists. We need to do
  5858   // this after the card table is cleaned (and verified) as
  5859   // the act of enqueueing entries on to the pending list
  5860   // will log these updates (and dirty their associated
  5861   // cards). We need these updates logged to update any
  5862   // RSets.
  5863   enqueue_discovered_references(n_workers);
  5865   if (G1DeferredRSUpdate) {
  5866     RedirtyLoggedCardTableEntryFastClosure redirty;
  5867     dirty_card_queue_set().set_closure(&redirty);
  5868     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  5870     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5871     dcq.merge_bufferlists(&dirty_card_queue_set());
  5872     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5874   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  5877 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
  5878                                      size_t* pre_used,
  5879                                      FreeRegionList* free_list,
  5880                                      OldRegionSet* old_proxy_set,
  5881                                      HumongousRegionSet* humongous_proxy_set,
  5882                                      HRRSCleanupTask* hrrs_cleanup_task,
  5883                                      bool par) {
  5884   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  5885     if (hr->isHumongous()) {
  5886       assert(hr->startsHumongous(), "we should only see starts humongous");
  5887       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
  5888     } else {
  5889       _old_set.remove_with_proxy(hr, old_proxy_set);
  5890       free_region(hr, pre_used, free_list, par);
  5892   } else {
  5893     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
  5897 void G1CollectedHeap::free_region(HeapRegion* hr,
  5898                                   size_t* pre_used,
  5899                                   FreeRegionList* free_list,
  5900                                   bool par) {
  5901   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  5902   assert(!hr->is_empty(), "the region should not be empty");
  5903   assert(free_list != NULL, "pre-condition");
  5905   // Clear the card counts for this region.
  5906   // Note: we only need to do this if the region is not young
  5907   // (since we don't refine cards in young regions).
  5908   if (!hr->is_young()) {
  5909     _cg1r->hot_card_cache()->reset_card_counts(hr);
  5911   *pre_used += hr->used();
  5912   hr->hr_clear(par, true /* clear_space */);
  5913   free_list->add_as_head(hr);
  5916 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  5917                                      size_t* pre_used,
  5918                                      FreeRegionList* free_list,
  5919                                      HumongousRegionSet* humongous_proxy_set,
  5920                                      bool par) {
  5921   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  5922   assert(free_list != NULL, "pre-condition");
  5923   assert(humongous_proxy_set != NULL, "pre-condition");
  5925   size_t hr_used = hr->used();
  5926   size_t hr_capacity = hr->capacity();
  5927   size_t hr_pre_used = 0;
  5928   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  5929   // We need to read this before we make the region non-humongous,
  5930   // otherwise the information will be gone.
  5931   uint last_index = hr->last_hc_index();
  5932   hr->set_notHumongous();
  5933   free_region(hr, &hr_pre_used, free_list, par);
  5935   uint i = hr->hrs_index() + 1;
  5936   while (i < last_index) {
  5937     HeapRegion* curr_hr = region_at(i);
  5938     assert(curr_hr->continuesHumongous(), "invariant");
  5939     curr_hr->set_notHumongous();
  5940     free_region(curr_hr, &hr_pre_used, free_list, par);
  5941     i += 1;
  5943   assert(hr_pre_used == hr_used,
  5944          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
  5945                  "should be the same", hr_pre_used, hr_used));
  5946   *pre_used += hr_pre_used;
  5949 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
  5950                                        FreeRegionList* free_list,
  5951                                        OldRegionSet* old_proxy_set,
  5952                                        HumongousRegionSet* humongous_proxy_set,
  5953                                        bool par) {
  5954   if (pre_used > 0) {
  5955     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
  5956     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  5957     assert(_summary_bytes_used >= pre_used,
  5958            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
  5959                    "should be >= pre_used: "SIZE_FORMAT,
  5960                    _summary_bytes_used, pre_used));
  5961     _summary_bytes_used -= pre_used;
  5963   if (free_list != NULL && !free_list->is_empty()) {
  5964     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  5965     _free_list.add_as_head(free_list);
  5967   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
  5968     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5969     _old_set.update_from_proxy(old_proxy_set);
  5971   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
  5972     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5973     _humongous_set.update_from_proxy(humongous_proxy_set);
  5977 class G1ParCleanupCTTask : public AbstractGangTask {
  5978   CardTableModRefBS* _ct_bs;
  5979   G1CollectedHeap* _g1h;
  5980   HeapRegion* volatile _su_head;
  5981 public:
  5982   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  5983                      G1CollectedHeap* g1h) :
  5984     AbstractGangTask("G1 Par Cleanup CT Task"),
  5985     _ct_bs(ct_bs), _g1h(g1h) { }
  5987   void work(uint worker_id) {
  5988     HeapRegion* r;
  5989     while (r = _g1h->pop_dirty_cards_region()) {
  5990       clear_cards(r);
  5994   void clear_cards(HeapRegion* r) {
  5995     // Cards of the survivors should have already been dirtied.
