src/share/vm/interpreter/bytecodeInterpreter.cpp

Thu, 24 Mar 2011 23:49:56 -0700

author
jcoomes
date
Thu, 24 Mar 2011 23:49:56 -0700
changeset 2679
f731b22cd52d
parent 2658
c7f3d0b4570f
parent 2677
151da0c145a8
child 2729
e863062e521d
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2002, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/vmSymbols.hpp"
    27 #include "gc_interface/collectedHeap.hpp"
    28 #include "interpreter/bytecodeHistogram.hpp"
    29 #include "interpreter/bytecodeInterpreter.hpp"
    30 #include "interpreter/bytecodeInterpreter.inline.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "interpreter/interpreterRuntime.hpp"
    33 #include "memory/cardTableModRefBS.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "oops/objArrayKlass.hpp"
    36 #include "oops/oop.inline.hpp"
    37 #include "prims/jvmtiExport.hpp"
    38 #include "runtime/frame.inline.hpp"
    39 #include "runtime/handles.inline.hpp"
    40 #include "runtime/interfaceSupport.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/threadCritical.hpp"
    43 #include "utilities/exceptions.hpp"
    44 #ifdef TARGET_OS_ARCH_linux_x86
    45 # include "orderAccess_linux_x86.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_ARCH_linux_sparc
    48 # include "orderAccess_linux_sparc.inline.hpp"
    49 #endif
    50 #ifdef TARGET_OS_ARCH_linux_zero
    51 # include "orderAccess_linux_zero.inline.hpp"
    52 #endif
    53 #ifdef TARGET_OS_ARCH_solaris_x86
    54 # include "orderAccess_solaris_x86.inline.hpp"
    55 #endif
    56 #ifdef TARGET_OS_ARCH_solaris_sparc
    57 # include "orderAccess_solaris_sparc.inline.hpp"
    58 #endif
    59 #ifdef TARGET_OS_ARCH_windows_x86
    60 # include "orderAccess_windows_x86.inline.hpp"
    61 #endif
    62 #ifdef TARGET_OS_ARCH_linux_arm
    63 # include "orderAccess_linux_arm.inline.hpp"
    64 #endif
    65 #ifdef TARGET_OS_ARCH_linux_ppc
    66 # include "orderAccess_linux_ppc.inline.hpp"
    67 #endif
    70 // no precompiled headers
    71 #ifdef CC_INTERP
    73 /*
    74  * USELABELS - If using GCC, then use labels for the opcode dispatching
    75  * rather -then a switch statement. This improves performance because it
    76  * gives us the oportunity to have the instructions that calculate the
    77  * next opcode to jump to be intermixed with the rest of the instructions
    78  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
    79  */
    80 #undef USELABELS
    81 #ifdef __GNUC__
    82 /*
    83    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
    84    don't use the computed goto approach.
    85 */
    86 #ifndef ASSERT
    87 #define USELABELS
    88 #endif
    89 #endif
    91 #undef CASE
    92 #ifdef USELABELS
    93 #define CASE(opcode) opc ## opcode
    94 #define DEFAULT opc_default
    95 #else
    96 #define CASE(opcode) case Bytecodes:: opcode
    97 #define DEFAULT default
    98 #endif
   100 /*
   101  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
   102  * opcode before going back to the top of the while loop, rather then having
   103  * the top of the while loop handle it. This provides a better opportunity
   104  * for instruction scheduling. Some compilers just do this prefetch
   105  * automatically. Some actually end up with worse performance if you
   106  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
   107  */
   108 #undef PREFETCH_OPCCODE
   109 #define PREFETCH_OPCCODE
   111 /*
   112   Interpreter safepoint: it is expected that the interpreter will have no live
   113   handles of its own creation live at an interpreter safepoint. Therefore we
   114   run a HandleMarkCleaner and trash all handles allocated in the call chain
   115   since the JavaCalls::call_helper invocation that initiated the chain.
   116   There really shouldn't be any handles remaining to trash but this is cheap
   117   in relation to a safepoint.
   118 */
   119 #define SAFEPOINT                                                                 \
   120     if ( SafepointSynchronize::is_synchronizing()) {                              \
   121         {                                                                         \
   122           /* zap freed handles rather than GC'ing them */                         \
   123           HandleMarkCleaner __hmc(THREAD);                                        \
   124         }                                                                         \
   125         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
   126     }
   128 /*
   129  * VM_JAVA_ERROR - Macro for throwing a java exception from
   130  * the interpreter loop. Should really be a CALL_VM but there
   131  * is no entry point to do the transition to vm so we just
   132  * do it by hand here.
   133  */
   134 #define VM_JAVA_ERROR_NO_JUMP(name, msg)                                          \
   135     DECACHE_STATE();                                                              \
   136     SET_LAST_JAVA_FRAME();                                                        \
   137     {                                                                             \
   138        ThreadInVMfromJava trans(THREAD);                                          \
   139        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
   140     }                                                                             \
   141     RESET_LAST_JAVA_FRAME();                                                      \
   142     CACHE_STATE();
   144 // Normal throw of a java error
   145 #define VM_JAVA_ERROR(name, msg)                                                  \
   146     VM_JAVA_ERROR_NO_JUMP(name, msg)                                              \
   147     goto handle_exception;
   149 #ifdef PRODUCT
   150 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
   151 #else
   152 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
   153 {                                                                                                    \
   154     BytecodeCounter::_counter_value++;                                                               \
   155     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
   156     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
   157     if (TraceBytecodes) {                                                                            \
   158       CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
   159                                    topOfStack[Interpreter::expr_index_at(1)],   \
   160                                    topOfStack[Interpreter::expr_index_at(2)]),  \
   161                                    handle_exception);                      \
   162     }                                                                      \
   163 }
   164 #endif
   166 #undef DEBUGGER_SINGLE_STEP_NOTIFY
   167 #ifdef VM_JVMTI
   168 /* NOTE: (kbr) This macro must be called AFTER the PC has been
   169    incremented. JvmtiExport::at_single_stepping_point() may cause a
   170    breakpoint opcode to get inserted at the current PC to allow the
   171    debugger to coalesce single-step events.
   173    As a result if we call at_single_stepping_point() we refetch opcode
   174    to get the current opcode. This will override any other prefetching
   175    that might have occurred.
   176 */
   177 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
   178 {                                                                                \
   179       if (_jvmti_interp_events) {                                                \
   180         if (JvmtiExport::should_post_single_step()) {                            \
   181           DECACHE_STATE();                                                       \
   182           SET_LAST_JAVA_FRAME();                                                 \
   183           ThreadInVMfromJava trans(THREAD);                                      \
   184           JvmtiExport::at_single_stepping_point(THREAD,                          \
   185                                           istate->method(),                      \
   186                                           pc);                                   \
   187           RESET_LAST_JAVA_FRAME();                                               \
   188           CACHE_STATE();                                                         \
   189           if (THREAD->pop_frame_pending() &&                                     \
   190               !THREAD->pop_frame_in_process()) {                                 \
   191             goto handle_Pop_Frame;                                               \
   192           }                                                                      \
   193           opcode = *pc;                                                          \
   194         }                                                                        \
   195       }                                                                          \
   196 }
   197 #else
   198 #define DEBUGGER_SINGLE_STEP_NOTIFY()
   199 #endif
   201 /*
   202  * CONTINUE - Macro for executing the next opcode.
   203  */
   204 #undef CONTINUE
   205 #ifdef USELABELS
   206 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
   207 // initialization (which is is the initialization of the table pointer...)
   208 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
   209 #define CONTINUE {                              \
   210         opcode = *pc;                           \
   211         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
   212         DEBUGGER_SINGLE_STEP_NOTIFY();          \
   213         DISPATCH(opcode);                       \
   214     }
   215 #else
   216 #ifdef PREFETCH_OPCCODE
   217 #define CONTINUE {                              \
   218         opcode = *pc;                           \
   219         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
   220         DEBUGGER_SINGLE_STEP_NOTIFY();          \
   221         continue;                               \
   222     }
   223 #else
   224 #define CONTINUE {                              \
   225         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
   226         DEBUGGER_SINGLE_STEP_NOTIFY();          \
   227         continue;                               \
   228     }
   229 #endif
   230 #endif
   232 // JavaStack Implementation
   233 #define MORE_STACK(count)  \
   234     (topOfStack -= ((count) * Interpreter::stackElementWords))
   237 #define UPDATE_PC(opsize) {pc += opsize; }
   238 /*
   239  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
   240  */
   241 #undef UPDATE_PC_AND_TOS
   242 #define UPDATE_PC_AND_TOS(opsize, stack) \
   243     {pc += opsize; MORE_STACK(stack); }
   245 /*
   246  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
   247  * and executing the next opcode. It's somewhat similar to the combination
   248  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
   249  */
   250 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
   251 #ifdef USELABELS
   252 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
   253         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
   254         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   255         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   256         DISPATCH(opcode);                                       \
   257     }
   259 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
   260         pc += opsize; opcode = *pc;                             \
   261         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   262         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   263         DISPATCH(opcode);                                       \
   264     }
   265 #else
   266 #ifdef PREFETCH_OPCCODE
   267 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
   268         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
   269         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   270         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   271         goto do_continue;                                       \
   272     }
   274 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
   275         pc += opsize; opcode = *pc;                             \
   276         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   277         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   278         goto do_continue;                                       \
   279     }
   280 #else
   281 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
   282         pc += opsize; MORE_STACK(stack);                \
   283         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
   284         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
   285         goto do_continue;                               \
   286     }
   288 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
   289         pc += opsize;                                   \
   290         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
   291         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
   292         goto do_continue;                               \
   293     }
   294 #endif /* PREFETCH_OPCCODE */
   295 #endif /* USELABELS */
   297 // About to call a new method, update the save the adjusted pc and return to frame manager
   298 #define UPDATE_PC_AND_RETURN(opsize)  \
   299    DECACHE_TOS();                     \
   300    istate->set_bcp(pc+opsize);        \
   301    return;
   304 #define METHOD istate->method()
   305 #define INVOCATION_COUNT METHOD->invocation_counter()
   306 #define BACKEDGE_COUNT METHOD->backedge_counter()
   309 #define INCR_INVOCATION_COUNT INVOCATION_COUNT->increment()
   310 #define OSR_REQUEST(res, branch_pc) \
   311             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
   312 /*
   313  * For those opcodes that need to have a GC point on a backwards branch
   314  */
   316 // Backedge counting is kind of strange. The asm interpreter will increment
   317 // the backedge counter as a separate counter but it does it's comparisons
   318 // to the sum (scaled) of invocation counter and backedge count to make
   319 // a decision. Seems kind of odd to sum them together like that
   321 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
   324 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
   325     if ((skip) <= 0) {                                                                              \
   326       if (UseLoopCounter) {                                                                         \
   327         bool do_OSR = UseOnStackReplacement;                                                        \
   328         BACKEDGE_COUNT->increment();                                                                \
   329         if (do_OSR) do_OSR = BACKEDGE_COUNT->reached_InvocationLimit();                             \
   330         if (do_OSR) {                                                                               \
   331           nmethod*  osr_nmethod;                                                                    \
   332           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
   333           if (osr_nmethod != NULL && osr_nmethod->osr_entry_bci() != InvalidOSREntryBci) {          \
   334             intptr_t* buf = SharedRuntime::OSR_migration_begin(THREAD);                             \
   335             istate->set_msg(do_osr);                                                                \
   336             istate->set_osr_buf((address)buf);                                                      \
   337             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
   338             return;                                                                                 \
   339           }                                                                                         \
   340         }                                                                                           \
   341       }  /* UseCompiler ... */                                                                      \
   342       INCR_INVOCATION_COUNT;                                                                        \
   343       SAFEPOINT;                                                                                    \
   344     }
   346 /*
   347  * For those opcodes that need to have a GC point on a backwards branch
   348  */
   350 /*
   351  * Macros for caching and flushing the interpreter state. Some local
   352  * variables need to be flushed out to the frame before we do certain
   353  * things (like pushing frames or becomming gc safe) and some need to
   354  * be recached later (like after popping a frame). We could use one
   355  * macro to cache or decache everything, but this would be less then
   356  * optimal because we don't always need to cache or decache everything
   357  * because some things we know are already cached or decached.
