src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Fri, 17 May 2013 17:24:20 +0200

author
aeriksso
date
Fri, 17 May 2013 17:24:20 +0200
changeset 7612
f74dbdd45754
parent 7485
9fa3bf3043a2
child 7644
2af69bed8db6
permissions
-rw-r--r--

7176220: 'Full GC' events miss date stamp information occasionally
Summary: Move date stamp logic into GCTraceTime
Reviewed-by: brutisso, tschatzl

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #if !defined(__clang_major__) && defined(__GNUC__)
    26 #define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
    27 #endif
    29 #include "precompiled.hpp"
    30 #include "classfile/metadataOnStackMark.hpp"
    31 #include "code/codeCache.hpp"
    32 #include "code/icBuffer.hpp"
    33 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    34 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    35 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    36 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    37 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    38 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    39 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    40 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    41 #include "gc_implementation/g1/g1EvacFailure.hpp"
    42 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    43 #include "gc_implementation/g1/g1Log.hpp"
    44 #include "gc_implementation/g1/g1MarkSweep.hpp"
    45 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    46 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
    47 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
    48 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    49 #include "gc_implementation/g1/g1StringDedup.hpp"
    50 #include "gc_implementation/g1/g1YCTypes.hpp"
    51 #include "gc_implementation/g1/heapRegion.inline.hpp"
    52 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    53 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
    54 #include "gc_implementation/g1/vm_operations_g1.hpp"
    55 #include "gc_implementation/shared/gcHeapSummary.hpp"
    56 #include "gc_implementation/shared/gcTimer.hpp"
    57 #include "gc_implementation/shared/gcTrace.hpp"
    58 #include "gc_implementation/shared/gcTraceTime.hpp"
    59 #include "gc_implementation/shared/isGCActiveMark.hpp"
    60 #include "memory/allocation.hpp"
    61 #include "memory/gcLocker.inline.hpp"
    62 #include "memory/generationSpec.hpp"
    63 #include "memory/iterator.hpp"
    64 #include "memory/referenceProcessor.hpp"
    65 #include "oops/oop.inline.hpp"
    66 #include "oops/oop.pcgc.inline.hpp"
    67 #include "runtime/orderAccess.inline.hpp"
    68 #include "runtime/vmThread.hpp"
    70 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    72 // turn it on so that the contents of the young list (scan-only /
    73 // to-be-collected) are printed at "strategic" points before / during
    74 // / after the collection --- this is useful for debugging
    75 #define YOUNG_LIST_VERBOSE 0
    76 // CURRENT STATUS
    77 // This file is under construction.  Search for "FIXME".
    79 // INVARIANTS/NOTES
    80 //
    81 // All allocation activity covered by the G1CollectedHeap interface is
    82 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    83 // and allocate_new_tlab, which are the "entry" points to the
    84 // allocation code from the rest of the JVM.  (Note that this does not
    85 // apply to TLAB allocation, which is not part of this interface: it
    86 // is done by clients of this interface.)
    88 // Notes on implementation of parallelism in different tasks.
    89 //
    90 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
    91 // The number of GC workers is passed to heap_region_par_iterate_chunked().
    92 // It does use run_task() which sets _n_workers in the task.
    93 // G1ParTask executes g1_process_roots() ->
    94 // SharedHeap::process_roots() which calls eventually to
    95 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
    96 // SequentialSubTasksDone.  SharedHeap::process_roots() also
    97 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
    98 //
   100 // Local to this file.
   102 class RefineCardTableEntryClosure: public CardTableEntryClosure {
   103   bool _concurrent;
   104 public:
   105   RefineCardTableEntryClosure() : _concurrent(true) { }
   107   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   108     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
   109     // This path is executed by the concurrent refine or mutator threads,
   110     // concurrently, and so we do not care if card_ptr contains references
   111     // that point into the collection set.
   112     assert(!oops_into_cset, "should be");
   114     if (_concurrent && SuspendibleThreadSet::should_yield()) {
   115       // Caller will actually yield.
   116       return false;
   117     }
   118     // Otherwise, we finished successfully; return true.
   119     return true;
   120   }
   122   void set_concurrent(bool b) { _concurrent = b; }
   123 };
   126 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   127   size_t _num_processed;
   128   CardTableModRefBS* _ctbs;
   129   int _histo[256];
   131  public:
   132   ClearLoggedCardTableEntryClosure() :
   133     _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
   134   {
   135     for (int i = 0; i < 256; i++) _histo[i] = 0;
   136   }
   138   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   139     unsigned char* ujb = (unsigned char*)card_ptr;
   140     int ind = (int)(*ujb);
   141     _histo[ind]++;
   143     *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
   144     _num_processed++;
   146     return true;
   147   }
   149   size_t num_processed() { return _num_processed; }
   151   void print_histo() {
   152     gclog_or_tty->print_cr("Card table value histogram:");
   153     for (int i = 0; i < 256; i++) {
   154       if (_histo[i] != 0) {
   155         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   156       }
   157     }
   158   }
   159 };
   161 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
   162  private:
   163   size_t _num_processed;
   165  public:
   166   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
   168   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   169     *card_ptr = CardTableModRefBS::dirty_card_val();
   170     _num_processed++;
   171     return true;
   172   }
   174   size_t num_processed() const { return _num_processed; }
   175 };
   177 YoungList::YoungList(G1CollectedHeap* g1h) :
   178     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
   179     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
   180   guarantee(check_list_empty(false), "just making sure...");
   181 }
   183 void YoungList::push_region(HeapRegion *hr) {
   184   assert(!hr->is_young(), "should not already be young");
   185   assert(hr->get_next_young_region() == NULL, "cause it should!");
   187   hr->set_next_young_region(_head);
   188   _head = hr;
   190   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   191   ++_length;
   192 }
   194 void YoungList::add_survivor_region(HeapRegion* hr) {
   195   assert(hr->is_survivor(), "should be flagged as survivor region");
   196   assert(hr->get_next_young_region() == NULL, "cause it should!");
   198   hr->set_next_young_region(_survivor_head);
   199   if (_survivor_head == NULL) {
   200     _survivor_tail = hr;
   201   }
   202   _survivor_head = hr;
   203   ++_survivor_length;
   204 }
   206 void YoungList::empty_list(HeapRegion* list) {
   207   while (list != NULL) {
   208     HeapRegion* next = list->get_next_young_region();
   209     list->set_next_young_region(NULL);
   210     list->uninstall_surv_rate_group();
   211     // This is called before a Full GC and all the non-empty /
   212     // non-humongous regions at the end of the Full GC will end up as
   213     // old anyway.
   214     list->set_old();
   215     list = next;
   216   }
   217 }
   219 void YoungList::empty_list() {
   220   assert(check_list_well_formed(), "young list should be well formed");
   222   empty_list(_head);
   223   _head = NULL;
   224   _length = 0;
   226   empty_list(_survivor_head);
   227   _survivor_head = NULL;
   228   _survivor_tail = NULL;
   229   _survivor_length = 0;
   231   _last_sampled_rs_lengths = 0;
   233   assert(check_list_empty(false), "just making sure...");
   234 }
   236 bool YoungList::check_list_well_formed() {
   237   bool ret = true;
   239   uint length = 0;
   240   HeapRegion* curr = _head;
   241   HeapRegion* last = NULL;
   242   while (curr != NULL) {
   243     if (!curr->is_young()) {
   244       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   245                              "incorrectly tagged (y: %d, surv: %d)",
   246                              curr->bottom(), curr->end(),
   247                              curr->is_young(), curr->is_survivor());
   248       ret = false;
   249     }
   250     ++length;
   251     last = curr;
   252     curr = curr->get_next_young_region();
   253   }
   254   ret = ret && (length == _length);
   256   if (!ret) {
   257     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   258     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
   259                            length, _length);
   260   }
   262   return ret;
   263 }
   265 bool YoungList::check_list_empty(bool check_sample) {
   266   bool ret = true;
   268   if (_length != 0) {
   269     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
   270                   _length);
   271     ret = false;
   272   }
   273   if (check_sample && _last_sampled_rs_lengths != 0) {
   274     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   275     ret = false;
   276   }
   277   if (_head != NULL) {
   278     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   279     ret = false;
   280   }
   281   if (!ret) {
   282     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   283   }
   285   return ret;
   286 }
   288 void
   289 YoungList::rs_length_sampling_init() {
   290   _sampled_rs_lengths = 0;
   291   _curr               = _head;
   292 }
   294 bool
   295 YoungList::rs_length_sampling_more() {
   296   return _curr != NULL;
   297 }
   299 void
   300 YoungList::rs_length_sampling_next() {
   301   assert( _curr != NULL, "invariant" );
   302   size_t rs_length = _curr->rem_set()->occupied();
   304   _sampled_rs_lengths += rs_length;
   306   // The current region may not yet have been added to the
   307   // incremental collection set (it gets added when it is
   308   // retired as the current allocation region).
   309   if (_curr->in_collection_set()) {
   310     // Update the collection set policy information for this region
   311     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   312   }
   314   _curr = _curr->get_next_young_region();
   315   if (_curr == NULL) {
   316     _last_sampled_rs_lengths = _sampled_rs_lengths;
   317     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   318   }
   319 }
   321 void
   322 YoungList::reset_auxilary_lists() {
   323   guarantee( is_empty(), "young list should be empty" );
   324   assert(check_list_well_formed(), "young list should be well formed");
   326   // Add survivor regions to SurvRateGroup.
   327   _g1h->g1_policy()->note_start_adding_survivor_regions();
   328   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   330   int young_index_in_cset = 0;
   331   for (HeapRegion* curr = _survivor_head;
   332        curr != NULL;
   333        curr = curr->get_next_young_region()) {
   334     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   336     // The region is a non-empty survivor so let's add it to
   337     // the incremental collection set for the next evacuation
   338     // pause.
   339     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   340     young_index_in_cset += 1;
   341   }
   342   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
   343   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   345   _head   = _survivor_head;
   346   _length = _survivor_length;
   347   if (_survivor_head != NULL) {
   348     assert(_survivor_tail != NULL, "cause it shouldn't be");
   349     assert(_survivor_length > 0, "invariant");
   350     _survivor_tail->set_next_young_region(NULL);
   351   }
   353   // Don't clear the survivor list handles until the start of
   354   // the next evacuation pause - we need it in order to re-tag
   355   // the survivor regions from this evacuation pause as 'young'
   356   // at the start of the next.
   358   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   360   assert(check_list_well_formed(), "young list should be well formed");
   361 }
   363 void YoungList::print() {
   364   HeapRegion* lists[] = {_head,   _survivor_head};
   365   const char* names[] = {"YOUNG", "SURVIVOR"};
   367   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   368     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   369     HeapRegion *curr = lists[list];
   370     if (curr == NULL)
   371       gclog_or_tty->print_cr("  empty");
   372     while (curr != NULL) {
   373       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
   374                              HR_FORMAT_PARAMS(curr),
   375                              curr->prev_top_at_mark_start(),
   376                              curr->next_top_at_mark_start(),
   377                              curr->age_in_surv_rate_group_cond());
   378       curr = curr->get_next_young_region();
   379     }
   380   }
   382   gclog_or_tty->cr();
   383 }
   385 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
   386   OtherRegionsTable::invalidate(start_idx, num_regions);
   387 }
   389 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
   390   // The from card cache is not the memory that is actually committed. So we cannot
   391   // take advantage of the zero_filled parameter.
   392   reset_from_card_cache(start_idx, num_regions);
   393 }
   395 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   396 {
   397   // Claim the right to put the region on the dirty cards region list
   398   // by installing a self pointer.
   399   HeapRegion* next = hr->get_next_dirty_cards_region();
   400   if (next == NULL) {
   401     HeapRegion* res = (HeapRegion*)
   402       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   403                           NULL);
   404     if (res == NULL) {
   405       HeapRegion* head;
   406       do {
   407         // Put the region to the dirty cards region list.
   408         head = _dirty_cards_region_list;
   409         next = (HeapRegion*)
   410           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   411         if (next == head) {
   412           assert(hr->get_next_dirty_cards_region() == hr,
   413                  "hr->get_next_dirty_cards_region() != hr");
   414           if (next == NULL) {
   415             // The last region in the list points to itself.
   416             hr->set_next_dirty_cards_region(hr);
   417           } else {
   418             hr->set_next_dirty_cards_region(next);
   419           }
   420         }
   421       } while (next != head);
   422     }
   423   }
   424 }
   426 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   427 {
   428   HeapRegion* head;
   429   HeapRegion* hr;
   430   do {
   431     head = _dirty_cards_region_list;
   432     if (head == NULL) {
   433       return NULL;
   434     }
   435     HeapRegion* new_head = head->get_next_dirty_cards_region();
   436     if (head == new_head) {
   437       // The last region.
   438       new_head = NULL;
   439     }
   440     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   441                                           head);
   442   } while (hr != head);
   443   assert(hr != NULL, "invariant");
   444   hr->set_next_dirty_cards_region(NULL);
   445   return hr;
   446 }
   448 #ifdef ASSERT
   449 // A region is added to the collection set as it is retired
   450 // so an address p can point to a region which will be in the
   451 // collection set but has not yet been retired.  This method
   452 // therefore is only accurate during a GC pause after all
   453 // regions have been retired.  It is used for debugging
   454 // to check if an nmethod has references to objects that can
   455 // be move during a partial collection.  Though it can be
   456 // inaccurate, it is sufficient for G1 because the conservative
   457 // implementation of is_scavengable() for G1 will indicate that
   458 // all nmethods must be scanned during a partial collection.
   459 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   460   if (p == NULL) {
   461     return false;
   462   }
   463   return heap_region_containing(p)->in_collection_set();
   464 }
   465 #endif
   467 // Returns true if the reference points to an object that
   468 // can move in an incremental collection.
   469 bool G1CollectedHeap::is_scavengable(const void* p) {
   470   HeapRegion* hr = heap_region_containing(p);
   471   return !hr->isHumongous();
   472 }
   474 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   475   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   476   CardTableModRefBS* ct_bs = g1_barrier_set();
   478   // Count the dirty cards at the start.
   479   CountNonCleanMemRegionClosure count1(this);
   480   ct_bs->mod_card_iterate(&count1);
   481   int orig_count = count1.n();
   483   // First clear the logged cards.
   484   ClearLoggedCardTableEntryClosure clear;
   485   dcqs.apply_closure_to_all_completed_buffers(&clear);
   486   dcqs.iterate_closure_all_threads(&clear, false);
   487   clear.print_histo();
   489   // Now ensure that there's no dirty cards.
   490   CountNonCleanMemRegionClosure count2(this);
   491   ct_bs->mod_card_iterate(&count2);
   492   if (count2.n() != 0) {
   493     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   494                            count2.n(), orig_count);
   495   }
   496   guarantee(count2.n() == 0, "Card table should be clean.");
   498   RedirtyLoggedCardTableEntryClosure redirty;
   499   dcqs.apply_closure_to_all_completed_buffers(&redirty);
   500   dcqs.iterate_closure_all_threads(&redirty, false);
   501   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   502                          clear.num_processed(), orig_count);
   503   guarantee(redirty.num_processed() == clear.num_processed(),
   504             err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
   505                     redirty.num_processed(), clear.num_processed()));
   507   CountNonCleanMemRegionClosure count3(this);
   508   ct_bs->mod_card_iterate(&count3);
   509   if (count3.n() != orig_count) {
   510     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   511                            orig_count, count3.n());
   512     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   513   }
   514 }
   516 // Private class members.
   518 G1CollectedHeap* G1CollectedHeap::_g1h;
   520 // Private methods.
   522 HeapRegion*
   523 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
   524   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   525   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   526     if (!_secondary_free_list.is_empty()) {
   527       if (G1ConcRegionFreeingVerbose) {
   528         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   529                                "secondary_free_list has %u entries",
   530                                _secondary_free_list.length());
   531       }
   532       // It looks as if there are free regions available on the
   533       // secondary_free_list. Let's move them to the free_list and try
   534       // again to allocate from it.
   535       append_secondary_free_list();
   537       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
   538              "empty we should have moved at least one entry to the free_list");
   539       HeapRegion* res = _hrm.allocate_free_region(is_old);
   540       if (G1ConcRegionFreeingVerbose) {
   541         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   542                                "allocated "HR_FORMAT" from secondary_free_list",
   543                                HR_FORMAT_PARAMS(res));
   544       }
   545       return res;
   546     }
   548     // Wait here until we get notified either when (a) there are no
   549     // more free regions coming or (b) some regions have been moved on
   550     // the secondary_free_list.
   551     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   552   }
   554   if (G1ConcRegionFreeingVerbose) {
   555     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   556                            "could not allocate from secondary_free_list");
   557   }
   558   return NULL;
   559 }
   561 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
   562   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   563          "the only time we use this to allocate a humongous region is "
   564          "when we are allocating a single humongous region");
   566   HeapRegion* res;
   567   if (G1StressConcRegionFreeing) {
   568     if (!_secondary_free_list.is_empty()) {
   569       if (G1ConcRegionFreeingVerbose) {
   570         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   571                                "forced to look at the secondary_free_list");
   572       }
   573       res = new_region_try_secondary_free_list(is_old);
   574       if (res != NULL) {
   575         return res;
   576       }
   577     }
   578   }
   580   res = _hrm.allocate_free_region(is_old);
   582   if (res == NULL) {
   583     if (G1ConcRegionFreeingVerbose) {
   584       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   585                              "res == NULL, trying the secondary_free_list");
   586     }
   587     res = new_region_try_secondary_free_list(is_old);
   588   }
   589   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   590     // Currently, only attempts to allocate GC alloc regions set
   591     // do_expand to true. So, we should only reach here during a
   592     // safepoint. If this assumption changes we might have to
   593     // reconsider the use of _expand_heap_after_alloc_failure.
   594     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   596     ergo_verbose1(ErgoHeapSizing,
   597                   "attempt heap expansion",
   598                   ergo_format_reason("region allocation request failed")
   599                   ergo_format_byte("allocation request"),
   600                   word_size * HeapWordSize);
   601     if (expand(word_size * HeapWordSize)) {
   602       // Given that expand() succeeded in expanding the heap, and we
   603       // always expand the heap by an amount aligned to the heap
   604       // region size, the free list should in theory not be empty.
   605       // In either case allocate_free_region() will check for NULL.
   606       res = _hrm.allocate_free_region(is_old);
   607     } else {
   608       _expand_heap_after_alloc_failure = false;
   609     }
   610   }
   611   return res;
   612 }
   614 HeapWord*
   615 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
   616                                                            uint num_regions,
   617                                                            size_t word_size,
   618                                                            AllocationContext_t context) {
   619   assert(first != G1_NO_HRM_INDEX, "pre-condition");
   620   assert(isHumongous(word_size), "word_size should be humongous");
   621   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   623   // Index of last region in the series + 1.
   624   uint last = first + num_regions;
   626   // We need to initialize the region(s) we just discovered. This is
   627   // a bit tricky given that it can happen concurrently with
   628   // refinement threads refining cards on these regions and
   629   // potentially wanting to refine the BOT as they are scanning
   630   // those cards (this can happen shortly after a cleanup; see CR
   631   // 6991377). So we have to set up the region(s) carefully and in
   632   // a specific order.
   634   // The word size sum of all the regions we will allocate.
   635   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
   636   assert(word_size <= word_size_sum, "sanity");
   638   // This will be the "starts humongous" region.
   639   HeapRegion* first_hr = region_at(first);
   640   // The header of the new object will be placed at the bottom of
   641   // the first region.
   642   HeapWord* new_obj = first_hr->bottom();
   643   // This will be the new end of the first region in the series that
   644   // should also match the end of the last region in the series.
   645   HeapWord* new_end = new_obj + word_size_sum;
   646   // This will be the new top of the first region that will reflect
   647   // this allocation.
   648   HeapWord* new_top = new_obj + word_size;
   650   // First, we need to zero the header of the space that we will be
   651   // allocating. When we update top further down, some refinement
   652   // threads might try to scan the region. By zeroing the header we
   653   // ensure that any thread that will try to scan the region will
   654   // come across the zero klass word and bail out.
   655   //
   656   // NOTE: It would not have been correct to have used
   657   // CollectedHeap::fill_with_object() and make the space look like
   658   // an int array. The thread that is doing the allocation will
   659   // later update the object header to a potentially different array
   660   // type and, for a very short period of time, the klass and length
   661   // fields will be inconsistent. This could cause a refinement
   662   // thread to calculate the object size incorrectly.
   663   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   665   // We will set up the first region as "starts humongous". This
   666   // will also update the BOT covering all the regions to reflect
   667   // that there is a single object that starts at the bottom of the
   668   // first region.
   669   first_hr->set_startsHumongous(new_top, new_end);
   670   first_hr->set_allocation_context(context);
   671   // Then, if there are any, we will set up the "continues
   672   // humongous" regions.
   673   HeapRegion* hr = NULL;
   674   for (uint i = first + 1; i < last; ++i) {
   675     hr = region_at(i);
   676     hr->set_continuesHumongous(first_hr);
   677     hr->set_allocation_context(context);
   678   }
   679   // If we have "continues humongous" regions (hr != NULL), then the
   680   // end of the last one should match new_end.
   681   assert(hr == NULL || hr->end() == new_end, "sanity");
   683   // Up to this point no concurrent thread would have been able to
   684   // do any scanning on any region in this series. All the top
   685   // fields still point to bottom, so the intersection between
   686   // [bottom,top] and [card_start,card_end] will be empty. Before we
   687   // update the top fields, we'll do a storestore to make sure that
   688   // no thread sees the update to top before the zeroing of the
   689   // object header and the BOT initialization.
   690   OrderAccess::storestore();
   692   // Now that the BOT and the object header have been initialized,
   693   // we can update top of the "starts humongous" region.
   694   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   695          "new_top should be in this region");
   696   first_hr->set_top(new_top);
   697   if (_hr_printer.is_active()) {
   698     HeapWord* bottom = first_hr->bottom();
   699     HeapWord* end = first_hr->orig_end();
   700     if ((first + 1) == last) {
   701       // the series has a single humongous region
   702       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   703     } else {
   704       // the series has more than one humongous regions
   705       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   706     }
   707   }
   709   // Now, we will update the top fields of the "continues humongous"
   710   // regions. The reason we need to do this is that, otherwise,
   711   // these regions would look empty and this will confuse parts of
   712   // G1. For example, the code that looks for a consecutive number
   713   // of empty regions will consider them empty and try to
   714   // re-allocate them. We can extend is_empty() to also include
   715   // !continuesHumongous(), but it is easier to just update the top
   716   // fields here. The way we set top for all regions (i.e., top ==
   717   // end for all regions but the last one, top == new_top for the
   718   // last one) is actually used when we will free up the humongous
   719   // region in free_humongous_region().
   720   hr = NULL;
   721   for (uint i = first + 1; i < last; ++i) {
   722     hr = region_at(i);
   723     if ((i + 1) == last) {
   724       // last continues humongous region
   725       assert(hr->bottom() < new_top && new_top <= hr->end(),
   726              "new_top should fall on this region");
   727       hr->set_top(new_top);
   728       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   729     } else {
   730       // not last one
   731       assert(new_top > hr->end(), "new_top should be above this region");
   732       hr->set_top(hr->end());
   733       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   734     }
   735   }
   736   // If we have continues humongous regions (hr != NULL), then the
   737   // end of the last one should match new_end and its top should
   738   // match new_top.
   739   assert(hr == NULL ||
   740          (hr->end() == new_end && hr->top() == new_top), "sanity");
   741   check_bitmaps("Humongous Region Allocation", first_hr);
   743   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   744   _allocator->increase_used(first_hr->used());
   745   _humongous_set.add(first_hr);
   747   return new_obj;
   748 }
   750 // If could fit into free regions w/o expansion, try.
   751 // Otherwise, if can expand, do so.
   752 // Otherwise, if using ex regions might help, try with ex given back.
   753 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
   754   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   756   verify_region_sets_optional();
   758   uint first = G1_NO_HRM_INDEX;
   759   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
   761   if (obj_regions == 1) {
   762     // Only one region to allocate, try to use a fast path by directly allocating
   763     // from the free lists. Do not try to expand here, we will potentially do that
   764     // later.
   765     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
   766     if (hr != NULL) {
   767       first = hr->hrm_index();
   768     }
   769   } else {
   770     // We can't allocate humongous regions spanning more than one region while
   771     // cleanupComplete() is running, since some of the regions we find to be
   772     // empty might not yet be added to the free list. It is not straightforward
   773     // to know in which list they are on so that we can remove them. We only
   774     // need to do this if we need to allocate more than one region to satisfy the
   775     // current humongous allocation request. If we are only allocating one region
   776     // we use the one-region region allocation code (see above), that already
   777     // potentially waits for regions from the secondary free list.
   778     wait_while_free_regions_coming();
   779     append_secondary_free_list_if_not_empty_with_lock();
   781     // Policy: Try only empty regions (i.e. already committed first). Maybe we
   782     // are lucky enough to find some.
   783     first = _hrm.find_contiguous_only_empty(obj_regions);
   784     if (first != G1_NO_HRM_INDEX) {
   785       _hrm.allocate_free_regions_starting_at(first, obj_regions);
   786     }
   787   }
   789   if (first == G1_NO_HRM_INDEX) {
   790     // Policy: We could not find enough regions for the humongous object in the
   791     // free list. Look through the heap to find a mix of free and uncommitted regions.
   792     // If so, try expansion.
   793     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
   794     if (first != G1_NO_HRM_INDEX) {
   795       // We found something. Make sure these regions are committed, i.e. expand
   796       // the heap. Alternatively we could do a defragmentation GC.
   797       ergo_verbose1(ErgoHeapSizing,
   798                     "attempt heap expansion",
   799                     ergo_format_reason("humongous allocation request failed")
   800                     ergo_format_byte("allocation request"),
   801                     word_size * HeapWordSize);
   803       _hrm.expand_at(first, obj_regions);
   804       g1_policy()->record_new_heap_size(num_regions());
   806 #ifdef ASSERT
   807       for (uint i = first; i < first + obj_regions; ++i) {
   808         HeapRegion* hr = region_at(i);
   809         assert(hr->is_free(), "sanity");
   810         assert(hr->is_empty(), "sanity");
   811         assert(is_on_master_free_list(hr), "sanity");
   812       }
   813 #endif
   814       _hrm.allocate_free_regions_starting_at(first, obj_regions);
   815     } else {
   816       // Policy: Potentially trigger a defragmentation GC.
   817     }
   818   }
   820   HeapWord* result = NULL;
   821   if (first != G1_NO_HRM_INDEX) {
   822     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
   823                                                        word_size, context);
   824     assert(result != NULL, "it should always return a valid result");
   826     // A successful humongous object allocation changes the used space
   827     // information of the old generation so we need to recalculate the
   828     // sizes and update the jstat counters here.
   829     g1mm()->update_sizes();
   830   }
   832   verify_region_sets_optional();
   834   return result;
   835 }
   837 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   838   assert_heap_not_locked_and_not_at_safepoint();
   839   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   841   unsigned int dummy_gc_count_before;
   842   int dummy_gclocker_retry_count = 0;
   843   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
   844 }
   846 HeapWord*
   847 G1CollectedHeap::mem_allocate(size_t word_size,
   848                               bool*  gc_overhead_limit_was_exceeded) {
   849   assert_heap_not_locked_and_not_at_safepoint();
   851   // Loop until the allocation is satisfied, or unsatisfied after GC.