  5996     if (!r->is_survivor()) {
  5997       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  6000 };
  6002 #ifndef PRODUCT
  6003 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  6004   G1CollectedHeap* _g1h;
  6005   CardTableModRefBS* _ct_bs;
  6006 public:
  6007   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
  6008     : _g1h(g1h), _ct_bs(ct_bs) { }
  6009   virtual bool doHeapRegion(HeapRegion* r) {
  6010     if (r->is_survivor()) {
  6011       _g1h->verify_dirty_region(r);
  6012     } else {
  6013       _g1h->verify_not_dirty_region(r);
  6015     return false;
  6017 };
  6019 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  6020   // All of the region should be clean.
  6021   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
  6022   MemRegion mr(hr->bottom(), hr->end());
  6023   ct_bs->verify_not_dirty_region(mr);
  6026 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  6027   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  6028   // dirty allocated blocks as they allocate them. The thread that
  6029   // retires each region and replaces it with a new one will do a
  6030   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  6031   // not dirty that area (one less thing to have to do while holding
  6032   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  6033   // is dirty.
  6034   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  6035   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  6036   ct_bs->verify_dirty_region(mr);
  6039 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  6040   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  6041   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  6042     verify_dirty_region(hr);
  6046 void G1CollectedHeap::verify_dirty_young_regions() {
  6047   verify_dirty_young_list(_young_list->first_region());
  6049 #endif
  6051 void G1CollectedHeap::cleanUpCardTable() {
  6052   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  6053   double start = os::elapsedTime();
  6056     // Iterate over the dirty cards region list.
  6057     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  6059     if (G1CollectedHeap::use_parallel_gc_threads()) {
  6060       set_par_threads();
  6061       workers()->run_task(&cleanup_task);
  6062       set_par_threads(0);
  6063     } else {
  6064       while (_dirty_cards_region_list) {
  6065         HeapRegion* r = _dirty_cards_region_list;
  6066         cleanup_task.clear_cards(r);
  6067         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  6068         if (_dirty_cards_region_list == r) {
  6069           // The last region.
