src/share/vm/opto/node.hpp

Mon, 25 May 2020 14:24:27 +0800

author
fyang
date
Mon, 25 May 2020 14:24:27 +0800
changeset 9922
f7691a80458c
parent 9912
97d09139b360
child 9931
fd44df5e3bc3
child 9952
19056c781208
permissions
-rw-r--r--

8244407: JVM crashes after transformation in C2 IdealLoopTree::split_fall_in
Reviewed-by: thartmann, kvn, andrew
Contributed-by: zhouyong44@huawei.com

     1 /*
     2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_NODE_HPP
    26 #define SHARE_VM_OPTO_NODE_HPP
    28 #include "libadt/port.hpp"
    29 #include "libadt/vectset.hpp"
    30 #include "opto/compile.hpp"
    31 #include "opto/type.hpp"
    33 // Portions of code courtesy of Clifford Click
    35 // Optimization - Graph Style
    38 class AbstractLockNode;
    39 class AddNode;
    40 class AddPNode;
    41 class AliasInfo;
    42 class AllocateArrayNode;
    43 class AllocateNode;
    44 class Block;
    45 class BoolNode;
    46 class BoxLockNode;
    47 class CMoveNode;
    48 class CallDynamicJavaNode;
    49 class CallJavaNode;
    50 class CallLeafNode;
    51 class CallNode;
    52 class CallRuntimeNode;
    53 class CallStaticJavaNode;
    54 class CatchNode;
    55 class CatchProjNode;
    56 class CheckCastPPNode;
    57 class CastIINode;
    58 class ClearArrayNode;
    59 class CmpNode;
    60 class CodeBuffer;
    61 class ConstraintCastNode;
    62 class ConNode;
    63 class CountedLoopNode;
    64 class CountedLoopEndNode;
    65 class DecodeNarrowPtrNode;
    66 class DecodeNNode;
    67 class DecodeNKlassNode;
    68 class EncodeNarrowPtrNode;
    69 class EncodePNode;
    70 class EncodePKlassNode;
    71 class FastLockNode;
    72 class FastUnlockNode;
    73 class IfNode;
    74 class IfFalseNode;
    75 class IfTrueNode;
    76 class InitializeNode;
    77 class JVMState;
    78 class JumpNode;
    79 class JumpProjNode;
    80 class LoadNode;
    81 class LoadStoreNode;
    82 class LockNode;
    83 class LoopNode;
    84 class MachBranchNode;
    85 class MachCallDynamicJavaNode;
    86 class MachCallJavaNode;
    87 class MachCallLeafNode;
    88 class MachCallNode;
    89 class MachCallRuntimeNode;
    90 class MachCallStaticJavaNode;
    91 class MachConstantBaseNode;
    92 class MachConstantNode;
    93 class MachGotoNode;
    94 class MachIfNode;
    95 class MachNode;
    96 class MachNullCheckNode;
    97 class MachProjNode;
    98 class MachReturnNode;
    99 class MachSafePointNode;
   100 class MachSpillCopyNode;
   101 class MachTempNode;
   102 class MachMergeNode;
   103 class Matcher;
   104 class MemBarNode;
   105 class MemBarStoreStoreNode;
   106 class MemNode;
   107 class MergeMemNode;
   108 class MulNode;
   109 class MultiNode;
   110 class MultiBranchNode;
   111 class NeverBranchNode;
   112 class Node;
   113 class Node_Array;
   114 class Node_List;
   115 class Node_Stack;
   116 class NullCheckNode;
   117 class OopMap;
   118 class ParmNode;
   119 class PCTableNode;
   120 class PhaseCCP;
   121 class PhaseGVN;
   122 class PhaseIterGVN;
   123 class PhaseRegAlloc;
   124 class PhaseTransform;
   125 class PhaseValues;
   126 class PhiNode;
   127 class Pipeline;
   128 class ProjNode;
   129 class RegMask;
   130 class RegionNode;
   131 class RootNode;
   132 class SafePointNode;
   133 class SafePointScalarObjectNode;
   134 class StartNode;
   135 class State;
   136 class StoreNode;
   137 class SubNode;
   138 class Type;
   139 class TypeNode;
   140 class UnlockNode;
   141 class VectorNode;
   142 class LoadVectorNode;
   143 class StoreVectorNode;
   144 class VectorSet;
   145 typedef void (*NFunc)(Node&,void*);
   146 extern "C" {
   147   typedef int (*C_sort_func_t)(const void *, const void *);
   148 }
   150 // The type of all node counts and indexes.
   151 // It must hold at least 16 bits, but must also be fast to load and store.
   152 // This type, if less than 32 bits, could limit the number of possible nodes.
   153 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
   154 typedef unsigned int node_idx_t;
   157 #ifndef OPTO_DU_ITERATOR_ASSERT
   158 #ifdef ASSERT
   159 #define OPTO_DU_ITERATOR_ASSERT 1
   160 #else
   161 #define OPTO_DU_ITERATOR_ASSERT 0
   162 #endif
   163 #endif //OPTO_DU_ITERATOR_ASSERT
   165 #if OPTO_DU_ITERATOR_ASSERT
   166 class DUIterator;
   167 class DUIterator_Fast;
   168 class DUIterator_Last;
   169 #else
   170 typedef uint   DUIterator;
   171 typedef Node** DUIterator_Fast;
   172 typedef Node** DUIterator_Last;
   173 #endif
   175 // Node Sentinel
   176 #define NodeSentinel (Node*)-1
   178 // Unknown count frequency
   179 #define COUNT_UNKNOWN (-1.0f)
   181 //------------------------------Node-------------------------------------------
   182 // Nodes define actions in the program.  They create values, which have types.
   183 // They are both vertices in a directed graph and program primitives.  Nodes
   184 // are labeled; the label is the "opcode", the primitive function in the lambda
   185 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
   186 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
   187 // the Node's function.  These inputs also define a Type equation for the Node.
   188 // Solving these Type equations amounts to doing dataflow analysis.
   189 // Control and data are uniformly represented in the graph.  Finally, Nodes
   190 // have a unique dense integer index which is used to index into side arrays
   191 // whenever I have phase-specific information.
   193 class Node {
   194   friend class VMStructs;
   196   // Lots of restrictions on cloning Nodes
   197   Node(const Node&);            // not defined; linker error to use these
   198   Node &operator=(const Node &rhs);
   200 public:
   201   friend class Compile;
   202   #if OPTO_DU_ITERATOR_ASSERT
   203   friend class DUIterator_Common;
   204   friend class DUIterator;
   205   friend class DUIterator_Fast;
   206   friend class DUIterator_Last;
   207   #endif
   209   // Because Nodes come and go, I define an Arena of Node structures to pull
   210   // from.  This should allow fast access to node creation & deletion.  This
   211   // field is a local cache of a value defined in some "program fragment" for
   212   // which these Nodes are just a part of.
   214   // New Operator that takes a Compile pointer, this will eventually
   215   // be the "new" New operator.
   216   inline void* operator new( size_t x, Compile* C) throw() {
   217     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
   218 #ifdef ASSERT
   219     n->_in = (Node**)n; // magic cookie for assertion check
   220 #endif
   221     n->_out = (Node**)C;
   222     return (void*)n;
   223   }
   225   // Delete is a NOP
   226   void operator delete( void *ptr ) {}
   227   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
   228   void destruct();
   230   // Create a new Node.  Required is the number is of inputs required for
   231   // semantic correctness.
   232   Node( uint required );
   234   // Create a new Node with given input edges.
   235   // This version requires use of the "edge-count" new.
