src/share/vm/opto/output.cpp

Tue, 09 Feb 2010 01:31:13 -0800

author
kvn
date
Tue, 09 Feb 2010 01:31:13 -0800
changeset 1688
f70b0d9ab095
parent 1639
18a389214829
child 1700
b4b440360f1e
permissions
-rw-r--r--

6910618: C2: Error: assert(d->is_oop(),"JVM_ArrayCopy: dst not an oop")
Summary: Mark in PcDesc call sites which return oop and save the result oop across objects reallocation during deoptimization.
Reviewed-by: never

     1 /*
     2  * Copyright 1998-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_output.cpp.incl"
    28 extern uint size_java_to_interp();
    29 extern uint reloc_java_to_interp();
    30 extern uint size_exception_handler();
    31 extern uint size_deopt_handler();
    33 #ifndef PRODUCT
    34 #define DEBUG_ARG(x) , x
    35 #else
    36 #define DEBUG_ARG(x)
    37 #endif
    39 extern int emit_exception_handler(CodeBuffer &cbuf);
    40 extern int emit_deopt_handler(CodeBuffer &cbuf);
    42 //------------------------------Output-----------------------------------------
    43 // Convert Nodes to instruction bits and pass off to the VM
    44 void Compile::Output() {
    45   // RootNode goes
    46   assert( _cfg->_broot->_nodes.size() == 0, "" );
    48   // Initialize the space for the BufferBlob used to find and verify
    49   // instruction size in MachNode::emit_size()
    50   init_scratch_buffer_blob();
    51   if (failing())  return; // Out of memory
    53   // The number of new nodes (mostly MachNop) is proportional to
    54   // the number of java calls and inner loops which are aligned.
    55   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
    56                             C->inner_loops()*(OptoLoopAlignment-1)),
    57                            "out of nodes before code generation" ) ) {
    58     return;
    59   }
    60   // Make sure I can find the Start Node
    61   Block_Array& bbs = _cfg->_bbs;
    62   Block *entry = _cfg->_blocks[1];
    63   Block *broot = _cfg->_broot;
    65   const StartNode *start = entry->_nodes[0]->as_Start();
    67   // Replace StartNode with prolog
    68   MachPrologNode *prolog = new (this) MachPrologNode();
    69   entry->_nodes.map( 0, prolog );
    70   bbs.map( prolog->_idx, entry );
    71   bbs.map( start->_idx, NULL ); // start is no longer in any block
    73   // Virtual methods need an unverified entry point
    75   if( is_osr_compilation() ) {
    76     if( PoisonOSREntry ) {
    77       // TODO: Should use a ShouldNotReachHereNode...
    78       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
    79     }
    80   } else {
    81     if( _method && !_method->flags().is_static() ) {
    82       // Insert unvalidated entry point
    83       _cfg->insert( broot, 0, new (this) MachUEPNode() );
    84     }
    86   }
    89   // Break before main entry point
    90   if( (_method && _method->break_at_execute())
    91 #ifndef PRODUCT
    92     ||(OptoBreakpoint && is_method_compilation())
    93     ||(OptoBreakpointOSR && is_osr_compilation())
    94     ||(OptoBreakpointC2R && !_method)
    95 #endif
    96     ) {
    97     // checking for _method means that OptoBreakpoint does not apply to
    98     // runtime stubs or frame converters
    99     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
   100   }
   102   // Insert epilogs before every return
   103   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
   104     Block *b = _cfg->_blocks[i];
   105     if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
   106       Node *m = b->end();
   107       if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
   108         MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
   109         b->add_inst( epilog );
   110         bbs.map(epilog->_idx, b);
   111         //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
   112       }
   113     }
   114   }
   116 # ifdef ENABLE_ZAP_DEAD_LOCALS
   117   if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
   118 # endif
   120   ScheduleAndBundle();
   122 #ifndef PRODUCT
   123   if (trace_opto_output()) {
   124     tty->print("\n---- After ScheduleAndBundle ----\n");
   125     for (uint i = 0; i < _cfg->_num_blocks; i++) {
   126       tty->print("\nBB#%03d:\n", i);
   127       Block *bb = _cfg->_blocks[i];
   128       for (uint j = 0; j < bb->_nodes.size(); j++) {
   129         Node *n = bb->_nodes[j];
   130         OptoReg::Name reg = _regalloc->get_reg_first(n);
   131         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
   132         n->dump();
   133       }
   134     }
   135   }
   136 #endif
   138   if (failing())  return;
   140   BuildOopMaps();
   142   if (failing())  return;
   144   Fill_buffer();
   145 }
   147 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
   148   // Determine if we need to generate a stack overflow check.
   149   // Do it if the method is not a stub function and
   150   // has java calls or has frame size > vm_page_size/8.
   151   return (stub_function() == NULL &&
   152           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
   153 }
   155 bool Compile::need_register_stack_bang() const {
   156   // Determine if we need to generate a register stack overflow check.
   157   // This is only used on architectures which have split register
   158   // and memory stacks (ie. IA64).
   159   // Bang if the method is not a stub function and has java calls
   160   return (stub_function() == NULL && has_java_calls());
   161 }
   163 # ifdef ENABLE_ZAP_DEAD_LOCALS
   166 // In order to catch compiler oop-map bugs, we have implemented
   167 // a debugging mode called ZapDeadCompilerLocals.
   168 // This mode causes the compiler to insert a call to a runtime routine,
   169 // "zap_dead_locals", right before each place in compiled code
   170 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
   171 // The runtime routine checks that locations mapped as oops are really
   172 // oops, that locations mapped as values do not look like oops,
   173 // and that locations mapped as dead are not used later
   174 // (by zapping them to an invalid address).
   176 int Compile::_CompiledZap_count = 0;
   178 void Compile::Insert_zap_nodes() {
   179   bool skip = false;
   182   // Dink with static counts because code code without the extra
   183   // runtime calls is MUCH faster for debugging purposes
   185        if ( CompileZapFirst  ==  0  ) ; // nothing special
   186   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
   187   else if ( CompileZapFirst  == CompiledZap_count() )
   188     warning("starting zap compilation after skipping");
   190        if ( CompileZapLast  ==  -1  ) ; // nothing special
   191   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
   192   else if ( CompileZapLast  ==  CompiledZap_count() )
   193     warning("about to compile last zap");
   195   ++_CompiledZap_count; // counts skipped zaps, too
   197   if ( skip )  return;
   200   if ( _method == NULL )
   201     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
   203   // Insert call to zap runtime stub before every node with an oop map
   204   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
   205     Block *b = _cfg->_blocks[i];
   206     for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
   207       Node *n = b->_nodes[j];
   209       // Determining if we should insert a zap-a-lot node in output.
   210       // We do that for all nodes that has oopmap info, except for calls
   211       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
   212       // and expect the C code to reset it.  Hence, there can be no safepoints between
   213       // the inlined-allocation and the call to new_Java, etc.
   214       // We also cannot zap monitor calls, as they must hold the microlock
   215       // during the call to Zap, which also wants to grab the microlock.
   216       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
   217       if ( insert ) { // it is MachSafePoint
   218         if ( !n->is_MachCall() ) {
   219           insert = false;
   220         } else if ( n->is_MachCall() ) {
   221           MachCallNode* call = n->as_MachCall();
   222           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
   223               call->entry_point() == OptoRuntime::new_array_Java() ||
   224               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
   225               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
   226               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
   227               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
   228               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
   229               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
   230               ) {
   231             insert = false;
   232           }
   233         }
   234         if (insert) {
   235           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
   236           b->_nodes.insert( j, zap );
   237           _cfg->_bbs.map( zap->_idx, b );
   238           ++j;
   239         }
   240       }
   241     }
   242   }
   243 }
   246 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
   247   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
   248   CallStaticJavaNode* ideal_node =
   249     new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
   250          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
   251                             "call zap dead locals stub", 0, TypePtr::BOTTOM);
   252   // We need to copy the OopMap from the site we're zapping at.
   253   // We have to make a copy, because the zap site might not be
   254   // a call site, and zap_dead is a call site.
   255   OopMap* clone = node_to_check->oop_map()->deep_copy();
   257   // Add the cloned OopMap to the zap node
   258   ideal_node->set_oop_map(clone);
   259   return _matcher->match_sfpt(ideal_node);
   260 }
   262 //------------------------------is_node_getting_a_safepoint--------------------
   263 bool Compile::is_node_getting_a_safepoint( Node* n) {
   264   // This code duplicates the logic prior to the call of add_safepoint
   265   // below in this file.
   266   if( n->is_MachSafePoint() ) return true;
   267   return false;
   268 }
   270 # endif // ENABLE_ZAP_DEAD_LOCALS
   272 //------------------------------compute_loop_first_inst_sizes------------------
   273 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
   274 // of a loop. When aligning a loop we need to provide enough instructions
   275 // in cpu's fetch buffer to feed decoders. The loop alignment could be
   276 // avoided if we have enough instructions in fetch buffer at the head of a loop.
   277 // By default, the size is set to 999999 by Block's constructor so that
   278 // a loop will be aligned if the size is not reset here.
   279 //
   280 // Note: Mach instructions could contain several HW instructions
   281 // so the size is estimated only.
   282 //
   283 void Compile::compute_loop_first_inst_sizes() {
   284   // The next condition is used to gate the loop alignment optimization.
   285   // Don't aligned a loop if there are enough instructions at the head of a loop
   286   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
   287   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
   288   // equal to 11 bytes which is the largest address NOP instruction.
   289   if( MaxLoopPad < OptoLoopAlignment-1 ) {
   290     uint last_block = _cfg->_num_blocks-1;
   291     for( uint i=1; i <= last_block; i++ ) {
   292       Block *b = _cfg->_blocks[i];
   293       // Check the first loop's block which requires an alignment.
   294       if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
   295         uint sum_size = 0;
   296         uint inst_cnt = NumberOfLoopInstrToAlign;
   297         inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
   299         // Check subsequent fallthrough blocks if the loop's first
   300         // block(s) does not have enough instructions.
   301         Block *nb = b;
   302         while( inst_cnt > 0 &&
   303                i < last_block &&
   304                !_cfg->_blocks[i+1]->has_loop_alignment() &&
   305                !nb->has_successor(b) ) {
   306           i++;
   307           nb = _cfg->_blocks[i];
   308           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
   309         } // while( inst_cnt > 0 && i < last_block  )
   311         b->set_first_inst_size(sum_size);
   312       } // f( b->head()->is_Loop() )
   313     } // for( i <= last_block )
   314   } // if( MaxLoopPad < OptoLoopAlignment-1 )
   315 }
   317 //----------------------Shorten_branches---------------------------------------
   318 // The architecture description provides short branch variants for some long
   319 // branch instructions. Replace eligible long branches with short branches.
   320 void Compile::Shorten_branches(Label *labels, int& code_size, int& reloc_size, int& stub_size, int& const_size) {
   322   // fill in the nop array for bundling computations
   323   MachNode *_nop_list[Bundle::_nop_count];
   324   Bundle::initialize_nops(_nop_list, this);
   326   // ------------------
   327   // Compute size of each block, method size, and relocation information size
   328   uint *jmp_end    = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks);
   329   uint *blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
   330   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
   331   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
   332   blk_starts[0]    = 0;
   334   // Initialize the sizes to 0
   335   code_size  = 0;          // Size in bytes of generated code
   336   stub_size  = 0;          // Size in bytes of all stub entries
   337   // Size in bytes of all relocation entries, including those in local stubs.
   338   // Start with 2-bytes of reloc info for the unvalidated entry point
   339   reloc_size = 1;          // Number of relocation entries
   340   const_size = 0;          // size of fp constants in words
   342   // Make three passes.  The first computes pessimistic blk_starts,
   343   // relative jmp_end, reloc_size and const_size information.
   344   // The second performs short branch substitution using the pessimistic
   345   // sizing. The third inserts nops where needed.
   347   Node *nj; // tmp
   349   // Step one, perform a pessimistic sizing pass.
