src/share/vm/opto/loopnode.cpp

Mon, 25 May 2020 14:24:27 +0800

author
fyang
date
Mon, 25 May 2020 14:24:27 +0800
changeset 9922
f7691a80458c
parent 9910
4373df7c4a92
child 9931
fd44df5e3bc3
child 9977
e649f2136368
permissions
-rw-r--r--

8244407: JVM crashes after transformation in C2 IdealLoopTree::split_fall_in
Reviewed-by: thartmann, kvn, andrew
Contributed-by: zhouyong44@huawei.com

     1 /*
     2  * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "libadt/vectset.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "opto/addnode.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/connode.hpp"
    33 #include "opto/divnode.hpp"
    34 #include "opto/idealGraphPrinter.hpp"
    35 #include "opto/loopnode.hpp"
    36 #include "opto/mulnode.hpp"
    37 #include "opto/rootnode.hpp"
    38 #include "opto/superword.hpp"
    40 //=============================================================================
    41 //------------------------------is_loop_iv-------------------------------------
    42 // Determine if a node is Counted loop induction variable.
    43 // The method is declared in node.hpp.
    44 const Node* Node::is_loop_iv() const {
    45   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
    46       this->as_Phi()->region()->is_CountedLoop() &&
    47       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
    48     return this;
    49   } else {
    50     return NULL;
    51   }
    52 }
    54 //=============================================================================
    55 //------------------------------dump_spec--------------------------------------
    56 // Dump special per-node info
    57 #ifndef PRODUCT
    58 void LoopNode::dump_spec(outputStream *st) const {
    59   if (is_inner_loop()) st->print( "inner " );
    60   if (is_partial_peel_loop()) st->print( "partial_peel " );
    61   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
    62 }
    63 #endif
    65 //------------------------------is_valid_counted_loop-------------------------
    66 bool LoopNode::is_valid_counted_loop() const {
    67   if (is_CountedLoop()) {
    68     CountedLoopNode*    l  = as_CountedLoop();
    69     CountedLoopEndNode* le = l->loopexit();
    70     if (le != NULL &&
    71         le->proj_out(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
    72       Node* phi  = l->phi();
    73       Node* exit = le->proj_out(0 /* false */);
    74       if (exit != NULL && exit->Opcode() == Op_IfFalse &&
    75           phi != NULL && phi->is_Phi() &&
    76           phi->in(LoopNode::LoopBackControl) == l->incr() &&
    77           le->loopnode() == l && le->stride_is_con()) {
    78         return true;
    79       }
    80     }
    81   }
    82   return false;
    83 }
    85 //------------------------------get_early_ctrl---------------------------------
    86 // Compute earliest legal control
    87 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
    88   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
    89   uint i;
    90   Node *early;
    91   if (n->in(0) && !n->is_expensive()) {
    92     early = n->in(0);
    93     if (!early->is_CFG()) // Might be a non-CFG multi-def
    94       early = get_ctrl(early);        // So treat input as a straight data input
    95     i = 1;
    96   } else {
    97     early = get_ctrl(n->in(1));
    98     i = 2;
    99   }
   100   uint e_d = dom_depth(early);
   101   assert( early, "" );
   102   for (; i < n->req(); i++) {
   103     Node *cin = get_ctrl(n->in(i));
   104     assert( cin, "" );
   105     // Keep deepest dominator depth
   106     uint c_d = dom_depth(cin);
   107     if (c_d > e_d) {           // Deeper guy?
   108       early = cin;              // Keep deepest found so far
   109       e_d = c_d;
   110     } else if (c_d == e_d &&    // Same depth?
   111                early != cin) { // If not equal, must use slower algorithm
   112       // If same depth but not equal, one _must_ dominate the other
   113       // and we want the deeper (i.e., dominated) guy.
   114       Node *n1 = early;
   115       Node *n2 = cin;
   116       while (1) {
   117         n1 = idom(n1);          // Walk up until break cycle
   118         n2 = idom(n2);
   119         if (n1 == cin ||        // Walked early up to cin
   120             dom_depth(n2) < c_d)
   121           break;                // early is deeper; keep him
   122         if (n2 == early ||      // Walked cin up to early
   123             dom_depth(n1) < c_d) {
   124           early = cin;          // cin is deeper; keep him
   125           break;
   126         }
   127       }
   128       e_d = dom_depth(early);   // Reset depth register cache
   129     }
   130   }
   132   // Return earliest legal location
   133   assert(early == find_non_split_ctrl(early), "unexpected early control");
   135   if (n->is_expensive()) {
   136     assert(n->in(0), "should have control input");
   137     early = get_early_ctrl_for_expensive(n, early);
   138   }
   140   return early;
   141 }
   143 //------------------------------get_early_ctrl_for_expensive---------------------------------
   144 // Move node up the dominator tree as high as legal while still beneficial
   145 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) {
   146   assert(n->in(0) && n->is_expensive(), "expensive node with control input here");
   147   assert(OptimizeExpensiveOps, "optimization off?");
   149   Node* ctl = n->in(0);
   150   assert(ctl->is_CFG(), "expensive input 0 must be cfg");
   151   uint min_dom_depth = dom_depth(earliest);
   152 #ifdef ASSERT
   153   if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) {
   154     dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl);
   155     assert(false, "Bad graph detected in get_early_ctrl_for_expensive");
   156   }
   157 #endif
   158   if (dom_depth(ctl) < min_dom_depth) {
   159     return earliest;
   160   }
   162   while (1) {
   163     Node *next = ctl;
   164     // Moving the node out of a loop on the projection of a If
   165     // confuses loop predication. So once we hit a Loop in a If branch
   166     // that doesn't branch to an UNC, we stop. The code that process
   167     // expensive nodes will notice the loop and skip over it to try to
   168     // move the node further up.
   169     if (ctl->is_CountedLoop() && ctl->in(1) != NULL && ctl->in(1)->in(0) != NULL && ctl->in(1)->in(0)->is_If()) {
   170       if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
   171         break;
   172       }
   173       next = idom(ctl->in(1)->in(0));
   174     } else if (ctl->is_Proj()) {
   175       // We only move it up along a projection if the projection is
   176       // the single control projection for its parent: same code path,
   177       // if it's a If with UNC or fallthrough of a call.
   178       Node* parent_ctl = ctl->in(0);
   179       if (parent_ctl == NULL) {
   180         break;
   181       } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != NULL) {
   182         next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control();
   183       } else if (parent_ctl->is_If()) {
   184         if (!ctl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
   185           break;
   186         }
   187         assert(idom(ctl) == parent_ctl, "strange");
   188         next = idom(parent_ctl);
   189       } else if (ctl->is_CatchProj()) {
   190         if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) {
   191           break;
   192         }
   193         assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph");
   194         next = parent_ctl->in(0)->in(0)->in(0);
   195       } else {
   196         // Check if parent control has a single projection (this
   197         // control is the only possible successor of the parent
   198         // control). If so, we can try to move the node above the
   199         // parent control.
   200         int nb_ctl_proj = 0;
   201         for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) {
   202           Node *p = parent_ctl->fast_out(i);
   203           if (p->is_Proj() && p->is_CFG()) {
   204             nb_ctl_proj++;
   205             if (nb_ctl_proj > 1) {
   206               break;
   207             }
   208           }
   209         }
   211         if (nb_ctl_proj > 1) {
   212           break;
   213         }
   214         assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call(), "unexpected node");
   215         assert(idom(ctl) == parent_ctl, "strange");
   216         next = idom(parent_ctl);
   217       }
   218     } else {
   219       next = idom(ctl);
   220     }
   221     if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) {
   222       break;
   223     }
   224     ctl = next;
   225   }
   227   if (ctl != n->in(0)) {
   228     _igvn.hash_delete(n);
   229     n->set_req(0, ctl);
   230     _igvn.hash_insert(n);
   231   }
   233   return ctl;
   234 }
   237 //------------------------------set_early_ctrl---------------------------------
   238 // Set earliest legal control
   239 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
   240   Node *early = get_early_ctrl(n);
   242   // Record earliest legal location
   243   set_ctrl(n, early);
   244 }
   246 //------------------------------set_subtree_ctrl-------------------------------
   247 // set missing _ctrl entries on new nodes
   248 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
   249   // Already set?  Get out.
   250   if( _nodes[n->_idx] ) return;
   251   // Recursively set _nodes array to indicate where the Node goes
   252   uint i;
   253   for( i = 0; i < n->req(); ++i ) {
   254     Node *m = n->in(i);
   255     if( m && m != C->root() )
   256       set_subtree_ctrl( m );
   257   }
   259   // Fixup self
   260   set_early_ctrl( n );
   261 }
   263 //------------------------------is_counted_loop--------------------------------
   264 bool PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
   265   PhaseGVN *gvn = &_igvn;
   267   // Counted loop head must be a good RegionNode with only 3 not NULL
   268   // control input edges: Self, Entry, LoopBack.
   269   if (x->in(LoopNode::Self) == NULL || x->req() != 3 || loop->_irreducible) {
   270     return false;
   271   }
   272   Node *init_control = x->in(LoopNode::EntryControl);
   273   Node *back_control = x->in(LoopNode::LoopBackControl);
   274   if (init_control == NULL || back_control == NULL)    // Partially dead
   275     return false;
   276   // Must also check for TOP when looking for a dead loop
   277   if (init_control->is_top() || back_control->is_top())
   278     return false;
   280   // Allow funny placement of Safepoint
   281   if (back_control->Opcode() == Op_SafePoint) {
   282     if (UseCountedLoopSafepoints) {
   283       // Leaving the safepoint on the backedge and creating a
   284       // CountedLoop will confuse optimizations. We can't move the
   285       // safepoint around because its jvm state wouldn't match a new
   286       // location. Give up on that loop.
   287       return false;
   288     }
   289     back_control = back_control->in(TypeFunc::Control);
   290   }
   292   // Controlling test for loop
   293   Node *iftrue = back_control;
   294   uint iftrue_op = iftrue->Opcode();
   295   if (iftrue_op != Op_IfTrue &&
   296       iftrue_op != Op_IfFalse)
   297     // I have a weird back-control.  Probably the loop-exit test is in
   298     // the middle of the loop and I am looking at some trailing control-flow
   299     // merge point.  To fix this I would have to partially peel the loop.
   300     return false; // Obscure back-control
   302   // Get boolean guarding loop-back test
   303   Node *iff = iftrue->in(0);
   304   if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
   305     return false;
   306   BoolNode *test = iff->in(1)->as_Bool();
   307   BoolTest::mask bt = test->_test._test;
   308   float cl_prob = iff->as_If()->_prob;
   309   if (iftrue_op == Op_IfFalse) {
   310     bt = BoolTest(bt).negate();
   311     cl_prob = 1.0 - cl_prob;
   312   }
   313   // Get backedge compare
   314   Node *cmp = test->in(1);
   315   int cmp_op = cmp->Opcode();
   316   if (cmp_op != Op_CmpI)
   317     return false;                // Avoid pointer & float compares
   319   // Find the trip-counter increment & limit.  Limit must be loop invariant.
   320   Node *incr  = cmp->in(1);
   321   Node *limit = cmp->in(2);
   323   // ---------
   324   // need 'loop()' test to tell if limit is loop invariant
   325   // ---------
   327   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
   328     Node *tmp = incr;            // Then reverse order into the CmpI
   329     incr = limit;
   330     limit = tmp;
   331     bt = BoolTest(bt).commute(); // And commute the exit test
   332   }
   333   if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
   334     return false;
   335   if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
   336     return false;
   338   Node* phi_incr = NULL;
   339   // Trip-counter increment must be commutative & associative.
   340   if (incr->is_Phi()) {
   341     if (incr->as_Phi()->region() != x || incr->req() != 3)
   342       return false; // Not simple trip counter expression
   343     phi_incr = incr;
   344     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
   345     if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
   346       return false;
   347   }
   349   Node* trunc1 = NULL;
   350   Node* trunc2 = NULL;
   351   const TypeInt* iv_trunc_t = NULL;
   352   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
   353     return false; // Funny increment opcode
   354   }
   355   assert(incr->Opcode() == Op_AddI, "wrong increment code");
   357   // Get merge point
   358   Node *xphi = incr->in(1);
   359   Node *stride = incr->in(2);
   360   if (!stride->is_Con()) {     // Oops, swap these
   361     if (!xphi->is_Con())       // Is the other guy a constant?
   362       return false;             // Nope, unknown stride, bail out
   363     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
   364     xphi = stride;
   365     stride = tmp;
   366   }
   367   // Stride must be constant
   368   int stride_con = stride->get_int();
   369   if (stride_con == 0)
   370     return false; // missed some peephole opt
   372   if (!xphi->is_Phi())
   373     return false; // Too much math on the trip counter
   374   if (phi_incr != NULL && phi_incr != xphi)
   375     return false;
   376   PhiNode *phi = xphi->as_Phi();
   378   // Phi must be of loop header; backedge must wrap to increment
   379   if (phi->region() != x)
   380     return false;
   381   if (trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
   382       trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1) {
   383     return false;
   384   }
   385   Node *init_trip = phi->in(LoopNode::EntryControl);
   387   // If iv trunc type is smaller than int, check for possible wrap.
   388   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
   389     assert(trunc1 != NULL, "must have found some truncation");
   391     // Get a better type for the phi (filtered thru if's)
   392     const TypeInt* phi_ft = filtered_type(phi);
   394     // Can iv take on a value that will wrap?
   395     //
   396     // Ensure iv's limit is not within "stride" of the wrap value.
   397     //
   398     // Example for "short" type
   399     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
   400     //    If the stride is +10, then the last value of the induction
   401     //    variable before the increment (phi_ft->_hi) must be
   402     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
   403     //    ensure no truncation occurs after the increment.
   405     if (stride_con > 0) {
   406       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
   407           iv_trunc_t->_lo > phi_ft->_lo) {
   408         return false;  // truncation may occur
   409       }
   410     } else if (stride_con < 0) {
   411       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
   412           iv_trunc_t->_hi < phi_ft->_hi) {
   413         return false;  // truncation may occur
   414       }
   415     }
   416     // No possibility of wrap so truncation can be discarded
   417     // Promote iv type to Int
   418   } else {
   419     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
   420   }
   422   // If the condition is inverted and we will be rolling
   423   // through MININT to MAXINT, then bail out.
   424   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
   425       // Odd stride
   426       bt == BoolTest::ne && stride_con != 1 && stride_con != -1 ||
   427       // Count down loop rolls through MAXINT
   428       (bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0 ||
   429       // Count up loop rolls through MININT
   430       (bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0) {
   431     return false; // Bail out
   432   }
   434   const TypeInt* init_t = gvn->type(init_trip)->is_int();
   435   const TypeInt* limit_t = gvn->type(limit)->is_int();
   437   if (stride_con > 0) {
   438     jlong init_p = (jlong)init_t->_lo + stride_con;
   439     if (init_p > (jlong)max_jint || init_p > (jlong)limit_t->_hi)
   440       return false; // cyclic loop or this loop trips only once
   441   } else {
   442     jlong init_p = (jlong)init_t->_hi + stride_con;
   443     if (init_p < (jlong)min_jint || init_p < (jlong)limit_t->_lo)
   444       return false; // cyclic loop or this loop trips only once
   445   }
   447   if (phi_incr != NULL) {
   448     // check if there is a possiblity of IV overflowing after the first increment
   449     if (stride_con > 0) {
   450       if (init_t->_hi > max_jint - stride_con) {
   451         return false;
   452       }
   453     } else {
   454       if (init_t->_lo < min_jint - stride_con) {
   455         return false;
   456       }
   457     }
   458   }
   460   // =================================================
   461   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
   462   //
   463   assert(x->Opcode() == Op_Loop, "regular loops only");
   464   C->print_method(PHASE_BEFORE_CLOOPS, 3);
   466   Node *hook = new (C) Node(6);
   468   if (LoopLimitCheck) {
   470   // ===================================================
   471   // Generate loop limit check to avoid integer overflow
   472   // in cases like next (cyclic loops):
   473   //
   474   // for (i=0; i <= max_jint; i++) {}
   475   // for (i=0; i <  max_jint; i+=2) {}
   476   //
   477   //
   478   // Limit check predicate depends on the loop test:
   479   //
   480   // for(;i != limit; i++)       --> limit <= (max_jint)
   481   // for(;i <  limit; i+=stride) --> limit <= (max_jint - stride + 1)
   482   // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride    )
   483   //
   485   // Check if limit is excluded to do more precise int overflow check.
   486   bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
   487   int stride_m  = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
   489   // If compare points directly to the phi we need to adjust
   490   // the compare so that it points to the incr. Limit have
   491   // to be adjusted to keep trip count the same and the
   492   // adjusted limit should be checked for int overflow.
   493   if (phi_incr != NULL) {
   494     stride_m  += stride_con;
   495   }
   497   if (limit->is_Con()) {
   498     int limit_con = limit->get_int();
   499     if ((stride_con > 0 && limit_con > (max_jint - stride_m)) ||
   500         (stride_con < 0 && limit_con < (min_jint - stride_m))) {
   501       // Bailout: it could be integer overflow.
   502       return false;
   503     }
   504   } else if ((stride_con > 0 && limit_t->_hi <= (max_jint - stride_m)) ||
   505              (stride_con < 0 && limit_t->_lo >= (min_jint - stride_m))) {
   506       // Limit's type may satisfy the condition, for example,
   507       // when it is an array length.
   508   } else {
   509     // Generate loop's limit check.
   510     // Loop limit check predicate should be near the loop.
   511     ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
   512     if (!limit_check_proj) {
   513       // The limit check predicate is not generated if this method trapped here before.
