src/share/vm/opto/memnode.hpp

Thu, 19 Aug 2010 14:51:47 -0700

author
never
date
Thu, 19 Aug 2010 14:51:47 -0700
changeset 2085
f55c4f82ab9d
parent 1964
4311f23817fd
child 2314
f95d63e2154a
permissions
-rw-r--r--

6978249: spill between cpu and fpu registers when those moves are fast
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 class MultiNode;
    28 class PhaseCCP;
    29 class PhaseTransform;
    31 //------------------------------MemNode----------------------------------------
    32 // Load or Store, possibly throwing a NULL pointer exception
    33 class MemNode : public Node {
    34 protected:
    35 #ifdef ASSERT
    36   const TypePtr* _adr_type;     // What kind of memory is being addressed?
    37 #endif
    38   virtual uint size_of() const; // Size is bigger (ASSERT only)
    39 public:
    40   enum { Control,               // When is it safe to do this load?
    41          Memory,                // Chunk of memory is being loaded from
    42          Address,               // Actually address, derived from base
    43          ValueIn,               // Value to store
    44          OopStore               // Preceeding oop store, only in StoreCM
    45   };
    46 protected:
    47   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
    48     : Node(c0,c1,c2   ) {
    49     init_class_id(Class_Mem);
    50     debug_only(_adr_type=at; adr_type();)
    51   }
    52   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
    53     : Node(c0,c1,c2,c3) {
    54     init_class_id(Class_Mem);
    55     debug_only(_adr_type=at; adr_type();)
    56   }
    57   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
    58     : Node(c0,c1,c2,c3,c4) {
    59     init_class_id(Class_Mem);
    60     debug_only(_adr_type=at; adr_type();)
    61   }
    63 public:
    64   // Helpers for the optimizer.  Documented in memnode.cpp.
    65   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
    66                                       Node* p2, AllocateNode* a2,
    67                                       PhaseTransform* phase);
    68   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
    70   static Node *optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase);
    71   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase);
    72   // This one should probably be a phase-specific function:
    73   static bool all_controls_dominate(Node* dom, Node* sub);
    75   // Find any cast-away of null-ness and keep its control.
    76   static  Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
    77   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
    79   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
    81   // Shared code for Ideal methods:
    82   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
    84   // Helper function for adr_type() implementations.
    85   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
    87   // Raw access function, to allow copying of adr_type efficiently in
    88   // product builds and retain the debug info for debug builds.
    89   const TypePtr *raw_adr_type() const {
    90 #ifdef ASSERT
    91     return _adr_type;
    92 #else
    93     return 0;
    94 #endif
    95   }
    97   // Map a load or store opcode to its corresponding store opcode.
    98   // (Return -1 if unknown.)
    99   virtual int store_Opcode() const { return -1; }
   101   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
   102   virtual BasicType memory_type() const = 0;
   103   virtual int memory_size() const {
   104 #ifdef ASSERT
   105     return type2aelembytes(memory_type(), true);
   106 #else
   107     return type2aelembytes(memory_type());
   108 #endif
   109   }
   111   // Search through memory states which precede this node (load or store).
   112   // Look for an exact match for the address, with no intervening
   113   // aliased stores.
   114   Node* find_previous_store(PhaseTransform* phase);
   116   // Can this node (load or store) accurately see a stored value in
   117   // the given memory state?  (The state may or may not be in(Memory).)
   118   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
   120 #ifndef PRODUCT
   121   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
   122   virtual void dump_spec(outputStream *st) const;
   123 #endif
   124 };
   126 //------------------------------LoadNode---------------------------------------
   127 // Load value; requires Memory and Address
   128 class LoadNode : public MemNode {
   129 protected:
   130   virtual uint cmp( const Node &n ) const;
   131   virtual uint size_of() const; // Size is bigger
   132   const Type* const _type;      // What kind of value is loaded?
   133 public:
   135   LoadNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt )
   136     : MemNode(c,mem,adr,at), _type(rt) {
   137     init_class_id(Class_Load);
   138   }
   140   // Polymorphic factory method:
   141   static Node* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
   142                      const TypePtr* at, const Type *rt, BasicType bt );
   144   virtual uint hash()   const;  // Check the type
   146   // Handle algebraic identities here.  If we have an identity, return the Node
   147   // we are equivalent to.  We look for Load of a Store.
   148   virtual Node *Identity( PhaseTransform *phase );
   150   // If the load is from Field memory and the pointer is non-null, we can
   151   // zero out the control input.
   152   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   154   // Split instance field load through Phi.
   155   Node* split_through_phi(PhaseGVN *phase);
   157   // Recover original value from boxed values
   158   Node *eliminate_autobox(PhaseGVN *phase);
   160   // Compute a new Type for this node.  Basically we just do the pre-check,
   161   // then call the virtual add() to set the type.
   162   virtual const Type *Value( PhaseTransform *phase ) const;
   164   // Common methods for LoadKlass and LoadNKlass nodes.
   165   const Type *klass_value_common( PhaseTransform *phase ) const;
   166   Node *klass_identity_common( PhaseTransform *phase );
   168   virtual uint ideal_reg() const;
   169   virtual const Type *bottom_type() const;
   170   // Following method is copied from TypeNode:
   171   void set_type(const Type* t) {
   172     assert(t != NULL, "sanity");
   173     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
   174     *(const Type**)&_type = t;   // cast away const-ness
   175     // If this node is in the hash table, make sure it doesn't need a rehash.
   176     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
   177   }
   178   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
   180   // Do not match memory edge
   181   virtual uint match_edge(uint idx) const;
   183   // Map a load opcode to its corresponding store opcode.