   350   uint i;
   351   uint min_offset_from_last_call = 1;  // init to a positive value
   352   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
   353   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
   354     Block *b = _cfg->_blocks[i];
   356     // Sum all instruction sizes to compute block size
   357     uint last_inst = b->_nodes.size();
   358     uint blk_size = 0;
   359     for( uint j = 0; j<last_inst; j++ ) {
   360       nj = b->_nodes[j];
   361       uint inst_size = nj->size(_regalloc);
   362       blk_size += inst_size;
   363       // Handle machine instruction nodes
   364       if( nj->is_Mach() ) {
   365         MachNode *mach = nj->as_Mach();
   366         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
   367         reloc_size += mach->reloc();
   368         const_size += mach->const_size();
   369         if( mach->is_MachCall() ) {
   370           MachCallNode *mcall = mach->as_MachCall();
   371           // This destination address is NOT PC-relative
   373           mcall->method_set((intptr_t)mcall->entry_point());
   375           if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
   376             stub_size  += size_java_to_interp();
   377             reloc_size += reloc_java_to_interp();
   378           }
   379         } else if (mach->is_MachSafePoint()) {
   380           // If call/safepoint are adjacent, account for possible
   381           // nop to disambiguate the two safepoints.
   382           if (min_offset_from_last_call == 0) {
   383             blk_size += nop_size;
   384           }
   385         }
   386       }
   387       min_offset_from_last_call += inst_size;
   388       // Remember end of call offset
   389       if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
   390         min_offset_from_last_call = 0;
   391       }
   392     }
   394     // During short branch replacement, we store the relative (to blk_starts)
   395     // end of jump in jmp_end, rather than the absolute end of jump.  This
   396     // is so that we do not need to recompute sizes of all nodes when we compute
   397     // correct blk_starts in our next sizing pass.
   398     jmp_end[i] = blk_size;
   399     DEBUG_ONLY( jmp_target[i] = 0; )
   401     // When the next block starts a loop, we may insert pad NOP
   402     // instructions.  Since we cannot know our future alignment,
   403     // assume the worst.
   404     if( i<_cfg->_num_blocks-1 ) {
   405       Block *nb = _cfg->_blocks[i+1];
   406       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
   407       if( max_loop_pad > 0 ) {
   408         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
   409         blk_size += max_loop_pad;
   410       }
   411     }
   413     // Save block size; update total method size
   414     blk_starts[i+1] = blk_starts[i]+blk_size;
   415   }
   417   // Step two, replace eligible long jumps.
   419   // Note: this will only get the long branches within short branch
   420   //   range. Another pass might detect more branches that became
   421   //   candidates because the shortening in the first pass exposed
   422   //   more opportunities. Unfortunately, this would require
   423   //   recomputing the starting and ending positions for the blocks
   424   for( i=0; i<_cfg->_num_blocks; i++ ) {
   425     Block *b = _cfg->_blocks[i];
   427     int j;
   428     // Find the branch; ignore trailing NOPs.
   429     for( j = b->_nodes.size()-1; j>=0; j-- ) {
   430       nj = b->_nodes[j];
   431       if( !nj->is_Mach() || nj->as_Mach()->ideal_Opcode() != Op_Con )
   432         break;
   433     }
   435     if (j >= 0) {
   436       if( nj->is_Mach() && nj->as_Mach()->may_be_short_branch() ) {
   437         MachNode *mach = nj->as_Mach();
   438         // This requires the TRUE branch target be in succs[0]
   439         uint bnum = b->non_connector_successor(0)->_pre_order;
   440         uintptr_t target = blk_starts[bnum];
   441         if( mach->is_pc_relative() ) {
   442           int offset = target-(blk_starts[i] + jmp_end[i]);
   443           if (_matcher->is_short_branch_offset(mach->rule(), offset)) {
   444             // We've got a winner.  Replace this branch.
   445             MachNode* replacement = mach->short_branch_version(this);
   446             b->_nodes.map(j, replacement);
   447             mach->subsume_by(replacement);
   449             // Update the jmp_end size to save time in our
   450             // next pass.
   451             jmp_end[i] -= (mach->size(_regalloc) - replacement->size(_regalloc));
   452             DEBUG_ONLY( jmp_target[i] = bnum; );
   453             DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
   454           }
   455         } else {
   456 #ifndef PRODUCT
   457           mach->dump(3);
   458 #endif
   459           Unimplemented();
   460         }
   461       }
   462     }
   463   }
   465   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
   466   // of a loop. It is used to determine the padding for loop alignment.
   467   compute_loop_first_inst_sizes();
   469   // Step 3, compute the offsets of all the labels
   470   uint last_call_adr = max_uint;
   471   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
   472     // copy the offset of the beginning to the corresponding label
   473     assert(labels[i].is_unused(), "cannot patch at this point");
   474     labels[i].bind_loc(blk_starts[i], CodeBuffer::SECT_INSTS);
   476     // insert padding for any instructions that need it
   477     Block *b = _cfg->_blocks[i];
   478     uint last_inst = b->_nodes.size();
   479     uint adr = blk_starts[i];
   480     for( uint j = 0; j<last_inst; j++ ) {
   481       nj = b->_nodes[j];
   482       if( nj->is_Mach() ) {
   483         int padding = nj->as_Mach()->compute_padding(adr);
   484         // If call/safepoint are adjacent insert a nop (5010568)
   485         if (padding == 0 && nj->is_MachSafePoint() && !nj->is_MachCall() &&
   486             adr == last_call_adr ) {
   487           padding = nop_size;
   488         }
   489         if(padding > 0) {
   490           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
   491           int nops_cnt = padding / nop_size;
   492           MachNode *nop = new (this) MachNopNode(nops_cnt);
   493           b->_nodes.insert(j++, nop);
   494           _cfg->_bbs.map( nop->_idx, b );
   495           adr += padding;
   496           last_inst++;
   497         }
   498       }
   499       adr += nj->size(_regalloc);
   501       // Remember end of call offset
   502       if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
   503         last_call_adr = adr;
   504       }
   505     }
   507     if ( i != _cfg->_num_blocks-1) {
   508       // Get the size of the block
   509       uint blk_size = adr - blk_starts[i];
   511       // When the next block is the top of a loop, we may insert pad NOP
   512       // instructions.
   513       Block *nb = _cfg->_blocks[i+1];
   514       int current_offset = blk_starts[i] + blk_size;
   515       current_offset += nb->alignment_padding(current_offset);
   516       // Save block size; update total method size
   517       blk_starts[i+1] = current_offset;
   518     }
   519   }
   521 #ifdef ASSERT
   522   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
   523     if( jmp_target[i] != 0 ) {
   524       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_end[i]);
   525       if (!_matcher->is_short_branch_offset(jmp_rule[i], offset)) {
   526         tty->print_cr("target (%d) - jmp_end(%d) = offset (%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_end[i], offset, i, jmp_target[i]);
   527       }
   528       assert(_matcher->is_short_branch_offset(jmp_rule[i], offset), "Displacement too large for short jmp");
   529     }
   530   }
   531 #endif
   533   // ------------------
   534   // Compute size for code buffer
   535   code_size   = blk_starts[i-1] + jmp_end[i-1];
   537   // Relocation records
   538   reloc_size += 1;              // Relo entry for exception handler
   540   // Adjust reloc_size to number of record of relocation info
   541   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
   542   // a relocation index.
   543   // The CodeBuffer will expand the locs array if this estimate is too low.
   544   reloc_size   *= 10 / sizeof(relocInfo);
   546   // Adjust const_size to number of bytes
   547   const_size   *= 2*jintSize; // both float and double take two words per entry
   549 }
   551 //------------------------------FillLocArray-----------------------------------
   552 // Create a bit of debug info and append it to the array.  The mapping is from
   553 // Java local or expression stack to constant, register or stack-slot.  For
   554 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
   555 // entry has been taken care of and caller should skip it).
   556 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
   557   // This should never have accepted Bad before
   558   assert(OptoReg::is_valid(regnum), "location must be valid");
   559   return (OptoReg::is_reg(regnum))
   560     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
   561     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
   562 }
   565 ObjectValue*
   566 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
   567   for (int i = 0; i < objs->length(); i++) {
   568     assert(objs->at(i)->is_object(), "corrupt object cache");
   569     ObjectValue* sv = (ObjectValue*) objs->at(i);
   570     if (sv->id() == id) {
   571       return sv;
   572     }
   573   }
   574   // Otherwise..
   575   return NULL;
   576 }
   578 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
   579                                      ObjectValue* sv ) {
   580   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
   581   objs->append(sv);
   582 }
   585 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
   586                             GrowableArray<ScopeValue*> *array,
   587                             GrowableArray<ScopeValue*> *objs ) {
   588   assert( local, "use _top instead of null" );
   589   if (array->length() != idx) {
   590     assert(array->length() == idx + 1, "Unexpected array count");
   591     // Old functionality:
   592     //   return
   593     // New functionality:
   594     //   Assert if the local is not top. In product mode let the new node
   595     //   override the old entry.
   596     assert(local == top(), "LocArray collision");
   597     if (local == top()) {
   598       return;
   599     }
   600     array->pop();
   601   }
   602   const Type *t = local->bottom_type();
   604   // Is it a safepoint scalar object node?
   605   if (local->is_SafePointScalarObject()) {
   606     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
   608     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
   609     if (sv == NULL) {
   610       ciKlass* cik = t->is_oopptr()->klass();
   611       assert(cik->is_instance_klass() ||
   612              cik->is_array_klass(), "Not supported allocation.");
   613       sv = new ObjectValue(spobj->_idx,
   614                            new ConstantOopWriteValue(cik->constant_encoding()));
   615       Compile::set_sv_for_object_node(objs, sv);
   617       uint first_ind = spobj->first_index();
   618       for (uint i = 0; i < spobj->n_fields(); i++) {
   619         Node* fld_node = sfpt->in(first_ind+i);
   620         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
   621       }
   622     }
   623     array->append(sv);
   624     return;
   625   }
   627   // Grab the register number for the local
   628   OptoReg::Name regnum = _regalloc->get_reg_first(local);
   629   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
   630     // Record the double as two float registers.
   631     // The register mask for such a value always specifies two adjacent
   632     // float registers, with the lower register number even.
   633     // Normally, the allocation of high and low words to these registers
   634     // is irrelevant, because nearly all operations on register pairs
   635     // (e.g., StoreD) treat them as a single unit.
   636     // Here, we assume in addition that the words in these two registers
   637     // stored "naturally" (by operations like StoreD and double stores
   638     // within the interpreter) such that the lower-numbered register
   639     // is written to the lower memory address.  This may seem like
   640     // a machine dependency, but it is not--it is a requirement on
   641     // the author of the <arch>.ad file to ensure that, for every
   642     // even/odd double-register pair to which a double may be allocated,
   643     // the word in the even single-register is stored to the first
   644     // memory word.  (Note that register numbers are completely
   645     // arbitrary, and are not tied to any machine-level encodings.)
   646 #ifdef _LP64
   647     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
   648       array->append(new ConstantIntValue(0));
   649       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
   650     } else if ( t->base() == Type::Long ) {
   651       array->append(new ConstantIntValue(0));
   652       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
   653     } else if ( t->base() == Type::RawPtr ) {
   654       // jsr/ret return address which must be restored into a the full
   655       // width 64-bit stack slot.
   656       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
   657     }
   658 #else //_LP64
   659 #ifdef SPARC
   660     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
   661       // For SPARC we have to swap high and low words for
   662       // long values stored in a single-register (g0-g7).
   663       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
   664       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
   665     } else
   666 #endif //SPARC
   667     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
   668       // Repack the double/long as two jints.
   669       // The convention the interpreter uses is that the second local
   670       // holds the first raw word of the native double representation.
   671       // This is actually reasonable, since locals and stack arrays
   672       // grow downwards in all implementations.
   673       // (If, on some machine, the interpreter's Java locals or stack
   674       // were to grow upwards, the embedded doubles would be word-swapped.)