   236   // E.g.  new (C,3) FooNode( C, NULL, left, right );
   237   Node( Node *n0 );
   238   Node( Node *n0, Node *n1 );
   239   Node( Node *n0, Node *n1, Node *n2 );
   240   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
   241   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
   242   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
   243   Node( Node *n0, Node *n1, Node *n2, Node *n3,
   244             Node *n4, Node *n5, Node *n6 );
   246   // Clone an inherited Node given only the base Node type.
   247   Node* clone() const;
   249   // Clone a Node, immediately supplying one or two new edges.
   250   // The first and second arguments, if non-null, replace in(1) and in(2),
   251   // respectively.
   252   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
   253     Node* nn = clone();
   254     if (in1 != NULL)  nn->set_req(1, in1);
   255     if (in2 != NULL)  nn->set_req(2, in2);
   256     return nn;
   257   }
   259 private:
   260   // Shared setup for the above constructors.
   261   // Handles all interactions with Compile::current.
   262   // Puts initial values in all Node fields except _idx.
   263   // Returns the initial value for _idx, which cannot
   264   // be initialized by assignment.
   265   inline int Init(int req, Compile* C);
   267 //----------------- input edge handling
   268 protected:
   269   friend class PhaseCFG;        // Access to address of _in array elements
   270   Node **_in;                   // Array of use-def references to Nodes
   271   Node **_out;                  // Array of def-use references to Nodes
   273   // Input edges are split into two categories.  Required edges are required
   274   // for semantic correctness; order is important and NULLs are allowed.
   275   // Precedence edges are used to help determine execution order and are
   276   // added, e.g., for scheduling purposes.  They are unordered and not
   277   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
   278   // are required, from _cnt to _max-1 are precedence edges.
   279   node_idx_t _cnt;              // Total number of required Node inputs.
   281   node_idx_t _max;              // Actual length of input array.
   283   // Output edges are an unordered list of def-use edges which exactly
   284   // correspond to required input edges which point from other nodes
   285   // to this one.  Thus the count of the output edges is the number of
   286   // users of this node.
   287   node_idx_t _outcnt;           // Total number of Node outputs.
   289   node_idx_t _outmax;           // Actual length of output array.
   291   // Grow the actual input array to the next larger power-of-2 bigger than len.
   292   void grow( uint len );
   293   // Grow the output array to the next larger power-of-2 bigger than len.
   294   void out_grow( uint len );
   296  public:
   297   // Each Node is assigned a unique small/dense number.  This number is used
   298   // to index into auxiliary arrays of data and bit vectors.
   299   // The field _idx is declared constant to defend against inadvertent assignments,
   300   // since it is used by clients as a naked field. However, the field's value can be
   301   // changed using the set_idx() method.
   302   //
   303   // The PhaseRenumberLive phase renumbers nodes based on liveness information.
   304   // Therefore, it updates the value of the _idx field. The parse-time _idx is
   305   // preserved in _parse_idx.
   306   const node_idx_t _idx;
   307   DEBUG_ONLY(const node_idx_t _parse_idx;)
   309   // Get the (read-only) number of input edges
   310   uint req() const { return _cnt; }
   311   uint len() const { return _max; }
   312   // Get the (read-only) number of output edges
   313   uint outcnt() const { return _outcnt; }
   315 #if OPTO_DU_ITERATOR_ASSERT
   316   // Iterate over the out-edges of this node.  Deletions are illegal.
   317   inline DUIterator outs() const;
   318   // Use this when the out array might have changed to suppress asserts.
   319   inline DUIterator& refresh_out_pos(DUIterator& i) const;
   320   // Does the node have an out at this position?  (Used for iteration.)
   321   inline bool has_out(DUIterator& i) const;
   322   inline Node*    out(DUIterator& i) const;
   323   // Iterate over the out-edges of this node.  All changes are illegal.
   324   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
   325   inline Node*    fast_out(DUIterator_Fast& i) const;
   326   // Iterate over the out-edges of this node, deleting one at a time.
   327   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
   328   inline Node*    last_out(DUIterator_Last& i) const;
   329   // The inline bodies of all these methods are after the iterator definitions.
   330 #else
   331   // Iterate over the out-edges of this node.  Deletions are illegal.
   332   // This iteration uses integral indexes, to decouple from array reallocations.
   333   DUIterator outs() const  { return 0; }
   334   // Use this when the out array might have changed to suppress asserts.
   335   DUIterator refresh_out_pos(DUIterator i) const { return i; }
   337   // Reference to the i'th output Node.  Error if out of bounds.
   338   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
   339   // Does the node have an out at this position?  (Used for iteration.)
   340   bool has_out(DUIterator i) const { return i < _outcnt; }
   342   // Iterate over the out-edges of this node.  All changes are illegal.
   343   // This iteration uses a pointer internal to the out array.
   344   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
   345     Node** out = _out;
   346     // Assign a limit pointer to the reference argument:
   347     max = out + (ptrdiff_t)_outcnt;
   348     // Return the base pointer:
   349     return out;
   350   }
   351   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
   352   // Iterate over the out-edges of this node, deleting one at a time.
   353   // This iteration uses a pointer internal to the out array.
   354   DUIterator_Last last_outs(DUIterator_Last& min) const {
   355     Node** out = _out;
   356     // Assign a limit pointer to the reference argument:
   357     min = out;
   358     // Return the pointer to the start of the iteration:
   359     return out + (ptrdiff_t)_outcnt - 1;
   360   }
   361   Node*    last_out(DUIterator_Last i) const  { return *i; }
   362 #endif
   364   // Reference to the i'th input Node.  Error if out of bounds.
   365   Node* in(uint i) const { assert(i < _max, err_msg_res("oob: i=%d, _max=%d", i, _max)); return _in[i]; }
   366   // Reference to the i'th input Node.  NULL if out of bounds.
   367   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
   368   // Reference to the i'th output Node.  Error if out of bounds.
   369   // Use this accessor sparingly.  We are going trying to use iterators instead.
   370   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
   371   // Return the unique out edge.
   372   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
   373   // Delete out edge at position 'i' by moving last out edge to position 'i'
   374   void  raw_del_out(uint i) {
   375     assert(i < _outcnt,"oob");
   376     assert(_outcnt > 0,"oob");
   377     #if OPTO_DU_ITERATOR_ASSERT
   378     // Record that a change happened here.
   379     debug_only(_last_del = _out[i]; ++_del_tick);
   380     #endif
   381     _out[i] = _out[--_outcnt];
   382     // Smash the old edge so it can't be used accidentally.
   383     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
   384   }
   386 #ifdef ASSERT
   387   bool is_dead() const;
   388 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
   389 #endif
   390   // Check whether node has become unreachable
   391   bool is_unreachable(PhaseIterGVN &igvn) const;
   393   // Set a required input edge, also updates corresponding output edge
   394   void add_req( Node *n ); // Append a NEW required input
   395   void add_req( Node *n0, Node *n1 ) {
   396     add_req(n0); add_req(n1); }
   397   void add_req( Node *n0, Node *n1, Node *n2 ) {
   398     add_req(n0); add_req(n1); add_req(n2); }
   399   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
   400   void del_req( uint idx ); // Delete required edge & compact
   401   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
   402   void ins_req( uint i, Node *n ); // Insert a NEW required input
   403   void set_req( uint i, Node *n ) {
   404     assert( is_not_dead(n), "can not use dead node");
   405     assert( i < _cnt, err_msg_res("oob: i=%d, _cnt=%d", i, _cnt));
   406     assert( !VerifyHashTableKeys || _hash_lock == 0,
   407             "remove node from hash table before modifying it");
   408     Node** p = &_in[i];    // cache this._in, across the del_out call
   409     if (*p != NULL)  (*p)->del_out((Node *)this);
   410     (*p) = n;
   411     if (n != NULL)      n->add_out((Node *)this);
   412   }
   413   // Light version of set_req() to init inputs after node creation.