   358  */
   359 #undef DECACHE_TOS
   360 #undef CACHE_TOS
   361 #undef CACHE_PREV_TOS
   362 #define DECACHE_TOS()    istate->set_stack(topOfStack);
   364 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
   366 #undef DECACHE_PC
   367 #undef CACHE_PC
   368 #define DECACHE_PC()    istate->set_bcp(pc);
   369 #define CACHE_PC()      pc = istate->bcp();
   370 #define CACHE_CP()      cp = istate->constants();
   371 #define CACHE_LOCALS()  locals = istate->locals();
   372 #undef CACHE_FRAME
   373 #define CACHE_FRAME()
   375 /*
   376  * CHECK_NULL - Macro for throwing a NullPointerException if the object
   377  * passed is a null ref.
   378  * On some architectures/platforms it should be possible to do this implicitly
   379  */
   380 #undef CHECK_NULL
   381 #define CHECK_NULL(obj_)                                                 \
   382     if ((obj_) == NULL) {                                                \
   383         VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), "");  \
   384     }                                                                    \
   385     VERIFY_OOP(obj_)
   387 #define VMdoubleConstZero() 0.0
   388 #define VMdoubleConstOne() 1.0
   389 #define VMlongConstZero() (max_jlong-max_jlong)
   390 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
   392 /*
   393  * Alignment
   394  */
   395 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
   397 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
   398 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
   400 // Reload interpreter state after calling the VM or a possible GC
   401 #define CACHE_STATE()   \
   402         CACHE_TOS();    \
   403         CACHE_PC();     \
   404         CACHE_CP();     \
   405         CACHE_LOCALS();
   407 // Call the VM don't check for pending exceptions
   408 #define CALL_VM_NOCHECK(func)                                     \
   409           DECACHE_STATE();                                        \
   410           SET_LAST_JAVA_FRAME();                                  \
   411           func;                                                   \
   412           RESET_LAST_JAVA_FRAME();                                \
   413           CACHE_STATE();                                          \
   414           if (THREAD->pop_frame_pending() &&                      \
   415               !THREAD->pop_frame_in_process()) {                  \
   416             goto handle_Pop_Frame;                                \
   417           }
   419 // Call the VM and check for pending exceptions
   420 #define CALL_VM(func, label) {                                    \
   421           CALL_VM_NOCHECK(func);                                  \
   422           if (THREAD->has_pending_exception()) goto label;        \
   423         }
   425 /*
   426  * BytecodeInterpreter::run(interpreterState istate)
   427  * BytecodeInterpreter::runWithChecks(interpreterState istate)
   428  *
   429  * The real deal. This is where byte codes actually get interpreted.
   430  * Basically it's a big while loop that iterates until we return from
   431  * the method passed in.
   432  *
   433  * The runWithChecks is used if JVMTI is enabled.
   434  *
   435  */
   436 #if defined(VM_JVMTI)
   437 void
   438 BytecodeInterpreter::runWithChecks(interpreterState istate) {
   439 #else
   440 void
   441 BytecodeInterpreter::run(interpreterState istate) {
   442 #endif
   444   // In order to simplify some tests based on switches set at runtime
   445   // we invoke the interpreter a single time after switches are enabled
   446   // and set simpler to to test variables rather than method calls or complex
   447   // boolean expressions.
   449   static int initialized = 0;
   450   static int checkit = 0;
   451   static intptr_t* c_addr = NULL;
   452   static intptr_t  c_value;
   454   if (checkit && *c_addr != c_value) {
   455     os::breakpoint();
   456   }
   457 #ifdef VM_JVMTI
   458   static bool _jvmti_interp_events = 0;
   459 #endif
   461   static int _compiling;  // (UseCompiler || CountCompiledCalls)
   463 #ifdef ASSERT
   464   if (istate->_msg != initialize) {
   465     assert(abs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
   466 #ifndef SHARK
   467     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
   468 #endif // !SHARK
   469   }
   470   // Verify linkages.
   471   interpreterState l = istate;
   472   do {
   473     assert(l == l->_self_link, "bad link");
   474     l = l->_prev_link;
   475   } while (l != NULL);
   476   // Screwups with stack management usually cause us to overwrite istate
   477   // save a copy so we can verify it.
   478   interpreterState orig = istate;
   479 #endif
   481   static volatile jbyte* _byte_map_base; // adjusted card table base for oop store barrier
   483   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
   484   register address          pc = istate->bcp();
   485   register jubyte opcode;
   486   register intptr_t*        locals = istate->locals();
   487   register constantPoolCacheOop  cp = istate->constants(); // method()->constants()->cache()
   488 #ifdef LOTS_OF_REGS
   489   register JavaThread*      THREAD = istate->thread();
   490   register volatile jbyte*  BYTE_MAP_BASE = _byte_map_base;
   491 #else
   492 #undef THREAD
   493 #define THREAD istate->thread()
   494 #undef BYTE_MAP_BASE
   495 #define BYTE_MAP_BASE _byte_map_base
   496 #endif
   498 #ifdef USELABELS
   499   const static void* const opclabels_data[256] = {
   500 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
   501 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
   502 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
   503 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
   505 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
   506 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
   507 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
   508 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
   510 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
   511 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
   512 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
   513 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
   515 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
   516 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
   517 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
   518 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
   520 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
   521 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
   522 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
   523 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
   525 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
   526 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
   527 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
   528 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
   530 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
   531 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
   532 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
   533 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
   535 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
   536 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
   537 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
   538 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
   540 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
   541 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
   542 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
   543 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
   545 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
   546 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
   547 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
   548 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
   550 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
   551 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
   552 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
   553 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
   555 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
   556 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
   557 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_default,      &&opc_new,
   558 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
   560 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
   561 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
   562 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
   563 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   565 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   566 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   567 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   568 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   570 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   571 /* 0xE4 */ &&opc_default,     &&opc_return_register_finalizer,        &&opc_default,      &&opc_default,
   572 /* 0xE8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   573 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   575 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   576 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   577 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   578 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
   579   };
   580   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
   581 #endif /* USELABELS */
   583 #ifdef ASSERT
   584   // this will trigger a VERIFY_OOP on entry
   585   if (istate->msg() != initialize && ! METHOD->is_static()) {
   586     oop rcvr = LOCALS_OBJECT(0);
   587     VERIFY_OOP(rcvr);
   588   }
   589 #endif
   590 // #define HACK
   591 #ifdef HACK
   592   bool interesting = false;
   593 #endif // HACK
   595   /* QQQ this should be a stack method so we don't know actual direction */
   596   guarantee(istate->msg() == initialize ||
   597          topOfStack >= istate->stack_limit() &&
   598          topOfStack < istate->stack_base(),
   599          "Stack top out of range");
   601   switch (istate->msg()) {
   602     case initialize: {
   603       if (initialized++) ShouldNotReachHere(); // Only one initialize call
   604       _compiling = (UseCompiler || CountCompiledCalls);
   605 #ifdef VM_JVMTI
   606       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
   607 #endif
   608       BarrierSet* bs = Universe::heap()->barrier_set();
   609       assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
   610       _byte_map_base = (volatile jbyte*)(((CardTableModRefBS*)bs)->byte_map_base);
   611       return;
   612     }
   613     break;
   614     case method_entry: {
   615       THREAD->set_do_not_unlock();
   616       // count invocations
   617       assert(initialized, "Interpreter not initialized");
   618       if (_compiling) {
   619         if (ProfileInterpreter) {
   620           METHOD->increment_interpreter_invocation_count();
   621         }
   622         INCR_INVOCATION_COUNT;
   623         if (INVOCATION_COUNT->reached_InvocationLimit()) {
   624             CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
   626             // We no longer retry on a counter overflow
   628             // istate->set_msg(retry_method);
   629             // THREAD->clr_do_not_unlock();
   630             // return;
   631         }
   632         SAFEPOINT;
   633       }
   635       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
   636         // initialize
   637         os::breakpoint();
   638       }
   640 #ifdef HACK
   641       {
   642         ResourceMark rm;
   643         char *method_name = istate->method()->name_and_sig_as_C_string();
   644         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
   645           tty->print_cr("entering: depth %d bci: %d",
   646                          (istate->_stack_base - istate->_stack),
   647                          istate->_bcp - istate->_method->code_base());
   648           interesting = true;
   649         }
   650       }
   651 #endif // HACK
   654       // lock method if synchronized
   655       if (METHOD->is_synchronized()) {
   656           // oop rcvr = locals[0].j.r;
   657           oop rcvr;
   658           if (METHOD->is_static()) {
   659             rcvr = METHOD->constants()->pool_holder()->java_mirror();
   660           } else {
   661             rcvr = LOCALS_OBJECT(0);
   662             VERIFY_OOP(rcvr);
   663           }
   664           // The initial monitor is ours for the taking
   665           BasicObjectLock* mon = &istate->monitor_base()[-1];
   666           oop monobj = mon->obj();
   667           assert(mon->obj() == rcvr, "method monitor mis-initialized");
   669           bool success = UseBiasedLocking;
   670           if (UseBiasedLocking) {
   671             markOop mark = rcvr->mark();
   672             if (mark->has_bias_pattern()) {
   673               // The bias pattern is present in the object's header. Need to check
   674               // whether the bias owner and the epoch are both still current.
   675               intptr_t xx = ((intptr_t) THREAD) ^ (intptr_t) mark;
   676               xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() ^ xx;
   677               intptr_t yy = (xx & ~((int) markOopDesc::age_mask_in_place));
   678               if (yy != 0 ) {
   679                 // At this point we know that the header has the bias pattern and
   680                 // that we are not the bias owner in the current epoch. We need to
   681                 // figure out more details about the state of the header in order to
   682                 // know what operations can be legally performed on the object's
   683                 // header.
   685                 // If the low three bits in the xor result aren't clear, that means
   686                 // the prototype header is no longer biased and we have to revoke
   687                 // the bias on this object.
   689                 if (yy & markOopDesc::biased_lock_mask_in_place == 0 ) {
   690                   // Biasing is still enabled for this data type. See whether the
   691                   // epoch of the current bias is still valid, meaning that the epoch
   692                   // bits of the mark word are equal to the epoch bits of the
   693                   // prototype header. (Note that the prototype header's epoch bits
   694                   // only change at a safepoint.) If not, attempt to rebias the object
   695                   // toward the current thread. Note that we must be absolutely sure
   696                   // that the current epoch is invalid in order to do this because
   697                   // otherwise the manipulations it performs on the mark word are
   698                   // illegal.
   699                   if (yy & markOopDesc::epoch_mask_in_place == 0) {
   700                     // The epoch of the current bias is still valid but we know nothing
   701                     // about the owner; it might be set or it might be clear. Try to
   702                     // acquire the bias of the object using an atomic operation. If this
   703                     // fails we will go in to the runtime to revoke the object's bias.
   704                     // Note that we first construct the presumed unbiased header so we
   705                     // don't accidentally blow away another thread's valid bias.
   706                     intptr_t unbiased = (intptr_t) mark & (markOopDesc::biased_lock_mask_in_place |
   707                                                            markOopDesc::age_mask_in_place |
   708                                                            markOopDesc::epoch_mask_in_place);
   709                     if (Atomic::cmpxchg_ptr((intptr_t)THREAD | unbiased, (intptr_t*) rcvr->mark_addr(), unbiased) != unbiased) {
   710                       CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
   711                     }
   712                   } else {
   713                     try_rebias:
   714                     // At this point we know the epoch has expired, meaning that the
   715                     // current "bias owner", if any, is actually invalid. Under these
   716                     // circumstances _only_, we are allowed to use the current header's
   717                     // value as the comparison value when doing the cas to acquire the
   718                     // bias in the current epoch. In other words, we allow transfer of
   719                     // the bias from one thread to another directly in this situation.