   852   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
   853     unsigned int gc_count_before;
   855     HeapWord* result = NULL;
   856     if (!isHumongous(word_size)) {
   857       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
   858     } else {
   859       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
   860     }
   861     if (result != NULL) {
   862       return result;
   863     }
   865     // Create the garbage collection operation...
   866     VM_G1CollectForAllocation op(gc_count_before, word_size);
   867     op.set_allocation_context(AllocationContext::current());
   869     // ...and get the VM thread to execute it.
   870     VMThread::execute(&op);
   872     if (op.prologue_succeeded() && op.pause_succeeded()) {
   873       // If the operation was successful we'll return the result even
   874       // if it is NULL. If the allocation attempt failed immediately
   875       // after a Full GC, it's unlikely we'll be able to allocate now.
   876       HeapWord* result = op.result();
   877       if (result != NULL && !isHumongous(word_size)) {
   878         // Allocations that take place on VM operations do not do any
   879         // card dirtying and we have to do it here. We only have to do
   880         // this for non-humongous allocations, though.
   881         dirty_young_block(result, word_size);
   882       }
   883       return result;
   884     } else {
   885       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
   886         return NULL;
   887       }
   888       assert(op.result() == NULL,
   889              "the result should be NULL if the VM op did not succeed");
   890     }
   892     // Give a warning if we seem to be looping forever.
   893     if ((QueuedAllocationWarningCount > 0) &&
   894         (try_count % QueuedAllocationWarningCount == 0)) {
   895       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   896     }
   897   }
   899   ShouldNotReachHere();
   900   return NULL;
   901 }
   903 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   904                                                    AllocationContext_t context,
   905                                                    unsigned int *gc_count_before_ret,
   906                                                    int* gclocker_retry_count_ret) {
   907   // Make sure you read the note in attempt_allocation_humongous().
   909   assert_heap_not_locked_and_not_at_safepoint();
   910   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   911          "be called for humongous allocation requests");
   913   // We should only get here after the first-level allocation attempt
   914   // (attempt_allocation()) failed to allocate.
   916   // We will loop until a) we manage to successfully perform the
   917   // allocation or b) we successfully schedule a collection which
   918   // fails to perform the allocation. b) is the only case when we'll
   919   // return NULL.
   920   HeapWord* result = NULL;
   921   for (int try_count = 1; /* we'll return */; try_count += 1) {
   922     bool should_try_gc;
   923     unsigned int gc_count_before;
   925     {
   926       MutexLockerEx x(Heap_lock);
   927       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
   928                                                                                     false /* bot_updates */);
   929       if (result != NULL) {
   930         return result;
   931       }
   933       // If we reach here, attempt_allocation_locked() above failed to
   934       // allocate a new region. So the mutator alloc region should be NULL.
   935       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
   937       if (GC_locker::is_active_and_needs_gc()) {
   938         if (g1_policy()->can_expand_young_list()) {
   939           // No need for an ergo verbose message here,
   940           // can_expand_young_list() does this when it returns true.
   941           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
   942                                                                                        false /* bot_updates */);
   943           if (result != NULL) {
   944             return result;
   945           }
   946         }
   947         should_try_gc = false;
   948       } else {
   949         // The GCLocker may not be active but the GCLocker initiated
   950         // GC may not yet have been performed (GCLocker::needs_gc()
   951         // returns true). In this case we do not try this GC and
   952         // wait until the GCLocker initiated GC is performed, and
   953         // then retry the allocation.
   954         if (GC_locker::needs_gc()) {
   955           should_try_gc = false;
   956         } else {
   957           // Read the GC count while still holding the Heap_lock.
   958           gc_count_before = total_collections();
   959           should_try_gc = true;
   960         }
   961       }
   962     }
   964     if (should_try_gc) {
   965       bool succeeded;
   966       result = do_collection_pause(word_size, gc_count_before, &succeeded,
   967           GCCause::_g1_inc_collection_pause);
   968       if (result != NULL) {
   969         assert(succeeded, "only way to get back a non-NULL result");
   970         return result;
   971       }
   973       if (succeeded) {
   974         // If we get here we successfully scheduled a collection which
   975         // failed to allocate. No point in trying to allocate
   976         // further. We'll just return NULL.
   977         MutexLockerEx x(Heap_lock);
   978         *gc_count_before_ret = total_collections();
   979         return NULL;
   980       }
   981     } else {
   982       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
   983         MutexLockerEx x(Heap_lock);
   984         *gc_count_before_ret = total_collections();
   985         return NULL;
   986       }
   987       // The GCLocker is either active or the GCLocker initiated
   988       // GC has not yet been performed. Stall until it is and
   989       // then retry the allocation.
   990       GC_locker::stall_until_clear();
   991       (*gclocker_retry_count_ret) += 1;
   992     }
   994     // We can reach here if we were unsuccessful in scheduling a
   995     // collection (because another thread beat us to it) or if we were
   996     // stalled due to the GC locker. In either can we should retry the
   997     // allocation attempt in case another thread successfully
   998     // performed a collection and reclaimed enough space. We do the
   999     // first attempt (without holding the Heap_lock) here and the
  1000     // follow-on attempt will be at the start of the next loop
  1001     // iteration (after taking the Heap_lock).
  1002     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
  1003                                                                            false /* bot_updates */);
  1004     if (result != NULL) {
  1005       return result;
  1008     // Give a warning if we seem to be looping forever.
  1009     if ((QueuedAllocationWarningCount > 0) &&
  1010         (try_count % QueuedAllocationWarningCount == 0)) {
  1011       warning("G1CollectedHeap::attempt_allocation_slow() "
  1012               "retries %d times", try_count);
  1016   ShouldNotReachHere();
  1017   return NULL;
  1020 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1021                                                         unsigned int * gc_count_before_ret,
  1022                                                         int* gclocker_retry_count_ret) {
  1023   // The structure of this method has a lot of similarities to
  1024   // attempt_allocation_slow(). The reason these two were not merged
  1025   // into a single one is that such a method would require several "if
  1026   // allocation is not humongous do this, otherwise do that"
  1027   // conditional paths which would obscure its flow. In fact, an early
  1028   // version of this code did use a unified method which was harder to
  1029   // follow and, as a result, it had subtle bugs that were hard to
  1030   // track down. So keeping these two methods separate allows each to
  1031   // be more readable. It will be good to keep these two in sync as
  1032   // much as possible.
  1034   assert_heap_not_locked_and_not_at_safepoint();
  1035   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1036          "should only be called for humongous allocations");
  1038   // Humongous objects can exhaust the heap quickly, so we should check if we
  1039   // need to start a marking cycle at each humongous object allocation. We do
  1040   // the check before we do the actual allocation. The reason for doing it
  1041   // before the allocation is that we avoid having to keep track of the newly
  1042   // allocated memory while we do a GC.
  1043   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
  1044                                            word_size)) {
  1045     collect(GCCause::_g1_humongous_allocation);
  1048   // We will loop until a) we manage to successfully perform the
  1049   // allocation or b) we successfully schedule a collection which
  1050   // fails to perform the allocation. b) is the only case when we'll
  1051   // return NULL.
  1052   HeapWord* result = NULL;
  1053   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1054     bool should_try_gc;
  1055     unsigned int gc_count_before;
  1058       MutexLockerEx x(Heap_lock);
  1060       // Given that humongous objects are not allocated in young
  1061       // regions, we'll first try to do the allocation without doing a
  1062       // collection hoping that there's enough space in the heap.
  1063       result = humongous_obj_allocate(word_size, AllocationContext::current());
  1064       if (result != NULL) {
  1065         return result;
  1068       if (GC_locker::is_active_and_needs_gc()) {
  1069         should_try_gc = false;
  1070       } else {
  1071          // The GCLocker may not be active but the GCLocker initiated
  1072         // GC may not yet have been performed (GCLocker::needs_gc()
  1073         // returns true). In this case we do not try this GC and
  1074         // wait until the GCLocker initiated GC is performed, and
  1075         // then retry the allocation.
  1076         if (GC_locker::needs_gc()) {
  1077           should_try_gc = false;
  1078         } else {
  1079           // Read the GC count while still holding the Heap_lock.
  1080           gc_count_before = total_collections();
  1081           should_try_gc = true;
  1086     if (should_try_gc) {
  1087       // If we failed to allocate the humongous object, we should try to
  1088       // do a collection pause (if we're allowed) in case it reclaims
  1089       // enough space for the allocation to succeed after the pause.
  1091       bool succeeded;
  1092       result = do_collection_pause(word_size, gc_count_before, &succeeded,
  1093           GCCause::_g1_humongous_allocation);
  1094       if (result != NULL) {
  1095         assert(succeeded, "only way to get back a non-NULL result");
  1096         return result;
  1099       if (succeeded) {
  1100         // If we get here we successfully scheduled a collection which
  1101         // failed to allocate. No point in trying to allocate
  1102         // further. We'll just return NULL.
  1103         MutexLockerEx x(Heap_lock);
  1104         *gc_count_before_ret = total_collections();
  1105         return NULL;
  1107     } else {
  1108       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
  1109         MutexLockerEx x(Heap_lock);
  1110         *gc_count_before_ret = total_collections();
  1111         return NULL;
  1113       // The GCLocker is either active or the GCLocker initiated
  1114       // GC has not yet been performed. Stall until it is and
  1115       // then retry the allocation.
  1116       GC_locker::stall_until_clear();
  1117       (*gclocker_retry_count_ret) += 1;
  1120     // We can reach here if we were unsuccessful in scheduling a
  1121     // collection (because another thread beat us to it) or if we were
  1122     // stalled due to the GC locker. In either can we should retry the
  1123     // allocation attempt in case another thread successfully
  1124     // performed a collection and reclaimed enough space.  Give a
  1125     // warning if we seem to be looping forever.
  1127     if ((QueuedAllocationWarningCount > 0) &&
  1128         (try_count % QueuedAllocationWarningCount == 0)) {
  1129       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1130               "retries %d times", try_count);
  1134   ShouldNotReachHere();
  1135   return NULL;
  1138 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1139                                                            AllocationContext_t context,
  1140                                                            bool expect_null_mutator_alloc_region) {
  1141   assert_at_safepoint(true /* should_be_vm_thread */);
  1142   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
  1143                                              !expect_null_mutator_alloc_region,
  1144          "the current alloc region was unexpectedly found to be non-NULL");
  1146   if (!isHumongous(word_size)) {
  1147     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
  1148                                                       false /* bot_updates */);
  1149   } else {
  1150     HeapWord* result = humongous_obj_allocate(word_size, context);
  1151     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
  1152       g1_policy()->set_initiate_conc_mark_if_possible();
  1154     return result;
  1157   ShouldNotReachHere();
  1160 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1161   G1CollectedHeap* _g1h;
  1162   ModRefBarrierSet* _mr_bs;
  1163 public:
  1164   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
  1165     _g1h(g1h), _mr_bs(mr_bs) {}
  1167   bool doHeapRegion(HeapRegion* r) {
  1168     HeapRegionRemSet* hrrs = r->rem_set();
  1170     if (r->continuesHumongous()) {
  1171       // We'll assert that the strong code root list and RSet is empty
  1172       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
  1173       assert(hrrs->occupied() == 0, "RSet should be empty");
  1174       return false;
  1177     _g1h->reset_gc_time_stamps(r);
  1178     hrrs->clear();
  1179     // You might think here that we could clear just the cards
  1180     // corresponding to the used region.  But no: if we leave a dirty card
  1181     // in a region we might allocate into, then it would prevent that card
  1182     // from being enqueued, and cause it to be missed.
  1183     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1184     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1186     return false;
  1188 };
  1190 void G1CollectedHeap::clear_rsets_post_compaction() {
  1191   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
  1192   heap_region_iterate(&rs_clear);
  1195 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1196   G1CollectedHeap*   _g1h;
  1197   UpdateRSOopClosure _cl;
  1198   int                _worker_i;
  1199 public:
  1200   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1201     _cl(g1->g1_rem_set(), worker_i),
  1202     _worker_i(worker_i),
  1203     _g1h(g1)
  1204   { }
  1206   bool doHeapRegion(HeapRegion* r) {
  1207     if (!r->continuesHumongous()) {
  1208       _cl.set_from(r);
  1209       r->oop_iterate(&_cl);
  1211     return false;
  1213 };
  1215 class ParRebuildRSTask: public AbstractGangTask {
  1216   G1CollectedHeap* _g1;
  1217 public:
  1218   ParRebuildRSTask(G1CollectedHeap* g1)
  1219     : AbstractGangTask("ParRebuildRSTask"),
  1220       _g1(g1)
  1221   { }
  1223   void work(uint worker_id) {
  1224     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1225     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1226                                           _g1->workers()->active_workers(),
  1227                                          HeapRegion::RebuildRSClaimValue);
  1229 };
  1231 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1232 private:
  1233   G1HRPrinter* _hr_printer;
  1234 public:
  1235   bool doHeapRegion(HeapRegion* hr) {
  1236     assert(!hr->is_young(), "not expecting to find young regions");
  1237     if (hr->is_free()) {
  1238       // We only generate output for non-empty regions.
  1239     } else if (hr->startsHumongous()) {
  1240       if (hr->region_num() == 1) {
  1241         // single humongous region
  1242         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1243       } else {
  1244         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1246     } else if (hr->continuesHumongous()) {
  1247       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1248     } else if (hr->is_old()) {
  1249       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1250     } else {
  1251       ShouldNotReachHere();
  1253     return false;
  1256   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1257     : _hr_printer(hr_printer) { }
  1258 };
  1260 void G1CollectedHeap::print_hrm_post_compaction() {
  1261   PostCompactionPrinterClosure cl(hr_printer());
  1262   heap_region_iterate(&cl);
  1265 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1266                                     bool clear_all_soft_refs,
  1267                                     size_t word_size) {
  1268   assert_at_safepoint(true /* should_be_vm_thread */);
  1270   if (GC_locker::check_active_before_gc()) {
  1271     return false;
  1274   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
  1275   gc_timer->register_gc_start();
  1277   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  1278   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
  1280   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1281   ResourceMark rm;
  1283   print_heap_before_gc();
  1284   trace_heap_before_gc(gc_tracer);
  1286   size_t metadata_prev_used = MetaspaceAux::used_bytes();
  1288   verify_region_sets_optional();
  1290   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1291                            collector_policy()->should_clear_all_soft_refs();
  1293   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1296     IsGCActiveMark x;
  1298     // Timing
  1299     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
  1300     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  1303       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
  1304       TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1305       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1307       double start = os::elapsedTime();
  1308       g1_policy()->record_full_collection_start();
  1310       // Note: When we have a more flexible GC logging framework that
  1311       // allows us to add optional attributes to a GC log record we
  1312       // could consider timing and reporting how long we wait in the
  1313       // following two methods.
  1314       wait_while_free_regions_coming();
  1315       // If we start the compaction before the CM threads finish
  1316       // scanning the root regions we might trip them over as we'll
  1317       // be moving objects / updating references. So let's wait until
  1318       // they are done. By telling them to abort, they should complete
  1319       // early.
  1320       _cm->root_regions()->abort();
  1321       _cm->root_regions()->wait_until_scan_finished();
  1322       append_secondary_free_list_if_not_empty_with_lock();
  1324       gc_prologue(true);
  1325       increment_total_collections(true /* full gc */);
  1326       increment_old_marking_cycles_started();
  1328       assert(used() == recalculate_used(), "Should be equal");
  1330       verify_before_gc();
  1332       check_bitmaps("Full GC Start");
  1333       pre_full_gc_dump(gc_timer);
  1335       COMPILER2_PRESENT(DerivedPointerTable::clear());
  1337       // Disable discovery and empty the discovered lists
  1338       // for the CM ref processor.
  1339       ref_processor_cm()->disable_discovery();
  1340       ref_processor_cm()->abandon_partial_discovery();
  1341       ref_processor_cm()->verify_no_references_recorded();
  1343       // Abandon current iterations of concurrent marking and concurrent
  1344       // refinement, if any are in progress. We have to do this before
  1345       // wait_until_scan_finished() below.
  1346       concurrent_mark()->abort();
  1348       // Make sure we'll choose a new allocation region afterwards.
  1349       _allocator->release_mutator_alloc_region();
  1350       _allocator->abandon_gc_alloc_regions();
  1351       g1_rem_set()->cleanupHRRS();
  1353       // We should call this after we retire any currently active alloc
  1354       // regions so that all the ALLOC / RETIRE events are generated
  1355       // before the start GC event.
  1356       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1358       // We may have added regions to the current incremental collection
  1359       // set between the last GC or pause and now. We need to clear the
  1360       // incremental collection set and then start rebuilding it afresh
  1361       // after this full GC.
  1362       abandon_collection_set(g1_policy()->inc_cset_head());
  1363       g1_policy()->clear_incremental_cset();
  1364       g1_policy()->stop_incremental_cset_building();
  1366       tear_down_region_sets(false /* free_list_only */);
  1367       g1_policy()->set_gcs_are_young(true);
  1369       // See the comments in g1CollectedHeap.hpp and
  1370       // G1CollectedHeap::ref_processing_init() about
  1371       // how reference processing currently works in G1.
  1373       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1374       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1376       // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1377       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1379       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1380       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1382       // Do collection work
  1384         HandleMark hm;  // Discard invalid handles created during gc
  1385         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1388       assert(num_free_regions() == 0, "we should not have added any free regions");
  1389       rebuild_region_sets(false /* free_list_only */);
  1391       // Enqueue any discovered reference objects that have
  1392       // not been removed from the discovered lists.
  1393       ref_processor_stw()->enqueue_discovered_references();
  1395       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1397       MemoryService::track_memory_usage();
  1399       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1400       ref_processor_stw()->verify_no_references_recorded();
  1402       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  1403       ClassLoaderDataGraph::purge();
  1404       MetaspaceAux::verify_metrics();
  1406       // Note: since we've just done a full GC, concurrent
  1407       // marking is no longer active. Therefore we need not
  1408       // re-enable reference discovery for the CM ref processor.
  1409       // That will be done at the start of the next marking cycle.
  1410       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1411       ref_processor_cm()->verify_no_references_recorded();
  1413       reset_gc_time_stamp();
  1414       // Since everything potentially moved, we will clear all remembered
  1415       // sets, and clear all cards.  Later we will rebuild remembered
  1416       // sets. We will also reset the GC time stamps of the regions.
  1417       clear_rsets_post_compaction();
  1418       check_gc_time_stamps();
  1420       // Resize the heap if necessary.
  1421       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1423       if (_hr_printer.is_active()) {
  1424         // We should do this after we potentially resize the heap so
  1425         // that all the COMMIT / UNCOMMIT events are generated before
  1426         // the end GC event.
  1428         print_hrm_post_compaction();
  1429         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1432       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  1433       if (hot_card_cache->use_cache()) {
  1434         hot_card_cache->reset_card_counts();
  1435         hot_card_cache->reset_hot_cache();
  1438       // Rebuild remembered sets of all regions.
  1439       if (G1CollectedHeap::use_parallel_gc_threads()) {
  1440         uint n_workers =
  1441           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1442                                                   workers()->active_workers(),
  1443                                                   Threads::number_of_non_daemon_threads());
  1444         assert(UseDynamicNumberOfGCThreads ||
  1445                n_workers == workers()->total_workers(),
  1446                "If not dynamic should be using all the  workers");
  1447         workers()->set_active_workers(n_workers);
  1448         // Set parallel threads in the heap (_n_par_threads) only
  1449         // before a parallel phase and always reset it to 0 after
  1450         // the phase so that the number of parallel threads does
  1451         // no get carried forward to a serial phase where there
  1452         // may be code that is "possibly_parallel".
  1453         set_par_threads(n_workers);
  1455         ParRebuildRSTask rebuild_rs_task(this);
  1456         assert(check_heap_region_claim_values(
  1457                HeapRegion::InitialClaimValue), "sanity check");
  1458         assert(UseDynamicNumberOfGCThreads ||
  1459                workers()->active_workers() == workers()->total_workers(),
  1460                "Unless dynamic should use total workers");
  1461         // Use the most recent number of  active workers
  1462         assert(workers()->active_workers() > 0,
  1463                "Active workers not properly set");
  1464         set_par_threads(workers()->active_workers());
  1465         workers()->run_task(&rebuild_rs_task);
  1466         set_par_threads(0);
  1467         assert(check_heap_region_claim_values(
  1468                HeapRegion::RebuildRSClaimValue), "sanity check");
  1469         reset_heap_region_claim_values();
  1470       } else {
  1471         RebuildRSOutOfRegionClosure rebuild_rs(this);
  1472         heap_region_iterate(&rebuild_rs);
  1475       // Rebuild the strong code root lists for each region
  1476       rebuild_strong_code_roots();
  1478       if (true) { // FIXME
  1479         MetaspaceGC::compute_new_size();
  1482 #ifdef TRACESPINNING
  1483       ParallelTaskTerminator::print_termination_counts();
  1484 #endif
  1486       // Discard all rset updates
  1487       JavaThread::dirty_card_queue_set().abandon_logs();
  1488       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
  1490       _young_list->reset_sampled_info();
  1491       // At this point there should be no regions in the
  1492       // entire heap tagged as young.
  1493       assert(check_young_list_empty(true /* check_heap */),
  1494              "young list should be empty at this point");
  1496       // Update the number of full collections that have been completed.
  1497       increment_old_marking_cycles_completed(false /* concurrent */);
  1499       _hrm.verify_optional();
  1500       verify_region_sets_optional();
  1502       verify_after_gc();
  1504       // Clear the previous marking bitmap, if needed for bitmap verification.
  1505       // Note we cannot do this when we clear the next marking bitmap in
  1506       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
  1507       // objects marked during a full GC against the previous bitmap.
  1508       // But we need to clear it before calling check_bitmaps below since
  1509       // the full GC has compacted objects and updated TAMS but not updated
  1510       // the prev bitmap.
  1511       if (G1VerifyBitmaps) {
  1512         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
  1514       check_bitmaps("Full GC End");
  1516       // Start a new incremental collection set for the next pause
  1517       assert(g1_policy()->collection_set() == NULL, "must be");
  1518       g1_policy()->start_incremental_cset_building();
  1520       clear_cset_fast_test();
  1522       _allocator->init_mutator_alloc_region();
  1524       double end = os::elapsedTime();
  1525       g1_policy()->record_full_collection_end();
  1527       if (G1Log::fine()) {
  1528         g1_policy()->print_heap_transition();
  1531       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  1532       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  1533       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  1534       // before any GC notifications are raised.
  1535       g1mm()->update_sizes();
  1537       gc_epilogue(true);
  1540     if (G1Log::finer()) {
  1541       g1_policy()->print_detailed_heap_transition(true /* full */);
  1544     print_heap_after_gc();
  1545     trace_heap_after_gc(gc_tracer);
  1547     post_full_gc_dump(gc_timer);
  1549     gc_timer->register_gc_end();
  1550     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
  1553   return true;
  1556 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1557   // do_collection() will return whether it succeeded in performing
  1558   // the GC. Currently, there is no facility on the
  1559   // do_full_collection() API to notify the caller than the collection
  1560   // did not succeed (e.g., because it was locked out by the GC
  1561   // locker). So, right now, we'll ignore the return value.
  1562   bool dummy = do_collection(true,                /* explicit_gc */
  1563                              clear_all_soft_refs,
  1564                              0                    /* word_size */);
  1567 // This code is mostly copied from TenuredGeneration.
  1568 void
  1569 G1CollectedHeap::
  1570 resize_if_necessary_after_full_collection(size_t word_size) {
  1571   // Include the current allocation, if any, and bytes that will be
  1572   // pre-allocated to support collections, as "used".
  1573   const size_t used_after_gc = used();
  1574   const size_t capacity_after_gc = capacity();
  1575   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1577   // This is enforced in arguments.cpp.
  1578   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1579          "otherwise the code below doesn't make sense");
  1581   // We don't have floating point command-line arguments
  1582   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1583   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1584   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1585   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1587   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1588   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1590   // We have to be careful here as these two calculations can overflow
  1591   // 32-bit size_t's.
  1592   double used_after_gc_d = (double) used_after_gc;
  1593   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1594   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1596   // Let's make sure that they are both under the max heap size, which
  1597   // by default will make them fit into a size_t.
  1598   double desired_capacity_upper_bound = (double) max_heap_size;
  1599   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1600                                     desired_capacity_upper_bound);
  1601   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1602                                     desired_capacity_upper_bound);
  1604   // We can now safely turn them into size_t's.
  1605   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1606   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1608   // This assert only makes sense here, before we adjust them
  1609   // with respect to the min and max heap size.
  1610   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1611          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1612                  "maximum_desired_capacity = "SIZE_FORMAT,
  1613                  minimum_desired_capacity, maximum_desired_capacity));
  1615   // Should not be greater than the heap max size. No need to adjust
  1616   // it with respect to the heap min size as it's a lower bound (i.e.,
  1617   // we'll try to make the capacity larger than it, not smaller).
  1618   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1619   // Should not be less than the heap min size. No need to adjust it
  1620   // with respect to the heap max size as it's an upper bound (i.e.,
  1621   // we'll try to make the capacity smaller than it, not greater).
  1622   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1624   if (capacity_after_gc < minimum_desired_capacity) {
  1625     // Don't expand unless it's significant
  1626     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1627     ergo_verbose4(ErgoHeapSizing,
  1628                   "attempt heap expansion",
  1629                   ergo_format_reason("capacity lower than "
  1630                                      "min desired capacity after Full GC")
  1631                   ergo_format_byte("capacity")
  1632                   ergo_format_byte("occupancy")
  1633                   ergo_format_byte_perc("min desired capacity"),
  1634                   capacity_after_gc, used_after_gc,
  1635                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1636     expand(expand_bytes);
  1638     // No expansion, now see if we want to shrink
  1639   } else if (capacity_after_gc > maximum_desired_capacity) {
  1640     // Capacity too large, compute shrinking size
  1641     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1642     ergo_verbose4(ErgoHeapSizing,
  1643                   "attempt heap shrinking",
  1644                   ergo_format_reason("capacity higher than "
  1645                                      "max desired capacity after Full GC")
  1646                   ergo_format_byte("capacity")
  1647                   ergo_format_byte("occupancy")
  1648                   ergo_format_byte_perc("max desired capacity"),
  1649                   capacity_after_gc, used_after_gc,
  1650                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1651     shrink(shrink_bytes);
  1656 HeapWord*
  1657 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1658                                            AllocationContext_t context,
  1659                                            bool* succeeded) {
  1660   assert_at_safepoint(true /* should_be_vm_thread */);
  1662   *succeeded = true;
  1663   // Let's attempt the allocation first.
  1664   HeapWord* result =
  1665     attempt_allocation_at_safepoint(word_size,
  1666                                     context,
  1667                                     false /* expect_null_mutator_alloc_region */);
  1668   if (result != NULL) {
  1669     assert(*succeeded, "sanity");
  1670     return result;
  1673   // In a G1 heap, we're supposed to keep allocation from failing by
  1674   // incremental pauses.  Therefore, at least for now, we'll favor
  1675   // expansion over collection.  (This might change in the future if we can
  1676   // do something smarter than full collection to satisfy a failed alloc.)