   675       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
   676       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
   677     }
   678 #endif //_LP64
   679     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
   680                OptoReg::is_reg(regnum) ) {
   681       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double
   682                                    ? Location::float_in_dbl : Location::normal ));
   683     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
   684       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
   685                                    ? Location::int_in_long : Location::normal ));
   686     } else if( t->base() == Type::NarrowOop ) {
   687       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
   688     } else {
   689       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
   690     }
   691     return;
   692   }
   694   // No register.  It must be constant data.
   695   switch (t->base()) {
   696   case Type::Half:              // Second half of a double
   697     ShouldNotReachHere();       // Caller should skip 2nd halves
   698     break;
   699   case Type::AnyPtr:
   700     array->append(new ConstantOopWriteValue(NULL));
   701     break;
   702   case Type::AryPtr:
   703   case Type::InstPtr:
   704   case Type::KlassPtr:          // fall through
   705     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
   706     break;
   707   case Type::NarrowOop:
   708     if (t == TypeNarrowOop::NULL_PTR) {
   709       array->append(new ConstantOopWriteValue(NULL));
   710     } else {
   711       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
   712     }
   713     break;
   714   case Type::Int:
   715     array->append(new ConstantIntValue(t->is_int()->get_con()));
   716     break;
   717   case Type::RawPtr:
   718     // A return address (T_ADDRESS).
   719     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
   720 #ifdef _LP64
   721     // Must be restored to the full-width 64-bit stack slot.
   722     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
   723 #else
   724     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
   725 #endif
   726     break;
   727   case Type::FloatCon: {
   728     float f = t->is_float_constant()->getf();
   729     array->append(new ConstantIntValue(jint_cast(f)));
   730     break;
   731   }
   732   case Type::DoubleCon: {
   733     jdouble d = t->is_double_constant()->getd();
   734 #ifdef _LP64
   735     array->append(new ConstantIntValue(0));
   736     array->append(new ConstantDoubleValue(d));
   737 #else
   738     // Repack the double as two jints.
   739     // The convention the interpreter uses is that the second local
   740     // holds the first raw word of the native double representation.
   741     // This is actually reasonable, since locals and stack arrays
   742     // grow downwards in all implementations.
   743     // (If, on some machine, the interpreter's Java locals or stack
   744     // were to grow upwards, the embedded doubles would be word-swapped.)
   745     jint   *dp = (jint*)&d;
   746     array->append(new ConstantIntValue(dp[1]));
   747     array->append(new ConstantIntValue(dp[0]));
   748 #endif
   749     break;
   750   }
   751   case Type::Long: {
   752     jlong d = t->is_long()->get_con();
   753 #ifdef _LP64
   754     array->append(new ConstantIntValue(0));
   755     array->append(new ConstantLongValue(d));
   756 #else
   757     // Repack the long as two jints.
   758     // The convention the interpreter uses is that the second local
   759     // holds the first raw word of the native double representation.
   760     // This is actually reasonable, since locals and stack arrays
   761     // grow downwards in all implementations.
   762     // (If, on some machine, the interpreter's Java locals or stack
   763     // were to grow upwards, the embedded doubles would be word-swapped.)
   764     jint *dp = (jint*)&d;
   765     array->append(new ConstantIntValue(dp[1]));
   766     array->append(new ConstantIntValue(dp[0]));
   767 #endif
   768     break;
   769   }
   770   case Type::Top:               // Add an illegal value here
   771     array->append(new LocationValue(Location()));
   772     break;
   773   default:
   774     ShouldNotReachHere();
   775     break;
   776   }
   777 }
   779 // Determine if this node starts a bundle
   780 bool Compile::starts_bundle(const Node *n) const {
   781   return (_node_bundling_limit > n->_idx &&
   782           _node_bundling_base[n->_idx].starts_bundle());
   783 }
   785 //--------------------------Process_OopMap_Node--------------------------------
   786 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
   788   // Handle special safepoint nodes for synchronization
   789   MachSafePointNode *sfn   = mach->as_MachSafePoint();
   790   MachCallNode      *mcall;
   792 #ifdef ENABLE_ZAP_DEAD_LOCALS
   793   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
   794 #endif
   796   int safepoint_pc_offset = current_offset;
   797   bool is_method_handle_invoke = false;
   798   bool return_oop = false;
   800   // Add the safepoint in the DebugInfoRecorder
   801   if( !mach->is_MachCall() ) {
   802     mcall = NULL;
   803     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
   804   } else {
   805     mcall = mach->as_MachCall();
   807     // Is the call a MethodHandle call?
   808     if (mcall->is_MachCallJava())
   809       is_method_handle_invoke = mcall->as_MachCallJava()->_method_handle_invoke;
   811     // Check if a call returns an object.
   812     if (mcall->return_value_is_used() &&
   813         mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
   814       return_oop = true;
   815     }
   816     safepoint_pc_offset += mcall->ret_addr_offset();
   817     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
   818   }
   820   // Loop over the JVMState list to add scope information
   821   // Do not skip safepoints with a NULL method, they need monitor info
   822   JVMState* youngest_jvms = sfn->jvms();
   823   int max_depth = youngest_jvms->depth();
   825   // Allocate the object pool for scalar-replaced objects -- the map from
   826   // small-integer keys (which can be recorded in the local and ostack
   827   // arrays) to descriptions of the object state.
   828   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
   830   // Visit scopes from oldest to youngest.
   831   for (int depth = 1; depth <= max_depth; depth++) {
   832     JVMState* jvms = youngest_jvms->of_depth(depth);
   833     int idx;
   834     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
   835     // Safepoints that do not have method() set only provide oop-map and monitor info
   836     // to support GC; these do not support deoptimization.
   837     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
   838     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
   839     int num_mon  = jvms->nof_monitors();
   840     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
   841            "JVMS local count must match that of the method");
   843     // Add Local and Expression Stack Information
   845     // Insert locals into the locarray
   846     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
   847     for( idx = 0; idx < num_locs; idx++ ) {
   848       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
   849     }
   851     // Insert expression stack entries into the exparray
   852     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
   853     for( idx = 0; idx < num_exps; idx++ ) {
   854       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
   855     }
   857     // Add in mappings of the monitors
   858     assert( !method ||
   859             !method->is_synchronized() ||
   860             method->is_native() ||
   861             num_mon > 0 ||
   862             !GenerateSynchronizationCode,
   863             "monitors must always exist for synchronized methods");
   865     // Build the growable array of ScopeValues for exp stack
   866     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
   868     // Loop over monitors and insert into array
   869     for(idx = 0; idx < num_mon; idx++) {
   870       // Grab the node that defines this monitor
   871       Node* box_node = sfn->monitor_box(jvms, idx);
   872       Node* obj_node = sfn->monitor_obj(jvms, idx);
   874       // Create ScopeValue for object
   875       ScopeValue *scval = NULL;
   877       if( obj_node->is_SafePointScalarObject() ) {
   878         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
   879         scval = Compile::sv_for_node_id(objs, spobj->_idx);
   880         if (scval == NULL) {
   881           const Type *t = obj_node->bottom_type();
   882           ciKlass* cik = t->is_oopptr()->klass();
   883           assert(cik->is_instance_klass() ||
   884                  cik->is_array_klass(), "Not supported allocation.");
   885           ObjectValue* sv = new ObjectValue(spobj->_idx,
   886                                 new ConstantOopWriteValue(cik->constant_encoding()));
   887           Compile::set_sv_for_object_node(objs, sv);
   889           uint first_ind = spobj->first_index();
   890           for (uint i = 0; i < spobj->n_fields(); i++) {
   891             Node* fld_node = sfn->in(first_ind+i);
   892             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
   893           }
   894           scval = sv;
   895         }
   896       } else if( !obj_node->is_Con() ) {
   897         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
   898         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
   899           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
   900         } else {
   901           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
   902         }
   903       } else {
   904         const TypePtr *tp = obj_node->bottom_type()->make_ptr();
   905         scval = new ConstantOopWriteValue(tp->is_instptr()->const_oop()->constant_encoding());
   906       }
   908       OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node);
   909       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
   910       while( !box_node->is_BoxLock() )  box_node = box_node->in(1);
   911       monarray->append(new MonitorValue(scval, basic_lock, box_node->as_BoxLock()->is_eliminated()));
   912     }
   914     // We dump the object pool first, since deoptimization reads it in first.
   915     debug_info()->dump_object_pool(objs);
   917     // Build first class objects to pass to scope
   918     DebugToken *locvals = debug_info()->create_scope_values(locarray);
   919     DebugToken *expvals = debug_info()->create_scope_values(exparray);
   920     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
   922     // Make method available for all Safepoints
   923     ciMethod* scope_method = method ? method : _method;
   924     // Describe the scope here
   925     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
   926     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
   927     // Now we can describe the scope.
   928     debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
   929   } // End jvms loop
   931   // Mark the end of the scope set.
   932   debug_info()->end_safepoint(safepoint_pc_offset);
   933 }
   937 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
   938 class NonSafepointEmitter {
   939   Compile*  C;
   940   JVMState* _pending_jvms;
   941   int       _pending_offset;
   943   void emit_non_safepoint();
   945  public:
   946   NonSafepointEmitter(Compile* compile) {
   947     this->C = compile;
   948     _pending_jvms = NULL;
   949     _pending_offset = 0;
   950   }
   952   void observe_instruction(Node* n, int pc_offset) {
   953     if (!C->debug_info()->recording_non_safepoints())  return;
   955     Node_Notes* nn = C->node_notes_at(n->_idx);
   956     if (nn == NULL || nn->jvms() == NULL)  return;
   957     if (_pending_jvms != NULL &&
   958         _pending_jvms->same_calls_as(nn->jvms())) {
   959       // Repeated JVMS?  Stretch it up here.
   960       _pending_offset = pc_offset;
   961     } else {
   962       if (_pending_jvms != NULL &&
   963           _pending_offset < pc_offset) {
   964         emit_non_safepoint();
   965       }
   966       _pending_jvms = NULL;
   967       if (pc_offset > C->debug_info()->last_pc_offset()) {
   968         // This is the only way _pending_jvms can become non-NULL:
   969         _pending_jvms = nn->jvms();
   970         _pending_offset = pc_offset;
   971       }
   972     }
   973   }
   975   // Stay out of the way of real safepoints:
   976   void observe_safepoint(JVMState* jvms, int pc_offset) {
   977     if (_pending_jvms != NULL &&
   978         !_pending_jvms->same_calls_as(jvms) &&
   979         _pending_offset < pc_offset) {
   980       emit_non_safepoint();
   981     }
   982     _pending_jvms = NULL;
   983   }
   985   void flush_at_end() {
   986     if (_pending_jvms != NULL) {
   987       emit_non_safepoint();
   988     }
   989     _pending_jvms = NULL;
   990   }
   991 };
   993 void NonSafepointEmitter::emit_non_safepoint() {
   994   JVMState* youngest_jvms = _pending_jvms;
   995   int       pc_offset     = _pending_offset;
   997   // Clear it now:
   998   _pending_jvms = NULL;
  1000   DebugInformationRecorder* debug_info = C->debug_info();
  1001   assert(debug_info->recording_non_safepoints(), "sanity");
  1003   debug_info->add_non_safepoint(pc_offset);
  1004   int max_depth = youngest_jvms->depth();
  1006   // Visit scopes from oldest to youngest.
  1007   for (int depth = 1; depth <= max_depth; depth++) {
  1008     JVMState* jvms = youngest_jvms->of_depth(depth);
  1009     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
  1010     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
  1011     debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
  1014   // Mark the end of the scope set.
  1015   debug_info->end_non_safepoint(pc_offset);
  1020 // helper for Fill_buffer bailout logic
  1021 static void turn_off_compiler(Compile* C) {
  1022   if (CodeCache::unallocated_capacity() >= CodeCacheMinimumFreeSpace*10) {
  1023     // Do not turn off compilation if a single giant method has
  1024     // blown the code cache size.
  1025     C->record_failure("excessive request to CodeCache");
  1026   } else {
  1027     // Let CompilerBroker disable further compilations.
