src/share/vm/runtime/objectMonitor.cpp

Fri, 28 Mar 2014 10:12:48 -0700

author
vlivanov
date
Fri, 28 Mar 2014 10:12:48 -0700
changeset 6527
f47fa50d9b9c
parent 6520
a7d4d4655766
child 6708
4a1062dc52d1
permissions
-rw-r--r--

8035887: VM crashes trying to force inlining the recursive call
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/vmSymbols.hpp"
    27 #include "memory/resourceArea.hpp"
    28 #include "oops/markOop.hpp"
    29 #include "oops/oop.inline.hpp"
    30 #include "runtime/handles.inline.hpp"
    31 #include "runtime/interfaceSupport.hpp"
    32 #include "runtime/mutexLocker.hpp"
    33 #include "runtime/objectMonitor.hpp"
    34 #include "runtime/objectMonitor.inline.hpp"
    35 #include "runtime/osThread.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "runtime/thread.inline.hpp"
    38 #include "services/threadService.hpp"
    39 #include "trace/tracing.hpp"
    40 #include "trace/traceMacros.hpp"
    41 #include "utilities/dtrace.hpp"
    42 #include "utilities/macros.hpp"
    43 #include "utilities/preserveException.hpp"
    44 #ifdef TARGET_OS_FAMILY_linux
    45 # include "os_linux.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_FAMILY_solaris
    48 # include "os_solaris.inline.hpp"
    49 #endif
    50 #ifdef TARGET_OS_FAMILY_windows
    51 # include "os_windows.inline.hpp"
    52 #endif
    53 #ifdef TARGET_OS_FAMILY_bsd
    54 # include "os_bsd.inline.hpp"
    55 #endif
    57 #if defined(__GNUC__) && !defined(IA64) && !defined(PPC64)
    58   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
    59   #define ATTR __attribute__((noinline))
    60 #else
    61   #define ATTR
    62 #endif
    65 #ifdef DTRACE_ENABLED
    67 // Only bother with this argument setup if dtrace is available
    68 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
    71 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
    72   char* bytes = NULL;                                                      \
    73   int len = 0;                                                             \
    74   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
    75   Symbol* klassname = ((oop)obj)->klass()->name();                         \
    76   if (klassname != NULL) {                                                 \
    77     bytes = (char*)klassname->bytes();                                     \
    78     len = klassname->utf8_length();                                        \
    79   }
    81 #ifndef USDT2
    83 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
    84   jlong, uintptr_t, char*, int);
    85 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
    86   jlong, uintptr_t, char*, int);
    87 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
    88   jlong, uintptr_t, char*, int);
    89 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
    90   jlong, uintptr_t, char*, int);
    91 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
    92   jlong, uintptr_t, char*, int);
    94 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)       \
    95   {                                                                        \
    96     if (DTraceMonitorProbes) {                                            \
    97       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
    98       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
    99                        (monitor), bytes, len, (millis));                   \
   100     }                                                                      \
   101   }
   103 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)             \
   104   {                                                                        \
   105     if (DTraceMonitorProbes) {                                            \
   106       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
   107       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
   108                        (uintptr_t)(monitor), bytes, len);                  \
   109     }                                                                      \
   110   }
   112 #else /* USDT2 */
   114 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
   115   {                                                                        \
   116     if (DTraceMonitorProbes) {                                            \
   117       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
   118       HOTSPOT_MONITOR_WAIT(jtid,                                           \
   119                        (monitor), bytes, len, (millis));                   \
   120     }                                                                      \
   121   }
   123 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
   124 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
   125 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
   126 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
   127 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
   129 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
   130   {                                                                        \
   131     if (DTraceMonitorProbes) {                                            \
   132       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
   133       HOTSPOT_MONITOR_##probe(jtid,                                               \
   134                        (uintptr_t)(monitor), bytes, len);                  \
   135     }                                                                      \
   136   }
   138 #endif /* USDT2 */
   139 #else //  ndef DTRACE_ENABLED
   141 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
   142 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
   144 #endif // ndef DTRACE_ENABLED
   146 // Tunables ...
   147 // The knob* variables are effectively final.  Once set they should
   148 // never be modified hence.  Consider using __read_mostly with GCC.