   184   virtual int store_Opcode() const = 0;
   186   // Check if the load's memory input is a Phi node with the same control.
   187   bool is_instance_field_load_with_local_phi(Node* ctrl);
   189 #ifndef PRODUCT
   190   virtual void dump_spec(outputStream *st) const;
   191 #endif
   192 #ifdef ASSERT
   193   // Helper function to allow a raw load without control edge for some cases
   194   static bool is_immutable_value(Node* adr);
   195 #endif
   196 protected:
   197   const Type* load_array_final_field(const TypeKlassPtr *tkls,
   198                                      ciKlass* klass) const;
   199 };
   201 //------------------------------LoadBNode--------------------------------------
   202 // Load a byte (8bits signed) from memory
   203 class LoadBNode : public LoadNode {
   204 public:
   205   LoadBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::BYTE )
   206     : LoadNode(c,mem,adr,at,ti) {}
   207   virtual int Opcode() const;
   208   virtual uint ideal_reg() const { return Op_RegI; }
   209   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   210   virtual int store_Opcode() const { return Op_StoreB; }
   211   virtual BasicType memory_type() const { return T_BYTE; }
   212 };
   214 //------------------------------LoadUBNode-------------------------------------
   215 // Load a unsigned byte (8bits unsigned) from memory
   216 class LoadUBNode : public LoadNode {
   217 public:
   218   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti = TypeInt::UBYTE )
   219     : LoadNode(c, mem, adr, at, ti) {}
   220   virtual int Opcode() const;
   221   virtual uint ideal_reg() const { return Op_RegI; }
   222   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
   223   virtual int store_Opcode() const { return Op_StoreB; }
   224   virtual BasicType memory_type() const { return T_BYTE; }
   225 };
   227 //------------------------------LoadUSNode-------------------------------------
   228 // Load an unsigned short/char (16bits unsigned) from memory
   229 class LoadUSNode : public LoadNode {
   230 public:
   231   LoadUSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR )
   232     : LoadNode(c,mem,adr,at,ti) {}
   233   virtual int Opcode() const;
   234   virtual uint ideal_reg() const { return Op_RegI; }
   235   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   236   virtual int store_Opcode() const { return Op_StoreC; }
   237   virtual BasicType memory_type() const { return T_CHAR; }
   238 };
   240 //------------------------------LoadINode--------------------------------------
   241 // Load an integer from memory
   242 class LoadINode : public LoadNode {
   243 public:
   244   LoadINode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::INT )
   245     : LoadNode(c,mem,adr,at,ti) {}
   246   virtual int Opcode() const;
   247   virtual uint ideal_reg() const { return Op_RegI; }
   248   virtual int store_Opcode() const { return Op_StoreI; }
   249   virtual BasicType memory_type() const { return T_INT; }
   250 };
   252 //------------------------------LoadUI2LNode-----------------------------------
   253 // Load an unsigned integer into long from memory
   254 class LoadUI2LNode : public LoadNode {
   255 public:
   256   LoadUI2LNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeLong* t = TypeLong::UINT)
   257     : LoadNode(c, mem, adr, at, t) {}
   258   virtual int Opcode() const;
   259   virtual uint ideal_reg() const { return Op_RegL; }
   260   virtual int store_Opcode() const { return Op_StoreL; }
   261   virtual BasicType memory_type() const { return T_LONG; }
   262 };
   264 //------------------------------LoadRangeNode----------------------------------
   265 // Load an array length from the array
   266 class LoadRangeNode : public LoadINode {
   267 public:
   268   LoadRangeNode( Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS )
   269     : LoadINode(c,mem,adr,TypeAryPtr::RANGE,ti) {}
   270   virtual int Opcode() const;
   271   virtual const Type *Value( PhaseTransform *phase ) const;
   272   virtual Node *Identity( PhaseTransform *phase );
   273   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   274 };
   276 //------------------------------LoadLNode--------------------------------------
   277 // Load a long from memory
   278 class LoadLNode : public LoadNode {
   279   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
   280   virtual uint cmp( const Node &n ) const {
   281     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
   282       && LoadNode::cmp(n);
   283   }
   284   virtual uint size_of() const { return sizeof(*this); }
   285   const bool _require_atomic_access;  // is piecewise load forbidden?