  1028     C->record_failure("CodeCache is full");
  1033 //------------------------------Fill_buffer------------------------------------
  1034 void Compile::Fill_buffer() {
  1036   // Set the initially allocated size
  1037   int  code_req   = initial_code_capacity;
  1038   int  locs_req   = initial_locs_capacity;
  1039   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
  1040   int  const_req  = initial_const_capacity;
  1041   bool labels_not_set = true;
  1043   int  pad_req    = NativeCall::instruction_size;
  1044   // The extra spacing after the code is necessary on some platforms.
  1045   // Sometimes we need to patch in a jump after the last instruction,
  1046   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
  1048   uint i;
  1049   // Compute the byte offset where we can store the deopt pc.
  1050   if (fixed_slots() != 0) {
  1051     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
  1054   // Compute prolog code size
  1055   _method_size = 0;
  1056   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
  1057 #ifdef IA64
  1058   if (save_argument_registers()) {
  1059     // 4815101: this is a stub with implicit and unknown precision fp args.
  1060     // The usual spill mechanism can only generate stfd's in this case, which
  1061     // doesn't work if the fp reg to spill contains a single-precision denorm.
  1062     // Instead, we hack around the normal spill mechanism using stfspill's and
  1063     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
  1064     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
  1065     //
  1066     // If we ever implement 16-byte 'registers' == stack slots, we can
  1067     // get rid of this hack and have SpillCopy generate stfspill/ldffill
  1068     // instead of stfd/stfs/ldfd/ldfs.
  1069     _frame_slots += 8*(16/BytesPerInt);
  1071 #endif
  1072   assert( _frame_slots >= 0 && _frame_slots < 1000000, "sanity check" );
  1074   // Create an array of unused labels, one for each basic block
  1075   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, _cfg->_num_blocks+1);
  1077   for( i=0; i <= _cfg->_num_blocks; i++ ) {
  1078     blk_labels[i].init();
  1081   // If this machine supports different size branch offsets, then pre-compute
  1082   // the length of the blocks
  1083   if( _matcher->is_short_branch_offset(-1, 0) ) {
  1084     Shorten_branches(blk_labels, code_req, locs_req, stub_req, const_req);
  1085     labels_not_set = false;
  1088   // nmethod and CodeBuffer count stubs & constants as part of method's code.
  1089   int exception_handler_req = size_exception_handler();
  1090   int deopt_handler_req = size_deopt_handler();
  1091   exception_handler_req += MAX_stubs_size; // add marginal slop for handler
  1092   deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
  1093   stub_req += MAX_stubs_size;   // ensure per-stub margin
  1094   code_req += MAX_inst_size;    // ensure per-instruction margin
  1095   if (StressCodeBuffers)
  1096     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
  1097   int total_req = code_req + pad_req + stub_req + exception_handler_req + deopt_handler_req + const_req;
  1098   CodeBuffer* cb = code_buffer();
  1099   cb->initialize(total_req, locs_req);
  1101   // Have we run out of code space?
  1102   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
  1103     turn_off_compiler(this);
  1104     return;
  1106   // Configure the code buffer.
  1107   cb->initialize_consts_size(const_req);
  1108   cb->initialize_stubs_size(stub_req);
  1109   cb->initialize_oop_recorder(env()->oop_recorder());
  1111   // fill in the nop array for bundling computations
  1112   MachNode *_nop_list[Bundle::_nop_count];
  1113   Bundle::initialize_nops(_nop_list, this);
  1115   // Create oopmap set.
  1116   _oop_map_set = new OopMapSet();
  1118   // !!!!! This preserves old handling of oopmaps for now
  1119   debug_info()->set_oopmaps(_oop_map_set);
  1121   // Count and start of implicit null check instructions
  1122   uint inct_cnt = 0;
  1123   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
  1125   // Count and start of calls
  1126   uint *call_returns = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
  1128   uint  return_offset = 0;
  1129   int nop_size = (new (this) MachNopNode())->size(_regalloc);
  1131   int previous_offset = 0;
  1132   int current_offset  = 0;
  1133   int last_call_offset = -1;
  1135   // Create an array of unused labels, one for each basic block, if printing is enabled
  1136 #ifndef PRODUCT
  1137   int *node_offsets      = NULL;
  1138   uint  node_offset_limit = unique();
  1141   if ( print_assembly() )
  1142     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
  1143 #endif
  1145   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
  1147   // ------------------
  1148   // Now fill in the code buffer
  1149   Node *delay_slot = NULL;
  1151   for( i=0; i < _cfg->_num_blocks; i++ ) {
  1152     Block *b = _cfg->_blocks[i];
  1154     Node *head = b->head();
  1156     // If this block needs to start aligned (i.e, can be reached other
  1157     // than by falling-thru from the previous block), then force the
  1158     // start of a new bundle.
  1159     if( Pipeline::requires_bundling() && starts_bundle(head) )
  1160       cb->flush_bundle(true);
  1162     // Define the label at the beginning of the basic block
  1163     if( labels_not_set )
  1164       MacroAssembler(cb).bind( blk_labels[b->_pre_order] );
  1166     else
  1167       assert( blk_labels[b->_pre_order].loc_pos() == cb->code_size(),
  1168               "label position does not match code offset" );
  1170     uint last_inst = b->_nodes.size();
  1172     // Emit block normally, except for last instruction.
  1173     // Emit means "dump code bits into code buffer".
  1174     for( uint j = 0; j<last_inst; j++ ) {
  1176       // Get the node
  1177       Node* n = b->_nodes[j];
  1179       // See if delay slots are supported
  1180       if (valid_bundle_info(n) &&
  1181           node_bundling(n)->used_in_unconditional_delay()) {
  1182         assert(delay_slot == NULL, "no use of delay slot node");
  1183         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
  1185         delay_slot = n;
  1186         continue;
  1189       // If this starts a new instruction group, then flush the current one
  1190       // (but allow split bundles)
  1191       if( Pipeline::requires_bundling() && starts_bundle(n) )
  1192         cb->flush_bundle(false);
  1194       // The following logic is duplicated in the code ifdeffed for
  1195       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
  1196       // should be factored out.  Or maybe dispersed to the nodes?
  1198       // Special handling for SafePoint/Call Nodes
  1199       bool is_mcall = false;
  1200       if( n->is_Mach() ) {
  1201         MachNode *mach = n->as_Mach();
  1202         is_mcall = n->is_MachCall();
  1203         bool is_sfn = n->is_MachSafePoint();
  1205         // If this requires all previous instructions be flushed, then do so
  1206         if( is_sfn || is_mcall || mach->alignment_required() != 1) {
  1207           cb->flush_bundle(true);
  1208           current_offset = cb->code_size();
  1211         // align the instruction if necessary
  1212         int padding = mach->compute_padding(current_offset);
  1213         // Make sure safepoint node for polling is distinct from a call's
  1214         // return by adding a nop if needed.
  1215         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset ) {
  1216           padding = nop_size;
  1218         assert( labels_not_set || padding == 0, "instruction should already be aligned")
  1220         if(padding > 0) {
  1221           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
  1222           int nops_cnt = padding / nop_size;
  1223           MachNode *nop = new (this) MachNopNode(nops_cnt);
  1224           b->_nodes.insert(j++, nop);
  1225           last_inst++;
  1226           _cfg->_bbs.map( nop->_idx, b );
  1227           nop->emit(*cb, _regalloc);
  1228           cb->flush_bundle(true);
  1229           current_offset = cb->code_size();
  1232         // Remember the start of the last call in a basic block
  1233         if (is_mcall) {
  1234           MachCallNode *mcall = mach->as_MachCall();
  1236           // This destination address is NOT PC-relative
  1237           mcall->method_set((intptr_t)mcall->entry_point());
  1239           // Save the return address
  1240           call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
  1242           if (!mcall->is_safepoint_node()) {
  1243             is_mcall = false;
  1244             is_sfn = false;
  1248         // sfn will be valid whenever mcall is valid now because of inheritance
  1249         if( is_sfn || is_mcall ) {
  1251           // Handle special safepoint nodes for synchronization
  1252           if( !is_mcall ) {
  1253             MachSafePointNode *sfn = mach->as_MachSafePoint();
  1254             // !!!!! Stubs only need an oopmap right now, so bail out
  1255             if( sfn->jvms()->method() == NULL) {
  1256               // Write the oopmap directly to the code blob??!!
  1257 #             ifdef ENABLE_ZAP_DEAD_LOCALS
  1258               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
  1259 #             endif
  1260               continue;
  1262           } // End synchronization
  1264           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
  1265                                            current_offset);
  1266           Process_OopMap_Node(mach, current_offset);
  1267         } // End if safepoint
  1269         // If this is a null check, then add the start of the previous instruction to the list
  1270         else if( mach->is_MachNullCheck() ) {
  1271           inct_starts[inct_cnt++] = previous_offset;
  1274         // If this is a branch, then fill in the label with the target BB's label
  1275         else if ( mach->is_Branch() ) {
  1277           if ( mach->ideal_Opcode() == Op_Jump ) {
  1278             for (uint h = 0; h < b->_num_succs; h++ ) {
  1279               Block* succs_block = b->_succs[h];
  1280               for (uint j = 1; j < succs_block->num_preds(); j++) {
  1281                 Node* jpn = succs_block->pred(j);
  1282                 if ( jpn->is_JumpProj() && jpn->in(0) == mach ) {
  1283                   uint block_num = succs_block->non_connector()->_pre_order;
  1284                   Label *blkLabel = &blk_labels[block_num];
  1285                   mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
  1289           } else {
  1290             // For Branchs
  1291             // This requires the TRUE branch target be in succs[0]
  1292             uint block_num = b->non_connector_successor(0)->_pre_order;
  1293             mach->label_set( blk_labels[block_num], block_num );
  1297 #ifdef ASSERT
  1298         // Check that oop-store precedes the card-mark
  1299         else if( mach->ideal_Opcode() == Op_StoreCM ) {
  1300           uint storeCM_idx = j;
  1301           Node *oop_store = mach->in(mach->_cnt);  // First precedence edge
  1302           assert( oop_store != NULL, "storeCM expects a precedence edge");
  1303           uint i4;
  1304           for( i4 = 0; i4 < last_inst; ++i4 ) {
  1305             if( b->_nodes[i4] == oop_store ) break;
  1307           // Note: This test can provide a false failure if other precedence
  1308           // edges have been added to the storeCMNode.
  1309           assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
  1311 #endif
  1313         else if( !n->is_Proj() ) {
  1314           // Remember the beginning of the previous instruction, in case
  1315           // it's followed by a flag-kill and a null-check.  Happens on
  1316           // Intel all the time, with add-to-memory kind of opcodes.
  1317           previous_offset = current_offset;
  1321       // Verify that there is sufficient space remaining
  1322       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
  1323       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
  1324         turn_off_compiler(this);
  1325         return;
  1328       // Save the offset for the listing
  1329 #ifndef PRODUCT
  1330       if( node_offsets && n->_idx < node_offset_limit )
  1331         node_offsets[n->_idx] = cb->code_size();
  1332 #endif
  1334       // "Normal" instruction case
  1335       n->emit(*cb, _regalloc);
  1336       current_offset  = cb->code_size();
  1337       non_safepoints.observe_instruction(n, current_offset);
  1339       // mcall is last "call" that can be a safepoint
  1340       // record it so we can see if a poll will directly follow it
  1341       // in which case we'll need a pad to make the PcDesc sites unique
  1342       // see  5010568. This can be slightly inaccurate but conservative
  1343       // in the case that return address is not actually at current_offset.
  1344       // This is a small price to pay.
  1346       if (is_mcall) {
  1347         last_call_offset = current_offset;
  1350       // See if this instruction has a delay slot
  1351       if ( valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  1352         assert(delay_slot != NULL, "expecting delay slot node");
  1354         // Back up 1 instruction
  1355         cb->set_code_end(
  1356           cb->code_end()-Pipeline::instr_unit_size());
  1358         // Save the offset for the listing
  1359 #ifndef PRODUCT
  1360         if( node_offsets && delay_slot->_idx < node_offset_limit )
  1361           node_offsets[delay_slot->_idx] = cb->code_size();
  1362 #endif
  1364         // Support a SafePoint in the delay slot
  1365         if( delay_slot->is_MachSafePoint() ) {
  1366           MachNode *mach = delay_slot->as_Mach();
  1367           // !!!!! Stubs only need an oopmap right now, so bail out
  1368           if( !mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL ) {
  1369             // Write the oopmap directly to the code blob??!!