  6070           _dirty_cards_region_list = NULL;
  6072         r->set_next_dirty_cards_region(NULL);
  6075 #ifndef PRODUCT
  6076     if (G1VerifyCTCleanup || VerifyAfterGC) {
  6077       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  6078       heap_region_iterate(&cleanup_verifier);
  6080 #endif
  6083   double elapsed = os::elapsedTime() - start;
  6084   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
  6087 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
  6088   size_t pre_used = 0;
  6089   FreeRegionList local_free_list("Local List for CSet Freeing");
  6091   double young_time_ms     = 0.0;
  6092   double non_young_time_ms = 0.0;
  6094   // Since the collection set is a superset of the the young list,
  6095   // all we need to do to clear the young list is clear its
  6096   // head and length, and unlink any young regions in the code below
  6097   _young_list->clear();
  6099   G1CollectorPolicy* policy = g1_policy();
  6101   double start_sec = os::elapsedTime();
  6102   bool non_young = true;
  6104   HeapRegion* cur = cs_head;
  6105   int age_bound = -1;
  6106   size_t rs_lengths = 0;
  6108   while (cur != NULL) {
  6109     assert(!is_on_master_free_list(cur), "sanity");
  6110     if (non_young) {
  6111       if (cur->is_young()) {
  6112         double end_sec = os::elapsedTime();
  6113         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6114         non_young_time_ms += elapsed_ms;
  6116         start_sec = os::elapsedTime();
  6117         non_young = false;
  6119     } else {
  6120       if (!cur->is_young()) {
  6121         double end_sec = os::elapsedTime();
  6122         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6123         young_time_ms += elapsed_ms;
  6125         start_sec = os::elapsedTime();
  6126         non_young = true;
  6130     rs_lengths += cur->rem_set()->occupied();
  6132     HeapRegion* next = cur->next_in_collection_set();
  6133     assert(cur->in_collection_set(), "bad CS");
  6134     cur->set_next_in_collection_set(NULL);
  6135     cur->set_in_collection_set(false);
  6137     if (cur->is_young()) {
  6138       int index = cur->young_index_in_cset();
  6139       assert(index != -1, "invariant");
  6140       assert((uint) index < policy->young_cset_region_length(), "invariant");
  6141       size_t words_survived = _surviving_young_words[index];
  6142       cur->record_surv_words_in_group(words_survived);
  6144       // At this point the we have 'popped' cur from the collection set
  6145       // (linked via next_in_collection_set()) but it is still in the
  6146       // young list (linked via next_young_region()). Clear the
  6147       // _next_young_region field.
  6148       cur->set_next_young_region(NULL);
  6149     } else {
  6150       int index = cur->young_index_in_cset();
  6151       assert(index == -1, "invariant");
  6154     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  6155             (!cur->is_young() && cur->young_index_in_cset() == -1),
  6156             "invariant" );
  6158     if (!cur->evacuation_failed()) {
  6159       MemRegion used_mr = cur->used_region();
  6161       // And the region is empty.
  6162       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  6163       free_region(cur, &pre_used, &local_free_list, false /* par */);
  6164     } else {
  6165       cur->uninstall_surv_rate_group();
  6166       if (cur->is_young()) {
  6167         cur->set_young_index_in_cset(-1);
  6169       cur->set_not_young();
  6170       cur->set_evacuation_failed(false);
  6171       // The region is now considered to be old.
  6172       _old_set.add(cur);
  6173       evacuation_info.increment_collectionset_used_after(cur->used());
  6175     cur = next;
  6178   evacuation_info.set_regions_freed(local_free_list.length());
  6179   policy->record_max_rs_lengths(rs_lengths);
  6180   policy->cset_regions_freed();
  6182   double end_sec = os::elapsedTime();
  6183   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6185   if (non_young) {
  6186     non_young_time_ms += elapsed_ms;
  6187   } else {
  6188     young_time_ms += elapsed_ms;
  6191   update_sets_after_freeing_regions(pre_used, &local_free_list,
  6192                                     NULL /* old_proxy_set */,
  6193                                     NULL /* humongous_proxy_set */,
  6194                                     false /* par */);
  6195   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  6196   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
  6199 // This routine is similar to the above but does not record
  6200 // any policy statistics or update free lists; we are abandoning
  6201 // the current incremental collection set in preparation of a
  6202 // full collection. After the full GC we will start to build up
  6203 // the incremental collection set again.
  6204 // This is only called when we're doing a full collection
  6205 // and is immediately followed by the tearing down of the young list.