   287 public:
   288   LoadLNode( Node *c, Node *mem, Node *adr, const TypePtr* at,
   289              const TypeLong *tl = TypeLong::LONG,
   290              bool require_atomic_access = false )
   291     : LoadNode(c,mem,adr,at,tl)
   292     , _require_atomic_access(require_atomic_access)
   293   {}
   294   virtual int Opcode() const;
   295   virtual uint ideal_reg() const { return Op_RegL; }
   296   virtual int store_Opcode() const { return Op_StoreL; }
   297   virtual BasicType memory_type() const { return T_LONG; }
   298   bool require_atomic_access() { return _require_atomic_access; }
   299   static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt);
   300 #ifndef PRODUCT
   301   virtual void dump_spec(outputStream *st) const {
   302     LoadNode::dump_spec(st);
   303     if (_require_atomic_access)  st->print(" Atomic!");
   304   }
   305 #endif
   306 };
   308 //------------------------------LoadL_unalignedNode----------------------------
   309 // Load a long from unaligned memory
   310 class LoadL_unalignedNode : public LoadLNode {
   311 public:
   312   LoadL_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
   313     : LoadLNode(c,mem,adr,at) {}
   314   virtual int Opcode() const;
   315 };
   317 //------------------------------LoadFNode--------------------------------------
   318 // Load a float (64 bits) from memory
   319 class LoadFNode : public LoadNode {
   320 public:
   321   LoadFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::FLOAT )
   322     : LoadNode(c,mem,adr,at,t) {}
   323   virtual int Opcode() const;
   324   virtual uint ideal_reg() const { return Op_RegF; }
   325   virtual int store_Opcode() const { return Op_StoreF; }
   326   virtual BasicType memory_type() const { return T_FLOAT; }
   327 };
   329 //------------------------------LoadDNode--------------------------------------
   330 // Load a double (64 bits) from memory
   331 class LoadDNode : public LoadNode {
   332 public:
   333   LoadDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::DOUBLE )
   334     : LoadNode(c,mem,adr,at,t) {}
   335   virtual int Opcode() const;
   336   virtual uint ideal_reg() const { return Op_RegD; }
   337   virtual int store_Opcode() const { return Op_StoreD; }
   338   virtual BasicType memory_type() const { return T_DOUBLE; }
   339 };
   341 //------------------------------LoadD_unalignedNode----------------------------
   342 // Load a double from unaligned memory
   343 class LoadD_unalignedNode : public LoadDNode {
   344 public:
   345   LoadD_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
   346     : LoadDNode(c,mem,adr,at) {}
   347   virtual int Opcode() const;
   348 };
   350 //------------------------------LoadPNode--------------------------------------
   351 // Load a pointer from memory (either object or array)
   352 class LoadPNode : public LoadNode {
   353 public:
   354   LoadPNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t )
   355     : LoadNode(c,mem,adr,at,t) {}
   356   virtual int Opcode() const;
   357   virtual uint ideal_reg() const { return Op_RegP; }
   358   virtual int store_Opcode() const { return Op_StoreP; }
   359   virtual BasicType memory_type() const { return T_ADDRESS; }
   360   // depends_only_on_test is almost always true, and needs to be almost always
   361   // true to enable key hoisting & commoning optimizations.  However, for the
   362   // special case of RawPtr loads from TLS top & end, the control edge carries
   363   // the dependence preventing hoisting past a Safepoint instead of the memory
   364   // edge.  (An unfortunate consequence of having Safepoints not set Raw
   365   // Memory; itself an unfortunate consequence of having Nodes which produce
   366   // results (new raw memory state) inside of loops preventing all manner of
   367   // other optimizations).  Basically, it's ugly but so is the alternative.
   368   // See comment in macro.cpp, around line 125 expand_allocate_common().
   369   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
   370 };
   373 //------------------------------LoadNNode--------------------------------------
   374 // Load a narrow oop from memory (either object or array)
   375 class LoadNNode : public LoadNode {
   376 public:
   377   LoadNNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t )
   378     : LoadNode(c,mem,adr,at,t) {}
   379   virtual int Opcode() const;
   380   virtual uint ideal_reg() const { return Op_RegN; }
   381   virtual int store_Opcode() const { return Op_StoreN; }
   382   virtual BasicType memory_type() const { return T_NARROWOOP; }
   383   // depends_only_on_test is almost always true, and needs to be almost always
   384   // true to enable key hoisting & commoning optimizations.  However, for the
   385   // special case of RawPtr loads from TLS top & end, the control edge carries
   386   // the dependence preventing hoisting past a Safepoint instead of the memory
   387   // edge.  (An unfortunate consequence of having Safepoints not set Raw
   388   // Memory; itself an unfortunate consequence of having Nodes which produce
   389   // results (new raw memory state) inside of loops preventing all manner of
   390   // other optimizations).  Basically, it's ugly but so is the alternative.
   391   // See comment in macro.cpp, around line 125 expand_allocate_common().
   392   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
   393 };
   395 //------------------------------LoadKlassNode----------------------------------
   396 // Load a Klass from an object
   397 class LoadKlassNode : public LoadPNode {
   398 public:
   399   LoadKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk )
   400     : LoadPNode(c,mem,adr,at,tk) {}
   401   virtual int Opcode() const;
   402   virtual const Type *Value( PhaseTransform *phase ) const;
   403   virtual Node *Identity( PhaseTransform *phase );
   404   virtual bool depends_only_on_test() const { return true; }
   406   // Polymorphic factory method:
   407   static Node* make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at,
   408                      const TypeKlassPtr *tk = TypeKlassPtr::OBJECT );
   409 };
   411 //------------------------------LoadNKlassNode---------------------------------
   412 // Load a narrow Klass from an object.
   413 class LoadNKlassNode : public LoadNNode {
   414 public:
   415   LoadNKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowOop *tk )
   416     : LoadNNode(c,mem,adr,at,tk) {}
   417   virtual int Opcode() const;
   418   virtual uint ideal_reg() const { return Op_RegN; }
   419   virtual int store_Opcode() const { return Op_StoreN; }
   420   virtual BasicType memory_type() const { return T_NARROWOOP; }
   422   virtual const Type *Value( PhaseTransform *phase ) const;
   423   virtual Node *Identity( PhaseTransform *phase );
   424   virtual bool depends_only_on_test() const { return true; }
   425 };
   428 //------------------------------LoadSNode--------------------------------------
   429 // Load a short (16bits signed) from memory
   430 class LoadSNode : public LoadNode {
   431 public:
   432   LoadSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::SHORT )
   433     : LoadNode(c,mem,adr,at,ti) {}
   434   virtual int Opcode() const;
   435   virtual uint ideal_reg() const { return Op_RegI; }
   436   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   437   virtual int store_Opcode() const { return Op_StoreC; }
   438   virtual BasicType memory_type() const { return T_SHORT; }
   439 };
   441 //------------------------------StoreNode--------------------------------------
   442 // Store value; requires Store, Address and Value
   443 class StoreNode : public MemNode {
   444 protected:
   445   virtual uint cmp( const Node &n ) const;
   446   virtual bool depends_only_on_test() const { return false; }
   448   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
   449   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
   451 public:
   452   StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val )
   453     : MemNode(c,mem,adr,at,val) {
   454     init_class_id(Class_Store);
   455   }
   456   StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store )
   457     : MemNode(c,mem,adr,at,val,oop_store) {
   458     init_class_id(Class_Store);
   459   }
   461   // Polymorphic factory method:
   462   static StoreNode* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
   463                           const TypePtr* at, Node *val, BasicType bt );
   465   virtual uint hash() const;    // Check the type
   467   // If the store is to Field memory and the pointer is non-null, we can
   468   // zero out the control input.