  1370 #           ifdef ENABLE_ZAP_DEAD_LOCALS
  1371             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
  1372 #           endif
  1373             delay_slot = NULL;
  1374             continue;
  1377           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
  1378           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
  1379                                            adjusted_offset);
  1380           // Generate an OopMap entry
  1381           Process_OopMap_Node(mach, adjusted_offset);
  1384         // Insert the delay slot instruction
  1385         delay_slot->emit(*cb, _regalloc);
  1387         // Don't reuse it
  1388         delay_slot = NULL;
  1391     } // End for all instructions in block
  1393     // If the next block is the top of a loop, pad this block out to align
  1394     // the loop top a little. Helps prevent pipe stalls at loop back branches.
  1395     if( i<_cfg->_num_blocks-1 ) {
  1396       Block *nb = _cfg->_blocks[i+1];
  1397       uint padding = nb->alignment_padding(current_offset);
  1398       if( padding > 0 ) {
  1399         MachNode *nop = new (this) MachNopNode(padding / nop_size);
  1400         b->_nodes.insert( b->_nodes.size(), nop );
  1401         _cfg->_bbs.map( nop->_idx, b );
  1402         nop->emit(*cb, _regalloc);
  1403         current_offset = cb->code_size();
  1407   } // End of for all blocks
  1409   non_safepoints.flush_at_end();
  1411   // Offset too large?
  1412   if (failing())  return;
  1414   // Define a pseudo-label at the end of the code
  1415   MacroAssembler(cb).bind( blk_labels[_cfg->_num_blocks] );
  1417   // Compute the size of the first block
  1418   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
  1420   assert(cb->code_size() < 500000, "method is unreasonably large");
  1422   // ------------------
  1424 #ifndef PRODUCT
  1425   // Information on the size of the method, without the extraneous code
  1426   Scheduling::increment_method_size(cb->code_size());
  1427 #endif
  1429   // ------------------
  1430   // Fill in exception table entries.
  1431   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
  1433   // Only java methods have exception handlers and deopt handlers
  1434   if (_method) {
  1435     // Emit the exception handler code.
  1436     _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
  1437     // Emit the deopt handler code.
  1438     _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
  1439     // Emit the MethodHandle deopt handler code.  We can use the same
  1440     // code as for the normal deopt handler, we just need a different
  1441     // entry point address.
  1442     _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
  1445   // One last check for failed CodeBuffer::expand:
  1446   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
  1447     turn_off_compiler(this);
  1448     return;
  1451 #ifndef PRODUCT
  1452   // Dump the assembly code, including basic-block numbers
  1453   if (print_assembly()) {
  1454     ttyLocker ttyl;  // keep the following output all in one block
  1455     if (!VMThread::should_terminate()) {  // test this under the tty lock
  1456       // This output goes directly to the tty, not the compiler log.
  1457       // To enable tools to match it up with the compilation activity,
  1458       // be sure to tag this tty output with the compile ID.
  1459       if (xtty != NULL) {
  1460         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
  1461                    is_osr_compilation()    ? " compile_kind='osr'" :
  1462                    "");
  1464       if (method() != NULL) {
  1465         method()->print_oop();
  1466         print_codes();
  1468       dump_asm(node_offsets, node_offset_limit);
  1469       if (xtty != NULL) {
  1470         xtty->tail("opto_assembly");
  1474 #endif
  1478 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
  1479   _inc_table.set_size(cnt);
  1481   uint inct_cnt = 0;
  1482   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
  1483     Block *b = _cfg->_blocks[i];
  1484     Node *n = NULL;
  1485     int j;
  1487     // Find the branch; ignore trailing NOPs.
  1488     for( j = b->_nodes.size()-1; j>=0; j-- ) {
  1489       n = b->_nodes[j];
  1490       if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
  1491         break;
  1494     // If we didn't find anything, continue
  1495     if( j < 0 ) continue;
  1497     // Compute ExceptionHandlerTable subtable entry and add it
  1498     // (skip empty blocks)
  1499     if( n->is_Catch() ) {
  1501       // Get the offset of the return from the call
  1502       uint call_return = call_returns[b->_pre_order];
  1503 #ifdef ASSERT
  1504       assert( call_return > 0, "no call seen for this basic block" );
  1505       while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
  1506       assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
  1507 #endif
  1508       // last instruction is a CatchNode, find it's CatchProjNodes
  1509       int nof_succs = b->_num_succs;
  1510       // allocate space
  1511       GrowableArray<intptr_t> handler_bcis(nof_succs);
  1512       GrowableArray<intptr_t> handler_pcos(nof_succs);
  1513       // iterate through all successors
  1514       for (int j = 0; j < nof_succs; j++) {
  1515         Block* s = b->_succs[j];
  1516         bool found_p = false;
  1517         for( uint k = 1; k < s->num_preds(); k++ ) {
  1518           Node *pk = s->pred(k);
  1519           if( pk->is_CatchProj() && pk->in(0) == n ) {
  1520             const CatchProjNode* p = pk->as_CatchProj();
  1521             found_p = true;
  1522             // add the corresponding handler bci & pco information
  1523             if( p->_con != CatchProjNode::fall_through_index ) {
  1524               // p leads to an exception handler (and is not fall through)
  1525               assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
  1526               // no duplicates, please
  1527               if( !handler_bcis.contains(p->handler_bci()) ) {
  1528                 uint block_num = s->non_connector()->_pre_order;
  1529                 handler_bcis.append(p->handler_bci());
  1530                 handler_pcos.append(blk_labels[block_num].loc_pos());
  1535         assert(found_p, "no matching predecessor found");
  1536         // Note:  Due to empty block removal, one block may have
  1537         // several CatchProj inputs, from the same Catch.
  1540       // Set the offset of the return from the call
  1541       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
  1542       continue;
  1545     // Handle implicit null exception table updates
  1546     if( n->is_MachNullCheck() ) {
  1547       uint block_num = b->non_connector_successor(0)->_pre_order;
  1548       _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
  1549       continue;
  1551   } // End of for all blocks fill in exception table entries
  1554 // Static Variables
  1555 #ifndef PRODUCT
  1556 uint Scheduling::_total_nop_size = 0;
  1557 uint Scheduling::_total_method_size = 0;
  1558 uint Scheduling::_total_branches = 0;
  1559 uint Scheduling::_total_unconditional_delays = 0;
  1560 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
  1561 #endif
  1563 // Initializer for class Scheduling
  1565 Scheduling::Scheduling(Arena *arena, Compile &compile)
  1566   : _arena(arena),
  1567     _cfg(compile.cfg()),
  1568     _bbs(compile.cfg()->_bbs),
  1569     _regalloc(compile.regalloc()),
  1570     _reg_node(arena),
  1571     _bundle_instr_count(0),
  1572     _bundle_cycle_number(0),
  1573     _scheduled(arena),
  1574     _available(arena),
  1575     _next_node(NULL),
  1576     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
  1577     _pinch_free_list(arena)
  1578 #ifndef PRODUCT
  1579   , _branches(0)
  1580   , _unconditional_delays(0)
  1581 #endif
  1583   // Create a MachNopNode
  1584   _nop = new (&compile) MachNopNode();
  1586   // Now that the nops are in the array, save the count
  1587   // (but allow entries for the nops)
  1588   _node_bundling_limit = compile.unique();
  1589   uint node_max = _regalloc->node_regs_max_index();
  1591   compile.set_node_bundling_limit(_node_bundling_limit);
  1593   // This one is persistent within the Compile class
  1594   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
  1596   // Allocate space for fixed-size arrays
  1597   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  1598   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
  1599   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  1601   // Clear the arrays
  1602   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
  1603   memset(_node_latency,       0, node_max * sizeof(unsigned short));
  1604   memset(_uses,               0, node_max * sizeof(short));
  1605   memset(_current_latency,    0, node_max * sizeof(unsigned short));
  1607   // Clear the bundling information
  1608   memcpy(_bundle_use_elements,
  1609     Pipeline_Use::elaborated_elements,
  1610     sizeof(Pipeline_Use::elaborated_elements));
  1612   // Get the last node
  1613   Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
  1615   _next_node = bb->_nodes[bb->_nodes.size()-1];
  1618 #ifndef PRODUCT
  1619 // Scheduling destructor
  1620 Scheduling::~Scheduling() {
  1621   _total_branches             += _branches;
  1622   _total_unconditional_delays += _unconditional_delays;
  1624 #endif
  1626 // Step ahead "i" cycles
  1627 void Scheduling::step(uint i) {
  1629   Bundle *bundle = node_bundling(_next_node);
  1630   bundle->set_starts_bundle();
  1632   // Update the bundle record, but leave the flags information alone
  1633   if (_bundle_instr_count > 0) {
  1634     bundle->set_instr_count(_bundle_instr_count);
  1635     bundle->set_resources_used(_bundle_use.resourcesUsed());
  1638   // Update the state information
  1639   _bundle_instr_count = 0;
  1640   _bundle_cycle_number += i;
  1641   _bundle_use.step(i);
  1644 void Scheduling::step_and_clear() {
  1645   Bundle *bundle = node_bundling(_next_node);
  1646   bundle->set_starts_bundle();
  1648   // Update the bundle record
  1649   if (_bundle_instr_count > 0) {
  1650     bundle->set_instr_count(_bundle_instr_count);
  1651     bundle->set_resources_used(_bundle_use.resourcesUsed());
  1653     _bundle_cycle_number += 1;
  1656   // Clear the bundling information
  1657   _bundle_instr_count = 0;
  1658   _bundle_use.reset();
  1660   memcpy(_bundle_use_elements,
  1661     Pipeline_Use::elaborated_elements,
  1662     sizeof(Pipeline_Use::elaborated_elements));
  1665 //------------------------------ScheduleAndBundle------------------------------
  1666 // Perform instruction scheduling and bundling over the sequence of
  1667 // instructions in backwards order.
  1668 void Compile::ScheduleAndBundle() {
  1670   // Don't optimize this if it isn't a method
  1671   if (!_method)
  1672     return;
  1674   // Don't optimize this if scheduling is disabled
  1675   if (!do_scheduling())
  1676     return;
  1678   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
  1680   // Create a data structure for all the scheduling information
  1681   Scheduling scheduling(Thread::current()->resource_area(), *this);
  1683   // Walk backwards over each basic block, computing the needed alignment
  1684   // Walk over all the basic blocks
  1685   scheduling.DoScheduling();
  1688 //------------------------------ComputeLocalLatenciesForward-------------------
  1689 // Compute the latency of all the instructions.  This is fairly simple,
  1690 // because we already have a legal ordering.  Walk over the instructions
  1691 // from first to last, and compute the latency of the instruction based
  1692 // on the latency of the preceding instruction(s).
  1693 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
  1694 #ifndef PRODUCT
  1695   if (_cfg->C->trace_opto_output())
  1696     tty->print("# -> ComputeLocalLatenciesForward\n");
  1697 #endif
  1699   // Walk over all the schedulable instructions
  1700   for( uint j=_bb_start; j < _bb_end; j++ ) {
  1702     // This is a kludge, forcing all latency calculations to start at 1.
