src/share/vm/opto/node.cpp

Mon, 25 May 2020 14:24:27 +0800

author
fyang
date
Mon, 25 May 2020 14:24:27 +0800
changeset 9922
f7691a80458c
parent 9912
97d09139b360
child 9931
fd44df5e3bc3
child 9952
19056c781208
permissions
-rw-r--r--

8244407: JVM crashes after transformation in C2 IdealLoopTree::split_fall_in
Reviewed-by: thartmann, kvn, andrew
Contributed-by: zhouyong44@huawei.com

     1 /*
     2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "libadt/vectset.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/cfgnode.hpp"
    29 #include "opto/connode.hpp"
    30 #include "opto/loopnode.hpp"
    31 #include "opto/machnode.hpp"
    32 #include "opto/matcher.hpp"
    33 #include "opto/node.hpp"
    34 #include "opto/opcodes.hpp"
    35 #include "opto/regmask.hpp"
    36 #include "opto/type.hpp"
    37 #include "utilities/copy.hpp"
    39 class RegMask;
    40 // #include "phase.hpp"
    41 class PhaseTransform;
    42 class PhaseGVN;
    44 // Arena we are currently building Nodes in
    45 const uint Node::NotAMachineReg = 0xffff0000;
    47 #ifndef PRODUCT
    48 extern int nodes_created;
    49 #endif
    51 #ifdef ASSERT
    53 //-------------------------- construct_node------------------------------------
    54 // Set a breakpoint here to identify where a particular node index is built.
    55 void Node::verify_construction() {
    56   _debug_orig = NULL;
    57   int old_debug_idx = Compile::debug_idx();
    58   int new_debug_idx = old_debug_idx+1;
    59   if (new_debug_idx > 0) {
    60     // Arrange that the lowest five decimal digits of _debug_idx
    61     // will repeat those of _idx. In case this is somehow pathological,
    62     // we continue to assign negative numbers (!) consecutively.
    63     const int mod = 100000;
    64     int bump = (int)(_idx - new_debug_idx) % mod;
    65     if (bump < 0)  bump += mod;
    66     assert(bump >= 0 && bump < mod, "");
    67     new_debug_idx += bump;
    68   }
    69   Compile::set_debug_idx(new_debug_idx);
    70   set_debug_idx( new_debug_idx );
    71   assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
    72   assert(Compile::current()->live_nodes() < Compile::current()->max_node_limit(), "Live Node limit exceeded limit");
    73   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
    74     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
    75     BREAKPOINT;
    76   }
    77 #if OPTO_DU_ITERATOR_ASSERT
    78   _last_del = NULL;
    79   _del_tick = 0;
    80 #endif
    81   _hash_lock = 0;
    82 }
    85 // #ifdef ASSERT ...
    87 #if OPTO_DU_ITERATOR_ASSERT
    88 void DUIterator_Common::sample(const Node* node) {
    89   _vdui     = VerifyDUIterators;
    90   _node     = node;
    91   _outcnt   = node->_outcnt;
    92   _del_tick = node->_del_tick;
    93   _last     = NULL;
    94 }
    96 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
    97   assert(_node     == node, "consistent iterator source");
    98   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
    99 }
   101 void DUIterator_Common::verify_resync() {
   102   // Ensure that the loop body has just deleted the last guy produced.
   103   const Node* node = _node;
   104   // Ensure that at least one copy of the last-seen edge was deleted.
   105   // Note:  It is OK to delete multiple copies of the last-seen edge.
   106   // Unfortunately, we have no way to verify that all the deletions delete
   107   // that same edge.  On this point we must use the Honor System.
   108   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
   109   assert(node->_last_del == _last, "must have deleted the edge just produced");
   110   // We liked this deletion, so accept the resulting outcnt and tick.
   111   _outcnt   = node->_outcnt;
   112   _del_tick = node->_del_tick;
   113 }
   115 void DUIterator_Common::reset(const DUIterator_Common& that) {
   116   if (this == &that)  return;  // ignore assignment to self
   117   if (!_vdui) {
   118     // We need to initialize everything, overwriting garbage values.
   119     _last = that._last;
   120     _vdui = that._vdui;
   121   }
   122   // Note:  It is legal (though odd) for an iterator over some node x
   123   // to be reassigned to iterate over another node y.  Some doubly-nested
   124   // progress loops depend on being able to do this.
   125   const Node* node = that._node;
   126   // Re-initialize everything, except _last.
   127   _node     = node;
   128   _outcnt   = node->_outcnt;
   129   _del_tick = node->_del_tick;
   130 }
   132 void DUIterator::sample(const Node* node) {
   133   DUIterator_Common::sample(node);      // Initialize the assertion data.
   134   _refresh_tick = 0;                    // No refreshes have happened, as yet.
   135 }
   137 void DUIterator::verify(const Node* node, bool at_end_ok) {
   138   DUIterator_Common::verify(node, at_end_ok);
   139   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
   140 }
   142 void DUIterator::verify_increment() {
   143   if (_refresh_tick & 1) {
   144     // We have refreshed the index during this loop.
   145     // Fix up _idx to meet asserts.
   146     if (_idx > _outcnt)  _idx = _outcnt;
   147   }
   148   verify(_node, true);
   149 }
   151 void DUIterator::verify_resync() {
   152   // Note:  We do not assert on _outcnt, because insertions are OK here.
   153   DUIterator_Common::verify_resync();
   154   // Make sure we are still in sync, possibly with no more out-edges:
   155   verify(_node, true);
   156 }
   158 void DUIterator::reset(const DUIterator& that) {
   159   if (this == &that)  return;  // self assignment is always a no-op
   160   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
   161   assert(that._idx          == 0, "assign only the result of Node::outs()");
   162   assert(_idx               == that._idx, "already assigned _idx");
   163   if (!_vdui) {
   164     // We need to initialize everything, overwriting garbage values.
   165     sample(that._node);
   166   } else {
   167     DUIterator_Common::reset(that);
   168     if (_refresh_tick & 1) {
   169       _refresh_tick++;                  // Clear the "was refreshed" flag.
   170     }
   171     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
   172   }
   173 }
   175 void DUIterator::refresh() {
   176   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
   177   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
   178 }
   180 void DUIterator::verify_finish() {
   181   // If the loop has killed the node, do not require it to re-run.
   182   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
   183   // If this assert triggers, it means that a loop used refresh_out_pos
   184   // to re-synch an iteration index, but the loop did not correctly
   185   // re-run itself, using a "while (progress)" construct.
   186   // This iterator enforces the rule that you must keep trying the loop
   187   // until it "runs clean" without any need for refreshing.
   188   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
   189 }
   192 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
   193   DUIterator_Common::verify(node, at_end_ok);
   194   Node** out    = node->_out;
   195   uint   cnt    = node->_outcnt;
   196   assert(cnt == _outcnt, "no insertions allowed");
   197   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
   198   // This last check is carefully designed to work for NO_OUT_ARRAY.
   199 }
   201 void DUIterator_Fast::verify_limit() {
   202   const Node* node = _node;
   203   verify(node, true);
   204   assert(_outp == node->_out + node->_outcnt, "limit still correct");
   205 }
   207 void DUIterator_Fast::verify_resync() {
   208   const Node* node = _node;
   209   if (_outp == node->_out + _outcnt) {
   210     // Note that the limit imax, not the pointer i, gets updated with the
   211     // exact count of deletions.  (For the pointer it's always "--i".)
   212     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
   213     // This is a limit pointer, with a name like "imax".
   214     // Fudge the _last field so that the common assert will be happy.
   215     _last = (Node*) node->_last_del;
   216     DUIterator_Common::verify_resync();
   217   } else {
   218     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
   219     // A normal internal pointer.
   220     DUIterator_Common::verify_resync();
   221     // Make sure we are still in sync, possibly with no more out-edges:
   222     verify(node, true);
   223   }
   224 }
   226 void DUIterator_Fast::verify_relimit(uint n) {
   227   const Node* node = _node;
   228   assert((int)n > 0, "use imax -= n only with a positive count");
   229   // This must be a limit pointer, with a name like "imax".
   230   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
   231   // The reported number of deletions must match what the node saw.
   232   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
   233   // Fudge the _last field so that the common assert will be happy.
   234   _last = (Node*) node->_last_del;
   235   DUIterator_Common::verify_resync();
   236 }
   238 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
   239   assert(_outp              == that._outp, "already assigned _outp");
   240   DUIterator_Common::reset(that);
   241 }
   243 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
   244   // at_end_ok means the _outp is allowed to underflow by 1
   245   _outp += at_end_ok;
   246   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
   247   _outp -= at_end_ok;
   248   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
   249 }
   251 void DUIterator_Last::verify_limit() {
   252   // Do not require the limit address to be resynched.
   253   //verify(node, true);
   254   assert(_outp == _node->_out, "limit still correct");
   255 }
   257 void DUIterator_Last::verify_step(uint num_edges) {
   258   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
   259   _outcnt   -= num_edges;
   260   _del_tick += num_edges;
   261   // Make sure we are still in sync, possibly with no more out-edges:
   262   const Node* node = _node;
   263   verify(node, true);
   264   assert(node->_last_del == _last, "must have deleted the edge just produced");
   265 }
   267 #endif //OPTO_DU_ITERATOR_ASSERT
   270 #endif //ASSERT
   273 // This constant used to initialize _out may be any non-null value.
   274 // The value NULL is reserved for the top node only.
   275 #define NO_OUT_ARRAY ((Node**)-1)
   277 // This funny expression handshakes with Node::operator new
   278 // to pull Compile::current out of the new node's _out field,
   279 // and then calls a subroutine which manages most field
   280 // initializations.  The only one which is tricky is the
   281 // _idx field, which is const, and so must be initialized
   282 // by a return value, not an assignment.