   720                     xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
   721                     if (Atomic::cmpxchg_ptr((intptr_t)THREAD | (intptr_t) rcvr->klass()->klass_part()->prototype_header(),
   722                                             (intptr_t*) rcvr->mark_addr(),
   723                                             (intptr_t) mark) != (intptr_t) mark) {
   724                       CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
   725                     }
   726                   }
   727                 } else {
   728                   try_revoke_bias:
   729                   // The prototype mark in the klass doesn't have the bias bit set any
   730                   // more, indicating that objects of this data type are not supposed
   731                   // to be biased any more. We are going to try to reset the mark of
   732                   // this object to the prototype value and fall through to the
   733                   // CAS-based locking scheme. Note that if our CAS fails, it means
   734                   // that another thread raced us for the privilege of revoking the
   735                   // bias of this particular object, so it's okay to continue in the
   736                   // normal locking code.
   737                   //
   738                   xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
   739                   if (Atomic::cmpxchg_ptr(rcvr->klass()->klass_part()->prototype_header(),
   740                                           (intptr_t*) rcvr->mark_addr(),
   741                                           mark) == mark) {
   742                     // (*counters->revoked_lock_entry_count_addr())++;
   743                   success = false;
   744                   }
   745                 }
   746               }
   747             } else {
   748               cas_label:
   749               success = false;
   750             }
   751           }
   752           if (!success) {
   753             markOop displaced = rcvr->mark()->set_unlocked();
   754             mon->lock()->set_displaced_header(displaced);
   755             if (Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
   756               // Is it simple recursive case?
   757               if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
   758                 mon->lock()->set_displaced_header(NULL);
   759               } else {
   760                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
   761               }
   762             }
   763           }
   764       }
   765       THREAD->clr_do_not_unlock();
   767       // Notify jvmti
   768 #ifdef VM_JVMTI
   769       if (_jvmti_interp_events) {
   770         // Whenever JVMTI puts a thread in interp_only_mode, method
   771         // entry/exit events are sent for that thread to track stack depth.
   772         if (THREAD->is_interp_only_mode()) {
   773           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
   774                   handle_exception);
   775         }
   776       }
   777 #endif /* VM_JVMTI */
   779       goto run;
   780     }
   782     case popping_frame: {
   783       // returned from a java call to pop the frame, restart the call
   784       // clear the message so we don't confuse ourselves later
   785       ShouldNotReachHere();  // we don't return this.
   786       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
   787       istate->set_msg(no_request);
   788       THREAD->clr_pop_frame_in_process();
   789       goto run;
   790     }
   792     case method_resume: {
   793       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
   794         // resume
   795         os::breakpoint();
   796       }
   797 #ifdef HACK
   798       {
   799         ResourceMark rm;
   800         char *method_name = istate->method()->name_and_sig_as_C_string();
   801         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
   802           tty->print_cr("resume: depth %d bci: %d",
   803                          (istate->_stack_base - istate->_stack) ,
   804                          istate->_bcp - istate->_method->code_base());
   805           interesting = true;
   806         }
   807       }
   808 #endif // HACK
   809       // returned from a java call, continue executing.
   810       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
   811         goto handle_Pop_Frame;
   812       }
   814       if (THREAD->has_pending_exception()) goto handle_exception;
   815       // Update the pc by the saved amount of the invoke bytecode size
   816       UPDATE_PC(istate->bcp_advance());
   817       goto run;
   818     }
   820     case deopt_resume2: {
   821       // Returned from an opcode that will reexecute. Deopt was
   822       // a result of a PopFrame request.
   823       //
   824       goto run;
   825     }
   827     case deopt_resume: {
   828       // Returned from an opcode that has completed. The stack has
   829       // the result all we need to do is skip across the bytecode
   830       // and continue (assuming there is no exception pending)
   831       //
   832       // compute continuation length
   833       //
   834       // Note: it is possible to deopt at a return_register_finalizer opcode
   835       // because this requires entering the vm to do the registering. While the
   836       // opcode is complete we can't advance because there are no more opcodes
   837       // much like trying to deopt at a poll return. In that has we simply
   838       // get out of here
   839       //
   840       if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
   841         // this will do the right thing even if an exception is pending.
   842         goto handle_return;
   843       }
   844       UPDATE_PC(Bytecodes::length_at(METHOD, pc));
   845       if (THREAD->has_pending_exception()) goto handle_exception;
   846       goto run;
   847     }
   848     case got_monitors: {
   849       // continue locking now that we have a monitor to use
   850       // we expect to find newly allocated monitor at the "top" of the monitor stack.
   851       oop lockee = STACK_OBJECT(-1);
   852       VERIFY_OOP(lockee);
   853       // derefing's lockee ought to provoke implicit null check
   854       // find a free monitor
   855       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
   856       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
   857       entry->set_obj(lockee);
   859       markOop displaced = lockee->mark()->set_unlocked();
   860       entry->lock()->set_displaced_header(displaced);
   861       if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
   862         // Is it simple recursive case?
   863         if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
   864           entry->lock()->set_displaced_header(NULL);
   865         } else {
   866           CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
   867         }
   868       }
   869       UPDATE_PC_AND_TOS(1, -1);
   870       goto run;
   871     }
   872     default: {
   873       fatal("Unexpected message from frame manager");
   874     }
   875   }
   877 run:
   879   DO_UPDATE_INSTRUCTION_COUNT(*pc)
   880   DEBUGGER_SINGLE_STEP_NOTIFY();
   881 #ifdef PREFETCH_OPCCODE
   882   opcode = *pc;  /* prefetch first opcode */
   883 #endif
   885 #ifndef USELABELS
   886   while (1)
   887 #endif
   888   {
   889 #ifndef PREFETCH_OPCCODE
   890       opcode = *pc;
   891 #endif
   892       // Seems like this happens twice per opcode. At worst this is only
   893       // need at entry to the loop.
   894       // DEBUGGER_SINGLE_STEP_NOTIFY();
   895       /* Using this labels avoids double breakpoints when quickening and
   896        * when returing from transition frames.
   897        */
   898   opcode_switch:
   899       assert(istate == orig, "Corrupted istate");
   900       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
   901       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
   902       assert(topOfStack < istate->stack_base(), "Stack underrun");
   904 #ifdef USELABELS
   905       DISPATCH(opcode);
   906 #else
   907       switch (opcode)
   908 #endif
   909       {
   910       CASE(_nop):
   911           UPDATE_PC_AND_CONTINUE(1);
   913           /* Push miscellaneous constants onto the stack. */
   915       CASE(_aconst_null):
   916           SET_STACK_OBJECT(NULL, 0);
   917           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
   919 #undef  OPC_CONST_n
   920 #define OPC_CONST_n(opcode, const_type, value)                          \
   921       CASE(opcode):                                                     \
   922           SET_STACK_ ## const_type(value, 0);                           \
   923           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
   925           OPC_CONST_n(_iconst_m1,   INT,       -1);
   926           OPC_CONST_n(_iconst_0,    INT,        0);
   927           OPC_CONST_n(_iconst_1,    INT,        1);
   928           OPC_CONST_n(_iconst_2,    INT,        2);
   929           OPC_CONST_n(_iconst_3,    INT,        3);
   930           OPC_CONST_n(_iconst_4,    INT,        4);
   931           OPC_CONST_n(_iconst_5,    INT,        5);
   932           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
   933           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
   934           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
   936 #undef  OPC_CONST2_n
   937 #define OPC_CONST2_n(opcname, value, key, kind)                         \
   938       CASE(_##opcname):                                                 \
   939       {                                                                 \
   940           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
   941           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
   942       }
   943          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
   944          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
   945          OPC_CONST2_n(lconst_0, Zero, long, LONG);
   946          OPC_CONST2_n(lconst_1, One,  long, LONG);
   948          /* Load constant from constant pool: */
   950           /* Push a 1-byte signed integer value onto the stack. */
   951       CASE(_bipush):
   952           SET_STACK_INT((jbyte)(pc[1]), 0);
   953           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
   955           /* Push a 2-byte signed integer constant onto the stack. */
   956       CASE(_sipush):
   957           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
   958           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
   960           /* load from local variable */
   962       CASE(_aload):
   963           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
   964           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
   965           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
   967       CASE(_iload):
   968       CASE(_fload):
   969           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
   970           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
   972       CASE(_lload):
   973           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
   974           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
   976       CASE(_dload):
   977           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
   978           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
   980 #undef  OPC_LOAD_n
   981 #define OPC_LOAD_n(num)                                                 \
   982       CASE(_aload_##num):                                               \
   983           VERIFY_OOP(LOCALS_OBJECT(num));                               \
   984           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
   985           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
   986                                                                         \
   987       CASE(_iload_##num):                                               \
   988       CASE(_fload_##num):                                               \
   989           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
   990           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
   991                                                                         \
   992       CASE(_lload_##num):                                               \
   993           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
   994           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
   995       CASE(_dload_##num):                                               \
   996           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
   997           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
   999           OPC_LOAD_n(0);
  1000           OPC_LOAD_n(1);
  1001           OPC_LOAD_n(2);
  1002           OPC_LOAD_n(3);
  1004           /* store to a local variable */
  1006       CASE(_astore):
  1007           astore(topOfStack, -1, locals, pc[1]);
  1008           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
  1010       CASE(_istore):
  1011       CASE(_fstore):
  1012           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
  1013           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
  1015       CASE(_lstore):
  1016           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
  1017           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
  1019       CASE(_dstore):
  1020           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
  1021           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
  1023       CASE(_wide): {
  1024           uint16_t reg = Bytes::get_Java_u2(pc + 2);
  1026           opcode = pc[1];
  1027           switch(opcode) {
  1028               case Bytecodes::_aload:
  1029                   VERIFY_OOP(LOCALS_OBJECT(reg));
  1030                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
  1031                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
  1033               case Bytecodes::_iload:
  1034               case Bytecodes::_fload:
  1035                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
  1036                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
  1038               case Bytecodes::_lload:
  1039                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
  1040                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
  1042               case Bytecodes::_dload:
  1043                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
  1044                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
  1046               case Bytecodes::_astore:
  1047                   astore(topOfStack, -1, locals, reg);
  1048                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
  1050               case Bytecodes::_istore:
  1051               case Bytecodes::_fstore:
  1052                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
  1053                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
  1055               case Bytecodes::_lstore:
  1056                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
  1057                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
  1059               case Bytecodes::_dstore:
  1060                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
  1061                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
  1063               case Bytecodes::_iinc: {
  1064                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
  1065                   // Be nice to see what this generates.... QQQ
  1066                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
  1067                   UPDATE_PC_AND_CONTINUE(6);
  1069               case Bytecodes::_ret:
  1070                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
  1071                   UPDATE_PC_AND_CONTINUE(0);
  1072               default:
  1073                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode");
  1078 #undef  OPC_STORE_n
  1079 #define OPC_STORE_n(num)                                                \
  1080       CASE(_astore_##num):                                              \
  1081           astore(topOfStack, -1, locals, num);                          \
  1082           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
  1083       CASE(_istore_##num):                                              \
  1084       CASE(_fstore_##num):                                              \
  1085           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
  1086           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1088           OPC_STORE_n(0);
  1089           OPC_STORE_n(1);
  1090           OPC_STORE_n(2);
  1091           OPC_STORE_n(3);
  1093 #undef  OPC_DSTORE_n
  1094 #define OPC_DSTORE_n(num)                                               \
  1095       CASE(_dstore_##num):                                              \
  1096           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
  1097           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
  1098       CASE(_lstore_##num):                                              \
  1099           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
  1100           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
  1102           OPC_DSTORE_n(0);
  1103           OPC_DSTORE_n(1);
  1104           OPC_DSTORE_n(2);
  1105           OPC_DSTORE_n(3);
  1107           /* stack pop, dup, and insert opcodes */