   469   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   471   // Compute a new Type for this node.  Basically we just do the pre-check,
   472   // then call the virtual add() to set the type.
   473   virtual const Type *Value( PhaseTransform *phase ) const;
   475   // Check for identity function on memory (Load then Store at same address)
   476   virtual Node *Identity( PhaseTransform *phase );
   478   // Do not match memory edge
   479   virtual uint match_edge(uint idx) const;
   481   virtual const Type *bottom_type() const;  // returns Type::MEMORY
   483   // Map a store opcode to its corresponding own opcode, trivially.
   484   virtual int store_Opcode() const { return Opcode(); }
   486   // have all possible loads of the value stored been optimized away?
   487   bool value_never_loaded(PhaseTransform *phase) const;
   488 };
   490 //------------------------------StoreBNode-------------------------------------
   491 // Store byte to memory
   492 class StoreBNode : public StoreNode {
   493 public:
   494   StoreBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   495   virtual int Opcode() const;
   496   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   497   virtual BasicType memory_type() const { return T_BYTE; }
   498 };
   500 //------------------------------StoreCNode-------------------------------------
   501 // Store char/short to memory
   502 class StoreCNode : public StoreNode {
   503 public:
   504   StoreCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   505   virtual int Opcode() const;
   506   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   507   virtual BasicType memory_type() const { return T_CHAR; }
   508 };
   510 //------------------------------StoreINode-------------------------------------
   511 // Store int to memory
   512 class StoreINode : public StoreNode {
   513 public:
   514   StoreINode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   515   virtual int Opcode() const;
   516   virtual BasicType memory_type() const { return T_INT; }
   517 };
   519 //------------------------------StoreLNode-------------------------------------
   520 // Store long to memory
   521 class StoreLNode : public StoreNode {
   522   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
   523   virtual uint cmp( const Node &n ) const {
   524     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
   525       && StoreNode::cmp(n);
   526   }
   527   virtual uint size_of() const { return sizeof(*this); }
   528   const bool _require_atomic_access;  // is piecewise store forbidden?
   530 public:
   531   StoreLNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
   532               bool require_atomic_access = false )
   533     : StoreNode(c,mem,adr,at,val)
   534     , _require_atomic_access(require_atomic_access)
   535   {}
   536   virtual int Opcode() const;
   537   virtual BasicType memory_type() const { return T_LONG; }
   538   bool require_atomic_access() { return _require_atomic_access; }
   539   static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val);
   540 #ifndef PRODUCT
   541   virtual void dump_spec(outputStream *st) const {
   542     StoreNode::dump_spec(st);
   543     if (_require_atomic_access)  st->print(" Atomic!");
   544   }
   545 #endif
   546 };
   548 //------------------------------StoreFNode-------------------------------------
   549 // Store float to memory
   550 class StoreFNode : public StoreNode {
   551 public:
   552   StoreFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   553   virtual int Opcode() const;
   554   virtual BasicType memory_type() const { return T_FLOAT; }
   555 };
   557 //------------------------------StoreDNode-------------------------------------
   558 // Store double to memory
   559 class StoreDNode : public StoreNode {
   560 public:
   561   StoreDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   562   virtual int Opcode() const;
   563   virtual BasicType memory_type() const { return T_DOUBLE; }
   564 };
   566 //------------------------------StorePNode-------------------------------------
   567 // Store pointer to memory
   568 class StorePNode : public StoreNode {
   569 public:
   570   StorePNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   571   virtual int Opcode() const;
   572   virtual BasicType memory_type() const { return T_ADDRESS; }
   573 };
   575 //------------------------------StoreNNode-------------------------------------
   576 // Store narrow oop to memory
   577 class StoreNNode : public StoreNode {
   578 public:
   579   StoreNNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   580   virtual int Opcode() const;
   581   virtual BasicType memory_type() const { return T_NARROWOOP; }
   582 };
   584 //------------------------------StoreCMNode-----------------------------------
   585 // Store card-mark byte to memory for CM
   586 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
   587 // Preceeding equivalent StoreCMs may be eliminated.
   588 class StoreCMNode : public StoreNode {
   589  private:
   590   virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
   591   virtual uint cmp( const Node &n ) const {
   592     return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
   593       && StoreNode::cmp(n);
   594   }
   595   virtual uint size_of() const { return sizeof(*this); }
   596   int _oop_alias_idx;   // The alias_idx of OopStore
   598 public:
   599   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
   600     StoreNode(c,mem,adr,at,val,oop_store),
   601     _oop_alias_idx(oop_alias_idx) {
   602     assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
   603            _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
   604            "bad oop alias idx");
   605   }
   606   virtual int Opcode() const;
   607   virtual Node *Identity( PhaseTransform *phase );
   608   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   609   virtual const Type *Value( PhaseTransform *phase ) const;
   610   virtual BasicType memory_type() const { return T_VOID; } // unspecific
   611   int oop_alias_idx() const { return _oop_alias_idx; }
   612 };
   614 //------------------------------LoadPLockedNode---------------------------------
   615 // Load-locked a pointer from memory (either object or array).
   616 // On Sparc & Intel this is implemented as a normal pointer load.