  1703     // Used to allow latency 0 to force an instruction to the beginning
  1704     // of the bb
  1705     uint latency = 1;
  1706     Node *use = bb->_nodes[j];
  1707     uint nlen = use->len();
  1709     // Walk over all the inputs
  1710     for ( uint k=0; k < nlen; k++ ) {
  1711       Node *def = use->in(k);
  1712       if (!def)
  1713         continue;
  1715       uint l = _node_latency[def->_idx] + use->latency(k);
  1716       if (latency < l)
  1717         latency = l;
  1720     _node_latency[use->_idx] = latency;
  1722 #ifndef PRODUCT
  1723     if (_cfg->C->trace_opto_output()) {
  1724       tty->print("# latency %4d: ", latency);
  1725       use->dump();
  1727 #endif
  1730 #ifndef PRODUCT
  1731   if (_cfg->C->trace_opto_output())
  1732     tty->print("# <- ComputeLocalLatenciesForward\n");
  1733 #endif
  1735 } // end ComputeLocalLatenciesForward
  1737 // See if this node fits into the present instruction bundle
  1738 bool Scheduling::NodeFitsInBundle(Node *n) {
  1739   uint n_idx = n->_idx;
  1741   // If this is the unconditional delay instruction, then it fits
  1742   if (n == _unconditional_delay_slot) {
  1743 #ifndef PRODUCT
  1744     if (_cfg->C->trace_opto_output())
  1745       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
  1746 #endif
  1747     return (true);
  1750   // If the node cannot be scheduled this cycle, skip it
  1751   if (_current_latency[n_idx] > _bundle_cycle_number) {
  1752 #ifndef PRODUCT
  1753     if (_cfg->C->trace_opto_output())
  1754       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
  1755         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
  1756 #endif
  1757     return (false);
  1760   const Pipeline *node_pipeline = n->pipeline();
  1762   uint instruction_count = node_pipeline->instructionCount();
  1763   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
  1764     instruction_count = 0;
  1765   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
  1766     instruction_count++;
  1768   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
  1769 #ifndef PRODUCT
  1770     if (_cfg->C->trace_opto_output())
  1771       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
  1772         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
  1773 #endif
  1774     return (false);
  1777   // Don't allow non-machine nodes to be handled this way
  1778   if (!n->is_Mach() && instruction_count == 0)
  1779     return (false);
  1781   // See if there is any overlap
  1782   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
  1784   if (delay > 0) {
  1785 #ifndef PRODUCT
  1786     if (_cfg->C->trace_opto_output())
  1787       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
  1788 #endif
  1789     return false;
  1792 #ifndef PRODUCT
  1793   if (_cfg->C->trace_opto_output())
  1794     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
  1795 #endif
  1797   return true;
  1800 Node * Scheduling::ChooseNodeToBundle() {
  1801   uint siz = _available.size();
  1803   if (siz == 0) {
  1805 #ifndef PRODUCT
  1806     if (_cfg->C->trace_opto_output())
  1807       tty->print("#   ChooseNodeToBundle: NULL\n");
  1808 #endif
  1809     return (NULL);
  1812   // Fast path, if only 1 instruction in the bundle
  1813   if (siz == 1) {
  1814 #ifndef PRODUCT
  1815     if (_cfg->C->trace_opto_output()) {
  1816       tty->print("#   ChooseNodeToBundle (only 1): ");
  1817       _available[0]->dump();
  1819 #endif
  1820     return (_available[0]);
  1823   // Don't bother, if the bundle is already full
  1824   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
  1825     for ( uint i = 0; i < siz; i++ ) {
  1826       Node *n = _available[i];
  1828       // Skip projections, we'll handle them another way
  1829       if (n->is_Proj())
  1830         continue;
  1832       // This presupposed that instructions are inserted into the
  1833       // available list in a legality order; i.e. instructions that
  1834       // must be inserted first are at the head of the list
  1835       if (NodeFitsInBundle(n)) {
  1836 #ifndef PRODUCT
  1837         if (_cfg->C->trace_opto_output()) {
  1838           tty->print("#   ChooseNodeToBundle: ");
  1839           n->dump();
  1841 #endif
  1842         return (n);
  1847   // Nothing fits in this bundle, choose the highest priority
  1848 #ifndef PRODUCT
  1849   if (_cfg->C->trace_opto_output()) {
  1850     tty->print("#   ChooseNodeToBundle: ");
  1851     _available[0]->dump();
  1853 #endif
  1855   return _available[0];
  1858 //------------------------------AddNodeToAvailableList-------------------------
  1859 void Scheduling::AddNodeToAvailableList(Node *n) {
  1860   assert( !n->is_Proj(), "projections never directly made available" );
  1861 #ifndef PRODUCT
  1862   if (_cfg->C->trace_opto_output()) {
  1863     tty->print("#   AddNodeToAvailableList: ");
  1864     n->dump();
  1866 #endif
  1868   int latency = _current_latency[n->_idx];
  1870   // Insert in latency order (insertion sort)
  1871   uint i;
  1872   for ( i=0; i < _available.size(); i++ )
  1873     if (_current_latency[_available[i]->_idx] > latency)
  1874       break;
  1876   // Special Check for compares following branches
  1877   if( n->is_Mach() && _scheduled.size() > 0 ) {
  1878     int op = n->as_Mach()->ideal_Opcode();
  1879     Node *last = _scheduled[0];
  1880     if( last->is_MachIf() && last->in(1) == n &&
  1881         ( op == Op_CmpI ||
  1882           op == Op_CmpU ||
  1883           op == Op_CmpP ||
  1884           op == Op_CmpF ||
  1885           op == Op_CmpD ||
  1886           op == Op_CmpL ) ) {
  1888       // Recalculate position, moving to front of same latency
  1889       for ( i=0 ; i < _available.size(); i++ )
  1890         if (_current_latency[_available[i]->_idx] >= latency)
  1891           break;
  1895   // Insert the node in the available list
  1896   _available.insert(i, n);
  1898 #ifndef PRODUCT
  1899   if (_cfg->C->trace_opto_output())
  1900     dump_available();
  1901 #endif
  1904 //------------------------------DecrementUseCounts-----------------------------
  1905 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
  1906   for ( uint i=0; i < n->len(); i++ ) {
  1907     Node *def = n->in(i);
  1908     if (!def) continue;
  1909     if( def->is_Proj() )        // If this is a machine projection, then
  1910       def = def->in(0);         // propagate usage thru to the base instruction
  1912     if( _bbs[def->_idx] != bb ) // Ignore if not block-local
  1913       continue;
  1915     // Compute the latency
  1916     uint l = _bundle_cycle_number + n->latency(i);
  1917     if (_current_latency[def->_idx] < l)
  1918       _current_latency[def->_idx] = l;
  1920     // If this does not have uses then schedule it
  1921     if ((--_uses[def->_idx]) == 0)
  1922       AddNodeToAvailableList(def);
  1926 //------------------------------AddNodeToBundle--------------------------------
  1927 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
  1928 #ifndef PRODUCT
  1929   if (_cfg->C->trace_opto_output()) {
  1930     tty->print("#   AddNodeToBundle: ");
  1931     n->dump();
  1933 #endif
  1935   // Remove this from the available list
  1936   uint i;
  1937   for (i = 0; i < _available.size(); i++)
  1938     if (_available[i] == n)
  1939       break;
  1940   assert(i < _available.size(), "entry in _available list not found");
  1941   _available.remove(i);
  1943   // See if this fits in the current bundle
  1944   const Pipeline *node_pipeline = n->pipeline();
  1945   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
  1947   // Check for instructions to be placed in the delay slot. We
  1948   // do this before we actually schedule the current instruction,
  1949   // because the delay slot follows the current instruction.
  1950   if (Pipeline::_branch_has_delay_slot &&
  1951       node_pipeline->hasBranchDelay() &&
  1952       !_unconditional_delay_slot) {
  1954     uint siz = _available.size();
  1956     // Conditional branches can support an instruction that
  1957     // is unconditionally executed and not dependent by the
  1958     // branch, OR a conditionally executed instruction if
  1959     // the branch is taken.  In practice, this means that
  1960     // the first instruction at the branch target is
  1961     // copied to the delay slot, and the branch goes to
  1962     // the instruction after that at the branch target
  1963     if ( n->is_Mach() && n->is_Branch() ) {
  1965       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
  1966       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
  1968 #ifndef PRODUCT
  1969       _branches++;
  1970 #endif
  1972       // At least 1 instruction is on the available list
  1973       // that is not dependent on the branch
  1974       for (uint i = 0; i < siz; i++) {
  1975         Node *d = _available[i];
  1976         const Pipeline *avail_pipeline = d->pipeline();
  1978         // Don't allow safepoints in the branch shadow, that will
  1979         // cause a number of difficulties
  1980         if ( avail_pipeline->instructionCount() == 1 &&
  1981             !avail_pipeline->hasMultipleBundles() &&
  1982             !avail_pipeline->hasBranchDelay() &&
  1983             Pipeline::instr_has_unit_size() &&
  1984             d->size(_regalloc) == Pipeline::instr_unit_size() &&
  1985             NodeFitsInBundle(d) &&
  1986             !node_bundling(d)->used_in_delay()) {
  1988           if (d->is_Mach() && !d->is_MachSafePoint()) {
  1989             // A node that fits in the delay slot was found, so we need to
  1990             // set the appropriate bits in the bundle pipeline information so
  1991             // that it correctly indicates resource usage.  Later, when we
  1992             // attempt to add this instruction to the bundle, we will skip
  1993             // setting the resource usage.
  1994             _unconditional_delay_slot = d;
  1995             node_bundling(n)->set_use_unconditional_delay();
  1996             node_bundling(d)->set_used_in_unconditional_delay();
  1997             _bundle_use.add_usage(avail_pipeline->resourceUse());
  1998             _current_latency[d->_idx] = _bundle_cycle_number;
  1999             _next_node = d;
  2000             ++_bundle_instr_count;
  2001 #ifndef PRODUCT
  2002             _unconditional_delays++;
  2003 #endif
  2004             break;
  2010     // No delay slot, add a nop to the usage
  2011     if (!_unconditional_delay_slot) {
  2012       // See if adding an instruction in the delay slot will overflow
  2013       // the bundle.
  2014       if (!NodeFitsInBundle(_nop)) {
  2015 #ifndef PRODUCT
  2016         if (_cfg->C->trace_opto_output())
  2017           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
  2018 #endif
  2019         step(1);
  2022       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
  2023       _next_node = _nop;
  2024       ++_bundle_instr_count;
  2027     // See if the instruction in the delay slot requires a
  2028     // step of the bundles
  2029     if (!NodeFitsInBundle(n)) {
  2030 #ifndef PRODUCT
  2031         if (_cfg->C->trace_opto_output())
  2032           tty->print("#  *** STEP(branch won't fit) ***\n");
  2033 #endif
  2034         // Update the state information
  2035         _bundle_instr_count = 0;
  2036         _bundle_cycle_number += 1;
  2037         _bundle_use.step(1);
  2041   // Get the number of instructions
  2042   uint instruction_count = node_pipeline->instructionCount();
  2043   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
  2044     instruction_count = 0;
  2046   // Compute the latency information
  2047   uint delay = 0;
  2049   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
  2050     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
  2051     if (relative_latency < 0)
  2052       relative_latency = 0;
  2054     delay = _bundle_use.full_latency(relative_latency, node_usage);
  2056     // Does not fit in this bundle, start a new one
  2057     if (delay > 0) {
  2058       step(delay);
  2060 #ifndef PRODUCT
  2061       if (_cfg->C->trace_opto_output())
  2062         tty->print("#  *** STEP(%d) ***\n", delay);
  2063 #endif
  2067   // If this was placed in the delay slot, ignore it
  2068   if (n != _unconditional_delay_slot) {
  2070     if (delay == 0) {
  2071       if (node_pipeline->hasMultipleBundles()) {
  2072 #ifndef PRODUCT
  2073         if (_cfg->C->trace_opto_output())
  2074           tty->print("#  *** STEP(multiple instructions) ***\n");
  2075 #endif
  2076         step(1);
  2079       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
  2080 #ifndef PRODUCT
  2081         if (_cfg->C->trace_opto_output())
  2082           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
  2083             instruction_count + _bundle_instr_count,
  2084             Pipeline::_max_instrs_per_cycle);
  2085 #endif
  2086         step(1);
  2090     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
  2091       _bundle_instr_count++;
  2093     // Set the node's latency
  2094     _current_latency[n->_idx] = _bundle_cycle_number;
  2096     // Now merge the functional unit information
  2097     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
  2098       _bundle_use.add_usage(node_usage);
  2100     // Increment the number of instructions in this bundle
  2101     _bundle_instr_count += instruction_count;
  2103     // Remember this node for later
  2104     if (n->is_Mach())
  2105       _next_node = n;
  2108   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
  2109   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
  2110   // 'Schedule' them (basically ignore in the schedule) but do not insert them
  2111   // into the block.  All other scheduled nodes get put in the schedule here.