   514 #ifdef ASSERT
   515       if (TraceLoopLimitCheck) {
   516         tty->print("missing loop limit check:");
   517         loop->dump_head();
   518         x->dump(1);
   519       }
   520 #endif
   521       return false;
   522     }
   524     IfNode* check_iff = limit_check_proj->in(0)->as_If();
   525     Node* cmp_limit;
   526     Node* bol;
   528     if (stride_con > 0) {
   529       cmp_limit = new (C) CmpINode(limit, _igvn.intcon(max_jint - stride_m));
   530       bol = new (C) BoolNode(cmp_limit, BoolTest::le);
   531     } else {
   532       cmp_limit = new (C) CmpINode(limit, _igvn.intcon(min_jint - stride_m));
   533       bol = new (C) BoolNode(cmp_limit, BoolTest::ge);
   534     }
   535     cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
   536     bol = _igvn.register_new_node_with_optimizer(bol);
   537     set_subtree_ctrl(bol);
   539     // Replace condition in original predicate but preserve Opaque node
   540     // so that previous predicates could be found.
   541     assert(check_iff->in(1)->Opcode() == Op_Conv2B &&
   542            check_iff->in(1)->in(1)->Opcode() == Op_Opaque1, "");
   543     Node* opq = check_iff->in(1)->in(1);
   544     _igvn.hash_delete(opq);
   545     opq->set_req(1, bol);
   546     // Update ctrl.
   547     set_ctrl(opq, check_iff->in(0));
   548     set_ctrl(check_iff->in(1), check_iff->in(0));
   550 #ifndef PRODUCT
   551     // report that the loop predication has been actually performed
   552     // for this loop
   553     if (TraceLoopLimitCheck) {
   554       tty->print_cr("Counted Loop Limit Check generated:");
   555       debug_only( bol->dump(2); )
   556     }
   557 #endif
   558   }
   560   if (phi_incr != NULL) {
   561     // If compare points directly to the phi we need to adjust
   562     // the compare so that it points to the incr. Limit have
   563     // to be adjusted to keep trip count the same and we
   564     // should avoid int overflow.
   565     //
   566     //   i = init; do {} while(i++ < limit);
   567     // is converted to
   568     //   i = init; do {} while(++i < limit+1);
   569     //
   570     limit = gvn->transform(new (C) AddINode(limit, stride));
   571   }
   573   // Now we need to canonicalize loop condition.
   574   if (bt == BoolTest::ne) {
   575     assert(stride_con == 1 || stride_con == -1, "simple increment only");
   576     // 'ne' can be replaced with 'lt' only when init < limit.
   577     if (stride_con > 0 && init_t->_hi < limit_t->_lo)
   578       bt = BoolTest::lt;
   579     // 'ne' can be replaced with 'gt' only when init > limit.
   580     if (stride_con < 0 && init_t->_lo > limit_t->_hi)
   581       bt = BoolTest::gt;
   582   }
   584   if (incl_limit) {
   585     // The limit check guaranties that 'limit <= (max_jint - stride)' so
   586     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
   587     //
   588     Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
   589     limit = gvn->transform(new (C) AddINode(limit, one));
   590     if (bt == BoolTest::le)
   591       bt = BoolTest::lt;
   592     else if (bt == BoolTest::ge)
   593       bt = BoolTest::gt;
   594     else
   595       ShouldNotReachHere();
   596   }
   597   set_subtree_ctrl( limit );
   599   } else { // LoopLimitCheck
   601   // If compare points to incr, we are ok.  Otherwise the compare
   602   // can directly point to the phi; in this case adjust the compare so that
   603   // it points to the incr by adjusting the limit.
   604   if (cmp->in(1) == phi || cmp->in(2) == phi)
   605     limit = gvn->transform(new (C) AddINode(limit,stride));
   607   // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
   608   // Final value for iterator should be: trip_count * stride + init_trip.
   609   Node *one_p = gvn->intcon( 1);
   610   Node *one_m = gvn->intcon(-1);
   612   Node *trip_count = NULL;
   613   switch( bt ) {
   614   case BoolTest::eq:
   615     ShouldNotReachHere();
   616   case BoolTest::ne:            // Ahh, the case we desire
   617     if (stride_con == 1)
   618       trip_count = gvn->transform(new (C) SubINode(limit,init_trip));
   619     else if (stride_con == -1)
   620       trip_count = gvn->transform(new (C) SubINode(init_trip,limit));
   621     else
   622       ShouldNotReachHere();
   623     set_subtree_ctrl(trip_count);
   624     //_loop.map(trip_count->_idx,loop(limit));
   625     break;
   626   case BoolTest::le:            // Maybe convert to '<' case
   627     limit = gvn->transform(new (C) AddINode(limit,one_p));
   628     set_subtree_ctrl( limit );
   629     hook->init_req(4, limit);
   631     bt = BoolTest::lt;
   632     // Make the new limit be in the same loop nest as the old limit
   633     //_loop.map(limit->_idx,limit_loop);
   634     // Fall into next case
   635   case BoolTest::lt: {          // Maybe convert to '!=' case
   636     if (stride_con < 0) // Count down loop rolls through MAXINT
   637       ShouldNotReachHere();
   638     Node *range = gvn->transform(new (C) SubINode(limit,init_trip));
   639     set_subtree_ctrl( range );
   640     hook->init_req(0, range);
   642     Node *bias  = gvn->transform(new (C) AddINode(range,stride));
   643     set_subtree_ctrl( bias );
   644     hook->init_req(1, bias);
   646     Node *bias1 = gvn->transform(new (C) AddINode(bias,one_m));
   647     set_subtree_ctrl( bias1 );
   648     hook->init_req(2, bias1);
   650     trip_count  = gvn->transform(new (C) DivINode(0,bias1,stride));
   651     set_subtree_ctrl( trip_count );
   652     hook->init_req(3, trip_count);
   653     break;
   654   }
   656   case BoolTest::ge:            // Maybe convert to '>' case
   657     limit = gvn->transform(new (C) AddINode(limit,one_m));
   658     set_subtree_ctrl( limit );
   659     hook->init_req(4 ,limit);
   661     bt = BoolTest::gt;
   662     // Make the new limit be in the same loop nest as the old limit
   663     //_loop.map(limit->_idx,limit_loop);
   664     // Fall into next case
   665   case BoolTest::gt: {          // Maybe convert to '!=' case
   666     if (stride_con > 0) // count up loop rolls through MININT
   667       ShouldNotReachHere();
   668     Node *range = gvn->transform(new (C) SubINode(limit,init_trip));
   669     set_subtree_ctrl( range );
   670     hook->init_req(0, range);
   672     Node *bias  = gvn->transform(new (C) AddINode(range,stride));
   673     set_subtree_ctrl( bias );
   674     hook->init_req(1, bias);
   676     Node *bias1 = gvn->transform(new (C) AddINode(bias,one_p));
   677     set_subtree_ctrl( bias1 );
   678     hook->init_req(2, bias1);
   680     trip_count  = gvn->transform(new (C) DivINode(0,bias1,stride));
   681     set_subtree_ctrl( trip_count );
   682     hook->init_req(3, trip_count);
   683     break;
   684   }
   685   } // switch( bt )
   687   Node *span = gvn->transform(new (C) MulINode(trip_count,stride));
   688   set_subtree_ctrl( span );
   689   hook->init_req(5, span);
   691   limit = gvn->transform(new (C) AddINode(span,init_trip));
   692   set_subtree_ctrl( limit );
   694   } // LoopLimitCheck
   696   if (!UseCountedLoopSafepoints) {
   697     // Check for SafePoint on backedge and remove
   698     Node *sfpt = x->in(LoopNode::LoopBackControl);
   699     if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
   700       lazy_replace( sfpt, iftrue );
   701       if (loop->_safepts != NULL) {
   702         loop->_safepts->yank(sfpt);
   703       }
   704       loop->_tail = iftrue;
   705     }
   706   }
   708   // Build a canonical trip test.
   709   // Clone code, as old values may be in use.
   710   incr = incr->clone();
   711   incr->set_req(1,phi);
   712   incr->set_req(2,stride);
   713   incr = _igvn.register_new_node_with_optimizer(incr);
   714   set_early_ctrl( incr );
   715   _igvn.hash_delete(phi);
   716   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
   718   // If phi type is more restrictive than Int, raise to
   719   // Int to prevent (almost) infinite recursion in igvn
   720   // which can only handle integer types for constants or minint..maxint.
   721   if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
   722     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
   723     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
   724     nphi = _igvn.register_new_node_with_optimizer(nphi);
   725     set_ctrl(nphi, get_ctrl(phi));
   726     _igvn.replace_node(phi, nphi);
   727     phi = nphi->as_Phi();
   728   }
   729   cmp = cmp->clone();
   730   cmp->set_req(1,incr);
   731   cmp->set_req(2,limit);
   732   cmp = _igvn.register_new_node_with_optimizer(cmp);
   733   set_ctrl(cmp, iff->in(0));
   735   test = test->clone()->as_Bool();
   736   (*(BoolTest*)&test->_test)._test = bt;
   737   test->set_req(1,cmp);
   738   _igvn.register_new_node_with_optimizer(test);
   739   set_ctrl(test, iff->in(0));
   741   // Replace the old IfNode with a new LoopEndNode
   742   Node *lex = _igvn.register_new_node_with_optimizer(new (C) CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
   743   IfNode *le = lex->as_If();
   744   uint dd = dom_depth(iff);
   745   set_idom(le, le->in(0), dd); // Update dominance for loop exit
   746   set_loop(le, loop);
   748   // Get the loop-exit control
   749   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
   751   // Need to swap loop-exit and loop-back control?
   752   if (iftrue_op == Op_IfFalse) {
   753     Node *ift2=_igvn.register_new_node_with_optimizer(new (C) IfTrueNode (le));
   754     Node *iff2=_igvn.register_new_node_with_optimizer(new (C) IfFalseNode(le));
   756     loop->_tail = back_control = ift2;
   757     set_loop(ift2, loop);
   758     set_loop(iff2, get_loop(iffalse));
   760     // Lazy update of 'get_ctrl' mechanism.
   761     lazy_replace(iffalse, iff2);
   762     lazy_replace(iftrue,  ift2);
   764     // Swap names
   765     iffalse = iff2;
   766     iftrue  = ift2;
   767   } else {
   768     _igvn.hash_delete(iffalse);
   769     _igvn.hash_delete(iftrue);
   770     iffalse->set_req_X( 0, le, &_igvn );
   771     iftrue ->set_req_X( 0, le, &_igvn );
   772   }
   774   set_idom(iftrue,  le, dd+1);
   775   set_idom(iffalse, le, dd+1);
   776   assert(iff->outcnt() == 0, "should be dead now");
   777   lazy_replace( iff, le ); // fix 'get_ctrl'
   779   // Now setup a new CountedLoopNode to replace the existing LoopNode
   780   CountedLoopNode *l = new (C) CountedLoopNode(init_control, back_control);
   781   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
   782   // The following assert is approximately true, and defines the intention
   783   // of can_be_counted_loop.  It fails, however, because phase->type
   784   // is not yet initialized for this loop and its parts.
   785   //assert(l->can_be_counted_loop(this), "sanity");
   786   _igvn.register_new_node_with_optimizer(l);
   787   set_loop(l, loop);
   788   loop->_head = l;
   789   // Fix all data nodes placed at the old loop head.
   790   // Uses the lazy-update mechanism of 'get_ctrl'.
   791   lazy_replace( x, l );
   792   set_idom(l, init_control, dom_depth(x));
   794   if (!UseCountedLoopSafepoints) {
   795     // Check for immediately preceding SafePoint and remove
   796     Node *sfpt2 = le->in(0);
   797     if (sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2)) {
   798       lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
   799       if (loop->_safepts != NULL) {
   800         loop->_safepts->yank(sfpt2);
   801       }
   802     }
   803   }
   805   // Free up intermediate goo
   806   _igvn.remove_dead_node(hook);
   808 #ifdef ASSERT
   809   assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
   810   assert(l == loop->_head && l->phi() == phi && l->loopexit() == lex, "" );
   811 #endif
   812 #ifndef PRODUCT
   813   if (TraceLoopOpts) {
   814     tty->print("Counted      ");
   815     loop->dump_head();
   816   }
   817 #endif
   819   C->print_method(PHASE_AFTER_CLOOPS, 3);
   821   return true;
   822 }
   824 //----------------------exact_limit-------------------------------------------
   825 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
   826   assert(loop->_head->is_CountedLoop(), "");
   827   CountedLoopNode *cl = loop->_head->as_CountedLoop();
   828   assert(cl->is_valid_counted_loop(), "");
   830   if (!LoopLimitCheck || ABS(cl->stride_con()) == 1 ||
   831       cl->limit()->Opcode() == Op_LoopLimit) {
   832     // Old code has exact limit (it could be incorrect in case of int overflow).
   833     // Loop limit is exact with stride == 1. And loop may already have exact limit.
   834     return cl->limit();
   835   }
   836   Node *limit = NULL;
   837 #ifdef ASSERT
   838   BoolTest::mask bt = cl->loopexit()->test_trip();
   839   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
   840 #endif
   841   if (cl->has_exact_trip_count()) {
   842     // Simple case: loop has constant boundaries.
   843     // Use jlongs to avoid integer overflow.
   844     int stride_con = cl->stride_con();
   845     jlong  init_con = cl->init_trip()->get_int();
   846     jlong limit_con = cl->limit()->get_int();
   847     julong trip_cnt = cl->trip_count();
   848     jlong final_con = init_con + trip_cnt*stride_con;
   849     int final_int = (int)final_con;
   850     // The final value should be in integer range since the loop
   851     // is counted and the limit was checked for overflow.
   852     assert(final_con == (jlong)final_int, "final value should be integer");
   853     limit = _igvn.intcon(final_int);
   854   } else {
   855     // Create new LoopLimit node to get exact limit (final iv value).
   856     limit = new (C) LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
   857     register_new_node(limit, cl->in(LoopNode::EntryControl));
   858   }
   859   assert(limit != NULL, "sanity");
   860   return limit;
   861 }
   863 //------------------------------Ideal------------------------------------------
   864 // Return a node which is more "ideal" than the current node.
   865 // Attempt to convert into a counted-loop.
   866 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   867   if (!can_be_counted_loop(phase)) {
   868     phase->C->set_major_progress();
   869   }
   870   return RegionNode::Ideal(phase, can_reshape);
   871 }
   874 //=============================================================================
   875 //------------------------------Ideal------------------------------------------
   876 // Return a node which is more "ideal" than the current node.
   877 // Attempt to convert into a counted-loop.
   878 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   879   return RegionNode::Ideal(phase, can_reshape);
   880 }
   882 //------------------------------dump_spec--------------------------------------
   883 // Dump special per-node info
   884 #ifndef PRODUCT
   885 void CountedLoopNode::dump_spec(outputStream *st) const {
   886   LoopNode::dump_spec(st);
   887   if (stride_is_con()) {
   888     st->print("stride: %d ",stride_con());
   889   }
   890   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
   891   if (is_main_loop()) st->print("main of N%d", _idx);
   892   if (is_post_loop()) st->print("post of N%d", _main_idx);
   893 }
   894 #endif
   896 //=============================================================================
   897 int CountedLoopEndNode::stride_con() const {
   898   return stride()->bottom_type()->is_int()->get_con();
   899 }
   901 //=============================================================================
   902 //------------------------------Value-----------------------------------------
   903 const Type *LoopLimitNode::Value( PhaseTransform *phase ) const {
   904   const Type* init_t   = phase->type(in(Init));
   905   const Type* limit_t  = phase->type(in(Limit));
   906   const Type* stride_t = phase->type(in(Stride));
   907   // Either input is TOP ==> the result is TOP
   908   if (init_t   == Type::TOP) return Type::TOP;
   909   if (limit_t  == Type::TOP) return Type::TOP;
   910   if (stride_t == Type::TOP) return Type::TOP;
   912   int stride_con = stride_t->is_int()->get_con();
   913   if (stride_con == 1)
   914     return NULL;  // Identity
   916   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
   917     // Use jlongs to avoid integer overflow.
   918     jlong init_con   =  init_t->is_int()->get_con();
   919     jlong limit_con  = limit_t->is_int()->get_con();
   920     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
   921     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
   922     jlong final_con  = init_con + stride_con*trip_count;
   923     int final_int = (int)final_con;
   924     // The final value should be in integer range since the loop
   925     // is counted and the limit was checked for overflow.
   926     assert(final_con == (jlong)final_int, "final value should be integer");
   927     return TypeInt::make(final_int);
   928   }
   930   return bottom_type(); // TypeInt::INT
   931 }
   933 //------------------------------Ideal------------------------------------------
   934 // Return a node which is more "ideal" than the current node.
   935 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   936   if (phase->type(in(Init))   == Type::TOP ||
   937       phase->type(in(Limit))  == Type::TOP ||
   938       phase->type(in(Stride)) == Type::TOP)
   939     return NULL;  // Dead
   941   int stride_con = phase->type(in(Stride))->is_int()->get_con();
   942   if (stride_con == 1)
   943     return NULL;  // Identity
   945   if (in(Init)->is_Con() && in(Limit)->is_Con())
   946     return NULL;  // Value
   948   // Delay following optimizations until all loop optimizations
   949   // done to keep Ideal graph simple.
