src/share/vm/asm/codeBuffer.cpp

Mon, 09 Aug 2010 17:51:56 -0700

author
never
date
Mon, 09 Aug 2010 17:51:56 -0700
changeset 2044
f4f596978298
parent 2040
0e35fa8ebccd
child 2103
3e8fbc61cee8
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_codeBuffer.cpp.incl"
    28 // The structure of a CodeSection:
    29 //
    30 //    _start ->           +----------------+
    31 //                        | machine code...|
    32 //    _end ->             |----------------|
    33 //                        |                |
    34 //                        |    (empty)     |
    35 //                        |                |
    36 //                        |                |
    37 //                        +----------------+
    38 //    _limit ->           |                |
    39 //
    40 //    _locs_start ->      +----------------+
    41 //                        |reloc records...|
    42 //                        |----------------|
    43 //    _locs_end ->        |                |
    44 //                        |                |
    45 //                        |    (empty)     |
    46 //                        |                |
    47 //                        |                |
    48 //                        +----------------+
    49 //    _locs_limit ->      |                |
    50 // The _end (resp. _limit) pointer refers to the first
    51 // unused (resp. unallocated) byte.
    53 // The structure of the CodeBuffer while code is being accumulated:
    54 //
    55 //    _total_start ->    \
    56 //    _insts._start ->              +----------------+
    57 //                                  |                |
    58 //                                  |     Code       |
    59 //                                  |                |
    60 //    _stubs._start ->              |----------------|
    61 //                                  |                |
    62 //                                  |    Stubs       | (also handlers for deopt/exception)
    63 //                                  |                |
    64 //    _consts._start ->             |----------------|
    65 //                                  |                |
    66 //                                  |   Constants    |
    67 //                                  |                |
    68 //                                  +----------------+
    69 //    + _total_size ->              |                |
    70 //
    71 // When the code and relocations are copied to the code cache,
    72 // the empty parts of each section are removed, and everything
    73 // is copied into contiguous locations.
    75 typedef CodeBuffer::csize_t csize_t;  // file-local definition
    77 // external buffer, in a predefined CodeBlob or other buffer area
    78 // Important: The code_start must be taken exactly, and not realigned.
    79 CodeBuffer::CodeBuffer(address code_start, csize_t code_size) {
    80   assert(code_start != NULL, "sanity");
    81   initialize_misc("static buffer");
    82   initialize(code_start, code_size);
    83   assert(verify_section_allocation(), "initial use of buffer OK");
    84 }
    86 void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
    87   // Compute maximal alignment.
    88   int align = _insts.alignment();
    89   // Always allow for empty slop around each section.
    90   int slop = (int) CodeSection::end_slop();
    92   assert(blob() == NULL, "only once");
    93   set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
    94   if (blob() == NULL) {
    95     // The assembler constructor will throw a fatal on an empty CodeBuffer.
    96     return;  // caller must test this
    97   }
    99   // Set up various pointers into the blob.
   100   initialize(_total_start, _total_size);
   102   assert((uintptr_t)code_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
   104   pd_initialize();
   106   if (locs_size != 0) {
   107     _insts.initialize_locs(locs_size / sizeof(relocInfo));
   108   }
   110   assert(verify_section_allocation(), "initial use of blob is OK");
   111 }
   114 CodeBuffer::~CodeBuffer() {
   115   // If we allocate our code buffer from the CodeCache
   116   // via a BufferBlob, and it's not permanent, then
   117   // free the BufferBlob.
   118   // The rest of the memory will be freed when the ResourceObj
   119   // is released.
   120   assert(verify_section_allocation(), "final storage configuration still OK");
   121   for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
   122     // Previous incarnations of this buffer are held live, so that internal
   123     // addresses constructed before expansions will not be confused.
   124     cb->free_blob();
   125   }
   127   // free any overflow storage
   128   delete _overflow_arena;
   130 #ifdef ASSERT
   131   // Save allocation type to execute assert in ~ResourceObj()
   132   // which is called after this destructor.