  6207 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  6208   HeapRegion* cur = cs_head;
  6210   while (cur != NULL) {
  6211     HeapRegion* next = cur->next_in_collection_set();
  6212     assert(cur->in_collection_set(), "bad CS");
  6213     cur->set_next_in_collection_set(NULL);
  6214     cur->set_in_collection_set(false);
  6215     cur->set_young_index_in_cset(-1);
  6216     cur = next;
  6220 void G1CollectedHeap::set_free_regions_coming() {
  6221   if (G1ConcRegionFreeingVerbose) {
  6222     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6223                            "setting free regions coming");
  6226   assert(!free_regions_coming(), "pre-condition");
  6227   _free_regions_coming = true;
  6230 void G1CollectedHeap::reset_free_regions_coming() {
  6231   assert(free_regions_coming(), "pre-condition");
  6234     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6235     _free_regions_coming = false;
  6236     SecondaryFreeList_lock->notify_all();
  6239   if (G1ConcRegionFreeingVerbose) {
  6240     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6241                            "reset free regions coming");
  6245 void G1CollectedHeap::wait_while_free_regions_coming() {
  6246   // Most of the time we won't have to wait, so let's do a quick test
  6247   // first before we take the lock.
  6248   if (!free_regions_coming()) {
  6249     return;
  6252   if (G1ConcRegionFreeingVerbose) {
  6253     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6254                            "waiting for free regions");
  6258     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6259     while (free_regions_coming()) {
  6260       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  6264   if (G1ConcRegionFreeingVerbose) {
  6265     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6266                            "done waiting for free regions");
  6270 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  6271   assert(heap_lock_held_for_gc(),
  6272               "the heap lock should already be held by or for this thread");
  6273   _young_list->push_region(hr);
  6276 class NoYoungRegionsClosure: public HeapRegionClosure {
  6277 private:
  6278   bool _success;
  6279 public:
  6280   NoYoungRegionsClosure() : _success(true) { }
  6281   bool doHeapRegion(HeapRegion* r) {
  6282     if (r->is_young()) {
  6283       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  6284                              r->bottom(), r->end());
  6285       _success = false;
  6287     return false;
  6289   bool success() { return _success; }
  6290 };
  6292 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  6293   bool ret = _young_list->check_list_empty(check_sample);
  6295   if (check_heap) {
  6296     NoYoungRegionsClosure closure;
  6297     heap_region_iterate(&closure);
  6298     ret = ret && closure.success();
  6301   return ret;
  6304 class TearDownRegionSetsClosure : public HeapRegionClosure {
  6305 private:
  6306   OldRegionSet *_old_set;
  6308 public:
  6309   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
  6311   bool doHeapRegion(HeapRegion* r) {
  6312     if (r->is_empty()) {
  6313       // We ignore empty regions, we'll empty the free list afterwards
  6314     } else if (r->is_young()) {
  6315       // We ignore young regions, we'll empty the young list afterwards
  6316     } else if (r->isHumongous()) {
  6317       // We ignore humongous regions, we're not tearing down the
  6318       // humongous region set
  6319     } else {
  6320       // The rest should be old
  6321       _old_set->remove(r);
  6323     return false;
  6326   ~TearDownRegionSetsClosure() {
  6327     assert(_old_set->is_empty(), "post-condition");
  6329 };
  6331 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  6332   assert_at_safepoint(true /* should_be_vm_thread */);
  6334   if (!free_list_only) {
  6335     TearDownRegionSetsClosure cl(&_old_set);
  6336     heap_region_iterate(&cl);
  6338     // Need to do this after the heap iteration to be able to
  6339     // recognize the young regions and ignore them during the iteration.