   950   if (!can_reshape || phase->C->major_progress())
   951     return NULL;
   953   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
   954   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
   955   int stride_p;
   956   jlong lim, ini;
   957   julong max;
   958   if (stride_con > 0) {
   959     stride_p = stride_con;
   960     lim = limit_t->_hi;
   961     ini = init_t->_lo;
   962     max = (julong)max_jint;
   963   } else {
   964     stride_p = -stride_con;
   965     lim = init_t->_hi;
   966     ini = limit_t->_lo;
   967     max = (julong)min_jint;
   968   }
   969   julong range = lim - ini + stride_p;
   970   if (range <= max) {
   971     // Convert to integer expression if it is not overflow.
   972     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
   973     Node *range = phase->transform(new (phase->C) SubINode(in(Limit), in(Init)));
   974     Node *bias  = phase->transform(new (phase->C) AddINode(range, stride_m));
   975     Node *trip  = phase->transform(new (phase->C) DivINode(0, bias, in(Stride)));
   976     Node *span  = phase->transform(new (phase->C) MulINode(trip, in(Stride)));
   977     return new (phase->C) AddINode(span, in(Init)); // exact limit
   978   }
   980   if (is_power_of_2(stride_p) ||                // divisor is 2^n
   981       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
   982     // Convert to long expression to avoid integer overflow
   983     // and let igvn optimizer convert this division.
   984     //
   985     Node*   init   = phase->transform( new (phase->C) ConvI2LNode(in(Init)));
   986     Node*  limit   = phase->transform( new (phase->C) ConvI2LNode(in(Limit)));
   987     Node* stride   = phase->longcon(stride_con);
   988     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
   990     Node *range = phase->transform(new (phase->C) SubLNode(limit, init));
   991     Node *bias  = phase->transform(new (phase->C) AddLNode(range, stride_m));
   992     Node *span;
   993     if (stride_con > 0 && is_power_of_2(stride_p)) {
   994       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
   995       // and avoid generating rounding for division. Zero trip guard should
   996       // guarantee that init < limit but sometimes the guard is missing and
   997       // we can get situation when init > limit. Note, for the empty loop
   998       // optimization zero trip guard is generated explicitly which leaves
   999       // only RCE predicate where exact limit is used and the predicate
  1000       // will simply fail forcing recompilation.
  1001       Node* neg_stride   = phase->longcon(-stride_con);
  1002       span = phase->transform(new (phase->C) AndLNode(bias, neg_stride));
  1003     } else {
  1004       Node *trip  = phase->transform(new (phase->C) DivLNode(0, bias, stride));
  1005       span = phase->transform(new (phase->C) MulLNode(trip, stride));
  1007     // Convert back to int
  1008     Node *span_int = phase->transform(new (phase->C) ConvL2INode(span));
  1009     return new (phase->C) AddINode(span_int, in(Init)); // exact limit
  1012   return NULL;    // No progress
  1015 //------------------------------Identity---------------------------------------
  1016 // If stride == 1 return limit node.
  1017 Node *LoopLimitNode::Identity( PhaseTransform *phase ) {
  1018   int stride_con = phase->type(in(Stride))->is_int()->get_con();
  1019   if (stride_con == 1 || stride_con == -1)
  1020     return in(Limit);
  1021   return this;
  1024 //=============================================================================
  1025 //----------------------match_incr_with_optional_truncation--------------------
  1026 // Match increment with optional truncation:
  1027 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
  1028 // Return NULL for failure. Success returns the increment node.
  1029 Node* CountedLoopNode::match_incr_with_optional_truncation(
  1030                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
  1031   // Quick cutouts:
  1032   if (expr == NULL || expr->req() != 3)  return NULL;
  1034   Node *t1 = NULL;
  1035   Node *t2 = NULL;
  1036   const TypeInt* trunc_t = TypeInt::INT;
  1037   Node* n1 = expr;
  1038   int   n1op = n1->Opcode();
  1040   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
  1041   if (n1op == Op_AndI &&
  1042       n1->in(2)->is_Con() &&
  1043       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
  1044     // %%% This check should match any mask of 2**K-1.
  1045     t1 = n1;
  1046     n1 = t1->in(1);
  1047     n1op = n1->Opcode();
  1048     trunc_t = TypeInt::CHAR;
  1049   } else if (n1op == Op_RShiftI &&
  1050              n1->in(1) != NULL &&
  1051              n1->in(1)->Opcode() == Op_LShiftI &&
  1052              n1->in(2) == n1->in(1)->in(2) &&
  1053              n1->in(2)->is_Con()) {
  1054     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
  1055     // %%% This check should match any shift in [1..31].
  1056     if (shift == 16 || shift == 8) {
  1057       t1 = n1;
  1058       t2 = t1->in(1);
  1059       n1 = t2->in(1);
  1060       n1op = n1->Opcode();
  1061       if (shift == 16) {
  1062         trunc_t = TypeInt::SHORT;
  1063       } else if (shift == 8) {
  1064         trunc_t = TypeInt::BYTE;
  1069   // If (maybe after stripping) it is an AddI, we won:
  1070   if (n1op == Op_AddI) {
  1071     *trunc1 = t1;
  1072     *trunc2 = t2;
  1073     *trunc_type = trunc_t;
  1074     return n1;
  1077   // failed
  1078   return NULL;
  1082 //------------------------------filtered_type--------------------------------
  1083 // Return a type based on condition control flow
  1084 // A successful return will be a type that is restricted due
  1085 // to a series of dominating if-tests, such as:
  1086 //    if (i < 10) {
  1087 //       if (i > 0) {
  1088 //          here: "i" type is [1..10)
  1089 //       }
  1090 //    }
  1091 // or a control flow merge
  1092 //    if (i < 10) {
  1093 //       do {
  1094 //          phi( , ) -- at top of loop type is [min_int..10)
  1095 //         i = ?
  1096 //       } while ( i < 10)
  1097 //
  1098 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
  1099   assert(n && n->bottom_type()->is_int(), "must be int");
  1100   const TypeInt* filtered_t = NULL;
  1101   if (!n->is_Phi()) {
  1102     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
  1103     filtered_t = filtered_type_from_dominators(n, n_ctrl);
  1105   } else {
  1106     Node* phi    = n->as_Phi();
  1107     Node* region = phi->in(0);
  1108     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
  1109     if (region && region != C->top()) {
  1110       for (uint i = 1; i < phi->req(); i++) {
  1111         Node* val   = phi->in(i);
  1112         Node* use_c = region->in(i);
  1113         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
  1114         if (val_t != NULL) {
  1115           if (filtered_t == NULL) {
  1116             filtered_t = val_t;
  1117           } else {
  1118             filtered_t = filtered_t->meet(val_t)->is_int();
  1124   const TypeInt* n_t = _igvn.type(n)->is_int();
  1125   if (filtered_t != NULL) {
  1126     n_t = n_t->join(filtered_t)->is_int();
  1128   return n_t;
  1132 //------------------------------filtered_type_from_dominators--------------------------------
  1133 // Return a possibly more restrictive type for val based on condition control flow of dominators
  1134 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
  1135   if (val->is_Con()) {
  1136      return val->bottom_type()->is_int();
  1138   uint if_limit = 10; // Max number of dominating if's visited
  1139   const TypeInt* rtn_t = NULL;
  1141   if (use_ctrl && use_ctrl != C->top()) {
  1142     Node* val_ctrl = get_ctrl(val);
  1143     uint val_dom_depth = dom_depth(val_ctrl);
  1144     Node* pred = use_ctrl;
  1145     uint if_cnt = 0;
  1146     while (if_cnt < if_limit) {
  1147       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
  1148         if_cnt++;
  1149         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
  1150         if (if_t != NULL) {
  1151           if (rtn_t == NULL) {
  1152             rtn_t = if_t;
  1153           } else {
  1154             rtn_t = rtn_t->join(if_t)->is_int();
  1158       pred = idom(pred);
  1159       if (pred == NULL || pred == C->top()) {
  1160         break;
  1162       // Stop if going beyond definition block of val
  1163       if (dom_depth(pred) < val_dom_depth) {
  1164         break;
  1168   return rtn_t;
  1172 //------------------------------dump_spec--------------------------------------
  1173 // Dump special per-node info
  1174 #ifndef PRODUCT
  1175 void CountedLoopEndNode::dump_spec(outputStream *st) const {
  1176   if( in(TestValue)->is_Bool() ) {
  1177     BoolTest bt( test_trip()); // Added this for g++.
  1179     st->print("[");
  1180     bt.dump_on(st);
  1181     st->print("]");
  1183   st->print(" ");
  1184   IfNode::dump_spec(st);
  1186 #endif
  1188 //=============================================================================
  1189 //------------------------------is_member--------------------------------------
  1190 // Is 'l' a member of 'this'?
  1191 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
  1192   while( l->_nest > _nest ) l = l->_parent;
  1193   return l == this;
  1196 //------------------------------set_nest---------------------------------------
  1197 // Set loop tree nesting depth.  Accumulate _has_call bits.
  1198 int IdealLoopTree::set_nest( uint depth ) {
  1199   _nest = depth;
  1200   int bits = _has_call;
  1201   if( _child ) bits |= _child->set_nest(depth+1);
  1202   if( bits ) _has_call = 1;
  1203   if( _next  ) bits |= _next ->set_nest(depth  );
  1204   return bits;
  1207 //------------------------------split_fall_in----------------------------------
  1208 // Split out multiple fall-in edges from the loop header.  Move them to a
  1209 // private RegionNode before the loop.  This becomes the loop landing pad.
  1210 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
  1211   PhaseIterGVN &igvn = phase->_igvn;
  1212   uint i;
  1214   // Make a new RegionNode to be the landing pad.
  1215   Node *landing_pad = new (phase->C) RegionNode( fall_in_cnt+1 );
  1216   phase->set_loop(landing_pad,_parent);
  1217   // Gather all the fall-in control paths into the landing pad
  1218   uint icnt = fall_in_cnt;
  1219   uint oreq = _head->req();
  1220   for( i = oreq-1; i>0; i-- )
  1221     if( !phase->is_member( this, _head->in(i) ) )
  1222       landing_pad->set_req(icnt--,_head->in(i));
  1224   // Peel off PhiNode edges as well
  1225   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1226     Node *oj = _head->fast_out(j);
  1227     if( oj->is_Phi() ) {
  1228       PhiNode* old_phi = oj->as_Phi();
  1229       assert( old_phi->region() == _head, "" );
  1230       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
  1231       Node *p = PhiNode::make_blank(landing_pad, old_phi);
  1232       uint icnt = fall_in_cnt;
  1233       for( i = oreq-1; i>0; i-- ) {
  1234         if( !phase->is_member( this, _head->in(i) ) ) {
  1235           p->init_req(icnt--, old_phi->in(i));
  1236           // Go ahead and clean out old edges from old phi
  1237           old_phi->del_req(i);
  1240       // Search for CSE's here, because ZKM.jar does a lot of
  1241       // loop hackery and we need to be a little incremental
  1242       // with the CSE to avoid O(N^2) node blow-up.
  1243       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
  1244       if( p2 ) {                // Found CSE
  1245         p->destruct();          // Recover useless new node
  1246         p = p2;                 // Use old node
  1247       } else {
  1248         igvn.register_new_node_with_optimizer(p, old_phi);
  1250       // Make old Phi refer to new Phi.
  1251       old_phi->add_req(p);
  1252       // Check for the special case of making the old phi useless and
  1253       // disappear it.  In JavaGrande I have a case where this useless
  1254       // Phi is the loop limit and prevents recognizing a CountedLoop
  1255       // which in turn prevents removing an empty loop.
  1256       Node *id_old_phi = old_phi->Identity( &igvn );
  1257       if( id_old_phi != old_phi ) { // Found a simple identity?
  1258         // Note that I cannot call 'replace_node' here, because
  1259         // that will yank the edge from old_phi to the Region and
  1260         // I'm mid-iteration over the Region's uses.
  1261         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
  1262           Node* use = old_phi->last_out(i);
  1263           igvn.rehash_node_delayed(use);
  1264           uint uses_found = 0;
  1265           for (uint j = 0; j < use->len(); j++) {
  1266             if (use->in(j) == old_phi) {
  1267               if (j < use->req()) use->set_req (j, id_old_phi);
  1268               else                use->set_prec(j, id_old_phi);
  1269               uses_found++;
  1272           i -= uses_found;    // we deleted 1 or more copies of this edge
  1275       igvn._worklist.push(old_phi);
  1278   // Finally clean out the fall-in edges from the RegionNode
  1279   for( i = oreq-1; i>0; i-- ) {
  1280     if( !phase->is_member( this, _head->in(i) ) ) {
  1281       _head->del_req(i);
  1284   // Transform landing pad
  1285   igvn.register_new_node_with_optimizer(landing_pad, _head);
  1286   // Insert landing pad into the header
  1287   _head->add_req(landing_pad);
  1290 //------------------------------split_outer_loop-------------------------------
  1291 // Split out the outermost loop from this shared header.
  1292 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
  1293   PhaseIterGVN &igvn = phase->_igvn;
  1295   // Find index of outermost loop; it should also be my tail.
  1296   uint outer_idx = 1;
  1297   while( _head->in(outer_idx) != _tail ) outer_idx++;
  1299   // Make a LoopNode for the outermost loop.
  1300   Node *ctl = _head->in(LoopNode::EntryControl);
  1301   Node *outer = new (phase->C) LoopNode( ctl, _head->in(outer_idx) );
  1302   outer = igvn.register_new_node_with_optimizer(outer, _head);
  1303   phase->set_created_loop_node();
  1305   // Outermost loop falls into '_head' loop
  1306   _head->set_req(LoopNode::EntryControl, outer);
  1307   _head->del_req(outer_idx);
  1308   // Split all the Phis up between '_head' loop and 'outer' loop.
  1309   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1310     Node *out = _head->fast_out(j);
  1311     if( out->is_Phi() ) {
  1312       PhiNode *old_phi = out->as_Phi();
  1313       assert( old_phi->region() == _head, "" );
  1314       Node *phi = PhiNode::make_blank(outer, old_phi);
  1315       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
  1316       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
  1317       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
  1318       // Make old Phi point to new Phi on the fall-in path
  1319       igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
  1320       old_phi->del_req(outer_idx);
  1324   // Use the new loop head instead of the old shared one
  1325   _head = outer;
  1326   phase->set_loop(_head, this);
  1329 //------------------------------fix_parent-------------------------------------
  1330 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
  1331   loop->_parent = parent;
  1332   if( loop->_child ) fix_parent( loop->_child, loop   );
  1333   if( loop->_next  ) fix_parent( loop->_next , parent );
  1336 //------------------------------estimate_path_freq-----------------------------
  1337 static float estimate_path_freq( Node *n ) {
  1338   // Try to extract some path frequency info
  1339   IfNode *iff;
  1340   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
  1341     uint nop = n->Opcode();
  1342     if( nop == Op_SafePoint ) {   // Skip any safepoint
  1343       n = n->in(0);
  1344       continue;
  1346     if( nop == Op_CatchProj ) {   // Get count from a prior call
  1347       // Assume call does not always throw exceptions: means the call-site
  1348       // count is also the frequency of the fall-through path.
  1349       assert( n->is_CatchProj(), "" );
  1350       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
  1351         return 0.0f;            // Assume call exception path is rare
  1352       Node *call = n->in(0)->in(0)->in(0);
  1353       assert( call->is_Call(), "expect a call here" );
  1354       const JVMState *jvms = ((CallNode*)call)->jvms();
  1355       ciMethodData* methodData = jvms->method()->method_data();
  1356       if (!methodData->is_mature())  return 0.0f; // No call-site data
  1357       ciProfileData* data = methodData->bci_to_data(jvms->bci());
  1358       if ((data == NULL) || !data->is_CounterData()) {
  1359         // no call profile available, try call's control input
  1360         n = n->in(0);
  1361         continue;
  1363       return data->as_CounterData()->count()/FreqCountInvocations;
  1365     // See if there's a gating IF test
  1366     Node *n_c = n->in(0);
  1367     if( !n_c->is_If() ) break;       // No estimate available
  1368     iff = n_c->as_If();
  1369     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
  1370       // Compute how much count comes on this path
  1371       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
  1372     // Have no count info.  Skip dull uncommon-trap like branches.
  1373     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
  1374         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
  1375       break;
  1376     // Skip through never-taken branch; look for a real loop exit.
  1377     n = iff->in(0);
  1379   return 0.0f;                  // No estimate available
  1382 //------------------------------merge_many_backedges---------------------------
  1383 // Merge all the backedges from the shared header into a private Region.
  1384 // Feed that region as the one backedge to this loop.
  1385 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
  1386   uint i;
  1388   // Scan for the top 2 hottest backedges
  1389   float hotcnt = 0.0f;
  1390   float warmcnt = 0.0f;
  1391   uint hot_idx = 0;
  1392   // Loop starts at 2 because slot 1 is the fall-in path
  1393   for( i = 2; i < _head->req(); i++ ) {
  1394     float cnt = estimate_path_freq(_head->in(i));
  1395     if( cnt > hotcnt ) {       // Grab hottest path
  1396       warmcnt = hotcnt;
  1397       hotcnt = cnt;
  1398       hot_idx = i;
  1399     } else if( cnt > warmcnt ) { // And 2nd hottest path
  1400       warmcnt = cnt;
  1404   // See if the hottest backedge is worthy of being an inner loop
  1405   // by being much hotter than the next hottest backedge.
  1406   if( hotcnt <= 0.0001 ||
  1407       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
  1409   // Peel out the backedges into a private merge point; peel
  1410   // them all except optionally hot_idx.