  1110       CASE(_pop):                /* Discard the top item on the stack */
  1111           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1114       CASE(_pop2):               /* Discard the top 2 items on the stack */
  1115           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
  1118       CASE(_dup):               /* Duplicate the top item on the stack */
  1119           dup(topOfStack);
  1120           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1122       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
  1123           dup2(topOfStack);
  1124           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1126       CASE(_dup_x1):    /* insert top word two down */
  1127           dup_x1(topOfStack);
  1128           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1130       CASE(_dup_x2):    /* insert top word three down  */
  1131           dup_x2(topOfStack);
  1132           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1134       CASE(_dup2_x1):   /* insert top 2 slots three down */
  1135           dup2_x1(topOfStack);
  1136           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1138       CASE(_dup2_x2):   /* insert top 2 slots four down */
  1139           dup2_x2(topOfStack);
  1140           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1142       CASE(_swap): {        /* swap top two elements on the stack */
  1143           swap(topOfStack);
  1144           UPDATE_PC_AND_CONTINUE(1);
  1147           /* Perform various binary integer operations */
  1149 #undef  OPC_INT_BINARY
  1150 #define OPC_INT_BINARY(opcname, opname, test)                           \
  1151       CASE(_i##opcname):                                                \
  1152           if (test && (STACK_INT(-1) == 0)) {                           \
  1153               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
  1154                             "/ by zero");                               \
  1155           }                                                             \
  1156           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
  1157                                       STACK_INT(-1)),                   \
  1158                                       -2);                              \
  1159           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
  1160       CASE(_l##opcname):                                                \
  1161       {                                                                 \
  1162           if (test) {                                                   \
  1163             jlong l1 = STACK_LONG(-1);                                  \
  1164             if (VMlongEqz(l1)) {                                        \
  1165               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
  1166                             "/ by long zero");                          \
  1167             }                                                           \
  1168           }                                                             \
  1169           /* First long at (-1,-2) next long at (-3,-4) */              \
  1170           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
  1171                                         STACK_LONG(-1)),                \
  1172                                         -3);                            \
  1173           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
  1176       OPC_INT_BINARY(add, Add, 0);
  1177       OPC_INT_BINARY(sub, Sub, 0);
  1178       OPC_INT_BINARY(mul, Mul, 0);
  1179       OPC_INT_BINARY(and, And, 0);
  1180       OPC_INT_BINARY(or,  Or,  0);
  1181       OPC_INT_BINARY(xor, Xor, 0);
  1182       OPC_INT_BINARY(div, Div, 1);
  1183       OPC_INT_BINARY(rem, Rem, 1);
  1186       /* Perform various binary floating number operations */
  1187       /* On some machine/platforms/compilers div zero check can be implicit */
  1189 #undef  OPC_FLOAT_BINARY
  1190 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
  1191       CASE(_d##opcname): {                                                 \
  1192           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
  1193                                             STACK_DOUBLE(-1)),             \
  1194                                             -3);                           \
  1195           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
  1196       }                                                                    \
  1197       CASE(_f##opcname):                                                   \
  1198           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
  1199                                           STACK_FLOAT(-1)),                \
  1200                                           -2);                             \
  1201           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1204      OPC_FLOAT_BINARY(add, Add);
  1205      OPC_FLOAT_BINARY(sub, Sub);
  1206      OPC_FLOAT_BINARY(mul, Mul);
  1207      OPC_FLOAT_BINARY(div, Div);
  1208      OPC_FLOAT_BINARY(rem, Rem);
  1210       /* Shift operations
  1211        * Shift left int and long: ishl, lshl
  1212        * Logical shift right int and long w/zero extension: iushr, lushr
  1213        * Arithmetic shift right int and long w/sign extension: ishr, lshr
  1214        */
  1216 #undef  OPC_SHIFT_BINARY
  1217 #define OPC_SHIFT_BINARY(opcname, opname)                               \
  1218       CASE(_i##opcname):                                                \
  1219          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
  1220                                      STACK_INT(-1)),                    \
  1221                                      -2);                               \
  1222          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
  1223       CASE(_l##opcname):                                                \
  1224       {                                                                 \
  1225          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
  1226                                        STACK_INT(-1)),                  \
  1227                                        -2);                             \
  1228          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
  1231       OPC_SHIFT_BINARY(shl, Shl);
  1232       OPC_SHIFT_BINARY(shr, Shr);
  1233       OPC_SHIFT_BINARY(ushr, Ushr);
  1235      /* Increment local variable by constant */
  1236       CASE(_iinc):
  1238           // locals[pc[1]].j.i += (jbyte)(pc[2]);
  1239           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
  1240           UPDATE_PC_AND_CONTINUE(3);
  1243      /* negate the value on the top of the stack */
  1245       CASE(_ineg):
  1246          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
  1247          UPDATE_PC_AND_CONTINUE(1);
  1249       CASE(_fneg):
  1250          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
  1251          UPDATE_PC_AND_CONTINUE(1);
  1253       CASE(_lneg):
  1255          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
  1256          UPDATE_PC_AND_CONTINUE(1);
  1259       CASE(_dneg):
  1261          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
  1262          UPDATE_PC_AND_CONTINUE(1);
  1265       /* Conversion operations */
  1267       CASE(_i2f):       /* convert top of stack int to float */
  1268          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
  1269          UPDATE_PC_AND_CONTINUE(1);
  1271       CASE(_i2l):       /* convert top of stack int to long */
  1273           // this is ugly QQQ
  1274           jlong r = VMint2Long(STACK_INT(-1));
  1275           MORE_STACK(-1); // Pop
  1276           SET_STACK_LONG(r, 1);
  1278           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1281       CASE(_i2d):       /* convert top of stack int to double */
  1283           // this is ugly QQQ (why cast to jlong?? )
  1284           jdouble r = (jlong)STACK_INT(-1);
  1285           MORE_STACK(-1); // Pop
  1286           SET_STACK_DOUBLE(r, 1);
  1288           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1291       CASE(_l2i):       /* convert top of stack long to int */
  1293           jint r = VMlong2Int(STACK_LONG(-1));
  1294           MORE_STACK(-2); // Pop
  1295           SET_STACK_INT(r, 0);
  1296           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1299       CASE(_l2f):   /* convert top of stack long to float */
  1301           jlong r = STACK_LONG(-1);
  1302           MORE_STACK(-2); // Pop
  1303           SET_STACK_FLOAT(VMlong2Float(r), 0);
  1304           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1307       CASE(_l2d):       /* convert top of stack long to double */
  1309           jlong r = STACK_LONG(-1);
  1310           MORE_STACK(-2); // Pop
  1311           SET_STACK_DOUBLE(VMlong2Double(r), 1);
  1312           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1315       CASE(_f2i):  /* Convert top of stack float to int */
  1316           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
  1317           UPDATE_PC_AND_CONTINUE(1);
  1319       CASE(_f2l):  /* convert top of stack float to long */
  1321           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
  1322           MORE_STACK(-1); // POP
  1323           SET_STACK_LONG(r, 1);
  1324           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1327       CASE(_f2d):  /* convert top of stack float to double */
  1329           jfloat f;
  1330           jdouble r;
  1331           f = STACK_FLOAT(-1);
  1332           r = (jdouble) f;
  1333           MORE_STACK(-1); // POP
  1334           SET_STACK_DOUBLE(r, 1);
  1335           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1338       CASE(_d2i): /* convert top of stack double to int */
  1340           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
  1341           MORE_STACK(-2);
  1342           SET_STACK_INT(r1, 0);
  1343           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1346       CASE(_d2f): /* convert top of stack double to float */
  1348           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
  1349           MORE_STACK(-2);
  1350           SET_STACK_FLOAT(r1, 0);
  1351           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1354       CASE(_d2l): /* convert top of stack double to long */
  1356           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
  1357           MORE_STACK(-2);
  1358           SET_STACK_LONG(r1, 1);
  1359           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1362       CASE(_i2b):
  1363           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
  1364           UPDATE_PC_AND_CONTINUE(1);
  1366       CASE(_i2c):
  1367           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
  1368           UPDATE_PC_AND_CONTINUE(1);
  1370       CASE(_i2s):
  1371           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
  1372           UPDATE_PC_AND_CONTINUE(1);
  1374       /* comparison operators */
  1377 #define COMPARISON_OP(name, comparison)                                      \
  1378       CASE(_if_icmp##name): {                                                \
  1379           int skip = (STACK_INT(-2) comparison STACK_INT(-1))                \
  1380                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1381           address branch_pc = pc;                                            \
  1382           UPDATE_PC_AND_TOS(skip, -2);                                       \
  1383           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1384           CONTINUE;                                                          \
  1385       }                                                                      \
  1386       CASE(_if##name): {                                                     \
  1387           int skip = (STACK_INT(-1) comparison 0)                            \
  1388                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1389           address branch_pc = pc;                                            \
  1390           UPDATE_PC_AND_TOS(skip, -1);                                       \
  1391           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1392           CONTINUE;                                                          \
  1395 #define COMPARISON_OP2(name, comparison)                                     \
  1396       COMPARISON_OP(name, comparison)                                        \
  1397       CASE(_if_acmp##name): {                                                \
  1398           int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1))          \
  1399                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
  1400           address branch_pc = pc;                                            \
  1401           UPDATE_PC_AND_TOS(skip, -2);                                       \
  1402           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1403           CONTINUE;                                                          \
  1406 #define NULL_COMPARISON_NOT_OP(name)                                         \
  1407       CASE(_if##name): {                                                     \
  1408           int skip = (!(STACK_OBJECT(-1) == NULL))                           \
  1409                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1410           address branch_pc = pc;                                            \
  1411           UPDATE_PC_AND_TOS(skip, -1);                                       \
  1412           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1413           CONTINUE;                                                          \
  1416 #define NULL_COMPARISON_OP(name)                                             \
  1417       CASE(_if##name): {                                                     \
  1418           int skip = ((STACK_OBJECT(-1) == NULL))                            \
  1419                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1420           address branch_pc = pc;                                            \
  1421           UPDATE_PC_AND_TOS(skip, -1);                                       \
  1422           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1423           CONTINUE;                                                          \
  1425       COMPARISON_OP(lt, <);
  1426       COMPARISON_OP(gt, >);
  1427       COMPARISON_OP(le, <=);
  1428       COMPARISON_OP(ge, >=);
  1429       COMPARISON_OP2(eq, ==);  /* include ref comparison */
  1430       COMPARISON_OP2(ne, !=);  /* include ref comparison */
  1431       NULL_COMPARISON_OP(null);
  1432       NULL_COMPARISON_NOT_OP(nonnull);
  1434       /* Goto pc at specified offset in switch table. */
  1436       CASE(_tableswitch): {
  1437           jint* lpc  = (jint*)VMalignWordUp(pc+1);
  1438           int32_t  key  = STACK_INT(-1);
  1439           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
  1440           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
  1441           int32_t  skip;
  1442           key -= low;
  1443           skip = ((uint32_t) key > (uint32_t)(high - low))
  1444                       ? Bytes::get_Java_u4((address)&lpc[0])
  1445                       : Bytes::get_Java_u4((address)&lpc[key + 3]);
  1446           // Does this really need a full backedge check (osr?)
  1447           address branch_pc = pc;
  1448           UPDATE_PC_AND_TOS(skip, -1);
  1449           DO_BACKEDGE_CHECKS(skip, branch_pc);
  1450           CONTINUE;
  1453       /* Goto pc whose table entry matches specified key */
  1455       CASE(_lookupswitch): {
  1456           jint* lpc  = (jint*)VMalignWordUp(pc+1);
  1457           int32_t  key  = STACK_INT(-1);
  1458           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
  1459           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
  1460           while (--npairs >= 0) {
  1461               lpc += 2;
  1462               if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
  1463                   skip = Bytes::get_Java_u4((address)&lpc[1]);
  1464                   break;
  1467           address branch_pc = pc;
  1468           UPDATE_PC_AND_TOS(skip, -1);
  1469           DO_BACKEDGE_CHECKS(skip, branch_pc);
  1470           CONTINUE;
  1473       CASE(_fcmpl):
  1474       CASE(_fcmpg):
  1476           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
  1477                                         STACK_FLOAT(-1),
  1478                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
  1479                         -2);
  1480           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1483       CASE(_dcmpl):
  1484       CASE(_dcmpg):
  1486           int r = VMdoubleCompare(STACK_DOUBLE(-3),
  1487                                   STACK_DOUBLE(-1),
  1488                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
  1489           MORE_STACK(-4); // Pop
  1490           SET_STACK_INT(r, 0);
  1491           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1494       CASE(_lcmp):
  1496           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
  1497           MORE_STACK(-4);
  1498           SET_STACK_INT(r, 0);
  1499           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1503       /* Return from a method */
  1505       CASE(_areturn):
  1506       CASE(_ireturn):
  1507       CASE(_freturn):
  1509           // Allow a safepoint before returning to frame manager.