  6340     _young_list->empty_list();
  6342   _free_list.remove_all();
  6345 class RebuildRegionSetsClosure : public HeapRegionClosure {
  6346 private:
  6347   bool            _free_list_only;
  6348   OldRegionSet*   _old_set;
  6349   FreeRegionList* _free_list;
  6350   size_t          _total_used;
  6352 public:
  6353   RebuildRegionSetsClosure(bool free_list_only,
  6354                            OldRegionSet* old_set, FreeRegionList* free_list) :
  6355     _free_list_only(free_list_only),
  6356     _old_set(old_set), _free_list(free_list), _total_used(0) {
  6357     assert(_free_list->is_empty(), "pre-condition");
  6358     if (!free_list_only) {
  6359       assert(_old_set->is_empty(), "pre-condition");
  6363   bool doHeapRegion(HeapRegion* r) {
  6364     if (r->continuesHumongous()) {
  6365       return false;
  6368     if (r->is_empty()) {
  6369       // Add free regions to the free list
  6370       _free_list->add_as_tail(r);
  6371     } else if (!_free_list_only) {
  6372       assert(!r->is_young(), "we should not come across young regions");
  6374       if (r->isHumongous()) {
  6375         // We ignore humongous regions, we left the humongous set unchanged
  6376       } else {
  6377         // The rest should be old, add them to the old set
  6378         _old_set->add(r);
  6380       _total_used += r->used();
  6383     return false;
  6386   size_t total_used() {
  6387     return _total_used;
  6389 };
  6391 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  6392   assert_at_safepoint(true /* should_be_vm_thread */);
  6394   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  6395   heap_region_iterate(&cl);
  6397   if (!free_list_only) {
  6398     _summary_bytes_used = cl.total_used();
  6400   assert(_summary_bytes_used == recalculate_used(),
  6401          err_msg("inconsistent _summary_bytes_used, "
  6402                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
  6403                  _summary_bytes_used, recalculate_used()));
  6406 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  6407   _refine_cte_cl->set_concurrent(concurrent);
  6410 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  6411   HeapRegion* hr = heap_region_containing(p);
  6412   if (hr == NULL) {
  6413     return false;
  6414   } else {
  6415     return hr->is_in(p);
  6419 // Methods for the mutator alloc region
  6421 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  6422                                                       bool force) {
  6423   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6424   assert(!force || g1_policy()->can_expand_young_list(),
  6425          "if force is true we should be able to expand the young list");
  6426   bool young_list_full = g1_policy()->is_young_list_full();
  6427   if (force || !young_list_full) {
  6428     HeapRegion* new_alloc_region = new_region(word_size,
  6429                                               false /* do_expand */);
  6430     if (new_alloc_region != NULL) {
  6431       set_region_short_lived_locked(new_alloc_region);
  6432       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  6433       return new_alloc_region;
  6436   return NULL;
  6439 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  6440                                                   size_t allocated_bytes) {
  6441   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6442   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  6444   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6445   _summary_bytes_used += allocated_bytes;
  6446   _hr_printer.retire(alloc_region);
  6447   // We update the eden sizes here, when the region is retired,
  6448   // instead of when it's allocated, since this is the point that its
  6449   // used space has been recored in _summary_bytes_used.
  6450   g1mm()->update_eden_size();
  6453 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
  6454                                                     bool force) {
  6455   return _g1h->new_mutator_alloc_region(word_size, force);
  6458 void G1CollectedHeap::set_par_threads() {
  6459   // Don't change the number of workers.  Use the value previously set
  6460   // in the workgroup.
  6461   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6462   uint n_workers = workers()->active_workers();
  6463   assert(UseDynamicNumberOfGCThreads ||
  6464            n_workers == workers()->total_workers(),
  6465       "Otherwise should be using the total number of workers");
  6466   if (n_workers == 0) {
  6467     assert(false, "Should have been set in prior evacuation pause.");
  6468     n_workers = ParallelGCThreads;
  6469     workers()->set_active_workers(n_workers);
  6471   set_par_threads(n_workers);
  6474 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
  6475                                        size_t allocated_bytes) {
  6476   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
  6479 // Methods for the GC alloc regions
  6481 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6482                                                  uint count,
  6483                                                  GCAllocPurpose ap) {
  6484   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6486   if (count < g1_policy()->max_regions(ap)) {
  6487     HeapRegion* new_alloc_region = new_region(word_size,
  6488                                               true /* do_expand */);
  6489     if (new_alloc_region != NULL) {
  6490       // We really only need to do this for old regions given that we
  6491       // should never scan survivors. But it doesn't hurt to do it
  6492       // for survivors too.