  1411   PhaseIterGVN &igvn = phase->_igvn;
  1413   Node *hot_tail = NULL;
  1414   // Make a Region for the merge point
  1415   Node *r = new (phase->C) RegionNode(1);
  1416   for( i = 2; i < _head->req(); i++ ) {
  1417     if( i != hot_idx )
  1418       r->add_req( _head->in(i) );
  1419     else hot_tail = _head->in(i);
  1421   igvn.register_new_node_with_optimizer(r, _head);
  1422   // Plug region into end of loop _head, followed by hot_tail
  1423   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
  1424   _head->set_req(2, r);
  1425   if( hot_idx ) _head->add_req(hot_tail);
  1427   // Split all the Phis up between '_head' loop and the Region 'r'
  1428   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1429     Node *out = _head->fast_out(j);
  1430     if( out->is_Phi() ) {
  1431       PhiNode* n = out->as_Phi();
  1432       igvn.hash_delete(n);      // Delete from hash before hacking edges
  1433       Node *hot_phi = NULL;
  1434       Node *phi = new (phase->C) PhiNode(r, n->type(), n->adr_type());
  1435       // Check all inputs for the ones to peel out
  1436       uint j = 1;
  1437       for( uint i = 2; i < n->req(); i++ ) {
  1438         if( i != hot_idx )
  1439           phi->set_req( j++, n->in(i) );
  1440         else hot_phi = n->in(i);
  1442       // Register the phi but do not transform until whole place transforms
  1443       igvn.register_new_node_with_optimizer(phi, n);
  1444       // Add the merge phi to the old Phi
  1445       while( n->req() > 3 ) n->del_req( n->req()-1 );
  1446       n->set_req(2, phi);
  1447       if( hot_idx ) n->add_req(hot_phi);
  1452   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
  1453   // of self loop tree.  Turn self into a loop headed by _head and with
  1454   // tail being the new merge point.
  1455   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
  1456   phase->set_loop(_tail,ilt);   // Adjust tail
  1457   _tail = r;                    // Self's tail is new merge point
  1458   phase->set_loop(r,this);
  1459   ilt->_child = _child;         // New guy has my children
  1460   _child = ilt;                 // Self has new guy as only child
  1461   ilt->_parent = this;          // new guy has self for parent
  1462   ilt->_nest = _nest;           // Same nesting depth (for now)
  1464   // Starting with 'ilt', look for child loop trees using the same shared
  1465   // header.  Flatten these out; they will no longer be loops in the end.
  1466   IdealLoopTree **pilt = &_child;
  1467   while( ilt ) {
  1468     if( ilt->_head == _head ) {
  1469       uint i;
  1470       for( i = 2; i < _head->req(); i++ )
  1471         if( _head->in(i) == ilt->_tail )
  1472           break;                // Still a loop
  1473       if( i == _head->req() ) { // No longer a loop
  1474         // Flatten ilt.  Hang ilt's "_next" list from the end of
  1475         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
  1476         IdealLoopTree **cp = &ilt->_child;
  1477         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
  1478         *cp = ilt->_next;       // Hang next list at end of child list
  1479         *pilt = ilt->_child;    // Move child up to replace ilt
  1480         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
  1481         ilt = ilt->_child;      // Repeat using new ilt
  1482         continue;               // do not advance over ilt->_child
  1484       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
  1485       phase->set_loop(_head,ilt);
  1487     pilt = &ilt->_child;        // Advance to next
  1488     ilt = *pilt;
  1491   if( _child ) fix_parent( _child, this );
  1494 //------------------------------beautify_loops---------------------------------
  1495 // Split shared headers and insert loop landing pads.
  1496 // Insert a LoopNode to replace the RegionNode.
  1497 // Return TRUE if loop tree is structurally changed.
  1498 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
  1499   bool result = false;
  1500   // Cache parts in locals for easy
  1501   PhaseIterGVN &igvn = phase->_igvn;
  1503   igvn.hash_delete(_head);      // Yank from hash before hacking edges
  1505   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
  1506   int fall_in_cnt = 0;
  1507   for( uint i = 1; i < _head->req(); i++ )
  1508     if( !phase->is_member( this, _head->in(i) ) )
  1509       fall_in_cnt++;
  1510   assert( fall_in_cnt, "at least 1 fall-in path" );
  1511   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
  1512     split_fall_in( phase, fall_in_cnt );
  1514   // Swap inputs to the _head and all Phis to move the fall-in edge to
  1515   // the left.
  1516   fall_in_cnt = 1;
  1517   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
  1518     fall_in_cnt++;
  1519   if( fall_in_cnt > 1 ) {
  1520     // Since I am just swapping inputs I do not need to update def-use info
  1521     Node *tmp = _head->in(1);
  1522     _head->set_req( 1, _head->in(fall_in_cnt) );
  1523     _head->set_req( fall_in_cnt, tmp );
  1524     // Swap also all Phis
  1525     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
  1526       Node* phi = _head->fast_out(i);
  1527       if( phi->is_Phi() ) {
  1528         igvn.hash_delete(phi); // Yank from hash before hacking edges
  1529         tmp = phi->in(1);
  1530         phi->set_req( 1, phi->in(fall_in_cnt) );
  1531         phi->set_req( fall_in_cnt, tmp );
  1535   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
  1536   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
  1538   // If I am a shared header (multiple backedges), peel off the many
  1539   // backedges into a private merge point and use the merge point as
  1540   // the one true backedge.
  1541   if (_head->req() > 3) {
  1542     // Merge the many backedges into a single backedge but leave
  1543     // the hottest backedge as separate edge for the following peel.
  1544     if (!_irreducible) {
  1545       merge_many_backedges( phase );
  1548     // When recursively beautify my children, split_fall_in can change
  1549     // loop tree structure when I am an irreducible loop. Then the head
  1550     // of my children has a req() not bigger than 3. Here we need to set
  1551     // result to true to catch that case in order to tell the caller to
  1552     // rebuild loop tree. See issue JDK-8244407 for details.
  1553     result = true;
  1556   // If I have one hot backedge, peel off myself loop.
  1557   // I better be the outermost loop.
  1558   if (_head->req() > 3 && !_irreducible) {
  1559     split_outer_loop( phase );
  1560     result = true;
  1562   } else if (!_head->is_Loop() && !_irreducible) {
  1563     // Make a new LoopNode to replace the old loop head
  1564     Node *l = new (phase->C) LoopNode( _head->in(1), _head->in(2) );
  1565     l = igvn.register_new_node_with_optimizer(l, _head);
  1566     phase->set_created_loop_node();
  1567     // Go ahead and replace _head
  1568     phase->_igvn.replace_node( _head, l );
  1569     _head = l;
  1570     phase->set_loop(_head, this);
  1573   // Now recursively beautify nested loops
  1574   if( _child ) result |= _child->beautify_loops( phase );
  1575   if( _next  ) result |= _next ->beautify_loops( phase );
  1576   return result;
  1579 //------------------------------allpaths_check_safepts----------------------------
  1580 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
  1581 // encountered.  Helper for check_safepts.
  1582 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
  1583   assert(stack.size() == 0, "empty stack");
  1584   stack.push(_tail);
  1585   visited.Clear();
  1586   visited.set(_tail->_idx);
  1587   while (stack.size() > 0) {
  1588     Node* n = stack.pop();
  1589     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1590       // Terminate this path
  1591     } else if (n->Opcode() == Op_SafePoint) {
  1592       if (_phase->get_loop(n) != this) {
  1593         if (_required_safept == NULL) _required_safept = new Node_List();
  1594         _required_safept->push(n);  // save the one closest to the tail
  1596       // Terminate this path
  1597     } else {
  1598       uint start = n->is_Region() ? 1 : 0;
  1599       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
  1600       for (uint i = start; i < end; i++) {
  1601         Node* in = n->in(i);
  1602         assert(in->is_CFG(), "must be");
  1603         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
  1604           stack.push(in);
  1611 //------------------------------check_safepts----------------------------
  1612 // Given dominators, try to find loops with calls that must always be
  1613 // executed (call dominates loop tail).  These loops do not need non-call
  1614 // safepoints (ncsfpt).
  1615 //
  1616 // A complication is that a safepoint in a inner loop may be needed
  1617 // by an outer loop. In the following, the inner loop sees it has a
  1618 // call (block 3) on every path from the head (block 2) to the
  1619 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
  1620 // in block 2, _but_ this leaves the outer loop without a safepoint.
  1621 //
  1622 //          entry  0
  1623 //                 |
  1624 //                 v
  1625 // outer 1,2    +->1
  1626 //              |  |
  1627 //              |  v
  1628 //              |  2<---+  ncsfpt in 2
  1629 //              |_/|\   |
  1630 //                 | v  |
  1631 // inner 2,3      /  3  |  call in 3
  1632 //               /   |  |
  1633 //              v    +--+
  1634 //        exit  4
  1635 //
  1636 //
  1637 // This method creates a list (_required_safept) of ncsfpt nodes that must
  1638 // be protected is created for each loop. When a ncsfpt maybe deleted, it
  1639 // is first looked for in the lists for the outer loops of the current loop.
  1640 //
  1641 // The insights into the problem:
  1642 //  A) counted loops are okay
  1643 //  B) innermost loops are okay (only an inner loop can delete
  1644 //     a ncsfpt needed by an outer loop)
  1645 //  C) a loop is immune from an inner loop deleting a safepoint
  1646 //     if the loop has a call on the idom-path
  1647 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
  1648 //     idom-path that is not in a nested loop
  1649 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
  1650 //     loop needs to be prevented from deletion by an inner loop
  1651 //
  1652 // There are two analyses:
  1653 //  1) The first, and cheaper one, scans the loop body from
  1654 //     tail to head following the idom (immediate dominator)
  1655 //     chain, looking for the cases (C,D,E) above.
  1656 //     Since inner loops are scanned before outer loops, there is summary
  1657 //     information about inner loops.  Inner loops can be skipped over
  1658 //     when the tail of an inner loop is encountered.
  1659 //
  1660 //  2) The second, invoked if the first fails to find a call or ncsfpt on
  1661 //     the idom path (which is rare), scans all predecessor control paths
  1662 //     from the tail to the head, terminating a path when a call or sfpt
  1663 //     is encountered, to find the ncsfpt's that are closest to the tail.
  1664 //
  1665 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
  1666   // Bottom up traversal
  1667   IdealLoopTree* ch = _child;
  1668   if (_child) _child->check_safepts(visited, stack);
  1669   if (_next)  _next ->check_safepts(visited, stack);
  1671   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
  1672     bool  has_call         = false; // call on dom-path
  1673     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
  1674     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
  1675     // Scan the dom-path nodes from tail to head
  1676     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
  1677       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1678         has_call = true;
  1679         _has_sfpt = 1;          // Then no need for a safept!
  1680         break;
  1681       } else if (n->Opcode() == Op_SafePoint) {
  1682         if (_phase->get_loop(n) == this) {
  1683           has_local_ncsfpt = true;
  1684           break;
  1686         if (nonlocal_ncsfpt == NULL) {
  1687           nonlocal_ncsfpt = n; // save the one closest to the tail
  1689       } else {
  1690         IdealLoopTree* nlpt = _phase->get_loop(n);
  1691         if (this != nlpt) {
  1692           // If at an inner loop tail, see if the inner loop has already
  1693           // recorded seeing a call on the dom-path (and stop.)  If not,
  1694           // jump to the head of the inner loop.
  1695           assert(is_member(nlpt), "nested loop");
  1696           Node* tail = nlpt->_tail;
  1697           if (tail->in(0)->is_If()) tail = tail->in(0);
  1698           if (n == tail) {
  1699             // If inner loop has call on dom-path, so does outer loop
  1700             if (nlpt->_has_sfpt) {
  1701               has_call = true;
  1702               _has_sfpt = 1;
  1703               break;
  1705             // Skip to head of inner loop
  1706             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
  1707             n = nlpt->_head;
  1712     // Record safept's that this loop needs preserved when an
  1713     // inner loop attempts to delete it's safepoints.
  1714     if (_child != NULL && !has_call && !has_local_ncsfpt) {
  1715       if (nonlocal_ncsfpt != NULL) {
  1716         if (_required_safept == NULL) _required_safept = new Node_List();
  1717         _required_safept->push(nonlocal_ncsfpt);
  1718       } else {
  1719         // Failed to find a suitable safept on the dom-path.  Now use
  1720         // an all paths walk from tail to head, looking for safepoints to preserve.
  1721         allpaths_check_safepts(visited, stack);
  1727 //---------------------------is_deleteable_safept----------------------------
  1728 // Is safept not required by an outer loop?
  1729 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
  1730   assert(sfpt->Opcode() == Op_SafePoint, "");
  1731   IdealLoopTree* lp = get_loop(sfpt)->_parent;
  1732   while (lp != NULL) {
  1733     Node_List* sfpts = lp->_required_safept;
  1734     if (sfpts != NULL) {
  1735       for (uint i = 0; i < sfpts->size(); i++) {
  1736         if (sfpt == sfpts->at(i))
  1737           return false;
  1740     lp = lp->_parent;
  1742   return true;
  1745 //---------------------------replace_parallel_iv-------------------------------
  1746 // Replace parallel induction variable (parallel to trip counter)
  1747 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
  1748   assert(loop->_head->is_CountedLoop(), "");
  1749   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1750   if (!cl->is_valid_counted_loop())
  1751     return;         // skip malformed counted loop
  1752   Node *incr = cl->incr();
  1753   if (incr == NULL)
  1754     return;         // Dead loop?
  1755   Node *init = cl->init_trip();
  1756   Node *phi  = cl->phi();
  1757   int stride_con = cl->stride_con();
  1759   // Visit all children, looking for Phis
  1760   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
  1761     Node *out = cl->out(i);
  1762     // Look for other phis (secondary IVs). Skip dead ones
  1763     if (!out->is_Phi() || out == phi || !has_node(out))
  1764       continue;
  1765     PhiNode* phi2 = out->as_Phi();
  1766     Node *incr2 = phi2->in( LoopNode::LoopBackControl );
  1767     // Look for induction variables of the form:  X += constant
  1768     if (phi2->region() != loop->_head ||
  1769         incr2->req() != 3 ||
  1770         incr2->in(1) != phi2 ||
  1771         incr2 == incr ||
  1772         incr2->Opcode() != Op_AddI ||
  1773         !incr2->in(2)->is_Con())
  1774       continue;
  1776     // Check for parallel induction variable (parallel to trip counter)
  1777     // via an affine function.  In particular, count-down loops with
  1778     // count-up array indices are common. We only RCE references off
  1779     // the trip-counter, so we need to convert all these to trip-counter
  1780     // expressions.
  1781     Node *init2 = phi2->in( LoopNode::EntryControl );
  1782     int stride_con2 = incr2->in(2)->get_int();
  1784     // The ratio of the two strides cannot be represented as an int
  1785     // if stride_con2 is min_int and stride_con is -1.
  1786     if (stride_con2 == min_jint && stride_con == -1) {
  1787       continue;
  1790     // The general case here gets a little tricky.  We want to find the
  1791     // GCD of all possible parallel IV's and make a new IV using this
  1792     // GCD for the loop.  Then all possible IVs are simple multiples of
  1793     // the GCD.  In practice, this will cover very few extra loops.
  1794     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
  1795     // where +/-1 is the common case, but other integer multiples are
  1796     // also easy to handle.
  1797     int ratio_con = stride_con2/stride_con;
  1799     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
  1800 #ifndef PRODUCT
  1801       if (TraceLoopOpts) {
  1802         tty->print("Parallel IV: %d ", phi2->_idx);
  1803         loop->dump_head();
  1805 #endif
  1806       // Convert to using the trip counter.  The parallel induction
  1807       // variable differs from the trip counter by a loop-invariant
  1808       // amount, the difference between their respective initial values.
  1809       // It is scaled by the 'ratio_con'.
  1810       Node* ratio = _igvn.intcon(ratio_con);
  1811       set_ctrl(ratio, C->root());
  1812       Node* ratio_init = new (C) MulINode(init, ratio);
  1813       _igvn.register_new_node_with_optimizer(ratio_init, init);
  1814       set_early_ctrl(ratio_init);
  1815       Node* diff = new (C) SubINode(init2, ratio_init);
  1816       _igvn.register_new_node_with_optimizer(diff, init2);
  1817       set_early_ctrl(diff);
  1818       Node* ratio_idx = new (C) MulINode(phi, ratio);
  1819       _igvn.register_new_node_with_optimizer(ratio_idx, phi);
  1820       set_ctrl(ratio_idx, cl);
  1821       Node* add = new (C) AddINode(ratio_idx, diff);
  1822       _igvn.register_new_node_with_optimizer(add);
  1823       set_ctrl(add, cl);
  1824       _igvn.replace_node( phi2, add );
  1825       // Sometimes an induction variable is unused
  1826       if (add->outcnt() == 0) {
  1827         _igvn.remove_dead_node(add);
  1829       --i; // deleted this phi; rescan starting with next position
  1830       continue;
  1835 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) {
  1836   Node* keep = NULL;
  1837   if (keep_one) {
  1838     // Look for a safepoint on the idom-path.
  1839     for (Node* i = tail(); i != _head; i = phase->idom(i)) {
  1840       if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) {
  1841         keep = i;
  1842         break; // Found one
  1847   // Don't remove any safepoints if it is requested to keep a single safepoint and
  1848   // no safepoint was found on idom-path. It is not safe to remove any safepoint
  1849   // in this case since there's no safepoint dominating all paths in the loop body.
  1850   bool prune = !keep_one || keep != NULL;
  1852   // Delete other safepoints in this loop.