  1677   result = expand_and_allocate(word_size, context);
  1678   if (result != NULL) {
  1679     assert(*succeeded, "sanity");
  1680     return result;
  1683   // Expansion didn't work, we'll try to do a Full GC.
  1684   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1685                                     false, /* clear_all_soft_refs */
  1686                                     word_size);
  1687   if (!gc_succeeded) {
  1688     *succeeded = false;
  1689     return NULL;
  1692   // Retry the allocation
  1693   result = attempt_allocation_at_safepoint(word_size,
  1694                                            context,
  1695                                            true /* expect_null_mutator_alloc_region */);
  1696   if (result != NULL) {
  1697     assert(*succeeded, "sanity");
  1698     return result;
  1701   // Then, try a Full GC that will collect all soft references.
  1702   gc_succeeded = do_collection(false, /* explicit_gc */
  1703                                true,  /* clear_all_soft_refs */
  1704                                word_size);
  1705   if (!gc_succeeded) {
  1706     *succeeded = false;
  1707     return NULL;
  1710   // Retry the allocation once more
  1711   result = attempt_allocation_at_safepoint(word_size,
  1712                                            context,
  1713                                            true /* expect_null_mutator_alloc_region */);
  1714   if (result != NULL) {
  1715     assert(*succeeded, "sanity");
  1716     return result;
  1719   assert(!collector_policy()->should_clear_all_soft_refs(),
  1720          "Flag should have been handled and cleared prior to this point");
  1722   // What else?  We might try synchronous finalization later.  If the total
  1723   // space available is large enough for the allocation, then a more
  1724   // complete compaction phase than we've tried so far might be
  1725   // appropriate.
  1726   assert(*succeeded, "sanity");
  1727   return NULL;
  1730 // Attempting to expand the heap sufficiently
  1731 // to support an allocation of the given "word_size".  If
  1732 // successful, perform the allocation and return the address of the
  1733 // allocated block, or else "NULL".
  1735 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
  1736   assert_at_safepoint(true /* should_be_vm_thread */);
  1738   verify_region_sets_optional();
  1740   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1741   ergo_verbose1(ErgoHeapSizing,
  1742                 "attempt heap expansion",
  1743                 ergo_format_reason("allocation request failed")
  1744                 ergo_format_byte("allocation request"),
  1745                 word_size * HeapWordSize);
  1746   if (expand(expand_bytes)) {
  1747     _hrm.verify_optional();
  1748     verify_region_sets_optional();
  1749     return attempt_allocation_at_safepoint(word_size,
  1750                                            context,
  1751                                            false /* expect_null_mutator_alloc_region */);
  1753   return NULL;
  1756 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1757   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1758   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1759                                        HeapRegion::GrainBytes);
  1760   ergo_verbose2(ErgoHeapSizing,
  1761                 "expand the heap",
  1762                 ergo_format_byte("requested expansion amount")
  1763                 ergo_format_byte("attempted expansion amount"),
  1764                 expand_bytes, aligned_expand_bytes);
  1766   if (is_maximal_no_gc()) {
  1767     ergo_verbose0(ErgoHeapSizing,
  1768                       "did not expand the heap",
  1769                       ergo_format_reason("heap already fully expanded"));
  1770     return false;
  1773   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
  1774   assert(regions_to_expand > 0, "Must expand by at least one region");
  1776   uint expanded_by = _hrm.expand_by(regions_to_expand);
  1778   if (expanded_by > 0) {
  1779     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
  1780     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1781     g1_policy()->record_new_heap_size(num_regions());
  1782   } else {
  1783     ergo_verbose0(ErgoHeapSizing,
  1784                   "did not expand the heap",
  1785                   ergo_format_reason("heap expansion operation failed"));
  1786     // The expansion of the virtual storage space was unsuccessful.
  1787     // Let's see if it was because we ran out of swap.
  1788     if (G1ExitOnExpansionFailure &&
  1789         _hrm.available() >= regions_to_expand) {
  1790       // We had head room...
  1791       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
  1794   return regions_to_expand > 0;
  1797 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1798   size_t aligned_shrink_bytes =
  1799     ReservedSpace::page_align_size_down(shrink_bytes);
  1800   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1801                                          HeapRegion::GrainBytes);
  1802   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
  1804   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
  1805   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
  1807   ergo_verbose3(ErgoHeapSizing,
  1808                 "shrink the heap",
  1809                 ergo_format_byte("requested shrinking amount")
  1810                 ergo_format_byte("aligned shrinking amount")
  1811                 ergo_format_byte("attempted shrinking amount"),
  1812                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  1813   if (num_regions_removed > 0) {
  1814     g1_policy()->record_new_heap_size(num_regions());
  1815   } else {
  1816     ergo_verbose0(ErgoHeapSizing,
  1817                   "did not shrink the heap",
  1818                   ergo_format_reason("heap shrinking operation failed"));
  1822 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1823   verify_region_sets_optional();
  1825   // We should only reach here at the end of a Full GC which means we
  1826   // should not not be holding to any GC alloc regions. The method
  1827   // below will make sure of that and do any remaining clean up.
  1828   _allocator->abandon_gc_alloc_regions();
  1830   // Instead of tearing down / rebuilding the free lists here, we
  1831   // could instead use the remove_all_pending() method on free_list to
  1832   // remove only the ones that we need to remove.
  1833   tear_down_region_sets(true /* free_list_only */);
  1834   shrink_helper(shrink_bytes);
  1835   rebuild_region_sets(true /* free_list_only */);
  1837   _hrm.verify_optional();
  1838   verify_region_sets_optional();
  1841 // Public methods.
  1843 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1844 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1845 #endif // _MSC_VER
  1848 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1849   SharedHeap(policy_),
  1850   _g1_policy(policy_),
  1851   _dirty_card_queue_set(false),
  1852   _into_cset_dirty_card_queue_set(false),
  1853   _is_alive_closure_cm(this),
  1854   _is_alive_closure_stw(this),
  1855   _ref_processor_cm(NULL),
  1856   _ref_processor_stw(NULL),
  1857   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1858   _bot_shared(NULL),
  1859   _evac_failure_scan_stack(NULL),
  1860   _mark_in_progress(false),
  1861   _cg1r(NULL),
  1862   _g1mm(NULL),
  1863   _refine_cte_cl(NULL),
  1864   _full_collection(false),
  1865   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
  1866   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
  1867   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
  1868   _humongous_is_live(),
  1869   _has_humongous_reclaim_candidates(false),
  1870   _free_regions_coming(false),
  1871   _young_list(new YoungList(this)),
  1872   _gc_time_stamp(0),
  1873   _survivor_plab_stats(YoungPLABSize, PLABWeight),
  1874   _old_plab_stats(OldPLABSize, PLABWeight),
  1875   _expand_heap_after_alloc_failure(true),
  1876   _surviving_young_words(NULL),
  1877   _old_marking_cycles_started(0),
  1878   _old_marking_cycles_completed(0),
  1879   _concurrent_cycle_started(false),
  1880   _in_cset_fast_test(),
  1881   _dirty_cards_region_list(NULL),
  1882   _worker_cset_start_region(NULL),
  1883   _worker_cset_start_region_time_stamp(NULL),
  1884   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  1885   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  1886   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  1887   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
  1889   _g1h = this;
  1890   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1891     vm_exit_during_initialization("Failed necessary allocation.");
  1894   _allocator = G1Allocator::create_allocator(_g1h);
  1895   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1897   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1898   _task_queues = new RefToScanQueueSet(n_queues);
  1900   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1901   assert(n_rem_sets > 0, "Invariant.");
  1903   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  1904   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
  1905   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
  1907   for (int i = 0; i < n_queues; i++) {
  1908     RefToScanQueue* q = new RefToScanQueue();
  1909     q->initialize();
  1910     _task_queues->register_queue(i, q);
  1911     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
  1913   clear_cset_start_regions();
  1915   // Initialize the G1EvacuationFailureALot counters and flags.
  1916   NOT_PRODUCT(reset_evacuation_should_fail();)
  1918   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1921 jint G1CollectedHeap::initialize() {
  1922   CollectedHeap::pre_initialize();
  1923   os::enable_vtime();
  1925   G1Log::init();
  1927   // Necessary to satisfy locking discipline assertions.
  1929   MutexLocker x(Heap_lock);
  1931   // We have to initialize the printer before committing the heap, as
  1932   // it will be used then.
  1933   _hr_printer.set_active(G1PrintHeapRegions);
  1935   // While there are no constraints in the GC code that HeapWordSize
  1936   // be any particular value, there are multiple other areas in the
  1937   // system which believe this to be true (e.g. oop->object_size in some
  1938   // cases incorrectly returns the size in wordSize units rather than
  1939   // HeapWordSize).
  1940   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1942   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1943   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1944   size_t heap_alignment = collector_policy()->heap_alignment();
  1946   // Ensure that the sizes are properly aligned.
  1947   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1948   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1949   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
  1951   _refine_cte_cl = new RefineCardTableEntryClosure();
  1953   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
  1955   // Reserve the maximum.
  1957   // When compressed oops are enabled, the preferred heap base
  1958   // is calculated by subtracting the requested size from the
  1959   // 32Gb boundary and using the result as the base address for
  1960   // heap reservation. If the requested size is not aligned to
  1961   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  1962   // into the ReservedHeapSpace constructor) then the actual
  1963   // base of the reserved heap may end up differing from the
  1964   // address that was requested (i.e. the preferred heap base).
  1965   // If this happens then we could end up using a non-optimal
  1966   // compressed oops mode.
  1968   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
  1969                                                  heap_alignment);
  1971   // It is important to do this in a way such that concurrent readers can't
  1972   // temporarily think something is in the heap.  (I've actually seen this
  1973   // happen in asserts: DLD.)
  1974   _reserved.set_word_size(0);
  1975   _reserved.set_start((HeapWord*)heap_rs.base());
  1976   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1978   // Create the gen rem set (and barrier set) for the entire reserved region.
  1979   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1980   set_barrier_set(rem_set()->bs());
  1981   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
  1982     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
  1983     return JNI_ENOMEM;
  1986   // Also create a G1 rem set.
  1987   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
  1989   // Carve out the G1 part of the heap.
  1991   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
  1992   G1RegionToSpaceMapper* heap_storage =
  1993     G1RegionToSpaceMapper::create_mapper(g1_rs,
  1994                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
  1995                                          HeapRegion::GrainBytes,
  1996                                          1,
  1997                                          mtJavaHeap);
  1998   heap_storage->set_mapping_changed_listener(&_listener);
  2000   // Reserve space for the block offset table. We do not support automatic uncommit
  2001   // for the card table at this time. BOT only.
  2002   ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
  2003   G1RegionToSpaceMapper* bot_storage =
  2004     G1RegionToSpaceMapper::create_mapper(bot_rs,
  2005                                          os::vm_page_size(),
  2006                                          HeapRegion::GrainBytes,
  2007                                          G1BlockOffsetSharedArray::N_bytes,
  2008                                          mtGC);
  2010   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
  2011   G1RegionToSpaceMapper* cardtable_storage =
  2012     G1RegionToSpaceMapper::create_mapper(cardtable_rs,
  2013                                          os::vm_page_size(),
  2014                                          HeapRegion::GrainBytes,
  2015                                          G1BlockOffsetSharedArray::N_bytes,
  2016                                          mtGC);
  2018   // Reserve space for the card counts table.
  2019   ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
  2020   G1RegionToSpaceMapper* card_counts_storage =
  2021     G1RegionToSpaceMapper::create_mapper(card_counts_rs,
  2022                                          os::vm_page_size(),
  2023                                          HeapRegion::GrainBytes,
  2024                                          G1BlockOffsetSharedArray::N_bytes,
  2025                                          mtGC);
  2027   // Reserve space for prev and next bitmap.
  2028   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
  2030   ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
  2031   G1RegionToSpaceMapper* prev_bitmap_storage =
  2032     G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs,
  2033                                          os::vm_page_size(),
  2034                                          HeapRegion::GrainBytes,
  2035                                          CMBitMap::mark_distance(),
  2036                                          mtGC);
  2038   ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
  2039   G1RegionToSpaceMapper* next_bitmap_storage =
  2040     G1RegionToSpaceMapper::create_mapper(next_bitmap_rs,
  2041                                          os::vm_page_size(),
  2042                                          HeapRegion::GrainBytes,
  2043                                          CMBitMap::mark_distance(),
  2044                                          mtGC);
  2046   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
  2047   g1_barrier_set()->initialize(cardtable_storage);
  2048    // Do later initialization work for concurrent refinement.
  2049   _cg1r->init(card_counts_storage);
  2051   // 6843694 - ensure that the maximum region index can fit
  2052   // in the remembered set structures.
  2053   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2054   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2056   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2057   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2058   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  2059             "too many cards per region");
  2061   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
  2063   _bot_shared = new G1BlockOffsetSharedArray(_reserved, bot_storage);
  2065   _g1h = this;
  2067   _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
  2068   _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
  2070   // Create the ConcurrentMark data structure and thread.
  2071   // (Must do this late, so that "max_regions" is defined.)
  2072   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
  2073   if (_cm == NULL || !_cm->completed_initialization()) {
  2074     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
  2075     return JNI_ENOMEM;
  2077   _cmThread = _cm->cmThread();
  2079   // Initialize the from_card cache structure of HeapRegionRemSet.
  2080   HeapRegionRemSet::init_heap(max_regions());
  2082   // Now expand into the initial heap size.
  2083   if (!expand(init_byte_size)) {
  2084     vm_shutdown_during_initialization("Failed to allocate initial heap.");
  2085     return JNI_ENOMEM;
  2088   // Perform any initialization actions delegated to the policy.
  2089   g1_policy()->init();
  2091   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2092                                                SATB_Q_FL_lock,
  2093                                                G1SATBProcessCompletedThreshold,
  2094                                                Shared_SATB_Q_lock);
  2096   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
  2097                                                 DirtyCardQ_CBL_mon,
  2098                                                 DirtyCardQ_FL_lock,
  2099                                                 concurrent_g1_refine()->yellow_zone(),
  2100                                                 concurrent_g1_refine()->red_zone(),
  2101                                                 Shared_DirtyCardQ_lock);
  2103   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
  2104                                     DirtyCardQ_CBL_mon,
  2105                                     DirtyCardQ_FL_lock,
  2106                                     -1, // never trigger processing
  2107                                     -1, // no limit on length
  2108                                     Shared_DirtyCardQ_lock,
  2109                                     &JavaThread::dirty_card_queue_set());
  2111   // Initialize the card queue set used to hold cards containing
  2112   // references into the collection set.
  2113   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
  2114                                              DirtyCardQ_CBL_mon,
  2115                                              DirtyCardQ_FL_lock,
  2116                                              -1, // never trigger processing
  2117                                              -1, // no limit on length
  2118                                              Shared_DirtyCardQ_lock,
  2119                                              &JavaThread::dirty_card_queue_set());
  2121   // In case we're keeping closure specialization stats, initialize those
  2122   // counts and that mechanism.
  2123   SpecializationStats::clear();
  2125   // Here we allocate the dummy HeapRegion that is required by the
  2126   // G1AllocRegion class.
  2127   HeapRegion* dummy_region = _hrm.get_dummy_region();
  2129   // We'll re-use the same region whether the alloc region will
  2130   // require BOT updates or not and, if it doesn't, then a non-young
  2131   // region will complain that it cannot support allocations without
  2132   // BOT updates. So we'll tag the dummy region as eden to avoid that.
  2133   dummy_region->set_eden();
  2134   // Make sure it's full.
  2135   dummy_region->set_top(dummy_region->end());
  2136   G1AllocRegion::setup(this, dummy_region);
  2138   _allocator->init_mutator_alloc_region();
  2140   // Do create of the monitoring and management support so that
  2141   // values in the heap have been properly initialized.
  2142   _g1mm = new G1MonitoringSupport(this);
  2144   G1StringDedup::initialize();
  2146   return JNI_OK;
  2149 void G1CollectedHeap::stop() {
  2150   // Stop all concurrent threads. We do this to make sure these threads
  2151   // do not continue to execute and access resources (e.g. gclog_or_tty)
  2152   // that are destroyed during shutdown.
  2153   _cg1r->stop();
  2154   _cmThread->stop();
  2155   if (G1StringDedup::is_enabled()) {
  2156     G1StringDedup::stop();
  2160 void G1CollectedHeap::clear_humongous_is_live_table() {
  2161   guarantee(G1ReclaimDeadHumongousObjectsAtYoungGC, "Should only be called if true");
  2162   _humongous_is_live.clear();
  2165 size_t G1CollectedHeap::conservative_max_heap_alignment() {
  2166   return HeapRegion::max_region_size();
  2169 void G1CollectedHeap::ref_processing_init() {
  2170   // Reference processing in G1 currently works as follows:
  2171   //
  2172   // * There are two reference processor instances. One is
  2173   //   used to record and process discovered references
  2174   //   during concurrent marking; the other is used to
  2175   //   record and process references during STW pauses
  2176   //   (both full and incremental).
  2177   // * Both ref processors need to 'span' the entire heap as
  2178   //   the regions in the collection set may be dotted around.
  2179   //
  2180   // * For the concurrent marking ref processor:
  2181   //   * Reference discovery is enabled at initial marking.
  2182   //   * Reference discovery is disabled and the discovered
  2183   //     references processed etc during remarking.
  2184   //   * Reference discovery is MT (see below).
  2185   //   * Reference discovery requires a barrier (see below).
  2186   //   * Reference processing may or may not be MT
  2187   //     (depending on the value of ParallelRefProcEnabled
  2188   //     and ParallelGCThreads).
  2189   //   * A full GC disables reference discovery by the CM
  2190   //     ref processor and abandons any entries on it's
  2191   //     discovered lists.
  2192   //
  2193   // * For the STW processor:
  2194   //   * Non MT discovery is enabled at the start of a full GC.
  2195   //   * Processing and enqueueing during a full GC is non-MT.
  2196   //   * During a full GC, references are processed after marking.
  2197   //
  2198   //   * Discovery (may or may not be MT) is enabled at the start
  2199   //     of an incremental evacuation pause.
  2200   //   * References are processed near the end of a STW evacuation pause.
  2201   //   * For both types of GC:
  2202   //     * Discovery is atomic - i.e. not concurrent.
  2203   //     * Reference discovery will not need a barrier.
  2205   SharedHeap::ref_processing_init();
  2206   MemRegion mr = reserved_region();
  2208   // Concurrent Mark ref processor
  2209   _ref_processor_cm =
  2210     new ReferenceProcessor(mr,    // span
  2211                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2212                                 // mt processing
  2213                            (int) ParallelGCThreads,
  2214                                 // degree of mt processing
  2215                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2216                                 // mt discovery
  2217                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2218                                 // degree of mt discovery
  2219                            false,
  2220                                 // Reference discovery is not atomic
  2221                            &_is_alive_closure_cm);
  2222                                 // is alive closure
  2223                                 // (for efficiency/performance)
  2225   // STW ref processor
  2226   _ref_processor_stw =
  2227     new ReferenceProcessor(mr,    // span
  2228                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2229                                 // mt processing
  2230                            MAX2((int)ParallelGCThreads, 1),
  2231                                 // degree of mt processing
  2232                            (ParallelGCThreads > 1),
  2233                                 // mt discovery
  2234                            MAX2((int)ParallelGCThreads, 1),
  2235                                 // degree of mt discovery
  2236                            true,
  2237                                 // Reference discovery is atomic
  2238                            &_is_alive_closure_stw);
  2239                                 // is alive closure
  2240                                 // (for efficiency/performance)
  2243 size_t G1CollectedHeap::capacity() const {
  2244   return _hrm.length() * HeapRegion::GrainBytes;
  2247 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  2248   assert(!hr->continuesHumongous(), "pre-condition");
  2249   hr->reset_gc_time_stamp();
  2250   if (hr->startsHumongous()) {
  2251     uint first_index = hr->hrm_index() + 1;
  2252     uint last_index = hr->last_hc_index();
  2253     for (uint i = first_index; i < last_index; i += 1) {
  2254       HeapRegion* chr = region_at(i);
  2255       assert(chr->continuesHumongous(), "sanity");
  2256       chr->reset_gc_time_stamp();
  2261 #ifndef PRODUCT
  2262 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
  2263 private:
  2264   unsigned _gc_time_stamp;
  2265   bool _failures;
  2267 public:
  2268   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
  2269     _gc_time_stamp(gc_time_stamp), _failures(false) { }
  2271   virtual bool doHeapRegion(HeapRegion* hr) {
  2272     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
  2273     if (_gc_time_stamp != region_gc_time_stamp) {
  2274       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
  2275                              "expected %d", HR_FORMAT_PARAMS(hr),
  2276                              region_gc_time_stamp, _gc_time_stamp);
  2277       _failures = true;
  2279     return false;
  2282   bool failures() { return _failures; }
  2283 };
  2285 void G1CollectedHeap::check_gc_time_stamps() {
  2286   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  2287   heap_region_iterate(&cl);
  2288   guarantee(!cl.failures(), "all GC time stamps should have been reset");
  2290 #endif // PRODUCT
  2292 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2293                                                  DirtyCardQueue* into_cset_dcq,
  2294                                                  bool concurrent,
  2295                                                  uint worker_i) {
  2296   // Clean cards in the hot card cache
  2297   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  2298   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
  2300   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2301   int n_completed_buffers = 0;
  2302   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2303     n_completed_buffers++;
  2305   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
  2306   dcqs.clear_n_completed_buffers();
  2307   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2311 // Computes the sum of the storage used by the various regions.
  2312 size_t G1CollectedHeap::used() const {
  2313   return _allocator->used();
  2316 size_t G1CollectedHeap::used_unlocked() const {
  2317   return _allocator->used_unlocked();
  2320 class SumUsedClosure: public HeapRegionClosure {
  2321   size_t _used;
  2322 public:
  2323   SumUsedClosure() : _used(0) {}
  2324   bool doHeapRegion(HeapRegion* r) {
  2325     if (!r->continuesHumongous()) {
  2326       _used += r->used();
  2328     return false;
  2330   size_t result() { return _used; }
  2331 };
  2333 size_t G1CollectedHeap::recalculate_used() const {
  2334   double recalculate_used_start = os::elapsedTime();
  2336   SumUsedClosure blk;
  2337   heap_region_iterate(&blk);
  2339   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
  2340   return blk.result();
  2343 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2344   switch (cause) {
  2345     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
  2346     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
  2347     case GCCause::_g1_humongous_allocation: return true;
  2348     case GCCause::_update_allocation_context_stats_inc: return true;
  2349     default:                                return false;
  2353 #ifndef PRODUCT
  2354 void G1CollectedHeap::allocate_dummy_regions() {
  2355   // Let's fill up most of the region
  2356   size_t word_size = HeapRegion::GrainWords - 1024;
  2357   // And as a result the region we'll allocate will be humongous.
  2358   guarantee(isHumongous(word_size), "sanity");
  2360   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2361     // Let's use the existing mechanism for the allocation
  2362     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
  2363                                                  AllocationContext::system());
  2364     if (dummy_obj != NULL) {
  2365       MemRegion mr(dummy_obj, word_size);
  2366       CollectedHeap::fill_with_object(mr);
  2367     } else {
  2368       // If we can't allocate once, we probably cannot allocate
  2369       // again. Let's get out of the loop.
  2370       break;
  2374 #endif // !PRODUCT
  2376 void G1CollectedHeap::increment_old_marking_cycles_started() {
  2377   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
  2378     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
  2379     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
  2380     _old_marking_cycles_started, _old_marking_cycles_completed));
  2382   _old_marking_cycles_started++;
  2385 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
  2386   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2388   // We assume that if concurrent == true, then the caller is a
  2389   // concurrent thread that was joined the Suspendible Thread
  2390   // Set. If there's ever a cheap way to check this, we should add an
  2391   // assert here.
  2393   // Given that this method is called at the end of a Full GC or of a
  2394   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2395   // interrupt a concurrent cycle), the number of full collections
  2396   // completed should be either one (in the case where there was no
  2397   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2398   // behind the number of full collections started.
  2400   // This is the case for the inner caller, i.e. a Full GC.
  2401   assert(concurrent ||
  2402          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
  2403          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
  2404          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
  2405                  "is inconsistent with _old_marking_cycles_completed = %u",
  2406                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2408   // This is the case for the outer caller, i.e. the concurrent cycle.
  2409   assert(!concurrent ||
  2410          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
  2411          err_msg("for outer caller (concurrent cycle): "
  2412                  "_old_marking_cycles_started = %u "
  2413                  "is inconsistent with _old_marking_cycles_completed = %u",
  2414                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2416   _old_marking_cycles_completed += 1;
  2418   // We need to clear the "in_progress" flag in the CM thread before
  2419   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2420   // is set) so that if a waiter requests another System.gc() it doesn't
  2421   // incorrectly see that a marking cycle is still in progress.
  2422   if (concurrent) {
  2423     _cmThread->clear_in_progress();
  2426   // This notify_all() will ensure that a thread that called
  2427   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2428   // and it's waiting for a full GC to finish will be woken up. It is
  2429   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2430   FullGCCount_lock->notify_all();
  2433 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
  2434   _concurrent_cycle_started = true;
  2435   _gc_timer_cm->register_gc_start(start_time);
  2437   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  2438   trace_heap_before_gc(_gc_tracer_cm);
  2441 void G1CollectedHeap::register_concurrent_cycle_end() {
  2442   if (_concurrent_cycle_started) {
  2443     if (_cm->has_aborted()) {
  2444       _gc_tracer_cm->report_concurrent_mode_failure();
  2447     _gc_timer_cm->register_gc_end();
  2448     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
  2450     _concurrent_cycle_started = false;
  2454 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  2455   if (_concurrent_cycle_started) {
  2456     trace_heap_after_gc(_gc_tracer_cm);
  2460 G1YCType G1CollectedHeap::yc_type() {
  2461   bool is_young = g1_policy()->gcs_are_young();
  2462   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
  2463   bool is_during_mark = mark_in_progress();
  2465   if (is_initial_mark) {
  2466     return InitialMark;
  2467   } else if (is_during_mark) {
  2468     return DuringMark;
  2469   } else if (is_young) {
  2470     return Normal;
  2471   } else {
  2472     return Mixed;
  2476 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2477   assert_heap_not_locked();
  2479   unsigned int gc_count_before;
  2480   unsigned int old_marking_count_before;
  2481   unsigned int full_gc_count_before;
  2482   bool retry_gc;
  2484   do {
  2485     retry_gc = false;
  2488       MutexLocker ml(Heap_lock);
  2490       // Read the GC count while holding the Heap_lock
  2491       gc_count_before = total_collections();
  2492       full_gc_count_before = total_full_collections();
  2493       old_marking_count_before = _old_marking_cycles_started;
  2496     if (should_do_concurrent_full_gc(cause)) {
  2497       // Schedule an initial-mark evacuation pause that will start a
  2498       // concurrent cycle. We're setting word_size to 0 which means that
  2499       // we are not requesting a post-GC allocation.
  2500       VM_G1IncCollectionPause op(gc_count_before,
  2501                                  0,     /* word_size */
  2502                                  true,  /* should_initiate_conc_mark */
  2503                                  g1_policy()->max_pause_time_ms(),
  2504                                  cause);
  2505       op.set_allocation_context(AllocationContext::current());
  2507       VMThread::execute(&op);
  2508       if (!op.pause_succeeded()) {
  2509         if (old_marking_count_before == _old_marking_cycles_started) {
  2510           retry_gc = op.should_retry_gc();
  2511         } else {
  2512           // A Full GC happened while we were trying to schedule the
  2513           // initial-mark GC. No point in starting a new cycle given
  2514           // that the whole heap was collected anyway.