  1510           SAFEPOINT;
  1512           goto handle_return;
  1515       CASE(_lreturn):
  1516       CASE(_dreturn):
  1518           // Allow a safepoint before returning to frame manager.
  1519           SAFEPOINT;
  1520           goto handle_return;
  1523       CASE(_return_register_finalizer): {
  1525           oop rcvr = LOCALS_OBJECT(0);
  1526           VERIFY_OOP(rcvr);
  1527           if (rcvr->klass()->klass_part()->has_finalizer()) {
  1528             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
  1530           goto handle_return;
  1532       CASE(_return): {
  1534           // Allow a safepoint before returning to frame manager.
  1535           SAFEPOINT;
  1536           goto handle_return;
  1539       /* Array access byte-codes */
  1541       /* Every array access byte-code starts out like this */
  1542 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
  1543 #define ARRAY_INTRO(arrayOff)                                                  \
  1544       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
  1545       jint     index  = STACK_INT(arrayOff + 1);                               \
  1546       char message[jintAsStringSize];                                          \
  1547       CHECK_NULL(arrObj);                                                      \
  1548       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
  1549           sprintf(message, "%d", index);                                       \
  1550           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
  1551                         message);                                              \
  1554       /* 32-bit loads. These handle conversion from < 32-bit types */
  1555 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
  1556       {                                                                               \
  1557           ARRAY_INTRO(-2);                                                            \
  1558           extra;                                                                      \
  1559           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
  1560                            -2);                                                       \
  1561           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
  1564       /* 64-bit loads */
  1565 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
  1566       {                                                                                    \
  1567           ARRAY_INTRO(-2);                                                                 \
  1568           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
  1569           extra;                                                                           \
  1570           UPDATE_PC_AND_CONTINUE(1);                                            \
  1573       CASE(_iaload):
  1574           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
  1575       CASE(_faload):
  1576           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
  1577       CASE(_aaload):
  1578           ARRAY_LOADTO32(T_OBJECT, oop,   INTPTR_FORMAT, STACK_OBJECT, 0);
  1579       CASE(_baload):
  1580           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
  1581       CASE(_caload):
  1582           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
  1583       CASE(_saload):
  1584           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
  1585       CASE(_laload):
  1586           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
  1587       CASE(_daload):
  1588           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
  1590       /* 32-bit stores. These handle conversion to < 32-bit types */
  1591 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
  1592       {                                                                              \
  1593           ARRAY_INTRO(-3);                                                           \
  1594           extra;                                                                     \
  1595           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
  1596           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
  1599       /* 64-bit stores */
  1600 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
  1601       {                                                                              \
  1602           ARRAY_INTRO(-4);                                                           \
  1603           extra;                                                                     \
  1604           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
  1605           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
  1608       CASE(_iastore):
  1609           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
  1610       CASE(_fastore):
  1611           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
  1612       /*
  1613        * This one looks different because of the assignability check
  1614        */
  1615       CASE(_aastore): {
  1616           oop rhsObject = STACK_OBJECT(-1);
  1617           VERIFY_OOP(rhsObject);
  1618           ARRAY_INTRO( -3);
  1619           // arrObj, index are set
  1620           if (rhsObject != NULL) {
  1621             /* Check assignability of rhsObject into arrObj */
  1622             klassOop rhsKlassOop = rhsObject->klass(); // EBX (subclass)
  1623             assert(arrObj->klass()->klass()->klass_part()->oop_is_objArrayKlass(), "Ack not an objArrayKlass");
  1624             klassOop elemKlassOop = ((objArrayKlass*) arrObj->klass()->klass_part())->element_klass(); // superklass EAX
  1625             //
  1626             // Check for compatibilty. This check must not GC!!
  1627             // Seems way more expensive now that we must dispatch
  1628             //
  1629             if (rhsKlassOop != elemKlassOop && !rhsKlassOop->klass_part()->is_subtype_of(elemKlassOop)) { // ebx->is...
  1630               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "");
  1633           oop* elem_loc = (oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop));
  1634           // *(oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop)) = rhsObject;
  1635           *elem_loc = rhsObject;
  1636           // Mark the card
  1637           OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)elem_loc >> CardTableModRefBS::card_shift], 0);
  1638           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
  1640       CASE(_bastore):
  1641           ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
  1642       CASE(_castore):
  1643           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
  1644       CASE(_sastore):
  1645           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
  1646       CASE(_lastore):
  1647           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
  1648       CASE(_dastore):
  1649           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
  1651       CASE(_arraylength):
  1653           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
  1654           CHECK_NULL(ary);
  1655           SET_STACK_INT(ary->length(), -1);
  1656           UPDATE_PC_AND_CONTINUE(1);
  1659       /* monitorenter and monitorexit for locking/unlocking an object */
  1661       CASE(_monitorenter): {
  1662         oop lockee = STACK_OBJECT(-1);
  1663         // derefing's lockee ought to provoke implicit null check
  1664         CHECK_NULL(lockee);
  1665         // find a free monitor or one already allocated for this object
  1666         // if we find a matching object then we need a new monitor
  1667         // since this is recursive enter
  1668         BasicObjectLock* limit = istate->monitor_base();
  1669         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
  1670         BasicObjectLock* entry = NULL;
  1671         while (most_recent != limit ) {
  1672           if (most_recent->obj() == NULL) entry = most_recent;
  1673           else if (most_recent->obj() == lockee) break;
  1674           most_recent++;
  1676         if (entry != NULL) {
  1677           entry->set_obj(lockee);
  1678           markOop displaced = lockee->mark()->set_unlocked();
  1679           entry->lock()->set_displaced_header(displaced);
  1680           if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
  1681             // Is it simple recursive case?
  1682             if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
  1683               entry->lock()->set_displaced_header(NULL);
  1684             } else {
  1685               CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
  1688           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1689         } else {
  1690           istate->set_msg(more_monitors);
  1691           UPDATE_PC_AND_RETURN(0); // Re-execute
  1695       CASE(_monitorexit): {
  1696         oop lockee = STACK_OBJECT(-1);
  1697         CHECK_NULL(lockee);
  1698         // derefing's lockee ought to provoke implicit null check
  1699         // find our monitor slot
  1700         BasicObjectLock* limit = istate->monitor_base();
  1701         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
  1702         while (most_recent != limit ) {
  1703           if ((most_recent)->obj() == lockee) {
  1704             BasicLock* lock = most_recent->lock();
  1705             markOop header = lock->displaced_header();
  1706             most_recent->set_obj(NULL);
  1707             // If it isn't recursive we either must swap old header or call the runtime
  1708             if (header != NULL) {
  1709               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
  1710                 // restore object for the slow case
  1711                 most_recent->set_obj(lockee);
  1712                 CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
  1715             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1717           most_recent++;
  1719         // Need to throw illegal monitor state exception
  1720         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
  1721         // Should never reach here...
  1722         assert(false, "Should have thrown illegal monitor exception");
  1725       /* All of the non-quick opcodes. */
  1727       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
  1728        *  constant pool index in the instruction.
  1729        */
  1730       CASE(_getfield):
  1731       CASE(_getstatic):
  1733           u2 index;
  1734           ConstantPoolCacheEntry* cache;
  1735           index = Bytes::get_native_u2(pc+1);
  1737           // QQQ Need to make this as inlined as possible. Probably need to
  1738           // split all the bytecode cases out so c++ compiler has a chance
  1739           // for constant prop to fold everything possible away.
  1741           cache = cp->entry_at(index);
  1742           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  1743             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
  1744                     handle_exception);
  1745             cache = cp->entry_at(index);
  1748 #ifdef VM_JVMTI
  1749           if (_jvmti_interp_events) {
  1750             int *count_addr;
  1751             oop obj;
  1752             // Check to see if a field modification watch has been set
  1753             // before we take the time to call into the VM.
  1754             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
  1755             if ( *count_addr > 0 ) {
  1756               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
  1757                 obj = (oop)NULL;
  1758               } else {
  1759                 obj = (oop) STACK_OBJECT(-1);
  1760                 VERIFY_OOP(obj);
  1762               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
  1763                                           obj,
  1764                                           cache),
  1765                                           handle_exception);
  1768 #endif /* VM_JVMTI */
  1770           oop obj;
  1771           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
  1772             obj = (oop) cache->f1();
  1773             MORE_STACK(1);  // Assume single slot push
  1774           } else {
  1775             obj = (oop) STACK_OBJECT(-1);
  1776             CHECK_NULL(obj);
  1779           //
  1780           // Now store the result on the stack
  1781           //
  1782           TosState tos_type = cache->flag_state();
  1783           int field_offset = cache->f2();
  1784           if (cache->is_volatile()) {
  1785             if (tos_type == atos) {
  1786               VERIFY_OOP(obj->obj_field_acquire(field_offset));
  1787               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
  1788             } else if (tos_type == itos) {
  1789               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
  1790             } else if (tos_type == ltos) {
  1791               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
  1792               MORE_STACK(1);
  1793             } else if (tos_type == btos) {
  1794               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
  1795             } else if (tos_type == ctos) {
  1796               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
  1797             } else if (tos_type == stos) {
  1798               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
  1799             } else if (tos_type == ftos) {
  1800               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
  1801             } else {
  1802               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
  1803               MORE_STACK(1);
  1805           } else {
  1806             if (tos_type == atos) {
  1807               VERIFY_OOP(obj->obj_field(field_offset));
  1808               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
  1809             } else if (tos_type == itos) {
  1810               SET_STACK_INT(obj->int_field(field_offset), -1);
  1811             } else if (tos_type == ltos) {
  1812               SET_STACK_LONG(obj->long_field(field_offset), 0);
  1813               MORE_STACK(1);
  1814             } else if (tos_type == btos) {
  1815               SET_STACK_INT(obj->byte_field(field_offset), -1);
  1816             } else if (tos_type == ctos) {
  1817               SET_STACK_INT(obj->char_field(field_offset), -1);
  1818             } else if (tos_type == stos) {
  1819               SET_STACK_INT(obj->short_field(field_offset), -1);
  1820             } else if (tos_type == ftos) {
  1821               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
  1822             } else {
  1823               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
  1824               MORE_STACK(1);
  1828           UPDATE_PC_AND_CONTINUE(3);
  1831       CASE(_putfield):
  1832       CASE(_putstatic):
  1834           u2 index = Bytes::get_native_u2(pc+1);
  1835           ConstantPoolCacheEntry* cache = cp->entry_at(index);
  1836           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  1837             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
  1838                     handle_exception);
  1839             cache = cp->entry_at(index);
  1842 #ifdef VM_JVMTI
  1843           if (_jvmti_interp_events) {
  1844             int *count_addr;
  1845             oop obj;
  1846             // Check to see if a field modification watch has been set
  1847             // before we take the time to call into the VM.
  1848             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
  1849             if ( *count_addr > 0 ) {
  1850               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
  1851                 obj = (oop)NULL;
  1853               else {
  1854                 if (cache->is_long() || cache->is_double()) {
  1855                   obj = (oop) STACK_OBJECT(-3);
  1856                 } else {
  1857                   obj = (oop) STACK_OBJECT(-2);
  1859                 VERIFY_OOP(obj);
  1862               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
  1863                                           obj,
  1864                                           cache,
  1865                                           (jvalue *)STACK_SLOT(-1)),
  1866                                           handle_exception);
  1869 #endif /* VM_JVMTI */
  1871           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
  1872           // out so c++ compiler has a chance for constant prop to fold everything possible away.