   283 //
   284 // (Aren't you thankful that Java finals don't require so many tricks?)
   285 #define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
   286 #ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
   287 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   288 #endif
   289 #ifdef __clang__
   290 #pragma clang diagnostic push
   291 #pragma GCC diagnostic ignored "-Wuninitialized"
   292 #endif
   294 // Out-of-line code from node constructors.
   295 // Executed only when extra debug info. is being passed around.
   296 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
   297   C->set_node_notes_at(idx, nn);
   298 }
   300 // Shared initialization code.
   301 inline int Node::Init(int req, Compile* C) {
   302   assert(Compile::current() == C, "must use operator new(Compile*)");
   303   int idx = C->next_unique();
   305   // Allocate memory for the necessary number of edges.
   306   if (req > 0) {
   307     // Allocate space for _in array to have double alignment.
   308     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
   309 #ifdef ASSERT
   310     _in[req-1] = this; // magic cookie for assertion check
   311 #endif
   312   }
   313   // If there are default notes floating around, capture them:
   314   Node_Notes* nn = C->default_node_notes();
   315   if (nn != NULL)  init_node_notes(C, idx, nn);
   317   // Note:  At this point, C is dead,
   318   // and we begin to initialize the new Node.
   320   _cnt = _max = req;
   321   _outcnt = _outmax = 0;
   322   _class_id = Class_Node;
   323   _flags = 0;
   324   _out = NO_OUT_ARRAY;
   325   return idx;
   326 }
   328 //------------------------------Node-------------------------------------------
   329 // Create a Node, with a given number of required edges.
   330 Node::Node(uint req)
   331   : _idx(IDX_INIT(req))
   332 #ifdef ASSERT
   333   , _parse_idx(_idx)
   334 #endif
   335 {
   336   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
   337   debug_only( verify_construction() );
   338   NOT_PRODUCT(nodes_created++);
   339   if (req == 0) {
   340     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
   341     _in = NULL;
   342   } else {
   343     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
   344     Node** to = _in;
   345     for(uint i = 0; i < req; i++) {
   346       to[i] = NULL;
   347     }
   348   }
   349 }
   351 //------------------------------Node-------------------------------------------
   352 Node::Node(Node *n0)
   353   : _idx(IDX_INIT(1))
   354 #ifdef ASSERT
   355   , _parse_idx(_idx)
   356 #endif
   357 {
   358   debug_only( verify_construction() );
   359   NOT_PRODUCT(nodes_created++);
   360   // Assert we allocated space for input array already
   361   assert( _in[0] == this, "Must pass arg count to 'new'" );
   362   assert( is_not_dead(n0), "can not use dead node");
   363   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   364 }
   366 //------------------------------Node-------------------------------------------
   367 Node::Node(Node *n0, Node *n1)
   368   : _idx(IDX_INIT(2))
   369 #ifdef ASSERT
   370   , _parse_idx(_idx)
   371 #endif
   372 {
   373   debug_only( verify_construction() );
   374   NOT_PRODUCT(nodes_created++);
   375   // Assert we allocated space for input array already
   376   assert( _in[1] == this, "Must pass arg count to 'new'" );
   377   assert( is_not_dead(n0), "can not use dead node");
   378   assert( is_not_dead(n1), "can not use dead node");
   379   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   380   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   381 }
   383 //------------------------------Node-------------------------------------------
   384 Node::Node(Node *n0, Node *n1, Node *n2)
   385   : _idx(IDX_INIT(3))
   386 #ifdef ASSERT
   387   , _parse_idx(_idx)
   388 #endif
   389 {
   390   debug_only( verify_construction() );
   391   NOT_PRODUCT(nodes_created++);
   392   // Assert we allocated space for input array already
   393   assert( _in[2] == this, "Must pass arg count to 'new'" );
   394   assert( is_not_dead(n0), "can not use dead node");
   395   assert( is_not_dead(n1), "can not use dead node");
   396   assert( is_not_dead(n2), "can not use dead node");
   397   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   398   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   399   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   400 }
   402 //------------------------------Node-------------------------------------------
   403 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
   404   : _idx(IDX_INIT(4))
   405 #ifdef ASSERT
   406   , _parse_idx(_idx)
   407 #endif
   408 {
   409   debug_only( verify_construction() );
   410   NOT_PRODUCT(nodes_created++);
   411   // Assert we allocated space for input array already
   412   assert( _in[3] == this, "Must pass arg count to 'new'" );
   413   assert( is_not_dead(n0), "can not use dead node");
   414   assert( is_not_dead(n1), "can not use dead node");
   415   assert( is_not_dead(n2), "can not use dead node");
   416   assert( is_not_dead(n3), "can not use dead node");
   417   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   418   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   419   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   420   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   421 }
   423 //------------------------------Node-------------------------------------------
   424 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
   425   : _idx(IDX_INIT(5))
   426 #ifdef ASSERT
   427   , _parse_idx(_idx)
   428 #endif
   429 {
   430   debug_only( verify_construction() );
   431   NOT_PRODUCT(nodes_created++);
   432   // Assert we allocated space for input array already
   433   assert( _in[4] == this, "Must pass arg count to 'new'" );
   434   assert( is_not_dead(n0), "can not use dead node");
   435   assert( is_not_dead(n1), "can not use dead node");
   436   assert( is_not_dead(n2), "can not use dead node");
   437   assert( is_not_dead(n3), "can not use dead node");
   438   assert( is_not_dead(n4), "can not use dead node");
   439   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   440   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   441   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   442   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   443   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
   444 }
   446 //------------------------------Node-------------------------------------------
   447 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
   448                      Node *n4, Node *n5)
   449   : _idx(IDX_INIT(6))
   450 #ifdef ASSERT
   451   , _parse_idx(_idx)
   452 #endif
   453 {
   454   debug_only( verify_construction() );
   455   NOT_PRODUCT(nodes_created++);
   456   // Assert we allocated space for input array already
   457   assert( _in[5] == this, "Must pass arg count to 'new'" );
   458   assert( is_not_dead(n0), "can not use dead node");
   459   assert( is_not_dead(n1), "can not use dead node");
   460   assert( is_not_dead(n2), "can not use dead node");
   461   assert( is_not_dead(n3), "can not use dead node");
   462   assert( is_not_dead(n4), "can not use dead node");
   463   assert( is_not_dead(n5), "can not use dead node");
   464   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   465   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   466   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   467   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   468   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
   469   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
   470 }
   472 //------------------------------Node-------------------------------------------
   473 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
   474                      Node *n4, Node *n5, Node *n6)
   475   : _idx(IDX_INIT(7))
   476 #ifdef ASSERT
   477   , _parse_idx(_idx)
   478 #endif
   479 {
   480   debug_only( verify_construction() );
   481   NOT_PRODUCT(nodes_created++);
   482   // Assert we allocated space for input array already
   483   assert( _in[6] == this, "Must pass arg count to 'new'" );
   484   assert( is_not_dead(n0), "can not use dead node");
   485   assert( is_not_dead(n1), "can not use dead node");
   486   assert( is_not_dead(n2), "can not use dead node");
   487   assert( is_not_dead(n3), "can not use dead node");
   488   assert( is_not_dead(n4), "can not use dead node");
   489   assert( is_not_dead(n5), "can not use dead node");
   490   assert( is_not_dead(n6), "can not use dead node");
   491   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   492   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   493   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   494   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   495   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
   496   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
   497   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
   498 }
   500 #ifdef __clang__
   501 #pragma clang diagnostic pop
   502 #endif
   505 //------------------------------clone------------------------------------------
   506 // Clone a Node.
   507 Node *Node::clone() const {
   508   Compile* C = Compile::current();
   509   uint s = size_of();           // Size of inherited Node
   510   Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
   511   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
   512   // Set the new input pointer array
   513   n->_in = (Node**)(((char*)n)+s);
   514   // Cannot share the old output pointer array, so kill it
   515   n->_out = NO_OUT_ARRAY;
   516   // And reset the counters to 0
   517   n->_outcnt = 0;
   518   n->_outmax = 0;
   519   // Unlock this guy, since he is not in any hash table.
   520   debug_only(n->_hash_lock = 0);
   521   // Walk the old node's input list to duplicate its edges
   522   uint i;
   523   for( i = 0; i < len(); i++ ) {
   524     Node *x = in(i);
   525     n->_in[i] = x;
   526     if (x != NULL) x->add_out(n);
   527   }
   528   if (is_macro())
   529     C->add_macro_node(n);
   530   if (is_expensive())
   531     C->add_expensive_node(n);
   532   // If the cloned node is a range check dependent CastII, add it to the list.
   533   CastIINode* cast = n->isa_CastII();
   534   if (cast != NULL && cast->has_range_check()) {
   535     C->add_range_check_cast(cast);
   536   }
   538   n->set_idx(C->next_unique()); // Get new unique index as well
   539   debug_only( n->verify_construction() );
   540   NOT_PRODUCT(nodes_created++);
   541   // Do not patch over the debug_idx of a clone, because it makes it
   542   // impossible to break on the clone's moment of creation.
   543   //debug_only( n->set_debug_idx( debug_idx() ) );
   545   C->copy_node_notes_to(n, (Node*) this);
   547   // MachNode clone
   548   uint nopnds;
   549   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
   550     MachNode *mach  = n->as_Mach();
   551     MachNode *mthis = this->as_Mach();
   552     // Get address of _opnd_array.
   553     // It should be the same offset since it is the clone of this node.