   133   ResourceObj::allocation_type at = _default_oop_recorder.get_allocation_type();
   134   Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
   135   ResourceObj::set_allocation_type((address)(&_default_oop_recorder), at);
   136 #endif
   137 }
   139 void CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
   140   assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
   141   DEBUG_ONLY(_default_oop_recorder.oop_size());  // force unused OR to be frozen
   142   _oop_recorder = r;
   143 }
   145 void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
   146   assert(cs != &_insts, "insts is the memory provider, not the consumer");
   147 #ifdef ASSERT
   148   for (int n = (int)SECT_INSTS+1; n < (int)SECT_LIMIT; n++) {
   149     CodeSection* prevCS = code_section(n);
   150     if (prevCS == cs)  break;
   151     assert(!prevCS->is_allocated(), "section allocation must be in reverse order");
   152   }
   153 #endif
   154   csize_t slop = CodeSection::end_slop();  // margin between sections
   155   int align = cs->alignment();
   156   assert(is_power_of_2(align), "sanity");
   157   address start  = _insts._start;
   158   address limit  = _insts._limit;
   159   address middle = limit - size;
   160   middle -= (intptr_t)middle & (align-1);  // align the division point downward
   161   guarantee(middle - slop > start, "need enough space to divide up");
   162   _insts._limit = middle - slop;  // subtract desired space, plus slop
   163   cs->initialize(middle, limit - middle);
   164   assert(cs->start() == middle, "sanity");
   165   assert(cs->limit() == limit,  "sanity");
   166   // give it some relocations to start with, if the main section has them
   167   if (_insts.has_locs())  cs->initialize_locs(1);
   168 }
   170 void CodeBuffer::freeze_section(CodeSection* cs) {
   171   CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
   172   csize_t frozen_size = cs->size();
   173   if (next_cs != NULL) {
   174     frozen_size = next_cs->align_at_start(frozen_size);
   175   }
   176   address old_limit = cs->limit();
   177   address new_limit = cs->start() + frozen_size;
   178   relocInfo* old_locs_limit = cs->locs_limit();
   179   relocInfo* new_locs_limit = cs->locs_end();
   180   // Patch the limits.
   181   cs->_limit = new_limit;
   182   cs->_locs_limit = new_locs_limit;
   183   cs->_frozen = true;
   184   if (!next_cs->is_allocated() && !next_cs->is_frozen()) {
   185     // Give remaining buffer space to the following section.
   186     next_cs->initialize(new_limit, old_limit - new_limit);
   187     next_cs->initialize_shared_locs(new_locs_limit,
   188                                     old_locs_limit - new_locs_limit);
   189   }
   190 }
   192 void CodeBuffer::set_blob(BufferBlob* blob) {
   193   _blob = blob;
   194   if (blob != NULL) {
   195     address start = blob->instructions_begin();
   196     address end   = blob->instructions_end();
   197     // Round up the starting address.
   198     int align = _insts.alignment();
   199     start += (-(intptr_t)start) & (align-1);
   200     _total_start = start;
   201     _total_size  = end - start;
   202   } else {
   203     #ifdef ASSERT
   204     // Clean out dangling pointers.
   205     _total_start    = badAddress;
   206     _insts._start   = _insts._end   = badAddress;
   207     _stubs._start   = _stubs._end   = badAddress;
   208     _consts._start  = _consts._end  = badAddress;
   209     #endif //ASSERT
   210   }
   211 }
   213 void CodeBuffer::free_blob() {
   214   if (_blob != NULL) {
   215     BufferBlob::free(_blob);
   216     set_blob(NULL);
   217   }
   218 }
   220 const char* CodeBuffer::code_section_name(int n) {
   221 #ifdef PRODUCT
   222   return NULL;
   223 #else //PRODUCT
   224   switch (n) {
   225   case SECT_INSTS:             return "insts";
   226   case SECT_STUBS:             return "stubs";
   227   case SECT_CONSTS:            return "consts";
   228   default:                     return NULL;
   229   }
   230 #endif //PRODUCT
   231 }
   233 int CodeBuffer::section_index_of(address addr) const {
   234   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   235     const CodeSection* cs = code_section(n);
   236     if (cs->allocates(addr))  return n;
   237   }
   238   return SECT_NONE;
   239 }
   241 int CodeBuffer::locator(address addr) const {
   242   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   243     const CodeSection* cs = code_section(n);
   244     if (cs->allocates(addr)) {
   245       return locator(addr - cs->start(), n);
   246     }
   247   }
   248   return -1;
   249 }
   251 address CodeBuffer::locator_address(int locator) const {
   252   if (locator < 0)  return NULL;
   253   address start = code_section(locator_sect(locator))->start();
   254   return start + locator_pos(locator);
   255 }
   257 address CodeBuffer::decode_begin() {
   258   address begin = _insts.start();
   259   if (_decode_begin != NULL && _decode_begin > begin)
   260     begin = _decode_begin;
   261   return begin;
   262 }
   265 GrowableArray<int>* CodeBuffer::create_patch_overflow() {
   266   if (_overflow_arena == NULL) {
   267     _overflow_arena = new Arena();
   268   }
   269   return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
   270 }
   273 // Helper function for managing labels and their target addresses.