   150 int ObjectMonitor::Knob_Verbose    = 0 ;
   151 int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
   152 static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
   153 static int Knob_HandOff            = 0 ;
   154 static int Knob_ReportSettings     = 0 ;
   156 static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
   157 static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
   158 static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
   159 static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
   160 static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
   161 static int Knob_SpinEarly          = 1 ;
   162 static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
   163 static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
   164 static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
   165 static int Knob_Bonus              = 100 ;     // spin success bonus
   166 static int Knob_BonusB             = 100 ;     // spin success bonus
   167 static int Knob_Penalty            = 200 ;     // spin failure penalty
   168 static int Knob_Poverty            = 1000 ;
   169 static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
   170 static int Knob_FixedSpin          = 0 ;
   171 static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
   172 static int Knob_UsePause           = 1 ;
   173 static int Knob_ExitPolicy         = 0 ;
   174 static int Knob_PreSpin            = 10 ;      // 20-100 likely better
   175 static int Knob_ResetEvent         = 0 ;
   176 static int BackOffMask             = 0 ;
   178 static int Knob_FastHSSEC          = 0 ;
   179 static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
   180 static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
   181 static volatile int InitDone       = 0 ;
   183 #define TrySpin TrySpin_VaryDuration
   185 // -----------------------------------------------------------------------------
   186 // Theory of operations -- Monitors lists, thread residency, etc:
   187 //
   188 // * A thread acquires ownership of a monitor by successfully
   189 //   CAS()ing the _owner field from null to non-null.
   190 //
   191 // * Invariant: A thread appears on at most one monitor list --
   192 //   cxq, EntryList or WaitSet -- at any one time.
   193 //
   194 // * Contending threads "push" themselves onto the cxq with CAS
   195 //   and then spin/park.
   196 //
   197 // * After a contending thread eventually acquires the lock it must
   198 //   dequeue itself from either the EntryList or the cxq.
   199 //
   200 // * The exiting thread identifies and unparks an "heir presumptive"
   201 //   tentative successor thread on the EntryList.  Critically, the
   202 //   exiting thread doesn't unlink the successor thread from the EntryList.
   203 //   After having been unparked, the wakee will recontend for ownership of
   204 //   the monitor.   The successor (wakee) will either acquire the lock or
   205 //   re-park itself.
   206 //
   207 //   Succession is provided for by a policy of competitive handoff.
   208 //   The exiting thread does _not_ grant or pass ownership to the
   209 //   successor thread.  (This is also referred to as "handoff" succession").
   210 //   Instead the exiting thread releases ownership and possibly wakes
   211 //   a successor, so the successor can (re)compete for ownership of the lock.
   212 //   If the EntryList is empty but the cxq is populated the exiting
   213 //   thread will drain the cxq into the EntryList.  It does so by
   214 //   by detaching the cxq (installing null with CAS) and folding
   215 //   the threads from the cxq into the EntryList.  The EntryList is
   216 //   doubly linked, while the cxq is singly linked because of the
   217 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
   218 //
   219 // * Concurrency invariants:
   220 //
   221 //   -- only the monitor owner may access or mutate the EntryList.
   222 //      The mutex property of the monitor itself protects the EntryList
   223 //      from concurrent interference.
   224 //   -- Only the monitor owner may detach the cxq.
   225 //
   226 // * The monitor entry list operations avoid locks, but strictly speaking
   227 //   they're not lock-free.  Enter is lock-free, exit is not.
   228 //   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
   229 //
   230 // * The cxq can have multiple concurrent "pushers" but only one concurrent
   231 //   detaching thread.  This mechanism is immune from the ABA corruption.
   232 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
   233 //
   234 // * Taken together, the cxq and the EntryList constitute or form a
   235 //   single logical queue of threads stalled trying to acquire the lock.
   236 //   We use two distinct lists to improve the odds of a constant-time
   237 //   dequeue operation after acquisition (in the ::enter() epilog) and
   238 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
   239 //   A key desideratum is to minimize queue & monitor metadata manipulation
   240 //   that occurs while holding the monitor lock -- that is, we want to
   241 //   minimize monitor lock holds times.  Note that even a small amount of
   242 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
   243 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
   244 //   locks and monitor metadata.
   245 //
   246 //   Cxq points to the the set of Recently Arrived Threads attempting entry.
   247 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
   248 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
   249 //   the unlocking thread notices that EntryList is null but _cxq is != null.
   250 //
   251 //   The EntryList is ordered by the prevailing queue discipline and
   252 //   can be organized in any convenient fashion, such as a doubly-linked list or
   253 //   a circular doubly-linked list.  Critically, we want insert and delete operations
   254 //   to operate in constant-time.  If we need a priority queue then something akin
   255 //   to Solaris' sleepq would work nicely.  Viz.,
   256 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
   257 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
   258 //   drains the cxq into the EntryList, and orders or reorders the threads on the
   259 //   EntryList accordingly.