   554     MachOper **from = mthis->_opnds;
   555     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
   556                     pointer_delta((const void*)from,
   557                                   (const void*)(&mthis->_opnds), 1));
   558     mach->_opnds = to;
   559     for ( uint i = 0; i < nopnds; ++i ) {
   560       to[i] = from[i]->clone(C);
   561     }
   562   }
   563   // cloning CallNode may need to clone JVMState
   564   if (n->is_Call()) {
   565     n->as_Call()->clone_jvms(C);
   566   }
   567   if (n->is_SafePoint()) {
   568     n->as_SafePoint()->clone_replaced_nodes();
   569   }
   570   return n;                     // Return the clone
   571 }
   573 //---------------------------setup_is_top--------------------------------------
   574 // Call this when changing the top node, to reassert the invariants
   575 // required by Node::is_top.  See Compile::set_cached_top_node.
   576 void Node::setup_is_top() {
   577   if (this == (Node*)Compile::current()->top()) {
   578     // This node has just become top.  Kill its out array.
   579     _outcnt = _outmax = 0;
   580     _out = NULL;                           // marker value for top
   581     assert(is_top(), "must be top");
   582   } else {
   583     if (_out == NULL)  _out = NO_OUT_ARRAY;
   584     assert(!is_top(), "must not be top");
   585   }
   586 }
   589 //------------------------------~Node------------------------------------------
   590 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
   591 extern int reclaim_idx ;
   592 extern int reclaim_in  ;
   593 extern int reclaim_node;
   594 void Node::destruct() {
   595   // Eagerly reclaim unique Node numberings
   596   Compile* compile = Compile::current();
   597   if ((uint)_idx+1 == compile->unique()) {
   598     compile->set_unique(compile->unique()-1);
   599 #ifdef ASSERT
   600     reclaim_idx++;
   601 #endif
   602   }
   603   // Clear debug info:
   604   Node_Notes* nn = compile->node_notes_at(_idx);
   605   if (nn != NULL)  nn->clear();
   606   // Walk the input array, freeing the corresponding output edges
   607   _cnt = _max;  // forget req/prec distinction
   608   uint i;
   609   for( i = 0; i < _max; i++ ) {
   610     set_req(i, NULL);
   611     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
   612   }
   613   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
   614   // See if the input array was allocated just prior to the object
   615   int edge_size = _max*sizeof(void*);
   616   int out_edge_size = _outmax*sizeof(void*);
   617   char *edge_end = ((char*)_in) + edge_size;
   618   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
   619   char *out_edge_end = out_array + out_edge_size;
   620   int node_size = size_of();
   622   // Free the output edge array
   623   if (out_edge_size > 0) {
   624 #ifdef ASSERT
   625     if( out_edge_end == compile->node_arena()->hwm() )
   626       reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
   627 #endif
   628     compile->node_arena()->Afree(out_array, out_edge_size);
   629   }
   631   // Free the input edge array and the node itself
   632   if( edge_end == (char*)this ) {
   633 #ifdef ASSERT
   634     if( edge_end+node_size == compile->node_arena()->hwm() ) {
   635       reclaim_in  += edge_size;
   636       reclaim_node+= node_size;
   637     }
   638 #else
   639     // It was; free the input array and object all in one hit
   640     compile->node_arena()->Afree(_in,edge_size+node_size);
   641 #endif
   642   } else {
   644     // Free just the input array
   645 #ifdef ASSERT
   646     if( edge_end == compile->node_arena()->hwm() )
   647       reclaim_in  += edge_size;
   648 #endif
   649     compile->node_arena()->Afree(_in,edge_size);
   651     // Free just the object
   652 #ifdef ASSERT
   653     if( ((char*)this) + node_size == compile->node_arena()->hwm() )
   654       reclaim_node+= node_size;
   655 #else
   656     compile->node_arena()->Afree(this,node_size);
   657 #endif
   658   }
   659   if (is_macro()) {
   660     compile->remove_macro_node(this);
   661   }
   662   if (is_expensive()) {
   663     compile->remove_expensive_node(this);
   664   }
   665   CastIINode* cast = isa_CastII();
   666   if (cast != NULL && cast->has_range_check()) {
   667     compile->remove_range_check_cast(cast);
   668   }
   670   if (is_SafePoint()) {
   671     as_SafePoint()->delete_replaced_nodes();
   672   }
   673 #ifdef ASSERT
   674   // We will not actually delete the storage, but we'll make the node unusable.
   675   *(address*)this = badAddress;  // smash the C++ vtbl, probably
   676   _in = _out = (Node**) badAddress;
   677   _max = _cnt = _outmax = _outcnt = 0;
   678 #endif
   679 }
   681 //------------------------------grow-------------------------------------------
   682 // Grow the input array, making space for more edges
   683 void Node::grow( uint len ) {
   684   Arena* arena = Compile::current()->node_arena();
   685   uint new_max = _max;
   686   if( new_max == 0 ) {
   687     _max = 4;
   688     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
   689     Node** to = _in;
   690     to[0] = NULL;
   691     to[1] = NULL;
   692     to[2] = NULL;
   693     to[3] = NULL;
   694     return;
   695   }
   696   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
   697   // Trimming to limit allows a uint8 to handle up to 255 edges.
   698   // Previously I was using only powers-of-2 which peaked at 128 edges.
   699   //if( new_max >= limit ) new_max = limit-1;
   700   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
   701   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
   702   _max = new_max;               // Record new max length
   703   // This assertion makes sure that Node::_max is wide enough to
   704   // represent the numerical value of new_max.
   705   assert(_max == new_max && _max > len, "int width of _max is too small");
   706 }
   708 //-----------------------------out_grow----------------------------------------
   709 // Grow the input array, making space for more edges
   710 void Node::out_grow( uint len ) {
   711   assert(!is_top(), "cannot grow a top node's out array");
   712   Arena* arena = Compile::current()->node_arena();
   713   uint new_max = _outmax;
   714   if( new_max == 0 ) {
   715     _outmax = 4;
   716     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
   717     return;
   718   }
   719   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
   720   // Trimming to limit allows a uint8 to handle up to 255 edges.
   721   // Previously I was using only powers-of-2 which peaked at 128 edges.
   722   //if( new_max >= limit ) new_max = limit-1;
   723   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
   724   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
   725   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
   726   _outmax = new_max;               // Record new max length
   727   // This assertion makes sure that Node::_max is wide enough to
   728   // represent the numerical value of new_max.
   729   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
   730 }
   732 #ifdef ASSERT
   733 //------------------------------is_dead----------------------------------------
   734 bool Node::is_dead() const {
   735   // Mach and pinch point nodes may look like dead.
   736   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
   737     return false;
   738   for( uint i = 0; i < _max; i++ )
   739     if( _in[i] != NULL )
   740       return false;
   741   dump();
   742   return true;
   743 }
   744 #endif
   747 //------------------------------is_unreachable---------------------------------
   748 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
   749   assert(!is_Mach(), "doesn't work with MachNodes");
   750   return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top();
   751 }
   753 //------------------------------add_req----------------------------------------
   754 // Add a new required input at the end
   755 void Node::add_req( Node *n ) {
   756   assert( is_not_dead(n), "can not use dead node");
   758   // Look to see if I can move precedence down one without reallocating
   759   if( (_cnt >= _max) || (in(_max-1) != NULL) )
   760     grow( _max+1 );
   762   // Find a precedence edge to move
   763   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
   764     uint i;
   765     for( i=_cnt; i<_max; i++ )
   766       if( in(i) == NULL )       // Find the NULL at end of prec edge list
   767         break;                  // There must be one, since we grew the array
   768     _in[i] = in(_cnt);          // Move prec over, making space for req edge
   769   }
   770   _in[_cnt++] = n;            // Stuff over old prec edge
   771   if (n != NULL) n->add_out((Node *)this);
   772 }
   774 //---------------------------add_req_batch-------------------------------------
   775 // Add a new required input at the end
   776 void Node::add_req_batch( Node *n, uint m ) {
   777   assert( is_not_dead(n), "can not use dead node");
   778   // check various edge cases
   779   if ((int)m <= 1) {
   780     assert((int)m >= 0, "oob");
   781     if (m != 0)  add_req(n);
   782     return;
   783   }
   785   // Look to see if I can move precedence down one without reallocating
   786   if( (_cnt+m) > _max || _in[_max-m] )
   787     grow( _max+m );
   789   // Find a precedence edge to move
   790   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
   791     uint i;
   792     for( i=_cnt; i<_max; i++ )
   793       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
   794         break;                  // There must be one, since we grew the array
   795     // Slide all the precs over by m positions (assume #prec << m).
   796     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
   797   }
   799   // Stuff over the old prec edges
   800   for(uint i=0; i<m; i++ ) {
   801     _in[_cnt++] = n;
   802   }
   804   // Insert multiple out edges on the node.
   805   if (n != NULL && !n->is_top()) {
   806     for(uint i=0; i<m; i++ ) {
   807       n->add_out((Node *)this);
   808     }
   809   }
   810 }
   812 //------------------------------del_req----------------------------------------
   813 // Delete the required edge and compact the edge array
   814 void Node::del_req( uint idx ) {
   815   assert( idx < _cnt, "oob");
   816   assert( !VerifyHashTableKeys || _hash_lock == 0,
   817           "remove node from hash table before modifying it");
   818   // First remove corresponding def-use edge
   819   Node *n = in(idx);
   820   if (n != NULL) n->del_out((Node *)this);
   821   _in[idx] = in(--_cnt); // Compact the array
   822   // Avoid spec violation: Gap in prec edges.
   823   close_prec_gap_at(_cnt);
   824 }
   826 //------------------------------del_req_ordered--------------------------------
   827 // Delete the required edge and compact the edge array with preserved order
   828 void Node::del_req_ordered( uint idx ) {
   829   assert( idx < _cnt, "oob");
   830   assert( !VerifyHashTableKeys || _hash_lock == 0,
   831           "remove node from hash table before modifying it");
   832   // First remove corresponding def-use edge
   833   Node *n = in(idx);
   834   if (n != NULL) n->del_out((Node *)this);
   835   if (idx < --_cnt) {    // Not last edge ?