   414   void init_req( uint i, Node *n ) {
   415     assert( i == 0 && this == n ||
   416             is_not_dead(n), "can not use dead node");
   417     assert( i < _cnt, "oob");
   418     assert( !VerifyHashTableKeys || _hash_lock == 0,
   419             "remove node from hash table before modifying it");
   420     assert( _in[i] == NULL, "sanity");
   421     _in[i] = n;
   422     if (n != NULL)      n->add_out((Node *)this);
   423   }
   424   // Find first occurrence of n among my edges:
   425   int find_edge(Node* n);
   426   int find_prec_edge(Node* n) {
   427     for (uint i = req(); i < len(); i++) {
   428       if (_in[i] == n) return i;
   429       if (_in[i] == NULL) {
   430         DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == NULL, "Gap in prec edges!"); )
   431         break;
   432       }
   433     }
   434     return -1;
   435   }
   436   int replace_edge(Node* old, Node* neww);
   437   int replace_edges_in_range(Node* old, Node* neww, int start, int end);
   438   // NULL out all inputs to eliminate incoming Def-Use edges.
   439   // Return the number of edges between 'n' and 'this'
   440   int  disconnect_inputs(Node *n, Compile *c);
   442   // Quickly, return true if and only if I am Compile::current()->top().
   443   bool is_top() const {
   444     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
   445     return (_out == NULL);
   446   }
   447   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
   448   void setup_is_top();
   450   // Strip away casting.  (It is depth-limited.)
   451   Node* uncast() const;
   452   // Return whether two Nodes are equivalent, after stripping casting.
   453   bool eqv_uncast(const Node* n) const {
   454     return (this->uncast() == n->uncast());
   455   }
   457 private:
   458   static Node* uncast_helper(const Node* n);
   460   // Add an output edge to the end of the list
   461   void add_out( Node *n ) {
   462     if (is_top())  return;
   463     if( _outcnt == _outmax ) out_grow(_outcnt);
   464     _out[_outcnt++] = n;
   465   }
   466   // Delete an output edge
   467   void del_out( Node *n ) {
   468     if (is_top())  return;
   469     Node** outp = &_out[_outcnt];
   470     // Find and remove n
   471     do {
   472       assert(outp > _out, "Missing Def-Use edge");
   473     } while (*--outp != n);
   474     *outp = _out[--_outcnt];
   475     // Smash the old edge so it can't be used accidentally.
   476     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
   477     // Record that a change happened here.
   478     #if OPTO_DU_ITERATOR_ASSERT
   479     debug_only(_last_del = n; ++_del_tick);
   480     #endif
   481   }
   482   // Close gap after removing edge.
   483   void close_prec_gap_at(uint gap) {
   484     assert(_cnt <= gap && gap < _max, "no valid prec edge");
   485     uint i = gap;
   486     Node *last = NULL;
   487     for (; i < _max-1; ++i) {
   488       Node *next = _in[i+1];
   489       if (next == NULL) break;
   490       last = next;
   491     }
   492     _in[gap] = last; // Move last slot to empty one.
   493     _in[i] = NULL;   // NULL out last slot.
   494   }
   496 public:
   497   // Globally replace this node by a given new node, updating all uses.
   498   void replace_by(Node* new_node);
   499   // Globally replace this node by a given new node, updating all uses
   500   // and cutting input edges of old node.
   501   void subsume_by(Node* new_node, Compile* c) {
   502     replace_by(new_node);
   503     disconnect_inputs(NULL, c);
   504   }
   505   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
   506   // Find the one non-null required input.  RegionNode only
   507   Node *nonnull_req() const;
   508   // Add or remove precedence edges
   509   void add_prec( Node *n );
   510   void rm_prec( uint i );
   512   // Note: prec(i) will not necessarily point to n if edge already exists.
   513   void set_prec( uint i, Node *n ) {
   514     assert(i < _max, err_msg("oob: i=%d, _max=%d", i, _max));
   515     assert(is_not_dead(n), "can not use dead node");
   516     assert(i >= _cnt, "not a precedence edge");
   517     // Avoid spec violation: duplicated prec edge.
   518     if (_in[i] == n) return;
   519     if (n == NULL || find_prec_edge(n) != -1) {
   520       rm_prec(i);
   521       return;
   522     }
   523     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
   524     _in[i] = n;
   525     if (n != NULL) n->add_out((Node *)this);
   526   }
   528   // Set this node's index, used by cisc_version to replace current node
   529   void set_idx(uint new_idx) {
   530     const node_idx_t* ref = &_idx;
   531     *(node_idx_t*)ref = new_idx;
   532   }
   533   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
   534   void swap_edges(uint i1, uint i2) {
   535     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
   536     // Def-Use info is unchanged
   537     Node* n1 = in(i1);
   538     Node* n2 = in(i2);
   539     _in[i1] = n2;
   540     _in[i2] = n1;
   541     // If this node is in the hash table, make sure it doesn't need a rehash.
   542     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
   543   }
   545   // Iterators over input Nodes for a Node X are written as:
   546   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
   547   // NOTE: Required edges can contain embedded NULL pointers.
   549 //----------------- Other Node Properties
   551   // Generate class id for some ideal nodes to avoid virtual query
   552   // methods is_<Node>().
   553   // Class id is the set of bits corresponded to the node class and all its
   554   // super classes so that queries for super classes are also valid.
   555   // Subclasses of the same super class have different assigned bit
   556   // (the third parameter in the macro DEFINE_CLASS_ID).
   557   // Classes with deeper hierarchy are declared first.
   558   // Classes with the same hierarchy depth are sorted by usage frequency.
   559   //
   560   // The query method masks the bits to cut off bits of subclasses
   561   // and then compare the result with the class id
   562   // (see the macro DEFINE_CLASS_QUERY below).
   563   //
   564   //  Class_MachCall=30, ClassMask_MachCall=31
   565   // 12               8               4               0
   566   //  0   0   0   0   0   0   0   0   1   1   1   1   0
   567   //                                  |   |   |   |
   568   //                                  |   |   |   Bit_Mach=2
   569   //                                  |   |   Bit_MachReturn=4
   570   //                                  |   Bit_MachSafePoint=8
   571   //                                  Bit_MachCall=16
   572   //
   573   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
   574   // 12               8               4               0
   575   //  0   0   0   0   0   0   0   1   1   1   0   0   0
   576   //                              |   |   |
   577   //                              |   |   Bit_Region=8
   578   //                              |   Bit_Loop=16
   579   //                              Bit_CountedLoop=32
   581   #define DEFINE_CLASS_ID(cl, supcl, subn) \
   582   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
   583   Class_##cl = Class_##supcl + Bit_##cl , \
   584   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
   586   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
   587   // so that it's values fits into 16 bits.