  2517         if (retry_gc) {
  2518           if (GC_locker::is_active_and_needs_gc()) {
  2519             GC_locker::stall_until_clear();
  2523     } else {
  2524       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
  2525           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2527         // Schedule a standard evacuation pause. We're setting word_size
  2528         // to 0 which means that we are not requesting a post-GC allocation.
  2529         VM_G1IncCollectionPause op(gc_count_before,
  2530                                    0,     /* word_size */
  2531                                    false, /* should_initiate_conc_mark */
  2532                                    g1_policy()->max_pause_time_ms(),
  2533                                    cause);
  2534         VMThread::execute(&op);
  2535       } else {
  2536         // Schedule a Full GC.
  2537         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
  2538         VMThread::execute(&op);
  2541   } while (retry_gc);
  2544 bool G1CollectedHeap::is_in(const void* p) const {
  2545   if (_hrm.reserved().contains(p)) {
  2546     // Given that we know that p is in the reserved space,
  2547     // heap_region_containing_raw() should successfully
  2548     // return the containing region.
  2549     HeapRegion* hr = heap_region_containing_raw(p);
  2550     return hr->is_in(p);
  2551   } else {
  2552     return false;
  2556 #ifdef ASSERT
  2557 bool G1CollectedHeap::is_in_exact(const void* p) const {
  2558   bool contains = reserved_region().contains(p);
  2559   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
  2560   if (contains && available) {
  2561     return true;
  2562   } else {
  2563     return false;
  2566 #endif
  2568 // Iteration functions.
  2570 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
  2572 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2573   ExtendedOopClosure* _cl;
  2574 public:
  2575   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
  2576   bool doHeapRegion(HeapRegion* r) {
  2577     if (!r->continuesHumongous()) {
  2578       r->oop_iterate(_cl);
  2580     return false;
  2582 };
  2584 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
  2585   IterateOopClosureRegionClosure blk(cl);
  2586   heap_region_iterate(&blk);
  2589 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2591 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2592   ObjectClosure* _cl;
  2593 public:
  2594   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2595   bool doHeapRegion(HeapRegion* r) {
  2596     if (! r->continuesHumongous()) {
  2597       r->object_iterate(_cl);
  2599     return false;
  2601 };
  2603 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
  2604   IterateObjectClosureRegionClosure blk(cl);
  2605   heap_region_iterate(&blk);
  2608 // Calls a SpaceClosure on a HeapRegion.
  2610 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2611   SpaceClosure* _cl;
  2612 public:
  2613   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2614   bool doHeapRegion(HeapRegion* r) {
  2615     _cl->do_space(r);
  2616     return false;
  2618 };
  2620 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2621   SpaceClosureRegionClosure blk(cl);
  2622   heap_region_iterate(&blk);
  2625 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2626   _hrm.iterate(cl);
  2629 void
  2630 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2631                                                  uint worker_id,
  2632                                                  uint num_workers,
  2633                                                  jint claim_value) const {
  2634   _hrm.par_iterate(cl, worker_id, num_workers, claim_value);
  2637 class ResetClaimValuesClosure: public HeapRegionClosure {
  2638 public:
  2639   bool doHeapRegion(HeapRegion* r) {
  2640     r->set_claim_value(HeapRegion::InitialClaimValue);
  2641     return false;
  2643 };
  2645 void G1CollectedHeap::reset_heap_region_claim_values() {
  2646   ResetClaimValuesClosure blk;
  2647   heap_region_iterate(&blk);
  2650 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2651   ResetClaimValuesClosure blk;
  2652   collection_set_iterate(&blk);
  2655 #ifdef ASSERT
  2656 // This checks whether all regions in the heap have the correct claim
  2657 // value. I also piggy-backed on this a check to ensure that the
  2658 // humongous_start_region() information on "continues humongous"
  2659 // regions is correct.
  2661 class CheckClaimValuesClosure : public HeapRegionClosure {
  2662 private:
  2663   jint _claim_value;
  2664   uint _failures;
  2665   HeapRegion* _sh_region;
  2667 public:
  2668   CheckClaimValuesClosure(jint claim_value) :
  2669     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2670   bool doHeapRegion(HeapRegion* r) {
  2671     if (r->claim_value() != _claim_value) {
  2672       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2673                              "claim value = %d, should be %d",
  2674                              HR_FORMAT_PARAMS(r),
  2675                              r->claim_value(), _claim_value);
  2676       ++_failures;
  2678     if (!r->isHumongous()) {
  2679       _sh_region = NULL;
  2680     } else if (r->startsHumongous()) {
  2681       _sh_region = r;
  2682     } else if (r->continuesHumongous()) {
  2683       if (r->humongous_start_region() != _sh_region) {
  2684         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2685                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2686                                HR_FORMAT_PARAMS(r),
  2687                                r->humongous_start_region(),
  2688                                _sh_region);
  2689         ++_failures;
  2692     return false;
  2694   uint failures() { return _failures; }
  2695 };
  2697 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2698   CheckClaimValuesClosure cl(claim_value);
  2699   heap_region_iterate(&cl);
  2700   return cl.failures() == 0;
  2703 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2704 private:
  2705   jint _claim_value;
  2706   uint _failures;
  2708 public:
  2709   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2710     _claim_value(claim_value), _failures(0) { }
  2712   uint failures() { return _failures; }
  2714   bool doHeapRegion(HeapRegion* hr) {
  2715     assert(hr->in_collection_set(), "how?");
  2716     assert(!hr->isHumongous(), "H-region in CSet");
  2717     if (hr->claim_value() != _claim_value) {
  2718       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2719                              "claim value = %d, should be %d",
  2720                              HR_FORMAT_PARAMS(hr),
  2721                              hr->claim_value(), _claim_value);
  2722       _failures += 1;
  2724     return false;
  2726 };
  2728 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2729   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2730   collection_set_iterate(&cl);
  2731   return cl.failures() == 0;
  2733 #endif // ASSERT
  2735 // Clear the cached CSet starting regions and (more importantly)
  2736 // the time stamps. Called when we reset the GC time stamp.
  2737 void G1CollectedHeap::clear_cset_start_regions() {
  2738   assert(_worker_cset_start_region != NULL, "sanity");
  2739   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2741   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2742   for (int i = 0; i < n_queues; i++) {
  2743     _worker_cset_start_region[i] = NULL;
  2744     _worker_cset_start_region_time_stamp[i] = 0;
  2748 // Given the id of a worker, obtain or calculate a suitable
  2749 // starting region for iterating over the current collection set.
  2750 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
  2751   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2753   HeapRegion* result = NULL;
  2754   unsigned gc_time_stamp = get_gc_time_stamp();
  2756   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2757     // Cached starting region for current worker was set
  2758     // during the current pause - so it's valid.
  2759     // Note: the cached starting heap region may be NULL
  2760     // (when the collection set is empty).
  2761     result = _worker_cset_start_region[worker_i];
  2762     assert(result == NULL || result->in_collection_set(), "sanity");
  2763     return result;
  2766   // The cached entry was not valid so let's calculate
  2767   // a suitable starting heap region for this worker.
  2769   // We want the parallel threads to start their collection
  2770   // set iteration at different collection set regions to
  2771   // avoid contention.
  2772   // If we have:
  2773   //          n collection set regions
  2774   //          p threads
  2775   // Then thread t will start at region floor ((t * n) / p)
  2777   result = g1_policy()->collection_set();
  2778   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2779     uint cs_size = g1_policy()->cset_region_length();
  2780     uint active_workers = workers()->active_workers();
  2781     assert(UseDynamicNumberOfGCThreads ||
  2782              active_workers == workers()->total_workers(),
  2783              "Unless dynamic should use total workers");
  2785     uint end_ind   = (cs_size * worker_i) / active_workers;
  2786     uint start_ind = 0;
  2788     if (worker_i > 0 &&
  2789         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2790       // Previous workers starting region is valid
  2791       // so let's iterate from there
  2792       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2793       result = _worker_cset_start_region[worker_i - 1];
  2796     for (uint i = start_ind; i < end_ind; i++) {
  2797       result = result->next_in_collection_set();
  2801   // Note: the calculated starting heap region may be NULL
  2802   // (when the collection set is empty).
  2803   assert(result == NULL || result->in_collection_set(), "sanity");
  2804   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2805          "should be updated only once per pause");
  2806   _worker_cset_start_region[worker_i] = result;
  2807   OrderAccess::storestore();
  2808   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2809   return result;
  2812 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2813   HeapRegion* r = g1_policy()->collection_set();
  2814   while (r != NULL) {
  2815     HeapRegion* next = r->next_in_collection_set();
  2816     if (cl->doHeapRegion(r)) {
  2817       cl->incomplete();
  2818       return;
  2820     r = next;
  2824 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2825                                                   HeapRegionClosure *cl) {
  2826   if (r == NULL) {
  2827     // The CSet is empty so there's nothing to do.
  2828     return;
  2831   assert(r->in_collection_set(),
  2832          "Start region must be a member of the collection set.");
  2833   HeapRegion* cur = r;
  2834   while (cur != NULL) {
  2835     HeapRegion* next = cur->next_in_collection_set();
  2836     if (cl->doHeapRegion(cur) && false) {
  2837       cl->incomplete();
  2838       return;
  2840     cur = next;
  2842   cur = g1_policy()->collection_set();
  2843   while (cur != r) {
  2844     HeapRegion* next = cur->next_in_collection_set();
  2845     if (cl->doHeapRegion(cur) && false) {
  2846       cl->incomplete();
  2847       return;
  2849     cur = next;
  2853 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
  2854   HeapRegion* result = _hrm.next_region_in_heap(from);
  2855   while (result != NULL && result->isHumongous()) {
  2856     result = _hrm.next_region_in_heap(result);
  2858   return result;
  2861 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2862   return heap_region_containing(addr);
  2865 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2866   Space* sp = space_containing(addr);
  2867   return sp->block_start(addr);
  2870 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2871   Space* sp = space_containing(addr);
  2872   return sp->block_size(addr);
  2875 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2876   Space* sp = space_containing(addr);
  2877   return sp->block_is_obj(addr);
  2880 bool G1CollectedHeap::supports_tlab_allocation() const {
  2881   return true;
  2884 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2885   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
  2888 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
  2889   return young_list()->eden_used_bytes();
  2892 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
  2893 // must be smaller than the humongous object limit.
  2894 size_t G1CollectedHeap::max_tlab_size() const {
  2895   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
  2898 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2899   // Return the remaining space in the cur alloc region, but not less than
  2900   // the min TLAB size.
  2902   // Also, this value can be at most the humongous object threshold,
  2903   // since we can't allow tlabs to grow big enough to accommodate
  2904   // humongous objects.
  2906   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
  2907   size_t max_tlab = max_tlab_size() * wordSize;
  2908   if (hr == NULL) {
  2909     return max_tlab;
  2910   } else {
  2911     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
  2915 size_t G1CollectedHeap::max_capacity() const {
  2916   return _hrm.reserved().byte_size();
  2919 jlong G1CollectedHeap::millis_since_last_gc() {
  2920   // assert(false, "NYI");
  2921   return 0;
  2924 void G1CollectedHeap::prepare_for_verify() {
  2925   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2926     ensure_parsability(false);
  2928   g1_rem_set()->prepare_for_verify();
  2931 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
  2932                                               VerifyOption vo) {
  2933   switch (vo) {
  2934   case VerifyOption_G1UsePrevMarking:
  2935     return hr->obj_allocated_since_prev_marking(obj);
  2936   case VerifyOption_G1UseNextMarking:
  2937     return hr->obj_allocated_since_next_marking(obj);
  2938   case VerifyOption_G1UseMarkWord:
  2939     return false;
  2940   default:
  2941     ShouldNotReachHere();
  2943   return false; // keep some compilers happy
  2946 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  2947   switch (vo) {
  2948   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  2949   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  2950   case VerifyOption_G1UseMarkWord:    return NULL;
  2951   default:                            ShouldNotReachHere();
  2953   return NULL; // keep some compilers happy
  2956 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  2957   switch (vo) {
  2958   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  2959   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  2960   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  2961   default:                            ShouldNotReachHere();
  2963   return false; // keep some compilers happy
  2966 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  2967   switch (vo) {
  2968   case VerifyOption_G1UsePrevMarking: return "PTAMS";
  2969   case VerifyOption_G1UseNextMarking: return "NTAMS";
  2970   case VerifyOption_G1UseMarkWord:    return "NONE";
  2971   default:                            ShouldNotReachHere();
  2973   return NULL; // keep some compilers happy
  2976 class VerifyRootsClosure: public OopClosure {
  2977 private:
  2978   G1CollectedHeap* _g1h;
  2979   VerifyOption     _vo;
  2980   bool             _failures;
  2981 public:
  2982   // _vo == UsePrevMarking -> use "prev" marking information,
  2983   // _vo == UseNextMarking -> use "next" marking information,
  2984   // _vo == UseMarkWord    -> use mark word from object header.
  2985   VerifyRootsClosure(VerifyOption vo) :
  2986     _g1h(G1CollectedHeap::heap()),
  2987     _vo(vo),
  2988     _failures(false) { }
  2990   bool failures() { return _failures; }
  2992   template <class T> void do_oop_nv(T* p) {
  2993     T heap_oop = oopDesc::load_heap_oop(p);
  2994     if (!oopDesc::is_null(heap_oop)) {
  2995       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  2996       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  2997         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  2998                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  2999         if (_vo == VerifyOption_G1UseMarkWord) {
  3000           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  3002         obj->print_on(gclog_or_tty);
  3003         _failures = true;
  3008   void do_oop(oop* p)       { do_oop_nv(p); }
  3009   void do_oop(narrowOop* p) { do_oop_nv(p); }
  3010 };
  3012 class G1VerifyCodeRootOopClosure: public OopClosure {
  3013   G1CollectedHeap* _g1h;
  3014   OopClosure* _root_cl;
  3015   nmethod* _nm;
  3016   VerifyOption _vo;
  3017   bool _failures;
  3019   template <class T> void do_oop_work(T* p) {
  3020     // First verify that this root is live
  3021     _root_cl->do_oop(p);
  3023     if (!G1VerifyHeapRegionCodeRoots) {
  3024       // We're not verifying the code roots attached to heap region.
  3025       return;
  3028     // Don't check the code roots during marking verification in a full GC
  3029     if (_vo == VerifyOption_G1UseMarkWord) {
  3030       return;
  3033     // Now verify that the current nmethod (which contains p) is
  3034     // in the code root list of the heap region containing the
  3035     // object referenced by p.
  3037     T heap_oop = oopDesc::load_heap_oop(p);
  3038     if (!oopDesc::is_null(heap_oop)) {
  3039       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3041       // Now fetch the region containing the object
  3042       HeapRegion* hr = _g1h->heap_region_containing(obj);
  3043       HeapRegionRemSet* hrrs = hr->rem_set();
  3044       // Verify that the strong code root list for this region
  3045       // contains the nmethod
  3046       if (!hrrs->strong_code_roots_list_contains(_nm)) {
  3047         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
  3048                               "from nmethod "PTR_FORMAT" not in strong "
  3049                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
  3050                               p, _nm, hr->bottom(), hr->end());
  3051         _failures = true;
  3056 public:
  3057   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
  3058     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
  3060   void do_oop(oop* p) { do_oop_work(p); }
  3061   void do_oop(narrowOop* p) { do_oop_work(p); }
  3063   void set_nmethod(nmethod* nm) { _nm = nm; }
  3064   bool failures() { return _failures; }
  3065 };
  3067 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  3068   G1VerifyCodeRootOopClosure* _oop_cl;
  3070 public:
  3071   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
  3072     _oop_cl(oop_cl) {}
  3074   void do_code_blob(CodeBlob* cb) {
  3075     nmethod* nm = cb->as_nmethod_or_null();
  3076     if (nm != NULL) {
  3077       _oop_cl->set_nmethod(nm);
  3078       nm->oops_do(_oop_cl);
  3081 };
  3083 class YoungRefCounterClosure : public OopClosure {
  3084   G1CollectedHeap* _g1h;
  3085   int              _count;
  3086  public:
  3087   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  3088   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  3089   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
  3091   int count() { return _count; }
  3092   void reset_count() { _count = 0; };
  3093 };
  3095 class VerifyKlassClosure: public KlassClosure {
  3096   YoungRefCounterClosure _young_ref_counter_closure;
  3097   OopClosure *_oop_closure;
  3098  public:
  3099   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  3100   void do_klass(Klass* k) {
  3101     k->oops_do(_oop_closure);
  3103     _young_ref_counter_closure.reset_count();
  3104     k->oops_do(&_young_ref_counter_closure);
  3105     if (_young_ref_counter_closure.count() > 0) {
  3106       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
  3109 };
  3111 class VerifyLivenessOopClosure: public OopClosure {
  3112   G1CollectedHeap* _g1h;
  3113   VerifyOption _vo;
  3114 public:
  3115   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  3116     _g1h(g1h), _vo(vo)
  3117   { }
  3118   void do_oop(narrowOop *p) { do_oop_work(p); }
  3119   void do_oop(      oop *p) { do_oop_work(p); }
  3121   template <class T> void do_oop_work(T *p) {
  3122     oop obj = oopDesc::load_decode_heap_oop(p);
  3123     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  3124               "Dead object referenced by a not dead object");
  3126 };
  3128 class VerifyObjsInRegionClosure: public ObjectClosure {
  3129 private:
  3130   G1CollectedHeap* _g1h;
  3131   size_t _live_bytes;
  3132   HeapRegion *_hr;
  3133   VerifyOption _vo;
  3134 public:
  3135   // _vo == UsePrevMarking -> use "prev" marking information,
  3136   // _vo == UseNextMarking -> use "next" marking information,
  3137   // _vo == UseMarkWord    -> use mark word from object header.
  3138   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  3139     : _live_bytes(0), _hr(hr), _vo(vo) {
  3140     _g1h = G1CollectedHeap::heap();
  3142   void do_object(oop o) {
  3143     VerifyLivenessOopClosure isLive(_g1h, _vo);
  3144     assert(o != NULL, "Huh?");
  3145     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  3146       // If the object is alive according to the mark word,
  3147       // then verify that the marking information agrees.
  3148       // Note we can't verify the contra-positive of the
  3149       // above: if the object is dead (according to the mark
  3150       // word), it may not be marked, or may have been marked
  3151       // but has since became dead, or may have been allocated
  3152       // since the last marking.
  3153       if (_vo == VerifyOption_G1UseMarkWord) {
  3154         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  3157       o->oop_iterate_no_header(&isLive);
  3158       if (!_hr->obj_allocated_since_prev_marking(o)) {
  3159         size_t obj_size = o->size();    // Make sure we don't overflow
  3160         _live_bytes += (obj_size * HeapWordSize);
  3164   size_t live_bytes() { return _live_bytes; }
  3165 };
  3167 class PrintObjsInRegionClosure : public ObjectClosure {
  3168   HeapRegion *_hr;
  3169   G1CollectedHeap *_g1;
  3170 public:
  3171   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  3172     _g1 = G1CollectedHeap::heap();
  3173   };
  3175   void do_object(oop o) {
  3176     if (o != NULL) {
  3177       HeapWord *start = (HeapWord *) o;
  3178       size_t word_sz = o->size();
  3179       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  3180                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  3181                           (void*) o, word_sz,
  3182                           _g1->isMarkedPrev(o),
  3183                           _g1->isMarkedNext(o),
  3184                           _hr->obj_allocated_since_prev_marking(o));
  3185       HeapWord *end = start + word_sz;
  3186       HeapWord *cur;
  3187       int *val;
  3188       for (cur = start; cur < end; cur++) {
  3189         val = (int *) cur;
  3190         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  3194 };
  3196 class VerifyRegionClosure: public HeapRegionClosure {
  3197 private:
  3198   bool             _par;
  3199   VerifyOption     _vo;
  3200   bool             _failures;
  3201 public:
  3202   // _vo == UsePrevMarking -> use "prev" marking information,
  3203   // _vo == UseNextMarking -> use "next" marking information,
  3204   // _vo == UseMarkWord    -> use mark word from object header.
  3205   VerifyRegionClosure(bool par, VerifyOption vo)
  3206     : _par(par),
  3207       _vo(vo),
  3208       _failures(false) {}
  3210   bool failures() {
  3211     return _failures;
  3214   bool doHeapRegion(HeapRegion* r) {
  3215     if (!r->continuesHumongous()) {
  3216       bool failures = false;
  3217       r->verify(_vo, &failures);
  3218       if (failures) {
  3219         _failures = true;
  3220       } else {
  3221         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3222         r->object_iterate(&not_dead_yet_cl);
  3223         if (_vo != VerifyOption_G1UseNextMarking) {
  3224           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3225             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  3226                                    "max_live_bytes "SIZE_FORMAT" "
  3227                                    "< calculated "SIZE_FORMAT,
  3228                                    r->bottom(), r->end(),
  3229                                    r->max_live_bytes(),
  3230                                  not_dead_yet_cl.live_bytes());
  3231             _failures = true;
  3233         } else {
  3234           // When vo == UseNextMarking we cannot currently do a sanity
  3235           // check on the live bytes as the calculation has not been
  3236           // finalized yet.
  3240     return false; // stop the region iteration if we hit a failure
  3242 };
  3244 // This is the task used for parallel verification of the heap regions
  3246 class G1ParVerifyTask: public AbstractGangTask {
  3247 private:
  3248   G1CollectedHeap* _g1h;
  3249   VerifyOption     _vo;
  3250   bool             _failures;
  3252 public:
  3253   // _vo == UsePrevMarking -> use "prev" marking information,
  3254   // _vo == UseNextMarking -> use "next" marking information,
  3255   // _vo == UseMarkWord    -> use mark word from object header.
  3256   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
  3257     AbstractGangTask("Parallel verify task"),
  3258     _g1h(g1h),
  3259     _vo(vo),
  3260     _failures(false) { }
  3262   bool failures() {
  3263     return _failures;
  3266   void work(uint worker_id) {
  3267     HandleMark hm;
  3268     VerifyRegionClosure blk(true, _vo);
  3269     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3270                                           _g1h->workers()->active_workers(),
  3271                                           HeapRegion::ParVerifyClaimValue);
  3272     if (blk.failures()) {
  3273       _failures = true;
  3276 };
  3278 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
  3279   if (SafepointSynchronize::is_at_safepoint()) {
  3280     assert(Thread::current()->is_VM_thread(),
  3281            "Expected to be executed serially by the VM thread at this point");
  3283     if (!silent) { gclog_or_tty->print("Roots "); }
  3284     VerifyRootsClosure rootsCl(vo);
  3285     VerifyKlassClosure klassCl(this, &rootsCl);
  3286     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
  3288     // We apply the relevant closures to all the oops in the
  3289     // system dictionary, class loader data graph, the string table
  3290     // and the nmethods in the code cache.
  3291     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
  3292     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
  3294     process_all_roots(true,            // activate StrongRootsScope
  3295                       SO_AllCodeCache, // roots scanning options
  3296                       &rootsCl,
  3297                       &cldCl,
  3298                       &blobsCl);
  3300     bool failures = rootsCl.failures() || codeRootsCl.failures();
  3302     if (vo != VerifyOption_G1UseMarkWord) {
  3303       // If we're verifying during a full GC then the region sets
  3304       // will have been torn down at the start of the GC. Therefore
  3305       // verifying the region sets will fail. So we only verify
  3306       // the region sets when not in a full GC.
  3307       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3308       verify_region_sets();
  3311     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3312     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3313       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3314              "sanity check");
  3316       G1ParVerifyTask task(this, vo);
  3317       assert(UseDynamicNumberOfGCThreads ||
  3318         workers()->active_workers() == workers()->total_workers(),
  3319         "If not dynamic should be using all the workers");
  3320       int n_workers = workers()->active_workers();
  3321       set_par_threads(n_workers);
  3322       workers()->run_task(&task);
  3323       set_par_threads(0);
  3324       if (task.failures()) {
  3325         failures = true;
  3328       // Checks that the expected amount of parallel work was done.
  3329       // The implication is that n_workers is > 0.
  3330       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3331              "sanity check");
  3333       reset_heap_region_claim_values();
  3335       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3336              "sanity check");
  3337     } else {
  3338       VerifyRegionClosure blk(false, vo);
  3339       heap_region_iterate(&blk);
  3340       if (blk.failures()) {
  3341         failures = true;
  3344     if (!silent) gclog_or_tty->print("RemSet ");
  3345     rem_set()->verify();
  3347     if (G1StringDedup::is_enabled()) {
  3348       if (!silent) gclog_or_tty->print("StrDedup ");
  3349       G1StringDedup::verify();
  3352     if (failures) {
  3353       gclog_or_tty->print_cr("Heap:");
  3354       // It helps to have the per-region information in the output to
  3355       // help us track down what went wrong. This is why we call
  3356       // print_extended_on() instead of print_on().
  3357       print_extended_on(gclog_or_tty);
  3358       gclog_or_tty->cr();
  3359 #ifndef PRODUCT
  3360       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3361         concurrent_mark()->print_reachable("at-verification-failure",
  3362                                            vo, false /* all */);
  3364 #endif
  3365       gclog_or_tty->flush();
  3367     guarantee(!failures, "there should not have been any failures");
  3368   } else {
  3369     if (!silent) {
  3370       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
  3371       if (G1StringDedup::is_enabled()) {
  3372         gclog_or_tty->print(", StrDedup");
  3374       gclog_or_tty->print(") ");
  3379 void G1CollectedHeap::verify(bool silent) {
  3380   verify(silent, VerifyOption_G1UsePrevMarking);
  3383 double G1CollectedHeap::verify(bool guard, const char* msg) {
  3384   double verify_time_ms = 0.0;
  3386   if (guard && total_collections() >= VerifyGCStartAt) {
  3387     double verify_start = os::elapsedTime();
  3388     HandleMark hm;  // Discard invalid handles created during verification
  3389     prepare_for_verify();
  3390     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
  3391     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  3394   return verify_time_ms;
  3397 void G1CollectedHeap::verify_before_gc() {
  3398   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  3399   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
  3402 void G1CollectedHeap::verify_after_gc() {
  3403   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  3404   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
  3407 class PrintRegionClosure: public HeapRegionClosure {
  3408   outputStream* _st;
  3409 public:
  3410   PrintRegionClosure(outputStream* st) : _st(st) {}
  3411   bool doHeapRegion(HeapRegion* r) {
  3412     r->print_on(_st);
  3413     return false;
  3415 };
  3417 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
  3418                                        const HeapRegion* hr,
  3419                                        const VerifyOption vo) const {
  3420   switch (vo) {
  3421   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  3422   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  3423   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  3424   default:                            ShouldNotReachHere();
  3426   return false; // keep some compilers happy
  3429 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
  3430                                        const VerifyOption vo) const {
  3431   switch (vo) {
  3432   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  3433   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  3434   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  3435   default:                            ShouldNotReachHere();
  3437   return false; // keep some compilers happy
  3440 void G1CollectedHeap::print_on(outputStream* st) const {
  3441   st->print(" %-20s", "garbage-first heap");
  3442   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3443             capacity()/K, used_unlocked()/K);
  3444   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3445             _hrm.reserved().start(),
  3446             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
  3447             _hrm.reserved().end());
  3448   st->cr();
  3449   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3450   uint young_regions = _young_list->length();
  3451   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
  3452             (size_t) young_regions * HeapRegion::GrainBytes / K);
  3453   uint survivor_regions = g1_policy()->recorded_survivor_regions();
  3454   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
  3455             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
  3456   st->cr();
  3457   MetaspaceAux::print_on(st);
  3460 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3461   print_on(st);
  3463   // Print the per-region information.