   260 //
   261 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
   262 //   somewhat similar to an elevator-scan.
   263 //
   264 // * The monitor synchronization subsystem avoids the use of native
   265 //   synchronization primitives except for the narrow platform-specific
   266 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
   267 //   the semantics of park-unpark.  Put another way, this monitor implementation
   268 //   depends only on atomic operations and park-unpark.  The monitor subsystem
   269 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
   270 //   underlying OS manages the READY<->RUN transitions.
   271 //
   272 // * Waiting threads reside on the WaitSet list -- wait() puts
   273 //   the caller onto the WaitSet.
   274 //
   275 // * notify() or notifyAll() simply transfers threads from the WaitSet to
   276 //   either the EntryList or cxq.  Subsequent exit() operations will
   277 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
   278 //   it's likely the notifyee would simply impale itself on the lock held
   279 //   by the notifier.
   280 //
   281 // * An interesting alternative is to encode cxq as (List,LockByte) where
   282 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
   283 //   variable, like _recursions, in the scheme.  The threads or Events that form
   284 //   the list would have to be aligned in 256-byte addresses.  A thread would
   285 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
   286 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
   287 //   Note that is is *not* word-tearing, but it does presume that full-word
   288 //   CAS operations are coherent with intermix with STB operations.  That's true
   289 //   on most common processors.
   290 //
   291 // * See also http://blogs.sun.com/dave
   294 // -----------------------------------------------------------------------------
   295 // Enter support
   297 bool ObjectMonitor::try_enter(Thread* THREAD) {
   298   if (THREAD != _owner) {
   299     if (THREAD->is_lock_owned ((address)_owner)) {
   300        assert(_recursions == 0, "internal state error");
   301        _owner = THREAD ;
   302        _recursions = 1 ;
   303        OwnerIsThread = 1 ;
   304        return true;
   305     }
   306     if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
   307       return false;
   308     }
   309     return true;
   310   } else {
   311     _recursions++;
   312     return true;
   313   }
   314 }
   316 void ATTR ObjectMonitor::enter(TRAPS) {
   317   // The following code is ordered to check the most common cases first
   318   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
   319   Thread * const Self = THREAD ;
   320   void * cur ;
   322   cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
   323   if (cur == NULL) {
   324      // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
   325      assert (_recursions == 0   , "invariant") ;
   326      assert (_owner      == Self, "invariant") ;
   327      // CONSIDER: set or assert OwnerIsThread == 1
   328      return ;
   329   }
   331   if (cur == Self) {
   332      // TODO-FIXME: check for integer overflow!  BUGID 6557169.
   333      _recursions ++ ;
   334      return ;
   335   }
   337   if (Self->is_lock_owned ((address)cur)) {
   338     assert (_recursions == 0, "internal state error");
   339     _recursions = 1 ;
   340     // Commute owner from a thread-specific on-stack BasicLockObject address to
   341     // a full-fledged "Thread *".
   342     _owner = Self ;
   343     OwnerIsThread = 1 ;
   344     return ;
   345   }
   347   // We've encountered genuine contention.
   348   assert (Self->_Stalled == 0, "invariant") ;
   349   Self->_Stalled = intptr_t(this) ;
   351   // Try one round of spinning *before* enqueueing Self
   352   // and before going through the awkward and expensive state
   353   // transitions.  The following spin is strictly optional ...
   354   // Note that if we acquire the monitor from an initial spin
   355   // we forgo posting JVMTI events and firing DTRACE probes.
   356   if (Knob_SpinEarly && TrySpin (Self) > 0) {
   357      assert (_owner == Self      , "invariant") ;
   358      assert (_recursions == 0    , "invariant") ;
   359      assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   360      Self->_Stalled = 0 ;
   361      return ;
   362   }
   364   assert (_owner != Self          , "invariant") ;
   365   assert (_succ  != Self          , "invariant") ;
   366   assert (Self->is_Java_thread()  , "invariant") ;
   367   JavaThread * jt = (JavaThread *) Self ;
   368   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
   369   assert (jt->thread_state() != _thread_blocked   , "invariant") ;
   370   assert (this->object() != NULL  , "invariant") ;
   371   assert (_count >= 0, "invariant") ;
   373   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
   374   // Ensure the object-monitor relationship remains stable while there's contention.