   588   enum NodeClasses {
   589     Bit_Node   = 0x0000,
   590     Class_Node = 0x0000,
   591     ClassMask_Node = 0xFFFF,
   593     DEFINE_CLASS_ID(Multi, Node, 0)
   594       DEFINE_CLASS_ID(SafePoint, Multi, 0)
   595         DEFINE_CLASS_ID(Call,      SafePoint, 0)
   596           DEFINE_CLASS_ID(CallJava,         Call, 0)
   597             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
   598             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
   599           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
   600             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
   601           DEFINE_CLASS_ID(Allocate,         Call, 2)
   602             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
   603           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
   604             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
   605             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
   606       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
   607         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
   608           DEFINE_CLASS_ID(Catch,       PCTable, 0)
   609           DEFINE_CLASS_ID(Jump,        PCTable, 1)
   610         DEFINE_CLASS_ID(If,          MultiBranch, 1)
   611           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
   612         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
   613       DEFINE_CLASS_ID(Start,       Multi, 2)
   614       DEFINE_CLASS_ID(MemBar,      Multi, 3)
   615         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
   616         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
   618     DEFINE_CLASS_ID(Mach,  Node, 1)
   619       DEFINE_CLASS_ID(MachReturn, Mach, 0)
   620         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
   621           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
   622             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
   623               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
   624               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
   625             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
   626               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
   627       DEFINE_CLASS_ID(MachBranch, Mach, 1)
   628         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
   629         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
   630         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
   631       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
   632       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
   633       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
   634       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
   635       DEFINE_CLASS_ID(MachMerge,        Mach, 6)
   637     DEFINE_CLASS_ID(Type,  Node, 2)
   638       DEFINE_CLASS_ID(Phi,   Type, 0)
   639       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
   640         DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
   641       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
   642       DEFINE_CLASS_ID(CMove, Type, 3)
   643       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
   644       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
   645         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
   646         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
   647       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
   648         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
   649         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
   651     DEFINE_CLASS_ID(Proj,  Node, 3)
   652       DEFINE_CLASS_ID(CatchProj, Proj, 0)
   653       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
   654       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
   655       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
   656       DEFINE_CLASS_ID(Parm,      Proj, 4)
   657       DEFINE_CLASS_ID(MachProj,  Proj, 5)
   659     DEFINE_CLASS_ID(Mem,   Node, 4)
   660       DEFINE_CLASS_ID(Load,  Mem, 0)
   661         DEFINE_CLASS_ID(LoadVector,  Load, 0)
   662       DEFINE_CLASS_ID(Store, Mem, 1)
   663         DEFINE_CLASS_ID(StoreVector, Store, 0)
   664       DEFINE_CLASS_ID(LoadStore, Mem, 2)
   666     DEFINE_CLASS_ID(Region, Node, 5)
   667       DEFINE_CLASS_ID(Loop, Region, 0)
   668         DEFINE_CLASS_ID(Root,        Loop, 0)
   669         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
   671     DEFINE_CLASS_ID(Sub,   Node, 6)
   672       DEFINE_CLASS_ID(Cmp,   Sub, 0)
   673         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
   674         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
   676     DEFINE_CLASS_ID(MergeMem, Node, 7)
   677     DEFINE_CLASS_ID(Bool,     Node, 8)
   678     DEFINE_CLASS_ID(AddP,     Node, 9)
   679     DEFINE_CLASS_ID(BoxLock,  Node, 10)
   680     DEFINE_CLASS_ID(Add,      Node, 11)
   681     DEFINE_CLASS_ID(Mul,      Node, 12)
   682     DEFINE_CLASS_ID(Vector,   Node, 13)
   683     DEFINE_CLASS_ID(ClearArray, Node, 14)
   685     _max_classes  = ClassMask_ClearArray
   686   };
   687   #undef DEFINE_CLASS_ID
   689   // Flags are sorted by usage frequency.
   690   enum NodeFlags {
   691     Flag_is_Copy                     = 0x01, // should be first bit to avoid shift
   692     Flag_rematerialize               = Flag_is_Copy << 1,
   693     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
   694     Flag_is_macro                    = Flag_needs_anti_dependence_check << 1,
   695     Flag_is_Con                      = Flag_is_macro << 1,
   696     Flag_is_cisc_alternate           = Flag_is_Con << 1,
   697     Flag_is_dead_loop_safe           = Flag_is_cisc_alternate << 1,
   698     Flag_may_be_short_branch         = Flag_is_dead_loop_safe << 1,
   699     Flag_avoid_back_to_back_before   = Flag_may_be_short_branch << 1,
   700     Flag_avoid_back_to_back_after    = Flag_avoid_back_to_back_before << 1,
   701     Flag_has_call                    = Flag_avoid_back_to_back_after << 1,
   702     Flag_is_expensive                = Flag_has_call << 1,
   703     _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
   704   };
   706 private:
   707   jushort _class_id;
   708   jushort _flags;
   710 protected:
   711   // These methods should be called from constructors only.
   712   void init_class_id(jushort c) {
   713     assert(c <= _max_classes, "invalid node class");
   714     _class_id = c; // cast out const
   715   }
   716   void init_flags(jushort fl) {
   717     assert(fl <= _max_flags, "invalid node flag");
   718     _flags |= fl;
   719   }
   720   void clear_flag(jushort fl) {
   721     assert(fl <= _max_flags, "invalid node flag");
   722     _flags &= ~fl;
   723   }
   725 public:
   726   const jushort class_id() const { return _class_id; }
   728   const jushort flags() const { return _flags; }
   730   // Return a dense integer opcode number
   731   virtual int Opcode() const;
   733   // Virtual inherited Node size
   734   virtual uint size_of() const;
   736   // Other interesting Node properties
   737   #define DEFINE_CLASS_QUERY(type)                           \
   738   bool is_##type() const {                                   \
   739     return ((_class_id & ClassMask_##type) == Class_##type); \
   740   }                                                          \
   741   type##Node *as_##type() const {                            \
   742     assert(is_##type(), "invalid node class");               \
   743     return (type##Node*)this;                                \
   744   }                                                          \
   745   type##Node* isa_##type() const {                           \
   746     return (is_##type()) ? as_##type() : NULL;               \
   747   }
   749   DEFINE_CLASS_QUERY(AbstractLock)
   750   DEFINE_CLASS_QUERY(Add)
   751   DEFINE_CLASS_QUERY(AddP)
   752   DEFINE_CLASS_QUERY(Allocate)
   753   DEFINE_CLASS_QUERY(AllocateArray)
   754   DEFINE_CLASS_QUERY(Bool)
   755   DEFINE_CLASS_QUERY(BoxLock)
   756   DEFINE_CLASS_QUERY(Call)
   757   DEFINE_CLASS_QUERY(CallDynamicJava)
   758   DEFINE_CLASS_QUERY(CallJava)
   759   DEFINE_CLASS_QUERY(CallLeaf)
   760   DEFINE_CLASS_QUERY(CallRuntime)
   761   DEFINE_CLASS_QUERY(CallStaticJava)
   762   DEFINE_CLASS_QUERY(Catch)
   763   DEFINE_CLASS_QUERY(CatchProj)
   764   DEFINE_CLASS_QUERY(CheckCastPP)
   765   DEFINE_CLASS_QUERY(CastII)
   766   DEFINE_CLASS_QUERY(ConstraintCast)
   767   DEFINE_CLASS_QUERY(ClearArray)
   768   DEFINE_CLASS_QUERY(CMove)
   769   DEFINE_CLASS_QUERY(Cmp)
   770   DEFINE_CLASS_QUERY(CountedLoop)