  1853   Node_List* sfpts = _safepts;
  1854   if (prune && sfpts != NULL) {
  1855     assert(keep == NULL || keep->Opcode() == Op_SafePoint, "not safepoint");
  1856     for (uint i = 0; i < sfpts->size(); i++) {
  1857       Node* n = sfpts->at(i);
  1858       assert(phase->get_loop(n) == this, "");
  1859       if (n != keep && phase->is_deleteable_safept(n)) {
  1860         phase->lazy_replace(n, n->in(TypeFunc::Control));
  1866 //------------------------------counted_loop-----------------------------------
  1867 // Convert to counted loops where possible
  1868 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
  1870   // For grins, set the inner-loop flag here
  1871   if (!_child) {
  1872     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
  1875   if (_head->is_CountedLoop() ||
  1876       phase->is_counted_loop(_head, this)) {
  1878     if (!UseCountedLoopSafepoints) {
  1879       // Indicate we do not need a safepoint here
  1880       _has_sfpt = 1;
  1883     // Remove safepoints
  1884     bool keep_one_sfpt = !(_has_call || _has_sfpt);
  1885     remove_safepoints(phase, keep_one_sfpt);
  1887     // Look for induction variables
  1888     phase->replace_parallel_iv(this);
  1890   } else if (_parent != NULL && !_irreducible) {
  1891     // Not a counted loop. Keep one safepoint.
  1892     bool keep_one_sfpt = true;
  1893     remove_safepoints(phase, keep_one_sfpt);
  1896   // Recursively
  1897   if (_child) _child->counted_loop( phase );
  1898   if (_next)  _next ->counted_loop( phase );
  1901 #ifndef PRODUCT
  1902 //------------------------------dump_head--------------------------------------
  1903 // Dump 1 liner for loop header info
  1904 void IdealLoopTree::dump_head( ) const {
  1905   for (uint i=0; i<_nest; i++)
  1906     tty->print("  ");
  1907   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
  1908   if (_irreducible) tty->print(" IRREDUCIBLE");
  1909   Node* entry = _head->in(LoopNode::EntryControl);
  1910   if (LoopLimitCheck) {
  1911     Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
  1912     if (predicate != NULL ) {
  1913       tty->print(" limit_check");
  1914       entry = entry->in(0)->in(0);
  1917   if (UseLoopPredicate) {
  1918     entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
  1919     if (entry != NULL) {
  1920       tty->print(" predicated");
  1923   if (_head->is_CountedLoop()) {
  1924     CountedLoopNode *cl = _head->as_CountedLoop();
  1925     tty->print(" counted");
  1927     Node* init_n = cl->init_trip();
  1928     if (init_n  != NULL &&  init_n->is_Con())
  1929       tty->print(" [%d,", cl->init_trip()->get_int());
  1930     else
  1931       tty->print(" [int,");
  1932     Node* limit_n = cl->limit();
  1933     if (limit_n  != NULL &&  limit_n->is_Con())
  1934       tty->print("%d),", cl->limit()->get_int());
  1935     else
  1936       tty->print("int),");
  1937     int stride_con  = cl->stride_con();
  1938     if (stride_con > 0) tty->print("+");
  1939     tty->print("%d", stride_con);
  1941     tty->print(" (%d iters) ", (int)cl->profile_trip_cnt());
  1943     if (cl->is_pre_loop ()) tty->print(" pre" );
  1944     if (cl->is_main_loop()) tty->print(" main");
  1945     if (cl->is_post_loop()) tty->print(" post");
  1947   if (_has_call) tty->print(" has_call");
  1948   if (_has_sfpt) tty->print(" has_sfpt");
  1949   if (_rce_candidate) tty->print(" rce");
  1950   if (_safepts != NULL && _safepts->size() > 0) {
  1951     tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }");
  1953   if (_required_safept != NULL && _required_safept->size() > 0) {
  1954     tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }");
  1956   tty->cr();
  1959 //------------------------------dump-------------------------------------------
  1960 // Dump loops by loop tree
  1961 void IdealLoopTree::dump( ) const {
  1962   dump_head();
  1963   if (_child) _child->dump();
  1964   if (_next)  _next ->dump();
  1967 #endif
  1969 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
  1970   if (loop == root) {
  1971     if (loop->_child != NULL) {
  1972       log->begin_head("loop_tree");
  1973       log->end_head();
  1974       if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1975       log->tail("loop_tree");
  1976       assert(loop->_next == NULL, "what?");
  1978   } else {
  1979     Node* head = loop->_head;
  1980     log->begin_head("loop");
  1981     log->print(" idx='%d' ", head->_idx);
  1982     if (loop->_irreducible) log->print("irreducible='1' ");
  1983     if (head->is_Loop()) {
  1984       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
  1985       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
  1987     if (head->is_CountedLoop()) {
  1988       CountedLoopNode* cl = head->as_CountedLoop();
  1989       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
  1990       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
  1991       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
  1993     log->end_head();
  1994     if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1995     log->tail("loop");
  1996     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
  2000 //---------------------collect_potentially_useful_predicates-----------------------
  2001 // Helper function to collect potentially useful predicates to prevent them from
  2002 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
  2003 void PhaseIdealLoop::collect_potentially_useful_predicates(
  2004                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
  2005   if (loop->_child) { // child
  2006     collect_potentially_useful_predicates(loop->_child, useful_predicates);
  2009   // self (only loops that we can apply loop predication may use their predicates)
  2010   if (loop->_head->is_Loop() &&
  2011       !loop->_irreducible    &&
  2012       !loop->tail()->is_top()) {
  2013     LoopNode* lpn = loop->_head->as_Loop();
  2014     Node* entry = lpn->in(LoopNode::EntryControl);
  2015     Node* predicate_proj = find_predicate(entry); // loop_limit_check first
  2016     if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
  2017       assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
  2018       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
  2019       entry = entry->in(0)->in(0);
  2021     predicate_proj = find_predicate(entry); // Predicate
  2022     if (predicate_proj != NULL ) {
  2023       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
  2027   if (loop->_next) { // sibling
  2028     collect_potentially_useful_predicates(loop->_next, useful_predicates);
  2032 //------------------------eliminate_useless_predicates-----------------------------
  2033 // Eliminate all inserted predicates if they could not be used by loop predication.
  2034 // Note: it will also eliminates loop limits check predicate since it also uses
  2035 // Opaque1 node (see Parse::add_predicate()).
  2036 void PhaseIdealLoop::eliminate_useless_predicates() {
  2037   if (C->predicate_count() == 0)
  2038     return; // no predicate left
  2040   Unique_Node_List useful_predicates; // to store useful predicates
  2041   if (C->has_loops()) {
  2042     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
  2045   for (int i = C->predicate_count(); i > 0; i--) {
  2046      Node * n = C->predicate_opaque1_node(i-1);
  2047      assert(n->Opcode() == Op_Opaque1, "must be");
  2048      if (!useful_predicates.member(n)) { // not in the useful list
  2049        _igvn.replace_node(n, n->in(1));
  2054 //------------------------process_expensive_nodes-----------------------------
  2055 // Expensive nodes have their control input set to prevent the GVN
  2056 // from commoning them and as a result forcing the resulting node to
  2057 // be in a more frequent path. Use CFG information here, to change the
  2058 // control inputs so that some expensive nodes can be commoned while
  2059 // not executed more frequently.
  2060 bool PhaseIdealLoop::process_expensive_nodes() {
  2061   assert(OptimizeExpensiveOps, "optimization off?");
  2063   // Sort nodes to bring similar nodes together
  2064   C->sort_expensive_nodes();
  2066   bool progress = false;
  2068   for (int i = 0; i < C->expensive_count(); ) {
  2069     Node* n = C->expensive_node(i);
  2070     int start = i;
  2071     // Find nodes similar to n
  2072     i++;
  2073     for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++);
  2074     int end = i;
  2075     // And compare them two by two
  2076     for (int j = start; j < end; j++) {
  2077       Node* n1 = C->expensive_node(j);
  2078       if (is_node_unreachable(n1)) {
  2079         continue;
  2081       for (int k = j+1; k < end; k++) {
  2082         Node* n2 = C->expensive_node(k);
  2083         if (is_node_unreachable(n2)) {
  2084           continue;
  2087         assert(n1 != n2, "should be pair of nodes");
  2089         Node* c1 = n1->in(0);
  2090         Node* c2 = n2->in(0);
  2092         Node* parent_c1 = c1;
  2093         Node* parent_c2 = c2;
  2095         // The call to get_early_ctrl_for_expensive() moves the
  2096         // expensive nodes up but stops at loops that are in a if
  2097         // branch. See whether we can exit the loop and move above the
  2098         // If.
  2099         if (c1->is_Loop()) {
  2100           parent_c1 = c1->in(1);
  2102         if (c2->is_Loop()) {
  2103           parent_c2 = c2->in(1);
  2106         if (parent_c1 == parent_c2) {
  2107           _igvn._worklist.push(n1);
  2108           _igvn._worklist.push(n2);
  2109           continue;
  2112         // Look for identical expensive node up the dominator chain.
  2113         if (is_dominator(c1, c2)) {
  2114           c2 = c1;
  2115         } else if (is_dominator(c2, c1)) {
  2116           c1 = c2;
  2117         } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() &&
  2118                    parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) {
  2119           // Both branches have the same expensive node so move it up
  2120           // before the if.
  2121           c1 = c2 = idom(parent_c1->in(0));
  2123         // Do the actual moves
  2124         if (n1->in(0) != c1) {
  2125           _igvn.hash_delete(n1);
  2126           n1->set_req(0, c1);
  2127           _igvn.hash_insert(n1);
  2128           _igvn._worklist.push(n1);
  2129           progress = true;
  2131         if (n2->in(0) != c2) {
  2132           _igvn.hash_delete(n2);
  2133           n2->set_req(0, c2);
  2134           _igvn.hash_insert(n2);
  2135           _igvn._worklist.push(n2);
  2136           progress = true;
  2142   return progress;
  2146 //=============================================================================
  2147 //----------------------------build_and_optimize-------------------------------
  2148 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
  2149 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
  2150 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool skip_loop_opts) {
  2151   ResourceMark rm;
  2153   int old_progress = C->major_progress();
  2154   uint orig_worklist_size = _igvn._worklist.size();
  2156   // Reset major-progress flag for the driver's heuristics
  2157   C->clear_major_progress();
  2159 #ifndef PRODUCT
  2160   // Capture for later assert
  2161   uint unique = C->unique();
  2162   _loop_invokes++;
  2163   _loop_work += unique;
  2164 #endif
  2166   // True if the method has at least 1 irreducible loop
  2167   _has_irreducible_loops = false;
  2169   _created_loop_node = false;
  2171   Arena *a = Thread::current()->resource_area();
  2172   VectorSet visited(a);
  2173   // Pre-grow the mapping from Nodes to IdealLoopTrees.
  2174   _nodes.map(C->unique(), NULL);
  2175   memset(_nodes.adr(), 0, wordSize * C->unique());
  2177   // Pre-build the top-level outermost loop tree entry
  2178   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
  2179   // Do not need a safepoint at the top level
  2180   _ltree_root->_has_sfpt = 1;
  2182   // Initialize Dominators.
  2183   // Checked in clone_loop_predicate() during beautify_loops().
  2184   _idom_size = 0;
  2185   _idom      = NULL;
  2186   _dom_depth = NULL;
  2187   _dom_stk   = NULL;
  2189   // Empty pre-order array
  2190   allocate_preorders();
  2192   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
  2193   // IdealLoopTree entries.  Data nodes are NOT walked.
  2194   build_loop_tree();
  2195   // Check for bailout, and return
  2196   if (C->failing()) {
  2197     return;
  2200   // No loops after all
  2201   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
  2203   // There should always be an outer loop containing the Root and Return nodes.
  2204   // If not, we have a degenerate empty program.  Bail out in this case.
  2205   if (!has_node(C->root())) {
  2206     if (!_verify_only) {
  2207       C->clear_major_progress();
  2208       C->record_method_not_compilable("empty program detected during loop optimization");
  2210     return;
  2213   // Nothing to do, so get out
  2214   bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !_verify_me && !_verify_only;
  2215   bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn);
  2216   if (stop_early && !do_expensive_nodes) {
  2217     _igvn.optimize();           // Cleanup NeverBranches
  2218     return;
  2221   // Set loop nesting depth
  2222   _ltree_root->set_nest( 0 );
  2224   // Split shared headers and insert loop landing pads.
  2225   // Do not bother doing this on the Root loop of course.
  2226   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
  2227     C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3);
  2228     if( _ltree_root->_child->beautify_loops( this ) ) {
  2229       // Re-build loop tree!
  2230       _ltree_root->_child = NULL;
  2231       _nodes.clear();
  2232       reallocate_preorders();
  2233       build_loop_tree();
  2234       // Check for bailout, and return
  2235       if (C->failing()) {
  2236         return;
  2238       // Reset loop nesting depth
  2239       _ltree_root->set_nest( 0 );
  2241       C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3);
  2245   // Build Dominators for elision of NULL checks & loop finding.
  2246   // Since nodes do not have a slot for immediate dominator, make
  2247   // a persistent side array for that info indexed on node->_idx.
  2248   _idom_size = C->unique();
  2249   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
  2250   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
  2251   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
  2252   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
  2254   Dominators();
  2256   if (!_verify_only) {
  2257     // As a side effect, Dominators removed any unreachable CFG paths
  2258     // into RegionNodes.  It doesn't do this test against Root, so
  2259     // we do it here.
  2260     for( uint i = 1; i < C->root()->req(); i++ ) {
  2261       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
  2262         _igvn.delete_input_of(C->root(), i);
  2263         i--;                      // Rerun same iteration on compressed edges
  2267     // Given dominators, try to find inner loops with calls that must
  2268     // always be executed (call dominates loop tail).  These loops do
  2269     // not need a separate safepoint.
  2270     Node_List cisstack(a);
  2271     _ltree_root->check_safepts(visited, cisstack);
  2274   // Walk the DATA nodes and place into loops.  Find earliest control
  2275   // node.  For CFG nodes, the _nodes array starts out and remains
  2276   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
  2277   // _nodes array holds the earliest legal controlling CFG node.
  2279   // Allocate stack with enough space to avoid frequent realloc
  2280   int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats
  2281   Node_Stack nstack( a, stack_size );
  2283   visited.Clear();
  2284   Node_List worklist(a);
  2285   // Don't need C->root() on worklist since
  2286   // it will be processed among C->top() inputs
  2287   worklist.push( C->top() );
  2288   visited.set( C->top()->_idx ); // Set C->top() as visited now
  2289   build_loop_early( visited, worklist, nstack );
  2291   // Given early legal placement, try finding counted loops.  This placement
  2292   // is good enough to discover most loop invariants.
  2293   if( !_verify_me && !_verify_only )
  2294     _ltree_root->counted_loop( this );
  2296   // Find latest loop placement.  Find ideal loop placement.
  2297   visited.Clear();
  2298   init_dom_lca_tags();
  2299   // Need C->root() on worklist when processing outs
  2300   worklist.push( C->root() );
  2301   NOT_PRODUCT( C->verify_graph_edges(); )
  2302   worklist.push( C->top() );
  2303   build_loop_late( visited, worklist, nstack );
  2305   if (_verify_only) {
  2306     // restore major progress flag
  2307     for (int i = 0; i < old_progress; i++)
  2308       C->set_major_progress();
  2309     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
  2310     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
  2311     return;
  2314   // clear out the dead code after build_loop_late
  2315   while (_deadlist.size()) {
  2316     _igvn.remove_globally_dead_node(_deadlist.pop());
  2319   if (stop_early) {
  2320     assert(do_expensive_nodes, "why are we here?");
  2321     if (process_expensive_nodes()) {
  2322       // If we made some progress when processing expensive nodes then
  2323       // the IGVN may modify the graph in a way that will allow us to
  2324       // make some more progress: we need to try processing expensive
  2325       // nodes again.
  2326       C->set_major_progress();
  2328     _igvn.optimize();
  2329     return;
  2332   // Some parser-inserted loop predicates could never be used by loop
  2333   // predication or they were moved away from loop during some optimizations.
  2334   // For example, peeling. Eliminate them before next loop optimizations.
  2335   if (UseLoopPredicate || LoopLimitCheck) {
  2336     eliminate_useless_predicates();
  2339 #ifndef PRODUCT
  2340   C->verify_graph_edges();
  2341   if (_verify_me) {             // Nested verify pass?
  2342     // Check to see if the verify mode is broken
  2343     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
  2344     return;
  2346   if(VerifyLoopOptimizations) verify();
  2347   if(TraceLoopOpts && C->has_loops()) {
  2348     _ltree_root->dump();
  2350 #endif
  2352   if (skip_loop_opts) {
  2353     // restore major progress flag
  2354     for (int i = 0; i < old_progress; i++) {
  2355       C->set_major_progress();
  2358     // Cleanup any modified bits
  2359     _igvn.optimize();
  2361     if (C->log() != NULL) {
  2362       log_loop_tree(_ltree_root, _ltree_root, C->log());
  2364     return;
  2367   if (ReassociateInvariants) {
  2368     // Reassociate invariants and prep for split_thru_phi
  2369     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2370       IdealLoopTree* lpt = iter.current();
  2371       if (!lpt->is_counted() || !lpt->is_inner()) continue;
  2373       lpt->reassociate_invariants(this);
  2375       // Because RCE opportunities can be masked by split_thru_phi,
  2376       // look for RCE candidates and inhibit split_thru_phi
  2377       // on just their loop-phi's for this pass of loop opts
  2378       if (SplitIfBlocks && do_split_ifs) {
  2379         if (lpt->policy_range_check(this)) {
  2380           lpt->_rce_candidate = 1; // = true
  2386   // Check for aggressive application of split-if and other transforms
  2387   // that require basic-block info (like cloning through Phi's)
  2388   if( SplitIfBlocks && do_split_ifs ) {
  2389     visited.Clear();
  2390     split_if_with_blocks( visited, nstack );
  2391     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
  2394   if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) {
  2395     C->set_major_progress();
  2398   // Perform loop predication before iteration splitting
  2399   if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
  2400     _ltree_root->_child->loop_predication(this);
  2403   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
  2404     if (do_intrinsify_fill()) {
  2405       C->set_major_progress();
  2409   // Perform iteration-splitting on inner loops.  Split iterations to avoid
  2410   // range checks or one-shot null checks.