  3464   st->cr();
  3465   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
  3466                "HS=humongous(starts), HC=humongous(continues), "
  3467                "CS=collection set, F=free, TS=gc time stamp, "
  3468                "PTAMS=previous top-at-mark-start, "
  3469                "NTAMS=next top-at-mark-start)");
  3470   PrintRegionClosure blk(st);
  3471   heap_region_iterate(&blk);
  3474 void G1CollectedHeap::print_on_error(outputStream* st) const {
  3475   this->CollectedHeap::print_on_error(st);
  3477   if (_cm != NULL) {
  3478     st->cr();
  3479     _cm->print_on_error(st);
  3483 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3484   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3485     workers()->print_worker_threads_on(st);
  3487   _cmThread->print_on(st);
  3488   st->cr();
  3489   _cm->print_worker_threads_on(st);
  3490   _cg1r->print_worker_threads_on(st);
  3491   if (G1StringDedup::is_enabled()) {
  3492     G1StringDedup::print_worker_threads_on(st);
  3496 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3497   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3498     workers()->threads_do(tc);
  3500   tc->do_thread(_cmThread);
  3501   _cg1r->threads_do(tc);
  3502   if (G1StringDedup::is_enabled()) {
  3503     G1StringDedup::threads_do(tc);
  3507 void G1CollectedHeap::print_tracing_info() const {
  3508   // We'll overload this to mean "trace GC pause statistics."
  3509   if (TraceGen0Time || TraceGen1Time) {
  3510     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3511     // to that.
  3512     g1_policy()->print_tracing_info();
  3514   if (G1SummarizeRSetStats) {
  3515     g1_rem_set()->print_summary_info();
  3517   if (G1SummarizeConcMark) {
  3518     concurrent_mark()->print_summary_info();
  3520   g1_policy()->print_yg_surv_rate_info();
  3521   SpecializationStats::print();
  3524 #ifndef PRODUCT
  3525 // Helpful for debugging RSet issues.
  3527 class PrintRSetsClosure : public HeapRegionClosure {
  3528 private:
  3529   const char* _msg;
  3530   size_t _occupied_sum;
  3532 public:
  3533   bool doHeapRegion(HeapRegion* r) {
  3534     HeapRegionRemSet* hrrs = r->rem_set();
  3535     size_t occupied = hrrs->occupied();
  3536     _occupied_sum += occupied;
  3538     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3539                            HR_FORMAT_PARAMS(r));
  3540     if (occupied == 0) {
  3541       gclog_or_tty->print_cr("  RSet is empty");
  3542     } else {
  3543       hrrs->print();
  3545     gclog_or_tty->print_cr("----------");
  3546     return false;
  3549   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3550     gclog_or_tty->cr();
  3551     gclog_or_tty->print_cr("========================================");
  3552     gclog_or_tty->print_cr("%s", msg);
  3553     gclog_or_tty->cr();
  3556   ~PrintRSetsClosure() {
  3557     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3558     gclog_or_tty->print_cr("========================================");
  3559     gclog_or_tty->cr();
  3561 };
  3563 void G1CollectedHeap::print_cset_rsets() {
  3564   PrintRSetsClosure cl("Printing CSet RSets");
  3565   collection_set_iterate(&cl);
  3568 void G1CollectedHeap::print_all_rsets() {
  3569   PrintRSetsClosure cl("Printing All RSets");;
  3570   heap_region_iterate(&cl);
  3572 #endif // PRODUCT
  3574 G1CollectedHeap* G1CollectedHeap::heap() {
  3575   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3576          "not a garbage-first heap");
  3577   return _g1h;
  3580 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3581   // always_do_update_barrier = false;
  3582   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3583   // Fill TLAB's and such
  3584   accumulate_statistics_all_tlabs();
  3585   ensure_parsability(true);
  3587   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
  3588       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3589     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
  3593 void G1CollectedHeap::gc_epilogue(bool full) {
  3595   if (G1SummarizeRSetStats &&
  3596       (G1SummarizeRSetStatsPeriod > 0) &&
  3597       // we are at the end of the GC. Total collections has already been increased.
  3598       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
  3599     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
  3602   // FIXME: what is this about?
  3603   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3604   // is set.
  3605   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3606                         "derived pointer present"));
  3607   // always_do_update_barrier = true;
  3609   resize_all_tlabs();
  3610   allocation_context_stats().update(full);
  3612   // We have just completed a GC. Update the soft reference
  3613   // policy with the new heap occupancy
  3614   Universe::update_heap_info_at_gc();
  3617 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3618                                                unsigned int gc_count_before,
  3619                                                bool* succeeded,
  3620                                                GCCause::Cause gc_cause) {
  3621   assert_heap_not_locked_and_not_at_safepoint();
  3622   g1_policy()->record_stop_world_start();
  3623   VM_G1IncCollectionPause op(gc_count_before,
  3624                              word_size,
  3625                              false, /* should_initiate_conc_mark */
  3626                              g1_policy()->max_pause_time_ms(),
  3627                              gc_cause);
  3629   op.set_allocation_context(AllocationContext::current());
  3630   VMThread::execute(&op);
  3632   HeapWord* result = op.result();
  3633   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3634   assert(result == NULL || ret_succeeded,
  3635          "the result should be NULL if the VM did not succeed");
  3636   *succeeded = ret_succeeded;
  3638   assert_heap_not_locked();
  3639   return result;
  3642 void
  3643 G1CollectedHeap::doConcurrentMark() {
  3644   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3645   if (!_cmThread->in_progress()) {
  3646     _cmThread->set_started();
  3647     CGC_lock->notify();
  3651 size_t G1CollectedHeap::pending_card_num() {
  3652   size_t extra_cards = 0;
  3653   JavaThread *curr = Threads::first();
  3654   while (curr != NULL) {
  3655     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3656     extra_cards += dcq.size();
  3657     curr = curr->next();
  3659   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3660   size_t buffer_size = dcqs.buffer_size();
  3661   size_t buffer_num = dcqs.completed_buffers_num();
  3663   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  3664   // in bytes - not the number of 'entries'. We need to convert
  3665   // into a number of cards.
  3666   return (buffer_size * buffer_num + extra_cards) / oopSize;
  3669 size_t G1CollectedHeap::cards_scanned() {
  3670   return g1_rem_set()->cardsScanned();
  3673 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
  3674   HeapRegion* region = region_at(index);
  3675   assert(region->startsHumongous(), "Must start a humongous object");
  3676   return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
  3679 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
  3680  private:
  3681   size_t _total_humongous;
  3682   size_t _candidate_humongous;
  3683  public:
  3684   RegisterHumongousWithInCSetFastTestClosure() : _total_humongous(0), _candidate_humongous(0) {
  3687   virtual bool doHeapRegion(HeapRegion* r) {
  3688     if (!r->startsHumongous()) {
  3689       return false;
  3691     G1CollectedHeap* g1h = G1CollectedHeap::heap();
  3693     uint region_idx = r->hrm_index();
  3694     bool is_candidate = !g1h->humongous_region_is_always_live(region_idx);
  3695     // Is_candidate already filters out humongous regions with some remembered set.
  3696     // This will not lead to humongous object that we mistakenly keep alive because
  3697     // during young collection the remembered sets will only be added to.
  3698     if (is_candidate) {
  3699       g1h->register_humongous_region_with_in_cset_fast_test(region_idx);
  3700       _candidate_humongous++;
  3702     _total_humongous++;
  3704     return false;
  3707   size_t total_humongous() const { return _total_humongous; }
  3708   size_t candidate_humongous() const { return _candidate_humongous; }
  3709 };
  3711 void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
  3712   if (!G1ReclaimDeadHumongousObjectsAtYoungGC) {
  3713     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0, 0);
  3714     return;
  3717   RegisterHumongousWithInCSetFastTestClosure cl;
  3718   heap_region_iterate(&cl);
  3719   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(cl.total_humongous(),
  3720                                                                   cl.candidate_humongous());
  3721   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
  3723   if (_has_humongous_reclaim_candidates) {
  3724     clear_humongous_is_live_table();
  3728 void
  3729 G1CollectedHeap::setup_surviving_young_words() {
  3730   assert(_surviving_young_words == NULL, "pre-condition");
  3731   uint array_length = g1_policy()->young_cset_region_length();
  3732   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
  3733   if (_surviving_young_words == NULL) {
  3734     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
  3735                           "Not enough space for young surv words summary.");
  3737   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
  3738 #ifdef ASSERT
  3739   for (uint i = 0;  i < array_length; ++i) {
  3740     assert( _surviving_young_words[i] == 0, "memset above" );
  3742 #endif // !ASSERT
  3745 void
  3746 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3747   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3748   uint array_length = g1_policy()->young_cset_region_length();
  3749   for (uint i = 0; i < array_length; ++i) {
  3750     _surviving_young_words[i] += surv_young_words[i];
  3754 void
  3755 G1CollectedHeap::cleanup_surviving_young_words() {
  3756   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3757   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
  3758   _surviving_young_words = NULL;
  3761 #ifdef ASSERT
  3762 class VerifyCSetClosure: public HeapRegionClosure {
  3763 public:
  3764   bool doHeapRegion(HeapRegion* hr) {
  3765     // Here we check that the CSet region's RSet is ready for parallel
  3766     // iteration. The fields that we'll verify are only manipulated
  3767     // when the region is part of a CSet and is collected. Afterwards,
  3768     // we reset these fields when we clear the region's RSet (when the
  3769     // region is freed) so they are ready when the region is
  3770     // re-allocated. The only exception to this is if there's an
  3771     // evacuation failure and instead of freeing the region we leave
  3772     // it in the heap. In that case, we reset these fields during
  3773     // evacuation failure handling.
  3774     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3776     // Here's a good place to add any other checks we'd like to
  3777     // perform on CSet regions.
  3778     return false;
  3780 };
  3781 #endif // ASSERT
  3783 #if TASKQUEUE_STATS
  3784 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3785   st->print_raw_cr("GC Task Stats");
  3786   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3787   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3790 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3791   print_taskqueue_stats_hdr(st);
  3793   TaskQueueStats totals;
  3794   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3795   for (int i = 0; i < n; ++i) {
  3796     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3797     totals += task_queue(i)->stats;
  3799   st->print_raw("tot "); totals.print(st); st->cr();
  3801   DEBUG_ONLY(totals.verify());
  3804 void G1CollectedHeap::reset_taskqueue_stats() {
  3805   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3806   for (int i = 0; i < n; ++i) {
  3807     task_queue(i)->stats.reset();
  3810 #endif // TASKQUEUE_STATS
  3812 void G1CollectedHeap::log_gc_header() {
  3813   if (!G1Log::fine()) {
  3814     return;
  3817   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
  3819   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
  3820     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
  3821     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
  3823   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
  3826 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  3827   if (!G1Log::fine()) {
  3828     return;
  3831   if (G1Log::finer()) {
  3832     if (evacuation_failed()) {
  3833       gclog_or_tty->print(" (to-space exhausted)");
  3835     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3836     g1_policy()->phase_times()->note_gc_end();
  3837     g1_policy()->phase_times()->print(pause_time_sec);
  3838     g1_policy()->print_detailed_heap_transition();
  3839   } else {
  3840     if (evacuation_failed()) {
  3841       gclog_or_tty->print("--");
  3843     g1_policy()->print_heap_transition();
  3844     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3846   gclog_or_tty->flush();
  3849 bool
  3850 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3851   assert_at_safepoint(true /* should_be_vm_thread */);
  3852   guarantee(!is_gc_active(), "collection is not reentrant");
  3854   if (GC_locker::check_active_before_gc()) {
  3855     return false;
  3858   _gc_timer_stw->register_gc_start();
  3860   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
  3862   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3863   ResourceMark rm;
  3865   print_heap_before_gc();
  3866   trace_heap_before_gc(_gc_tracer_stw);
  3868   verify_region_sets_optional();
  3869   verify_dirty_young_regions();
  3871   // This call will decide whether this pause is an initial-mark
  3872   // pause. If it is, during_initial_mark_pause() will return true
  3873   // for the duration of this pause.
  3874   g1_policy()->decide_on_conc_mark_initiation();
  3876   // We do not allow initial-mark to be piggy-backed on a mixed GC.
  3877   assert(!g1_policy()->during_initial_mark_pause() ||
  3878           g1_policy()->gcs_are_young(), "sanity");
  3880   // We also do not allow mixed GCs during marking.
  3881   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  3883   // Record whether this pause is an initial mark. When the current
  3884   // thread has completed its logging output and it's safe to signal
  3885   // the CM thread, the flag's value in the policy has been reset.
  3886   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
  3888   // Inner scope for scope based logging, timers, and stats collection
  3890     EvacuationInfo evacuation_info;
  3892     if (g1_policy()->during_initial_mark_pause()) {
  3893       // We are about to start a marking cycle, so we increment the
  3894       // full collection counter.
  3895       increment_old_marking_cycles_started();
  3896       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
  3899     _gc_tracer_stw->report_yc_type(yc_type());
  3901     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  3903     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3904                                 workers()->active_workers() : 1);
  3905     double pause_start_sec = os::elapsedTime();
  3906     g1_policy()->phase_times()->note_gc_start(active_workers);
  3907     log_gc_header();
  3909     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3910     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3912     // If the secondary_free_list is not empty, append it to the
  3913     // free_list. No need to wait for the cleanup operation to finish;
  3914     // the region allocation code will check the secondary_free_list
  3915     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3916     // set, skip this step so that the region allocation code has to
  3917     // get entries from the secondary_free_list.
  3918     if (!G1StressConcRegionFreeing) {
  3919       append_secondary_free_list_if_not_empty_with_lock();
  3922     assert(check_young_list_well_formed(), "young list should be well formed");
  3923     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3924            "sanity check");
  3926     // Don't dynamically change the number of GC threads this early.  A value of
  3927     // 0 is used to indicate serial work.  When parallel work is done,
  3928     // it will be set.
  3930     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3931       IsGCActiveMark x;
  3933       gc_prologue(false);
  3934       increment_total_collections(false /* full gc */);
  3935       increment_gc_time_stamp();
  3937       verify_before_gc();
  3938       check_bitmaps("GC Start");
  3940       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3942       // Please see comment in g1CollectedHeap.hpp and
  3943       // G1CollectedHeap::ref_processing_init() to see how
  3944       // reference processing currently works in G1.
  3946       // Enable discovery in the STW reference processor
  3947       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  3948                                             true /*verify_no_refs*/);
  3951         // We want to temporarily turn off discovery by the
  3952         // CM ref processor, if necessary, and turn it back on
  3953         // on again later if we do. Using a scoped
  3954         // NoRefDiscovery object will do this.
  3955         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  3957         // Forget the current alloc region (we might even choose it to be part
  3958         // of the collection set!).
  3959         _allocator->release_mutator_alloc_region();
  3961         // We should call this after we retire the mutator alloc
  3962         // region(s) so that all the ALLOC / RETIRE events are generated
  3963         // before the start GC event.
  3964         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  3966         // This timing is only used by the ergonomics to handle our pause target.
  3967         // It is unclear why this should not include the full pause. We will
  3968         // investigate this in CR 7178365.
  3969         //
  3970         // Preserving the old comment here if that helps the investigation:
  3971         //
  3972         // The elapsed time induced by the start time below deliberately elides
  3973         // the possible verification above.
  3974         double sample_start_time_sec = os::elapsedTime();
  3976 #if YOUNG_LIST_VERBOSE
  3977         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  3978         _young_list->print();
  3979         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3980 #endif // YOUNG_LIST_VERBOSE
  3982         g1_policy()->record_collection_pause_start(sample_start_time_sec);
  3984         double scan_wait_start = os::elapsedTime();
  3985         // We have to wait until the CM threads finish scanning the
  3986         // root regions as it's the only way to ensure that all the
  3987         // objects on them have been correctly scanned before we start
  3988         // moving them during the GC.
  3989         bool waited = _cm->root_regions()->wait_until_scan_finished();
  3990         double wait_time_ms = 0.0;
  3991         if (waited) {
  3992           double scan_wait_end = os::elapsedTime();
  3993           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
  3995         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
  3997 #if YOUNG_LIST_VERBOSE
  3998         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  3999         _young_list->print();
  4000 #endif // YOUNG_LIST_VERBOSE
  4002         if (g1_policy()->during_initial_mark_pause()) {
  4003           concurrent_mark()->checkpointRootsInitialPre();
  4006 #if YOUNG_LIST_VERBOSE
  4007         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  4008         _young_list->print();
  4009         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4010 #endif // YOUNG_LIST_VERBOSE
  4012         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
  4014         register_humongous_regions_with_in_cset_fast_test();
  4016         _cm->note_start_of_gc();
  4017         // We should not verify the per-thread SATB buffers given that
  4018         // we have not filtered them yet (we'll do so during the
  4019         // GC). We also call this after finalize_cset() to
  4020         // ensure that the CSet has been finalized.
  4021         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4022                                  true  /* verify_enqueued_buffers */,
  4023                                  false /* verify_thread_buffers */,
  4024                                  true  /* verify_fingers */);
  4026         if (_hr_printer.is_active()) {
  4027           HeapRegion* hr = g1_policy()->collection_set();
  4028           while (hr != NULL) {
  4029             _hr_printer.cset(hr);
  4030             hr = hr->next_in_collection_set();
  4034 #ifdef ASSERT
  4035         VerifyCSetClosure cl;
  4036         collection_set_iterate(&cl);
  4037 #endif // ASSERT
  4039         setup_surviving_young_words();
  4041         // Initialize the GC alloc regions.
  4042         _allocator->init_gc_alloc_regions(evacuation_info);
  4044         // Actually do the work...
  4045         evacuate_collection_set(evacuation_info);
  4047         // We do this to mainly verify the per-thread SATB buffers
  4048         // (which have been filtered by now) since we didn't verify
  4049         // them earlier. No point in re-checking the stacks / enqueued
  4050         // buffers given that the CSet has not changed since last time
  4051         // we checked.
  4052         _cm->verify_no_cset_oops(false /* verify_stacks */,
  4053                                  false /* verify_enqueued_buffers */,
  4054                                  true  /* verify_thread_buffers */,
  4055                                  true  /* verify_fingers */);
  4057         free_collection_set(g1_policy()->collection_set(), evacuation_info);
  4059         eagerly_reclaim_humongous_regions();
  4061         g1_policy()->clear_collection_set();
  4063         cleanup_surviving_young_words();
  4065         // Start a new incremental collection set for the next pause.
  4066         g1_policy()->start_incremental_cset_building();
  4068         clear_cset_fast_test();
  4070         _young_list->reset_sampled_info();
  4072         // Don't check the whole heap at this point as the
  4073         // GC alloc regions from this pause have been tagged
  4074         // as survivors and moved on to the survivor list.
  4075         // Survivor regions will fail the !is_young() check.
  4076         assert(check_young_list_empty(false /* check_heap */),
  4077           "young list should be empty");
  4079 #if YOUNG_LIST_VERBOSE
  4080         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  4081         _young_list->print();
  4082 #endif // YOUNG_LIST_VERBOSE
  4084         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  4085                                              _young_list->first_survivor_region(),
  4086                                              _young_list->last_survivor_region());
  4088         _young_list->reset_auxilary_lists();
  4090         if (evacuation_failed()) {
  4091           _allocator->set_used(recalculate_used());
  4092           uint n_queues = MAX2((int)ParallelGCThreads, 1);
  4093           for (uint i = 0; i < n_queues; i++) {
  4094             if (_evacuation_failed_info_array[i].has_failed()) {
  4095               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
  4098         } else {
  4099           // The "used" of the the collection set have already been subtracted
  4100           // when they were freed.  Add in the bytes evacuated.
  4101           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
  4104         if (g1_policy()->during_initial_mark_pause()) {
  4105           // We have to do this before we notify the CM threads that
  4106           // they can start working to make sure that all the
  4107           // appropriate initialization is done on the CM object.
  4108           concurrent_mark()->checkpointRootsInitialPost();
  4109           set_marking_started();
  4110           // Note that we don't actually trigger the CM thread at
  4111           // this point. We do that later when we're sure that
  4112           // the current thread has completed its logging output.
  4115         allocate_dummy_regions();
  4117 #if YOUNG_LIST_VERBOSE
  4118         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  4119         _young_list->print();
  4120         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4121 #endif // YOUNG_LIST_VERBOSE
  4123         _allocator->init_mutator_alloc_region();
  4126           size_t expand_bytes = g1_policy()->expansion_amount();
  4127           if (expand_bytes > 0) {
  4128             size_t bytes_before = capacity();
  4129             // No need for an ergo verbose message here,
  4130             // expansion_amount() does this when it returns a value > 0.
  4131             if (!expand(expand_bytes)) {
  4132               // We failed to expand the heap. Cannot do anything about it.
  4137         // We redo the verification but now wrt to the new CSet which
  4138         // has just got initialized after the previous CSet was freed.
  4139         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4140                                  true  /* verify_enqueued_buffers */,
  4141                                  true  /* verify_thread_buffers */,
  4142                                  true  /* verify_fingers */);
  4143         _cm->note_end_of_gc();
  4145         // This timing is only used by the ergonomics to handle our pause target.
  4146         // It is unclear why this should not include the full pause. We will
  4147         // investigate this in CR 7178365.
  4148         double sample_end_time_sec = os::elapsedTime();
  4149         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
  4150         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
  4152         MemoryService::track_memory_usage();
  4154         // In prepare_for_verify() below we'll need to scan the deferred
  4155         // update buffers to bring the RSets up-to-date if
  4156         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  4157         // the update buffers we'll probably need to scan cards on the
  4158         // regions we just allocated to (i.e., the GC alloc
  4159         // regions). However, during the last GC we called
  4160         // set_saved_mark() on all the GC alloc regions, so card
  4161         // scanning might skip the [saved_mark_word()...top()] area of
  4162         // those regions (i.e., the area we allocated objects into
  4163         // during the last GC). But it shouldn't. Given that
  4164         // saved_mark_word() is conditional on whether the GC time stamp
  4165         // on the region is current or not, by incrementing the GC time
  4166         // stamp here we invalidate all the GC time stamps on all the
  4167         // regions and saved_mark_word() will simply return top() for
  4168         // all the regions. This is a nicer way of ensuring this rather
  4169         // than iterating over the regions and fixing them. In fact, the
  4170         // GC time stamp increment here also ensures that
  4171         // saved_mark_word() will return top() between pauses, i.e.,
  4172         // during concurrent refinement. So we don't need the
  4173         // is_gc_active() check to decided which top to use when
  4174         // scanning cards (see CR 7039627).
  4175         increment_gc_time_stamp();
  4177         verify_after_gc();
  4178         check_bitmaps("GC End");
  4180         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  4181         ref_processor_stw()->verify_no_references_recorded();
  4183         // CM reference discovery will be re-enabled if necessary.
  4186       // We should do this after we potentially expand the heap so
  4187       // that all the COMMIT events are generated before the end GC
  4188       // event, and after we retire the GC alloc regions so that all
  4189       // RETIRE events are generated before the end GC event.
  4190       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  4192 #ifdef TRACESPINNING
  4193       ParallelTaskTerminator::print_termination_counts();
  4194 #endif
  4196       gc_epilogue(false);
  4199     // Print the remainder of the GC log output.
  4200     log_gc_footer(os::elapsedTime() - pause_start_sec);
  4202     // It is not yet to safe to tell the concurrent mark to
  4203     // start as we have some optional output below. We don't want the
  4204     // output from the concurrent mark thread interfering with this
  4205     // logging output either.
  4207     _hrm.verify_optional();
  4208     verify_region_sets_optional();
  4210     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  4211     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  4213     print_heap_after_gc();
  4214     trace_heap_after_gc(_gc_tracer_stw);
  4216     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  4217     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  4218     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  4219     // before any GC notifications are raised.
  4220     g1mm()->update_sizes();
  4222     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
  4223     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
  4224     _gc_timer_stw->register_gc_end();
  4225     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  4227   // It should now be safe to tell the concurrent mark thread to start
  4228   // without its logging output interfering with the logging output
  4229   // that came from the pause.
  4231   if (should_start_conc_mark) {
  4232     // CAUTION: after the doConcurrentMark() call below,
  4233     // the concurrent marking thread(s) could be running
  4234     // concurrently with us. Make sure that anything after
  4235     // this point does not assume that we are the only GC thread
  4236     // running. Note: of course, the actual marking work will
  4237     // not start until the safepoint itself is released in
  4238     // SuspendibleThreadSet::desynchronize().
  4239     doConcurrentMark();
  4242   return true;
  4245 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  4247   size_t gclab_word_size;
  4248   switch (purpose) {
  4249     case GCAllocForSurvived:
  4250       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
  4251       break;
  4252     case GCAllocForTenured:
  4253       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4254       break;
  4255     default:
  4256       assert(false, "unknown GCAllocPurpose");
  4257       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4258       break;
  4261   // Prevent humongous PLAB sizes for two reasons:
  4262   // * PLABs are allocated using a similar paths as oops, but should
  4263   //   never be in a humongous region
  4264   // * Allowing humongous PLABs needlessly churns the region free lists
  4265   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
  4268 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  4269   _drain_in_progress = false;
  4270   set_evac_failure_closure(cl);
  4271   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
  4274 void G1CollectedHeap::finalize_for_evac_failure() {
  4275   assert(_evac_failure_scan_stack != NULL &&
  4276          _evac_failure_scan_stack->length() == 0,
  4277          "Postcondition");
  4278   assert(!_drain_in_progress, "Postcondition");
  4279   delete _evac_failure_scan_stack;
  4280   _evac_failure_scan_stack = NULL;
  4283 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4284   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4286   double remove_self_forwards_start = os::elapsedTime();
  4288   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  4290   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4291     set_par_threads();
  4292     workers()->run_task(&rsfp_task);
  4293     set_par_threads(0);
  4294   } else {
  4295     rsfp_task.work(0);
  4298   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4300   // Reset the claim values in the regions in the collection set.
  4301   reset_cset_heap_region_claim_values();
  4303   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4305   // Now restore saved marks, if any.
  4306   assert(_objs_with_preserved_marks.size() ==
  4307             _preserved_marks_of_objs.size(), "Both or none.");
  4308   while (!_objs_with_preserved_marks.is_empty()) {
  4309     oop obj = _objs_with_preserved_marks.pop();
  4310     markOop m = _preserved_marks_of_objs.pop();
  4311     obj->set_mark(m);
  4313   _objs_with_preserved_marks.clear(true);
  4314   _preserved_marks_of_objs.clear(true);
  4316   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
  4319 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4320   _evac_failure_scan_stack->push(obj);
  4323 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4324   assert(_evac_failure_scan_stack != NULL, "precondition");
  4326   while (_evac_failure_scan_stack->length() > 0) {
  4327      oop obj = _evac_failure_scan_stack->pop();
  4328      _evac_failure_closure->set_region(heap_region_containing(obj));
  4329      obj->oop_iterate_backwards(_evac_failure_closure);
  4333 oop
  4334 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
  4335                                                oop old) {
  4336   assert(obj_in_cs(old),
  4337          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4338                  (HeapWord*) old));
  4339   markOop m = old->mark();
  4340   oop forward_ptr = old->forward_to_atomic(old);
  4341   if (forward_ptr == NULL) {
  4342     // Forward-to-self succeeded.