   375   Atomic::inc_ptr(&_count);
   377   EventJavaMonitorEnter event;
   379   { // Change java thread status to indicate blocked on monitor enter.
   380     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
   382     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
   383     if (JvmtiExport::should_post_monitor_contended_enter()) {
   384       JvmtiExport::post_monitor_contended_enter(jt, this);
   386       // The current thread does not yet own the monitor and does not
   387       // yet appear on any queues that would get it made the successor.
   388       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
   389       // handler cannot accidentally consume an unpark() meant for the
   390       // ParkEvent associated with this ObjectMonitor.
   391     }
   393     OSThreadContendState osts(Self->osthread());
   394     ThreadBlockInVM tbivm(jt);
   396     Self->set_current_pending_monitor(this);
   398     // TODO-FIXME: change the following for(;;) loop to straight-line code.
   399     for (;;) {
   400       jt->set_suspend_equivalent();
   401       // cleared by handle_special_suspend_equivalent_condition()
   402       // or java_suspend_self()
   404       EnterI (THREAD) ;
   406       if (!ExitSuspendEquivalent(jt)) break ;
   408       //
   409       // We have acquired the contended monitor, but while we were
   410       // waiting another thread suspended us. We don't want to enter
   411       // the monitor while suspended because that would surprise the
   412       // thread that suspended us.
   413       //
   414           _recursions = 0 ;
   415       _succ = NULL ;
   416       exit (false, Self) ;
   418       jt->java_suspend_self();
   419     }
   420     Self->set_current_pending_monitor(NULL);
   421   }
   423   Atomic::dec_ptr(&_count);
   424   assert (_count >= 0, "invariant") ;
   425   Self->_Stalled = 0 ;
   427   // Must either set _recursions = 0 or ASSERT _recursions == 0.
   428   assert (_recursions == 0     , "invariant") ;
   429   assert (_owner == Self       , "invariant") ;
   430   assert (_succ  != Self       , "invariant") ;
   431   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   433   // The thread -- now the owner -- is back in vm mode.
   434   // Report the glorious news via TI,DTrace and jvmstat.
   435   // The probe effect is non-trivial.  All the reportage occurs
   436   // while we hold the monitor, increasing the length of the critical
   437   // section.  Amdahl's parallel speedup law comes vividly into play.
   438   //
   439   // Another option might be to aggregate the events (thread local or
   440   // per-monitor aggregation) and defer reporting until a more opportune
   441   // time -- such as next time some thread encounters contention but has
   442   // yet to acquire the lock.  While spinning that thread could
   443   // spinning we could increment JVMStat counters, etc.
   445   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
   446   if (JvmtiExport::should_post_monitor_contended_entered()) {
   447     JvmtiExport::post_monitor_contended_entered(jt, this);
   449     // The current thread already owns the monitor and is not going to
   450     // call park() for the remainder of the monitor enter protocol. So
   451     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
   452     // event handler consumed an unpark() issued by the thread that
   453     // just exited the monitor.
   454   }
   456   if (event.should_commit()) {
   457     event.set_klass(((oop)this->object())->klass());
   458     event.set_previousOwner((TYPE_JAVALANGTHREAD)_previous_owner_tid);
   459     event.set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
   460     event.commit();
   461   }
   463   if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
   464      ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
   465   }
   466 }
   469 // Caveat: TryLock() is not necessarily serializing if it returns failure.
   470 // Callers must compensate as needed.
   472 int ObjectMonitor::TryLock (Thread * Self) {
   473    for (;;) {
   474       void * own = _owner ;
   475       if (own != NULL) return 0 ;
   476       if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
   477          // Either guarantee _recursions == 0 or set _recursions = 0.
   478          assert (_recursions == 0, "invariant") ;
   479          assert (_owner == Self, "invariant") ;
   480          // CONSIDER: set or assert that OwnerIsThread == 1
   481          return 1 ;
   482       }
   483       // The lock had been free momentarily, but we lost the race to the lock.
   484       // Interference -- the CAS failed.
   485       // We can either return -1 or retry.
   486       // Retry doesn't make as much sense because the lock was just acquired.
   487       if (true) return -1 ;
   488    }
   489 }
   491 void ATTR ObjectMonitor::EnterI (TRAPS) {
   492     Thread * Self = THREAD ;
   493     assert (Self->is_Java_thread(), "invariant") ;
   494     assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
   496     // Try the lock - TATAS
   497     if (TryLock (Self) > 0) {
   498         assert (_succ != Self              , "invariant") ;
   499         assert (_owner == Self             , "invariant") ;
   500         assert (_Responsible != Self       , "invariant") ;
   501         return ;
   502     }
   504     DeferredInitialize () ;
   506     // We try one round of spinning *before* enqueueing Self.