   617 // On PowerPC and friends it's a real load-locked.
   618 class LoadPLockedNode : public LoadPNode {
   619 public:
   620   LoadPLockedNode( Node *c, Node *mem, Node *adr )
   621     : LoadPNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM) {}
   622   virtual int Opcode() const;
   623   virtual int store_Opcode() const { return Op_StorePConditional; }
   624   virtual bool depends_only_on_test() const { return true; }
   625 };
   627 //------------------------------LoadLLockedNode---------------------------------
   628 // Load-locked a pointer from memory (either object or array).
   629 // On Sparc & Intel this is implemented as a normal long load.
   630 class LoadLLockedNode : public LoadLNode {
   631 public:
   632   LoadLLockedNode( Node *c, Node *mem, Node *adr )
   633     : LoadLNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeLong::LONG) {}
   634   virtual int Opcode() const;
   635   virtual int store_Opcode() const { return Op_StoreLConditional; }
   636 };
   638 //------------------------------SCMemProjNode---------------------------------------
   639 // This class defines a projection of the memory  state of a store conditional node.
   640 // These nodes return a value, but also update memory.
   641 class SCMemProjNode : public ProjNode {
   642 public:
   643   enum {SCMEMPROJCON = (uint)-2};
   644   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
   645   virtual int Opcode() const;
   646   virtual bool      is_CFG() const  { return false; }
   647   virtual const Type *bottom_type() const {return Type::MEMORY;}
   648   virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
   649   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
   650   virtual const Type *Value( PhaseTransform *phase ) const;
   651 #ifndef PRODUCT
   652   virtual void dump_spec(outputStream *st) const {};
   653 #endif
   654 };
   656 //------------------------------LoadStoreNode---------------------------
   657 // Note: is_Mem() method returns 'true' for this class.
   658 class LoadStoreNode : public Node {
   659 public:
   660   enum {
   661     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
   662   };
   663   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex);
   664   virtual bool depends_only_on_test() const { return false; }
   665   virtual const Type *bottom_type() const { return TypeInt::BOOL; }
   666   virtual uint ideal_reg() const { return Op_RegI; }
   667   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
   668 };
   670 //------------------------------StorePConditionalNode---------------------------
   671 // Conditionally store pointer to memory, if no change since prior
   672 // load-locked.  Sets flags for success or failure of the store.
   673 class StorePConditionalNode : public LoadStoreNode {
   674 public:
   675   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
   676   virtual int Opcode() const;
   677   // Produces flags
   678   virtual uint ideal_reg() const { return Op_RegFlags; }
   679 };
   681 //------------------------------StoreIConditionalNode---------------------------
   682 // Conditionally store int to memory, if no change since prior
   683 // load-locked.  Sets flags for success or failure of the store.
   684 class StoreIConditionalNode : public LoadStoreNode {
   685 public:
   686   StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreNode(c, mem, adr, val, ii) { }
   687   virtual int Opcode() const;
   688   // Produces flags
   689   virtual uint ideal_reg() const { return Op_RegFlags; }
   690 };
   692 //------------------------------StoreLConditionalNode---------------------------
   693 // Conditionally store long to memory, if no change since prior
   694 // load-locked.  Sets flags for success or failure of the store.
   695 class StoreLConditionalNode : public LoadStoreNode {
   696 public:
   697   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
   698   virtual int Opcode() const;
   699   // Produces flags
   700   virtual uint ideal_reg() const { return Op_RegFlags; }
   701 };
   704 //------------------------------CompareAndSwapLNode---------------------------
   705 class CompareAndSwapLNode : public LoadStoreNode {
   706 public:
   707   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
   708   virtual int Opcode() const;
   709 };
   712 //------------------------------CompareAndSwapINode---------------------------
   713 class CompareAndSwapINode : public LoadStoreNode {
   714 public:
   715   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
   716   virtual int Opcode() const;
   717 };
   720 //------------------------------CompareAndSwapPNode---------------------------
   721 class CompareAndSwapPNode : public LoadStoreNode {
   722 public:
   723   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
   724   virtual int Opcode() const;
   725 };
   727 //------------------------------CompareAndSwapNNode---------------------------
   728 class CompareAndSwapNNode : public LoadStoreNode {
   729 public:
   730   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
   731   virtual int Opcode() const;
   732 };
   734 //------------------------------ClearArray-------------------------------------
   735 class ClearArrayNode: public Node {
   736 public:
   737   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
   738     : Node(ctrl,arymem,word_cnt,base) {
   739     init_class_id(Class_ClearArray);
   740   }
   741   virtual int         Opcode() const;
   742   virtual const Type *bottom_type() const { return Type::MEMORY; }
   743   // ClearArray modifies array elements, and so affects only the
   744   // array memory addressed by the bottom_type of its base address.
   745   virtual const class TypePtr *adr_type() const;
   746   virtual Node *Identity( PhaseTransform *phase );
   747   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   748   virtual uint match_edge(uint idx) const;
   750   // Clear the given area of an object or array.
   751   // The start offset must always be aligned mod BytesPerInt.
   752   // The end offset must always be aligned mod BytesPerLong.
   753   // Return the new memory.
   754   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   755                             intptr_t start_offset,
   756                             intptr_t end_offset,
   757                             PhaseGVN* phase);
   758   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   759                             intptr_t start_offset,
   760                             Node* end_offset,
   761                             PhaseGVN* phase);
   762   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   763                             Node* start_offset,
   764                             Node* end_offset,
   765                             PhaseGVN* phase);
   766   // Return allocation input memory edge if it is different instance
   767   // or itself if it is the one we are looking for.