  4343     assert(_par_scan_state != NULL, "par scan state");
  4344     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4345     uint queue_num = _par_scan_state->queue_num();
  4347     _evacuation_failed = true;
  4348     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
  4349     if (_evac_failure_closure != cl) {
  4350       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4351       assert(!_drain_in_progress,
  4352              "Should only be true while someone holds the lock.");
  4353       // Set the global evac-failure closure to the current thread's.
  4354       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4355       set_evac_failure_closure(cl);
  4356       // Now do the common part.
  4357       handle_evacuation_failure_common(old, m);
  4358       // Reset to NULL.
  4359       set_evac_failure_closure(NULL);
  4360     } else {
  4361       // The lock is already held, and this is recursive.
  4362       assert(_drain_in_progress, "This should only be the recursive case.");
  4363       handle_evacuation_failure_common(old, m);
  4365     return old;
  4366   } else {
  4367     // Forward-to-self failed. Either someone else managed to allocate
  4368     // space for this object (old != forward_ptr) or they beat us in
  4369     // self-forwarding it (old == forward_ptr).
  4370     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4371            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4372                    "should not be in the CSet",
  4373                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4374     return forward_ptr;
  4378 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4379   preserve_mark_if_necessary(old, m);
  4381   HeapRegion* r = heap_region_containing(old);
  4382   if (!r->evacuation_failed()) {
  4383     r->set_evacuation_failed(true);
  4384     _hr_printer.evac_failure(r);
  4387   push_on_evac_failure_scan_stack(old);
  4389   if (!_drain_in_progress) {
  4390     // prevent recursion in copy_to_survivor_space()
  4391     _drain_in_progress = true;
  4392     drain_evac_failure_scan_stack();
  4393     _drain_in_progress = false;
  4397 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4398   assert(evacuation_failed(), "Oversaving!");
  4399   // We want to call the "for_promotion_failure" version only in the
  4400   // case of a promotion failure.
  4401   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4402     _objs_with_preserved_marks.push(obj);
  4403     _preserved_marks_of_objs.push(m);
  4407 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4408                                                   size_t word_size,
  4409                                                   AllocationContext_t context) {
  4410   if (purpose == GCAllocForSurvived) {
  4411     HeapWord* result = survivor_attempt_allocation(word_size, context);
  4412     if (result != NULL) {
  4413       return result;
  4414     } else {
  4415       // Let's try to allocate in the old gen in case we can fit the
  4416       // object there.
  4417       return old_attempt_allocation(word_size, context);
  4419   } else {
  4420     assert(purpose ==  GCAllocForTenured, "sanity");
  4421     HeapWord* result = old_attempt_allocation(word_size, context);
  4422     if (result != NULL) {
  4423       return result;
  4424     } else {
  4425       // Let's try to allocate in the survivors in case we can fit the
  4426       // object there.
  4427       return survivor_attempt_allocation(word_size, context);
  4431   ShouldNotReachHere();
  4432   // Trying to keep some compilers happy.
  4433   return NULL;
  4436 void G1ParCopyHelper::mark_object(oop obj) {
  4437   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
  4439   // We know that the object is not moving so it's safe to read its size.
  4440   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  4443 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
  4444   assert(from_obj->is_forwarded(), "from obj should be forwarded");
  4445   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  4446   assert(from_obj != to_obj, "should not be self-forwarded");
  4448   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
  4449   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
  4451   // The object might be in the process of being copied by another
  4452   // worker so we cannot trust that its to-space image is
  4453   // well-formed. So we have to read its size from its from-space
  4454   // image which we know should not be changing.
  4455   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
  4458 template <class T>
  4459 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  4460   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
  4461     _scanned_klass->record_modified_oops();
  4465 template <G1Barrier barrier, G1Mark do_mark_object>
  4466 template <class T>
  4467 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
  4468   T heap_oop = oopDesc::load_heap_oop(p);
  4470   if (oopDesc::is_null(heap_oop)) {
  4471     return;
  4474   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  4476   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
  4478   G1CollectedHeap::in_cset_state_t state = _g1->in_cset_state(obj);
  4480   if (state == G1CollectedHeap::InCSet) {
  4481     oop forwardee;
  4482     if (obj->is_forwarded()) {
  4483       forwardee = obj->forwardee();
  4484     } else {
  4485       forwardee = _par_scan_state->copy_to_survivor_space(obj);
  4487     assert(forwardee != NULL, "forwardee should not be NULL");
  4488     oopDesc::encode_store_heap_oop(p, forwardee);
  4489     if (do_mark_object != G1MarkNone && forwardee != obj) {
  4490       // If the object is self-forwarded we don't need to explicitly
  4491       // mark it, the evacuation failure protocol will do so.
  4492       mark_forwarded_object(obj, forwardee);
  4495     if (barrier == G1BarrierKlass) {
  4496       do_klass_barrier(p, forwardee);
  4498   } else {
  4499     if (state == G1CollectedHeap::IsHumongous) {
  4500       _g1->set_humongous_is_live(obj);
  4502     // The object is not in collection set. If we're a root scanning
  4503     // closure during an initial mark pause then attempt to mark the object.
  4504     if (do_mark_object == G1MarkFromRoot) {
  4505       mark_object(obj);
  4509   if (barrier == G1BarrierEvac) {
  4510     _par_scan_state->update_rs(_from, p, _worker_id);
  4514 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
  4515 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
  4517 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4518 protected:
  4519   G1CollectedHeap*              _g1h;
  4520   G1ParScanThreadState*         _par_scan_state;
  4521   RefToScanQueueSet*            _queues;
  4522   ParallelTaskTerminator*       _terminator;
  4524   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4525   RefToScanQueueSet*      queues()         { return _queues; }
  4526   ParallelTaskTerminator* terminator()     { return _terminator; }
  4528 public:
  4529   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4530                                 G1ParScanThreadState* par_scan_state,
  4531                                 RefToScanQueueSet* queues,
  4532                                 ParallelTaskTerminator* terminator)
  4533     : _g1h(g1h), _par_scan_state(par_scan_state),
  4534       _queues(queues), _terminator(terminator) {}
  4536   void do_void();
  4538 private:
  4539   inline bool offer_termination();
  4540 };
  4542 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4543   G1ParScanThreadState* const pss = par_scan_state();
  4544   pss->start_term_time();
  4545   const bool res = terminator()->offer_termination();
  4546   pss->end_term_time();
  4547   return res;
  4550 void G1ParEvacuateFollowersClosure::do_void() {
  4551   G1ParScanThreadState* const pss = par_scan_state();
  4552   pss->trim_queue();
  4553   do {
  4554     pss->steal_and_trim_queue(queues());
  4555   } while (!offer_termination());
  4558 class G1KlassScanClosure : public KlassClosure {
  4559  G1ParCopyHelper* _closure;
  4560  bool             _process_only_dirty;
  4561  int              _count;
  4562  public:
  4563   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
  4564       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  4565   void do_klass(Klass* klass) {
  4566     // If the klass has not been dirtied we know that there's
  4567     // no references into  the young gen and we can skip it.
  4568    if (!_process_only_dirty || klass->has_modified_oops()) {
  4569       // Clean the klass since we're going to scavenge all the metadata.
  4570       klass->clear_modified_oops();
  4572       // Tell the closure that this klass is the Klass to scavenge
  4573       // and is the one to dirty if oops are left pointing into the young gen.
  4574       _closure->set_scanned_klass(klass);
  4576       klass->oops_do(_closure);
  4578       _closure->set_scanned_klass(NULL);
  4580     _count++;
  4582 };
  4584 class G1CodeBlobClosure : public CodeBlobClosure {
  4585   class HeapRegionGatheringOopClosure : public OopClosure {
  4586     G1CollectedHeap* _g1h;
  4587     OopClosure* _work;
  4588     nmethod* _nm;
  4590     template <typename T>
  4591     void do_oop_work(T* p) {
  4592       _work->do_oop(p);
  4593       T oop_or_narrowoop = oopDesc::load_heap_oop(p);
  4594       if (!oopDesc::is_null(oop_or_narrowoop)) {
  4595         oop o = oopDesc::decode_heap_oop_not_null(oop_or_narrowoop);
  4596         HeapRegion* hr = _g1h->heap_region_containing_raw(o);
  4597         assert(!_g1h->obj_in_cs(o) || hr->rem_set()->strong_code_roots_list_contains(_nm), "if o still in CS then evacuation failed and nm must already be in the remset");
  4598         hr->add_strong_code_root(_nm);
  4602   public:
  4603     HeapRegionGatheringOopClosure(OopClosure* oc) : _g1h(G1CollectedHeap::heap()), _work(oc), _nm(NULL) {}
  4605     void do_oop(oop* o) {
  4606       do_oop_work(o);
  4609     void do_oop(narrowOop* o) {
  4610       do_oop_work(o);
  4613     void set_nm(nmethod* nm) {
  4614       _nm = nm;
  4616   };
  4618   HeapRegionGatheringOopClosure _oc;
  4619 public:
  4620   G1CodeBlobClosure(OopClosure* oc) : _oc(oc) {}
  4622   void do_code_blob(CodeBlob* cb) {
  4623     nmethod* nm = cb->as_nmethod_or_null();
  4624     if (nm != NULL) {
  4625       if (!nm->test_set_oops_do_mark()) {
  4626         _oc.set_nm(nm);
  4627         nm->oops_do(&_oc);
  4628         nm->fix_oop_relocations();
  4632 };
  4634 class G1ParTask : public AbstractGangTask {
  4635 protected:
  4636   G1CollectedHeap*       _g1h;
  4637   RefToScanQueueSet      *_queues;
  4638   ParallelTaskTerminator _terminator;
  4639   uint _n_workers;
  4641   Mutex _stats_lock;
  4642   Mutex* stats_lock() { return &_stats_lock; }
  4644 public:
  4645   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
  4646     : AbstractGangTask("G1 collection"),
  4647       _g1h(g1h),
  4648       _queues(task_queues),
  4649       _terminator(0, _queues),
  4650       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4651   {}
  4653   RefToScanQueueSet* queues() { return _queues; }
  4655   RefToScanQueue *work_queue(int i) {
  4656     return queues()->queue(i);
  4659   ParallelTaskTerminator* terminator() { return &_terminator; }
  4661   virtual void set_for_termination(int active_workers) {
  4662     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
  4663     // in the young space (_par_seq_tasks) in the G1 heap
  4664     // for SequentialSubTasksDone.
  4665     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
  4666     // both of which need setting by set_n_termination().
  4667     _g1h->SharedHeap::set_n_termination(active_workers);
  4668     _g1h->set_n_termination(active_workers);
  4669     terminator()->reset_for_reuse(active_workers);
  4670     _n_workers = active_workers;
  4673   // Helps out with CLD processing.
  4674   //
  4675   // During InitialMark we need to:
  4676   // 1) Scavenge all CLDs for the young GC.
  4677   // 2) Mark all objects directly reachable from strong CLDs.
  4678   template <G1Mark do_mark_object>
  4679   class G1CLDClosure : public CLDClosure {
  4680     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
  4681     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
  4682     G1KlassScanClosure                                _klass_in_cld_closure;
  4683     bool                                              _claim;
  4685    public:
  4686     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
  4687                  bool only_young, bool claim)
  4688         : _oop_closure(oop_closure),
  4689           _oop_in_klass_closure(oop_closure->g1(),
  4690                                 oop_closure->pss(),
  4691                                 oop_closure->rp()),
  4692           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
  4693           _claim(claim) {
  4697     void do_cld(ClassLoaderData* cld) {
  4698       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
  4700   };
  4702   void work(uint worker_id) {
  4703     if (worker_id >= _n_workers) return;  // no work needed this round
  4705     double start_time_ms = os::elapsedTime() * 1000.0;
  4706     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
  4709       ResourceMark rm;
  4710       HandleMark   hm;
  4712       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  4714       G1ParScanThreadState            pss(_g1h, worker_id, rp);
  4715       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  4717       pss.set_evac_failure_closure(&evac_failure_cl);
  4719       bool only_young = _g1h->g1_policy()->gcs_are_young();
  4721       // Non-IM young GC.
  4722       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
  4723       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
  4724                                                                                only_young, // Only process dirty klasses.
  4725                                                                                false);     // No need to claim CLDs.
  4726       // IM young GC.
  4727       //    Strong roots closures.
  4728       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
  4729       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
  4730                                                                                false, // Process all klasses.
  4731                                                                                true); // Need to claim CLDs.
  4732       //    Weak roots closures.
  4733       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
  4734       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
  4735                                                                                     false, // Process all klasses.
  4736                                                                                     true); // Need to claim CLDs.
  4738       G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl);
  4739       G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl);
  4740       // IM Weak code roots are handled later.
  4742       OopClosure* strong_root_cl;
  4743       OopClosure* weak_root_cl;
  4744       CLDClosure* strong_cld_cl;
  4745       CLDClosure* weak_cld_cl;
  4746       CodeBlobClosure* strong_code_cl;
  4748       if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4749         // We also need to mark copied objects.
  4750         strong_root_cl = &scan_mark_root_cl;
  4751         strong_cld_cl  = &scan_mark_cld_cl;
  4752         strong_code_cl = &scan_mark_code_cl;
  4753         if (ClassUnloadingWithConcurrentMark) {
  4754           weak_root_cl = &scan_mark_weak_root_cl;
  4755           weak_cld_cl  = &scan_mark_weak_cld_cl;
  4756         } else {
  4757           weak_root_cl = &scan_mark_root_cl;
  4758           weak_cld_cl  = &scan_mark_cld_cl;
  4760       } else {
  4761         strong_root_cl = &scan_only_root_cl;
  4762         weak_root_cl   = &scan_only_root_cl;
  4763         strong_cld_cl  = &scan_only_cld_cl;
  4764         weak_cld_cl    = &scan_only_cld_cl;
  4765         strong_code_cl = &scan_only_code_cl;
  4769       G1ParPushHeapRSClosure  push_heap_rs_cl(_g1h, &pss);
  4771       pss.start_strong_roots();
  4772       _g1h->g1_process_roots(strong_root_cl,
  4773                              weak_root_cl,
  4774                              &push_heap_rs_cl,
  4775                              strong_cld_cl,
  4776                              weak_cld_cl,
  4777                              strong_code_cl,
  4778                              worker_id);
  4780       pss.end_strong_roots();
  4783         double start = os::elapsedTime();
  4784         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4785         evac.do_void();
  4786         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4787         double term_ms = pss.term_time()*1000.0;
  4788         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
  4789         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
  4791       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4792       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4794       if (ParallelGCVerbose) {
  4795         MutexLocker x(stats_lock());
  4796         pss.print_termination_stats(worker_id);
  4799       assert(pss.queue_is_empty(), "should be empty");
  4801       // Close the inner scope so that the ResourceMark and HandleMark
  4802       // destructors are executed here and are included as part of the
  4803       // "GC Worker Time".
  4806     double end_time_ms = os::elapsedTime() * 1000.0;
  4807     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
  4809 };
  4811 // *** Common G1 Evacuation Stuff
  4813 // This method is run in a GC worker.
  4815 void
  4816 G1CollectedHeap::
  4817 g1_process_roots(OopClosure* scan_non_heap_roots,
  4818                  OopClosure* scan_non_heap_weak_roots,
  4819                  OopsInHeapRegionClosure* scan_rs,
  4820                  CLDClosure* scan_strong_clds,
  4821                  CLDClosure* scan_weak_clds,
  4822                  CodeBlobClosure* scan_strong_code,
  4823                  uint worker_i) {
  4825   // First scan the shared roots.
  4826   double ext_roots_start = os::elapsedTime();
  4827   double closure_app_time_sec = 0.0;
  4829   bool during_im = _g1h->g1_policy()->during_initial_mark_pause();
  4830   bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark;
  4832   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4833   BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots);
  4835   process_roots(false, // no scoping; this is parallel code
  4836                 SharedHeap::SO_None,
  4837                 &buf_scan_non_heap_roots,
  4838                 &buf_scan_non_heap_weak_roots,
  4839                 scan_strong_clds,
  4840                 // Unloading Initial Marks handle the weak CLDs separately.
  4841                 (trace_metadata ? NULL : scan_weak_clds),
  4842                 scan_strong_code);
  4844   // Now the CM ref_processor roots.
  4845   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4846     // We need to treat the discovered reference lists of the
  4847     // concurrent mark ref processor as roots and keep entries
  4848     // (which are added by the marking threads) on them live
  4849     // until they can be processed at the end of marking.
  4850     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
  4853   if (trace_metadata) {
  4854     // Barrier to make sure all workers passed
  4855     // the strong CLD and strong nmethods phases.
  4856     active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads());
  4858     // Now take the complement of the strong CLDs.
  4859     ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds);
  4862   // Finish up any enqueued closure apps (attributed as object copy time).
  4863   buf_scan_non_heap_roots.done();
  4864   buf_scan_non_heap_weak_roots.done();
  4866   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds()
  4867       + buf_scan_non_heap_weak_roots.closure_app_seconds();
  4869   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4871   double ext_root_time_ms =
  4872     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4874   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4876   // During conc marking we have to filter the per-thread SATB buffers
  4877   // to make sure we remove any oops into the CSet (which will show up
  4878   // as implicitly live).
  4879   double satb_filtering_ms = 0.0;
  4880   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
  4881     if (mark_in_progress()) {
  4882       double satb_filter_start = os::elapsedTime();
  4884       JavaThread::satb_mark_queue_set().filter_thread_buffers();
  4886       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
  4889   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
  4891   // Now scan the complement of the collection set.
  4892   G1CodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots);
  4894   g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i);
  4896   _process_strong_tasks->all_tasks_completed();
  4899 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
  4900 private:
  4901   BoolObjectClosure* _is_alive;
  4902   int _initial_string_table_size;
  4903   int _initial_symbol_table_size;
  4905   bool  _process_strings;
  4906   int _strings_processed;
  4907   int _strings_removed;
  4909   bool  _process_symbols;
  4910   int _symbols_processed;
  4911   int _symbols_removed;
  4913   bool _do_in_parallel;
  4914 public:
  4915   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
  4916     AbstractGangTask("String/Symbol Unlinking"),
  4917     _is_alive(is_alive),
  4918     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
  4919     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
  4920     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
  4922     _initial_string_table_size = StringTable::the_table()->table_size();
  4923     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
  4924     if (process_strings) {
  4925       StringTable::clear_parallel_claimed_index();
  4927     if (process_symbols) {
  4928       SymbolTable::clear_parallel_claimed_index();
  4932   ~G1StringSymbolTableUnlinkTask() {
  4933     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
  4934               err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
  4935                       StringTable::parallel_claimed_index(), _initial_string_table_size));
  4936     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
  4937               err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
  4938                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
  4940     if (G1TraceStringSymbolTableScrubbing) {
  4941       gclog_or_tty->print_cr("Cleaned string and symbol table, "
  4942                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
  4943                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
  4944                              strings_processed(), strings_removed(),
  4945                              symbols_processed(), symbols_removed());
  4949   void work(uint worker_id) {
  4950     if (_do_in_parallel) {
  4951       int strings_processed = 0;
  4952       int strings_removed = 0;
  4953       int symbols_processed = 0;
  4954       int symbols_removed = 0;
  4955       if (_process_strings) {
  4956         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
  4957         Atomic::add(strings_processed, &_strings_processed);
  4958         Atomic::add(strings_removed, &_strings_removed);
  4960       if (_process_symbols) {
  4961         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
  4962         Atomic::add(symbols_processed, &_symbols_processed);
  4963         Atomic::add(symbols_removed, &_symbols_removed);
  4965     } else {
  4966       if (_process_strings) {
  4967         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
  4969       if (_process_symbols) {
  4970         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
  4975   size_t strings_processed() const { return (size_t)_strings_processed; }
  4976   size_t strings_removed()   const { return (size_t)_strings_removed; }
  4978   size_t symbols_processed() const { return (size_t)_symbols_processed; }
  4979   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
  4980 };
  4982 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
  4983 private:
  4984   static Monitor* _lock;
  4986   BoolObjectClosure* const _is_alive;
  4987   const bool               _unloading_occurred;
  4988   const uint               _num_workers;
  4990   // Variables used to claim nmethods.
  4991   nmethod* _first_nmethod;
  4992   volatile nmethod* _claimed_nmethod;
  4994   // The list of nmethods that need to be processed by the second pass.
  4995   volatile nmethod* _postponed_list;
  4996   volatile uint     _num_entered_barrier;
  4998  public:
  4999   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
  5000       _is_alive(is_alive),
  5001       _unloading_occurred(unloading_occurred),
  5002       _num_workers(num_workers),
  5003       _first_nmethod(NULL),
  5004       _claimed_nmethod(NULL),
  5005       _postponed_list(NULL),
  5006       _num_entered_barrier(0)
  5008     nmethod::increase_unloading_clock();
  5009     _first_nmethod = CodeCache::alive_nmethod(CodeCache::first());
  5010     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
  5013   ~G1CodeCacheUnloadingTask() {
  5014     CodeCache::verify_clean_inline_caches();
  5016     CodeCache::set_needs_cache_clean(false);
  5017     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
  5019     CodeCache::verify_icholder_relocations();
  5022  private:
  5023   void add_to_postponed_list(nmethod* nm) {
  5024       nmethod* old;
  5025       do {
  5026         old = (nmethod*)_postponed_list;
  5027         nm->set_unloading_next(old);
  5028       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
  5031   void clean_nmethod(nmethod* nm) {
  5032     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
  5034     if (postponed) {
  5035       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
  5036       add_to_postponed_list(nm);
  5039     // Mark that this thread has been cleaned/unloaded.
  5040     // After this call, it will be safe to ask if this nmethod was unloaded or not.
  5041     nm->set_unloading_clock(nmethod::global_unloading_clock());
  5044   void clean_nmethod_postponed(nmethod* nm) {
  5045     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
  5048   static const int MaxClaimNmethods = 16;
  5050   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
  5051     nmethod* first;
  5052     nmethod* last;
  5054     do {
  5055       *num_claimed_nmethods = 0;
  5057       first = last = (nmethod*)_claimed_nmethod;
  5059       if (first != NULL) {
  5060         for (int i = 0; i < MaxClaimNmethods; i++) {
  5061           last = CodeCache::alive_nmethod(CodeCache::next(last));
  5063           if (last == NULL) {
  5064             break;
  5067           claimed_nmethods[i] = last;
  5068           (*num_claimed_nmethods)++;
  5072     } while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first);
  5075   nmethod* claim_postponed_nmethod() {
  5076     nmethod* claim;
  5077     nmethod* next;
  5079     do {
  5080       claim = (nmethod*)_postponed_list;
  5081       if (claim == NULL) {
  5082         return NULL;
  5085       next = claim->unloading_next();
  5087     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
  5089     return claim;
  5092  public:
  5093   // Mark that we're done with the first pass of nmethod cleaning.
  5094   void barrier_mark(uint worker_id) {
  5095     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
  5096     _num_entered_barrier++;
  5097     if (_num_entered_barrier == _num_workers) {
  5098       ml.notify_all();
  5102   // See if we have to wait for the other workers to
  5103   // finish their first-pass nmethod cleaning work.
  5104   void barrier_wait(uint worker_id) {
  5105     if (_num_entered_barrier < _num_workers) {
  5106       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
  5107       while (_num_entered_barrier < _num_workers) {
  5108           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
  5113   // Cleaning and unloading of nmethods. Some work has to be postponed
  5114   // to the second pass, when we know which nmethods survive.
  5115   void work_first_pass(uint worker_id) {
  5116     // The first nmethods is claimed by the first worker.
  5117     if (worker_id == 0 && _first_nmethod != NULL) {
  5118       clean_nmethod(_first_nmethod);
  5119       _first_nmethod = NULL;
  5122     int num_claimed_nmethods;
  5123     nmethod* claimed_nmethods[MaxClaimNmethods];
  5125     while (true) {
  5126       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
  5128       if (num_claimed_nmethods == 0) {
  5129         break;
  5132       for (int i = 0; i < num_claimed_nmethods; i++) {
  5133         clean_nmethod(claimed_nmethods[i]);
  5137     // The nmethod cleaning helps out and does the CodeCache part of MetadataOnStackMark.
  5138     // Need to retire the buffers now that this thread has stopped cleaning nmethods.
  5139     MetadataOnStackMark::retire_buffer_for_thread(Thread::current());
  5142   void work_second_pass(uint worker_id) {
  5143     nmethod* nm;
  5144     // Take care of postponed nmethods.
  5145     while ((nm = claim_postponed_nmethod()) != NULL) {
  5146       clean_nmethod_postponed(nm);
  5149 };
  5151 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");
  5153 class G1KlassCleaningTask : public StackObj {
  5154   BoolObjectClosure*                      _is_alive;
  5155   volatile jint                           _clean_klass_tree_claimed;
  5156   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
  5158  public:
  5159   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
  5160       _is_alive(is_alive),
  5161       _clean_klass_tree_claimed(0),
  5162       _klass_iterator() {
  5165  private:
  5166   bool claim_clean_klass_tree_task() {
  5167     if (_clean_klass_tree_claimed) {
  5168       return false;
  5171     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
  5174   InstanceKlass* claim_next_klass() {
  5175     Klass* klass;
  5176     do {
  5177       klass =_klass_iterator.next_klass();
  5178     } while (klass != NULL && !klass->oop_is_instance());
  5180     return (InstanceKlass*)klass;
  5183 public:
  5185   void clean_klass(InstanceKlass* ik) {
  5186     ik->clean_implementors_list(_is_alive);
  5187     ik->clean_method_data(_is_alive);
  5189     // G1 specific cleanup work that has
  5190     // been moved here to be done in parallel.
  5191     ik->clean_dependent_nmethods();
  5192     if (JvmtiExport::has_redefined_a_class()) {
  5193       InstanceKlass::purge_previous_versions(ik);
  5197   void work() {
  5198     ResourceMark rm;
  5200     // One worker will clean the subklass/sibling klass tree.
  5201     if (claim_clean_klass_tree_task()) {
  5202       Klass::clean_subklass_tree(_is_alive);
  5205     // All workers will help cleaning the classes,
  5206     InstanceKlass* klass;
  5207     while ((klass = claim_next_klass()) != NULL) {
  5208       clean_klass(klass);
  5211 };
  5213 // To minimize the remark pause times, the tasks below are done in parallel.
  5214 class G1ParallelCleaningTask : public AbstractGangTask {
  5215 private:
  5216   G1StringSymbolTableUnlinkTask _string_symbol_task;
  5217   G1CodeCacheUnloadingTask      _code_cache_task;
  5218   G1KlassCleaningTask           _klass_cleaning_task;
  5220 public:
  5221   // The constructor is run in the VMThread.
