src/share/vm/opto/lcm.cpp

Thu, 19 Aug 2010 14:51:47 -0700

author
never
date
Thu, 19 Aug 2010 14:51:47 -0700
changeset 2085
f55c4f82ab9d
parent 2048
6c9cc03d8726
child 2103
3e8fbc61cee8
permissions
-rw-r--r--

6978249: spill between cpu and fpu registers when those moves are fast
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1998, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // Optimization - Graph Style
    27 #include "incls/_precompiled.incl"
    28 #include "incls/_lcm.cpp.incl"
    30 //------------------------------implicit_null_check----------------------------
    31 // Detect implicit-null-check opportunities.  Basically, find NULL checks
    32 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
    33 // I can generate a memory op if there is not one nearby.
    34 // The proj is the control projection for the not-null case.
    35 // The val is the pointer being checked for nullness or
    36 // decodeHeapOop_not_null node if it did not fold into address.
    37 void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
    38   // Assume if null check need for 0 offset then always needed
    39   // Intel solaris doesn't support any null checks yet and no
    40   // mechanism exists (yet) to set the switches at an os_cpu level
    41   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
    43   // Make sure the ptr-is-null path appears to be uncommon!
    44   float f = end()->as_MachIf()->_prob;
    45   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
    46   if( f > PROB_UNLIKELY_MAG(4) ) return;
    48   uint bidx = 0;                // Capture index of value into memop
    49   bool was_store;               // Memory op is a store op
    51   // Get the successor block for if the test ptr is non-null
    52   Block* not_null_block;  // this one goes with the proj
    53   Block* null_block;
    54   if (_nodes[_nodes.size()-1] == proj) {
    55     null_block     = _succs[0];
    56     not_null_block = _succs[1];
    57   } else {
    58     assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
    59     not_null_block = _succs[0];
    60     null_block     = _succs[1];
    61   }
    62   while (null_block->is_Empty() == Block::empty_with_goto) {
    63     null_block     = null_block->_succs[0];
    64   }
    66   // Search the exception block for an uncommon trap.
    67   // (See Parse::do_if and Parse::do_ifnull for the reason
    68   // we need an uncommon trap.  Briefly, we need a way to
    69   // detect failure of this optimization, as in 6366351.)
    70   {
    71     bool found_trap = false;
    72     for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
    73       Node* nn = null_block->_nodes[i1];
    74       if (nn->is_MachCall() &&
    75           nn->as_MachCall()->entry_point() ==
    76           SharedRuntime::uncommon_trap_blob()->instructions_begin()) {
    77         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
    78         if (trtype->isa_int() && trtype->is_int()->is_con()) {
    79           jint tr_con = trtype->is_int()->get_con();
    80           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
    81           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
    82           assert((int)reason < (int)BitsPerInt, "recode bit map");
    83           if (is_set_nth_bit(allowed_reasons, (int) reason)
    84               && action != Deoptimization::Action_none) {
    85             // This uncommon trap is sure to recompile, eventually.
    86             // When that happens, C->too_many_traps will prevent
    87             // this transformation from happening again.
    88             found_trap = true;
    89           }
    90         }
    91         break;
    92       }
    93     }
    94     if (!found_trap) {
    95       // We did not find an uncommon trap.
    96       return;
    97     }
    98   }
   100   // Check for decodeHeapOop_not_null node which did not fold into address
   101   bool is_decoden = ((intptr_t)val) & 1;
   102   val = (Node*)(((intptr_t)val) & ~1);
   104   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
   105          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
   107   // Search the successor block for a load or store who's base value is also
   108   // the tested value.  There may be several.
   109   Node_List *out = new Node_List(Thread::current()->resource_area());
   110   MachNode *best = NULL;        // Best found so far
   111   for (DUIterator i = val->outs(); val->has_out(i); i++) {
   112     Node *m = val->out(i);
   113     if( !m->is_Mach() ) continue;
   114     MachNode *mach = m->as_Mach();
   115     was_store = false;
   116     int iop = mach->ideal_Opcode();
   117     switch( iop ) {
   118     case Op_LoadB:
   119     case Op_LoadUS:
   120     case Op_LoadD:
   121     case Op_LoadF:
   122     case Op_LoadI:
   123     case Op_LoadL:
   124     case Op_LoadP:
   125     case Op_LoadN:
   126     case Op_LoadS:
   127     case Op_LoadKlass:
   128     case Op_LoadNKlass:
   129     case Op_LoadRange:
   130     case Op_LoadD_unaligned:
   131     case Op_LoadL_unaligned:
   132       assert(mach->in(2) == val, "should be address");
   133       break;
   134     case Op_StoreB:
   135     case Op_StoreC:
   136     case Op_StoreCM:
   137     case Op_StoreD:
   138     case Op_StoreF:
   139     case Op_StoreI:
   140     case Op_StoreL:
   141     case Op_StoreP:
   142     case Op_StoreN:
   143       was_store = true;         // Memory op is a store op
   144       // Stores will have their address in slot 2 (memory in slot 1).