  2112   int op = n->Opcode();
  2113   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
  2114       (op != Op_Node &&         // Not an unused antidepedence node and
  2115        // not an unallocated boxlock
  2116        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
  2118     // Push any trailing projections
  2119     if( bb->_nodes[bb->_nodes.size()-1] != n ) {
  2120       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2121         Node *foi = n->fast_out(i);
  2122         if( foi->is_Proj() )
  2123           _scheduled.push(foi);
  2127     // Put the instruction in the schedule list
  2128     _scheduled.push(n);
  2131 #ifndef PRODUCT
  2132   if (_cfg->C->trace_opto_output())
  2133     dump_available();
  2134 #endif
  2136   // Walk all the definitions, decrementing use counts, and
  2137   // if a definition has a 0 use count, place it in the available list.
  2138   DecrementUseCounts(n,bb);
  2141 //------------------------------ComputeUseCount--------------------------------
  2142 // This method sets the use count within a basic block.  We will ignore all
  2143 // uses outside the current basic block.  As we are doing a backwards walk,
  2144 // any node we reach that has a use count of 0 may be scheduled.  This also
  2145 // avoids the problem of cyclic references from phi nodes, as long as phi
  2146 // nodes are at the front of the basic block.  This method also initializes
  2147 // the available list to the set of instructions that have no uses within this
  2148 // basic block.
  2149 void Scheduling::ComputeUseCount(const Block *bb) {
  2150 #ifndef PRODUCT
  2151   if (_cfg->C->trace_opto_output())
  2152     tty->print("# -> ComputeUseCount\n");
  2153 #endif
  2155   // Clear the list of available and scheduled instructions, just in case
  2156   _available.clear();
  2157   _scheduled.clear();
  2159   // No delay slot specified
  2160   _unconditional_delay_slot = NULL;
  2162 #ifdef ASSERT
  2163   for( uint i=0; i < bb->_nodes.size(); i++ )
  2164     assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
  2165 #endif
  2167   // Force the _uses count to never go to zero for unscheduable pieces
  2168   // of the block
  2169   for( uint k = 0; k < _bb_start; k++ )
  2170     _uses[bb->_nodes[k]->_idx] = 1;
  2171   for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
  2172     _uses[bb->_nodes[l]->_idx] = 1;
  2174   // Iterate backwards over the instructions in the block.  Don't count the
  2175   // branch projections at end or the block header instructions.
  2176   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
  2177     Node *n = bb->_nodes[j];
  2178     if( n->is_Proj() ) continue; // Projections handled another way
  2180     // Account for all uses
  2181     for ( uint k = 0; k < n->len(); k++ ) {
  2182       Node *inp = n->in(k);
  2183       if (!inp) continue;
  2184       assert(inp != n, "no cycles allowed" );
  2185       if( _bbs[inp->_idx] == bb ) { // Block-local use?
  2186         if( inp->is_Proj() )    // Skip through Proj's
  2187           inp = inp->in(0);
  2188         ++_uses[inp->_idx];     // Count 1 block-local use
  2192     // If this instruction has a 0 use count, then it is available
  2193     if (!_uses[n->_idx]) {
  2194       _current_latency[n->_idx] = _bundle_cycle_number;
  2195       AddNodeToAvailableList(n);
  2198 #ifndef PRODUCT
  2199     if (_cfg->C->trace_opto_output()) {
  2200       tty->print("#   uses: %3d: ", _uses[n->_idx]);
  2201       n->dump();
  2203 #endif
  2206 #ifndef PRODUCT
  2207   if (_cfg->C->trace_opto_output())
  2208     tty->print("# <- ComputeUseCount\n");
  2209 #endif
  2212 // This routine performs scheduling on each basic block in reverse order,
  2213 // using instruction latencies and taking into account function unit
  2214 // availability.
  2215 void Scheduling::DoScheduling() {
  2216 #ifndef PRODUCT
  2217   if (_cfg->C->trace_opto_output())
  2218     tty->print("# -> DoScheduling\n");
  2219 #endif
  2221   Block *succ_bb = NULL;
  2222   Block *bb;
  2224   // Walk over all the basic blocks in reverse order
  2225   for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
  2226     bb = _cfg->_blocks[i];
  2228 #ifndef PRODUCT
  2229     if (_cfg->C->trace_opto_output()) {
  2230       tty->print("#  Schedule BB#%03d (initial)\n", i);
  2231       for (uint j = 0; j < bb->_nodes.size(); j++)
  2232         bb->_nodes[j]->dump();
  2234 #endif
  2236     // On the head node, skip processing
  2237     if( bb == _cfg->_broot )
  2238       continue;
  2240     // Skip empty, connector blocks
  2241     if (bb->is_connector())
  2242       continue;
  2244     // If the following block is not the sole successor of
  2245     // this one, then reset the pipeline information
  2246     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
  2247 #ifndef PRODUCT
  2248       if (_cfg->C->trace_opto_output()) {
  2249         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
  2250                    _next_node->_idx, _bundle_instr_count);
  2252 #endif
  2253       step_and_clear();
  2256     // Leave untouched the starting instruction, any Phis, a CreateEx node
  2257     // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
  2258     _bb_end = bb->_nodes.size()-1;
  2259     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
  2260       Node *n = bb->_nodes[_bb_start];
  2261       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
  2262       // Also, MachIdealNodes do not get scheduled
  2263       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
  2264       MachNode *mach = n->as_Mach();
  2265       int iop = mach->ideal_Opcode();
  2266       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
  2267       if( iop == Op_Con ) continue;      // Do not schedule Top
  2268       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
  2269           mach->pipeline() == MachNode::pipeline_class() &&
  2270           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
  2271         continue;
  2272       break;                    // Funny loop structure to be sure...
  2274     // Compute last "interesting" instruction in block - last instruction we
  2275     // might schedule.  _bb_end points just after last schedulable inst.  We
  2276     // normally schedule conditional branches (despite them being forced last
  2277     // in the block), because they have delay slots we can fill.  Calls all
  2278     // have their delay slots filled in the template expansions, so we don't
  2279     // bother scheduling them.
  2280     Node *last = bb->_nodes[_bb_end];
  2281     if( last->is_Catch() ||
  2282        // Exclude unreachable path case when Halt node is in a separate block.
  2283        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
  2284       // There must be a prior call.  Skip it.
  2285       while( !bb->_nodes[--_bb_end]->is_Call() ) {
  2286         assert( bb->_nodes[_bb_end]->is_Proj(), "skipping projections after expected call" );
  2288     } else if( last->is_MachNullCheck() ) {
  2289       // Backup so the last null-checked memory instruction is
  2290       // outside the schedulable range. Skip over the nullcheck,
  2291       // projection, and the memory nodes.
  2292       Node *mem = last->in(1);
  2293       do {
  2294         _bb_end--;
  2295       } while (mem != bb->_nodes[_bb_end]);
  2296     } else {
  2297       // Set _bb_end to point after last schedulable inst.
  2298       _bb_end++;
  2301     assert( _bb_start <= _bb_end, "inverted block ends" );
  2303     // Compute the register antidependencies for the basic block
  2304     ComputeRegisterAntidependencies(bb);
  2305     if (_cfg->C->failing())  return;  // too many D-U pinch points
  2307     // Compute intra-bb latencies for the nodes
  2308     ComputeLocalLatenciesForward(bb);
  2310     // Compute the usage within the block, and set the list of all nodes
  2311     // in the block that have no uses within the block.
  2312     ComputeUseCount(bb);
  2314     // Schedule the remaining instructions in the block
  2315     while ( _available.size() > 0 ) {
  2316       Node *n = ChooseNodeToBundle();
  2317       AddNodeToBundle(n,bb);
  2320     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
  2321 #ifdef ASSERT
  2322     for( uint l = _bb_start; l < _bb_end; l++ ) {
  2323       Node *n = bb->_nodes[l];
  2324       uint m;
  2325       for( m = 0; m < _bb_end-_bb_start; m++ )
  2326         if( _scheduled[m] == n )
  2327           break;
  2328       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
  2330 #endif
  2332     // Now copy the instructions (in reverse order) back to the block
  2333     for ( uint k = _bb_start; k < _bb_end; k++ )
  2334       bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
  2336 #ifndef PRODUCT
  2337     if (_cfg->C->trace_opto_output()) {
  2338       tty->print("#  Schedule BB#%03d (final)\n", i);
  2339       uint current = 0;
  2340       for (uint j = 0; j < bb->_nodes.size(); j++) {
  2341         Node *n = bb->_nodes[j];
  2342         if( valid_bundle_info(n) ) {
  2343           Bundle *bundle = node_bundling(n);
  2344           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
  2345             tty->print("*** Bundle: ");
  2346             bundle->dump();
  2348           n->dump();
  2352 #endif
  2353 #ifdef ASSERT
  2354   verify_good_schedule(bb,"after block local scheduling");
  2355 #endif
  2358 #ifndef PRODUCT
  2359   if (_cfg->C->trace_opto_output())
  2360     tty->print("# <- DoScheduling\n");
  2361 #endif
  2363   // Record final node-bundling array location
  2364   _regalloc->C->set_node_bundling_base(_node_bundling_base);
  2366 } // end DoScheduling
  2368 //------------------------------verify_good_schedule---------------------------
  2369 // Verify that no live-range used in the block is killed in the block by a
  2370 // wrong DEF.  This doesn't verify live-ranges that span blocks.
  2372 // Check for edge existence.  Used to avoid adding redundant precedence edges.
  2373 static bool edge_from_to( Node *from, Node *to ) {
  2374   for( uint i=0; i<from->len(); i++ )
  2375     if( from->in(i) == to )
  2376       return true;
  2377   return false;
  2380 #ifdef ASSERT
  2381 //------------------------------verify_do_def----------------------------------
  2382 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
  2383   // Check for bad kills
  2384   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
  2385     Node *prior_use = _reg_node[def];
  2386     if( prior_use && !edge_from_to(prior_use,n) ) {
  2387       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
  2388       n->dump();
  2389       tty->print_cr("...");
  2390       prior_use->dump();
  2391       assert_msg(edge_from_to(prior_use,n),msg);
  2393     _reg_node.map(def,NULL); // Kill live USEs
  2397 //------------------------------verify_good_schedule---------------------------
  2398 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
  2400   // Zap to something reasonable for the verify code
  2401   _reg_node.clear();
  2403   // Walk over the block backwards.  Check to make sure each DEF doesn't
  2404   // kill a live value (other than the one it's supposed to).  Add each
  2405   // USE to the live set.
  2406   for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
  2407     Node *n = b->_nodes[i];
  2408     int n_op = n->Opcode();
  2409     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
  2410       // Fat-proj kills a slew of registers
  2411       RegMask rm = n->out_RegMask();// Make local copy
  2412       while( rm.is_NotEmpty() ) {
  2413         OptoReg::Name kill = rm.find_first_elem();
  2414         rm.Remove(kill);
  2415         verify_do_def( n, kill, msg );
  2417     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
  2418       // Get DEF'd registers the normal way
  2419       verify_do_def( n, _regalloc->get_reg_first(n), msg );
  2420       verify_do_def( n, _regalloc->get_reg_second(n), msg );
  2423     // Now make all USEs live
  2424     for( uint i=1; i<n->req(); i++ ) {
  2425       Node *def = n->in(i);
  2426       assert(def != 0, "input edge required");
  2427       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
  2428       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
  2429       if( OptoReg::is_valid(reg_lo) ) {
  2430         assert_msg(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg );
  2431         _reg_node.map(reg_lo,n);
  2433       if( OptoReg::is_valid(reg_hi) ) {
  2434         assert_msg(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg );
  2435         _reg_node.map(reg_hi,n);
  2441   // Zap to something reasonable for the Antidependence code
  2442   _reg_node.clear();
  2444 #endif
  2446 // Conditionally add precedence edges.  Avoid putting edges on Projs.