  5222   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
  5223       AbstractGangTask("Parallel Cleaning"),
  5224       _string_symbol_task(is_alive, process_strings, process_symbols),
  5225       _code_cache_task(num_workers, is_alive, unloading_occurred),
  5226       _klass_cleaning_task(is_alive) {
  5229   void pre_work_verification() {
  5230     // The VM Thread will have registered Metadata during the single-threaded phase of MetadataStackOnMark.
  5231     assert(Thread::current()->is_VM_thread()
  5232            || !MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
  5235   void post_work_verification() {
  5236     assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
  5239   // The parallel work done by all worker threads.
  5240   void work(uint worker_id) {
  5241     pre_work_verification();
  5243     // Do first pass of code cache cleaning.
  5244     _code_cache_task.work_first_pass(worker_id);
  5246     // Let the threads mark that the first pass is done.
  5247     _code_cache_task.barrier_mark(worker_id);
  5249     // Clean the Strings and Symbols.
  5250     _string_symbol_task.work(worker_id);
  5252     // Wait for all workers to finish the first code cache cleaning pass.
  5253     _code_cache_task.barrier_wait(worker_id);
  5255     // Do the second code cache cleaning work, which realize on
  5256     // the liveness information gathered during the first pass.
  5257     _code_cache_task.work_second_pass(worker_id);
  5259     // Clean all klasses that were not unloaded.
  5260     _klass_cleaning_task.work();
  5262     post_work_verification();
  5264 };
  5267 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
  5268                                         bool process_strings,
  5269                                         bool process_symbols,
  5270                                         bool class_unloading_occurred) {
  5271   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5272                     workers()->active_workers() : 1);
  5274   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
  5275                                         n_workers, class_unloading_occurred);
  5276   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5277     set_par_threads(n_workers);
  5278     workers()->run_task(&g1_unlink_task);
  5279     set_par_threads(0);
  5280   } else {
  5281     g1_unlink_task.work(0);
  5285 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
  5286                                                      bool process_strings, bool process_symbols) {
  5288     uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5289                      _g1h->workers()->active_workers() : 1);
  5290     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
  5291     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5292       set_par_threads(n_workers);
  5293       workers()->run_task(&g1_unlink_task);
  5294       set_par_threads(0);
  5295     } else {
  5296       g1_unlink_task.work(0);
  5300   if (G1StringDedup::is_enabled()) {
  5301     G1StringDedup::unlink(is_alive);
  5305 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
  5306  private:
  5307   DirtyCardQueueSet* _queue;
  5308  public:
  5309   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
  5311   virtual void work(uint worker_id) {
  5312     double start_time = os::elapsedTime();
  5314     RedirtyLoggedCardTableEntryClosure cl;
  5315     if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
  5316       _queue->par_apply_closure_to_all_completed_buffers(&cl);
  5317     } else {
  5318       _queue->apply_closure_to_all_completed_buffers(&cl);
  5321     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
  5322     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
  5323     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
  5325 };
  5327 void G1CollectedHeap::redirty_logged_cards() {
  5328   double redirty_logged_cards_start = os::elapsedTime();
  5330   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5331                    _g1h->workers()->active_workers() : 1);
  5333   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
  5334   dirty_card_queue_set().reset_for_par_iteration();
  5335   if (use_parallel_gc_threads()) {
  5336     set_par_threads(n_workers);
  5337     workers()->run_task(&redirty_task);
  5338     set_par_threads(0);
  5339   } else {
  5340     redirty_task.work(0);
  5343   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5344   dcq.merge_bufferlists(&dirty_card_queue_set());
  5345   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5347   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
  5350 // Weak Reference Processing support
  5352 // An always "is_alive" closure that is used to preserve referents.
  5353 // If the object is non-null then it's alive.  Used in the preservation
  5354 // of referent objects that are pointed to by reference objects
  5355 // discovered by the CM ref processor.
  5356 class G1AlwaysAliveClosure: public BoolObjectClosure {
  5357   G1CollectedHeap* _g1;
  5358 public:
  5359   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5360   bool do_object_b(oop p) {
  5361     if (p != NULL) {
  5362       return true;
  5364     return false;
  5366 };
  5368 bool G1STWIsAliveClosure::do_object_b(oop p) {
  5369   // An object is reachable if it is outside the collection set,
  5370   // or is inside and copied.
  5371   return !_g1->obj_in_cs(p) || p->is_forwarded();
  5374 // Non Copying Keep Alive closure
  5375 class G1KeepAliveClosure: public OopClosure {
  5376   G1CollectedHeap* _g1;
  5377 public:
  5378   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5379   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  5380   void do_oop(oop* p) {
  5381     oop obj = *p;
  5382     assert(obj != NULL, "the caller should have filtered out NULL values");
  5384     G1CollectedHeap::in_cset_state_t cset_state = _g1->in_cset_state(obj);
  5385     if (cset_state == G1CollectedHeap::InNeither) {
  5386       return;
  5388     if (cset_state == G1CollectedHeap::InCSet) {
  5389       assert( obj->is_forwarded(), "invariant" );
  5390       *p = obj->forwardee();
  5391     } else {
  5392       assert(!obj->is_forwarded(), "invariant" );
  5393       assert(cset_state == G1CollectedHeap::IsHumongous,
  5394              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state));
  5395       _g1->set_humongous_is_live(obj);
  5398 };
  5400 // Copying Keep Alive closure - can be called from both
  5401 // serial and parallel code as long as different worker
  5402 // threads utilize different G1ParScanThreadState instances
  5403 // and different queues.
  5405 class G1CopyingKeepAliveClosure: public OopClosure {
  5406   G1CollectedHeap*         _g1h;
  5407   OopClosure*              _copy_non_heap_obj_cl;
  5408   G1ParScanThreadState*    _par_scan_state;
  5410 public:
  5411   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  5412                             OopClosure* non_heap_obj_cl,
  5413                             G1ParScanThreadState* pss):
  5414     _g1h(g1h),
  5415     _copy_non_heap_obj_cl(non_heap_obj_cl),
  5416     _par_scan_state(pss)
  5417   {}
  5419   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  5420   virtual void do_oop(      oop* p) { do_oop_work(p); }
  5422   template <class T> void do_oop_work(T* p) {
  5423     oop obj = oopDesc::load_decode_heap_oop(p);
  5425     if (_g1h->is_in_cset_or_humongous(obj)) {
  5426       // If the referent object has been forwarded (either copied
  5427       // to a new location or to itself in the event of an
  5428       // evacuation failure) then we need to update the reference
  5429       // field and, if both reference and referent are in the G1
  5430       // heap, update the RSet for the referent.
  5431       //
  5432       // If the referent has not been forwarded then we have to keep
  5433       // it alive by policy. Therefore we have copy the referent.
  5434       //
  5435       // If the reference field is in the G1 heap then we can push
  5436       // on the PSS queue. When the queue is drained (after each
  5437       // phase of reference processing) the object and it's followers
  5438       // will be copied, the reference field set to point to the
  5439       // new location, and the RSet updated. Otherwise we need to
  5440       // use the the non-heap or metadata closures directly to copy
  5441       // the referent object and update the pointer, while avoiding
  5442       // updating the RSet.
  5444       if (_g1h->is_in_g1_reserved(p)) {
  5445         _par_scan_state->push_on_queue(p);
  5446       } else {
  5447         assert(!Metaspace::contains((const void*)p),
  5448                err_msg("Unexpectedly found a pointer from metadata: "
  5449                               PTR_FORMAT, p));
  5450         _copy_non_heap_obj_cl->do_oop(p);
  5454 };
  5456 // Serial drain queue closure. Called as the 'complete_gc'
  5457 // closure for each discovered list in some of the
  5458 // reference processing phases.
  5460 class G1STWDrainQueueClosure: public VoidClosure {
  5461 protected:
  5462   G1CollectedHeap* _g1h;
  5463   G1ParScanThreadState* _par_scan_state;
  5465   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  5467 public:
  5468   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  5469     _g1h(g1h),
  5470     _par_scan_state(pss)
  5471   { }
  5473   void do_void() {
  5474     G1ParScanThreadState* const pss = par_scan_state();
  5475     pss->trim_queue();
  5477 };
  5479 // Parallel Reference Processing closures
  5481 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  5482 // processing during G1 evacuation pauses.
  5484 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  5485 private:
  5486   G1CollectedHeap*   _g1h;
  5487   RefToScanQueueSet* _queues;
  5488   FlexibleWorkGang*  _workers;
  5489   int                _active_workers;
  5491 public:
  5492   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  5493                         FlexibleWorkGang* workers,
  5494                         RefToScanQueueSet *task_queues,
  5495                         int n_workers) :
  5496     _g1h(g1h),
  5497     _queues(task_queues),
  5498     _workers(workers),
  5499     _active_workers(n_workers)
  5501     assert(n_workers > 0, "shouldn't call this otherwise");
  5504   // Executes the given task using concurrent marking worker threads.
  5505   virtual void execute(ProcessTask& task);
  5506   virtual void execute(EnqueueTask& task);
  5507 };
  5509 // Gang task for possibly parallel reference processing
  5511 class G1STWRefProcTaskProxy: public AbstractGangTask {
  5512   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5513   ProcessTask&     _proc_task;
  5514   G1CollectedHeap* _g1h;
  5515   RefToScanQueueSet *_task_queues;
  5516   ParallelTaskTerminator* _terminator;
  5518 public:
  5519   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  5520                      G1CollectedHeap* g1h,
  5521                      RefToScanQueueSet *task_queues,
  5522                      ParallelTaskTerminator* terminator) :
  5523     AbstractGangTask("Process reference objects in parallel"),
  5524     _proc_task(proc_task),
  5525     _g1h(g1h),
  5526     _task_queues(task_queues),
  5527     _terminator(terminator)
  5528   {}
  5530   virtual void work(uint worker_id) {
  5531     // The reference processing task executed by a single worker.
  5532     ResourceMark rm;
  5533     HandleMark   hm;
  5535     G1STWIsAliveClosure is_alive(_g1h);
  5537     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
  5538     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5540     pss.set_evac_failure_closure(&evac_failure_cl);
  5542     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5544     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5546     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5548     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5549       // We also need to mark copied objects.
  5550       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5553     // Keep alive closure.
  5554     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
  5556     // Complete GC closure
  5557     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5559     // Call the reference processing task's work routine.
  5560     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5562     // Note we cannot assert that the refs array is empty here as not all
  5563     // of the processing tasks (specifically phase2 - pp2_work) execute
  5564     // the complete_gc closure (which ordinarily would drain the queue) so
  5565     // the queue may not be empty.
  5567 };
  5569 // Driver routine for parallel reference processing.
  5570 // Creates an instance of the ref processing gang
  5571 // task and has the worker threads execute it.
  5572 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5573   assert(_workers != NULL, "Need parallel worker threads.");
  5575   ParallelTaskTerminator terminator(_active_workers, _queues);
  5576   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5578   _g1h->set_par_threads(_active_workers);
  5579   _workers->run_task(&proc_task_proxy);
  5580   _g1h->set_par_threads(0);
  5583 // Gang task for parallel reference enqueueing.
  5585 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5586   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5587   EnqueueTask& _enq_task;
  5589 public:
  5590   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5591     AbstractGangTask("Enqueue reference objects in parallel"),
  5592     _enq_task(enq_task)
  5593   { }
  5595   virtual void work(uint worker_id) {
  5596     _enq_task.work(worker_id);
  5598 };
  5600 // Driver routine for parallel reference enqueueing.
  5601 // Creates an instance of the ref enqueueing gang
  5602 // task and has the worker threads execute it.
  5604 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5605   assert(_workers != NULL, "Need parallel worker threads.");
  5607   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5609   _g1h->set_par_threads(_active_workers);
  5610   _workers->run_task(&enq_task_proxy);
  5611   _g1h->set_par_threads(0);
  5614 // End of weak reference support closures
  5616 // Abstract task used to preserve (i.e. copy) any referent objects
  5617 // that are in the collection set and are pointed to by reference
  5618 // objects discovered by the CM ref processor.
  5620 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5621 protected:
  5622   G1CollectedHeap* _g1h;
  5623   RefToScanQueueSet      *_queues;
  5624   ParallelTaskTerminator _terminator;
  5625   uint _n_workers;
  5627 public:
  5628   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5629     AbstractGangTask("ParPreserveCMReferents"),
  5630     _g1h(g1h),
  5631     _queues(task_queues),
  5632     _terminator(workers, _queues),
  5633     _n_workers(workers)
  5634   { }
  5636   void work(uint worker_id) {
  5637     ResourceMark rm;
  5638     HandleMark   hm;
  5640     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
  5641     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5643     pss.set_evac_failure_closure(&evac_failure_cl);
  5645     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
  5647     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5649     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5651     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5653     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5654       // We also need to mark copied objects.
  5655       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5658     // Is alive closure
  5659     G1AlwaysAliveClosure always_alive(_g1h);
  5661     // Copying keep alive closure. Applied to referent objects that need
  5662     // to be copied.
  5663     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
  5665     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5667     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5668     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5670     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5671     // So this must be true - but assert just in case someone decides to
  5672     // change the worker ids.
  5673     assert(0 <= worker_id && worker_id < limit, "sanity");
  5674     assert(!rp->discovery_is_atomic(), "check this code");
  5676     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5677     for (uint idx = worker_id; idx < limit; idx += stride) {
  5678       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5680       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5681       while (iter.has_next()) {
  5682         // Since discovery is not atomic for the CM ref processor, we
  5683         // can see some null referent objects.
  5684         iter.load_ptrs(DEBUG_ONLY(true));
  5685         oop ref = iter.obj();
  5687         // This will filter nulls.
  5688         if (iter.is_referent_alive()) {
  5689           iter.make_referent_alive();
  5691         iter.move_to_next();
  5695     // Drain the queue - which may cause stealing
  5696     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5697     drain_queue.do_void();
  5698     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5699     assert(pss.queue_is_empty(), "should be");
  5701 };
  5703 // Weak Reference processing during an evacuation pause (part 1).
  5704 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
  5705   double ref_proc_start = os::elapsedTime();
  5707   ReferenceProcessor* rp = _ref_processor_stw;
  5708   assert(rp->discovery_enabled(), "should have been enabled");
  5710   // Any reference objects, in the collection set, that were 'discovered'
  5711   // by the CM ref processor should have already been copied (either by
  5712   // applying the external root copy closure to the discovered lists, or
  5713   // by following an RSet entry).
  5714   //
  5715   // But some of the referents, that are in the collection set, that these
  5716   // reference objects point to may not have been copied: the STW ref
  5717   // processor would have seen that the reference object had already
  5718   // been 'discovered' and would have skipped discovering the reference,
  5719   // but would not have treated the reference object as a regular oop.
  5720   // As a result the copy closure would not have been applied to the
  5721   // referent object.
  5722   //
  5723   // We need to explicitly copy these referent objects - the references
  5724   // will be processed at the end of remarking.
  5725   //
  5726   // We also need to do this copying before we process the reference
  5727   // objects discovered by the STW ref processor in case one of these
  5728   // referents points to another object which is also referenced by an
  5729   // object discovered by the STW ref processor.
  5731   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5732            no_of_gc_workers == workers()->active_workers(),
  5733            "Need to reset active GC workers");
  5735   set_par_threads(no_of_gc_workers);
  5736   G1ParPreserveCMReferentsTask keep_cm_referents(this,
  5737                                                  no_of_gc_workers,
  5738                                                  _task_queues);
  5740   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5741     workers()->run_task(&keep_cm_referents);
  5742   } else {
  5743     keep_cm_referents.work(0);
  5746   set_par_threads(0);
  5748   // Closure to test whether a referent is alive.
  5749   G1STWIsAliveClosure is_alive(this);
  5751   // Even when parallel reference processing is enabled, the processing
  5752   // of JNI refs is serial and performed serially by the current thread
  5753   // rather than by a worker. The following PSS will be used for processing
  5754   // JNI refs.
  5756   // Use only a single queue for this PSS.
  5757   G1ParScanThreadState            pss(this, 0, NULL);
  5759   // We do not embed a reference processor in the copying/scanning
  5760   // closures while we're actually processing the discovered
  5761   // reference objects.
  5762   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5764   pss.set_evac_failure_closure(&evac_failure_cl);
  5766   assert(pss.queue_is_empty(), "pre-condition");
  5768   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5770   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5772   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5774   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5775     // We also need to mark copied objects.
  5776     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5779   // Keep alive closure.
  5780   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
  5782   // Serial Complete GC closure
  5783   G1STWDrainQueueClosure drain_queue(this, &pss);
  5785   // Setup the soft refs policy...
  5786   rp->setup_policy(false);
  5788   ReferenceProcessorStats stats;
  5789   if (!rp->processing_is_mt()) {
  5790     // Serial reference processing...
  5791     stats = rp->process_discovered_references(&is_alive,
  5792                                               &keep_alive,
  5793                                               &drain_queue,
  5794                                               NULL,
  5795                                               _gc_timer_stw,
  5796                                               _gc_tracer_stw->gc_id());
  5797   } else {
  5798     // Parallel reference processing
  5799     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5800     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5802     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5803     stats = rp->process_discovered_references(&is_alive,
  5804                                               &keep_alive,
  5805                                               &drain_queue,
  5806                                               &par_task_executor,
  5807                                               _gc_timer_stw,
  5808                                               _gc_tracer_stw->gc_id());
  5811   _gc_tracer_stw->report_gc_reference_stats(stats);
  5813   // We have completed copying any necessary live referent objects.
  5814   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
  5816   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5817   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
  5820 // Weak Reference processing during an evacuation pause (part 2).
  5821 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
  5822   double ref_enq_start = os::elapsedTime();
  5824   ReferenceProcessor* rp = _ref_processor_stw;
  5825   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5827   // Now enqueue any remaining on the discovered lists on to
  5828   // the pending list.
  5829   if (!rp->processing_is_mt()) {
  5830     // Serial reference processing...
  5831     rp->enqueue_discovered_references();
  5832   } else {
  5833     // Parallel reference enqueueing
  5835     assert(no_of_gc_workers == workers()->active_workers(),
  5836            "Need to reset active workers");
  5837     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5838     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5840     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5841     rp->enqueue_discovered_references(&par_task_executor);
  5844   rp->verify_no_references_recorded();
  5845   assert(!rp->discovery_enabled(), "should have been disabled");
  5847   // FIXME
  5848   // CM's reference processing also cleans up the string and symbol tables.
  5849   // Should we do that here also? We could, but it is a serial operation
  5850   // and could significantly increase the pause time.
  5852   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5853   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
  5856 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
  5857   _expand_heap_after_alloc_failure = true;
  5858   _evacuation_failed = false;
  5860   // Should G1EvacuationFailureALot be in effect for this GC?
  5861   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
  5863   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5865   // Disable the hot card cache.
  5866   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  5867   hot_card_cache->reset_hot_cache_claimed_index();
  5868   hot_card_cache->set_use_cache(false);
  5870   uint n_workers;
  5871   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5872     n_workers =
  5873       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  5874                                      workers()->active_workers(),
  5875                                      Threads::number_of_non_daemon_threads());
  5876     assert(UseDynamicNumberOfGCThreads ||
  5877            n_workers == workers()->total_workers(),
  5878            "If not dynamic should be using all the  workers");
  5879     workers()->set_active_workers(n_workers);
  5880     set_par_threads(n_workers);
  5881   } else {
  5882     assert(n_par_threads() == 0,
  5883            "Should be the original non-parallel value");
  5884     n_workers = 1;
  5887   G1ParTask g1_par_task(this, _task_queues);
  5889   init_for_evac_failure(NULL);
  5891   rem_set()->prepare_for_younger_refs_iterate(true);
  5893   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5894   double start_par_time_sec = os::elapsedTime();
  5895   double end_par_time_sec;
  5898     StrongRootsScope srs(this);
  5899     // InitialMark needs claim bits to keep track of the marked-through CLDs.
  5900     if (g1_policy()->during_initial_mark_pause()) {
  5901       ClassLoaderDataGraph::clear_claimed_marks();
  5904     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5905       // The individual threads will set their evac-failure closures.
  5906       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5907       // These tasks use ShareHeap::_process_strong_tasks
  5908       assert(UseDynamicNumberOfGCThreads ||
  5909              workers()->active_workers() == workers()->total_workers(),
  5910              "If not dynamic should be using all the  workers");
  5911       workers()->run_task(&g1_par_task);
  5912     } else {
  5913       g1_par_task.set_for_termination(n_workers);
  5914       g1_par_task.work(0);
  5916     end_par_time_sec = os::elapsedTime();
  5918     // Closing the inner scope will execute the destructor
  5919     // for the StrongRootsScope object. We record the current
  5920     // elapsed time before closing the scope so that time
  5921     // taken for the SRS destructor is NOT included in the
  5922     // reported parallel time.
  5925   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  5926   g1_policy()->phase_times()->record_par_time(par_time_ms);
  5928   double code_root_fixup_time_ms =
  5929         (os::elapsedTime() - end_par_time_sec) * 1000.0;
  5930   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
  5932   set_par_threads(0);
  5934   // Process any discovered reference objects - we have
  5935   // to do this _before_ we retire the GC alloc regions
  5936   // as we may have to copy some 'reachable' referent
  5937   // objects (and their reachable sub-graphs) that were
  5938   // not copied during the pause.
  5939   process_discovered_references(n_workers);
  5941   // Weak root processing.
  5943     G1STWIsAliveClosure is_alive(this);
  5944     G1KeepAliveClosure keep_alive(this);
  5945     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  5946     if (G1StringDedup::is_enabled()) {
  5947       G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
  5951   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
  5952   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5954   // Reset and re-enable the hot card cache.
  5955   // Note the counts for the cards in the regions in the
  5956   // collection set are reset when the collection set is freed.
  5957   hot_card_cache->reset_hot_cache();
  5958   hot_card_cache->set_use_cache(true);
  5960   purge_code_root_memory();
  5962   if (g1_policy()->during_initial_mark_pause()) {
  5963     // Reset the claim values set during marking the strong code roots
  5964     reset_heap_region_claim_values();
  5967   finalize_for_evac_failure();
  5969   if (evacuation_failed()) {
  5970     remove_self_forwarding_pointers();
  5972     // Reset the G1EvacuationFailureALot counters and flags
  5973     // Note: the values are reset only when an actual
  5974     // evacuation failure occurs.
  5975     NOT_PRODUCT(reset_evacuation_should_fail();)
  5978   // Enqueue any remaining references remaining on the STW
  5979   // reference processor's discovered lists. We need to do
  5980   // this after the card table is cleaned (and verified) as
  5981   // the act of enqueueing entries on to the pending list
  5982   // will log these updates (and dirty their associated
  5983   // cards). We need these updates logged to update any
  5984   // RSets.
  5985   enqueue_discovered_references(n_workers);
  5987   redirty_logged_cards();
  5988   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  5991 void G1CollectedHeap::free_region(HeapRegion* hr,
  5992                                   FreeRegionList* free_list,
  5993                                   bool par,
  5994                                   bool locked) {
  5995   assert(!hr->is_free(), "the region should not be free");
  5996   assert(!hr->is_empty(), "the region should not be empty");
  5997   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
  5998   assert(free_list != NULL, "pre-condition");
  6000   if (G1VerifyBitmaps) {
  6001     MemRegion mr(hr->bottom(), hr->end());
  6002     concurrent_mark()->clearRangePrevBitmap(mr);
  6005   // Clear the card counts for this region.
  6006   // Note: we only need to do this if the region is not young
  6007   // (since we don't refine cards in young regions).
  6008   if (!hr->is_young()) {
  6009     _cg1r->hot_card_cache()->reset_card_counts(hr);
  6011   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
  6012   free_list->add_ordered(hr);
  6015 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  6016                                      FreeRegionList* free_list,
  6017                                      bool par) {
  6018   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  6019   assert(free_list != NULL, "pre-condition");
  6021   size_t hr_capacity = hr->capacity();
  6022   // We need to read this before we make the region non-humongous,
  6023   // otherwise the information will be gone.
  6024   uint last_index = hr->last_hc_index();
  6025   hr->clear_humongous();
  6026   free_region(hr, free_list, par);
  6028   uint i = hr->hrm_index() + 1;
  6029   while (i < last_index) {
  6030     HeapRegion* curr_hr = region_at(i);
  6031     assert(curr_hr->continuesHumongous(), "invariant");
  6032     curr_hr->clear_humongous();
  6033     free_region(curr_hr, free_list, par);
  6034     i += 1;
  6038 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
  6039                                        const HeapRegionSetCount& humongous_regions_removed) {
  6040   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
  6041     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  6042     _old_set.bulk_remove(old_regions_removed);
  6043     _humongous_set.bulk_remove(humongous_regions_removed);
  6048 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
  6049   assert(list != NULL, "list can't be null");
  6050   if (!list->is_empty()) {
  6051     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  6052     _hrm.insert_list_into_free_list(list);
  6056 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
  6057   _allocator->decrease_used(bytes);
  6060 class G1ParCleanupCTTask : public AbstractGangTask {
  6061   G1SATBCardTableModRefBS* _ct_bs;
  6062   G1CollectedHeap* _g1h;
  6063   HeapRegion* volatile _su_head;
  6064 public:
  6065   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
  6066                      G1CollectedHeap* g1h) :
  6067     AbstractGangTask("G1 Par Cleanup CT Task"),
  6068     _ct_bs(ct_bs), _g1h(g1h) { }
  6070   void work(uint worker_id) {
  6071     HeapRegion* r;
  6072     while (r = _g1h->pop_dirty_cards_region()) {
  6073       clear_cards(r);
  6077   void clear_cards(HeapRegion* r) {
  6078     // Cards of the survivors should have already been dirtied.
  6079     if (!r->is_survivor()) {
  6080       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  6083 };
  6085 #ifndef PRODUCT
  6086 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  6087   G1CollectedHeap* _g1h;
  6088   G1SATBCardTableModRefBS* _ct_bs;
  6089 public:
  6090   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
  6091     : _g1h(g1h), _ct_bs(ct_bs) { }
  6092   virtual bool doHeapRegion(HeapRegion* r) {
  6093     if (r->is_survivor()) {
  6094       _g1h->verify_dirty_region(r);
  6095     } else {
  6096       _g1h->verify_not_dirty_region(r);
  6098     return false;
  6100 };
  6102 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  6103   // All of the region should be clean.
  6104   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6105   MemRegion mr(hr->bottom(), hr->end());
  6106   ct_bs->verify_not_dirty_region(mr);
  6109 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  6110   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  6111   // dirty allocated blocks as they allocate them. The thread that
  6112   // retires each region and replaces it with a new one will do a
  6113   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  6114   // not dirty that area (one less thing to have to do while holding
  6115   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  6116   // is dirty.
  6117   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6118   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  6119   if (hr->is_young()) {
  6120     ct_bs->verify_g1_young_region(mr);
  6121   } else {
  6122     ct_bs->verify_dirty_region(mr);
  6126 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  6127   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6128   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  6129     verify_dirty_region(hr);
  6133 void G1CollectedHeap::verify_dirty_young_regions() {
  6134   verify_dirty_young_list(_young_list->first_region());
  6137 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
  6138                                                HeapWord* tams, HeapWord* end) {
  6139   guarantee(tams <= end,
  6140             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
  6141   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
  6142   if (result < end) {
  6143     gclog_or_tty->cr();
  6144     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
  6145                            bitmap_name, result);
  6146     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
  6147                            bitmap_name, tams, end);
  6148     return false;
  6150   return true;
  6153 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
  6154   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
  6155   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
  6157   HeapWord* bottom = hr->bottom();
  6158   HeapWord* ptams  = hr->prev_top_at_mark_start();
  6159   HeapWord* ntams  = hr->next_top_at_mark_start();
  6160   HeapWord* end    = hr->end();
  6162   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
  6164   bool res_n = true;
  6165   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
  6166   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
  6167   // if we happen to be in that state.