   145       // If the value being nul-checked is in another slot, it means we
   146       // are storing the checked value, which does NOT check the value!
   147       if( mach->in(2) != val ) continue;
   148       break;                    // Found a memory op?
   149     case Op_StrComp:
   150     case Op_StrEquals:
   151     case Op_StrIndexOf:
   152     case Op_AryEq:
   153       // Not a legit memory op for implicit null check regardless of
   154       // embedded loads
   155       continue;
   156     default:                    // Also check for embedded loads
   157       if( !mach->needs_anti_dependence_check() )
   158         continue;               // Not an memory op; skip it
   159       if( must_clone[iop] ) {
   160         // Do not move nodes which produce flags because
   161         // RA will try to clone it to place near branch and
   162         // it will cause recompilation, see clone_node().
   163         continue;
   164       }
   165       {
   166         // Check that value is used in memory address in
   167         // instructions with embedded load (CmpP val1,(val2+off)).
   168         Node* base;
   169         Node* index;
   170         const MachOper* oper = mach->memory_inputs(base, index);
   171         if (oper == NULL || oper == (MachOper*)-1) {
   172           continue;             // Not an memory op; skip it
   173         }
   174         if (val == base ||
   175             val == index && val->bottom_type()->isa_narrowoop()) {
   176           break;                // Found it
   177         } else {
   178           continue;             // Skip it
   179         }
   180       }
   181       break;
   182     }
   183     // check if the offset is not too high for implicit exception
   184     {
   185       intptr_t offset = 0;
   186       const TypePtr *adr_type = NULL;  // Do not need this return value here
   187       const Node* base = mach->get_base_and_disp(offset, adr_type);
   188       if (base == NULL || base == NodeSentinel) {
   189         // Narrow oop address doesn't have base, only index
   190         if( val->bottom_type()->isa_narrowoop() &&
   191             MacroAssembler::needs_explicit_null_check(offset) )
   192           continue;             // Give up if offset is beyond page size
   193         // cannot reason about it; is probably not implicit null exception
   194       } else {
   195         const TypePtr* tptr;
   196         if (UseCompressedOops && Universe::narrow_oop_shift() == 0) {
   197           // 32-bits narrow oop can be the base of address expressions
   198           tptr = base->bottom_type()->make_ptr();
   199         } else {
   200           // only regular oops are expected here
   201           tptr = base->bottom_type()->is_ptr();
   202         }
   203         // Give up if offset is not a compile-time constant
   204         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
   205           continue;
   206         offset += tptr->_offset; // correct if base is offseted
   207         if( MacroAssembler::needs_explicit_null_check(offset) )
   208           continue;             // Give up is reference is beyond 4K page size
   209       }
   210     }
   212     // Check ctrl input to see if the null-check dominates the memory op
   213     Block *cb = cfg->_bbs[mach->_idx];
   214     cb = cb->_idom;             // Always hoist at least 1 block
   215     if( !was_store ) {          // Stores can be hoisted only one block
   216       while( cb->_dom_depth > (_dom_depth + 1))
   217         cb = cb->_idom;         // Hoist loads as far as we want
   218       // The non-null-block should dominate the memory op, too. Live
   219       // range spilling will insert a spill in the non-null-block if it is
   220       // needs to spill the memory op for an implicit null check.
   221       if (cb->_dom_depth == (_dom_depth + 1)) {
   222         if (cb != not_null_block) continue;
   223         cb = cb->_idom;
   224       }
   225     }
   226     if( cb != this ) continue;
   228     // Found a memory user; see if it can be hoisted to check-block
   229     uint vidx = 0;              // Capture index of value into memop
   230     uint j;
   231     for( j = mach->req()-1; j > 0; j-- ) {
   232       if( mach->in(j) == val ) {
   233         vidx = j;
   234         // Ignore DecodeN val which could be hoisted to where needed.
   235         if( is_decoden ) continue;
   236       }
   237       // Block of memory-op input
   238       Block *inb = cfg->_bbs[mach->in(j)->_idx];
   239       Block *b = this;          // Start from nul check
   240       while( b != inb && b->_dom_depth > inb->_dom_depth )
   241         b = b->_idom;           // search upwards for input
   242       // See if input dominates null check
   243       if( b != inb )
   244         break;
   245     }
   246     if( j > 0 )
   247       continue;
   248     Block *mb = cfg->_bbs[mach->_idx];
   249     // Hoisting stores requires more checks for the anti-dependence case.