  2447 static void add_prec_edge_from_to( Node *from, Node *to ) {
  2448   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
  2449     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
  2450     from = from->in(0);
  2452   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
  2453       !edge_from_to( from, to ) ) // Avoid duplicate edge
  2454     from->add_prec(to);
  2457 //------------------------------anti_do_def------------------------------------
  2458 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
  2459   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
  2460     return;
  2462   Node *pinch = _reg_node[def_reg]; // Get pinch point
  2463   if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
  2464       is_def ) {    // Check for a true def (not a kill)
  2465     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
  2466     return;
  2469   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
  2470   debug_only( def = (Node*)0xdeadbeef; )
  2472   // After some number of kills there _may_ be a later def
  2473   Node *later_def = NULL;
  2475   // Finding a kill requires a real pinch-point.
  2476   // Check for not already having a pinch-point.
  2477   // Pinch points are Op_Node's.
  2478   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
  2479     later_def = pinch;            // Must be def/kill as optimistic pinch-point
  2480     if ( _pinch_free_list.size() > 0) {
  2481       pinch = _pinch_free_list.pop();
  2482     } else {
  2483       pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
  2485     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
  2486       _cfg->C->record_method_not_compilable("too many D-U pinch points");
  2487       return;
  2489     _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
  2490     _reg_node.map(def_reg,pinch); // Record pinch-point
  2491     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
  2492     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
  2493       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
  2494       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
  2495       later_def = NULL;           // and no later def
  2497     pinch->set_req(0,later_def);  // Hook later def so we can find it
  2498   } else {                        // Else have valid pinch point
  2499     if( pinch->in(0) )            // If there is a later-def
  2500       later_def = pinch->in(0);   // Get it
  2503   // Add output-dependence edge from later def to kill
  2504   if( later_def )               // If there is some original def
  2505     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
  2507   // See if current kill is also a use, and so is forced to be the pinch-point.
  2508   if( pinch->Opcode() == Op_Node ) {
  2509     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
  2510     for( uint i=1; i<uses->req(); i++ ) {
  2511       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
  2512           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
  2513         // Yes, found a use/kill pinch-point
  2514         pinch->set_req(0,NULL);  //
  2515         pinch->replace_by(kill); // Move anti-dep edges up
  2516         pinch = kill;
  2517         _reg_node.map(def_reg,pinch);
  2518         return;
  2523   // Add edge from kill to pinch-point
  2524   add_prec_edge_from_to(kill,pinch);
  2527 //------------------------------anti_do_use------------------------------------
  2528 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
  2529   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
  2530     return;
  2531   Node *pinch = _reg_node[use_reg]; // Get pinch point
  2532   // Check for no later def_reg/kill in block
  2533   if( pinch && _bbs[pinch->_idx] == b &&
  2534       // Use has to be block-local as well
  2535       _bbs[use->_idx] == b ) {
  2536     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
  2537         pinch->req() == 1 ) {   // pinch not yet in block?
  2538       pinch->del_req(0);        // yank pointer to later-def, also set flag
  2539       // Insert the pinch-point in the block just after the last use
  2540       b->_nodes.insert(b->find_node(use)+1,pinch);
  2541       _bb_end++;                // Increase size scheduled region in block
  2544     add_prec_edge_from_to(pinch,use);
  2548 //------------------------------ComputeRegisterAntidependences-----------------
  2549 // We insert antidependences between the reads and following write of
  2550 // allocated registers to prevent illegal code motion. Hopefully, the
  2551 // number of added references should be fairly small, especially as we
  2552 // are only adding references within the current basic block.
  2553 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
  2555 #ifdef ASSERT
  2556   verify_good_schedule(b,"before block local scheduling");
  2557 #endif
  2559   // A valid schedule, for each register independently, is an endless cycle
  2560   // of: a def, then some uses (connected to the def by true dependencies),
  2561   // then some kills (defs with no uses), finally the cycle repeats with a new
  2562   // def.  The uses are allowed to float relative to each other, as are the
  2563   // kills.  No use is allowed to slide past a kill (or def).  This requires
  2564   // antidependencies between all uses of a single def and all kills that
  2565   // follow, up to the next def.  More edges are redundant, because later defs
  2566   // & kills are already serialized with true or antidependencies.  To keep
  2567   // the edge count down, we add a 'pinch point' node if there's more than
  2568   // one use or more than one kill/def.
  2570   // We add dependencies in one bottom-up pass.
  2572   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
  2574   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
  2575   // register.  If not, we record the DEF/KILL in _reg_node, the
  2576   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
  2577   // "pinch point", a new Node that's in the graph but not in the block.
  2578   // We put edges from the prior and current DEF/KILLs to the pinch point.
  2579   // We put the pinch point in _reg_node.  If there's already a pinch point
  2580   // we merely add an edge from the current DEF/KILL to the pinch point.
  2582   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
  2583   // put an edge from the pinch point to the USE.
  2585   // To be expedient, the _reg_node array is pre-allocated for the whole
  2586   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
  2587   // or a valid def/kill/pinch-point, or a leftover node from some prior
  2588   // block.  Leftover node from some prior block is treated like a NULL (no
  2589   // prior def, so no anti-dependence needed).  Valid def is distinguished by
  2590   // it being in the current block.
  2591   bool fat_proj_seen = false;
  2592   uint last_safept = _bb_end-1;
  2593   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
  2594   Node* last_safept_node = end_node;
  2595   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
  2596     Node *n = b->_nodes[i];
  2597     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
  2598     if( n->Opcode() == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
  2599       // Fat-proj kills a slew of registers
  2600       // This can add edges to 'n' and obscure whether or not it was a def,
  2601       // hence the is_def flag.
  2602       fat_proj_seen = true;
  2603       RegMask rm = n->out_RegMask();// Make local copy
  2604       while( rm.is_NotEmpty() ) {
  2605         OptoReg::Name kill = rm.find_first_elem();
  2606         rm.Remove(kill);
  2607         anti_do_def( b, n, kill, is_def );
  2609     } else {
  2610       // Get DEF'd registers the normal way
  2611       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
  2612       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
  2615     // Check each register used by this instruction for a following DEF/KILL
  2616     // that must occur afterward and requires an anti-dependence edge.
  2617     for( uint j=0; j<n->req(); j++ ) {
  2618       Node *def = n->in(j);
  2619       if( def ) {
  2620         assert( def->Opcode() != Op_MachProj || def->ideal_reg() != MachProjNode::fat_proj, "" );
  2621         anti_do_use( b, n, _regalloc->get_reg_first(def) );
  2622         anti_do_use( b, n, _regalloc->get_reg_second(def) );
  2625     // Do not allow defs of new derived values to float above GC
  2626     // points unless the base is definitely available at the GC point.
  2628     Node *m = b->_nodes[i];
  2630     // Add precedence edge from following safepoint to use of derived pointer
  2631     if( last_safept_node != end_node &&
  2632         m != last_safept_node) {
  2633       for (uint k = 1; k < m->req(); k++) {
  2634         const Type *t = m->in(k)->bottom_type();
  2635         if( t->isa_oop_ptr() &&
  2636             t->is_ptr()->offset() != 0 ) {
  2637           last_safept_node->add_prec( m );
  2638           break;
  2643     if( n->jvms() ) {           // Precedence edge from derived to safept
  2644       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
  2645       if( b->_nodes[last_safept] != last_safept_node ) {
  2646         last_safept = b->find_node(last_safept_node);
  2648       for( uint j=last_safept; j > i; j-- ) {
  2649         Node *mach = b->_nodes[j];
  2650         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
  2651           mach->add_prec( n );
  2653       last_safept = i;
  2654       last_safept_node = m;
  2658   if (fat_proj_seen) {
  2659     // Garbage collect pinch nodes that were not consumed.
  2660     // They are usually created by a fat kill MachProj for a call.
  2661     garbage_collect_pinch_nodes();
  2665 //------------------------------garbage_collect_pinch_nodes-------------------------------
  2667 // Garbage collect pinch nodes for reuse by other blocks.
  2668 //
  2669 // The block scheduler's insertion of anti-dependence
  2670 // edges creates many pinch nodes when the block contains
  2671 // 2 or more Calls.  A pinch node is used to prevent a
  2672 // combinatorial explosion of edges.  If a set of kills for a
  2673 // register is anti-dependent on a set of uses (or defs), rather
  2674 // than adding an edge in the graph between each pair of kill
  2675 // and use (or def), a pinch is inserted between them:
  2676 //
  2677 //            use1   use2  use3
  2678 //                \   |   /
  2679 //                 \  |  /
  2680 //                  pinch
  2681 //                 /  |  \
  2682 //                /   |   \
  2683 //            kill1 kill2 kill3
  2684 //
  2685 // One pinch node is created per register killed when
  2686 // the second call is encountered during a backwards pass
  2687 // over the block.  Most of these pinch nodes are never
  2688 // wired into the graph because the register is never
  2689 // used or def'ed in the block.
  2690 //
  2691 void Scheduling::garbage_collect_pinch_nodes() {
  2692 #ifndef PRODUCT
  2693     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
  2694 #endif
  2695     int trace_cnt = 0;
  2696     for (uint k = 0; k < _reg_node.Size(); k++) {
  2697       Node* pinch = _reg_node[k];
  2698       if (pinch != NULL && pinch->Opcode() == Op_Node &&
  2699           // no predecence input edges
  2700           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
  2701         cleanup_pinch(pinch);
  2702         _pinch_free_list.push(pinch);
  2703         _reg_node.map(k, NULL);
  2704 #ifndef PRODUCT
  2705         if (_cfg->C->trace_opto_output()) {
  2706           trace_cnt++;
  2707           if (trace_cnt > 40) {
  2708             tty->print("\n");
  2709             trace_cnt = 0;
  2711           tty->print(" %d", pinch->_idx);
  2713 #endif
  2716 #ifndef PRODUCT
  2717     if (_cfg->C->trace_opto_output()) tty->print("\n");
  2718 #endif
  2721 // Clean up a pinch node for reuse.
  2722 void Scheduling::cleanup_pinch( Node *pinch ) {
  2723   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
  2725   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
  2726     Node* use = pinch->last_out(i);
  2727     uint uses_found = 0;
  2728     for (uint j = use->req(); j < use->len(); j++) {
  2729       if (use->in(j) == pinch) {
  2730         use->rm_prec(j);
  2731         uses_found++;
  2734     assert(uses_found > 0, "must be a precedence edge");
  2735     i -= uses_found;    // we deleted 1 or more copies of this edge
  2737   // May have a later_def entry
  2738   pinch->set_req(0, NULL);
  2741 //------------------------------print_statistics-------------------------------
  2742 #ifndef PRODUCT
  2744 void Scheduling::dump_available() const {
  2745   tty->print("#Availist  ");
  2746   for (uint i = 0; i < _available.size(); i++)
  2747     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
  2748   tty->cr();
  2751 // Print Scheduling Statistics
  2752 void Scheduling::print_statistics() {
  2753   // Print the size added by nops for bundling
  2754   tty->print("Nops added %d bytes to total of %d bytes",
  2755     _total_nop_size, _total_method_size);
  2756   if (_total_method_size > 0)
  2757     tty->print(", for %.2f%%",
  2758       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
  2759   tty->print("\n");
  2761   // Print the number of branch shadows filled
  2762   if (Pipeline::_branch_has_delay_slot) {
  2763     tty->print("Of %d branches, %d had unconditional delay slots filled",
  2764       _total_branches, _total_unconditional_delays);
  2765     if (_total_branches > 0)
  2766       tty->print(", for %.2f%%",
  2767         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
  2768     tty->print("\n");
  2771   uint total_instructions = 0, total_bundles = 0;
  2773   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
  2774     uint bundle_count   = _total_instructions_per_bundle[i];
  2775     total_instructions += bundle_count * i;
  2776     total_bundles      += bundle_count;
  2779   if (total_bundles > 0)
  2780     tty->print("Average ILP (excluding nops) is %.2f\n",
  2781       ((double)total_instructions) / ((double)total_bundles));
  2783 #endif

mercurial