   771   DEFINE_CLASS_QUERY(CountedLoopEnd)
   772   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
   773   DEFINE_CLASS_QUERY(DecodeN)
   774   DEFINE_CLASS_QUERY(DecodeNKlass)
   775   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
   776   DEFINE_CLASS_QUERY(EncodeP)
   777   DEFINE_CLASS_QUERY(EncodePKlass)
   778   DEFINE_CLASS_QUERY(FastLock)
   779   DEFINE_CLASS_QUERY(FastUnlock)
   780   DEFINE_CLASS_QUERY(If)
   781   DEFINE_CLASS_QUERY(IfFalse)
   782   DEFINE_CLASS_QUERY(IfTrue)
   783   DEFINE_CLASS_QUERY(Initialize)
   784   DEFINE_CLASS_QUERY(Jump)
   785   DEFINE_CLASS_QUERY(JumpProj)
   786   DEFINE_CLASS_QUERY(Load)
   787   DEFINE_CLASS_QUERY(LoadStore)
   788   DEFINE_CLASS_QUERY(Lock)
   789   DEFINE_CLASS_QUERY(Loop)
   790   DEFINE_CLASS_QUERY(Mach)
   791   DEFINE_CLASS_QUERY(MachBranch)
   792   DEFINE_CLASS_QUERY(MachCall)
   793   DEFINE_CLASS_QUERY(MachCallDynamicJava)
   794   DEFINE_CLASS_QUERY(MachCallJava)
   795   DEFINE_CLASS_QUERY(MachCallLeaf)
   796   DEFINE_CLASS_QUERY(MachCallRuntime)
   797   DEFINE_CLASS_QUERY(MachCallStaticJava)
   798   DEFINE_CLASS_QUERY(MachConstantBase)
   799   DEFINE_CLASS_QUERY(MachConstant)
   800   DEFINE_CLASS_QUERY(MachGoto)
   801   DEFINE_CLASS_QUERY(MachIf)
   802   DEFINE_CLASS_QUERY(MachNullCheck)
   803   DEFINE_CLASS_QUERY(MachProj)
   804   DEFINE_CLASS_QUERY(MachReturn)
   805   DEFINE_CLASS_QUERY(MachSafePoint)
   806   DEFINE_CLASS_QUERY(MachSpillCopy)
   807   DEFINE_CLASS_QUERY(MachTemp)
   808   DEFINE_CLASS_QUERY(MachMerge)
   809   DEFINE_CLASS_QUERY(Mem)
   810   DEFINE_CLASS_QUERY(MemBar)
   811   DEFINE_CLASS_QUERY(MemBarStoreStore)
   812   DEFINE_CLASS_QUERY(MergeMem)
   813   DEFINE_CLASS_QUERY(Mul)
   814   DEFINE_CLASS_QUERY(Multi)
   815   DEFINE_CLASS_QUERY(MultiBranch)
   816   DEFINE_CLASS_QUERY(Parm)
   817   DEFINE_CLASS_QUERY(PCTable)
   818   DEFINE_CLASS_QUERY(Phi)
   819   DEFINE_CLASS_QUERY(Proj)
   820   DEFINE_CLASS_QUERY(Region)
   821   DEFINE_CLASS_QUERY(Root)
   822   DEFINE_CLASS_QUERY(SafePoint)
   823   DEFINE_CLASS_QUERY(SafePointScalarObject)
   824   DEFINE_CLASS_QUERY(Start)
   825   DEFINE_CLASS_QUERY(Store)
   826   DEFINE_CLASS_QUERY(Sub)
   827   DEFINE_CLASS_QUERY(Type)
   828   DEFINE_CLASS_QUERY(Vector)
   829   DEFINE_CLASS_QUERY(LoadVector)
   830   DEFINE_CLASS_QUERY(StoreVector)
   831   DEFINE_CLASS_QUERY(Unlock)
   833   #undef DEFINE_CLASS_QUERY
   835   // duplicate of is_MachSpillCopy()
   836   bool is_SpillCopy () const {
   837     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
   838   }
   840   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
   841   // The data node which is safe to leave in dead loop during IGVN optimization.
   842   bool is_dead_loop_safe() const {
   843     return is_Phi() || (is_Proj() && in(0) == NULL) ||
   844            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
   845             (!is_Proj() || !in(0)->is_Allocate()));
   846   }
   848   // is_Copy() returns copied edge index (0 or 1)
   849   uint is_Copy() const { return (_flags & Flag_is_Copy); }
   851   virtual bool is_CFG() const { return false; }
   853   // If this node is control-dependent on a test, can it be
   854   // rerouted to a dominating equivalent test?  This is usually
   855   // true of non-CFG nodes, but can be false for operations which
   856   // depend for their correct sequencing on more than one test.
   857   // (In that case, hoisting to a dominating test may silently
   858   // skip some other important test.)
   859   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
   861   // When building basic blocks, I need to have a notion of block beginning
   862   // Nodes, next block selector Nodes (block enders), and next block
   863   // projections.  These calls need to work on their machine equivalents.  The
   864   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
   865   bool is_block_start() const {
   866     if ( is_Region() )
   867       return this == (const Node*)in(0);
   868     else
   869       return is_Start();
   870   }
   872   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
   873   // Goto and Return.  This call also returns the block ending Node.
   874   virtual const Node *is_block_proj() const;
   876   // The node is a "macro" node which needs to be expanded before matching
   877   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
   878   // The node is expensive: the best control is set during loop opts
   879   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
   881 //----------------- Optimization
   883   // Get the worst-case Type output for this Node.
   884   virtual const class Type *bottom_type() const;
   886   // If we find a better type for a node, try to record it permanently.
   887   // Return true if this node actually changed.
   888   // Be sure to do the hash_delete game in the "rehash" variant.
   889   void raise_bottom_type(const Type* new_type);
   891   // Get the address type with which this node uses and/or defs memory,
   892   // or NULL if none.  The address type is conservatively wide.
   893   // Returns non-null for calls, membars, loads, stores, etc.
   894   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
   895   virtual const class TypePtr *adr_type() const { return NULL; }
   897   // Return an existing node which computes the same function as this node.
   898   // The optimistic combined algorithm requires this to return a Node which
   899   // is a small number of steps away (e.g., one of my inputs).
   900   virtual Node *Identity( PhaseTransform *phase );
   902   // Return the set of values this Node can take on at runtime.
   903   virtual const Type *Value( PhaseTransform *phase ) const;
   905   // Return a node which is more "ideal" than the current node.
   906   // The invariants on this call are subtle.  If in doubt, read the
   907   // treatise in node.cpp above the default implemention AND TEST WITH
   908   // +VerifyIterativeGVN!
   909   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   911   // Some nodes have specific Ideal subgraph transformations only if they are
   912   // unique users of specific nodes. Such nodes should be put on IGVN worklist
   913   // for the transformations to happen.
   914   bool has_special_unique_user() const;
   916   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
   917   Node* find_exact_control(Node* ctrl);
   919   // Check if 'this' node dominates or equal to 'sub'.
   920   bool dominates(Node* sub, Node_List &nlist);
   922 protected:
   923   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
   924 public:
   926   // Idealize graph, using DU info.  Done after constant propagation
   927   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
   929   // See if there is valid pipeline info
   930   static  const Pipeline *pipeline_class();
   931   virtual const Pipeline *pipeline() const;
   933   // Compute the latency from the def to this instruction of the ith input node
   934   uint latency(uint i);
   936   // Hash & compare functions, for pessimistic value numbering
   938   // If the hash function returns the special sentinel value NO_HASH,
   939   // the node is guaranteed never to compare equal to any other node.
   940   // If we accidentally generate a hash with value NO_HASH the node
   941   // won't go into the table and we'll lose a little optimization.
   942   enum { NO_HASH = 0 };
   943   virtual uint hash() const;
   944   virtual uint cmp( const Node &n ) const;
   946   // Operation appears to be iteratively computed (such as an induction variable)
   947   // It is possible for this operation to return false for a loop-varying
   948   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
   949   bool is_iteratively_computed();
   951   // Determine if a node is Counted loop induction variable.
   952   // The method is defined in loopnode.cpp.
   953   const Node* is_loop_iv() const;
   955   // Return a node with opcode "opc" and same inputs as "this" if one can
   956   // be found; Otherwise return NULL;
   957   Node* find_similar(int opc);
   959   // Return the unique control out if only one. Null if none or more than one.
   960   Node* unique_ctrl_out();
   962 //----------------- Code Generation
   964   // Ideal register class for Matching.  Zero means unmatched instruction
   965   // (these are cloned instead of converted to machine nodes).
   966   virtual uint ideal_reg() const;
   968   static const uint NotAMachineReg;   // must be > max. machine register
   970   // Do we Match on this edge index or not?  Generally false for Control
   971   // and true for everything else.  Weird for calls & returns.