   250     // Give up hoisting if we have to move the store past any load.
   251     if( was_store ) {
   252       Block *b = mb;            // Start searching here for a local load
   253       // mach use (faulting) trying to hoist
   254       // n might be blocker to hoisting
   255       while( b != this ) {
   256         uint k;
   257         for( k = 1; k < b->_nodes.size(); k++ ) {
   258           Node *n = b->_nodes[k];
   259           if( n->needs_anti_dependence_check() &&
   260               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
   261             break;              // Found anti-dependent load
   262         }
   263         if( k < b->_nodes.size() )
   264           break;                // Found anti-dependent load
   265         // Make sure control does not do a merge (would have to check allpaths)
   266         if( b->num_preds() != 2 ) break;
   267         b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
   268       }
   269       if( b != this ) continue;
   270     }
   272     // Make sure this memory op is not already being used for a NullCheck
   273     Node *e = mb->end();
   274     if( e->is_MachNullCheck() && e->in(1) == mach )
   275       continue;                 // Already being used as a NULL check
   277     // Found a candidate!  Pick one with least dom depth - the highest
   278     // in the dom tree should be closest to the null check.
   279     if( !best ||
   280         cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
   281       best = mach;
   282       bidx = vidx;
   284     }
   285   }
   286   // No candidate!
   287   if( !best ) return;
   289   // ---- Found an implicit null check
   290   extern int implicit_null_checks;
   291   implicit_null_checks++;
   293   if( is_decoden ) {
   294     // Check if we need to hoist decodeHeapOop_not_null first.
   295     Block *valb = cfg->_bbs[val->_idx];
   296     if( this != valb && this->_dom_depth < valb->_dom_depth ) {
   297       // Hoist it up to the end of the test block.
   298       valb->find_remove(val);
   299       this->add_inst(val);
   300       cfg->_bbs.map(val->_idx,this);
   301       // DecodeN on x86 may kill flags. Check for flag-killing projections
   302       // that also need to be hoisted.
   303       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
   304         Node* n = val->fast_out(j);
   305         if( n->Opcode() == Op_MachProj ) {
   306           cfg->_bbs[n->_idx]->find_remove(n);
   307           this->add_inst(n);
   308           cfg->_bbs.map(n->_idx,this);
   309         }
   310       }
   311     }
   312   }
   313   // Hoist the memory candidate up to the end of the test block.
   314   Block *old_block = cfg->_bbs[best->_idx];
   315   old_block->find_remove(best);
   316   add_inst(best);
   317   cfg->_bbs.map(best->_idx,this);
   319   // Move the control dependence
   320   if (best->in(0) && best->in(0) == old_block->_nodes[0])
   321     best->set_req(0, _nodes[0]);
   323   // Check for flag-killing projections that also need to be hoisted
   324   // Should be DU safe because no edge updates.
   325   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
   326     Node* n = best->fast_out(j);
   327     if( n->Opcode() == Op_MachProj ) {
   328       cfg->_bbs[n->_idx]->find_remove(n);
   329       add_inst(n);
   330       cfg->_bbs.map(n->_idx,this);
   331     }
   332   }
   334   Compile *C = cfg->C;
   335   // proj==Op_True --> ne test; proj==Op_False --> eq test.
   336   // One of two graph shapes got matched:
   337   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
   338   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
   339   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
   340   // then we are replacing a 'ne' test with a 'eq' NULL check test.
   341   // We need to flip the projections to keep the same semantics.
   342   if( proj->Opcode() == Op_IfTrue ) {
   343     // Swap order of projections in basic block to swap branch targets
   344     Node *tmp1 = _nodes[end_idx()+1];
   345     Node *tmp2 = _nodes[end_idx()+2];
   346     _nodes.map(end_idx()+1, tmp2);
   347     _nodes.map(end_idx()+2, tmp1);
   348     Node *tmp = new (C, 1) Node(C->top()); // Use not NULL input
   349     tmp1->replace_by(tmp);
   350     tmp2->replace_by(tmp1);
   351     tmp->replace_by(tmp2);
   352     tmp->destruct();
   353   }
   355   // Remove the existing null check; use a new implicit null check instead.
   356   // Since schedule-local needs precise def-use info, we need to correct
   357   // it as well.
   358   Node *old_tst = proj->in(0);
   359   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
   360   _nodes.map(end_idx(),nul_chk);
   361   cfg->_bbs.map(nul_chk->_idx,this);
   362   // Redirect users of old_test to nul_chk
   363   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
   364     old_tst->last_out(i2)->set_req(0, nul_chk);
   365   // Clean-up any dead code
   366   for (uint i3 = 0; i3 < old_tst->req(); i3++)
   367     old_tst->set_req(i3, NULL);
   369   cfg->latency_from_uses(nul_chk);
   370   cfg->latency_from_uses(best);
   371 }
   374 //------------------------------select-----------------------------------------
   375 // Select a nice fellow from the worklist to schedule next. If there is only
   376 // one choice, then use it. Projections take top priority for correctness
   377 // reasons - if I see a projection, then it is next.  There are a number of
   378 // other special cases, for instructions that consume condition codes, et al.