  2412   // If split-if's didn't hack the graph too bad (no CFG changes)
  2413   // then do loop opts.
  2414   if (C->has_loops() && !C->major_progress()) {
  2415     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
  2416     _ltree_root->_child->iteration_split( this, worklist );
  2417     // No verify after peeling!  GCM has hoisted code out of the loop.
  2418     // After peeling, the hoisted code could sink inside the peeled area.
  2419     // The peeling code does not try to recompute the best location for
  2420     // all the code before the peeled area, so the verify pass will always
  2421     // complain about it.
  2423   // Do verify graph edges in any case
  2424   NOT_PRODUCT( C->verify_graph_edges(); );
  2426   if (!do_split_ifs) {
  2427     // We saw major progress in Split-If to get here.  We forced a
  2428     // pass with unrolling and not split-if, however more split-if's
  2429     // might make progress.  If the unrolling didn't make progress
  2430     // then the major-progress flag got cleared and we won't try
  2431     // another round of Split-If.  In particular the ever-common
  2432     // instance-of/check-cast pattern requires at least 2 rounds of
  2433     // Split-If to clear out.
  2434     C->set_major_progress();
  2437   // Repeat loop optimizations if new loops were seen
  2438   if (created_loop_node()) {
  2439     C->set_major_progress();
  2442   // Keep loop predicates and perform optimizations with them
  2443   // until no more loop optimizations could be done.
  2444   // After that switch predicates off and do more loop optimizations.
  2445   if (!C->major_progress() && (C->predicate_count() > 0)) {
  2446      C->cleanup_loop_predicates(_igvn);
  2447 #ifndef PRODUCT
  2448      if (TraceLoopOpts) {
  2449        tty->print_cr("PredicatesOff");
  2451 #endif
  2452      C->set_major_progress();
  2455   // Convert scalar to superword operations at the end of all loop opts.
  2456   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
  2457     // SuperWord transform
  2458     SuperWord sw(this);
  2459     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2460       IdealLoopTree* lpt = iter.current();
  2461       if (lpt->is_counted()) {
  2462         sw.transform_loop(lpt);
  2467   // Cleanup any modified bits
  2468   _igvn.optimize();
  2470   // disable assert until issue with split_flow_path is resolved (6742111)
  2471   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
  2472   //        "shouldn't introduce irreducible loops");
  2474   if (C->log() != NULL) {
  2475     log_loop_tree(_ltree_root, _ltree_root, C->log());
  2479 #ifndef PRODUCT
  2480 //------------------------------print_statistics-------------------------------
  2481 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
  2482 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
  2483 void PhaseIdealLoop::print_statistics() {
  2484   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
  2487 //------------------------------verify-----------------------------------------
  2488 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
  2489 static int fail;                // debug only, so its multi-thread dont care
  2490 void PhaseIdealLoop::verify() const {
  2491   int old_progress = C->major_progress();
  2492   ResourceMark rm;
  2493   PhaseIdealLoop loop_verify( _igvn, this );
  2494   VectorSet visited(Thread::current()->resource_area());
  2496   fail = 0;
  2497   verify_compare( C->root(), &loop_verify, visited );
  2498   assert( fail == 0, "verify loops failed" );
  2499   // Verify loop structure is the same
  2500   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
  2501   // Reset major-progress.  It was cleared by creating a verify version of
  2502   // PhaseIdealLoop.
  2503   for( int i=0; i<old_progress; i++ )
  2504     C->set_major_progress();
  2507 //------------------------------verify_compare---------------------------------
  2508 // Make sure me and the given PhaseIdealLoop agree on key data structures
  2509 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
  2510   if( !n ) return;
  2511   if( visited.test_set( n->_idx ) ) return;
  2512   if( !_nodes[n->_idx] ) {      // Unreachable
  2513     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
  2514     return;
  2517   uint i;
  2518   for( i = 0; i < n->req(); i++ )
  2519     verify_compare( n->in(i), loop_verify, visited );
  2521   // Check the '_nodes' block/loop structure
  2522   i = n->_idx;
  2523   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
  2524     if( _nodes[i] != loop_verify->_nodes[i] &&
  2525         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
  2526       tty->print("Mismatched control setting for: ");
  2527       n->dump();
  2528       if( fail++ > 10 ) return;
  2529       Node *c = get_ctrl_no_update(n);
  2530       tty->print("We have it as: ");
  2531       if( c->in(0) ) c->dump();
  2532         else tty->print_cr("N%d",c->_idx);
  2533       tty->print("Verify thinks: ");
  2534       if( loop_verify->has_ctrl(n) )
  2535         loop_verify->get_ctrl_no_update(n)->dump();
  2536       else
  2537         loop_verify->get_loop_idx(n)->dump();
  2538       tty->cr();
  2540   } else {                    // We have a loop
  2541     IdealLoopTree *us = get_loop_idx(n);
  2542     if( loop_verify->has_ctrl(n) ) {
  2543       tty->print("Mismatched loop setting for: ");
  2544       n->dump();
  2545       if( fail++ > 10 ) return;
  2546       tty->print("We have it as: ");
  2547       us->dump();
  2548       tty->print("Verify thinks: ");
  2549       loop_verify->get_ctrl_no_update(n)->dump();
  2550       tty->cr();
  2551     } else if (!C->major_progress()) {
  2552       // Loop selection can be messed up if we did a major progress
  2553       // operation, like split-if.  Do not verify in that case.
  2554       IdealLoopTree *them = loop_verify->get_loop_idx(n);
  2555       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
  2556         tty->print("Unequals loops for: ");
  2557         n->dump();
  2558         if( fail++ > 10 ) return;
  2559         tty->print("We have it as: ");
  2560         us->dump();
  2561         tty->print("Verify thinks: ");
  2562         them->dump();
  2563         tty->cr();
  2568   // Check for immediate dominators being equal
  2569   if( i >= _idom_size ) {
  2570     if( !n->is_CFG() ) return;
  2571     tty->print("CFG Node with no idom: ");
  2572     n->dump();
  2573     return;
  2575   if( !n->is_CFG() ) return;
  2576   if( n == C->root() ) return; // No IDOM here
  2578   assert(n->_idx == i, "sanity");
  2579   Node *id = idom_no_update(n);
  2580   if( id != loop_verify->idom_no_update(n) ) {
  2581     tty->print("Unequals idoms for: ");
  2582     n->dump();
  2583     if( fail++ > 10 ) return;
  2584     tty->print("We have it as: ");
  2585     id->dump();
  2586     tty->print("Verify thinks: ");
  2587     loop_verify->idom_no_update(n)->dump();
  2588     tty->cr();
  2593 //------------------------------verify_tree------------------------------------
  2594 // Verify that tree structures match.  Because the CFG can change, siblings
  2595 // within the loop tree can be reordered.  We attempt to deal with that by
  2596 // reordering the verify's loop tree if possible.
  2597 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
  2598   assert( _parent == parent, "Badly formed loop tree" );
  2600   // Siblings not in same order?  Attempt to re-order.
  2601   if( _head != loop->_head ) {
  2602     // Find _next pointer to update
  2603     IdealLoopTree **pp = &loop->_parent->_child;
  2604     while( *pp != loop )
  2605       pp = &((*pp)->_next);
  2606     // Find proper sibling to be next
  2607     IdealLoopTree **nn = &loop->_next;
  2608     while( (*nn) && (*nn)->_head != _head )
  2609       nn = &((*nn)->_next);
  2611     // Check for no match.
  2612     if( !(*nn) ) {
  2613       // Annoyingly, irreducible loops can pick different headers
  2614       // after a major_progress operation, so the rest of the loop
  2615       // tree cannot be matched.
  2616       if (_irreducible && Compile::current()->major_progress())  return;
  2617       assert( 0, "failed to match loop tree" );
  2620     // Move (*nn) to (*pp)
  2621     IdealLoopTree *hit = *nn;
  2622     *nn = hit->_next;
  2623     hit->_next = loop;
  2624     *pp = loop;
  2625     loop = hit;
  2626     // Now try again to verify
  2629   assert( _head  == loop->_head , "mismatched loop head" );
  2630   Node *tail = _tail;           // Inline a non-updating version of
  2631   while( !tail->in(0) )         // the 'tail()' call.
  2632     tail = tail->in(1);
  2633   assert( tail == loop->_tail, "mismatched loop tail" );
  2635   // Counted loops that are guarded should be able to find their guards
  2636   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
  2637     CountedLoopNode *cl = _head->as_CountedLoop();
  2638     Node *init = cl->init_trip();
  2639     Node *ctrl = cl->in(LoopNode::EntryControl);
  2640     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  2641     Node *iff  = ctrl->in(0);
  2642     assert( iff->Opcode() == Op_If, "" );
  2643     Node *bol  = iff->in(1);
  2644     assert( bol->Opcode() == Op_Bool, "" );
  2645     Node *cmp  = bol->in(1);
  2646     assert( cmp->Opcode() == Op_CmpI, "" );
  2647     Node *add  = cmp->in(1);
  2648     Node *opaq;
  2649     if( add->Opcode() == Op_Opaque1 ) {
  2650       opaq = add;
  2651     } else {
  2652       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
  2653       assert( add == init, "" );
  2654       opaq = cmp->in(2);
  2656     assert( opaq->Opcode() == Op_Opaque1, "" );
  2660   if (_child != NULL)  _child->verify_tree(loop->_child, this);
  2661   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
  2662   // Innermost loops need to verify loop bodies,
  2663   // but only if no 'major_progress'
  2664   int fail = 0;
  2665   if (!Compile::current()->major_progress() && _child == NULL) {
  2666     for( uint i = 0; i < _body.size(); i++ ) {
  2667       Node *n = _body.at(i);
  2668       if (n->outcnt() == 0)  continue; // Ignore dead
  2669       uint j;
  2670       for( j = 0; j < loop->_body.size(); j++ )
  2671         if( loop->_body.at(j) == n )
  2672           break;
  2673       if( j == loop->_body.size() ) { // Not found in loop body
  2674         // Last ditch effort to avoid assertion: Its possible that we
  2675         // have some users (so outcnt not zero) but are still dead.
  2676         // Try to find from root.
  2677         if (Compile::current()->root()->find(n->_idx)) {
  2678           fail++;
  2679           tty->print("We have that verify does not: ");
  2680           n->dump();
  2684     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
  2685       Node *n = loop->_body.at(i2);
  2686       if (n->outcnt() == 0)  continue; // Ignore dead
  2687       uint j;
  2688       for( j = 0; j < _body.size(); j++ )
  2689         if( _body.at(j) == n )
  2690           break;
  2691       if( j == _body.size() ) { // Not found in loop body
  2692         // Last ditch effort to avoid assertion: Its possible that we
  2693         // have some users (so outcnt not zero) but are still dead.
  2694         // Try to find from root.
  2695         if (Compile::current()->root()->find(n->_idx)) {
  2696           fail++;
  2697           tty->print("Verify has that we do not: ");
  2698           n->dump();
  2702     assert( !fail, "loop body mismatch" );
  2706 #endif
  2708 //------------------------------set_idom---------------------------------------
  2709 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
  2710   uint idx = d->_idx;
  2711   if (idx >= _idom_size) {
  2712     uint newsize = _idom_size<<1;
  2713     while( idx >= newsize ) {
  2714       newsize <<= 1;
  2716     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
  2717     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
  2718     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
  2719     _idom_size = newsize;
  2721   _idom[idx] = n;
  2722   _dom_depth[idx] = dom_depth;
  2725 //------------------------------recompute_dom_depth---------------------------------------
  2726 // The dominator tree is constructed with only parent pointers.
  2727 // This recomputes the depth in the tree by first tagging all
  2728 // nodes as "no depth yet" marker.  The next pass then runs up
  2729 // the dom tree from each node marked "no depth yet", and computes
  2730 // the depth on the way back down.
  2731 void PhaseIdealLoop::recompute_dom_depth() {
  2732   uint no_depth_marker = C->unique();
  2733   uint i;
  2734   // Initialize depth to "no depth yet"
  2735   for (i = 0; i < _idom_size; i++) {
  2736     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
  2737      _dom_depth[i] = no_depth_marker;
  2740   if (_dom_stk == NULL) {
  2741     uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size.
  2742     if (init_size < 10) init_size = 10;
  2743     _dom_stk = new GrowableArray<uint>(init_size);
  2745   // Compute new depth for each node.
  2746   for (i = 0; i < _idom_size; i++) {
  2747     uint j = i;
  2748     // Run up the dom tree to find a node with a depth
  2749     while (_dom_depth[j] == no_depth_marker) {
  2750       _dom_stk->push(j);
  2751       j = _idom[j]->_idx;
  2753     // Compute the depth on the way back down this tree branch
  2754     uint dd = _dom_depth[j] + 1;
  2755     while (_dom_stk->length() > 0) {
  2756       uint j = _dom_stk->pop();
  2757       _dom_depth[j] = dd;
  2758       dd++;
  2763 //------------------------------sort-------------------------------------------
  2764 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
  2765 // loop tree, not the root.
  2766 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
  2767   if( !innermost ) return loop; // New innermost loop
  2769   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
  2770   assert( loop_preorder, "not yet post-walked loop" );
  2771   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
  2772   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
  2774   // Insert at start of list
  2775   while( l ) {                  // Insertion sort based on pre-order
  2776     if( l == loop ) return innermost; // Already on list!
  2777     int l_preorder = get_preorder(l->_head); // Cache pre-order number
  2778     assert( l_preorder, "not yet post-walked l" );
  2779     // Check header pre-order number to figure proper nesting
  2780     if( loop_preorder > l_preorder )
  2781       break;                    // End of insertion
  2782     // If headers tie (e.g., shared headers) check tail pre-order numbers.
  2783     // Since I split shared headers, you'd think this could not happen.
  2784     // BUT: I must first do the preorder numbering before I can discover I
  2785     // have shared headers, so the split headers all get the same preorder
  2786     // number as the RegionNode they split from.
  2787     if( loop_preorder == l_preorder &&
  2788         get_preorder(loop->_tail) < get_preorder(l->_tail) )
  2789       break;                    // Also check for shared headers (same pre#)
  2790     pp = &l->_parent;           // Chain up list
  2791     l = *pp;
  2793   // Link into list
  2794   // Point predecessor to me
  2795   *pp = loop;
  2796   // Point me to successor
  2797   IdealLoopTree *p = loop->_parent;
  2798   loop->_parent = l;            // Point me to successor
  2799   if( p ) sort( p, innermost ); // Insert my parents into list as well
  2800   return innermost;
  2803 //------------------------------build_loop_tree--------------------------------
  2804 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
  2805 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
  2806 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
  2807 // tightest enclosing IdealLoopTree for post-walked.
  2808 //
  2809 // During my forward walk I do a short 1-layer lookahead to see if I can find
  2810 // a loop backedge with that doesn't have any work on the backedge.  This
  2811 // helps me construct nested loops with shared headers better.
  2812 //
  2813 // Once I've done the forward recursion, I do the post-work.  For each child
  2814 // I check to see if there is a backedge.  Backedges define a loop!  I
  2815 // insert an IdealLoopTree at the target of the backedge.
  2816 //
  2817 // During the post-work I also check to see if I have several children
  2818 // belonging to different loops.  If so, then this Node is a decision point
  2819 // where control flow can choose to change loop nests.  It is at this
  2820 // decision point where I can figure out how loops are nested.  At this
  2821 // time I can properly order the different loop nests from my children.
  2822 // Note that there may not be any backedges at the decision point!
  2823 //
  2824 // Since the decision point can be far removed from the backedges, I can't
  2825 // order my loops at the time I discover them.  Thus at the decision point
  2826 // I need to inspect loop header pre-order numbers to properly nest my
  2827 // loops.  This means I need to sort my childrens' loops by pre-order.
  2828 // The sort is of size number-of-control-children, which generally limits
  2829 // it to size 2 (i.e., I just choose between my 2 target loops).
  2830 void PhaseIdealLoop::build_loop_tree() {
  2831   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
  2832   GrowableArray <Node *> bltstack(C->live_nodes() >> 1);
  2833   Node *n = C->root();
  2834   bltstack.push(n);
  2835   int pre_order = 1;
  2836   int stack_size;
  2838   while ( ( stack_size = bltstack.length() ) != 0 ) {
  2839     n = bltstack.top(); // Leave node on stack
  2840     if ( !is_visited(n) ) {
  2841       // ---- Pre-pass Work ----
  2842       // Pre-walked but not post-walked nodes need a pre_order number.
  2844       set_preorder_visited( n, pre_order ); // set as visited
  2846       // ---- Scan over children ----
  2847       // Scan first over control projections that lead to loop headers.
  2848       // This helps us find inner-to-outer loops with shared headers better.
  2850       // Scan children's children for loop headers.
  2851       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
  2852         Node* m = n->raw_out(i);       // Child
  2853         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
  2854           // Scan over children's children to find loop
  2855           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2856             Node* l = m->fast_out(j);
  2857             if( is_visited(l) &&       // Been visited?
  2858                 !is_postvisited(l) &&  // But not post-visited
  2859                 get_preorder(l) < pre_order ) { // And smaller pre-order
  2860               // Found!  Scan the DFS down this path before doing other paths
  2861               bltstack.push(m);
  2862               break;
  2867       pre_order++;
  2869     else if ( !is_postvisited(n) ) {
  2870       // Note: build_loop_tree_impl() adds out edges on rare occasions,
  2871       // such as com.sun.rsasign.am::a.