  1874           oop obj;
  1875           int count;
  1876           TosState tos_type = cache->flag_state();
  1878           count = -1;
  1879           if (tos_type == ltos || tos_type == dtos) {
  1880             --count;
  1882           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
  1883             obj = (oop) cache->f1();
  1884           } else {
  1885             --count;
  1886             obj = (oop) STACK_OBJECT(count);
  1887             CHECK_NULL(obj);
  1890           //
  1891           // Now store the result
  1892           //
  1893           int field_offset = cache->f2();
  1894           if (cache->is_volatile()) {
  1895             if (tos_type == itos) {
  1896               obj->release_int_field_put(field_offset, STACK_INT(-1));
  1897             } else if (tos_type == atos) {
  1898               VERIFY_OOP(STACK_OBJECT(-1));
  1899               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
  1900               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
  1901             } else if (tos_type == btos) {
  1902               obj->release_byte_field_put(field_offset, STACK_INT(-1));
  1903             } else if (tos_type == ltos) {
  1904               obj->release_long_field_put(field_offset, STACK_LONG(-1));
  1905             } else if (tos_type == ctos) {
  1906               obj->release_char_field_put(field_offset, STACK_INT(-1));
  1907             } else if (tos_type == stos) {
  1908               obj->release_short_field_put(field_offset, STACK_INT(-1));
  1909             } else if (tos_type == ftos) {
  1910               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
  1911             } else {
  1912               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
  1914             OrderAccess::storeload();
  1915           } else {
  1916             if (tos_type == itos) {
  1917               obj->int_field_put(field_offset, STACK_INT(-1));
  1918             } else if (tos_type == atos) {
  1919               VERIFY_OOP(STACK_OBJECT(-1));
  1920               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
  1921               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
  1922             } else if (tos_type == btos) {
  1923               obj->byte_field_put(field_offset, STACK_INT(-1));
  1924             } else if (tos_type == ltos) {
  1925               obj->long_field_put(field_offset, STACK_LONG(-1));
  1926             } else if (tos_type == ctos) {
  1927               obj->char_field_put(field_offset, STACK_INT(-1));
  1928             } else if (tos_type == stos) {
  1929               obj->short_field_put(field_offset, STACK_INT(-1));
  1930             } else if (tos_type == ftos) {
  1931               obj->float_field_put(field_offset, STACK_FLOAT(-1));
  1932             } else {
  1933               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
  1937           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
  1940       CASE(_new): {
  1941         u2 index = Bytes::get_Java_u2(pc+1);
  1942         constantPoolOop constants = istate->method()->constants();
  1943         if (!constants->tag_at(index).is_unresolved_klass()) {
  1944           // Make sure klass is initialized and doesn't have a finalizer
  1945           oop entry = constants->slot_at(index).get_oop();
  1946           assert(entry->is_klass(), "Should be resolved klass");
  1947           klassOop k_entry = (klassOop) entry;
  1948           assert(k_entry->klass_part()->oop_is_instance(), "Should be instanceKlass");
  1949           instanceKlass* ik = (instanceKlass*) k_entry->klass_part();
  1950           if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
  1951             size_t obj_size = ik->size_helper();
  1952             oop result = NULL;
  1953             // If the TLAB isn't pre-zeroed then we'll have to do it
  1954             bool need_zero = !ZeroTLAB;
  1955             if (UseTLAB) {
  1956               result = (oop) THREAD->tlab().allocate(obj_size);
  1958             if (result == NULL) {
  1959               need_zero = true;
  1960               // Try allocate in shared eden
  1961         retry:
  1962               HeapWord* compare_to = *Universe::heap()->top_addr();
  1963               HeapWord* new_top = compare_to + obj_size;
  1964               if (new_top <= *Universe::heap()->end_addr()) {
  1965                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
  1966                   goto retry;
  1968                 result = (oop) compare_to;
  1971             if (result != NULL) {
  1972               // Initialize object (if nonzero size and need) and then the header
  1973               if (need_zero ) {
  1974                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
  1975                 obj_size -= sizeof(oopDesc) / oopSize;
  1976                 if (obj_size > 0 ) {
  1977                   memset(to_zero, 0, obj_size * HeapWordSize);
  1980               if (UseBiasedLocking) {
  1981                 result->set_mark(ik->prototype_header());
  1982               } else {
  1983                 result->set_mark(markOopDesc::prototype());
  1985               result->set_klass_gap(0);
  1986               result->set_klass(k_entry);
  1987               SET_STACK_OBJECT(result, 0);
  1988               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
  1992         // Slow case allocation
  1993         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
  1994                 handle_exception);
  1995         SET_STACK_OBJECT(THREAD->vm_result(), 0);
  1996         THREAD->set_vm_result(NULL);
  1997         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
  1999       CASE(_anewarray): {
  2000         u2 index = Bytes::get_Java_u2(pc+1);
  2001         jint size = STACK_INT(-1);
  2002         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
  2003                 handle_exception);
  2004         SET_STACK_OBJECT(THREAD->vm_result(), -1);
  2005         THREAD->set_vm_result(NULL);
  2006         UPDATE_PC_AND_CONTINUE(3);
  2008       CASE(_multianewarray): {
  2009         jint dims = *(pc+3);
  2010         jint size = STACK_INT(-1);
  2011         // stack grows down, dimensions are up!
  2012         jint *dimarray =
  2013                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
  2014                                       Interpreter::stackElementWords-1];
  2015         //adjust pointer to start of stack element
  2016         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
  2017                 handle_exception);
  2018         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
  2019         THREAD->set_vm_result(NULL);
  2020         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
  2022       CASE(_checkcast):
  2023           if (STACK_OBJECT(-1) != NULL) {
  2024             VERIFY_OOP(STACK_OBJECT(-1));
  2025             u2 index = Bytes::get_Java_u2(pc+1);
  2026             if (ProfileInterpreter) {
  2027               // needs Profile_checkcast QQQ
  2028               ShouldNotReachHere();
  2030             // Constant pool may have actual klass or unresolved klass. If it is
  2031             // unresolved we must resolve it
  2032             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
  2033               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
  2035             klassOop klassOf = (klassOop) METHOD->constants()->slot_at(index).get_oop();
  2036             klassOop objKlassOop = STACK_OBJECT(-1)->klass(); //ebx
  2037             //
  2038             // Check for compatibilty. This check must not GC!!
  2039             // Seems way more expensive now that we must dispatch
  2040             //
  2041             if (objKlassOop != klassOf &&
  2042                 !objKlassOop->klass_part()->is_subtype_of(klassOf)) {
  2043               ResourceMark rm(THREAD);
  2044               const char* objName = Klass::cast(objKlassOop)->external_name();
  2045               const char* klassName = Klass::cast(klassOf)->external_name();
  2046               char* message = SharedRuntime::generate_class_cast_message(
  2047                 objName, klassName);
  2048               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message);
  2050           } else {
  2051             if (UncommonNullCast) {
  2052 //              istate->method()->set_null_cast_seen();
  2053 // [RGV] Not sure what to do here!
  2057           UPDATE_PC_AND_CONTINUE(3);
  2059       CASE(_instanceof):
  2060           if (STACK_OBJECT(-1) == NULL) {
  2061             SET_STACK_INT(0, -1);
  2062           } else {
  2063             VERIFY_OOP(STACK_OBJECT(-1));
  2064             u2 index = Bytes::get_Java_u2(pc+1);
  2065             // Constant pool may have actual klass or unresolved klass. If it is
  2066             // unresolved we must resolve it
  2067             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
  2068               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
  2070             klassOop klassOf = (klassOop) METHOD->constants()->slot_at(index).get_oop();
  2071             klassOop objKlassOop = STACK_OBJECT(-1)->klass();
  2072             //
  2073             // Check for compatibilty. This check must not GC!!
  2074             // Seems way more expensive now that we must dispatch
  2075             //
  2076             if ( objKlassOop == klassOf || objKlassOop->klass_part()->is_subtype_of(klassOf)) {
  2077               SET_STACK_INT(1, -1);
  2078             } else {
  2079               SET_STACK_INT(0, -1);
  2082           UPDATE_PC_AND_CONTINUE(3);
  2084       CASE(_ldc_w):
  2085       CASE(_ldc):
  2087           u2 index;
  2088           bool wide = false;
  2089           int incr = 2; // frequent case
  2090           if (opcode == Bytecodes::_ldc) {
  2091             index = pc[1];
  2092           } else {
  2093             index = Bytes::get_Java_u2(pc+1);
  2094             incr = 3;
  2095             wide = true;
  2098           constantPoolOop constants = METHOD->constants();
  2099           switch (constants->tag_at(index).value()) {
  2100           case JVM_CONSTANT_Integer:
  2101             SET_STACK_INT(constants->int_at(index), 0);
  2102             break;
  2104           case JVM_CONSTANT_Float:
  2105             SET_STACK_FLOAT(constants->float_at(index), 0);
  2106             break;
  2108           case JVM_CONSTANT_String:
  2109             VERIFY_OOP(constants->resolved_string_at(index));
  2110             SET_STACK_OBJECT(constants->resolved_string_at(index), 0);
  2111             break;
  2113           case JVM_CONSTANT_Class:
  2114             VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
  2115             SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
  2116             break;
  2118           case JVM_CONSTANT_UnresolvedString:
  2119           case JVM_CONSTANT_UnresolvedClass:
  2120           case JVM_CONSTANT_UnresolvedClassInError:
  2121             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
  2122             SET_STACK_OBJECT(THREAD->vm_result(), 0);
  2123             THREAD->set_vm_result(NULL);
  2124             break;
  2126           default:  ShouldNotReachHere();
  2128           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
  2131       CASE(_ldc2_w):
  2133           u2 index = Bytes::get_Java_u2(pc+1);
  2135           constantPoolOop constants = METHOD->constants();
  2136           switch (constants->tag_at(index).value()) {
  2138           case JVM_CONSTANT_Long:
  2139              SET_STACK_LONG(constants->long_at(index), 1);
  2140             break;
  2142           case JVM_CONSTANT_Double:
  2143              SET_STACK_DOUBLE(constants->double_at(index), 1);
  2144             break;
  2145           default:  ShouldNotReachHere();
  2147           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
  2150       CASE(_invokeinterface): {
  2151         u2 index = Bytes::get_native_u2(pc+1);
  2153         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
  2154         // out so c++ compiler has a chance for constant prop to fold everything possible away.
  2156         ConstantPoolCacheEntry* cache = cp->entry_at(index);
  2157         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  2158           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
  2159                   handle_exception);
  2160           cache = cp->entry_at(index);
  2163         istate->set_msg(call_method);
  2165         // Special case of invokeinterface called for virtual method of
  2166         // java.lang.Object.  See cpCacheOop.cpp for details.
  2167         // This code isn't produced by javac, but could be produced by
  2168         // another compliant java compiler.
  2169         if (cache->is_methodInterface()) {
  2170           methodOop callee;
  2171           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
  2172           if (cache->is_vfinal()) {
  2173             callee = (methodOop) cache->f2();
  2174           } else {
  2175             // get receiver
  2176             int parms = cache->parameter_size();
  2177             // Same comments as invokevirtual apply here
  2178             VERIFY_OOP(STACK_OBJECT(-parms));
  2179             instanceKlass* rcvrKlass = (instanceKlass*)
  2180                                  STACK_OBJECT(-parms)->klass()->klass_part();
  2181             callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
  2183           istate->set_callee(callee);
  2184           istate->set_callee_entry_point(callee->from_interpreted_entry());
  2185 #ifdef VM_JVMTI
  2186           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
  2187             istate->set_callee_entry_point(callee->interpreter_entry());
  2189 #endif /* VM_JVMTI */
  2190           istate->set_bcp_advance(5);
  2191           UPDATE_PC_AND_RETURN(0); // I'll be back...
  2194         // this could definitely be cleaned up QQQ
  2195         methodOop callee;
  2196         klassOop iclass = (klassOop)cache->f1();
  2197         // instanceKlass* interface = (instanceKlass*) iclass->klass_part();
  2198         // get receiver
  2199         int parms = cache->parameter_size();
  2200         oop rcvr = STACK_OBJECT(-parms);
  2201         CHECK_NULL(rcvr);
  2202         instanceKlass* int2 = (instanceKlass*) rcvr->klass()->klass_part();
  2203         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
  2204         int i;
  2205         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
  2206           if (ki->interface_klass() == iclass) break;
  2208         // If the interface isn't found, this class doesn't implement this
  2209         // interface.  The link resolver checks this but only for the first
  2210         // time this interface is called.