   379 // These are chosen immediately. Some instructions are required to immediately
   380 // precede the last instruction in the block, and these are taken last. Of the
   381 // remaining cases (most), choose the instruction with the greatest latency
   382 // (that is, the most number of pseudo-cycles required to the end of the
   383 // routine). If there is a tie, choose the instruction with the most inputs.
   384 Node *Block::select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot) {
   386   // If only a single entry on the stack, use it
   387   uint cnt = worklist.size();
   388   if (cnt == 1) {
   389     Node *n = worklist[0];
   390     worklist.map(0,worklist.pop());
   391     return n;
   392   }
   394   uint choice  = 0; // Bigger is most important
   395   uint latency = 0; // Bigger is scheduled first
   396   uint score   = 0; // Bigger is better
   397   int idx = -1;     // Index in worklist
   399   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
   400     // Order in worklist is used to break ties.
   401     // See caller for how this is used to delay scheduling
   402     // of induction variable increments to after the other
   403     // uses of the phi are scheduled.
   404     Node *n = worklist[i];      // Get Node on worklist
   406     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
   407     if( n->is_Proj() ||         // Projections always win
   408         n->Opcode()== Op_Con || // So does constant 'Top'
   409         iop == Op_CreateEx ||   // Create-exception must start block
   410         iop == Op_CheckCastPP
   411         ) {
   412       worklist.map(i,worklist.pop());
   413       return n;
   414     }
   416     // Final call in a block must be adjacent to 'catch'
   417     Node *e = end();
   418     if( e->is_Catch() && e->in(0)->in(0) == n )
   419       continue;
   421     // Memory op for an implicit null check has to be at the end of the block
   422     if( e->is_MachNullCheck() && e->in(1) == n )
   423       continue;
   425     uint n_choice  = 2;
   427     // See if this instruction is consumed by a branch. If so, then (as the
   428     // branch is the last instruction in the basic block) force it to the
   429     // end of the basic block
   430     if ( must_clone[iop] ) {
   431       // See if any use is a branch
   432       bool found_machif = false;
   434       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   435         Node* use = n->fast_out(j);
   437         // The use is a conditional branch, make them adjacent
   438         if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
   439           found_machif = true;
   440           break;
   441         }
   443         // More than this instruction pending for successor to be ready,
   444         // don't choose this if other opportunities are ready
   445         if (ready_cnt[use->_idx] > 1)
   446           n_choice = 1;
   447       }
   449       // loop terminated, prefer not to use this instruction
   450       if (found_machif)
   451         continue;
   452     }
   454     // See if this has a predecessor that is "must_clone", i.e. sets the
   455     // condition code. If so, choose this first
   456     for (uint j = 0; j < n->req() ; j++) {
   457       Node *inn = n->in(j);
   458       if (inn) {
   459         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
   460           n_choice = 3;
   461           break;
   462         }
   463       }
   464     }
   466     // MachTemps should be scheduled last so they are near their uses
   467     if (n->is_MachTemp()) {
   468       n_choice = 1;
   469     }
   471     uint n_latency = cfg->_node_latency->at_grow(n->_idx);
   472     uint n_score   = n->req();   // Many inputs get high score to break ties
   474     // Keep best latency found
   475     if( choice < n_choice ||
   476         ( choice == n_choice &&
   477           ( latency < n_latency ||
   478             ( latency == n_latency &&
   479               ( score < n_score ))))) {
   480       choice  = n_choice;
   481       latency = n_latency;
   482       score   = n_score;
   483       idx     = i;               // Also keep index in worklist
   484     }
   485   } // End of for all ready nodes in worklist
   487   assert(idx >= 0, "index should be set");
   488   Node *n = worklist[(uint)idx];      // Get the winner
   490   worklist.map((uint)idx, worklist.pop());     // Compress worklist
   491   return n;
   492 }
   495 //------------------------------set_next_call----------------------------------
   496 void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
   497   if( next_call.test_set(n->_idx) ) return;
   498   for( uint i=0; i<n->len(); i++ ) {
   499     Node *m = n->in(i);
   500     if( !m ) continue;  // must see all nodes in block that precede call
   501     if( bbs[m->_idx] == this )
   502       set_next_call( m, next_call, bbs );
   503   }
   504 }
   506 //------------------------------needed_for_next_call---------------------------
   507 // Set the flag 'next_call' for each Node that is needed for the next call to
   508 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
   509 // next subroutine call get priority - basically it moves things NOT needed
   510 // for the next call till after the call.  This prevents me from trying to
   511 // carry lots of stuff live across a call.