   768   static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
   769 };
   771 //------------------------------StrComp-------------------------------------
   772 class StrCompNode: public Node {
   773 public:
   774   StrCompNode(Node* control, Node* char_array_mem,
   775               Node* s1, Node* c1,
   776               Node* s2, Node* c2): Node(control, char_array_mem,
   777                                         s1, c1,
   778                                         s2, c2) {};
   779   virtual int Opcode() const;
   780   virtual bool depends_only_on_test() const { return false; }
   781   virtual const Type* bottom_type() const { return TypeInt::INT; }
   782   virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
   783   virtual uint match_edge(uint idx) const;
   784   virtual uint ideal_reg() const { return Op_RegI; }
   785   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   786 };
   788 //------------------------------StrEquals-------------------------------------
   789 class StrEqualsNode: public Node {
   790 public:
   791   StrEqualsNode(Node* control, Node* char_array_mem,
   792                 Node* s1, Node* s2, Node* c): Node(control, char_array_mem,
   793                                                    s1, s2, c) {};
   794   virtual int Opcode() const;
   795   virtual bool depends_only_on_test() const { return false; }
   796   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
   797   virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
   798   virtual uint match_edge(uint idx) const;
   799   virtual uint ideal_reg() const { return Op_RegI; }
   800   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   801 };
   803 //------------------------------StrIndexOf-------------------------------------
   804 class StrIndexOfNode: public Node {
   805 public:
   806   StrIndexOfNode(Node* control, Node* char_array_mem,
   807                  Node* s1, Node* c1,
   808                  Node* s2, Node* c2): Node(control, char_array_mem,
   809                                            s1, c1,
   810                                            s2, c2) {};
   811   virtual int Opcode() const;
   812   virtual bool depends_only_on_test() const { return false; }
   813   virtual const Type* bottom_type() const { return TypeInt::INT; }
   814   virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
   815   virtual uint match_edge(uint idx) const;
   816   virtual uint ideal_reg() const { return Op_RegI; }
   817   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   818 };
   820 //------------------------------AryEq---------------------------------------
   821 class AryEqNode: public Node {
   822 public:
   823   AryEqNode(Node* control, Node* char_array_mem,
   824             Node* s1, Node* s2): Node(control, char_array_mem, s1, s2) {};
   825   virtual int Opcode() const;
   826   virtual bool depends_only_on_test() const { return false; }
   827   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
   828   virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
   829   virtual uint match_edge(uint idx) const;
   830   virtual uint ideal_reg() const { return Op_RegI; }
   831   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   832 };
   834 //------------------------------MemBar-----------------------------------------
   835 // There are different flavors of Memory Barriers to match the Java Memory
   836 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
   837 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
   838 // volatile-load.  Monitor-exit and volatile-store act as Release: no
   839 // preceding ref can be moved to after them.  We insert a MemBar-Release
   840 // before a FastUnlock or volatile-store.  All volatiles need to be
   841 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
   842 // separate it from any following volatile-load.
   843 class MemBarNode: public MultiNode {
   844   virtual uint hash() const ;                  // { return NO_HASH; }
   845   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
   847   virtual uint size_of() const { return sizeof(*this); }
   848   // Memory type this node is serializing.  Usually either rawptr or bottom.
   849   const TypePtr* _adr_type;
   851 public:
   852   enum {
   853     Precedent = TypeFunc::Parms  // optional edge to force precedence
   854   };
   855   MemBarNode(Compile* C, int alias_idx, Node* precedent);
   856   virtual int Opcode() const = 0;
   857   virtual const class TypePtr *adr_type() const { return _adr_type; }
   858   virtual const Type *Value( PhaseTransform *phase ) const;
   859   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   860   virtual uint match_edge(uint idx) const { return 0; }
   861   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
   862   virtual Node *match( const ProjNode *proj, const Matcher *m );
   863   // Factory method.  Builds a wide or narrow membar.
   864   // Optional 'precedent' becomes an extra edge if not null.
   865   static MemBarNode* make(Compile* C, int opcode,
   866                           int alias_idx = Compile::AliasIdxBot,
   867                           Node* precedent = NULL);
   868 };
   870 // "Acquire" - no following ref can move before (but earlier refs can
   871 // follow, like an early Load stalled in cache).  Requires multi-cpu
   872 // visibility.  Inserted after a volatile load or FastLock.
   873 class MemBarAcquireNode: public MemBarNode {
   874 public:
   875   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
   876     : MemBarNode(C, alias_idx, precedent) {}
   877   virtual int Opcode() const;
   878 };
   880 // "Release" - no earlier ref can move after (but later refs can move
   881 // up, like a speculative pipelined cache-hitting Load).  Requires
   882 // multi-cpu visibility.  Inserted before a volatile store or FastUnLock.
   883 class MemBarReleaseNode: public MemBarNode {
   884 public:
   885   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
   886     : MemBarNode(C, alias_idx, precedent) {}
   887   virtual int Opcode() const;
   888 };
   890 // Ordering between a volatile store and a following volatile load.
   891 // Requires multi-CPU visibility?
   892 class MemBarVolatileNode: public MemBarNode {
   893 public:
   894   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
   895     : MemBarNode(C, alias_idx, precedent) {}
   896   virtual int Opcode() const;
   897 };
   899 // Ordering within the same CPU.  Used to order unsafe memory references
   900 // inside the compiler when we lack alias info.  Not needed "outside" the
   901 // compiler because the CPU does all the ordering for us.
   902 class MemBarCPUOrderNode: public MemBarNode {
   903 public:
   904   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
   905     : MemBarNode(C, alias_idx, precedent) {}
   906   virtual int Opcode() const;
   907   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
   908 };
   910 // Isolation of object setup after an AllocateNode and before next safepoint.