   274 // Returns a sensible address, and if it is not the label's final
   275 // address, notes the dependency (at 'branch_pc') on the label.
   276 address CodeSection::target(Label& L, address branch_pc) {
   277   if (L.is_bound()) {
   278     int loc = L.loc();
   279     if (index() == CodeBuffer::locator_sect(loc)) {
   280       return start() + CodeBuffer::locator_pos(loc);
   281     } else {
   282       return outer()->locator_address(loc);
   283     }
   284   } else {
   285     assert(allocates2(branch_pc), "sanity");
   286     address base = start();
   287     int patch_loc = CodeBuffer::locator(branch_pc - base, index());
   288     L.add_patch_at(outer(), patch_loc);
   290     // Need to return a pc, doesn't matter what it is since it will be
   291     // replaced during resolution later.
   292     // Don't return NULL or badAddress, since branches shouldn't overflow.
   293     // Don't return base either because that could overflow displacements
   294     // for shorter branches.  It will get checked when bound.
   295     return branch_pc;
   296   }
   297 }
   299 void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
   300   Relocation* reloc = spec.reloc();
   301   relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
   302   if (rtype == relocInfo::none)  return;
   304   // The assertion below has been adjusted, to also work for
   305   // relocation for fixup.  Sometimes we want to put relocation
   306   // information for the next instruction, since it will be patched
   307   // with a call.
   308   assert(start() <= at && at <= end()+1,
   309          "cannot relocate data outside code boundaries");
   311   if (!has_locs()) {
   312     // no space for relocation information provided => code cannot be
   313     // relocated.  Make sure that relocate is only called with rtypes
   314     // that can be ignored for this kind of code.
   315     assert(rtype == relocInfo::none              ||
   316            rtype == relocInfo::runtime_call_type ||
   317            rtype == relocInfo::internal_word_type||
   318            rtype == relocInfo::section_word_type ||
   319            rtype == relocInfo::external_word_type,
   320            "code needs relocation information");
   321     // leave behind an indication that we attempted a relocation
   322     DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
   323     return;
   324   }
   326   // Advance the point, noting the offset we'll have to record.
   327   csize_t offset = at - locs_point();
   328   set_locs_point(at);
   330   // Test for a couple of overflow conditions; maybe expand the buffer.
   331   relocInfo* end = locs_end();
   332   relocInfo* req = end + relocInfo::length_limit;
   333   // Check for (potential) overflow
   334   if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
   335     req += (uint)offset / (uint)relocInfo::offset_limit();
   336     if (req >= locs_limit()) {
   337       // Allocate or reallocate.
   338       expand_locs(locs_count() + (req - end));
   339       // reload pointer
   340       end = locs_end();
   341     }
   342   }
   344   // If the offset is giant, emit filler relocs, of type 'none', but
   345   // each carrying the largest possible offset, to advance the locs_point.
   346   while (offset >= relocInfo::offset_limit()) {
   347     assert(end < locs_limit(), "adjust previous paragraph of code");
   348     *end++ = filler_relocInfo();
   349     offset -= filler_relocInfo().addr_offset();
   350   }
   352   // If it's a simple reloc with no data, we'll just write (rtype | offset).
   353   (*end) = relocInfo(rtype, offset, format);
   355   // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
   356   end->initialize(this, reloc);
   357 }
   359 void CodeSection::initialize_locs(int locs_capacity) {
   360   assert(_locs_start == NULL, "only one locs init step, please");
   361   // Apply a priori lower limits to relocation size:
   362   csize_t min_locs = MAX2(size() / 16, (csize_t)4);
   363   if (locs_capacity < min_locs)  locs_capacity = min_locs;
   364   relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
   365   _locs_start    = locs_start;
   366   _locs_end      = locs_start;
   367   _locs_limit    = locs_start + locs_capacity;
   368   _locs_own      = true;
   369 }
   371 void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
   372   assert(_locs_start == NULL, "do this before locs are allocated");
   373   // Internal invariant:  locs buf must be fully aligned.
   374   // See copy_relocations_to() below.