  2211         if (i == int2->itable_length()) {
  2212           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "");
  2214         int mindex = cache->f2();
  2215         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
  2216         callee = im[mindex].method();
  2217         if (callee == NULL) {
  2218           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "");
  2221         istate->set_callee(callee);
  2222         istate->set_callee_entry_point(callee->from_interpreted_entry());
  2223 #ifdef VM_JVMTI
  2224         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
  2225           istate->set_callee_entry_point(callee->interpreter_entry());
  2227 #endif /* VM_JVMTI */
  2228         istate->set_bcp_advance(5);
  2229         UPDATE_PC_AND_RETURN(0); // I'll be back...
  2232       CASE(_invokevirtual):
  2233       CASE(_invokespecial):
  2234       CASE(_invokestatic): {
  2235         u2 index = Bytes::get_native_u2(pc+1);
  2237         ConstantPoolCacheEntry* cache = cp->entry_at(index);
  2238         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
  2239         // out so c++ compiler has a chance for constant prop to fold everything possible away.
  2241         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  2242           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
  2243                   handle_exception);
  2244           cache = cp->entry_at(index);
  2247         istate->set_msg(call_method);
  2249           methodOop callee;
  2250           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
  2251             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
  2252             if (cache->is_vfinal()) callee = (methodOop) cache->f2();
  2253             else {
  2254               // get receiver
  2255               int parms = cache->parameter_size();
  2256               // this works but needs a resourcemark and seems to create a vtable on every call:
  2257               // methodOop callee = rcvr->klass()->klass_part()->vtable()->method_at(cache->f2());
  2258               //
  2259               // this fails with an assert
  2260               // instanceKlass* rcvrKlass = instanceKlass::cast(STACK_OBJECT(-parms)->klass());
  2261               // but this works
  2262               VERIFY_OOP(STACK_OBJECT(-parms));
  2263               instanceKlass* rcvrKlass = (instanceKlass*) STACK_OBJECT(-parms)->klass()->klass_part();
  2264               /*
  2265                 Executing this code in java.lang.String:
  2266                     public String(char value[]) {
  2267                           this.count = value.length;
  2268                           this.value = (char[])value.clone();
  2271                  a find on rcvr->klass()->klass_part() reports:
  2272                  {type array char}{type array class}
  2273                   - klass: {other class}
  2275                   but using instanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
  2276                   because rcvr->klass()->klass_part()->oop_is_instance() == 0
  2277                   However it seems to have a vtable in the right location. Huh?
  2279               */
  2280               callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
  2282           } else {
  2283             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
  2284               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
  2286             callee = (methodOop) cache->f1();
  2289           istate->set_callee(callee);
  2290           istate->set_callee_entry_point(callee->from_interpreted_entry());
  2291 #ifdef VM_JVMTI
  2292           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
  2293             istate->set_callee_entry_point(callee->interpreter_entry());
  2295 #endif /* VM_JVMTI */
  2296           istate->set_bcp_advance(3);
  2297           UPDATE_PC_AND_RETURN(0); // I'll be back...
  2301       /* Allocate memory for a new java object. */
  2303       CASE(_newarray): {
  2304         BasicType atype = (BasicType) *(pc+1);
  2305         jint size = STACK_INT(-1);
  2306         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
  2307                 handle_exception);
  2308         SET_STACK_OBJECT(THREAD->vm_result(), -1);
  2309         THREAD->set_vm_result(NULL);
  2311         UPDATE_PC_AND_CONTINUE(2);
  2314       /* Throw an exception. */
  2316       CASE(_athrow): {
  2317           oop except_oop = STACK_OBJECT(-1);
  2318           CHECK_NULL(except_oop);
  2319           // set pending_exception so we use common code
  2320           THREAD->set_pending_exception(except_oop, NULL, 0);
  2321           goto handle_exception;
  2324       /* goto and jsr. They are exactly the same except jsr pushes
  2325        * the address of the next instruction first.
  2326        */
  2328       CASE(_jsr): {
  2329           /* push bytecode index on stack */
  2330           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
  2331           MORE_STACK(1);
  2332           /* FALL THROUGH */
  2335       CASE(_goto):
  2337           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
  2338           address branch_pc = pc;
  2339           UPDATE_PC(offset);
  2340           DO_BACKEDGE_CHECKS(offset, branch_pc);
  2341           CONTINUE;
  2344       CASE(_jsr_w): {
  2345           /* push return address on the stack */
  2346           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
  2347           MORE_STACK(1);
  2348           /* FALL THROUGH */
  2351       CASE(_goto_w):
  2353           int32_t offset = Bytes::get_Java_u4(pc + 1);
  2354           address branch_pc = pc;
  2355           UPDATE_PC(offset);
  2356           DO_BACKEDGE_CHECKS(offset, branch_pc);
  2357           CONTINUE;
  2360       /* return from a jsr or jsr_w */
  2362       CASE(_ret): {
  2363           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
  2364           UPDATE_PC_AND_CONTINUE(0);
  2367       /* debugger breakpoint */
  2369       CASE(_breakpoint): {
  2370           Bytecodes::Code original_bytecode;
  2371           DECACHE_STATE();
  2372           SET_LAST_JAVA_FRAME();
  2373           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
  2374                               METHOD, pc);
  2375           RESET_LAST_JAVA_FRAME();
  2376           CACHE_STATE();
  2377           if (THREAD->has_pending_exception()) goto handle_exception;
  2378             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
  2379                                                     handle_exception);
  2381           opcode = (jubyte)original_bytecode;
  2382           goto opcode_switch;
  2385       DEFAULT:
  2386           fatal(err_msg("Unimplemented opcode %d = %s", opcode,
  2387                         Bytecodes::name((Bytecodes::Code)opcode)));
  2388           goto finish;
  2390       } /* switch(opc) */
  2393 #ifdef USELABELS
  2394     check_for_exception:
  2395 #endif
  2397       if (!THREAD->has_pending_exception()) {
  2398         CONTINUE;
  2400       /* We will be gcsafe soon, so flush our state. */
  2401       DECACHE_PC();
  2402       goto handle_exception;
  2404   do_continue: ;
  2406   } /* while (1) interpreter loop */
  2409   // An exception exists in the thread state see whether this activation can handle it
  2410   handle_exception: {
  2412     HandleMarkCleaner __hmc(THREAD);
  2413     Handle except_oop(THREAD, THREAD->pending_exception());
  2414     // Prevent any subsequent HandleMarkCleaner in the VM
  2415     // from freeing the except_oop handle.
  2416     HandleMark __hm(THREAD);
  2418     THREAD->clear_pending_exception();
  2419     assert(except_oop(), "No exception to process");
  2420     intptr_t continuation_bci;
  2421     // expression stack is emptied
  2422     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
  2423     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
  2424             handle_exception);
  2426     except_oop = (oop) THREAD->vm_result();
  2427     THREAD->set_vm_result(NULL);
  2428     if (continuation_bci >= 0) {
  2429       // Place exception on top of stack
  2430       SET_STACK_OBJECT(except_oop(), 0);
  2431       MORE_STACK(1);
  2432       pc = METHOD->code_base() + continuation_bci;
  2433       if (TraceExceptions) {
  2434         ttyLocker ttyl;
  2435         ResourceMark rm;
  2436         tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
  2437         tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
  2438         tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
  2439                       pc - (intptr_t)METHOD->code_base(),
  2440                       continuation_bci, THREAD);
  2442       // for AbortVMOnException flag
  2443       NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
  2444       goto run;
  2446     if (TraceExceptions) {
  2447       ttyLocker ttyl;
  2448       ResourceMark rm;
  2449       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
  2450       tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
  2451       tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
  2452                     pc  - (intptr_t) METHOD->code_base(),
  2453                     THREAD);
  2455     // for AbortVMOnException flag
  2456     NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
  2457     // No handler in this activation, unwind and try again
  2458     THREAD->set_pending_exception(except_oop(), NULL, 0);
  2459     goto handle_return;
  2460   }  /* handle_exception: */
  2464   // Return from an interpreter invocation with the result of the interpretation
  2465   // on the top of the Java Stack (or a pending exception)
  2467 handle_Pop_Frame:
  2469   // We don't really do anything special here except we must be aware
  2470   // that we can get here without ever locking the method (if sync).
  2471   // Also we skip the notification of the exit.
  2473   istate->set_msg(popping_frame);
  2474   // Clear pending so while the pop is in process
  2475   // we don't start another one if a call_vm is done.
  2476   THREAD->clr_pop_frame_pending();
  2477   // Let interpreter (only) see the we're in the process of popping a frame
  2478   THREAD->set_pop_frame_in_process();
  2480 handle_return:
  2482     DECACHE_STATE();
  2484     bool suppress_error = istate->msg() == popping_frame;
  2485     bool suppress_exit_event = THREAD->has_pending_exception() || suppress_error;
  2486     Handle original_exception(THREAD, THREAD->pending_exception());
  2487     Handle illegal_state_oop(THREAD, NULL);
  2489     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
  2490     // in any following VM entries from freeing our live handles, but illegal_state_oop
  2491     // isn't really allocated yet and so doesn't become live until later and
  2492     // in unpredicatable places. Instead we must protect the places where we enter the
  2493     // VM. It would be much simpler (and safer) if we could allocate a real handle with
  2494     // a NULL oop in it and then overwrite the oop later as needed. This isn't
  2495     // unfortunately isn't possible.
  2497     THREAD->clear_pending_exception();
  2499     //
  2500     // As far as we are concerned we have returned. If we have a pending exception
  2501     // that will be returned as this invocation's result. However if we get any
  2502     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
  2503     // will be our final result (i.e. monitor exception trumps a pending exception).
  2504     //
  2506     // If we never locked the method (or really passed the point where we would have),
  2507     // there is no need to unlock it (or look for other monitors), since that
  2508     // could not have happened.
  2510     if (THREAD->do_not_unlock()) {
  2512       // Never locked, reset the flag now because obviously any caller must
  2513       // have passed their point of locking for us to have gotten here.
  2515       THREAD->clr_do_not_unlock();
  2516     } else {
  2517       // At this point we consider that we have returned. We now check that the
  2518       // locks were properly block structured. If we find that they were not
  2519       // used properly we will return with an illegal monitor exception.
  2520       // The exception is checked by the caller not the callee since this
  2521       // checking is considered to be part of the invocation and therefore
  2522       // in the callers scope (JVM spec 8.13).
  2523       //
  2524       // Another weird thing to watch for is if the method was locked
  2525       // recursively and then not exited properly. This means we must
  2526       // examine all the entries in reverse time(and stack) order and
  2527       // unlock as we find them. If we find the method monitor before
  2528       // we are at the initial entry then we should throw an exception.
  2529       // It is not clear the template based interpreter does this
  2530       // correctly
  2532       BasicObjectLock* base = istate->monitor_base();
  2533       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
  2534       bool method_unlock_needed = METHOD->is_synchronized();
  2535       // We know the initial monitor was used for the method don't check that
  2536       // slot in the loop
  2537       if (method_unlock_needed) base--;
  2539       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
  2540       while (end < base) {
  2541         oop lockee = end->obj();
  2542         if (lockee != NULL) {
  2543           BasicLock* lock = end->lock();
  2544           markOop header = lock->displaced_header();
  2545           end->set_obj(NULL);
  2546           // If it isn't recursive we either must swap old header or call the runtime
  2547           if (header != NULL) {
  2548             if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
  2549               // restore object for the slow case
  2550               end->set_obj(lockee);
  2552                 // Prevent any HandleMarkCleaner from freeing our live handles
  2553                 HandleMark __hm(THREAD);
  2554                 CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
  2558           // One error is plenty
  2559           if (illegal_state_oop() == NULL && !suppress_error) {
  2561               // Prevent any HandleMarkCleaner from freeing our live handles
  2562               HandleMark __hm(THREAD);
  2563               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
  2565             assert(THREAD->has_pending_exception(), "Lost our exception!");
  2566             illegal_state_oop = THREAD->pending_exception();
  2567             THREAD->clear_pending_exception();
  2570         end++;
  2572       // Unlock the method if needed
  2573       if (method_unlock_needed) {
  2574         if (base->obj() == NULL) {
  2575           // The method is already unlocked this is not good.