   512 void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
   513   // Find the next control-defining Node in this block
   514   Node* call = NULL;
   515   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
   516     Node* m = this_call->fast_out(i);
   517     if( bbs[m->_idx] == this && // Local-block user
   518         m != this_call &&       // Not self-start node
   519         m->is_Call() )
   520       call = m;
   521       break;
   522   }
   523   if (call == NULL)  return;    // No next call (e.g., block end is near)
   524   // Set next-call for all inputs to this call
   525   set_next_call(call, next_call, bbs);
   526 }
   528 //------------------------------sched_call-------------------------------------
   529 uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
   530   RegMask regs;
   532   // Schedule all the users of the call right now.  All the users are
   533   // projection Nodes, so they must be scheduled next to the call.
   534   // Collect all the defined registers.
   535   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
   536     Node* n = mcall->fast_out(i);
   537     assert( n->Opcode()==Op_MachProj, "" );
   538     --ready_cnt[n->_idx];
   539     assert( !ready_cnt[n->_idx], "" );
   540     // Schedule next to call
   541     _nodes.map(node_cnt++, n);
   542     // Collect defined registers
   543     regs.OR(n->out_RegMask());
   544     // Check for scheduling the next control-definer
   545     if( n->bottom_type() == Type::CONTROL )
   546       // Warm up next pile of heuristic bits
   547       needed_for_next_call(n, next_call, bbs);
   549     // Children of projections are now all ready
   550     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   551       Node* m = n->fast_out(j); // Get user
   552       if( bbs[m->_idx] != this ) continue;
   553       if( m->is_Phi() ) continue;
   554       if( !--ready_cnt[m->_idx] )
   555         worklist.push(m);
   556     }
   558   }
   560   // Act as if the call defines the Frame Pointer.
   561   // Certainly the FP is alive and well after the call.
   562   regs.Insert(matcher.c_frame_pointer());
   564   // Set all registers killed and not already defined by the call.
   565   uint r_cnt = mcall->tf()->range()->cnt();
   566   int op = mcall->ideal_Opcode();
   567   MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
   568   bbs.map(proj->_idx,this);
   569   _nodes.insert(node_cnt++, proj);
   571   // Select the right register save policy.
   572   const char * save_policy;
   573   switch (op) {
   574     case Op_CallRuntime:
   575     case Op_CallLeaf:
   576     case Op_CallLeafNoFP:
   577       // Calling C code so use C calling convention
   578       save_policy = matcher._c_reg_save_policy;
   579       break;
   581     case Op_CallStaticJava:
   582     case Op_CallDynamicJava:
   583       // Calling Java code so use Java calling convention
   584       save_policy = matcher._register_save_policy;
   585       break;
   587     default:
   588       ShouldNotReachHere();
   589   }
   591   // When using CallRuntime mark SOE registers as killed by the call
   592   // so values that could show up in the RegisterMap aren't live in a
   593   // callee saved register since the register wouldn't know where to
   594   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
   595   // have debug info on them.  Strictly speaking this only needs to be
   596   // done for oops since idealreg2debugmask takes care of debug info
   597   // references but there no way to handle oops differently than other
   598   // pointers as far as the kill mask goes.
   599   bool exclude_soe = op == Op_CallRuntime;
   601   // If the call is a MethodHandle invoke, we need to exclude the
   602   // register which is used to save the SP value over MH invokes from
   603   // the mask.  Otherwise this register could be used for
   604   // deoptimization information.
   605   if (op == Op_CallStaticJava) {
   606     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
   607     if (mcallstaticjava->_method_handle_invoke)
   608       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
   609   }
   611   // Fill in the kill mask for the call
   612   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
   613     if( !regs.Member(r) ) {     // Not already defined by the call
   614       // Save-on-call register?
   615       if ((save_policy[r] == 'C') ||
   616           (save_policy[r] == 'A') ||
   617           ((save_policy[r] == 'E') && exclude_soe)) {
   618         proj->_rout.Insert(r);
   619       }
   620     }
   621   }
   623   return node_cnt;
   624 }
   627 //------------------------------schedule_local---------------------------------
   628 // Topological sort within a block.  Someday become a real scheduler.
   629 bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) {
   630   // Already "sorted" are the block start Node (as the first entry), and
   631   // the block-ending Node and any trailing control projections.  We leave
   632   // these alone.  PhiNodes and ParmNodes are made to follow the block start
   633   // Node.  Everything else gets topo-sorted.