   375   while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
   376     ++buf; --length;
   377   }
   378   if (length > 0) {
   379     _locs_start = buf;
   380     _locs_end   = buf;
   381     _locs_limit = buf + length;
   382     _locs_own   = false;
   383   }
   384 }
   386 void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
   387   int lcount = source_cs->locs_count();
   388   if (lcount != 0) {
   389     initialize_shared_locs(source_cs->locs_start(), lcount);
   390     _locs_end = _locs_limit = _locs_start + lcount;
   391     assert(is_allocated(), "must have copied code already");
   392     set_locs_point(start() + source_cs->locs_point_off());
   393   }
   394   assert(this->locs_count() == source_cs->locs_count(), "sanity");
   395 }
   397 void CodeSection::expand_locs(int new_capacity) {
   398   if (_locs_start == NULL) {
   399     initialize_locs(new_capacity);
   400     return;
   401   } else {
   402     int old_count    = locs_count();
   403     int old_capacity = locs_capacity();
   404     if (new_capacity < old_capacity * 2)
   405       new_capacity = old_capacity * 2;
   406     relocInfo* locs_start;
   407     if (_locs_own) {
   408       locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
   409     } else {
   410       locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
   411       Copy::conjoint_jbytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
   412       _locs_own = true;
   413     }
   414     _locs_start    = locs_start;
   415     _locs_end      = locs_start + old_count;
   416     _locs_limit    = locs_start + new_capacity;
   417   }
   418 }
   421 /// Support for emitting the code to its final location.
   422 /// The pattern is the same for all functions.
   423 /// We iterate over all the sections, padding each to alignment.
   425 csize_t CodeBuffer::total_code_size() const {
   426   csize_t code_size_so_far = 0;
   427   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   428     const CodeSection* cs = code_section(n);
   429     if (cs->is_empty())  continue;  // skip trivial section
   430     code_size_so_far = cs->align_at_start(code_size_so_far);
   431     code_size_so_far += cs->size();
   432   }
   433   return code_size_so_far;
   434 }
   436 void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
   437   address buf = dest->_total_start;
   438   csize_t buf_offset = 0;
   439   assert(dest->_total_size >= total_code_size(), "must be big enough");
   441   {
   442     // not sure why this is here, but why not...
   443     int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
   444     assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
   445   }
   447   const CodeSection* prev_cs      = NULL;
   448   CodeSection*       prev_dest_cs = NULL;
   449   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   450     // figure compact layout of each section
   451     const CodeSection* cs = code_section(n);
   452     address cstart = cs->start();
   453     address cend   = cs->end();
   454     csize_t csize  = cend - cstart;
   456     CodeSection* dest_cs = dest->code_section(n);
   457     if (!cs->is_empty()) {
   458       // Compute initial padding; assign it to the previous non-empty guy.
   459       // Cf. figure_expanded_capacities.
   460       csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
   461       if (padding != 0) {
   462         buf_offset += padding;
   463         assert(prev_dest_cs != NULL, "sanity");
   464         prev_dest_cs->_limit += padding;
   465       }
   466       #ifdef ASSERT
   467       if (prev_cs != NULL && prev_cs->is_frozen() && n < SECT_CONSTS) {
   468         // Make sure the ends still match up.
   469         // This is important because a branch in a frozen section
   470         // might target code in a following section, via a Label,
   471         // and without a relocation record.  See Label::patch_instructions.
   472         address dest_start = buf+buf_offset;
   473         csize_t start2start = cs->start() - prev_cs->start();
   474         csize_t dest_start2start = dest_start - prev_dest_cs->start();
   475         assert(start2start == dest_start2start, "cannot stretch frozen sect");
   476       }
   477       #endif //ASSERT
   478       prev_dest_cs = dest_cs;
   479       prev_cs      = cs;
   480     }
   482     debug_only(dest_cs->_start = NULL);  // defeat double-initialization assert
   483     dest_cs->initialize(buf+buf_offset, csize);
   484     dest_cs->set_end(buf+buf_offset+csize);
   485     assert(dest_cs->is_allocated(), "must always be allocated");
   486     assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
   488     buf_offset += csize;
   489   }
   491   // Done calculating sections; did it come out to the right end?