   911 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
   912 class InitializeNode: public MemBarNode {
   913   friend class AllocateNode;
   915   bool _is_complete;
   917 public:
   918   enum {
   919     Control    = TypeFunc::Control,
   920     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
   921     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
   922     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
   923   };
   925   InitializeNode(Compile* C, int adr_type, Node* rawoop);
   926   virtual int Opcode() const;
   927   virtual uint size_of() const { return sizeof(*this); }
   928   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
   929   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
   931   // Manage incoming memory edges via a MergeMem on in(Memory):
   932   Node* memory(uint alias_idx);
   934   // The raw memory edge coming directly from the Allocation.
   935   // The contents of this memory are *always* all-zero-bits.
   936   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
   938   // Return the corresponding allocation for this initialization (or null if none).
   939   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
   940   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
   941   AllocateNode* allocation();
   943   // Anything other than zeroing in this init?
   944   bool is_non_zero();
   946   // An InitializeNode must completed before macro expansion is done.
   947   // Completion requires that the AllocateNode must be followed by
   948   // initialization of the new memory to zero, then to any initializers.
   949   bool is_complete() { return _is_complete; }
   951   // Mark complete.  (Must not yet be complete.)
   952   void set_complete(PhaseGVN* phase);
   954 #ifdef ASSERT
   955   // ensure all non-degenerate stores are ordered and non-overlapping
   956   bool stores_are_sane(PhaseTransform* phase);
   957 #endif //ASSERT
   959   // See if this store can be captured; return offset where it initializes.
   960   // Return 0 if the store cannot be moved (any sort of problem).
   961   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase);
   963   // Capture another store; reformat it to write my internal raw memory.
   964   // Return the captured copy, else NULL if there is some sort of problem.
   965   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase);
   967   // Find captured store which corresponds to the range [start..start+size).
   968   // Return my own memory projection (meaning the initial zero bits)
   969   // if there is no such store.  Return NULL if there is a problem.
   970   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
   972   // Called when the associated AllocateNode is expanded into CFG.
   973   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
   974                         intptr_t header_size, Node* size_in_bytes,
   975                         PhaseGVN* phase);
   977  private:
   978   void remove_extra_zeroes();
   980   // Find out where a captured store should be placed (or already is placed).
   981   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
   982                                      PhaseTransform* phase);
   984   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
   986   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
   988   bool detect_init_independence(Node* n, bool st_is_pinned, int& count);
   990   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
   991                                PhaseGVN* phase);
   993   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
   994 };
   996 //------------------------------MergeMem---------------------------------------
   997 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
   998 class MergeMemNode: public Node {
   999   virtual uint hash() const ;                  // { return NO_HASH; }
  1000   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
  1001   friend class MergeMemStream;
  1002   MergeMemNode(Node* def);  // clients use MergeMemNode::make
  1004 public:
  1005   // If the input is a whole memory state, clone it with all its slices intact.
  1006   // Otherwise, make a new memory state with just that base memory input.
  1007   // In either case, the result is a newly created MergeMem.
  1008   static MergeMemNode* make(Compile* C, Node* base_memory);
  1010   virtual int Opcode() const;
  1011   virtual Node *Identity( PhaseTransform *phase );
  1012   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  1013   virtual uint ideal_reg() const { return NotAMachineReg; }
  1014   virtual uint match_edge(uint idx) const { return 0; }
  1015   virtual const RegMask &out_RegMask() const;
  1016   virtual const Type *bottom_type() const { return Type::MEMORY; }
  1017   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  1018   // sparse accessors
  1019   // Fetch the previously stored "set_memory_at", or else the base memory.
  1020   // (Caller should clone it if it is a phi-nest.)
  1021   Node* memory_at(uint alias_idx) const;
  1022   // set the memory, regardless of its previous value
  1023   void set_memory_at(uint alias_idx, Node* n);
  1024   // the "base" is the memory that provides the non-finite support
  1025   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
  1026   // warning: setting the base can implicitly set any of the other slices too
  1027   void set_base_memory(Node* def);
  1028   // sentinel value which denotes a copy of the base memory:
  1029   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
  1030   static Node* make_empty_memory(); // where the sentinel comes from
  1031   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
  1032   // hook for the iterator, to perform any necessary setup
  1033   void iteration_setup(const MergeMemNode* other = NULL);
  1034   // push sentinels until I am at least as long as the other (semantic no-op)
  1035   void grow_to_match(const MergeMemNode* other);
  1036   bool verify_sparse() const PRODUCT_RETURN0;
  1037 #ifndef PRODUCT
  1038   virtual void dump_spec(outputStream *st) const;
  1039 #endif
  1040 };
  1042 class MergeMemStream : public StackObj {
  1043  private:
  1044   MergeMemNode*       _mm;
  1045   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
  1046   Node*               _mm_base;  // loop-invariant base memory of _mm
  1047   int                 _idx;
  1048   int                 _cnt;
  1049   Node*               _mem;
  1050   Node*               _mem2;
  1051   int                 _cnt2;
  1053   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
  1054     // subsume_node will break sparseness at times, whenever a memory slice
  1055     // folds down to a copy of the base ("fat") memory.  In such a case,
  1056     // the raw edge will update to base, although it should be top.
  1057     // This iterator will recognize either top or base_memory as an
  1058     // "empty" slice.  See is_empty, is_empty2, and next below.
  1059     //
  1060     // The sparseness property is repaired in MergeMemNode::Ideal.
  1061     // As long as access to a MergeMem goes through this iterator
  1062     // or the memory_at accessor, flaws in the sparseness will
  1063     // never be observed.
  1064     //
  1065     // Also, iteration_setup repairs sparseness.