   635 #ifndef PRODUCT
   636     if (cfg->trace_opto_pipelining()) {
   637       tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
   638       for (uint i = 0;i < _nodes.size();i++) {
   639         tty->print("# ");
   640         _nodes[i]->fast_dump();
   641       }
   642       tty->print_cr("#");
   643     }
   644 #endif
   646   // RootNode is already sorted
   647   if( _nodes.size() == 1 ) return true;
   649   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
   650   uint node_cnt = end_idx();
   651   uint phi_cnt = 1;
   652   uint i;
   653   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
   654     Node *n = _nodes[i];
   655     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
   656         (n->is_Proj()  && n->in(0) == head()) ) {
   657       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
   658       _nodes.map(i,_nodes[phi_cnt]);
   659       _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
   660     } else {                    // All others
   661       // Count block-local inputs to 'n'
   662       uint cnt = n->len();      // Input count
   663       uint local = 0;
   664       for( uint j=0; j<cnt; j++ ) {
   665         Node *m = n->in(j);
   666         if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
   667           local++;              // One more block-local input
   668       }
   669       ready_cnt[n->_idx] = local; // Count em up
   671       // A few node types require changing a required edge to a precedence edge
   672       // before allocation.
   673       if( UseConcMarkSweepGC || UseG1GC ) {
   674         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
   675           // Note: Required edges with an index greater than oper_input_base
   676           // are not supported by the allocator.
   677           // Note2: Can only depend on unmatched edge being last,
   678           // can not depend on its absolute position.
   679           Node *oop_store = n->in(n->req() - 1);
   680           n->del_req(n->req() - 1);
   681           n->add_prec(oop_store);
   682           assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
   683         }
   684       }
   685       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
   686           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
   687            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
   688         // MemBarAcquire could be created without Precedent edge.
   689         // del_req() replaces the specified edge with the last input edge
   690         // and then removes the last edge. If the specified edge > number of
   691         // edges the last edge will be moved outside of the input edges array
   692         // and the edge will be lost. This is why this code should be
   693         // executed only when Precedent (== TypeFunc::Parms) edge is present.
   694         Node *x = n->in(TypeFunc::Parms);
   695         n->del_req(TypeFunc::Parms);
   696         n->add_prec(x);
   697       }
   698     }
   699   }
   700   for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
   701     ready_cnt[_nodes[i2]->_idx] = 0;
   703   // All the prescheduled guys do not hold back internal nodes
   704   uint i3;
   705   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
   706     Node *n = _nodes[i3];       // Get pre-scheduled
   707     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   708       Node* m = n->fast_out(j);
   709       if( cfg->_bbs[m->_idx] ==this ) // Local-block user
   710         ready_cnt[m->_idx]--;   // Fix ready count
   711     }
   712   }
   714   Node_List delay;
   715   // Make a worklist
   716   Node_List worklist;
   717   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
   718     Node *m = _nodes[i4];
   719     if( !ready_cnt[m->_idx] ) {   // Zero ready count?
   720       if (m->is_iteratively_computed()) {
   721         // Push induction variable increments last to allow other uses
   722         // of the phi to be scheduled first. The select() method breaks
   723         // ties in scheduling by worklist order.
   724         delay.push(m);
   725       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
   726         // Force the CreateEx to the top of the list so it's processed
   727         // first and ends up at the start of the block.
   728         worklist.insert(0, m);
   729       } else {
   730         worklist.push(m);         // Then on to worklist!