   492   assert(buf_offset == total_code_size(), "sanity");
   493   assert(dest->verify_section_allocation(), "final configuration works");
   494 }
   496 csize_t CodeBuffer::total_offset_of(address addr) const {
   497   csize_t code_size_so_far = 0;
   498   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   499     const CodeSection* cs = code_section(n);
   500     if (!cs->is_empty()) {
   501       code_size_so_far = cs->align_at_start(code_size_so_far);
   502     }
   503     if (cs->contains2(addr)) {
   504       return code_size_so_far + (addr - cs->start());
   505     }
   506     code_size_so_far += cs->size();
   507   }
   508 #ifndef PRODUCT
   509   tty->print_cr("Dangling address " PTR_FORMAT " in:", addr);
   510   ((CodeBuffer*)this)->print();
   511 #endif
   512   ShouldNotReachHere();
   513   return -1;
   514 }
   516 csize_t CodeBuffer::total_relocation_size() const {
   517   csize_t lsize = copy_relocations_to(NULL);  // dry run only
   518   csize_t csize = total_code_size();
   519   csize_t total = RelocIterator::locs_and_index_size(csize, lsize);
   520   return (csize_t) align_size_up(total, HeapWordSize);
   521 }
   523 csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
   524   address buf = NULL;
   525   csize_t buf_offset = 0;
   526   csize_t buf_limit = 0;
   527   if (dest != NULL) {
   528     buf = (address)dest->relocation_begin();
   529     buf_limit = (address)dest->relocation_end() - buf;
   530     assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
   531     assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
   532   }
   533   // if dest == NULL, this is just the sizing pass
   535   csize_t code_end_so_far = 0;
   536   csize_t code_point_so_far = 0;
   537   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   538     // pull relocs out of each section
   539     const CodeSection* cs = code_section(n);
   540     assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
   541     if (cs->is_empty())  continue;  // skip trivial section
   542     relocInfo* lstart = cs->locs_start();
   543     relocInfo* lend   = cs->locs_end();
   544     csize_t    lsize  = (csize_t)( (address)lend - (address)lstart );
   545     csize_t    csize  = cs->size();
   546     code_end_so_far = cs->align_at_start(code_end_so_far);
   548     if (lsize > 0) {
   549       // Figure out how to advance the combined relocation point
   550       // first to the beginning of this section.
   551       // We'll insert one or more filler relocs to span that gap.
   552       // (Don't bother to improve this by editing the first reloc's offset.)
   553       csize_t new_code_point = code_end_so_far;
   554       for (csize_t jump;
   555            code_point_so_far < new_code_point;
   556            code_point_so_far += jump) {
   557         jump = new_code_point - code_point_so_far;
   558         relocInfo filler = filler_relocInfo();
   559         if (jump >= filler.addr_offset()) {
   560           jump = filler.addr_offset();
   561         } else {  // else shrink the filler to fit
   562           filler = relocInfo(relocInfo::none, jump);
   563         }
   564         if (buf != NULL) {
   565           assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
   566           *(relocInfo*)(buf+buf_offset) = filler;
   567         }
   568         buf_offset += sizeof(filler);
   569       }
   571       // Update code point and end to skip past this section:
   572       csize_t last_code_point = code_end_so_far + cs->locs_point_off();
   573       assert(code_point_so_far <= last_code_point, "sanity");
   574       code_point_so_far = last_code_point; // advance past this guy's relocs
   575     }
   576     code_end_so_far += csize;  // advance past this guy's instructions too
   578     // Done with filler; emit the real relocations:
   579     if (buf != NULL && lsize != 0) {
   580       assert(buf_offset + lsize <= buf_limit, "target in bounds");
   581       assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
   582       if (buf_offset % HeapWordSize == 0) {
   583         // Use wordwise copies if possible:
   584         Copy::disjoint_words((HeapWord*)lstart,
   585                              (HeapWord*)(buf+buf_offset),
   586                              (lsize + HeapWordSize-1) / HeapWordSize);
   587       } else {
   588         Copy::conjoint_jbytes(lstart, buf+buf_offset, lsize);
   589       }
   590     }
   591     buf_offset += lsize;
   592   }
   594   // Align end of relocation info in target.
   595   while (buf_offset % HeapWordSize != 0) {
   596     if (buf != NULL) {
   597       relocInfo padding = relocInfo(relocInfo::none, 0);
   598       assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
   599       *(relocInfo*)(buf+buf_offset) = padding;
   600     }
   601     buf_offset += sizeof(relocInfo);
   602   }
   604   assert(code_end_so_far == total_code_size(), "sanity");
   606   // Account for index:
   607   if (buf != NULL) {
   608     RelocIterator::create_index(dest->relocation_begin(),
   609                                 buf_offset / sizeof(relocInfo),
   610                                 dest->relocation_end());
   611   }
   613   return buf_offset;
   614 }
   616 void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
   617 #ifndef PRODUCT
   618   if (PrintNMethods && (WizardMode || Verbose)) {
   619     tty->print("done with CodeBuffer:");
   620     ((CodeBuffer*)this)->print();
   621   }
   622 #endif //PRODUCT
   624   CodeBuffer dest(dest_blob->instructions_begin(),
   625                   dest_blob->instructions_size());
   626   assert(dest_blob->instructions_size() >= total_code_size(), "good sizing");
   627   this->compute_final_layout(&dest);
   628   relocate_code_to(&dest);
   630   // transfer comments from buffer to blob
   631   dest_blob->set_comments(_comments);
   633   // Done moving code bytes; were they the right size?