   972   virtual uint match_edge(uint idx) const;
   974   // Register class output is returned in
   975   virtual const RegMask &out_RegMask() const;
   976   // Register class input is expected in
   977   virtual const RegMask &in_RegMask(uint) const;
   978   // Should we clone rather than spill this instruction?
   979   bool rematerialize() const;
   981   // Return JVM State Object if this Node carries debug info, or NULL otherwise
   982   virtual JVMState* jvms() const;
   984   // Print as assembly
   985   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
   986   // Emit bytes starting at parameter 'ptr'
   987   // Bump 'ptr' by the number of output bytes
   988   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
   989   // Size of instruction in bytes
   990   virtual uint size(PhaseRegAlloc *ra_) const;
   992   // Convenience function to extract an integer constant from a node.
   993   // If it is not an integer constant (either Con, CastII, or Mach),
   994   // return value_if_unknown.
   995   jint find_int_con(jint value_if_unknown) const {
   996     const TypeInt* t = find_int_type();
   997     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   998   }
   999   // Return the constant, knowing it is an integer constant already
  1000   jint get_int() const {
  1001     const TypeInt* t = find_int_type();
  1002     guarantee(t != NULL, "must be con");
  1003     return t->get_con();
  1005   // Here's where the work is done.  Can produce non-constant int types too.
  1006   const TypeInt* find_int_type() const;
  1008   // Same thing for long (and intptr_t, via type.hpp):
  1009   jlong get_long() const {
  1010     const TypeLong* t = find_long_type();
  1011     guarantee(t != NULL, "must be con");
  1012     return t->get_con();
  1014   jlong find_long_con(jint value_if_unknown) const {
  1015     const TypeLong* t = find_long_type();
  1016     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
  1018   const TypeLong* find_long_type() const;
  1020   const TypePtr* get_ptr_type() const;
  1022   // These guys are called by code generated by ADLC:
  1023   intptr_t get_ptr() const;
  1024   intptr_t get_narrowcon() const;
  1025   jdouble getd() const;
  1026   jfloat getf() const;
  1028   // Nodes which are pinned into basic blocks
  1029   virtual bool pinned() const { return false; }
  1031   // Nodes which use memory without consuming it, hence need antidependences
  1032   // More specifically, needs_anti_dependence_check returns true iff the node
  1033   // (a) does a load, and (b) does not perform a store (except perhaps to a
  1034   // stack slot or some other unaliased location).
  1035   bool needs_anti_dependence_check() const;
  1037   // Return which operand this instruction may cisc-spill. In other words,
  1038   // return operand position that can convert from reg to memory access
  1039   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
  1040   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
  1042 //----------------- Graph walking
  1043 public:
  1044   // Walk and apply member functions recursively.
  1045   // Supplied (this) pointer is root.
  1046   void walk(NFunc pre, NFunc post, void *env);
  1047   static void nop(Node &, void*); // Dummy empty function
  1048   static void packregion( Node &n, void* );
  1049 private:
  1050   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
  1052 //----------------- Printing, etc
  1053 public:
  1054 #ifndef PRODUCT
  1055   Node* find(int idx) const;         // Search the graph for the given idx.
  1056   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
  1057   void dump() const { dump("\n"); }  // Print this node.
  1058   void dump(const char* suffix, outputStream *st = tty) const;// Print this node.
  1059   void dump(int depth) const;        // Print this node, recursively to depth d
  1060   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
  1061   virtual void dump_req(outputStream *st = tty) const;     // Print required-edge info
  1062   virtual void dump_prec(outputStream *st = tty) const;    // Print precedence-edge info
  1063   virtual void dump_out(outputStream *st = tty) const;     // Print the output edge info
  1064   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
  1065   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
  1066   void verify() const;               // Check Def-Use info for my subgraph
  1067   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
  1069   // This call defines a class-unique string used to identify class instances
  1070   virtual const char *Name() const;
  1072   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
  1073   // RegMask Print Functions
  1074   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
  1075   void dump_out_regmask() { out_RegMask().dump(); }
  1076   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
  1077   void fast_dump() const {
  1078     tty->print("%4d: %-17s", _idx, Name());
  1079     for (uint i = 0; i < len(); i++)
  1080       if (in(i))
  1081         tty->print(" %4d", in(i)->_idx);
  1082       else
  1083         tty->print(" NULL");
  1084     tty->print("\n");
  1086 #endif
  1087 #ifdef ASSERT
  1088   void verify_construction();
  1089   bool verify_jvms(const JVMState* jvms) const;
  1090   int  _debug_idx;                     // Unique value assigned to every node.
  1091   int   debug_idx() const              { return _debug_idx; }
  1092   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
  1094   Node* _debug_orig;                   // Original version of this, if any.
  1095   Node*  debug_orig() const            { return _debug_orig; }
  1096   void   set_debug_orig(Node* orig);   // _debug_orig = orig
  1098   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
  1099   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
  1100   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
  1102   static void init_NodeProperty();
  1104   #if OPTO_DU_ITERATOR_ASSERT
  1105   const Node* _last_del;               // The last deleted node.
  1106   uint        _del_tick;               // Bumped when a deletion happens..
  1107   #endif
  1108 #endif
  1109 };
  1111 //-----------------------------------------------------------------------------
  1112 // Iterators over DU info, and associated Node functions.
  1114 #if OPTO_DU_ITERATOR_ASSERT
  1116 // Common code for assertion checking on DU iterators.
  1117 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
  1118 #ifdef ASSERT
  1119  protected:
  1120   bool         _vdui;               // cached value of VerifyDUIterators
  1121   const Node*  _node;               // the node containing the _out array
  1122   uint         _outcnt;             // cached node->_outcnt
  1123   uint         _del_tick;           // cached node->_del_tick
  1124   Node*        _last;               // last value produced by the iterator
  1126   void sample(const Node* node);    // used by c'tor to set up for verifies
  1127   void verify(const Node* node, bool at_end_ok = false);
  1128   void verify_resync();
  1129   void reset(const DUIterator_Common& that);
  1131 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
  1132   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
  1133 #else
  1134   #define I_VDUI_ONLY(i,x) { }
  1135 #endif //ASSERT
  1136 };
  1138 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
  1140 // Default DU iterator.  Allows appends onto the out array.
  1141 // Allows deletion from the out array only at the current point.
  1142 // Usage:
  1143 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
  1144 //    Node* y = x->out(i);
  1145 //    ...
  1146 //  }
  1147 // Compiles in product mode to a unsigned integer index, which indexes
  1148 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
  1149 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
  1150 // before continuing the loop.  You must delete only the last-produced
  1151 // edge.  You must delete only a single copy of the last-produced edge,
  1152 // or else you must delete all copies at once (the first time the edge
  1153 // is produced by the iterator).
  1154 class DUIterator : public DUIterator_Common {
  1155   friend class Node;
  1157   // This is the index which provides the product-mode behavior.
  1158   // Whatever the product-mode version of the system does to the
  1159   // DUI index is done to this index.  All other fields in
  1160   // this class are used only for assertion checking.
  1161   uint         _idx;
  1163   #ifdef ASSERT
  1164   uint         _refresh_tick;    // Records the refresh activity.
  1166   void sample(const Node* node); // Initialize _refresh_tick etc.
  1167   void verify(const Node* node, bool at_end_ok = false);
  1168   void verify_increment();       // Verify an increment operation.
  1169   void verify_resync();          // Verify that we can back up over a deletion.
  1170   void verify_finish();          // Verify that the loop terminated properly.
  1171   void refresh();                // Resample verification info.
  1172   void reset(const DUIterator& that);  // Resample after assignment.