  6493       new_alloc_region->set_saved_mark();
  6494       if (ap == GCAllocForSurvived) {
  6495         new_alloc_region->set_survivor();
  6496         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6497       } else {
  6498         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6500       bool during_im = g1_policy()->during_initial_mark_pause();
  6501       new_alloc_region->note_start_of_copying(during_im);
  6502       return new_alloc_region;
  6503     } else {
  6504       g1_policy()->note_alloc_region_limit_reached(ap);
  6507   return NULL;
  6510 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6511                                              size_t allocated_bytes,
  6512                                              GCAllocPurpose ap) {
  6513   bool during_im = g1_policy()->during_initial_mark_pause();
  6514   alloc_region->note_end_of_copying(during_im);
  6515   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6516   if (ap == GCAllocForSurvived) {
  6517     young_list()->add_survivor_region(alloc_region);
  6518   } else {
  6519     _old_set.add(alloc_region);
  6521   _hr_printer.retire(alloc_region);
  6524 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
  6525                                                        bool force) {
  6526   assert(!force, "not supported for GC alloc regions");
  6527   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
  6530 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6531                                           size_t allocated_bytes) {
  6532   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6533                                GCAllocForSurvived);
  6536 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
  6537                                                   bool force) {
  6538   assert(!force, "not supported for GC alloc regions");
  6539   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
  6542 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6543                                      size_t allocated_bytes) {
  6544   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6545                                GCAllocForTenured);
  6547 // Heap region set verification
  6549 class VerifyRegionListsClosure : public HeapRegionClosure {
  6550 private:
  6551   FreeRegionList*     _free_list;
  6552   OldRegionSet*       _old_set;
  6553   HumongousRegionSet* _humongous_set;
  6554   uint                _region_count;
  6556 public:
  6557   VerifyRegionListsClosure(OldRegionSet* old_set,
  6558                            HumongousRegionSet* humongous_set,
  6559                            FreeRegionList* free_list) :
  6560     _old_set(old_set), _humongous_set(humongous_set),
  6561     _free_list(free_list), _region_count(0) { }
  6563   uint region_count() { return _region_count; }
  6565   bool doHeapRegion(HeapRegion* hr) {
  6566     _region_count += 1;
  6568     if (hr->continuesHumongous()) {
  6569       return false;
  6572     if (hr->is_young()) {
  6573       // TODO
  6574     } else if (hr->startsHumongous()) {
  6575       _humongous_set->verify_next_region(hr);
  6576     } else if (hr->is_empty()) {
  6577       _free_list->verify_next_region(hr);
  6578     } else {
  6579       _old_set->verify_next_region(hr);
  6581     return false;
  6583 };
  6585 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
  6586                                              HeapWord* bottom) {
  6587   HeapWord* end = bottom + HeapRegion::GrainWords;
  6588   MemRegion mr(bottom, end);
  6589   assert(_g1_reserved.contains(mr), "invariant");
  6590   // This might return NULL if the allocation fails
  6591   return new HeapRegion(hrs_index, _bot_shared, mr);
  6594 void G1CollectedHeap::verify_region_sets() {
  6595   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6597   // First, check the explicit lists.
  6598   _free_list.verify();
  6600     // Given that a concurrent operation might be adding regions to
  6601     // the secondary free list we have to take the lock before
  6602     // verifying it.
  6603     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6604     _secondary_free_list.verify();
  6606   _old_set.verify();
  6607   _humongous_set.verify();
  6609   // If a concurrent region freeing operation is in progress it will
  6610   // be difficult to correctly attributed any free regions we come
  6611   // across to the correct free list given that they might belong to
  6612   // one of several (free_list, secondary_free_list, any local lists,
  6613   // etc.). So, if that's the case we will skip the rest of the
  6614   // verification operation. Alternatively, waiting for the concurrent
  6615   // operation to complete will have a non-trivial effect on the GC's
  6616   // operation (no concurrent operation will last longer than the
  6617   // interval between two calls to verification) and it might hide
  6618   // any issues that we would like to catch during testing.