  6168   if (mark_in_progress() || !_cmThread->in_progress()) {
  6169     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
  6171   if (!res_p || !res_n) {
  6172     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
  6173                            HR_FORMAT_PARAMS(hr));
  6174     gclog_or_tty->print_cr("#### Caller: %s", caller);
  6175     return false;
  6177   return true;
  6180 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
  6181   if (!G1VerifyBitmaps) return;
  6183   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
  6186 class G1VerifyBitmapClosure : public HeapRegionClosure {
  6187 private:
  6188   const char* _caller;
  6189   G1CollectedHeap* _g1h;
  6190   bool _failures;
  6192 public:
  6193   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
  6194     _caller(caller), _g1h(g1h), _failures(false) { }
  6196   bool failures() { return _failures; }
  6198   virtual bool doHeapRegion(HeapRegion* hr) {
  6199     if (hr->continuesHumongous()) return false;
  6201     bool result = _g1h->verify_bitmaps(_caller, hr);
  6202     if (!result) {
  6203       _failures = true;
  6205     return false;
  6207 };
  6209 void G1CollectedHeap::check_bitmaps(const char* caller) {
  6210   if (!G1VerifyBitmaps) return;
  6212   G1VerifyBitmapClosure cl(caller, this);
  6213   heap_region_iterate(&cl);
  6214   guarantee(!cl.failures(), "bitmap verification");
  6216 #endif // PRODUCT
  6218 void G1CollectedHeap::cleanUpCardTable() {
  6219   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6220   double start = os::elapsedTime();
  6223     // Iterate over the dirty cards region list.
  6224     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  6226     if (G1CollectedHeap::use_parallel_gc_threads()) {
  6227       set_par_threads();
  6228       workers()->run_task(&cleanup_task);
  6229       set_par_threads(0);
  6230     } else {
  6231       while (_dirty_cards_region_list) {
  6232         HeapRegion* r = _dirty_cards_region_list;
  6233         cleanup_task.clear_cards(r);
  6234         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  6235         if (_dirty_cards_region_list == r) {
  6236           // The last region.
  6237           _dirty_cards_region_list = NULL;
  6239         r->set_next_dirty_cards_region(NULL);
  6242 #ifndef PRODUCT
  6243     if (G1VerifyCTCleanup || VerifyAfterGC) {
  6244       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  6245       heap_region_iterate(&cleanup_verifier);
  6247 #endif
  6250   double elapsed = os::elapsedTime() - start;
  6251   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
  6254 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
  6255   size_t pre_used = 0;
  6256   FreeRegionList local_free_list("Local List for CSet Freeing");
  6258   double young_time_ms     = 0.0;
  6259   double non_young_time_ms = 0.0;
  6261   // Since the collection set is a superset of the the young list,
  6262   // all we need to do to clear the young list is clear its
  6263   // head and length, and unlink any young regions in the code below
  6264   _young_list->clear();
  6266   G1CollectorPolicy* policy = g1_policy();
  6268   double start_sec = os::elapsedTime();
  6269   bool non_young = true;
  6271   HeapRegion* cur = cs_head;
  6272   int age_bound = -1;
  6273   size_t rs_lengths = 0;
  6275   while (cur != NULL) {
  6276     assert(!is_on_master_free_list(cur), "sanity");
  6277     if (non_young) {
  6278       if (cur->is_young()) {
  6279         double end_sec = os::elapsedTime();
  6280         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6281         non_young_time_ms += elapsed_ms;
  6283         start_sec = os::elapsedTime();
  6284         non_young = false;
  6286     } else {
  6287       if (!cur->is_young()) {
  6288         double end_sec = os::elapsedTime();
  6289         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6290         young_time_ms += elapsed_ms;
  6292         start_sec = os::elapsedTime();
  6293         non_young = true;
  6297     rs_lengths += cur->rem_set()->occupied_locked();
  6299     HeapRegion* next = cur->next_in_collection_set();
  6300     assert(cur->in_collection_set(), "bad CS");
  6301     cur->set_next_in_collection_set(NULL);
  6302     cur->set_in_collection_set(false);
  6304     if (cur->is_young()) {
  6305       int index = cur->young_index_in_cset();
  6306       assert(index != -1, "invariant");
  6307       assert((uint) index < policy->young_cset_region_length(), "invariant");
  6308       size_t words_survived = _surviving_young_words[index];
  6309       cur->record_surv_words_in_group(words_survived);
  6311       // At this point the we have 'popped' cur from the collection set
  6312       // (linked via next_in_collection_set()) but it is still in the
  6313       // young list (linked via next_young_region()). Clear the
  6314       // _next_young_region field.
  6315       cur->set_next_young_region(NULL);
  6316     } else {
  6317       int index = cur->young_index_in_cset();
  6318       assert(index == -1, "invariant");
  6321     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  6322             (!cur->is_young() && cur->young_index_in_cset() == -1),
  6323             "invariant" );
  6325     if (!cur->evacuation_failed()) {
  6326       MemRegion used_mr = cur->used_region();
  6328       // And the region is empty.
  6329       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  6330       pre_used += cur->used();
  6331       free_region(cur, &local_free_list, false /* par */, true /* locked */);
  6332     } else {
  6333       cur->uninstall_surv_rate_group();
  6334       if (cur->is_young()) {
  6335         cur->set_young_index_in_cset(-1);
  6337       cur->set_evacuation_failed(false);
  6338       // The region is now considered to be old.
  6339       cur->set_old();
  6340       _old_set.add(cur);
  6341       evacuation_info.increment_collectionset_used_after(cur->used());
  6343     cur = next;
  6346   evacuation_info.set_regions_freed(local_free_list.length());
  6347   policy->record_max_rs_lengths(rs_lengths);
  6348   policy->cset_regions_freed();
  6350   double end_sec = os::elapsedTime();
  6351   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6353   if (non_young) {
  6354     non_young_time_ms += elapsed_ms;
  6355   } else {
  6356     young_time_ms += elapsed_ms;
  6359   prepend_to_freelist(&local_free_list);
  6360   decrement_summary_bytes(pre_used);
  6361   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  6362   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
  6365 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
  6366  private:
  6367   FreeRegionList* _free_region_list;
  6368   HeapRegionSet* _proxy_set;
  6369   HeapRegionSetCount _humongous_regions_removed;
  6370   size_t _freed_bytes;
  6371  public:
  6373   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
  6374     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
  6377   virtual bool doHeapRegion(HeapRegion* r) {
  6378     if (!r->startsHumongous()) {
  6379       return false;
  6382     G1CollectedHeap* g1h = G1CollectedHeap::heap();
  6384     oop obj = (oop)r->bottom();
  6385     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
  6387     // The following checks whether the humongous object is live are sufficient.
  6388     // The main additional check (in addition to having a reference from the roots
  6389     // or the young gen) is whether the humongous object has a remembered set entry.
  6390     //
  6391     // A humongous object cannot be live if there is no remembered set for it
  6392     // because:
  6393     // - there can be no references from within humongous starts regions referencing
  6394     // the object because we never allocate other objects into them.
  6395     // (I.e. there are no intra-region references that may be missed by the
  6396     // remembered set)
  6397     // - as soon there is a remembered set entry to the humongous starts region
  6398     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
  6399     // until the end of a concurrent mark.
  6400     //
  6401     // It is not required to check whether the object has been found dead by marking
  6402     // or not, in fact it would prevent reclamation within a concurrent cycle, as
  6403     // all objects allocated during that time are considered live.
  6404     // SATB marking is even more conservative than the remembered set.
  6405     // So if at this point in the collection there is no remembered set entry,
  6406     // nobody has a reference to it.
  6407     // At the start of collection we flush all refinement logs, and remembered sets
  6408     // are completely up-to-date wrt to references to the humongous object.
  6409     //
  6410     // Other implementation considerations:
  6411     // - never consider object arrays: while they are a valid target, they have not
  6412     // been observed to be used as temporary objects.
  6413     // - they would also pose considerable effort for cleaning up the the remembered
  6414     // sets.
  6415     // While this cleanup is not strictly necessary to be done (or done instantly),
  6416     // given that their occurrence is very low, this saves us this additional
  6417     // complexity.
  6418     uint region_idx = r->hrm_index();
  6419     if (g1h->humongous_is_live(region_idx) ||
  6420         g1h->humongous_region_is_always_live(region_idx)) {
  6422       if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
  6423         gclog_or_tty->print_cr("Live humongous %d region %d with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
  6424                                r->isHumongous(),
  6425                                region_idx,
  6426                                r->rem_set()->occupied(),
  6427                                r->rem_set()->strong_code_roots_list_length(),
  6428                                next_bitmap->isMarked(r->bottom()),
  6429                                g1h->humongous_is_live(region_idx),
  6430                                obj->is_objArray()
  6431                               );
  6434       return false;
  6437     guarantee(!obj->is_objArray(),
  6438               err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
  6439                       r->bottom()));
  6441     if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
  6442       gclog_or_tty->print_cr("Reclaim humongous region %d start "PTR_FORMAT" region %d length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
  6443                              r->isHumongous(),
  6444                              r->bottom(),
  6445                              region_idx,
  6446                              r->region_num(),
  6447                              r->rem_set()->occupied(),
  6448                              r->rem_set()->strong_code_roots_list_length(),
  6449                              next_bitmap->isMarked(r->bottom()),
  6450                              g1h->humongous_is_live(region_idx),
  6451                              obj->is_objArray()
  6452                             );
  6454     // Need to clear mark bit of the humongous object if already set.
  6455     if (next_bitmap->isMarked(r->bottom())) {
  6456       next_bitmap->clear(r->bottom());
  6458     _freed_bytes += r->used();
  6459     r->set_containing_set(NULL);
  6460     _humongous_regions_removed.increment(1u, r->capacity());
  6461     g1h->free_humongous_region(r, _free_region_list, false);
  6463     return false;
  6466   HeapRegionSetCount& humongous_free_count() {
  6467     return _humongous_regions_removed;
  6470   size_t bytes_freed() const {
  6471     return _freed_bytes;
  6474   size_t humongous_reclaimed() const {
  6475     return _humongous_regions_removed.length();
  6477 };
  6479 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
  6480   assert_at_safepoint(true);
  6482   if (!G1ReclaimDeadHumongousObjectsAtYoungGC || !_has_humongous_reclaim_candidates) {
  6483     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
  6484     return;
  6487   double start_time = os::elapsedTime();
  6489   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
  6491   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
  6492   heap_region_iterate(&cl);
  6494   HeapRegionSetCount empty_set;
  6495   remove_from_old_sets(empty_set, cl.humongous_free_count());
  6497   G1HRPrinter* hr_printer = _g1h->hr_printer();
  6498   if (hr_printer->is_active()) {
  6499     FreeRegionListIterator iter(&local_cleanup_list);
  6500     while (iter.more_available()) {
  6501       HeapRegion* hr = iter.get_next();
  6502       hr_printer->cleanup(hr);
  6506   prepend_to_freelist(&local_cleanup_list);
  6507   decrement_summary_bytes(cl.bytes_freed());
  6509   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
  6510                                                                     cl.humongous_reclaimed());
  6513 // This routine is similar to the above but does not record
  6514 // any policy statistics or update free lists; we are abandoning
  6515 // the current incremental collection set in preparation of a
  6516 // full collection. After the full GC we will start to build up
  6517 // the incremental collection set again.
  6518 // This is only called when we're doing a full collection
  6519 // and is immediately followed by the tearing down of the young list.
  6521 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  6522   HeapRegion* cur = cs_head;
  6524   while (cur != NULL) {
  6525     HeapRegion* next = cur->next_in_collection_set();
  6526     assert(cur->in_collection_set(), "bad CS");
  6527     cur->set_next_in_collection_set(NULL);
  6528     cur->set_in_collection_set(false);
  6529     cur->set_young_index_in_cset(-1);
  6530     cur = next;
  6534 void G1CollectedHeap::set_free_regions_coming() {
  6535   if (G1ConcRegionFreeingVerbose) {
  6536     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6537                            "setting free regions coming");
  6540   assert(!free_regions_coming(), "pre-condition");
  6541   _free_regions_coming = true;
  6544 void G1CollectedHeap::reset_free_regions_coming() {
  6545   assert(free_regions_coming(), "pre-condition");
  6548     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6549     _free_regions_coming = false;
  6550     SecondaryFreeList_lock->notify_all();
  6553   if (G1ConcRegionFreeingVerbose) {
  6554     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6555                            "reset free regions coming");
  6559 void G1CollectedHeap::wait_while_free_regions_coming() {
  6560   // Most of the time we won't have to wait, so let's do a quick test
  6561   // first before we take the lock.
  6562   if (!free_regions_coming()) {
  6563     return;
  6566   if (G1ConcRegionFreeingVerbose) {
  6567     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6568                            "waiting for free regions");
  6572     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6573     while (free_regions_coming()) {
  6574       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  6578   if (G1ConcRegionFreeingVerbose) {
  6579     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6580                            "done waiting for free regions");
  6584 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  6585   assert(heap_lock_held_for_gc(),
  6586               "the heap lock should already be held by or for this thread");
  6587   _young_list->push_region(hr);
  6590 class NoYoungRegionsClosure: public HeapRegionClosure {
  6591 private:
  6592   bool _success;
  6593 public:
  6594   NoYoungRegionsClosure() : _success(true) { }
  6595   bool doHeapRegion(HeapRegion* r) {
  6596     if (r->is_young()) {
  6597       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  6598                              r->bottom(), r->end());
  6599       _success = false;
  6601     return false;
  6603   bool success() { return _success; }
  6604 };
  6606 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  6607   bool ret = _young_list->check_list_empty(check_sample);
  6609   if (check_heap) {
  6610     NoYoungRegionsClosure closure;
  6611     heap_region_iterate(&closure);
  6612     ret = ret && closure.success();
  6615   return ret;
  6618 class TearDownRegionSetsClosure : public HeapRegionClosure {
  6619 private:
  6620   HeapRegionSet *_old_set;
  6622 public:
  6623   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
  6625   bool doHeapRegion(HeapRegion* r) {
  6626     if (r->is_old()) {
  6627       _old_set->remove(r);
  6628     } else {
  6629       // We ignore free regions, we'll empty the free list afterwards.
  6630       // We ignore young regions, we'll empty the young list afterwards.
  6631       // We ignore humongous regions, we're not tearing down the
  6632       // humongous regions set.
  6633       assert(r->is_free() || r->is_young() || r->isHumongous(),
  6634              "it cannot be another type");
  6636     return false;
  6639   ~TearDownRegionSetsClosure() {
  6640     assert(_old_set->is_empty(), "post-condition");
  6642 };
  6644 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  6645   assert_at_safepoint(true /* should_be_vm_thread */);
  6647   if (!free_list_only) {
  6648     TearDownRegionSetsClosure cl(&_old_set);
  6649     heap_region_iterate(&cl);
  6651     // Note that emptying the _young_list is postponed and instead done as
  6652     // the first step when rebuilding the regions sets again. The reason for
  6653     // this is that during a full GC string deduplication needs to know if
  6654     // a collected region was young or old when the full GC was initiated.
  6656   _hrm.remove_all_free_regions();
  6659 class RebuildRegionSetsClosure : public HeapRegionClosure {
  6660 private:
  6661   bool            _free_list_only;
  6662   HeapRegionSet*   _old_set;
  6663   HeapRegionManager*   _hrm;
  6664   size_t          _total_used;
  6666 public:
  6667   RebuildRegionSetsClosure(bool free_list_only,
  6668                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
  6669     _free_list_only(free_list_only),
  6670     _old_set(old_set), _hrm(hrm), _total_used(0) {
  6671     assert(_hrm->num_free_regions() == 0, "pre-condition");
  6672     if (!free_list_only) {
  6673       assert(_old_set->is_empty(), "pre-condition");
  6677   bool doHeapRegion(HeapRegion* r) {
  6678     if (r->continuesHumongous()) {
  6679       return false;
  6682     if (r->is_empty()) {
  6683       // Add free regions to the free list
  6684       r->set_free();
  6685       r->set_allocation_context(AllocationContext::system());
  6686       _hrm->insert_into_free_list(r);
  6687     } else if (!_free_list_only) {
  6688       assert(!r->is_young(), "we should not come across young regions");
  6690       if (r->isHumongous()) {
  6691         // We ignore humongous regions, we left the humongous set unchanged
  6692       } else {
  6693         // Objects that were compacted would have ended up on regions
  6694         // that were previously old or free.
  6695         assert(r->is_free() || r->is_old(), "invariant");
  6696         // We now consider them old, so register as such.
  6697         r->set_old();
  6698         _old_set->add(r);
  6700       _total_used += r->used();
  6703     return false;
  6706   size_t total_used() {
  6707     return _total_used;
  6709 };
  6711 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  6712   assert_at_safepoint(true /* should_be_vm_thread */);
  6714   if (!free_list_only) {
  6715     _young_list->empty_list();
  6718   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
  6719   heap_region_iterate(&cl);
  6721   if (!free_list_only) {
  6722     _allocator->set_used(cl.total_used());
  6724   assert(_allocator->used_unlocked() == recalculate_used(),
  6725          err_msg("inconsistent _allocator->used_unlocked(), "
  6726                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
  6727                  _allocator->used_unlocked(), recalculate_used()));
  6730 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  6731   _refine_cte_cl->set_concurrent(concurrent);
  6734 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  6735   HeapRegion* hr = heap_region_containing(p);
  6736   return hr->is_in(p);
  6739 // Methods for the mutator alloc region
  6741 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  6742                                                       bool force) {
  6743   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6744   assert(!force || g1_policy()->can_expand_young_list(),
  6745          "if force is true we should be able to expand the young list");
  6746   bool young_list_full = g1_policy()->is_young_list_full();
  6747   if (force || !young_list_full) {
  6748     HeapRegion* new_alloc_region = new_region(word_size,
  6749                                               false /* is_old */,
  6750                                               false /* do_expand */);
  6751     if (new_alloc_region != NULL) {
  6752       set_region_short_lived_locked(new_alloc_region);
  6753       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  6754       check_bitmaps("Mutator Region Allocation", new_alloc_region);
  6755       return new_alloc_region;
  6758   return NULL;
  6761 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  6762                                                   size_t allocated_bytes) {
  6763   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6764   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
  6766   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6767   _allocator->increase_used(allocated_bytes);
  6768   _hr_printer.retire(alloc_region);
  6769   // We update the eden sizes here, when the region is retired,
  6770   // instead of when it's allocated, since this is the point that its
  6771   // used space has been recored in _summary_bytes_used.
  6772   g1mm()->update_eden_size();
  6775 void G1CollectedHeap::set_par_threads() {
  6776   // Don't change the number of workers.  Use the value previously set
  6777   // in the workgroup.
  6778   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6779   uint n_workers = workers()->active_workers();
  6780   assert(UseDynamicNumberOfGCThreads ||
  6781            n_workers == workers()->total_workers(),
  6782       "Otherwise should be using the total number of workers");
  6783   if (n_workers == 0) {
  6784     assert(false, "Should have been set in prior evacuation pause.");
  6785     n_workers = ParallelGCThreads;
  6786     workers()->set_active_workers(n_workers);
  6788   set_par_threads(n_workers);
  6791 // Methods for the GC alloc regions
  6793 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6794                                                  uint count,
  6795                                                  GCAllocPurpose ap) {
  6796   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6798   if (count < g1_policy()->max_regions(ap)) {
  6799     bool survivor = (ap == GCAllocForSurvived);
  6800     HeapRegion* new_alloc_region = new_region(word_size,
  6801                                               !survivor,
  6802                                               true /* do_expand */);
  6803     if (new_alloc_region != NULL) {
  6804       // We really only need to do this for old regions given that we
  6805       // should never scan survivors. But it doesn't hurt to do it
  6806       // for survivors too.
  6807       new_alloc_region->record_top_and_timestamp();
  6808       if (survivor) {
  6809         new_alloc_region->set_survivor();
  6810         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6811         check_bitmaps("Survivor Region Allocation", new_alloc_region);
  6812       } else {
  6813         new_alloc_region->set_old();
  6814         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6815         check_bitmaps("Old Region Allocation", new_alloc_region);
  6817       bool during_im = g1_policy()->during_initial_mark_pause();
  6818       new_alloc_region->note_start_of_copying(during_im);
  6819       return new_alloc_region;
  6820     } else {
  6821       g1_policy()->note_alloc_region_limit_reached(ap);
  6824   return NULL;
  6827 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6828                                              size_t allocated_bytes,
  6829                                              GCAllocPurpose ap) {
  6830   bool during_im = g1_policy()->during_initial_mark_pause();
  6831   alloc_region->note_end_of_copying(during_im);
  6832   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6833   if (ap == GCAllocForSurvived) {
  6834     young_list()->add_survivor_region(alloc_region);
  6835   } else {
  6836     _old_set.add(alloc_region);
  6838   _hr_printer.retire(alloc_region);
  6841 // Heap region set verification
  6843 class VerifyRegionListsClosure : public HeapRegionClosure {
  6844 private:
  6845   HeapRegionSet*   _old_set;
  6846   HeapRegionSet*   _humongous_set;
  6847   HeapRegionManager*   _hrm;
  6849 public:
  6850   HeapRegionSetCount _old_count;
  6851   HeapRegionSetCount _humongous_count;
  6852   HeapRegionSetCount _free_count;
  6854   VerifyRegionListsClosure(HeapRegionSet* old_set,
  6855                            HeapRegionSet* humongous_set,
  6856                            HeapRegionManager* hrm) :
  6857     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
  6858     _old_count(), _humongous_count(), _free_count(){ }
  6860   bool doHeapRegion(HeapRegion* hr) {
  6861     if (hr->continuesHumongous()) {
  6862       return false;
  6865     if (hr->is_young()) {
  6866       // TODO
  6867     } else if (hr->startsHumongous()) {
  6868       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
  6869       _humongous_count.increment(1u, hr->capacity());
  6870     } else if (hr->is_empty()) {
  6871       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
  6872       _free_count.increment(1u, hr->capacity());
  6873     } else if (hr->is_old()) {
  6874       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
  6875       _old_count.increment(1u, hr->capacity());
  6876     } else {
  6877       ShouldNotReachHere();
  6879     return false;
  6882   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
  6883     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
  6884     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6885         old_set->total_capacity_bytes(), _old_count.capacity()));
  6887     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
  6888     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6889         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
  6891     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
  6892     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6893         free_list->total_capacity_bytes(), _free_count.capacity()));
  6895 };
  6897 void G1CollectedHeap::verify_region_sets() {
  6898   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6900   // First, check the explicit lists.
  6901   _hrm.verify();
  6903     // Given that a concurrent operation might be adding regions to
  6904     // the secondary free list we have to take the lock before
  6905     // verifying it.
  6906     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6907     _secondary_free_list.verify_list();
  6910   // If a concurrent region freeing operation is in progress it will
  6911   // be difficult to correctly attributed any free regions we come
  6912   // across to the correct free list given that they might belong to
  6913   // one of several (free_list, secondary_free_list, any local lists,
  6914   // etc.). So, if that's the case we will skip the rest of the
  6915   // verification operation. Alternatively, waiting for the concurrent
  6916   // operation to complete will have a non-trivial effect on the GC's
  6917   // operation (no concurrent operation will last longer than the
  6918   // interval between two calls to verification) and it might hide
  6919   // any issues that we would like to catch during testing.
  6920   if (free_regions_coming()) {
  6921     return;
  6924   // Make sure we append the secondary_free_list on the free_list so
  6925   // that all free regions we will come across can be safely
  6926   // attributed to the free_list.
  6927   append_secondary_free_list_if_not_empty_with_lock();
  6929   // Finally, make sure that the region accounting in the lists is
  6930   // consistent with what we see in the heap.
  6932   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
  6933   heap_region_iterate(&cl);
  6934   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
  6937 // Optimized nmethod scanning
  6939 class RegisterNMethodOopClosure: public OopClosure {
  6940   G1CollectedHeap* _g1h;
  6941   nmethod* _nm;
  6943   template <class T> void do_oop_work(T* p) {
  6944     T heap_oop = oopDesc::load_heap_oop(p);
  6945     if (!oopDesc::is_null(heap_oop)) {
  6946       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6947       HeapRegion* hr = _g1h->heap_region_containing(obj);
  6948       assert(!hr->continuesHumongous(),
  6949              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
  6950                      " starting at "HR_FORMAT,
  6951                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
  6953       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
  6954       hr->add_strong_code_root_locked(_nm);
  6958 public:
  6959   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  6960     _g1h(g1h), _nm(nm) {}
  6962   void do_oop(oop* p)       { do_oop_work(p); }
  6963   void do_oop(narrowOop* p) { do_oop_work(p); }
  6964 };
  6966 class UnregisterNMethodOopClosure: public OopClosure {
  6967   G1CollectedHeap* _g1h;
  6968   nmethod* _nm;
  6970   template <class T> void do_oop_work(T* p) {
  6971     T heap_oop = oopDesc::load_heap_oop(p);
  6972     if (!oopDesc::is_null(heap_oop)) {
  6973       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6974       HeapRegion* hr = _g1h->heap_region_containing(obj);
  6975       assert(!hr->continuesHumongous(),
  6976              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
  6977                      " starting at "HR_FORMAT,
  6978                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
  6980       hr->remove_strong_code_root(_nm);
  6984 public:
  6985   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  6986     _g1h(g1h), _nm(nm) {}
  6988   void do_oop(oop* p)       { do_oop_work(p); }
  6989   void do_oop(narrowOop* p) { do_oop_work(p); }
  6990 };
  6992 void G1CollectedHeap::register_nmethod(nmethod* nm) {
  6993   CollectedHeap::register_nmethod(nm);
  6995   guarantee(nm != NULL, "sanity");
  6996   RegisterNMethodOopClosure reg_cl(this, nm);
  6997   nm->oops_do(&reg_cl);
  7000 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  7001   CollectedHeap::unregister_nmethod(nm);
  7003   guarantee(nm != NULL, "sanity");
  7004   UnregisterNMethodOopClosure reg_cl(this, nm);
  7005   nm->oops_do(&reg_cl, true);
  7008 void G1CollectedHeap::purge_code_root_memory() {
  7009   double purge_start = os::elapsedTime();
  7010   G1CodeRootSet::purge();
  7011   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
  7012   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
  7015 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  7016   G1CollectedHeap* _g1h;
  7018 public:
  7019   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
  7020     _g1h(g1h) {}
  7022   void do_code_blob(CodeBlob* cb) {
  7023     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
  7024     if (nm == NULL) {
  7025       return;
  7028     if (ScavengeRootsInCode) {
  7029       _g1h->register_nmethod(nm);
  7032 };
  7034 void G1CollectedHeap::rebuild_strong_code_roots() {
  7035   RebuildStrongCodeRootClosure blob_cl(this);
  7036   CodeCache::blobs_do(&blob_cl);

mercurial