  1173   #endif
  1175   DUIterator(const Node* node, int dummy_to_avoid_conversion)
  1176     { _idx = 0;                         debug_only(sample(node)); }
  1178  public:
  1179   // initialize to garbage; clear _vdui to disable asserts
  1180   DUIterator()
  1181     { /*initialize to garbage*/         debug_only(_vdui = false); }
  1183   void operator++(int dummy_to_specify_postfix_op)
  1184     { _idx++;                           VDUI_ONLY(verify_increment()); }
  1186   void operator--()
  1187     { VDUI_ONLY(verify_resync());       --_idx; }
  1189   ~DUIterator()
  1190     { VDUI_ONLY(verify_finish()); }
  1192   void operator=(const DUIterator& that)
  1193     { _idx = that._idx;                 debug_only(reset(that)); }
  1194 };
  1196 DUIterator Node::outs() const
  1197   { return DUIterator(this, 0); }
  1198 DUIterator& Node::refresh_out_pos(DUIterator& i) const
  1199   { I_VDUI_ONLY(i, i.refresh());        return i; }
  1200 bool Node::has_out(DUIterator& i) const
  1201   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
  1202 Node*    Node::out(DUIterator& i) const
  1203   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
  1206 // Faster DU iterator.  Disallows insertions into the out array.
  1207 // Allows deletion from the out array only at the current point.
  1208 // Usage:
  1209 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
  1210 //    Node* y = x->fast_out(i);
  1211 //    ...
  1212 //  }
  1213 // Compiles in product mode to raw Node** pointer arithmetic, with
  1214 // no reloading of pointers from the original node x.  If you delete,
  1215 // you must perform "--i; --imax" just before continuing the loop.
  1216 // If you delete multiple copies of the same edge, you must decrement
  1217 // imax, but not i, multiple times:  "--i, imax -= num_edges".
  1218 class DUIterator_Fast : public DUIterator_Common {
  1219   friend class Node;
  1220   friend class DUIterator_Last;
  1222   // This is the pointer which provides the product-mode behavior.
  1223   // Whatever the product-mode version of the system does to the
  1224   // DUI pointer is done to this pointer.  All other fields in
  1225   // this class are used only for assertion checking.
  1226   Node**       _outp;
  1228   #ifdef ASSERT
  1229   void verify(const Node* node, bool at_end_ok = false);
  1230   void verify_limit();
  1231   void verify_resync();
  1232   void verify_relimit(uint n);
  1233   void reset(const DUIterator_Fast& that);
  1234   #endif
  1236   // Note:  offset must be signed, since -1 is sometimes passed
  1237   DUIterator_Fast(const Node* node, ptrdiff_t offset)
  1238     { _outp = node->_out + offset;      debug_only(sample(node)); }
  1240  public:
  1241   // initialize to garbage; clear _vdui to disable asserts
  1242   DUIterator_Fast()
  1243     { /*initialize to garbage*/         debug_only(_vdui = false); }
  1245   void operator++(int dummy_to_specify_postfix_op)
  1246     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
  1248   void operator--()
  1249     { VDUI_ONLY(verify_resync());       --_outp; }
  1251   void operator-=(uint n)   // applied to the limit only
  1252     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
  1254   bool operator<(DUIterator_Fast& limit) {
  1255     I_VDUI_ONLY(*this, this->verify(_node, true));
  1256     I_VDUI_ONLY(limit, limit.verify_limit());
  1257     return _outp < limit._outp;
  1260   void operator=(const DUIterator_Fast& that)
  1261     { _outp = that._outp;               debug_only(reset(that)); }
  1262 };
  1264 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
  1265   // Assign a limit pointer to the reference argument:
  1266   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
  1267   // Return the base pointer:
  1268   return DUIterator_Fast(this, 0);
  1270 Node* Node::fast_out(DUIterator_Fast& i) const {
  1271   I_VDUI_ONLY(i, i.verify(this));
  1272   return debug_only(i._last=) *i._outp;
  1276 // Faster DU iterator.  Requires each successive edge to be removed.
  1277 // Does not allow insertion of any edges.
  1278 // Usage:
  1279 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
  1280 //    Node* y = x->last_out(i);
  1281 //    ...
  1282 //  }
  1283 // Compiles in product mode to raw Node** pointer arithmetic, with
  1284 // no reloading of pointers from the original node x.
  1285 class DUIterator_Last : private DUIterator_Fast {
  1286   friend class Node;
  1288   #ifdef ASSERT
  1289   void verify(const Node* node, bool at_end_ok = false);
  1290   void verify_limit();
  1291   void verify_step(uint num_edges);
  1292   #endif
  1294   // Note:  offset must be signed, since -1 is sometimes passed
  1295   DUIterator_Last(const Node* node, ptrdiff_t offset)
  1296     : DUIterator_Fast(node, offset) { }
  1298   void operator++(int dummy_to_specify_postfix_op) {} // do not use
  1299   void operator<(int)                              {} // do not use
  1301  public:
  1302   DUIterator_Last() { }
  1303   // initialize to garbage
  1305   void operator--()
  1306     { _outp--;              VDUI_ONLY(verify_step(1));  }
  1308   void operator-=(uint n)
  1309     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
  1311   bool operator>=(DUIterator_Last& limit) {
  1312     I_VDUI_ONLY(*this, this->verify(_node, true));
  1313     I_VDUI_ONLY(limit, limit.verify_limit());
  1314     return _outp >= limit._outp;
  1317   void operator=(const DUIterator_Last& that)
  1318     { DUIterator_Fast::operator=(that); }
  1319 };
  1321 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
  1322   // Assign a limit pointer to the reference argument:
  1323   imin = DUIterator_Last(this, 0);
  1324   // Return the initial pointer:
  1325   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
  1327 Node* Node::last_out(DUIterator_Last& i) const {
  1328   I_VDUI_ONLY(i, i.verify(this));
  1329   return debug_only(i._last=) *i._outp;
  1332 #endif //OPTO_DU_ITERATOR_ASSERT
  1334 #undef I_VDUI_ONLY
  1335 #undef VDUI_ONLY
  1337 // An Iterator that truly follows the iterator pattern.  Doesn't
  1338 // support deletion but could be made to.
  1339 //
  1340 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
  1341 //     Node* m = i.get();
  1342 //
  1343 class SimpleDUIterator : public StackObj {
  1344  private:
  1345   Node* node;
  1346   DUIterator_Fast i;
  1347   DUIterator_Fast imax;
  1348  public:
  1349   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
  1350   bool has_next() { return i < imax; }
  1351   void next() { i++; }
  1352   Node* get() { return node->fast_out(i); }
  1353 };
  1356 //-----------------------------------------------------------------------------
  1357 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
  1358 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
  1359 // Note that the constructor just zeros things, and since I use Arena
  1360 // allocation I do not need a destructor to reclaim storage.
  1361 class Node_Array : public ResourceObj {
  1362   friend class VMStructs;
  1363 protected:
  1364   Arena *_a;                    // Arena to allocate in
  1365   uint   _max;
  1366   Node **_nodes;
  1367   void   grow( uint i );        // Grow array node to fit
  1368 public:
  1369   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
  1370     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
  1371     for( int i = 0; i < OptoNodeListSize; i++ ) {
  1372       _nodes[i] = NULL;
  1376   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
  1377   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
  1378   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
  1379   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
  1380   Node **adr() { return _nodes; }
  1381   // Extend the mapping: index i maps to Node *n.