   836     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*)));
   837   }
   838   // Avoid spec violation: Gap in prec edges.
   839   close_prec_gap_at(_cnt);
   840 }
   842 //------------------------------ins_req----------------------------------------
   843 // Insert a new required input at the end
   844 void Node::ins_req( uint idx, Node *n ) {
   845   assert( is_not_dead(n), "can not use dead node");
   846   add_req(NULL);                // Make space
   847   assert( idx < _max, "Must have allocated enough space");
   848   // Slide over
   849   if(_cnt-idx-1 > 0) {
   850     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
   851   }
   852   _in[idx] = n;                            // Stuff over old required edge
   853   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
   854 }
   856 //-----------------------------find_edge---------------------------------------
   857 int Node::find_edge(Node* n) {
   858   for (uint i = 0; i < len(); i++) {
   859     if (_in[i] == n)  return i;
   860   }
   861   return -1;
   862 }
   864 //----------------------------replace_edge-------------------------------------
   865 int Node::replace_edge(Node* old, Node* neww) {
   866   if (old == neww)  return 0;  // nothing to do
   867   uint nrep = 0;
   868   for (uint i = 0; i < len(); i++) {
   869     if (in(i) == old) {
   870       if (i < req()) {
   871         set_req(i, neww);
   872       } else {
   873         assert(find_prec_edge(neww) == -1, err_msg("spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx));
   874         set_prec(i, neww);
   875       }
   876       nrep++;
   877     }
   878   }
   879   return nrep;
   880 }
   882 /**
   883  * Replace input edges in the range pointing to 'old' node.
   884  */
   885 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
   886   if (old == neww)  return 0;  // nothing to do
   887   uint nrep = 0;
   888   for (int i = start; i < end; i++) {
   889     if (in(i) == old) {
   890       set_req(i, neww);
   891       nrep++;
   892     }
   893   }
   894   return nrep;
   895 }
   897 //-------------------------disconnect_inputs-----------------------------------
   898 // NULL out all inputs to eliminate incoming Def-Use edges.
   899 // Return the number of edges between 'n' and 'this'
   900 int Node::disconnect_inputs(Node *n, Compile* C) {
   901   int edges_to_n = 0;
   903   uint cnt = req();
   904   for( uint i = 0; i < cnt; ++i ) {
   905     if( in(i) == 0 ) continue;
   906     if( in(i) == n ) ++edges_to_n;
   907     set_req(i, NULL);
   908   }
   909   // Remove precedence edges if any exist
   910   // Note: Safepoints may have precedence edges, even during parsing
   911   if( (req() != len()) && (in(req()) != NULL) ) {
   912     uint max = len();
   913     for( uint i = 0; i < max; ++i ) {
   914       if( in(i) == 0 ) continue;
   915       if( in(i) == n ) ++edges_to_n;
   916       set_prec(i, NULL);
   917     }
   918   }
   920   // Node::destruct requires all out edges be deleted first
   921   // debug_only(destruct();)   // no reuse benefit expected
   922   if (edges_to_n == 0) {
   923     C->record_dead_node(_idx);
   924   }
   925   return edges_to_n;
   926 }
   928 //-----------------------------uncast---------------------------------------
   929 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
   930 // Strip away casting.  (It is depth-limited.)
   931 Node* Node::uncast() const {
   932   // Should be inline:
   933   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
   934   if (is_ConstraintCast() || is_CheckCastPP())
   935     return uncast_helper(this);
   936   else
   937     return (Node*) this;
   938 }
   940 //---------------------------uncast_helper-------------------------------------
   941 Node* Node::uncast_helper(const Node* p) {
   942 #ifdef ASSERT
   943   uint depth_count = 0;
   944   const Node* orig_p = p;
   945 #endif
   947   while (true) {
   948 #ifdef ASSERT
   949     if (depth_count >= K) {
   950       orig_p->dump(4);
   951       if (p != orig_p)
   952         p->dump(1);
   953     }
   954     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
   955 #endif
   956     if (p == NULL || p->req() != 2) {
   957       break;
   958     } else if (p->is_ConstraintCast()) {
   959       p = p->in(1);
   960     } else if (p->is_CheckCastPP()) {
   961       p = p->in(1);
   962     } else {
   963       break;
   964     }
   965   }
   966   return (Node*) p;
   967 }
   969 //------------------------------add_prec---------------------------------------
   970 // Add a new precedence input.  Precedence inputs are unordered, with
   971 // duplicates removed and NULLs packed down at the end.
   972 void Node::add_prec( Node *n ) {
   973   assert( is_not_dead(n), "can not use dead node");
   975   // Check for NULL at end
   976   if( _cnt >= _max || in(_max-1) )
   977     grow( _max+1 );
   979   // Find a precedence edge to move
   980   uint i = _cnt;
   981   while( in(i) != NULL ) {
   982     if (in(i) == n) return; // Avoid spec violation: duplicated prec edge.
   983     i++;
   984   }
   985   _in[i] = n;                                // Stuff prec edge over NULL
   986   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
   988 #ifdef ASSERT
   989   while ((++i)<_max) { assert(_in[i] == NULL, err_msg("spec violation: Gap in prec edges (node %d)", _idx)); }
   990 #endif
   991 }
   993 //------------------------------rm_prec----------------------------------------
   994 // Remove a precedence input.  Precedence inputs are unordered, with
   995 // duplicates removed and NULLs packed down at the end.
   996 void Node::rm_prec( uint j ) {
   997   assert(j < _max, err_msg("oob: i=%d, _max=%d", j, _max));
   998   assert(j >= _cnt, "not a precedence edge");
   999   if (_in[j] == NULL) return;   // Avoid spec violation: Gap in prec edges.
  1000   _in[j]->del_out((Node *)this);
  1001   close_prec_gap_at(j);
  1004 //------------------------------size_of----------------------------------------
  1005 uint Node::size_of() const { return sizeof(*this); }
  1007 //------------------------------ideal_reg--------------------------------------
  1008 uint Node::ideal_reg() const { return 0; }
  1010 //------------------------------jvms-------------------------------------------
  1011 JVMState* Node::jvms() const { return NULL; }
  1013 #ifdef ASSERT
  1014 //------------------------------jvms-------------------------------------------
  1015 bool Node::verify_jvms(const JVMState* using_jvms) const {
  1016   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
  1017     if (jvms == using_jvms)  return true;
  1019   return false;
  1022 //------------------------------init_NodeProperty------------------------------
  1023 void Node::init_NodeProperty() {
  1024   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
  1025   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
  1027 #endif
  1029 //------------------------------format-----------------------------------------
  1030 // Print as assembly
  1031 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
  1032 //------------------------------emit-------------------------------------------
  1033 // Emit bytes starting at parameter 'ptr'.
  1034 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
  1035 //------------------------------size-------------------------------------------
  1036 // Size of instruction in bytes
  1037 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
  1039 //------------------------------CFG Construction-------------------------------
  1040 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
  1041 // Goto and Return.
  1042 const Node *Node::is_block_proj() const { return 0; }
  1044 // Minimum guaranteed type
  1045 const Type *Node::bottom_type() const { return Type::BOTTOM; }
  1048 //------------------------------raise_bottom_type------------------------------
  1049 // Get the worst-case Type output for this Node.
  1050 void Node::raise_bottom_type(const Type* new_type) {
  1051   if (is_Type()) {
  1052     TypeNode *n = this->as_Type();
  1053     if (VerifyAliases) {
  1054       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
  1056     n->set_type(new_type);
  1057   } else if (is_Load()) {
  1058     LoadNode *n = this->as_Load();
  1059     if (VerifyAliases) {
  1060       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
  1062     n->set_type(new_type);
  1066 //------------------------------Identity---------------------------------------
  1067 // Return a node that the given node is equivalent to.
  1068 Node *Node::Identity( PhaseTransform * ) {
  1069   return this;                  // Default to no identities
  1072 //------------------------------Value------------------------------------------
  1073 // Compute a new Type for a node using the Type of the inputs.
  1074 const Type *Node::Value( PhaseTransform * ) const {
  1075   return bottom_type();         // Default to worst-case Type
  1078 //------------------------------Ideal------------------------------------------
  1079 //
  1080 // 'Idealize' the graph rooted at this Node.
  1081 //
  1082 // In order to be efficient and flexible there are some subtle invariants
  1083 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
  1084 // these invariants, although its too slow to have on by default.  If you are
  1085 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
  1086 //
  1087 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
  1088 // pointer.  If ANY change is made, it must return the root of the reshaped
  1089 // graph - even if the root is the same Node.  Example: swapping the inputs
  1090 // to an AddINode gives the same answer and same root, but you still have to
  1091 // return the 'this' pointer instead of NULL.
  1092 //
  1093 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
  1094 // Identity call to return an old Node; basically if Identity can find
  1095 // another Node have the Ideal call make no change and return NULL.
  1096 // Example: AddINode::Ideal must check for add of zero; in this case it
  1097 // returns NULL instead of doing any graph reshaping.
  1098 //
  1099 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
  1100 // sharing there may be other users of the old Nodes relying on their current
  1101 // semantics.  Modifying them will break the other users.
  1102 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
  1103 // "X+3" unchanged in case it is shared.
  1104 //
  1105 // If you modify the 'this' pointer's inputs, you should use
  1106 // 'set_req'.  If you are making a new Node (either as the new root or
  1107 // some new internal piece) you may use 'init_req' to set the initial
  1108 // value.  You can make a new Node with either 'new' or 'clone'.  In
  1109 // either case, def-use info is correctly maintained.