  2872       // For non-recursive version, first, process current children.
  2873       // On next iteration, check if additional children were added.
  2874       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
  2875         Node* u = n->raw_out(k);
  2876         if ( u->is_CFG() && !is_visited(u) ) {
  2877           bltstack.push(u);
  2880       if ( bltstack.length() == stack_size ) {
  2881         // There were no additional children, post visit node now
  2882         (void)bltstack.pop(); // Remove node from stack
  2883         pre_order = build_loop_tree_impl( n, pre_order );
  2884         // Check for bailout
  2885         if (C->failing()) {
  2886           return;
  2888         // Check to grow _preorders[] array for the case when
  2889         // build_loop_tree_impl() adds new nodes.
  2890         check_grow_preorders();
  2893     else {
  2894       (void)bltstack.pop(); // Remove post-visited node from stack
  2899 //------------------------------build_loop_tree_impl---------------------------
  2900 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
  2901   // ---- Post-pass Work ----
  2902   // Pre-walked but not post-walked nodes need a pre_order number.
  2904   // Tightest enclosing loop for this Node
  2905   IdealLoopTree *innermost = NULL;
  2907   // For all children, see if any edge is a backedge.  If so, make a loop
  2908   // for it.  Then find the tightest enclosing loop for the self Node.
  2909   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2910     Node* m = n->fast_out(i);   // Child
  2911     if( n == m ) continue;      // Ignore control self-cycles
  2912     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
  2914     IdealLoopTree *l;           // Child's loop
  2915     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
  2916       // Found a backedge
  2917       assert( get_preorder(m) < pre_order, "should be backedge" );
  2918       // Check for the RootNode, which is already a LoopNode and is allowed
  2919       // to have multiple "backedges".
  2920       if( m == C->root()) {     // Found the root?
  2921         l = _ltree_root;        // Root is the outermost LoopNode
  2922       } else {                  // Else found a nested loop
  2923         // Insert a LoopNode to mark this loop.
  2924         l = new IdealLoopTree(this, m, n);
  2925       } // End of Else found a nested loop
  2926       if( !has_loop(m) )        // If 'm' does not already have a loop set
  2927         set_loop(m, l);         // Set loop header to loop now
  2929     } else {                    // Else not a nested loop
  2930       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
  2931       l = get_loop(m);          // Get previously determined loop
  2932       // If successor is header of a loop (nest), move up-loop till it
  2933       // is a member of some outer enclosing loop.  Since there are no
  2934       // shared headers (I've split them already) I only need to go up
  2935       // at most 1 level.
  2936       while( l && l->_head == m ) // Successor heads loop?
  2937         l = l->_parent;         // Move up 1 for me
  2938       // If this loop is not properly parented, then this loop
  2939       // has no exit path out, i.e. its an infinite loop.
  2940       if( !l ) {
  2941         // Make loop "reachable" from root so the CFG is reachable.  Basically
  2942         // insert a bogus loop exit that is never taken.  'm', the loop head,
  2943         // points to 'n', one (of possibly many) fall-in paths.  There may be
  2944         // many backedges as well.
  2946         // Here I set the loop to be the root loop.  I could have, after
  2947         // inserting a bogus loop exit, restarted the recursion and found my
  2948         // new loop exit.  This would make the infinite loop a first-class
  2949         // loop and it would then get properly optimized.  What's the use of
  2950         // optimizing an infinite loop?
  2951         l = _ltree_root;        // Oops, found infinite loop
  2953         if (!_verify_only) {
  2954           // Insert the NeverBranch between 'm' and it's control user.
  2955           NeverBranchNode *iff = new (C) NeverBranchNode( m );
  2956           _igvn.register_new_node_with_optimizer(iff);
  2957           set_loop(iff, l);
  2958           Node *if_t = new (C) CProjNode( iff, 0 );
  2959           _igvn.register_new_node_with_optimizer(if_t);
  2960           set_loop(if_t, l);
  2962           Node* cfg = NULL;       // Find the One True Control User of m
  2963           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2964             Node* x = m->fast_out(j);
  2965             if (x->is_CFG() && x != m && x != iff)
  2966               { cfg = x; break; }
  2968           assert(cfg != NULL, "must find the control user of m");
  2969           uint k = 0;             // Probably cfg->in(0)
  2970           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
  2971           cfg->set_req( k, if_t ); // Now point to NeverBranch
  2973           // Now create the never-taken loop exit
  2974           Node *if_f = new (C) CProjNode( iff, 1 );
  2975           _igvn.register_new_node_with_optimizer(if_f);
  2976           set_loop(if_f, l);
  2977           // Find frame ptr for Halt.  Relies on the optimizer
  2978           // V-N'ing.  Easier and quicker than searching through
  2979           // the program structure.
  2980           Node *frame = new (C) ParmNode( C->start(), TypeFunc::FramePtr );
  2981           _igvn.register_new_node_with_optimizer(frame);
  2982           // Halt & Catch Fire
  2983           Node *halt = new (C) HaltNode( if_f, frame );
  2984           _igvn.register_new_node_with_optimizer(halt);
  2985           set_loop(halt, l);
  2986           C->root()->add_req(halt);
  2988         set_loop(C->root(), _ltree_root);
  2991     // Weeny check for irreducible.  This child was already visited (this
  2992     // IS the post-work phase).  Is this child's loop header post-visited
  2993     // as well?  If so, then I found another entry into the loop.
  2994     if (!_verify_only) {
  2995       while( is_postvisited(l->_head) ) {
  2996         // found irreducible
  2997         l->_irreducible = 1; // = true
  2998         l = l->_parent;
  2999         _has_irreducible_loops = true;
  3000         // Check for bad CFG here to prevent crash, and bailout of compile
  3001         if (l == NULL) {
  3002           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
  3003           return pre_order;
  3006       C->set_has_irreducible_loop(_has_irreducible_loops);
  3009     // This Node might be a decision point for loops.  It is only if
  3010     // it's children belong to several different loops.  The sort call
  3011     // does a trivial amount of work if there is only 1 child or all
  3012     // children belong to the same loop.  If however, the children
  3013     // belong to different loops, the sort call will properly set the
  3014     // _parent pointers to show how the loops nest.
  3015     //
  3016     // In any case, it returns the tightest enclosing loop.
  3017     innermost = sort( l, innermost );
  3020   // Def-use info will have some dead stuff; dead stuff will have no
  3021   // loop decided on.
  3023   // Am I a loop header?  If so fix up my parent's child and next ptrs.
  3024   if( innermost && innermost->_head == n ) {
  3025     assert( get_loop(n) == innermost, "" );
  3026     IdealLoopTree *p = innermost->_parent;
  3027     IdealLoopTree *l = innermost;
  3028     while( p && l->_head == n ) {
  3029       l->_next = p->_child;     // Put self on parents 'next child'
  3030       p->_child = l;            // Make self as first child of parent
  3031       l = p;                    // Now walk up the parent chain
  3032       p = l->_parent;
  3034   } else {
  3035     // Note that it is possible for a LoopNode to reach here, if the
  3036     // backedge has been made unreachable (hence the LoopNode no longer
  3037     // denotes a Loop, and will eventually be removed).
  3039     // Record tightest enclosing loop for self.  Mark as post-visited.
  3040     set_loop(n, innermost);
  3041     // Also record has_call flag early on
  3042     if( innermost ) {
  3043       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
  3044         // Do not count uncommon calls
  3045         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
  3046           Node *iff = n->in(0)->in(0);
  3047           // No any calls for vectorized loops.
  3048           if( UseSuperWord || !iff->is_If() ||
  3049               (n->in(0)->Opcode() == Op_IfFalse &&
  3050                (1.0 - iff->as_If()->_prob) >= 0.01) ||
  3051               (iff->as_If()->_prob >= 0.01) )
  3052             innermost->_has_call = 1;
  3054       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
  3055         // Disable loop optimizations if the loop has a scalar replaceable
  3056         // allocation. This disabling may cause a potential performance lost
  3057         // if the allocation is not eliminated for some reason.
  3058         innermost->_allow_optimizations = false;
  3059         innermost->_has_call = 1; // = true
  3060       } else if (n->Opcode() == Op_SafePoint) {
  3061         // Record all safepoints in this loop.
  3062         if (innermost->_safepts == NULL) innermost->_safepts = new Node_List();
  3063         innermost->_safepts->push(n);
  3068   // Flag as post-visited now
  3069   set_postvisited(n);
  3070   return pre_order;
  3074 //------------------------------build_loop_early-------------------------------
  3075 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3076 // First pass computes the earliest controlling node possible.  This is the
  3077 // controlling input with the deepest dominating depth.
  3078 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  3079   while (worklist.size() != 0) {
  3080     // Use local variables nstack_top_n & nstack_top_i to cache values
  3081     // on nstack's top.
  3082     Node *nstack_top_n = worklist.pop();
  3083     uint  nstack_top_i = 0;
  3084 //while_nstack_nonempty:
  3085     while (true) {
  3086       // Get parent node and next input's index from stack's top.
  3087       Node  *n = nstack_top_n;
  3088       uint   i = nstack_top_i;
  3089       uint cnt = n->req(); // Count of inputs
  3090       if (i == 0) {        // Pre-process the node.
  3091         if( has_node(n) &&            // Have either loop or control already?
  3092             !has_ctrl(n) ) {          // Have loop picked out already?
  3093           // During "merge_many_backedges" we fold up several nested loops
  3094           // into a single loop.  This makes the members of the original
  3095           // loop bodies pointing to dead loops; they need to move up
  3096           // to the new UNION'd larger loop.  I set the _head field of these
  3097           // dead loops to NULL and the _parent field points to the owning
  3098           // loop.  Shades of UNION-FIND algorithm.
  3099           IdealLoopTree *ilt;
  3100           while( !(ilt = get_loop(n))->_head ) {
  3101             // Normally I would use a set_loop here.  But in this one special
  3102             // case, it is legal (and expected) to change what loop a Node
  3103             // belongs to.
  3104             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
  3106           // Remove safepoints ONLY if I've already seen I don't need one.
  3107           // (the old code here would yank a 2nd safepoint after seeing a
  3108           // first one, even though the 1st did not dominate in the loop body
  3109           // and thus could be avoided indefinitely)
  3110           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
  3111               is_deleteable_safept(n)) {
  3112             Node *in = n->in(TypeFunc::Control);
  3113             lazy_replace(n,in);       // Pull safepoint now
  3114             if (ilt->_safepts != NULL) {
  3115               ilt->_safepts->yank(n);
  3117             // Carry on with the recursion "as if" we are walking
  3118             // only the control input
  3119             if( !visited.test_set( in->_idx ) ) {
  3120               worklist.push(in);      // Visit this guy later, using worklist
  3122             // Get next node from nstack:
  3123             // - skip n's inputs processing by setting i > cnt;
  3124             // - we also will not call set_early_ctrl(n) since
  3125             //   has_node(n) == true (see the condition above).
  3126             i = cnt + 1;
  3129       } // if (i == 0)
  3131       // Visit all inputs
  3132       bool done = true;       // Assume all n's inputs will be processed
  3133       while (i < cnt) {
  3134         Node *in = n->in(i);
  3135         ++i;
  3136         if (in == NULL) continue;
  3137         if (in->pinned() && !in->is_CFG())
  3138           set_ctrl(in, in->in(0));
  3139         int is_visited = visited.test_set( in->_idx );
  3140         if (!has_node(in)) {  // No controlling input yet?
  3141           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
  3142           assert( !is_visited, "visit only once" );
  3143           nstack.push(n, i);  // Save parent node and next input's index.
  3144           nstack_top_n = in;  // Process current input now.
  3145           nstack_top_i = 0;
  3146           done = false;       // Not all n's inputs processed.
  3147           break; // continue while_nstack_nonempty;
  3148         } else if (!is_visited) {
  3149           // This guy has a location picked out for him, but has not yet
  3150           // been visited.  Happens to all CFG nodes, for instance.
  3151           // Visit him using the worklist instead of recursion, to break
  3152           // cycles.  Since he has a location already we do not need to
  3153           // find his location before proceeding with the current Node.
  3154           worklist.push(in);  // Visit this guy later, using worklist
  3157       if (done) {
  3158         // All of n's inputs have been processed, complete post-processing.
  3160         // Compute earliest point this Node can go.
  3161         // CFG, Phi, pinned nodes already know their controlling input.
  3162         if (!has_node(n)) {
  3163           // Record earliest legal location
  3164           set_early_ctrl( n );
  3166         if (nstack.is_empty()) {
  3167           // Finished all nodes on stack.
  3168           // Process next node on the worklist.
  3169           break;
  3171         // Get saved parent node and next input's index.
  3172         nstack_top_n = nstack.node();
  3173         nstack_top_i = nstack.index();
  3174         nstack.pop();
  3176     } // while (true)
  3180 //------------------------------dom_lca_internal--------------------------------
  3181 // Pair-wise LCA
  3182 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
  3183   if( !n1 ) return n2;          // Handle NULL original LCA
  3184   assert( n1->is_CFG(), "" );
  3185   assert( n2->is_CFG(), "" );
  3186   // find LCA of all uses
  3187   uint d1 = dom_depth(n1);
  3188   uint d2 = dom_depth(n2);
  3189   while (n1 != n2) {
  3190     if (d1 > d2) {
  3191       n1 =      idom(n1);
  3192       d1 = dom_depth(n1);
  3193     } else if (d1 < d2) {
  3194       n2 =      idom(n2);
  3195       d2 = dom_depth(n2);
  3196     } else {
  3197       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  3198       // of the tree might have the same depth.  These sections have
  3199       // to be searched more carefully.
  3201       // Scan up all the n1's with equal depth, looking for n2.
  3202       Node *t1 = idom(n1);
  3203       while (dom_depth(t1) == d1) {
  3204         if (t1 == n2)  return n2;
  3205         t1 = idom(t1);
  3207       // Scan up all the n2's with equal depth, looking for n1.
  3208       Node *t2 = idom(n2);
  3209       while (dom_depth(t2) == d2) {
  3210         if (t2 == n1)  return n1;
  3211         t2 = idom(t2);
  3213       // Move up to a new dominator-depth value as well as up the dom-tree.
  3214       n1 = t1;
  3215       n2 = t2;
  3216       d1 = dom_depth(n1);
  3217       d2 = dom_depth(n2);
  3220   return n1;
  3223 //------------------------------compute_idom-----------------------------------
  3224 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
  3225 // IDOMs are correct.
  3226 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
  3227   assert( region->is_Region(), "" );
  3228   Node *LCA = NULL;
  3229   for( uint i = 1; i < region->req(); i++ ) {
  3230     if( region->in(i) != C->top() )
  3231       LCA = dom_lca( LCA, region->in(i) );
  3233   return LCA;
  3236 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
  3237   bool had_error = false;
  3238 #ifdef ASSERT
  3239   if (early != C->root()) {
  3240     // Make sure that there's a dominance path from LCA to early
  3241     Node* d = LCA;
  3242     while (d != early) {
  3243       if (d == C->root()) {
  3244         dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA);
  3245         tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx);
  3246         had_error = true;
  3247         break;
  3249       d = idom(d);
  3252 #endif
  3253   return had_error;
  3257 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
  3258   // Compute LCA over list of uses
  3259   bool had_error = false;
  3260   Node *LCA = NULL;
  3261   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
  3262     Node* c = n->fast_out(i);
  3263     if (_nodes[c->_idx] == NULL)
  3264       continue;                 // Skip the occasional dead node
  3265     if( c->is_Phi() ) {         // For Phis, we must land above on the path
  3266       for( uint j=1; j<c->req(); j++ ) {// For all inputs
  3267         if( c->in(j) == n ) {   // Found matching input?
  3268           Node *use = c->in(0)->in(j);
  3269           if (_verify_only && use->is_top()) continue;
  3270           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  3271           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  3274     } else {
  3275       // For CFG data-users, use is in the block just prior
  3276       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
  3277       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  3278       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  3281   assert(!had_error, "bad dominance");
  3282   return LCA;
  3285 //------------------------------get_late_ctrl----------------------------------
  3286 // Compute latest legal control.
  3287 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
  3288   assert(early != NULL, "early control should not be NULL");
  3290   Node* LCA = compute_lca_of_uses(n, early);
  3291 #ifdef ASSERT
  3292   if (LCA == C->root() && LCA != early) {
  3293     // def doesn't dominate uses so print some useful debugging output
  3294     compute_lca_of_uses(n, early, true);
  3296 #endif
  3298   // if this is a load, check for anti-dependent stores
  3299   // We use a conservative algorithm to identify potential interfering
  3300   // instructions and for rescheduling the load.  The users of the memory
  3301   // input of this load are examined.  Any use which is not a load and is
  3302   // dominated by early is considered a potentially interfering store.
  3303   // This can produce false positives.
  3304   if (n->is_Load() && LCA != early) {
  3305     Node_List worklist;
  3307     Node *mem = n->in(MemNode::Memory);
  3308     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
  3309       Node* s = mem->fast_out(i);
  3310       worklist.push(s);
  3312     while(worklist.size() != 0 && LCA != early) {
  3313       Node* s = worklist.pop();
  3314       if (s->is_Load()) {
  3315         continue;
  3316       } else if (s->is_MergeMem()) {
  3317         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
  3318           Node* s1 = s->fast_out(i);
  3319           worklist.push(s1);
  3321       } else {
  3322         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
  3323         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
  3324         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
  3325           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
  3331   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
  3332   return LCA;
  3335 // true if CFG node d dominates CFG node n
  3336 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
  3337   if (d == n)
  3338     return true;
  3339   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
  3340   uint dd = dom_depth(d);
  3341   while (dom_depth(n) >= dd) {
  3342     if (n == d)
  3343       return true;
  3344     n = idom(n);
  3346   return false;
  3349 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
  3350 // Pair-wise LCA with tags.