   634   assert(round_to(dest.total_code_size(), oopSize) == dest_blob->instructions_size(), "sanity");
   636   // Flush generated code
   637   ICache::invalidate_range(dest_blob->instructions_begin(),
   638                            dest_blob->instructions_size());
   639 }
   641 // Move all my code into another code buffer.
   642 // Consult applicable relocs to repair embedded addresses.
   643 void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
   644   DEBUG_ONLY(address dest_end = dest->_total_start + dest->_total_size);
   645   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   646     // pull code out of each section
   647     const CodeSection* cs = code_section(n);
   648     if (cs->is_empty())  continue;  // skip trivial section
   649     CodeSection* dest_cs = dest->code_section(n);
   650     assert(cs->size() == dest_cs->size(), "sanity");
   651     csize_t usize = dest_cs->size();
   652     csize_t wsize = align_size_up(usize, HeapWordSize);
   653     assert(dest_cs->start() + wsize <= dest_end, "no overflow");
   654     // Copy the code as aligned machine words.
   655     // This may also include an uninitialized partial word at the end.
   656     Copy::disjoint_words((HeapWord*)cs->start(),
   657                          (HeapWord*)dest_cs->start(),
   658                          wsize / HeapWordSize);
   660     if (dest->blob() == NULL) {
   661       // Destination is a final resting place, not just another buffer.
   662       // Normalize uninitialized bytes in the final padding.
   663       Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
   664                           Assembler::code_fill_byte());
   665     }
   667     assert(cs->locs_start() != (relocInfo*)badAddress,
   668            "this section carries no reloc storage, but reloc was attempted");
   670     // Make the new code copy use the old copy's relocations:
   671     dest_cs->initialize_locs_from(cs);
   673     { // Repair the pc relative information in the code after the move
   674       RelocIterator iter(dest_cs);
   675       while (iter.next()) {
   676         iter.reloc()->fix_relocation_after_move(this, dest);
   677       }
   678     }
   679   }
   680 }
   682 csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
   683                                                csize_t amount,
   684                                                csize_t* new_capacity) {
   685   csize_t new_total_cap = 0;
   687   int prev_n = -1;
   688   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   689     const CodeSection* sect = code_section(n);
   691     if (!sect->is_empty()) {
   692       // Compute initial padding; assign it to the previous non-empty guy.
   693       // Cf. compute_final_layout.
   694       csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
   695       if (padding != 0) {
   696         new_total_cap += padding;
   697         assert(prev_n >= 0, "sanity");
   698         new_capacity[prev_n] += padding;
   699       }
   700       prev_n = n;
   701     }
   703     csize_t exp = sect->size();  // 100% increase
   704     if ((uint)exp < 4*K)  exp = 4*K;       // minimum initial increase
   705     if (sect == which_cs) {
   706       if (exp < amount)  exp = amount;
   707       if (StressCodeBuffers)  exp = amount;  // expand only slightly
   708     } else if (n == SECT_INSTS) {
   709       // scale down inst increases to a more modest 25%
   710       exp = 4*K + ((exp - 4*K) >> 2);
   711       if (StressCodeBuffers)  exp = amount / 2;  // expand only slightly
   712     } else if (sect->is_empty()) {
   713       // do not grow an empty secondary section
   714       exp = 0;
   715     }
   716     // Allow for inter-section slop:
   717     exp += CodeSection::end_slop();
   718     csize_t new_cap = sect->size() + exp;
   719     if (new_cap < sect->capacity()) {
   720       // No need to expand after all.
   721       new_cap = sect->capacity();
   722     }
   723     new_capacity[n] = new_cap;
   724     new_total_cap += new_cap;
   725   }
   727   return new_total_cap;
   728 }
   730 void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
   731 #ifndef PRODUCT
   732   if (PrintNMethods && (WizardMode || Verbose)) {
   733     tty->print("expanding CodeBuffer:");
   734     this->print();
   735   }
   737   if (StressCodeBuffers && blob() != NULL) {
   738     static int expand_count = 0;
   739     if (expand_count >= 0)  expand_count += 1;
   740     if (expand_count > 100 && is_power_of_2(expand_count)) {
   741       tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
   742       // simulate an occasional allocation failure:
   743       free_blob();
   744     }
   745   }
   746 #endif //PRODUCT
   748   // Resizing must be allowed
   749   {
   750     if (blob() == NULL)  return;  // caller must check for blob == NULL
   751     for (int n = 0; n < (int)SECT_LIMIT; n++) {
   752       guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
   753     }
   754   }
   756   // Figure new capacity for each section.