  1382   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
  1383   void insert( uint i, Node *n );
  1384   void remove( uint i );        // Remove, preserving order
  1385   void sort( C_sort_func_t func);
  1386   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
  1387   void clear();                 // Set all entries to NULL, keep storage
  1388   uint Size() const { return _max; }
  1389   void dump() const;
  1390 };
  1392 class Node_List : public Node_Array {
  1393   friend class VMStructs;
  1394   uint _cnt;
  1395 public:
  1396   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
  1397   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
  1398   bool contains(const Node* n) const {
  1399     for (uint e = 0; e < size(); e++) {
  1400       if (at(e) == n) return true;
  1402     return false;
  1404   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
  1405   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
  1406   void push( Node *b ) { map(_cnt++,b); }
  1407   void yank( Node *n );         // Find and remove
  1408   Node *pop() { return _nodes[--_cnt]; }
  1409   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
  1410   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
  1411   uint size() const { return _cnt; }
  1412   void dump() const;
  1413   void dump_simple() const;
  1414 };
  1416 //------------------------------Unique_Node_List-------------------------------
  1417 class Unique_Node_List : public Node_List {
  1418   friend class VMStructs;
  1419   VectorSet _in_worklist;
  1420   uint _clock_index;            // Index in list where to pop from next
  1421 public:
  1422   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
  1423   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
  1425   void remove( Node *n );
  1426   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
  1427   VectorSet &member_set(){ return _in_worklist; }
  1429   void push( Node *b ) {
  1430     if( !_in_worklist.test_set(b->_idx) )
  1431       Node_List::push(b);
  1433   Node *pop() {
  1434     if( _clock_index >= size() ) _clock_index = 0;
  1435     Node *b = at(_clock_index);
  1436     map( _clock_index, Node_List::pop());
  1437     if (size() != 0) _clock_index++; // Always start from 0
  1438     _in_worklist >>= b->_idx;
  1439     return b;
  1441   Node *remove( uint i ) {
  1442     Node *b = Node_List::at(i);
  1443     _in_worklist >>= b->_idx;
  1444     map(i,Node_List::pop());
  1445     return b;
  1447   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
  1448   void  clear() {
  1449     _in_worklist.Clear();        // Discards storage but grows automatically
  1450     Node_List::clear();
  1451     _clock_index = 0;
  1454   // Used after parsing to remove useless nodes before Iterative GVN
  1455   void remove_useless_nodes(VectorSet &useful);
  1457 #ifndef PRODUCT
  1458   void print_set() const { _in_worklist.print(); }
  1459 #endif
  1460 };
  1462 // Inline definition of Compile::record_for_igvn must be deferred to this point.
  1463 inline void Compile::record_for_igvn(Node* n) {
  1464   _for_igvn->push(n);
  1467 //------------------------------Node_Stack-------------------------------------
  1468 class Node_Stack {
  1469   friend class VMStructs;
  1470 protected:
  1471   struct INode {
  1472     Node *node; // Processed node
  1473     uint  indx; // Index of next node's child
  1474   };
  1475   INode *_inode_top; // tos, stack grows up
  1476   INode *_inode_max; // End of _inodes == _inodes + _max
  1477   INode *_inodes;    // Array storage for the stack
  1478   Arena *_a;         // Arena to allocate in
  1479   void grow();
  1480 public:
  1481   Node_Stack(int size) {
  1482     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
  1483     _a = Thread::current()->resource_area();
  1484     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
  1485     _inode_max = _inodes + max;
  1486     _inode_top = _inodes - 1; // stack is empty
  1489   Node_Stack(Arena *a, int size) : _a(a) {
  1490     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
  1491     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
  1492     _inode_max = _inodes + max;
  1493     _inode_top = _inodes - 1; // stack is empty
  1496   void pop() {
  1497     assert(_inode_top >= _inodes, "node stack underflow");
  1498     --_inode_top;
  1500   void push(Node *n, uint i) {
  1501     ++_inode_top;
  1502     if (_inode_top >= _inode_max) grow();
  1503     INode *top = _inode_top; // optimization
  1504     top->node = n;
  1505     top->indx = i;
  1507   Node *node() const {
  1508     return _inode_top->node;
  1510   Node* node_at(uint i) const {
  1511     assert(_inodes + i <= _inode_top, "in range");
  1512     return _inodes[i].node;
  1514   uint index() const {
  1515     return _inode_top->indx;
  1517   uint index_at(uint i) const {
  1518     assert(_inodes + i <= _inode_top, "in range");
  1519     return _inodes[i].indx;
  1521   void set_node(Node *n) {
  1522     _inode_top->node = n;
  1524   void set_index(uint i) {
  1525     _inode_top->indx = i;
  1527   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
  1528   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
  1529   bool is_nonempty() const { return (_inode_top >= _inodes); }
  1530   bool is_empty() const { return (_inode_top < _inodes); }
  1531   void clear() { _inode_top = _inodes - 1; } // retain storage
  1533   // Node_Stack is used to map nodes.
  1534   Node* find(uint idx) const;
  1535 };
  1538 //-----------------------------Node_Notes--------------------------------------
  1539 // Debugging or profiling annotations loosely and sparsely associated
  1540 // with some nodes.  See Compile::node_notes_at for the accessor.
  1541 class Node_Notes VALUE_OBJ_CLASS_SPEC {
  1542   friend class VMStructs;
  1543   JVMState* _jvms;
  1545 public:
  1546   Node_Notes(JVMState* jvms = NULL) {
  1547     _jvms = jvms;
  1550   JVMState* jvms()            { return _jvms; }
  1551   void  set_jvms(JVMState* x) {        _jvms = x; }
  1553   // True if there is nothing here.
  1554   bool is_clear() {
  1555     return (_jvms == NULL);
  1558   // Make there be nothing here.
  1559   void clear() {
  1560     _jvms = NULL;
  1563   // Make a new, clean node notes.
  1564   static Node_Notes* make(Compile* C) {
  1565     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
  1566     nn->clear();
  1567     return nn;
  1570   Node_Notes* clone(Compile* C) {
  1571     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
  1572     (*nn) = (*this);
  1573     return nn;
  1576   // Absorb any information from source.
  1577   bool update_from(Node_Notes* source) {
  1578     bool changed = false;
  1579     if (source != NULL) {
  1580       if (source->jvms() != NULL) {
  1581         set_jvms(source->jvms());
  1582         changed = true;
  1585     return changed;
  1587 };
  1589 // Inlined accessors for Compile::node_nodes that require the preceding class:
  1590 inline Node_Notes*
  1591 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
  1592                            int idx, bool can_grow) {
  1593   assert(idx >= 0, "oob");
  1594   int block_idx = (idx >> _log2_node_notes_block_size);
  1595   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
  1596   if (grow_by >= 0) {
  1597     if (!can_grow)  return NULL;
  1598     grow_node_notes(arr, grow_by + 1);
  1600   // (Every element of arr is a sub-array of length _node_notes_block_size.)
  1601   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
  1604 inline bool
  1605 Compile::set_node_notes_at(int idx, Node_Notes* value) {
  1606   if (value == NULL || value->is_clear())
  1607     return false;  // nothing to write => write nothing
  1608   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
  1609   assert(loc != NULL, "");
  1610   return loc->update_from(value);
  1614 //------------------------------TypeNode---------------------------------------
  1615 // Node with a Type constant.
  1616 class TypeNode : public Node {
  1617 protected:
  1618   virtual uint hash() const;    // Check the type
  1619   virtual uint cmp( const Node &n ) const;
  1620   virtual uint size_of() const; // Size is bigger
  1621   const Type* const _type;
  1622 public:
  1623   void set_type(const Type* t) {
  1624     assert(t != NULL, "sanity");
  1625     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
  1626     *(const Type**)&_type = t;   // cast away const-ness
  1627     // If this node is in the hash table, make sure it doesn't need a rehash.
  1628     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
  1630   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
  1631   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
  1632     init_class_id(Class_Type);
  1634   virtual const Type *Value( PhaseTransform *phase ) const;
  1635   virtual const Type *bottom_type() const;
  1636   virtual       uint  ideal_reg() const;
  1637 #ifndef PRODUCT
  1638   virtual void dump_spec(outputStream *st) const;
  1639 #endif
  1640 };
  1642 #endif // SHARE_VM_OPTO_NODE_HPP

mercurial