  1110 //
  1111 // Example: reshape "(X+3)+4" into "X+7":
  1112 //    set_req(1, in(1)->in(1));
  1113 //    set_req(2, phase->intcon(7));
  1114 //    return this;
  1115 // Example: reshape "X*4" into "X<<2"
  1116 //    return new (C) LShiftINode(in(1), phase->intcon(2));
  1117 //
  1118 // You must call 'phase->transform(X)' on any new Nodes X you make, except
  1119 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
  1120 //    Node *shift=phase->transform(new(C)LShiftINode(in(1),phase->intcon(5)));
  1121 //    return new (C) AddINode(shift, in(1));
  1122 //
  1123 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
  1124 // These forms are faster than 'phase->transform(new (C) ConNode())' and Do
  1125 // The Right Thing with def-use info.
  1126 //
  1127 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
  1128 // graph uses the 'this' Node it must be the root.  If you want a Node with
  1129 // the same Opcode as the 'this' pointer use 'clone'.
  1130 //
  1131 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
  1132   return NULL;                  // Default to being Ideal already
  1135 // Some nodes have specific Ideal subgraph transformations only if they are
  1136 // unique users of specific nodes. Such nodes should be put on IGVN worklist
  1137 // for the transformations to happen.
  1138 bool Node::has_special_unique_user() const {
  1139   assert(outcnt() == 1, "match only for unique out");
  1140   Node* n = unique_out();
  1141   int op  = Opcode();
  1142   if( this->is_Store() ) {
  1143     // Condition for back-to-back stores folding.
  1144     return n->Opcode() == op && n->in(MemNode::Memory) == this;
  1145   } else if (this->is_Load()) {
  1146     // Condition for removing an unused LoadNode from the MemBarAcquire precedence input
  1147     return n->Opcode() == Op_MemBarAcquire;
  1148   } else if( op == Op_AddL ) {
  1149     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
  1150     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
  1151   } else if( op == Op_SubI || op == Op_SubL ) {
  1152     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
  1153     return n->Opcode() == op && n->in(2) == this;
  1155   return false;
  1156 };
  1158 //--------------------------find_exact_control---------------------------------
  1159 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
  1160 Node* Node::find_exact_control(Node* ctrl) {
  1161   if (ctrl == NULL && this->is_Region())
  1162     ctrl = this->as_Region()->is_copy();
  1164   if (ctrl != NULL && ctrl->is_CatchProj()) {
  1165     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
  1166       ctrl = ctrl->in(0);
  1167     if (ctrl != NULL && !ctrl->is_top())
  1168       ctrl = ctrl->in(0);
  1171   if (ctrl != NULL && ctrl->is_Proj())
  1172     ctrl = ctrl->in(0);
  1174   return ctrl;
  1177 //--------------------------dominates------------------------------------------
  1178 // Helper function for MemNode::all_controls_dominate().
  1179 // Check if 'this' control node dominates or equal to 'sub' control node.
  1180 // We already know that if any path back to Root or Start reaches 'this',
  1181 // then all paths so, so this is a simple search for one example,
  1182 // not an exhaustive search for a counterexample.
  1183 bool Node::dominates(Node* sub, Node_List &nlist) {
  1184   assert(this->is_CFG(), "expecting control");
  1185   assert(sub != NULL && sub->is_CFG(), "expecting control");
  1187   // detect dead cycle without regions
  1188   int iterations_without_region_limit = DominatorSearchLimit;
  1190   Node* orig_sub = sub;
  1191   Node* dom      = this;
  1192   bool  met_dom  = false;
  1193   nlist.clear();
  1195   // Walk 'sub' backward up the chain to 'dom', watching for regions.
  1196   // After seeing 'dom', continue up to Root or Start.
  1197   // If we hit a region (backward split point), it may be a loop head.
  1198   // Keep going through one of the region's inputs.  If we reach the
  1199   // same region again, go through a different input.  Eventually we
  1200   // will either exit through the loop head, or give up.
  1201   // (If we get confused, break out and return a conservative 'false'.)
  1202   while (sub != NULL) {
  1203     if (sub->is_top())  break; // Conservative answer for dead code.
  1204     if (sub == dom) {
  1205       if (nlist.size() == 0) {
  1206         // No Region nodes except loops were visited before and the EntryControl
  1207         // path was taken for loops: it did not walk in a cycle.
  1208         return true;
  1209       } else if (met_dom) {
  1210         break;          // already met before: walk in a cycle
  1211       } else {
  1212         // Region nodes were visited. Continue walk up to Start or Root
  1213         // to make sure that it did not walk in a cycle.
  1214         met_dom = true; // first time meet
  1215         iterations_without_region_limit = DominatorSearchLimit; // Reset
  1218     if (sub->is_Start() || sub->is_Root()) {
  1219       // Success if we met 'dom' along a path to Start or Root.
  1220       // We assume there are no alternative paths that avoid 'dom'.
  1221       // (This assumption is up to the caller to ensure!)
  1222       return met_dom;
  1224     Node* up = sub->in(0);
  1225     // Normalize simple pass-through regions and projections:
  1226     up = sub->find_exact_control(up);
  1227     // If sub == up, we found a self-loop.  Try to push past it.
  1228     if (sub == up && sub->is_Loop()) {
  1229       // Take loop entry path on the way up to 'dom'.
  1230       up = sub->in(1); // in(LoopNode::EntryControl);
  1231     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
  1232       // Always take in(1) path on the way up to 'dom' for clone regions
  1233       // (with only one input) or regions which merge > 2 paths
  1234       // (usually used to merge fast/slow paths).
  1235       up = sub->in(1);
  1236     } else if (sub == up && sub->is_Region()) {
  1237       // Try both paths for Regions with 2 input paths (it may be a loop head).
  1238       // It could give conservative 'false' answer without information
  1239       // which region's input is the entry path.
  1240       iterations_without_region_limit = DominatorSearchLimit; // Reset
  1242       bool region_was_visited_before = false;
  1243       // Was this Region node visited before?
  1244       // If so, we have reached it because we accidentally took a
  1245       // loop-back edge from 'sub' back into the body of the loop,
  1246       // and worked our way up again to the loop header 'sub'.
  1247       // So, take the first unexplored path on the way up to 'dom'.
  1248       for (int j = nlist.size() - 1; j >= 0; j--) {
  1249         intptr_t ni = (intptr_t)nlist.at(j);
  1250         Node* visited = (Node*)(ni & ~1);
  1251         bool  visited_twice_already = ((ni & 1) != 0);
  1252         if (visited == sub) {
  1253           if (visited_twice_already) {
  1254             // Visited 2 paths, but still stuck in loop body.  Give up.
  1255             return false;
  1257           // The Region node was visited before only once.
  1258           // (We will repush with the low bit set, below.)
  1259           nlist.remove(j);
  1260           // We will find a new edge and re-insert.
  1261           region_was_visited_before = true;
  1262           break;
  1266       // Find an incoming edge which has not been seen yet; walk through it.
  1267       assert(up == sub, "");
  1268       uint skip = region_was_visited_before ? 1 : 0;
  1269       for (uint i = 1; i < sub->req(); i++) {
  1270         Node* in = sub->in(i);
  1271         if (in != NULL && !in->is_top() && in != sub) {
  1272           if (skip == 0) {
  1273             up = in;
  1274             break;
  1276           --skip;               // skip this nontrivial input
  1280       // Set 0 bit to indicate that both paths were taken.
  1281       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
  1284     if (up == sub) {
  1285       break;    // some kind of tight cycle
  1287     if (up == orig_sub && met_dom) {
  1288       // returned back after visiting 'dom'
  1289       break;    // some kind of cycle
  1291     if (--iterations_without_region_limit < 0) {
  1292       break;    // dead cycle
  1294     sub = up;
  1297   // Did not meet Root or Start node in pred. chain.
  1298   // Conservative answer for dead code.
  1299   return false;
  1302 //------------------------------remove_dead_region-----------------------------
  1303 // This control node is dead.  Follow the subgraph below it making everything
  1304 // using it dead as well.  This will happen normally via the usual IterGVN
  1305 // worklist but this call is more efficient.  Do not update use-def info
  1306 // inside the dead region, just at the borders.
  1307 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
  1308   // Con's are a popular node to re-hit in the hash table again.
  1309   if( dead->is_Con() ) return;
  1311   // Can't put ResourceMark here since igvn->_worklist uses the same arena
  1312   // for verify pass with +VerifyOpto and we add/remove elements in it here.
  1313   Node_List  nstack(Thread::current()->resource_area());
  1315   Node *top = igvn->C->top();
  1316   nstack.push(dead);
  1317   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
  1319   while (nstack.size() > 0) {
  1320     dead = nstack.pop();
  1321     if (dead->outcnt() > 0) {
  1322       // Keep dead node on stack until all uses are processed.
  1323       nstack.push(dead);
  1324       // For all Users of the Dead...    ;-)
  1325       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
  1326         Node* use = dead->last_out(k);
  1327         igvn->hash_delete(use);       // Yank from hash table prior to mod
  1328         if (use->in(0) == dead) {     // Found another dead node
  1329           assert (!use->is_Con(), "Control for Con node should be Root node.");
  1330           use->set_req(0, top);       // Cut dead edge to prevent processing
  1331           nstack.push(use);           // the dead node again.