   731       }
   732     }
   733   }
   734   while (delay.size()) {
   735     Node* d = delay.pop();
   736     worklist.push(d);
   737   }
   739   // Warm up the 'next_call' heuristic bits
   740   needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
   742 #ifndef PRODUCT
   743     if (cfg->trace_opto_pipelining()) {
   744       for (uint j=0; j<_nodes.size(); j++) {
   745         Node     *n = _nodes[j];
   746         int     idx = n->_idx;
   747         tty->print("#   ready cnt:%3d  ", ready_cnt[idx]);
   748         tty->print("latency:%3d  ", cfg->_node_latency->at_grow(idx));
   749         tty->print("%4d: %s\n", idx, n->Name());
   750       }
   751     }
   752 #endif
   754   // Pull from worklist and schedule
   755   while( worklist.size() ) {    // Worklist is not ready
   757 #ifndef PRODUCT
   758     if (cfg->trace_opto_pipelining()) {
   759       tty->print("#   ready list:");
   760       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   761         Node *n = worklist[i];      // Get Node on worklist
   762         tty->print(" %d", n->_idx);
   763       }
   764       tty->cr();
   765     }
   766 #endif
   768     // Select and pop a ready guy from worklist
   769     Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
   770     _nodes.map(phi_cnt++,n);    // Schedule him next
   772 #ifndef PRODUCT
   773     if (cfg->trace_opto_pipelining()) {
   774       tty->print("#    select %d: %s", n->_idx, n->Name());
   775       tty->print(", latency:%d", cfg->_node_latency->at_grow(n->_idx));
   776       n->dump();
   777       if (Verbose) {
   778         tty->print("#   ready list:");
   779         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   780           Node *n = worklist[i];      // Get Node on worklist
   781           tty->print(" %d", n->_idx);
   782         }
   783         tty->cr();
   784       }
   785     }
   787 #endif
   788     if( n->is_MachCall() ) {
   789       MachCallNode *mcall = n->as_MachCall();
   790       phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
   791       continue;
   792     }
   793     // Children are now all ready
   794     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
   795       Node* m = n->fast_out(i5); // Get user
   796       if( cfg->_bbs[m->_idx] != this ) continue;
   797       if( m->is_Phi() ) continue;
   798       if( !--ready_cnt[m->_idx] )
   799         worklist.push(m);
   800     }
   801   }
   803   if( phi_cnt != end_idx() ) {
   804     // did not schedule all.  Retry, Bailout, or Die
   805     Compile* C = matcher.C;
   806     if (C->subsume_loads() == true && !C->failing()) {
   807       // Retry with subsume_loads == false
   808       // If this is the first failure, the sentinel string will "stick"
   809       // to the Compile object, and the C2Compiler will see it and retry.
   810       C->record_failure(C2Compiler::retry_no_subsuming_loads());
   811     }
   812     // assert( phi_cnt == end_idx(), "did not schedule all" );
   813     return false;
   814   }
   816 #ifndef PRODUCT
   817   if (cfg->trace_opto_pipelining()) {
   818     tty->print_cr("#");
   819     tty->print_cr("# after schedule_local");
   820     for (uint i = 0;i < _nodes.size();i++) {
   821       tty->print("# ");
   822       _nodes[i]->fast_dump();
   823     }
   824     tty->cr();
   825   }
   826 #endif
   829   return true;
   830 }
   832 //--------------------------catch_cleanup_fix_all_inputs-----------------------
   833 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
   834   for (uint l = 0; l < use->len(); l++) {
   835     if (use->in(l) == old_def) {
   836       if (l < use->req()) {
   837         use->set_req(l, new_def);
   838       } else {
   839         use->rm_prec(l);
   840         use->add_prec(new_def);
   841         l--;
   842       }
   843     }
   844   }
   845 }
   847 //------------------------------catch_cleanup_find_cloned_def------------------
   848 static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
   849   assert( use_blk != def_blk, "Inter-block cleanup only");
   851   // The use is some block below the Catch.  Find and return the clone of the def
   852   // that dominates the use. If there is no clone in a dominating block, then
   853   // create a phi for the def in a dominating block.
   855   // Find which successor block dominates this use.  The successor
   856   // blocks must all be single-entry (from the Catch only; I will have
   857   // split blocks to make this so), hence they all dominate.
   858   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
   859     use_blk = use_blk->_idom;
   861   // Find the successor
   862   Node *fixup = NULL;
   864   uint j;
   865   for( j = 0; j < def_blk->_num_succs; j++ )
   866     if( use_blk == def_blk->_succs[j] )
   867       break;
   869   if( j == def_blk->_num_succs ) {
   870     // Block at same level in dom-tree is not a successor.  It needs a
   871     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
   872     Node_Array inputs = new Node_List(Thread::current()->resource_area());
   873     for(uint k = 1; k < use_blk->num_preds(); k++) {
   874       inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
   875     }
   877     // Check to see if the use_blk already has an identical phi inserted.
   878     // If it exists, it will be at the first position since all uses of a
   879     // def are processed together.
   880     Node *phi = use_blk->_nodes[1];
   881     if( phi->is_Phi() ) {
   882       fixup = phi;
   883       for (uint k = 1; k < use_blk->num_preds(); k++) {
   884         if (phi->in(k) != inputs[k]) {
   885           // Not a match
   886           fixup = NULL;
   887           break;
   888         }
   889       }
   890     }
   892     // If an existing PhiNode was not found, make a new one.
   893     if (fixup == NULL) {
   894       Node *new_phi = PhiNode::make(use_blk->head(), def);
   895       use_blk->_nodes.insert(1, new_phi);
   896       bbs.map(new_phi->_idx, use_blk);
   897       for (uint k = 1; k < use_blk->num_preds(); k++) {
   898         new_phi->set_req(k, inputs[k]);
   899       }
   900       fixup = new_phi;
   901     }
   903   } else {
   904     // Found the use just below the Catch.  Make it use the clone.