  1066     assert(mm->verify_sparse(), "please, no dups of base");
  1067     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
  1069     _mm  = mm;
  1070     _mm_base = mm->base_memory();
  1071     _mm2 = mm2;
  1072     _cnt = mm->req();
  1073     _idx = Compile::AliasIdxBot-1; // start at the base memory
  1074     _mem = NULL;
  1075     _mem2 = NULL;
  1078 #ifdef ASSERT
  1079   Node* check_memory() const {
  1080     if (at_base_memory())
  1081       return _mm->base_memory();
  1082     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
  1083       return _mm->memory_at(_idx);
  1084     else
  1085       return _mm_base;
  1087   Node* check_memory2() const {
  1088     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
  1090 #endif
  1092   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
  1093   void assert_synch() const {
  1094     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
  1095            "no side-effects except through the stream");
  1098  public:
  1100   // expected usages:
  1101   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
  1102   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
  1104   // iterate over one merge
  1105   MergeMemStream(MergeMemNode* mm) {
  1106     mm->iteration_setup();
  1107     init(mm);
  1108     debug_only(_cnt2 = 999);
  1110   // iterate in parallel over two merges
  1111   // only iterates through non-empty elements of mm2
  1112   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
  1113     assert(mm2, "second argument must be a MergeMem also");
  1114     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
  1115     mm->iteration_setup(mm2);
  1116     init(mm, mm2);
  1117     _cnt2 = mm2->req();
  1119 #ifdef ASSERT
  1120   ~MergeMemStream() {
  1121     assert_synch();
  1123 #endif
  1125   MergeMemNode* all_memory() const {
  1126     return _mm;
  1128   Node* base_memory() const {
  1129     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
  1130     return _mm_base;
  1132   const MergeMemNode* all_memory2() const {
  1133     assert(_mm2 != NULL, "");
  1134     return _mm2;
  1136   bool at_base_memory() const {
  1137     return _idx == Compile::AliasIdxBot;
  1139   int alias_idx() const {
  1140     assert(_mem, "must call next 1st");
  1141     return _idx;
  1144   const TypePtr* adr_type() const {
  1145     return Compile::current()->get_adr_type(alias_idx());
  1148   const TypePtr* adr_type(Compile* C) const {
  1149     return C->get_adr_type(alias_idx());
  1151   bool is_empty() const {
  1152     assert(_mem, "must call next 1st");
  1153     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
  1154     return _mem->is_top();
  1156   bool is_empty2() const {
  1157     assert(_mem2, "must call next 1st");
  1158     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
  1159     return _mem2->is_top();
  1161   Node* memory() const {
  1162     assert(!is_empty(), "must not be empty");
  1163     assert_synch();
  1164     return _mem;
  1166   // get the current memory, regardless of empty or non-empty status
  1167   Node* force_memory() const {
  1168     assert(!is_empty() || !at_base_memory(), "");
  1169     // Use _mm_base to defend against updates to _mem->base_memory().
  1170     Node *mem = _mem->is_top() ? _mm_base : _mem;
  1171     assert(mem == check_memory(), "");
  1172     return mem;
  1174   Node* memory2() const {
  1175     assert(_mem2 == check_memory2(), "");
  1176     return _mem2;
  1178   void set_memory(Node* mem) {
  1179     if (at_base_memory()) {
  1180       // Note that this does not change the invariant _mm_base.
  1181       _mm->set_base_memory(mem);
  1182     } else {
  1183       _mm->set_memory_at(_idx, mem);
  1185     _mem = mem;
  1186     assert_synch();
  1189   // Recover from a side effect to the MergeMemNode.
  1190   void set_memory() {
  1191     _mem = _mm->in(_idx);
  1194   bool next()  { return next(false); }
  1195   bool next2() { return next(true); }
  1197   bool next_non_empty()  { return next_non_empty(false); }
  1198   bool next_non_empty2() { return next_non_empty(true); }
  1199   // next_non_empty2 can yield states where is_empty() is true
  1201  private:
  1202   // find the next item, which might be empty
  1203   bool next(bool have_mm2) {
  1204     assert((_mm2 != NULL) == have_mm2, "use other next");
  1205     assert_synch();
  1206     if (++_idx < _cnt) {
  1207       // Note:  This iterator allows _mm to be non-sparse.
  1208       // It behaves the same whether _mem is top or base_memory.
  1209       _mem = _mm->in(_idx);
  1210       if (have_mm2)
  1211         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
  1212       return true;
  1214     return false;
  1217   // find the next non-empty item
  1218   bool next_non_empty(bool have_mm2) {
  1219     while (next(have_mm2)) {
  1220       if (!is_empty()) {
  1221         // make sure _mem2 is filled in sensibly
  1222         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
  1223         return true;
  1224       } else if (have_mm2 && !is_empty2()) {
  1225         return true;   // is_empty() == true
  1228     return false;
  1230 };
  1232 //------------------------------Prefetch---------------------------------------
  1234 // Non-faulting prefetch load.  Prefetch for many reads.
  1235 class PrefetchReadNode : public Node {
  1236 public:
  1237   PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  1238   virtual int Opcode() const;
  1239   virtual uint ideal_reg() const { return NotAMachineReg; }
  1240   virtual uint match_edge(uint idx) const { return idx==2; }
  1241   virtual const Type *bottom_type() const { return Type::ABIO; }
  1242 };
  1244 // Non-faulting prefetch load.  Prefetch for many reads & many writes.
  1245 class PrefetchWriteNode : public Node {
  1246 public:
  1247   PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  1248   virtual int Opcode() const;
  1249   virtual uint ideal_reg() const { return NotAMachineReg; }
  1250   virtual uint match_edge(uint idx) const { return idx==2; }
  1251   virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
  1252 };

mercurial