  1332         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
  1333                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
  1334                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
  1335           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
  1336           use->set_req(0, top);       // Cut self edge
  1337           nstack.push(use);
  1338         } else {                      // Else found a not-dead user
  1339           // Dead if all inputs are top or null
  1340           bool dead_use = !use->is_Root(); // Keep empty graph alive
  1341           for (uint j = 1; j < use->req(); j++) {
  1342             Node* in = use->in(j);
  1343             if (in == dead) {         // Turn all dead inputs into TOP
  1344               use->set_req(j, top);
  1345             } else if (in != NULL && !in->is_top()) {
  1346               dead_use = false;
  1349           if (dead_use) {
  1350             if (use->is_Region()) {
  1351               use->set_req(0, top);   // Cut self edge
  1353             nstack.push(use);
  1354           } else {
  1355             igvn->_worklist.push(use);
  1358         // Refresh the iterator, since any number of kills might have happened.
  1359         k = dead->last_outs(kmin);
  1361     } else { // (dead->outcnt() == 0)
  1362       // Done with outputs.
  1363       igvn->hash_delete(dead);
  1364       igvn->_worklist.remove(dead);
  1365       igvn->set_type(dead, Type::TOP);
  1366       if (dead->is_macro()) {
  1367         igvn->C->remove_macro_node(dead);
  1369       if (dead->is_expensive()) {
  1370         igvn->C->remove_expensive_node(dead);
  1372       CastIINode* cast = dead->isa_CastII();
  1373       if (cast != NULL && cast->has_range_check()) {
  1374         igvn->C->remove_range_check_cast(cast);
  1376       igvn->C->record_dead_node(dead->_idx);
  1377       // Kill all inputs to the dead guy
  1378       for (uint i=0; i < dead->req(); i++) {
  1379         Node *n = dead->in(i);      // Get input to dead guy
  1380         if (n != NULL && !n->is_top()) { // Input is valid?
  1381           dead->set_req(i, top);    // Smash input away
  1382           if (n->outcnt() == 0) {   // Input also goes dead?
  1383             if (!n->is_Con())
  1384               nstack.push(n);       // Clear it out as well
  1385           } else if (n->outcnt() == 1 &&
  1386                      n->has_special_unique_user()) {
  1387             igvn->add_users_to_worklist( n );
  1388           } else if (n->outcnt() <= 2 && n->is_Store()) {
  1389             // Push store's uses on worklist to enable folding optimization for
  1390             // store/store and store/load to the same address.
  1391             // The restriction (outcnt() <= 2) is the same as in set_req_X()
  1392             // and remove_globally_dead_node().
  1393             igvn->add_users_to_worklist( n );
  1397     } // (dead->outcnt() == 0)
  1398   }   // while (nstack.size() > 0) for outputs
  1399   return;
  1402 //------------------------------remove_dead_region-----------------------------
  1403 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
  1404   Node *n = in(0);
  1405   if( !n ) return false;
  1406   // Lost control into this guy?  I.e., it became unreachable?
  1407   // Aggressively kill all unreachable code.
  1408   if (can_reshape && n->is_top()) {
  1409     kill_dead_code(this, phase->is_IterGVN());
  1410     return false; // Node is dead.
  1413   if( n->is_Region() && n->as_Region()->is_copy() ) {
  1414     Node *m = n->nonnull_req();
  1415     set_req(0, m);
  1416     return true;
  1418   return false;
  1421 //------------------------------Ideal_DU_postCCP-------------------------------
  1422 // Idealize graph, using DU info.  Must clone result into new-space
  1423 Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
  1424   return NULL;                 // Default to no change
  1427 //------------------------------hash-------------------------------------------
  1428 // Hash function over Nodes.
  1429 uint Node::hash() const {
  1430   uint sum = 0;
  1431   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
  1432     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
  1433   return (sum>>2) + _cnt + Opcode();
  1436 //------------------------------cmp--------------------------------------------
  1437 // Compare special parts of simple Nodes
  1438 uint Node::cmp( const Node &n ) const {
  1439   return 1;                     // Must be same
  1442 //------------------------------rematerialize-----------------------------------
  1443 // Should we clone rather than spill this instruction?
  1444 bool Node::rematerialize() const {
  1445   if ( is_Mach() )
  1446     return this->as_Mach()->rematerialize();
  1447   else
  1448     return (_flags & Flag_rematerialize) != 0;
  1451 //------------------------------needs_anti_dependence_check---------------------
  1452 // Nodes which use memory without consuming it, hence need antidependences.
  1453 bool Node::needs_anti_dependence_check() const {
  1454   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
  1455     return false;
  1456   else
  1457     return in(1)->bottom_type()->has_memory();
  1461 // Get an integer constant from a ConNode (or CastIINode).
  1462 // Return a default value if there is no apparent constant here.
  1463 const TypeInt* Node::find_int_type() const {
  1464   if (this->is_Type()) {
  1465     return this->as_Type()->type()->isa_int();
  1466   } else if (this->is_Con()) {
  1467     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
  1468     return this->bottom_type()->isa_int();
  1470   return NULL;
  1473 // Get a pointer constant from a ConstNode.
  1474 // Returns the constant if it is a pointer ConstNode
  1475 intptr_t Node::get_ptr() const {
  1476   assert( Opcode() == Op_ConP, "" );
  1477   return ((ConPNode*)this)->type()->is_ptr()->get_con();
  1480 // Get a narrow oop constant from a ConNNode.
  1481 intptr_t Node::get_narrowcon() const {
  1482   assert( Opcode() == Op_ConN, "" );
  1483   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
  1486 // Get a long constant from a ConNode.
  1487 // Return a default value if there is no apparent constant here.
  1488 const TypeLong* Node::find_long_type() const {
  1489   if (this->is_Type()) {
  1490     return this->as_Type()->type()->isa_long();
  1491   } else if (this->is_Con()) {
  1492     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
  1493     return this->bottom_type()->isa_long();
  1495   return NULL;
  1499 /**
  1500  * Return a ptr type for nodes which should have it.
  1501  */
  1502 const TypePtr* Node::get_ptr_type() const {
  1503   const TypePtr* tp = this->bottom_type()->make_ptr();
  1504 #ifdef ASSERT
  1505   if (tp == NULL) {
  1506     this->dump(1);
  1507     assert((tp != NULL), "unexpected node type");
  1509 #endif
  1510   return tp;
  1513 // Get a double constant from a ConstNode.
  1514 // Returns the constant if it is a double ConstNode
  1515 jdouble Node::getd() const {
  1516   assert( Opcode() == Op_ConD, "" );
  1517   return ((ConDNode*)this)->type()->is_double_constant()->getd();
  1520 // Get a float constant from a ConstNode.
  1521 // Returns the constant if it is a float ConstNode
  1522 jfloat Node::getf() const {
  1523   assert( Opcode() == Op_ConF, "" );
  1524   return ((ConFNode*)this)->type()->is_float_constant()->getf();
  1527 #ifndef PRODUCT
  1529 //----------------------------NotANode----------------------------------------
  1530 // Used in debugging code to avoid walking across dead or uninitialized edges.
  1531 static inline bool NotANode(const Node* n) {
  1532   if (n == NULL)                   return true;
  1533   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
  1534   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
  1535   return false;
  1539 //------------------------------find------------------------------------------
  1540 // Find a neighbor of this Node with the given _idx
  1541 // If idx is negative, find its absolute value, following both _in and _out.