   507     //
   508     // If the _owner is ready but OFFPROC we could use a YieldTo()
   509     // operation to donate the remainder of this thread's quantum
   510     // to the owner.  This has subtle but beneficial affinity
   511     // effects.
   513     if (TrySpin (Self) > 0) {
   514         assert (_owner == Self        , "invariant") ;
   515         assert (_succ != Self         , "invariant") ;
   516         assert (_Responsible != Self  , "invariant") ;
   517         return ;
   518     }
   520     // The Spin failed -- Enqueue and park the thread ...
   521     assert (_succ  != Self            , "invariant") ;
   522     assert (_owner != Self            , "invariant") ;
   523     assert (_Responsible != Self      , "invariant") ;
   525     // Enqueue "Self" on ObjectMonitor's _cxq.
   526     //
   527     // Node acts as a proxy for Self.
   528     // As an aside, if were to ever rewrite the synchronization code mostly
   529     // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
   530     // Java objects.  This would avoid awkward lifecycle and liveness issues,
   531     // as well as eliminate a subset of ABA issues.
   532     // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
   533     //
   535     ObjectWaiter node(Self) ;
   536     Self->_ParkEvent->reset() ;
   537     node._prev   = (ObjectWaiter *) 0xBAD ;
   538     node.TState  = ObjectWaiter::TS_CXQ ;
   540     // Push "Self" onto the front of the _cxq.
   541     // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
   542     // Note that spinning tends to reduce the rate at which threads
   543     // enqueue and dequeue on EntryList|cxq.
   544     ObjectWaiter * nxt ;
   545     for (;;) {
   546         node._next = nxt = _cxq ;
   547         if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
   549         // Interference - the CAS failed because _cxq changed.  Just retry.
   550         // As an optional optimization we retry the lock.
   551         if (TryLock (Self) > 0) {
   552             assert (_succ != Self         , "invariant") ;
   553             assert (_owner == Self        , "invariant") ;
   554             assert (_Responsible != Self  , "invariant") ;
   555             return ;
   556         }
   557     }
   559     // Check for cxq|EntryList edge transition to non-null.  This indicates
   560     // the onset of contention.  While contention persists exiting threads
   561     // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
   562     // operations revert to the faster 1-0 mode.  This enter operation may interleave
   563     // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
   564     // arrange for one of the contending thread to use a timed park() operations
   565     // to detect and recover from the race.  (Stranding is form of progress failure
   566     // where the monitor is unlocked but all the contending threads remain parked).
   567     // That is, at least one of the contended threads will periodically poll _owner.
   568     // One of the contending threads will become the designated "Responsible" thread.
   569     // The Responsible thread uses a timed park instead of a normal indefinite park
   570     // operation -- it periodically wakes and checks for and recovers from potential
   571     // strandings admitted by 1-0 exit operations.   We need at most one Responsible
   572     // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
   573     // be responsible for a monitor.
   574     //
   575     // Currently, one of the contended threads takes on the added role of "Responsible".
   576     // A viable alternative would be to use a dedicated "stranding checker" thread
   577     // that periodically iterated over all the threads (or active monitors) and unparked
   578     // successors where there was risk of stranding.  This would help eliminate the
   579     // timer scalability issues we see on some platforms as we'd only have one thread
   580     // -- the checker -- parked on a timer.
   582     if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
   583         // Try to assume the role of responsible thread for the monitor.
   584         // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
   585         Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
   586     }
   588     // The lock have been released while this thread was occupied queueing
   589     // itself onto _cxq.  To close the race and avoid "stranding" and
   590     // progress-liveness failure we must resample-retry _owner before parking.
   591     // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
   592     // In this case the ST-MEMBAR is accomplished with CAS().
   593     //
   594     // TODO: Defer all thread state transitions until park-time.
   595     // Since state transitions are heavy and inefficient we'd like
   596     // to defer the state transitions until absolutely necessary,
   597     // and in doing so avoid some transitions ...