  6619   if (free_regions_coming()) {
  6620     return;
  6623   // Make sure we append the secondary_free_list on the free_list so
  6624   // that all free regions we will come across can be safely
  6625   // attributed to the free_list.
  6626   append_secondary_free_list_if_not_empty_with_lock();
  6628   // Finally, make sure that the region accounting in the lists is
  6629   // consistent with what we see in the heap.
  6630   _old_set.verify_start();
  6631   _humongous_set.verify_start();
  6632   _free_list.verify_start();
  6634   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
  6635   heap_region_iterate(&cl);
  6637   _old_set.verify_end();
  6638   _humongous_set.verify_end();
  6639   _free_list.verify_end();
  6642 // Optimized nmethod scanning
  6644 class RegisterNMethodOopClosure: public OopClosure {
  6645   G1CollectedHeap* _g1h;
  6646   nmethod* _nm;
  6648   template <class T> void do_oop_work(T* p) {
  6649     T heap_oop = oopDesc::load_heap_oop(p);
  6650     if (!oopDesc::is_null(heap_oop)) {
  6651       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6652       HeapRegion* hr = _g1h->heap_region_containing(obj);
  6653       assert(!hr->isHumongous(), "code root in humongous region?");
  6655       // HeapRegion::add_strong_code_root() avoids adding duplicate
  6656       // entries but having duplicates is  OK since we "mark" nmethods
  6657       // as visited when we scan the strong code root lists during the GC.
  6658       hr->add_strong_code_root(_nm);
  6659       assert(hr->rem_set()->strong_code_roots_list_contains(_nm), "add failed?");
  6663 public:
  6664   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  6665     _g1h(g1h), _nm(nm) {}
  6667   void do_oop(oop* p)       { do_oop_work(p); }
  6668   void do_oop(narrowOop* p) { do_oop_work(p); }
  6669 };
  6671 class UnregisterNMethodOopClosure: public OopClosure {
  6672   G1CollectedHeap* _g1h;
  6673   nmethod* _nm;
  6675   template <class T> void do_oop_work(T* p) {
  6676     T heap_oop = oopDesc::load_heap_oop(p);
  6677     if (!oopDesc::is_null(heap_oop)) {
  6678       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6679       HeapRegion* hr = _g1h->heap_region_containing(obj);
  6680       assert(!hr->isHumongous(), "code root in humongous region?");
  6681       hr->remove_strong_code_root(_nm);
  6682       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm), "remove failed?");
  6686 public:
  6687   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  6688     _g1h(g1h), _nm(nm) {}
  6690   void do_oop(oop* p)       { do_oop_work(p); }
  6691   void do_oop(narrowOop* p) { do_oop_work(p); }
  6692 };
  6694 void G1CollectedHeap::register_nmethod(nmethod* nm) {
  6695   CollectedHeap::register_nmethod(nm);
  6697   guarantee(nm != NULL, "sanity");
  6698   RegisterNMethodOopClosure reg_cl(this, nm);
  6699   nm->oops_do(&reg_cl);
  6702 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  6703   CollectedHeap::unregister_nmethod(nm);
  6705   guarantee(nm != NULL, "sanity");
  6706   UnregisterNMethodOopClosure reg_cl(this, nm);
  6707   nm->oops_do(&reg_cl, true);
  6710 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
  6711 public:
  6712   bool doHeapRegion(HeapRegion *hr) {
  6713     assert(!hr->isHumongous(), "humongous region in collection set?");
  6714     hr->migrate_strong_code_roots();
  6715     return false;
  6717 };
  6719 void G1CollectedHeap::migrate_strong_code_roots() {
  6720   MigrateCodeRootsHeapRegionClosure cl;
  6721   double migrate_start = os::elapsedTime();
  6722   collection_set_iterate(&cl);
  6723   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
  6724   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
  6727 // Mark all the code roots that point into regions *not* in the
  6728 // collection set.