  3351 // Tag each index with the node 'tag' currently being processed
  3352 // before advancing up the dominator chain using idom().
  3353 // Later calls that find a match to 'tag' know that this path has already
  3354 // been considered in the current LCA (which is input 'n1' by convention).
  3355 // Since get_late_ctrl() is only called once for each node, the tag array
  3356 // does not need to be cleared between calls to get_late_ctrl().
  3357 // Algorithm trades a larger constant factor for better asymptotic behavior
  3358 //
  3359 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
  3360   uint d1 = dom_depth(n1);
  3361   uint d2 = dom_depth(n2);
  3363   do {
  3364     if (d1 > d2) {
  3365       // current lca is deeper than n2
  3366       _dom_lca_tags.map(n1->_idx, tag);
  3367       n1 =      idom(n1);
  3368       d1 = dom_depth(n1);
  3369     } else if (d1 < d2) {
  3370       // n2 is deeper than current lca
  3371       Node *memo = _dom_lca_tags[n2->_idx];
  3372       if( memo == tag ) {
  3373         return n1;    // Return the current LCA
  3375       _dom_lca_tags.map(n2->_idx, tag);
  3376       n2 =      idom(n2);
  3377       d2 = dom_depth(n2);
  3378     } else {
  3379       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  3380       // of the tree might have the same depth.  These sections have
  3381       // to be searched more carefully.
  3383       // Scan up all the n1's with equal depth, looking for n2.
  3384       _dom_lca_tags.map(n1->_idx, tag);
  3385       Node *t1 = idom(n1);
  3386       while (dom_depth(t1) == d1) {
  3387         if (t1 == n2)  return n2;
  3388         _dom_lca_tags.map(t1->_idx, tag);
  3389         t1 = idom(t1);
  3391       // Scan up all the n2's with equal depth, looking for n1.
  3392       _dom_lca_tags.map(n2->_idx, tag);
  3393       Node *t2 = idom(n2);
  3394       while (dom_depth(t2) == d2) {
  3395         if (t2 == n1)  return n1;
  3396         _dom_lca_tags.map(t2->_idx, tag);
  3397         t2 = idom(t2);
  3399       // Move up to a new dominator-depth value as well as up the dom-tree.
  3400       n1 = t1;
  3401       n2 = t2;
  3402       d1 = dom_depth(n1);
  3403       d2 = dom_depth(n2);
  3405   } while (n1 != n2);
  3406   return n1;
  3409 //------------------------------init_dom_lca_tags------------------------------
  3410 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  3411 // Intended use does not involve any growth for the array, so it could
  3412 // be of fixed size.
  3413 void PhaseIdealLoop::init_dom_lca_tags() {
  3414   uint limit = C->unique() + 1;
  3415   _dom_lca_tags.map( limit, NULL );
  3416 #ifdef ASSERT
  3417   for( uint i = 0; i < limit; ++i ) {
  3418     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  3420 #endif // ASSERT
  3423 //------------------------------clear_dom_lca_tags------------------------------
  3424 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  3425 // Intended use does not involve any growth for the array, so it could
  3426 // be of fixed size.
  3427 void PhaseIdealLoop::clear_dom_lca_tags() {
  3428   uint limit = C->unique() + 1;
  3429   _dom_lca_tags.map( limit, NULL );
  3430   _dom_lca_tags.clear();
  3431 #ifdef ASSERT
  3432   for( uint i = 0; i < limit; ++i ) {
  3433     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  3435 #endif // ASSERT
  3438 //------------------------------build_loop_late--------------------------------
  3439 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3440 // Second pass finds latest legal placement, and ideal loop placement.
  3441 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  3442   while (worklist.size() != 0) {
  3443     Node *n = worklist.pop();
  3444     // Only visit once
  3445     if (visited.test_set(n->_idx)) continue;
  3446     uint cnt = n->outcnt();
  3447     uint   i = 0;
  3448     while (true) {
  3449       assert( _nodes[n->_idx], "no dead nodes" );
  3450       // Visit all children
  3451       if (i < cnt) {
  3452         Node* use = n->raw_out(i);
  3453         ++i;
  3454         // Check for dead uses.  Aggressively prune such junk.  It might be
  3455         // dead in the global sense, but still have local uses so I cannot
  3456         // easily call 'remove_dead_node'.
  3457         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
  3458           // Due to cycles, we might not hit the same fixed point in the verify
  3459           // pass as we do in the regular pass.  Instead, visit such phis as
  3460           // simple uses of the loop head.
  3461           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
  3462             if( !visited.test(use->_idx) )
  3463               worklist.push(use);
  3464           } else if( !visited.test_set(use->_idx) ) {
  3465             nstack.push(n, i); // Save parent and next use's index.
  3466             n   = use;         // Process all children of current use.
  3467             cnt = use->outcnt();
  3468             i   = 0;
  3470         } else {
  3471           // Do not visit around the backedge of loops via data edges.
  3472           // push dead code onto a worklist
  3473           _deadlist.push(use);
  3475       } else {
  3476         // All of n's children have been processed, complete post-processing.
  3477         build_loop_late_post(n);
  3478         if (nstack.is_empty()) {
  3479           // Finished all nodes on stack.
  3480           // Process next node on the worklist.
  3481           break;
  3483         // Get saved parent node and next use's index. Visit the rest of uses.
  3484         n   = nstack.node();
  3485         cnt = n->outcnt();
  3486         i   = nstack.index();
  3487         nstack.pop();
  3493 //------------------------------build_loop_late_post---------------------------
  3494 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3495 // Second pass finds latest legal placement, and ideal loop placement.
  3496 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
  3498   if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
  3499     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
  3502 #ifdef ASSERT
  3503   if (_verify_only && !n->is_CFG()) {
  3504     // Check def-use domination.
  3505     compute_lca_of_uses(n, get_ctrl(n), true /* verify */);
  3507 #endif
  3509   // CFG and pinned nodes already handled
  3510   if( n->in(0) ) {
  3511     if( n->in(0)->is_top() ) return; // Dead?
  3513     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
  3514     // _must_ be pinned (they have to observe their control edge of course).
  3515     // Unlike Stores (which modify an unallocable resource, the memory
  3516     // state), Mods/Loads can float around.  So free them up.
  3517     bool pinned = true;
  3518     switch( n->Opcode() ) {
  3519     case Op_DivI:
  3520     case Op_DivF:
  3521     case Op_DivD:
  3522     case Op_ModI:
  3523     case Op_ModF:
  3524     case Op_ModD:
  3525     case Op_LoadB:              // Same with Loads; they can sink
  3526     case Op_LoadUB:             // during loop optimizations.
  3527     case Op_LoadUS:
  3528     case Op_LoadD:
  3529     case Op_LoadF:
  3530     case Op_LoadI:
  3531     case Op_LoadKlass:
  3532     case Op_LoadNKlass:
  3533     case Op_LoadL:
  3534     case Op_LoadS:
  3535     case Op_LoadP:
  3536     case Op_LoadN:
  3537     case Op_LoadRange:
  3538     case Op_LoadD_unaligned:
  3539     case Op_LoadL_unaligned:
  3540     case Op_StrComp:            // Does a bunch of load-like effects
  3541     case Op_StrEquals:
  3542     case Op_StrIndexOf:
  3543     case Op_AryEq:
  3544       pinned = false;
  3546     if( pinned ) {
  3547       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
  3548       if( !chosen_loop->_child )       // Inner loop?
  3549         chosen_loop->_body.push(n); // Collect inner loops
  3550       return;
  3552   } else {                      // No slot zero
  3553     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
  3554       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
  3555       return;
  3557     assert(!n->is_CFG() || n->outcnt() == 0, "");
  3560   // Do I have a "safe range" I can select over?
  3561   Node *early = get_ctrl(n);// Early location already computed
  3563   // Compute latest point this Node can go
  3564   Node *LCA = get_late_ctrl( n, early );
  3565   // LCA is NULL due to uses being dead
  3566   if( LCA == NULL ) {
  3567 #ifdef ASSERT
  3568     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
  3569       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
  3571 #endif
  3572     _nodes.map(n->_idx, 0);     // This node is useless
  3573     _deadlist.push(n);
  3574     return;
  3576   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
  3578   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
  3579   Node *least = legal;          // Best legal position so far
  3580   while( early != legal ) {     // While not at earliest legal
  3581 #ifdef ASSERT
  3582     if (legal->is_Start() && !early->is_Root()) {
  3583       // Bad graph. Print idom path and fail.
  3584       dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA);
  3585       assert(false, "Bad graph detected in build_loop_late");
  3587 #endif
  3588     // Find least loop nesting depth
  3589     legal = idom(legal);        // Bump up the IDOM tree
  3590     // Check for lower nesting depth
  3591     if( get_loop(legal)->_nest < get_loop(least)->_nest )
  3592       least = legal;
  3594   assert(early == legal || legal != C->root(), "bad dominance of inputs");
  3596   // Try not to place code on a loop entry projection
  3597   // which can inhibit range check elimination.
  3598   if (least != early) {
  3599     Node* ctrl_out = least->unique_ctrl_out();
  3600     if (ctrl_out && ctrl_out->is_CountedLoop() &&
  3601         least == ctrl_out->in(LoopNode::EntryControl)) {
  3602       Node* least_dom = idom(least);
  3603       if (get_loop(least_dom)->is_member(get_loop(least))) {
  3604         least = least_dom;
  3609 #ifdef ASSERT
  3610   // If verifying, verify that 'verify_me' has a legal location
  3611   // and choose it as our location.
  3612   if( _verify_me ) {
  3613     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
  3614     Node *legal = LCA;
  3615     while( early != legal ) {   // While not at earliest legal
  3616       if( legal == v_ctrl ) break;  // Check for prior good location
  3617       legal = idom(legal)      ;// Bump up the IDOM tree
  3619     // Check for prior good location
  3620     if( legal == v_ctrl ) least = legal; // Keep prior if found
  3622 #endif
  3624   // Assign discovered "here or above" point
  3625   least = find_non_split_ctrl(least);
  3626   set_ctrl(n, least);
  3628   // Collect inner loop bodies
  3629   IdealLoopTree *chosen_loop = get_loop(least);
  3630   if( !chosen_loop->_child )   // Inner loop?
  3631     chosen_loop->_body.push(n);// Collect inner loops
  3634 #ifdef ASSERT
  3635 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) {
  3636   tty->print_cr("%s", msg);
  3637   tty->print("n: "); n->dump();
  3638   tty->print("early(n): "); early->dump();
  3639   if (n->in(0) != NULL  && !n->in(0)->is_top() &&
  3640       n->in(0) != early && !n->in(0)->is_Root()) {
  3641     tty->print("n->in(0): "); n->in(0)->dump();
  3643   for (uint i = 1; i < n->req(); i++) {
  3644     Node* in1 = n->in(i);
  3645     if (in1 != NULL && in1 != n && !in1->is_top()) {
  3646       tty->print("n->in(%d): ", i); in1->dump();
  3647       Node* in1_early = get_ctrl(in1);
  3648       tty->print("early(n->in(%d)): ", i); in1_early->dump();
  3649       if (in1->in(0) != NULL     && !in1->in(0)->is_top() &&
  3650           in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
  3651         tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
  3653       for (uint j = 1; j < in1->req(); j++) {
  3654         Node* in2 = in1->in(j);
  3655         if (in2 != NULL && in2 != n && in2 != in1 && !in2->is_top()) {
  3656           tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
  3657           Node* in2_early = get_ctrl(in2);
  3658           tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
  3659           if (in2->in(0) != NULL     && !in2->in(0)->is_top() &&
  3660               in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
  3661             tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
  3667   tty->cr();
  3668   tty->print("LCA(n): "); LCA->dump();
  3669   for (uint i = 0; i < n->outcnt(); i++) {
  3670     Node* u1 = n->raw_out(i);
  3671     if (u1 == n)
  3672       continue;
  3673     tty->print("n->out(%d): ", i); u1->dump();
  3674     if (u1->is_CFG()) {
  3675       for (uint j = 0; j < u1->outcnt(); j++) {
  3676         Node* u2 = u1->raw_out(j);
  3677         if (u2 != u1 && u2 != n && u2->is_CFG()) {
  3678           tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
  3681     } else {
  3682       Node* u1_later = get_ctrl(u1);
  3683       tty->print("later(n->out(%d)): ", i); u1_later->dump();
  3684       if (u1->in(0) != NULL     && !u1->in(0)->is_top() &&
  3685           u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
  3686         tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
  3688       for (uint j = 0; j < u1->outcnt(); j++) {
  3689         Node* u2 = u1->raw_out(j);
  3690         if (u2 == n || u2 == u1)
  3691           continue;
  3692         tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
  3693         if (!u2->is_CFG()) {
  3694           Node* u2_later = get_ctrl(u2);
  3695           tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
  3696           if (u2->in(0) != NULL     && !u2->in(0)->is_top() &&
  3697               u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
  3698             tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
  3704   tty->cr();
  3705   int ct = 0;
  3706   Node *dbg_legal = LCA;
  3707   while(!dbg_legal->is_Start() && ct < 100) {
  3708     tty->print("idom[%d] ",ct); dbg_legal->dump();
  3709     ct++;
  3710     dbg_legal = idom(dbg_legal);
  3712   tty->cr();
  3714 #endif
  3716 #ifndef PRODUCT
  3717 //------------------------------dump-------------------------------------------
  3718 void PhaseIdealLoop::dump( ) const {
  3719   ResourceMark rm;
  3720   Arena* arena = Thread::current()->resource_area();
  3721   Node_Stack stack(arena, C->live_nodes() >> 2);
  3722   Node_List rpo_list;
  3723   VectorSet visited(arena);
  3724   visited.set(C->top()->_idx);
  3725   rpo( C->root(), stack, visited, rpo_list );
  3726   // Dump root loop indexed by last element in PO order
  3727   dump( _ltree_root, rpo_list.size(), rpo_list );
  3730 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
  3731   loop->dump_head();
  3733   // Now scan for CFG nodes in the same loop
  3734   for( uint j=idx; j > 0;  j-- ) {
  3735     Node *n = rpo_list[j-1];
  3736     if( !_nodes[n->_idx] )      // Skip dead nodes
  3737       continue;
  3738     if( get_loop(n) != loop ) { // Wrong loop nest
  3739       if( get_loop(n)->_head == n &&    // Found nested loop?
  3740           get_loop(n)->_parent == loop )
  3741         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
  3742       continue;
  3745     // Dump controlling node
  3746     for( uint x = 0; x < loop->_nest; x++ )
  3747       tty->print("  ");
  3748     tty->print("C");
  3749     if( n == C->root() ) {
  3750       n->dump();
  3751     } else {
  3752       Node* cached_idom   = idom_no_update(n);
  3753       Node *computed_idom = n->in(0);
  3754       if( n->is_Region() ) {
  3755         computed_idom = compute_idom(n);
  3756         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
  3757         // any MultiBranch ctrl node), so apply a similar transform to
  3758         // the cached idom returned from idom_no_update.
  3759         cached_idom = find_non_split_ctrl(cached_idom);
  3761       tty->print(" ID:%d",computed_idom->_idx);
  3762       n->dump();
  3763       if( cached_idom != computed_idom ) {
  3764         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
  3765                       computed_idom->_idx, cached_idom->_idx);
  3768     // Dump nodes it controls
  3769     for( uint k = 0; k < _nodes.Size(); k++ ) {
  3770       // (k < C->unique() && get_ctrl(find(k)) == n)
  3771       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
  3772         Node *m = C->root()->find(k);
  3773         if( m && m->outcnt() > 0 ) {
  3774           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
  3775             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
  3776                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
  3778           for( uint j = 0; j < loop->_nest; j++ )
  3779             tty->print("  ");
  3780           tty->print(" ");
  3781           m->dump();
  3788 // Collect a R-P-O for the whole CFG.
  3789 // Result list is in post-order (scan backwards for RPO)
  3790 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
  3791   stk.push(start, 0);
  3792   visited.set(start->_idx);
  3794   while (stk.is_nonempty()) {
  3795     Node* m   = stk.node();
  3796     uint  idx = stk.index();
  3797     if (idx < m->outcnt()) {
  3798       stk.set_index(idx + 1);
  3799       Node* n = m->raw_out(idx);
  3800       if (n->is_CFG() && !visited.test_set(n->_idx)) {
  3801         stk.push(n, 0);
  3803     } else {
  3804       rpo_list.push(m);
  3805       stk.pop();
  3809 #endif
  3812 //=============================================================================
  3813 //------------------------------LoopTreeIterator-----------------------------------
  3815 // Advance to next loop tree using a preorder, left-to-right traversal.
  3816 void LoopTreeIterator::next() {
  3817   assert(!done(), "must not be done.");
  3818   if (_curnt->_child != NULL) {
  3819     _curnt = _curnt->_child;
  3820   } else if (_curnt->_next != NULL) {
  3821     _curnt = _curnt->_next;
  3822   } else {
  3823     while (_curnt != _root && _curnt->_next == NULL) {
  3824       _curnt = _curnt->_parent;
  3826     if (_curnt == _root) {
  3827       _curnt = NULL;
  3828       assert(done(), "must be done.");
  3829     } else {
  3830       assert(_curnt->_next != NULL, "must be more to do");
  3831       _curnt = _curnt->_next;

mercurial