   599     TEVENT (Inflated enter - Contention) ;
   600     int nWakeups = 0 ;
   601     int RecheckInterval = 1 ;
   603     for (;;) {
   605         if (TryLock (Self) > 0) break ;
   606         assert (_owner != Self, "invariant") ;
   608         if ((SyncFlags & 2) && _Responsible == NULL) {
   609            Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
   610         }
   612         // park self
   613         if (_Responsible == Self || (SyncFlags & 1)) {
   614             TEVENT (Inflated enter - park TIMED) ;
   615             Self->_ParkEvent->park ((jlong) RecheckInterval) ;
   616             // Increase the RecheckInterval, but clamp the value.
   617             RecheckInterval *= 8 ;
   618             if (RecheckInterval > 1000) RecheckInterval = 1000 ;
   619         } else {
   620             TEVENT (Inflated enter - park UNTIMED) ;
   621             Self->_ParkEvent->park() ;
   622         }
   624         if (TryLock(Self) > 0) break ;
   626         // The lock is still contested.
   627         // Keep a tally of the # of futile wakeups.
   628         // Note that the counter is not protected by a lock or updated by atomics.
   629         // That is by design - we trade "lossy" counters which are exposed to
   630         // races during updates for a lower probe effect.
   631         TEVENT (Inflated enter - Futile wakeup) ;
   632         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
   633            ObjectMonitor::_sync_FutileWakeups->inc() ;
   634         }
   635         ++ nWakeups ;
   637         // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
   638         // We can defer clearing _succ until after the spin completes
   639         // TrySpin() must tolerate being called with _succ == Self.
   640         // Try yet another round of adaptive spinning.
   641         if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
   643         // We can find that we were unpark()ed and redesignated _succ while
   644         // we were spinning.  That's harmless.  If we iterate and call park(),
   645         // park() will consume the event and return immediately and we'll
   646         // just spin again.  This pattern can repeat, leaving _succ to simply
   647         // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
   648         // Alternately, we can sample fired() here, and if set, forgo spinning
   649         // in the next iteration.
   651         if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
   652            Self->_ParkEvent->reset() ;
   653            OrderAccess::fence() ;
   654         }
   655         if (_succ == Self) _succ = NULL ;
   657         // Invariant: after clearing _succ a thread *must* retry _owner before parking.
   658         OrderAccess::fence() ;
   659     }
   661     // Egress :
   662     // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
   663     // Normally we'll find Self on the EntryList .
   664     // From the perspective of the lock owner (this thread), the
   665     // EntryList is stable and cxq is prepend-only.
   666     // The head of cxq is volatile but the interior is stable.
   667     // In addition, Self.TState is stable.
   669     assert (_owner == Self      , "invariant") ;
   670     assert (object() != NULL    , "invariant") ;
   671     // I'd like to write:
   672     //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   673     // but as we're at a safepoint that's not safe.
   675     UnlinkAfterAcquire (Self, &node) ;
   676     if (_succ == Self) _succ = NULL ;
   678     assert (_succ != Self, "invariant") ;
   679     if (_Responsible == Self) {
   680         _Responsible = NULL ;
   681         OrderAccess::fence(); // Dekker pivot-point
   683         // We may leave threads on cxq|EntryList without a designated
   684         // "Responsible" thread.  This is benign.  When this thread subsequently
   685         // exits the monitor it can "see" such preexisting "old" threads --
   686         // threads that arrived on the cxq|EntryList before the fence, above --
   687         // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
   688         // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
   689         // non-null and elect a new "Responsible" timer thread.
   690         //
   691         // This thread executes:
   692         //    ST Responsible=null; MEMBAR    (in enter epilog - here)
   693         //    LD cxq|EntryList               (in subsequent exit)
   694         //
   695         // Entering threads in the slow/contended path execute:
   696         //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
   697         //    The (ST cxq; MEMBAR) is accomplished with CAS().
   698         //
   699         // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
   700         // exit operation from floating above the ST Responsible=null.
   701     }
   703     // We've acquired ownership with CAS().
   704     // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
   705     // But since the CAS() this thread may have also stored into _succ,
   706     // EntryList, cxq or Responsible.  These meta-data updates must be
   707     // visible __before this thread subsequently drops the lock.
   708     // Consider what could occur if we didn't enforce this constraint --
   709     // STs to monitor meta-data and user-data could reorder with (become
   710     // visible after) the ST in exit that drops ownership of the lock.
   711     // Some other thread could then acquire the lock, but observe inconsistent
   712     // or old monitor meta-data and heap data.  That violates the JMM.
   713     // To that end, the 1-0 exit() operation must have at least STST|LDST
   714     // "release" barrier semantics.  Specifically, there must be at least a
   715     // STST|LDST barrier in exit() before the ST of null into _owner that drops
   716     // the lock.   The barrier ensures that changes to monitor meta-data and data
   717     // protected by the lock will be visible before we release the lock, and
   718     // therefore before some other thread (CPU) has a chance to acquire the lock.