  1542 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
  1543                         VectorSet* old_space, VectorSet* new_space ) {
  1544   int node_idx = (idx >= 0) ? idx : -idx;
  1545   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
  1546   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
  1547   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
  1548   if( v->test(n->_idx) ) return;
  1549   if( (int)n->_idx == node_idx
  1550       debug_only(|| n->debug_idx() == node_idx) ) {
  1551     if (result != NULL)
  1552       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
  1553                  (uintptr_t)result, (uintptr_t)n, node_idx);
  1554     result = n;
  1556   v->set(n->_idx);
  1557   for( uint i=0; i<n->len(); i++ ) {
  1558     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
  1559     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
  1561   // Search along forward edges also:
  1562   if (idx < 0 && !only_ctrl) {
  1563     for( uint j=0; j<n->outcnt(); j++ ) {
  1564       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
  1567 #ifdef ASSERT
  1568   // Search along debug_orig edges last, checking for cycles
  1569   Node* orig = n->debug_orig();
  1570   if (orig != NULL) {
  1571     do {
  1572       if (NotANode(orig))  break;
  1573       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
  1574       orig = orig->debug_orig();
  1575     } while (orig != NULL && orig != n->debug_orig());
  1577 #endif //ASSERT
  1580 // call this from debugger:
  1581 Node* find_node(Node* n, int idx) {
  1582   return n->find(idx);
  1585 //------------------------------find-------------------------------------------
  1586 Node* Node::find(int idx) const {
  1587   ResourceArea *area = Thread::current()->resource_area();
  1588   VectorSet old_space(area), new_space(area);
  1589   Node* result = NULL;
  1590   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
  1591   return result;
  1594 //------------------------------find_ctrl--------------------------------------
  1595 // Find an ancestor to this node in the control history with given _idx
  1596 Node* Node::find_ctrl(int idx) const {
  1597   ResourceArea *area = Thread::current()->resource_area();
  1598   VectorSet old_space(area), new_space(area);
  1599   Node* result = NULL;
  1600   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
  1601   return result;
  1603 #endif
  1607 #ifndef PRODUCT
  1609 // -----------------------------Name-------------------------------------------
  1610 extern const char *NodeClassNames[];
  1611 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
  1613 static bool is_disconnected(const Node* n) {
  1614   for (uint i = 0; i < n->req(); i++) {
  1615     if (n->in(i) != NULL)  return false;
  1617   return true;
  1620 #ifdef ASSERT
  1621 static void dump_orig(Node* orig, outputStream *st) {
  1622   Compile* C = Compile::current();
  1623   if (NotANode(orig)) orig = NULL;
  1624   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
  1625   if (orig == NULL) return;
  1626   st->print(" !orig=");
  1627   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
  1628   if (NotANode(fast)) fast = NULL;
  1629   while (orig != NULL) {
  1630     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
  1631     if (discon) st->print("[");
  1632     if (!Compile::current()->node_arena()->contains(orig))
  1633       st->print("o");
  1634     st->print("%d", orig->_idx);
  1635     if (discon) st->print("]");
  1636     orig = orig->debug_orig();
  1637     if (NotANode(orig)) orig = NULL;
  1638     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
  1639     if (orig != NULL) st->print(",");
  1640     if (fast != NULL) {
  1641       // Step fast twice for each single step of orig:
  1642       fast = fast->debug_orig();
  1643       if (NotANode(fast)) fast = NULL;
  1644       if (fast != NULL && fast != orig) {
  1645         fast = fast->debug_orig();
  1646         if (NotANode(fast)) fast = NULL;
  1648       if (fast == orig) {
  1649         st->print("...");
  1650         break;
  1656 void Node::set_debug_orig(Node* orig) {
  1657   _debug_orig = orig;
  1658   if (BreakAtNode == 0)  return;
  1659   if (NotANode(orig))  orig = NULL;
  1660   int trip = 10;
  1661   while (orig != NULL) {
  1662     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
  1663       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
  1664                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
  1665       BREAKPOINT;
  1667     orig = orig->debug_orig();
  1668     if (NotANode(orig))  orig = NULL;
  1669     if (trip-- <= 0)  break;
  1672 #endif //ASSERT
  1674 //------------------------------dump------------------------------------------
  1675 // Dump a Node
  1676 void Node::dump(const char* suffix, outputStream *st) const {
  1677   Compile* C = Compile::current();
  1678   bool is_new = C->node_arena()->contains(this);
  1679   C->_in_dump_cnt++;
  1680   st->print("%c%d\t%s\t=== ", is_new ? ' ' : 'o', _idx, Name());
  1682   // Dump the required and precedence inputs
  1683   dump_req(st);
  1684   dump_prec(st);
  1685   // Dump the outputs
  1686   dump_out(st);
  1688   if (is_disconnected(this)) {
  1689 #ifdef ASSERT
  1690     st->print("  [%d]",debug_idx());
  1691     dump_orig(debug_orig(), st);
  1692 #endif
  1693     st->cr();
  1694     C->_in_dump_cnt--;
  1695     return;                     // don't process dead nodes
  1698   // Dump node-specific info
  1699   dump_spec(st);
  1700 #ifdef ASSERT
  1701   // Dump the non-reset _debug_idx
  1702   if (Verbose && WizardMode) {
  1703     st->print("  [%d]",debug_idx());
  1705 #endif
  1707   const Type *t = bottom_type();
  1709   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
  1710     const TypeInstPtr  *toop = t->isa_instptr();
  1711     const TypeKlassPtr *tkls = t->isa_klassptr();
  1712     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
  1713     if (klass && klass->is_loaded() && klass->is_interface()) {
  1714       st->print("  Interface:");
  1715     } else if (toop) {
  1716       st->print("  Oop:");
  1717     } else if (tkls) {
  1718       st->print("  Klass:");
  1720     t->dump_on(st);
  1721   } else if (t == Type::MEMORY) {
  1722     st->print("  Memory:");
  1723     MemNode::dump_adr_type(this, adr_type(), st);
  1724   } else if (Verbose || WizardMode) {
  1725     st->print("  Type:");
  1726     if (t) {
  1727       t->dump_on(st);
  1728     } else {
  1729       st->print("no type");
  1731   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
  1732     // Dump MachSpillcopy vector type.
  1733     t->dump_on(st);
  1735   if (is_new) {
  1736     debug_only(dump_orig(debug_orig(), st));
  1737     Node_Notes* nn = C->node_notes_at(_idx);
  1738     if (nn != NULL && !nn->is_clear()) {
  1739       if (nn->jvms() != NULL) {
  1740         st->print(" !jvms:");
  1741         nn->jvms()->dump_spec(st);
  1745   if (suffix) st->print("%s", suffix);
  1746   C->_in_dump_cnt--;
  1749 //------------------------------dump_req--------------------------------------
  1750 void Node::dump_req(outputStream *st) const {
  1751   // Dump the required input edges
  1752   for (uint i = 0; i < req(); i++) {    // For all required inputs
  1753     Node* d = in(i);
  1754     if (d == NULL) {
  1755       st->print("_ ");
  1756     } else if (NotANode(d)) {
  1757       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
  1758     } else {
  1759       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
  1765 //------------------------------dump_prec-------------------------------------
  1766 void Node::dump_prec(outputStream *st) const {
  1767   // Dump the precedence edges
  1768   int any_prec = 0;
  1769   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
  1770     Node* p = in(i);
  1771     if (p != NULL) {
  1772       if (!any_prec++) st->print(" |");
  1773       if (NotANode(p)) { st->print("NotANode "); continue; }
  1774       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
  1779 //------------------------------dump_out--------------------------------------
  1780 void Node::dump_out(outputStream *st) const {
  1781   // Delimit the output edges
  1782   st->print(" [[");
  1783   // Dump the output edges
  1784   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
  1785     Node* u = _out[i];
  1786     if (u == NULL) {
  1787       st->print("_ ");
  1788     } else if (NotANode(u)) {
  1789       st->print("NotANode ");
  1790     } else {
  1791       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
  1794   st->print("]] ");
  1797 //------------------------------dump_nodes-------------------------------------
  1798 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
  1799   Node* s = (Node*)start; // remove const
  1800   if (NotANode(s)) return;
  1802   uint depth = (uint)ABS(d);
  1803   int direction = d;
  1804   Compile* C = Compile::current();
  1805   GrowableArray <Node *> nstack(C->live_nodes());
  1807   nstack.append(s);
  1808   int begin = 0;
  1809   int end = 0;
  1810   for(uint i = 0; i < depth; i++) {
  1811     end = nstack.length();
  1812     for(int j = begin; j < end; j++) {
  1813       Node* tp  = nstack.at(j);
  1814       uint limit = direction > 0 ? tp->len() : tp->outcnt();
  1815       for(uint k = 0; k < limit; k++) {
  1816         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
  1818         if (NotANode(n))  continue;
  1819         // do not recurse through top or the root (would reach unrelated stuff)
  1820         if (n->is_Root() || n->is_top())  continue;
  1821         if (only_ctrl && !n->is_CFG()) continue;
  1823         bool on_stack = nstack.contains(n);
  1824         if (!on_stack) {
  1825           nstack.append(n);
  1829     begin = end;
  1831   end = nstack.length();
  1832   if (direction > 0) {
  1833     for(int j = end-1; j >= 0; j--) {
  1834       nstack.at(j)->dump();
  1836   } else {
  1837     for(int j = 0; j < end; j++) {
  1838       nstack.at(j)->dump();
  1843 //------------------------------dump-------------------------------------------
  1844 void Node::dump(int d) const {
  1845   dump_nodes(this, d, false);
  1848 //------------------------------dump_ctrl--------------------------------------
  1849 // Dump a Node's control history to depth
  1850 void Node::dump_ctrl(int d) const {
  1851   dump_nodes(this, d, true);
  1854 // VERIFICATION CODE
  1855 // For each input edge to a node (ie - for each Use-Def edge), verify that
  1856 // there is a corresponding Def-Use edge.
  1857 //------------------------------verify_edges-----------------------------------
  1858 void Node::verify_edges(Unique_Node_List &visited) {
  1859   uint i, j, idx;
  1860   int  cnt;
  1861   Node *n;
  1863   // Recursive termination test
  1864   if (visited.member(this))  return;
  1865   visited.push(this);
  1867   // Walk over all input edges, checking for correspondence
  1868   for( i = 0; i < len(); i++ ) {
  1869     n = in(i);
  1870     if (n != NULL && !n->is_top()) {
  1871       // Count instances of (Node *)this
  1872       cnt = 0;
  1873       for (idx = 0; idx < n->_outcnt; idx++ ) {
  1874         if (n->_out[idx] == (Node *)this)  cnt++;
  1876       assert( cnt > 0,"Failed to find Def-Use edge." );
  1877       // Check for duplicate edges
  1878       // walk the input array downcounting the input edges to n
  1879       for( j = 0; j < len(); j++ ) {
  1880         if( in(j) == n ) cnt--;
  1882       assert( cnt == 0,"Mismatched edge count.");
  1883     } else if (n == NULL) {
  1884       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
  1885     } else {
  1886       assert(n->is_top(), "sanity");
  1887       // Nothing to check.
  1890   // Recursive walk over all input edges
  1891   for( i = 0; i < len(); i++ ) {
  1892     n = in(i);
  1893     if( n != NULL )
  1894       in(i)->verify_edges(visited);
  1898 //------------------------------verify_recur-----------------------------------
  1899 static const Node *unique_top = NULL;
  1901 void Node::verify_recur(const Node *n, int verify_depth,
  1902                         VectorSet &old_space, VectorSet &new_space) {
  1903   if ( verify_depth == 0 )  return;
  1904   if (verify_depth > 0)  --verify_depth;
  1906   Compile* C = Compile::current();
  1908   // Contained in new_space or old_space?
  1909   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
  1910   // Check for visited in the proper space.  Numberings are not unique
  1911   // across spaces so we need a separate VectorSet for each space.