  2576           if (illegal_state_oop() == NULL && !suppress_error) {
  2578               // Prevent any HandleMarkCleaner from freeing our live handles
  2579               HandleMark __hm(THREAD);
  2580               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
  2582             assert(THREAD->has_pending_exception(), "Lost our exception!");
  2583             illegal_state_oop = THREAD->pending_exception();
  2584             THREAD->clear_pending_exception();
  2586         } else {
  2587           //
  2588           // The initial monitor is always used for the method
  2589           // However if that slot is no longer the oop for the method it was unlocked
  2590           // and reused by something that wasn't unlocked!
  2591           //
  2592           // deopt can come in with rcvr dead because c2 knows
  2593           // its value is preserved in the monitor. So we can't use locals[0] at all
  2594           // and must use first monitor slot.
  2595           //
  2596           oop rcvr = base->obj();
  2597           if (rcvr == NULL) {
  2598             if (!suppress_error) {
  2599               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "");
  2600               illegal_state_oop = THREAD->pending_exception();
  2601               THREAD->clear_pending_exception();
  2603           } else {
  2604             BasicLock* lock = base->lock();
  2605             markOop header = lock->displaced_header();
  2606             base->set_obj(NULL);
  2607             // If it isn't recursive we either must swap old header or call the runtime
  2608             if (header != NULL) {
  2609               if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
  2610                 // restore object for the slow case
  2611                 base->set_obj(rcvr);
  2613                   // Prevent any HandleMarkCleaner from freeing our live handles
  2614                   HandleMark __hm(THREAD);
  2615                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
  2617                 if (THREAD->has_pending_exception()) {
  2618                   if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
  2619                   THREAD->clear_pending_exception();
  2628     //
  2629     // Notify jvmti/jvmdi
  2630     //
  2631     // NOTE: we do not notify a method_exit if we have a pending exception,
  2632     // including an exception we generate for unlocking checks.  In the former
  2633     // case, JVMDI has already been notified by our call for the exception handler
  2634     // and in both cases as far as JVMDI is concerned we have already returned.
  2635     // If we notify it again JVMDI will be all confused about how many frames
  2636     // are still on the stack (4340444).
  2637     //
  2638     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
  2639     // method_exit events whenever we leave an activation unless it was done
  2640     // for popframe. This is nothing like jvmdi. However we are passing the
  2641     // tests at the moment (apparently because they are jvmdi based) so rather
  2642     // than change this code and possibly fail tests we will leave it alone
  2643     // (with this note) in anticipation of changing the vm and the tests
  2644     // simultaneously.
  2647     //
  2648     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
  2652 #ifdef VM_JVMTI
  2653       if (_jvmti_interp_events) {
  2654         // Whenever JVMTI puts a thread in interp_only_mode, method
  2655         // entry/exit events are sent for that thread to track stack depth.
  2656         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
  2658             // Prevent any HandleMarkCleaner from freeing our live handles
  2659             HandleMark __hm(THREAD);
  2660             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
  2664 #endif /* VM_JVMTI */
  2666     //
  2667     // See if we are returning any exception
  2668     // A pending exception that was pending prior to a possible popping frame
  2669     // overrides the popping frame.
  2670     //
  2671     assert(!suppress_error || suppress_error && illegal_state_oop() == NULL, "Error was not suppressed");
  2672     if (illegal_state_oop() != NULL || original_exception() != NULL) {
  2673       // inform the frame manager we have no result
  2674       istate->set_msg(throwing_exception);
  2675       if (illegal_state_oop() != NULL)
  2676         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
  2677       else
  2678         THREAD->set_pending_exception(original_exception(), NULL, 0);
  2679       istate->set_return_kind((Bytecodes::Code)opcode);
  2680       UPDATE_PC_AND_RETURN(0);
  2683     if (istate->msg() == popping_frame) {
  2684       // Make it simpler on the assembly code and set the message for the frame pop.
  2685       // returns
  2686       if (istate->prev() == NULL) {
  2687         // We must be returning to a deoptimized frame (because popframe only happens between
  2688         // two interpreted frames). We need to save the current arguments in C heap so that
  2689         // the deoptimized frame when it restarts can copy the arguments to its expression
  2690         // stack and re-execute the call. We also have to notify deoptimization that this
  2691         // has occurred and to pick the preserved args copy them to the deoptimized frame's
  2692         // java expression stack. Yuck.
  2693         //
  2694         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
  2695                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
  2696         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
  2698       THREAD->clr_pop_frame_in_process();
  2701     // Normal return
  2702     // Advance the pc and return to frame manager
  2703     istate->set_msg(return_from_method);
  2704     istate->set_return_kind((Bytecodes::Code)opcode);
  2705     UPDATE_PC_AND_RETURN(1);
  2706   } /* handle_return: */
  2708 // This is really a fatal error return
  2710 finish:
  2711   DECACHE_TOS();
  2712   DECACHE_PC();
  2714   return;
  2717 /*
  2718  * All the code following this point is only produced once and is not present
  2719  * in the JVMTI version of the interpreter
  2720 */
  2722 #ifndef VM_JVMTI
  2724 // This constructor should only be used to contruct the object to signal
  2725 // interpreter initialization. All other instances should be created by
  2726 // the frame manager.
  2727 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
  2728   if (msg != initialize) ShouldNotReachHere();
  2729   _msg = msg;
  2730   _self_link = this;
  2731   _prev_link = NULL;
  2734 // Inline static functions for Java Stack and Local manipulation
  2736 // The implementations are platform dependent. We have to worry about alignment
  2737 // issues on some machines which can change on the same platform depending on
  2738 // whether it is an LP64 machine also.
  2739 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
  2740   return (address) tos[Interpreter::expr_index_at(-offset)];
  2743 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
  2744   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
  2747 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
  2748   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
  2751 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
  2752   return (oop)tos [Interpreter::expr_index_at(-offset)];
  2755 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
  2756   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
  2759 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
  2760   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
  2763 // only used for value types
  2764 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
  2765                                                         int offset) {
  2766   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2769 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
  2770                                                        int offset) {
  2771   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2774 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
  2775                                                          int offset) {
  2776   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2779 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
  2780                                                           int offset) {
  2781   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2784 // needs to be platform dep for the 32 bit platforms.
  2785 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
  2786                                                           int offset) {
  2787   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
  2790 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
  2791                                               address addr, int offset) {
  2792   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
  2793                         ((VMJavaVal64*)addr)->d);
  2796 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
  2797                                                         int offset) {
  2798   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
  2799   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
  2802 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
  2803                                             address addr, int offset) {
  2804   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
  2805   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
  2806                         ((VMJavaVal64*)addr)->l;
  2809 // Locals
  2811 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
  2812   return (address)locals[Interpreter::local_index_at(-offset)];
  2814 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
  2815   return (jint)locals[Interpreter::local_index_at(-offset)];
  2817 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
  2818   return (jfloat)locals[Interpreter::local_index_at(-offset)];
  2820 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
  2821   return (oop)locals[Interpreter::local_index_at(-offset)];
  2823 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
  2824   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
  2826 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
  2827   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
  2830 // Returns the address of locals value.
  2831 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
  2832   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
  2834 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
  2835   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
  2838 // Used for local value or returnAddress
  2839 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
  2840                                    address value, int offset) {
  2841   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
  2843 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
  2844                                    jint value, int offset) {
  2845   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
  2847 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
  2848                                    jfloat value, int offset) {
  2849   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
  2851 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
  2852                                    oop value, int offset) {
  2853   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
  2855 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
  2856                                    jdouble value, int offset) {
  2857   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
  2859 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
  2860                                    jlong value, int offset) {
  2861   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
  2863 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
  2864                                    address addr, int offset) {
  2865   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
  2867 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
  2868                                    address addr, int offset) {
  2869   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
  2872 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
  2873                           intptr_t* locals, int locals_offset) {
  2874   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
  2875   locals[Interpreter::local_index_at(-locals_offset)] = value;
  2879 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
  2880                                    int to_offset) {
  2881   tos[Interpreter::expr_index_at(-to_offset)] =
  2882                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
  2885 void BytecodeInterpreter::dup(intptr_t *tos) {
  2886   copy_stack_slot(tos, -1, 0);
  2888 void BytecodeInterpreter::dup2(intptr_t *tos) {
  2889   copy_stack_slot(tos, -2, 0);
  2890   copy_stack_slot(tos, -1, 1);
  2893 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
  2894   /* insert top word two down */
  2895   copy_stack_slot(tos, -1, 0);
  2896   copy_stack_slot(tos, -2, -1);
  2897   copy_stack_slot(tos, 0, -2);
  2900 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
  2901   /* insert top word three down  */
  2902   copy_stack_slot(tos, -1, 0);
  2903   copy_stack_slot(tos, -2, -1);
  2904   copy_stack_slot(tos, -3, -2);
  2905   copy_stack_slot(tos, 0, -3);
  2907 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
  2908   /* insert top 2 slots three down */
  2909   copy_stack_slot(tos, -1, 1);
  2910   copy_stack_slot(tos, -2, 0);
  2911   copy_stack_slot(tos, -3, -1);
  2912   copy_stack_slot(tos, 1, -2);
  2913   copy_stack_slot(tos, 0, -3);
  2915 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
  2916   /* insert top 2 slots four down */
  2917   copy_stack_slot(tos, -1, 1);
  2918   copy_stack_slot(tos, -2, 0);
  2919   copy_stack_slot(tos, -3, -1);
  2920   copy_stack_slot(tos, -4, -2);
  2921   copy_stack_slot(tos, 1, -3);
  2922   copy_stack_slot(tos, 0, -4);
  2926 void BytecodeInterpreter::swap(intptr_t *tos) {
  2927   // swap top two elements
  2928   intptr_t val = tos[Interpreter::expr_index_at(1)];
  2929   // Copy -2 entry to -1
  2930   copy_stack_slot(tos, -2, -1);
  2931   // Store saved -1 entry into -2
  2932   tos[Interpreter::expr_index_at(2)] = val;
  2934 // --------------------------------------------------------------------------------
  2935 // Non-product code
  2936 #ifndef PRODUCT
  2938 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
  2939   switch (msg) {
  2940      case BytecodeInterpreter::no_request:  return("no_request");
  2941      case BytecodeInterpreter::initialize:  return("initialize");
  2942      // status message to C++ interpreter
  2943      case BytecodeInterpreter::method_entry:  return("method_entry");
  2944      case BytecodeInterpreter::method_resume:  return("method_resume");
  2945      case BytecodeInterpreter::got_monitors:  return("got_monitors");
  2946      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
  2947      // requests to frame manager from C++ interpreter
  2948      case BytecodeInterpreter::call_method:  return("call_method");
  2949      case BytecodeInterpreter::return_from_method:  return("return_from_method");
  2950      case BytecodeInterpreter::more_monitors:  return("more_monitors");
  2951      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
  2952      case BytecodeInterpreter::popping_frame:  return("popping_frame");
  2953      case BytecodeInterpreter::do_osr:  return("do_osr");
  2954      // deopt
  2955      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
  2956      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
  2957      default: return("BAD MSG");
  2960 void
  2961 BytecodeInterpreter::print() {
  2962   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
  2963   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
  2964   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
  2965   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
  2967     ResourceMark rm;
  2968     char *method_name = _method->name_and_sig_as_C_string();
  2969     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
  2971   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
  2972   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
  2973   tty->print_cr("msg: %s", C_msg(this->_msg));
  2974   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
  2975   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
  2976   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
  2977   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
  2978   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
  2979   tty->print_cr("result_return_kind 0x%x ", (int) this->_result._return_kind);
  2980   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
  2981   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) this->_oop_temp);
  2982   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
  2983   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
  2984   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
  2985 #ifdef SPARC
  2986   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
  2987   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
  2988   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
  2989   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
  2990 #endif
  2991 #if defined(IA64) && !defined(ZERO)
  2992   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
  2993 #endif // IA64 && !ZERO
  2994   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
  2997 extern "C" {
  2998     void PI(uintptr_t arg) {
  2999         ((BytecodeInterpreter*)arg)->print();
  3002 #endif // PRODUCT
  3004 #endif // JVMTI
  3005 #endif // CC_INTERP

mercurial