   719     // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
   720     //
   721     // Critically, any prior STs to _succ or EntryList must be visible before
   722     // the ST of null into _owner in the *subsequent* (following) corresponding
   723     // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
   724     // execute a serializing instruction.
   726     if (SyncFlags & 8) {
   727        OrderAccess::fence() ;
   728     }
   729     return ;
   730 }
   732 // ReenterI() is a specialized inline form of the latter half of the
   733 // contended slow-path from EnterI().  We use ReenterI() only for
   734 // monitor reentry in wait().
   735 //
   736 // In the future we should reconcile EnterI() and ReenterI(), adding
   737 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
   738 // loop accordingly.
   740 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
   741     assert (Self != NULL                , "invariant") ;
   742     assert (SelfNode != NULL            , "invariant") ;
   743     assert (SelfNode->_thread == Self   , "invariant") ;
   744     assert (_waiters > 0                , "invariant") ;
   745     assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
   746     assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
   747     JavaThread * jt = (JavaThread *) Self ;
   749     int nWakeups = 0 ;
   750     for (;;) {
   751         ObjectWaiter::TStates v = SelfNode->TState ;
   752         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
   753         assert    (_owner != Self, "invariant") ;
   755         if (TryLock (Self) > 0) break ;
   756         if (TrySpin (Self) > 0) break ;
   758         TEVENT (Wait Reentry - parking) ;
   760         // State transition wrappers around park() ...
   761         // ReenterI() wisely defers state transitions until
   762         // it's clear we must park the thread.
   763         {
   764            OSThreadContendState osts(Self->osthread());
   765            ThreadBlockInVM tbivm(jt);
   767            // cleared by handle_special_suspend_equivalent_condition()
   768            // or java_suspend_self()
   769            jt->set_suspend_equivalent();
   770            if (SyncFlags & 1) {
   771               Self->_ParkEvent->park ((jlong)1000) ;
   772            } else {
   773               Self->_ParkEvent->park () ;
   774            }
   776            // were we externally suspended while we were waiting?
   777            for (;;) {
   778               if (!ExitSuspendEquivalent (jt)) break ;
   779               if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
   780               jt->java_suspend_self();
   781               jt->set_suspend_equivalent();
   782            }
   783         }
   785         // Try again, but just so we distinguish between futile wakeups and
   786         // successful wakeups.  The following test isn't algorithmically
   787         // necessary, but it helps us maintain sensible statistics.
   788         if (TryLock(Self) > 0) break ;
   790         // The lock is still contested.
   791         // Keep a tally of the # of futile wakeups.
   792         // Note that the counter is not protected by a lock or updated by atomics.
   793         // That is by design - we trade "lossy" counters which are exposed to
   794         // races during updates for a lower probe effect.
   795         TEVENT (Wait Reentry - futile wakeup) ;
   796         ++ nWakeups ;
   798         // Assuming this is not a spurious wakeup we'll normally
   799         // find that _succ == Self.
   800         if (_succ == Self) _succ = NULL ;
   802         // Invariant: after clearing _succ a contending thread
   803         // *must* retry  _owner before parking.
   804         OrderAccess::fence() ;
   806         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
   807           ObjectMonitor::_sync_FutileWakeups->inc() ;
   808         }
   809     }
   811     // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
   812     // Normally we'll find Self on the EntryList.
   813     // Unlinking from the EntryList is constant-time and atomic-free.
   814     // From the perspective of the lock owner (this thread), the
   815     // EntryList is stable and cxq is prepend-only.
   816     // The head of cxq is volatile but the interior is stable.
   817     // In addition, Self.TState is stable.
   819     assert (_owner == Self, "invariant") ;
   820     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   821     UnlinkAfterAcquire (Self, SelfNode) ;
   822     if (_succ == Self) _succ = NULL ;
   823     assert (_succ != Self, "invariant") ;
   824     SelfNode->TState = ObjectWaiter::TS_RUN ;
   825     OrderAccess::fence() ;      // see comments at the end of EnterI()
   826 }
   828 // after the thread acquires the lock in ::enter().  Equally, we could defer
   829 // unlinking the thread until ::exit()-time.
   831 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
   832 {
   833     assert (_owner == Self, "invariant") ;
   834     assert (SelfNode->_thread == Self, "invariant") ;
   836     if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
   837         // Normal case: remove Self from the DLL EntryList .