  1912   if( v->test_set(n->_idx) ) return;
  1914   if (n->is_Con() && n->bottom_type() == Type::TOP) {
  1915     if (C->cached_top_node() == NULL)
  1916       C->set_cached_top_node((Node*)n);
  1917     assert(C->cached_top_node() == n, "TOP node must be unique");
  1920   for( uint i = 0; i < n->len(); i++ ) {
  1921     Node *x = n->in(i);
  1922     if (!x || x->is_top()) continue;
  1924     // Verify my input has a def-use edge to me
  1925     if (true /*VerifyDefUse*/) {
  1926       // Count use-def edges from n to x
  1927       int cnt = 0;
  1928       for( uint j = 0; j < n->len(); j++ )
  1929         if( n->in(j) == x )
  1930           cnt++;
  1931       // Count def-use edges from x to n
  1932       uint max = x->_outcnt;
  1933       for( uint k = 0; k < max; k++ )
  1934         if (x->_out[k] == n)
  1935           cnt--;
  1936       assert( cnt == 0, "mismatched def-use edge counts" );
  1939     verify_recur(x, verify_depth, old_space, new_space);
  1944 //------------------------------verify-----------------------------------------
  1945 // Check Def-Use info for my subgraph
  1946 void Node::verify() const {
  1947   Compile* C = Compile::current();
  1948   Node* old_top = C->cached_top_node();
  1949   ResourceMark rm;
  1950   ResourceArea *area = Thread::current()->resource_area();
  1951   VectorSet old_space(area), new_space(area);
  1952   verify_recur(this, -1, old_space, new_space);
  1953   C->set_cached_top_node(old_top);
  1955 #endif
  1958 //------------------------------walk-------------------------------------------
  1959 // Graph walk, with both pre-order and post-order functions
  1960 void Node::walk(NFunc pre, NFunc post, void *env) {
  1961   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
  1962   walk_(pre, post, env, visited);
  1965 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
  1966   if( visited.test_set(_idx) ) return;
  1967   pre(*this,env);               // Call the pre-order walk function
  1968   for( uint i=0; i<_max; i++ )
  1969     if( in(i) )                 // Input exists and is not walked?
  1970       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
  1971   post(*this,env);              // Call the post-order walk function
  1974 void Node::nop(Node &, void*) {}
  1976 //------------------------------Registers--------------------------------------
  1977 // Do we Match on this edge index or not?  Generally false for Control
  1978 // and true for everything else.  Weird for calls & returns.
  1979 uint Node::match_edge(uint idx) const {
  1980   return idx;                   // True for other than index 0 (control)
  1983 static RegMask _not_used_at_all;
  1984 // Register classes are defined for specific machines
  1985 const RegMask &Node::out_RegMask() const {
  1986   ShouldNotCallThis();
  1987   return _not_used_at_all;
  1990 const RegMask &Node::in_RegMask(uint) const {
  1991   ShouldNotCallThis();
  1992   return _not_used_at_all;
  1995 //=============================================================================
  1996 //-----------------------------------------------------------------------------
  1997 void Node_Array::reset( Arena *new_arena ) {
  1998   _a->Afree(_nodes,_max*sizeof(Node*));
  1999   _max   = 0;
  2000   _nodes = NULL;
  2001   _a     = new_arena;
  2004 //------------------------------clear------------------------------------------
  2005 // Clear all entries in _nodes to NULL but keep storage
  2006 void Node_Array::clear() {
  2007   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
  2010 //-----------------------------------------------------------------------------
  2011 void Node_Array::grow( uint i ) {
  2012   if( !_max ) {
  2013     _max = 1;
  2014     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
  2015     _nodes[0] = NULL;
  2017   uint old = _max;
  2018   while( i >= _max ) _max <<= 1;        // Double to fit
  2019   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
  2020   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
  2023 //-----------------------------------------------------------------------------
  2024 void Node_Array::insert( uint i, Node *n ) {
  2025   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
  2026   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
  2027   _nodes[i] = n;
  2030 //-----------------------------------------------------------------------------
  2031 void Node_Array::remove( uint i ) {
  2032   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
  2033   _nodes[_max-1] = NULL;
  2036 //-----------------------------------------------------------------------------
  2037 void Node_Array::sort( C_sort_func_t func) {
  2038   qsort( _nodes, _max, sizeof( Node* ), func );
  2041 //-----------------------------------------------------------------------------
  2042 void Node_Array::dump() const {
  2043 #ifndef PRODUCT
  2044   for( uint i = 0; i < _max; i++ ) {
  2045     Node *nn = _nodes[i];
  2046     if( nn != NULL ) {
  2047       tty->print("%5d--> ",i); nn->dump();
  2050 #endif
  2053 //--------------------------is_iteratively_computed------------------------------
  2054 // Operation appears to be iteratively computed (such as an induction variable)
  2055 // It is possible for this operation to return false for a loop-varying
  2056 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
  2057 bool Node::is_iteratively_computed() {
  2058   if (ideal_reg()) { // does operation have a result register?
  2059     for (uint i = 1; i < req(); i++) {
  2060       Node* n = in(i);
  2061       if (n != NULL && n->is_Phi()) {
  2062         for (uint j = 1; j < n->req(); j++) {
  2063           if (n->in(j) == this) {
  2064             return true;
  2070   return false;
  2073 //--------------------------find_similar------------------------------
  2074 // Return a node with opcode "opc" and same inputs as "this" if one can
  2075 // be found; Otherwise return NULL;
  2076 Node* Node::find_similar(int opc) {
  2077   if (req() >= 2) {
  2078     Node* def = in(1);
  2079     if (def && def->outcnt() >= 2) {
  2080       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
  2081         Node* use = def->fast_out(i);
  2082         if (use->Opcode() == opc &&
  2083             use->req() == req()) {
  2084           uint j;
  2085           for (j = 0; j < use->req(); j++) {
  2086             if (use->in(j) != in(j)) {
  2087               break;
  2090           if (j == use->req()) {
  2091             return use;
  2097   return NULL;
  2101 //--------------------------unique_ctrl_out------------------------------
  2102 // Return the unique control out if only one. Null if none or more than one.
  2103 Node* Node::unique_ctrl_out() {
  2104   Node* found = NULL;
  2105   for (uint i = 0; i < outcnt(); i++) {
  2106     Node* use = raw_out(i);
  2107     if (use->is_CFG() && use != this) {
  2108       if (found != NULL) return NULL;
  2109       found = use;
  2112   return found;
  2115 //=============================================================================
  2116 //------------------------------yank-------------------------------------------
  2117 // Find and remove
  2118 void Node_List::yank( Node *n ) {
  2119   uint i;
  2120   for( i = 0; i < _cnt; i++ )
  2121     if( _nodes[i] == n )
  2122       break;
  2124   if( i < _cnt )
  2125     _nodes[i] = _nodes[--_cnt];
  2128 //------------------------------dump-------------------------------------------
  2129 void Node_List::dump() const {
  2130 #ifndef PRODUCT
  2131   for( uint i = 0; i < _cnt; i++ )
  2132     if( _nodes[i] ) {
  2133       tty->print("%5d--> ",i);
  2134       _nodes[i]->dump();
  2136 #endif
  2139 void Node_List::dump_simple() const {
  2140 #ifndef PRODUCT
  2141   for( uint i = 0; i < _cnt; i++ )
  2142     if( _nodes[i] ) {
  2143       tty->print(" %d", _nodes[i]->_idx);
  2144     } else {
  2145       tty->print(" NULL");
  2147 #endif
  2150 //=============================================================================
  2151 //------------------------------remove-----------------------------------------
  2152 void Unique_Node_List::remove( Node *n ) {
  2153   if( _in_worklist[n->_idx] ) {
  2154     for( uint i = 0; i < size(); i++ )
  2155       if( _nodes[i] == n ) {
  2156         map(i,Node_List::pop());
  2157         _in_worklist >>= n->_idx;
  2158         return;
  2160     ShouldNotReachHere();
  2164 //-----------------------remove_useless_nodes----------------------------------
  2165 // Remove useless nodes from worklist
  2166 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
  2168   for( uint i = 0; i < size(); ++i ) {
  2169     Node *n = at(i);
  2170     assert( n != NULL, "Did not expect null entries in worklist");
  2171     if( ! useful.test(n->_idx) ) {
  2172       _in_worklist >>= n->_idx;
  2173       map(i,Node_List::pop());
  2174       // Node *replacement = Node_List::pop();
  2175       // if( i != size() ) { // Check if removing last entry
  2176       //   _nodes[i] = replacement;
  2177       // }
  2178       --i;  // Visit popped node
  2179       // If it was last entry, loop terminates since size() was also reduced
  2184 //=============================================================================
  2185 void Node_Stack::grow() {
  2186   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
  2187   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
  2188   size_t max = old_max << 1;             // max * 2
  2189   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
  2190   _inode_max = _inodes + max;
  2191   _inode_top = _inodes + old_top;        // restore _top
  2194 // Node_Stack is used to map nodes.
  2195 Node* Node_Stack::find(uint idx) const {
  2196   uint sz = size();
  2197   for (uint i=0; i < sz; i++) {
  2198     if (idx == index_at(i) )
  2199       return node_at(i);
  2201   return NULL;
  2204 //=============================================================================
  2205 uint TypeNode::size_of() const { return sizeof(*this); }
  2206 #ifndef PRODUCT
  2207 void TypeNode::dump_spec(outputStream *st) const {
  2208   if( !Verbose && !WizardMode ) {
  2209     // standard dump does this in Verbose and WizardMode
  2210     st->print(" #"); _type->dump_on(st);
  2213 #endif
  2214 uint TypeNode::hash() const {
  2215   return Node::hash() + _type->hash();
  2217 uint TypeNode::cmp( const Node &n ) const
  2218 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
  2219 const Type *TypeNode::bottom_type() const { return _type; }
  2220 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
  2222 //------------------------------ideal_reg--------------------------------------
  2223 uint TypeNode::ideal_reg() const {
  2224   return _type->ideal_reg();

mercurial