   757   csize_t new_capacity[SECT_LIMIT];
   758   csize_t new_total_cap
   759     = figure_expanded_capacities(which_cs, amount, new_capacity);
   761   // Create a new (temporary) code buffer to hold all the new data
   762   CodeBuffer cb(name(), new_total_cap, 0);
   763   if (cb.blob() == NULL) {
   764     // Failed to allocate in code cache.
   765     free_blob();
   766     return;
   767   }
   769   // Create an old code buffer to remember which addresses used to go where.
   770   // This will be useful when we do final assembly into the code cache,
   771   // because we will need to know how to warp any internal address that
   772   // has been created at any time in this CodeBuffer's past.
   773   CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
   774   bxp->take_over_code_from(this);  // remember the old undersized blob
   775   DEBUG_ONLY(this->_blob = NULL);  // silence a later assert
   776   bxp->_before_expand = this->_before_expand;
   777   this->_before_expand = bxp;
   779   // Give each section its required (expanded) capacity.
   780   for (int n = (int)SECT_LIMIT-1; n >= SECT_INSTS; n--) {
   781     CodeSection* cb_sect   = cb.code_section(n);
   782     CodeSection* this_sect = code_section(n);
   783     if (new_capacity[n] == 0)  continue;  // already nulled out
   784     if (n > SECT_INSTS) {
   785       cb.initialize_section_size(cb_sect, new_capacity[n]);
   786     }
   787     assert(cb_sect->capacity() >= new_capacity[n], "big enough");
   788     address cb_start = cb_sect->start();
   789     cb_sect->set_end(cb_start + this_sect->size());
   790     if (this_sect->mark() == NULL) {
   791       cb_sect->clear_mark();
   792     } else {
   793       cb_sect->set_mark(cb_start + this_sect->mark_off());
   794     }
   795   }
   797   // Move all the code and relocations to the new blob:
   798   relocate_code_to(&cb);
   800   // Copy the temporary code buffer into the current code buffer.
   801   // Basically, do {*this = cb}, except for some control information.
   802   this->take_over_code_from(&cb);
   803   cb.set_blob(NULL);
   805   // Zap the old code buffer contents, to avoid mistakenly using them.
   806   debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
   807                                  badCodeHeapFreeVal));
   809   _decode_begin = NULL;  // sanity
   811   // Make certain that the new sections are all snugly inside the new blob.
   812   assert(verify_section_allocation(), "expanded allocation is ship-shape");
   814 #ifndef PRODUCT
   815   if (PrintNMethods && (WizardMode || Verbose)) {
   816     tty->print("expanded CodeBuffer:");
   817     this->print();
   818   }
   819 #endif //PRODUCT
   820 }
   822 void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
   823   // Must already have disposed of the old blob somehow.
   824   assert(blob() == NULL, "must be empty");
   825 #ifdef ASSERT
   827 #endif
   828   // Take the new blob away from cb.
   829   set_blob(cb->blob());
   830   // Take over all the section pointers.
   831   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   832     CodeSection* cb_sect   = cb->code_section(n);
   833     CodeSection* this_sect = code_section(n);
   834     this_sect->take_over_code_from(cb_sect);
   835   }
   836   _overflow_arena = cb->_overflow_arena;
   837   // Make sure the old cb won't try to use it or free it.