  6729 //
  6730 // Note we do not want to use a "marking" CodeBlobToOopClosure while
  6731 // walking the the code roots lists of regions not in the collection
  6732 // set. Suppose we have an nmethod (M) that points to objects in two
  6733 // separate regions - one in the collection set (R1) and one not (R2).
  6734 // Using a "marking" CodeBlobToOopClosure here would result in "marking"
  6735 // nmethod M when walking the code roots for R1. When we come to scan
  6736 // the code roots for R2, we would see that M is already marked and it
  6737 // would be skipped and the objects in R2 that are referenced from M
  6738 // would not be evacuated.
  6740 class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
  6742   class MarkStrongCodeRootOopClosure: public OopClosure {
  6743     ConcurrentMark* _cm;
  6744     HeapRegion* _hr;
  6745     uint _worker_id;
  6747     template <class T> void do_oop_work(T* p) {
  6748       T heap_oop = oopDesc::load_heap_oop(p);
  6749       if (!oopDesc::is_null(heap_oop)) {
  6750         oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6751         // Only mark objects in the region (which is assumed
  6752         // to be not in the collection set).
  6753         if (_hr->is_in(obj)) {
  6754           _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  6759   public:
  6760     MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) :
  6761       _cm(cm), _hr(hr), _worker_id(worker_id) {
  6762       assert(!_hr->in_collection_set(), "sanity");
  6765     void do_oop(narrowOop* p) { do_oop_work(p); }
  6766     void do_oop(oop* p)       { do_oop_work(p); }
  6767   };
  6769   MarkStrongCodeRootOopClosure _oop_cl;
  6771 public:
  6772   MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id):
  6773     _oop_cl(cm, hr, worker_id) {}
  6775   void do_code_blob(CodeBlob* cb) {
  6776     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
  6777     if (nm != NULL) {
  6778       nm->oops_do(&_oop_cl);
  6781 };
  6783 class MarkStrongCodeRootsHRClosure: public HeapRegionClosure {
  6784   G1CollectedHeap* _g1h;
  6785   uint _worker_id;
  6787 public:
  6788   MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) :
  6789     _g1h(g1h), _worker_id(worker_id) {}
  6791   bool doHeapRegion(HeapRegion *hr) {
  6792     HeapRegionRemSet* hrrs = hr->rem_set();
  6793     if (hr->isHumongous()) {
  6794       // Code roots should never be attached to a humongous region
  6795       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
  6796       return false;
  6799     if (hr->in_collection_set()) {
  6800       // Don't mark code roots into regions in the collection set here.
  6801       // They will be marked when we scan them.
  6802       return false;
  6805     MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id);
  6806     hr->strong_code_roots_do(&cb_cl);
  6807     return false;
  6809 };
  6811 void G1CollectedHeap::mark_strong_code_roots(uint worker_id) {
  6812   MarkStrongCodeRootsHRClosure cl(this, worker_id);
  6813   if (G1CollectedHeap::use_parallel_gc_threads()) {
  6814     heap_region_par_iterate_chunked(&cl,
  6815                                     worker_id,
  6816                                     workers()->active_workers(),
  6817                                     HeapRegion::ParMarkRootClaimValue);
  6818   } else {
  6819     heap_region_iterate(&cl);
  6823 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  6824   G1CollectedHeap* _g1h;
  6826 public:
  6827   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
  6828     _g1h(g1h) {}
  6830   void do_code_blob(CodeBlob* cb) {
  6831     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
  6832     if (nm == NULL) {
  6833       return;
  6836     if (ScavengeRootsInCode && nm->detect_scavenge_root_oops()) {
  6837       _g1h->register_nmethod(nm);
  6840 };
  6842 void G1CollectedHeap::rebuild_strong_code_roots() {
  6843   RebuildStrongCodeRootClosure blob_cl(this);
  6844   CodeCache::blobs_do(&blob_cl);

mercurial