   905     fixup = use_blk->_nodes[n_clone_idx];
   906   }
   908   return fixup;
   909 }
   911 //--------------------------catch_cleanup_intra_block--------------------------
   912 // Fix all input edges in use that reference "def".  The use is in the same
   913 // block as the def and both have been cloned in each successor block.
   914 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
   916   // Both the use and def have been cloned. For each successor block,
   917   // get the clone of the use, and make its input the clone of the def
   918   // found in that block.
   920   uint use_idx = blk->find_node(use);
   921   uint offset_idx = use_idx - beg;
   922   for( uint k = 0; k < blk->_num_succs; k++ ) {
   923     // Get clone in each successor block
   924     Block *sb = blk->_succs[k];
   925     Node *clone = sb->_nodes[offset_idx+1];
   926     assert( clone->Opcode() == use->Opcode(), "" );
   928     // Make use-clone reference the def-clone
   929     catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
   930   }
   931 }
   933 //------------------------------catch_cleanup_inter_block---------------------
   934 // Fix all input edges in use that reference "def".  The use is in a different
   935 // block than the def.
   936 static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
   937   if( !use_blk ) return;        // Can happen if the use is a precedence edge
   939   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
   940   catch_cleanup_fix_all_inputs(use, def, new_def);
   941 }
   943 //------------------------------call_catch_cleanup-----------------------------
   944 // If we inserted any instructions between a Call and his CatchNode,
   945 // clone the instructions on all paths below the Catch.
   946 void Block::call_catch_cleanup(Block_Array &bbs) {
   948   // End of region to clone
   949   uint end = end_idx();
   950   if( !_nodes[end]->is_Catch() ) return;
   951   // Start of region to clone
   952   uint beg = end;
   953   while( _nodes[beg-1]->Opcode() != Op_MachProj ||
   954         !_nodes[beg-1]->in(0)->is_Call() ) {
   955     beg--;
   956     assert(beg > 0,"Catch cleanup walking beyond block boundary");
   957   }
   958   // Range of inserted instructions is [beg, end)
   959   if( beg == end ) return;
   961   // Clone along all Catch output paths.  Clone area between the 'beg' and
   962   // 'end' indices.
   963   for( uint i = 0; i < _num_succs; i++ ) {
   964     Block *sb = _succs[i];
   965     // Clone the entire area; ignoring the edge fixup for now.
   966     for( uint j = end; j > beg; j-- ) {
   967       // It is safe here to clone a node with anti_dependence
   968       // since clones dominate on each path.
   969       Node *clone = _nodes[j-1]->clone();
   970       sb->_nodes.insert( 1, clone );
   971       bbs.map(clone->_idx,sb);
   972     }
   973   }
   976   // Fixup edges.  Check the def-use info per cloned Node
   977   for(uint i2 = beg; i2 < end; i2++ ) {
   978     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
   979     Node *n = _nodes[i2];        // Node that got cloned
   980     // Need DU safe iterator because of edge manipulation in calls.
   981     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
   982     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
   983       out->push(n->fast_out(j1));
   984     }
   985     uint max = out->size();
   986     for (uint j = 0; j < max; j++) {// For all users
   987       Node *use = out->pop();
   988       Block *buse = bbs[use->_idx];
   989       if( use->is_Phi() ) {
   990         for( uint k = 1; k < use->req(); k++ )
   991           if( use->in(k) == n ) {
   992             Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
   993             use->set_req(k, fixup);
   994           }
   995       } else {
   996         if (this == buse) {
   997           catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
   998         } else {
   999           catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
  1002     } // End for all users
  1004   } // End of for all Nodes in cloned area
  1006   // Remove the now-dead cloned ops
  1007   for(uint i3 = beg; i3 < end; i3++ ) {
  1008     _nodes[beg]->disconnect_inputs(NULL);
  1009     _nodes.remove(beg);
  1012   // If the successor blocks have a CreateEx node, move it back to the top
  1013   for(uint i4 = 0; i4 < _num_succs; i4++ ) {
  1014     Block *sb = _succs[i4];
  1015     uint new_cnt = end - beg;
  1016     // Remove any newly created, but dead, nodes.
  1017     for( uint j = new_cnt; j > 0; j-- ) {
  1018       Node *n = sb->_nodes[j];
  1019       if (n->outcnt() == 0 &&
  1020           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
  1021         n->disconnect_inputs(NULL);
  1022         sb->_nodes.remove(j);
  1023         new_cnt--;
  1026     // If any newly created nodes remain, move the CreateEx node to the top
  1027     if (new_cnt > 0) {
  1028       Node *cex = sb->_nodes[1+new_cnt];
  1029       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
  1030         sb->_nodes.remove(1+new_cnt);
  1031         sb->_nodes.insert(1,cex);

mercurial