   838   DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
   839 }
   841 #ifdef ASSERT
   842 bool CodeBuffer::verify_section_allocation() {
   843   address tstart = _total_start;
   844   if (tstart == badAddress)  return true;  // smashed by set_blob(NULL)
   845   address tend   = tstart + _total_size;
   846   if (_blob != NULL) {
   847     assert(tstart >= _blob->instructions_begin(), "sanity");
   848     assert(tend   <= _blob->instructions_end(),   "sanity");
   849   }
   850   address tcheck = tstart;  // advancing pointer to verify disjointness
   851   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   852     CodeSection* sect = code_section(n);
   853     if (!sect->is_allocated())  continue;
   854     assert(sect->start() >= tcheck, "sanity");
   855     tcheck = sect->start();
   856     assert((intptr_t)tcheck % sect->alignment() == 0
   857            || sect->is_empty() || _blob == NULL,
   858            "start is aligned");
   859     assert(sect->end()   >= tcheck, "sanity");
   860     assert(sect->end()   <= tend,   "sanity");
   861   }
   862   return true;
   863 }
   864 #endif //ASSERT
   866 #ifndef PRODUCT
   868 void CodeSection::dump() {
   869   address ptr = start();
   870   for (csize_t step; ptr < end(); ptr += step) {
   871     step = end() - ptr;
   872     if (step > jintSize * 4)  step = jintSize * 4;
   873     tty->print(PTR_FORMAT ": ", ptr);
   874     while (step > 0) {
   875       tty->print(" " PTR32_FORMAT, *(jint*)ptr);
   876       ptr += jintSize;
   877     }
   878     tty->cr();
   879   }
   880 }
   883 void CodeSection::decode() {
   884   Disassembler::decode(start(), end());
   885 }
   888 void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
   889   _comments.add_comment(offset, comment);
   890 }
   893 class CodeComment: public CHeapObj {
   894  private:
   895   friend class CodeComments;
   896   intptr_t     _offset;
   897   const char * _comment;
   898   CodeComment* _next;
   900   ~CodeComment() {
   901     assert(_next == NULL, "wrong interface for freeing list");
   902     os::free((void*)_comment);
   903   }
   905  public:
   906   CodeComment(intptr_t offset, const char * comment) {
   907     _offset = offset;
   908     _comment = os::strdup(comment);
   909     _next = NULL;
   910   }
   912   intptr_t     offset()  const { return _offset;  }
   913   const char * comment() const { return _comment; }
   914   CodeComment* next()          { return _next; }
   916   void set_next(CodeComment* next) { _next = next; }
   918   CodeComment* find(intptr_t offset) {
   919     CodeComment* a = this;
   920     while (a != NULL && a->_offset != offset) {
   921       a = a->_next;
   922     }
   923     return a;
   924   }
   925 };
   928 void CodeComments::add_comment(intptr_t offset, const char * comment) {
   929   CodeComment* c = new CodeComment(offset, comment);
   930   CodeComment* insert = NULL;
   931   if (_comments != NULL) {
   932     CodeComment* c = _comments->find(offset);
   933     insert = c;
   934     while (c && c->offset() == offset) {
   935       insert = c;
   936       c = c->next();
   937     }
   938   }
   939   if (insert) {
   940     // insert after comments with same offset
   941     c->set_next(insert->next());
   942     insert->set_next(c);
   943   } else {
   944     c->set_next(_comments);
   945     _comments = c;
   946   }
   947 }
   950 void CodeComments::assign(CodeComments& other) {
   951   assert(_comments == NULL, "don't overwrite old value");
   952   _comments = other._comments;
   953 }
   956 void CodeComments::print_block_comment(outputStream* stream, intptr_t offset) {
   957   if (_comments != NULL) {
   958     CodeComment* c = _comments->find(offset);
   959     while (c && c->offset() == offset) {
   960       stream->bol();
   961       stream->print("  ;; ");
   962       stream->print_cr(c->comment());
   963       c = c->next();
   964     }
   965   }
   966 }
   969 void CodeComments::free() {
   970   CodeComment* n = _comments;
   971   while (n) {
   972     // unlink the node from the list saving a pointer to the next
   973     CodeComment* p = n->_next;
   974     n->_next = NULL;
   975     delete n;
   976     n = p;
   977   }
   978   _comments = NULL;
   979 }
   983 void CodeBuffer::decode() {
   984   Disassembler::decode(decode_begin(), code_end());
   985   _decode_begin = code_end();
   986 }
   989 void CodeBuffer::skip_decode() {
   990   _decode_begin = code_end();
   991 }
   994 void CodeBuffer::decode_all() {
   995   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   996     // dump contents of each section
   997     CodeSection* cs = code_section(n);
   998     tty->print_cr("! %s:", code_section_name(n));
   999     if (cs != consts())
  1000       cs->decode();
  1001     else
  1002       cs->dump();
  1007 void CodeSection::print(const char* name) {
  1008   csize_t locs_size = locs_end() - locs_start();
  1009   tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
  1010                 name, start(), end(), limit(), size(), capacity(),
  1011                 is_frozen()? " [frozen]": "");
  1012   tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
  1013                 name, locs_start(), locs_end(), locs_limit(), locs_size, locs_capacity(), locs_point_off());
  1014   if (PrintRelocations) {
  1015     RelocIterator iter(this);
  1016     iter.print();
  1020 void CodeBuffer::print() {
  1021   if (this == NULL) {
  1022     tty->print_cr("NULL CodeBuffer pointer");
  1023     return;
  1026   tty->print_cr("CodeBuffer:");
  1027   for (int n = 0; n < (int)SECT_LIMIT; n++) {
  1028     // print each section
  1029     CodeSection* cs = code_section(n);
  1030     cs->print(code_section_name(n));
  1034 #endif // PRODUCT

mercurial