   838         // This is a constant-time operation.
   839         ObjectWaiter * nxt = SelfNode->_next ;
   840         ObjectWaiter * prv = SelfNode->_prev ;
   841         if (nxt != NULL) nxt->_prev = prv ;
   842         if (prv != NULL) prv->_next = nxt ;
   843         if (SelfNode == _EntryList ) _EntryList = nxt ;
   844         assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
   845         assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
   846         TEVENT (Unlink from EntryList) ;
   847     } else {
   848         guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
   849         // Inopportune interleaving -- Self is still on the cxq.
   850         // This usually means the enqueue of self raced an exiting thread.
   851         // Normally we'll find Self near the front of the cxq, so
   852         // dequeueing is typically fast.  If needbe we can accelerate
   853         // this with some MCS/CHL-like bidirectional list hints and advisory
   854         // back-links so dequeueing from the interior will normally operate
   855         // in constant-time.
   856         // Dequeue Self from either the head (with CAS) or from the interior
   857         // with a linear-time scan and normal non-atomic memory operations.
   858         // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
   859         // and then unlink Self from EntryList.  We have to drain eventually,
   860         // so it might as well be now.
   862         ObjectWaiter * v = _cxq ;
   863         assert (v != NULL, "invariant") ;
   864         if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
   865             // The CAS above can fail from interference IFF a "RAT" arrived.
   866             // In that case Self must be in the interior and can no longer be
   867             // at the head of cxq.
   868             if (v == SelfNode) {
   869                 assert (_cxq != v, "invariant") ;
   870                 v = _cxq ;          // CAS above failed - start scan at head of list
   871             }
   872             ObjectWaiter * p ;
   873             ObjectWaiter * q = NULL ;
   874             for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
   875                 q = p ;
   876                 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
   877             }
   878             assert (v != SelfNode,  "invariant") ;
   879             assert (p == SelfNode,  "Node not found on cxq") ;
   880             assert (p != _cxq,      "invariant") ;
   881             assert (q != NULL,      "invariant") ;
   882             assert (q->_next == p,  "invariant") ;
   883             q->_next = p->_next ;
   884         }
   885         TEVENT (Unlink from cxq) ;
   886     }
   888     // Diagnostic hygiene ...
   889     SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
   890     SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
   891     SelfNode->TState = ObjectWaiter::TS_RUN ;
   892 }
   894 // -----------------------------------------------------------------------------
   895 // Exit support
   896 //
   897 // exit()
   898 // ~~~~~~
   899 // Note that the collector can't reclaim the objectMonitor or deflate
   900 // the object out from underneath the thread calling ::exit() as the
   901 // thread calling ::exit() never transitions to a stable state.
   902 // This inhibits GC, which in turn inhibits asynchronous (and
   903 // inopportune) reclamation of "this".
   904 //
   905 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
   906 // There's one exception to the claim above, however.  EnterI() can call
   907 // exit() to drop a lock if the acquirer has been externally suspended.
   908 // In that case exit() is called with _thread_state as _thread_blocked,
   909 // but the monitor's _count field is > 0, which inhibits reclamation.
   910 //
   911 // 1-0 exit
   912 // ~~~~~~~~
   913 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
   914 // the fast-path operators have been optimized so the common ::exit()
   915 // operation is 1-0.  See i486.ad fast_unlock(), for instance.
   916 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
   917 // greatly improves latency -- MEMBAR and CAS having considerable local
   918 // latency on modern processors -- but at the cost of "stranding".  Absent the
   919 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
   920 // ::enter() path, resulting in the entering thread being stranding
   921 // and a progress-liveness failure.   Stranding is extremely rare.
   922 // We use timers (timed park operations) & periodic polling to detect
   923 // and recover from stranding.  Potentially stranded threads periodically
   924 // wake up and poll the lock.  See the usage of the _Responsible variable.
   925 //
   926 // The CAS() in enter provides for safety and exclusion, while the CAS or
   927 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
   928 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
   929 // We detect and recover from stranding with timers.
   930 //
   931 // If a thread transiently strands it'll park until (a) another
   932 // thread acquires the lock and then drops the lock, at which time the
   933 // exiting thread will notice and unpark the stranded thread, or, (b)
   934 // the timer expires.  If the lock is high traffic then the stranding latency
   935 // will be low due to (a).  If the lock is low traffic then the odds of
   936 // stranding are lower, although the worst-case stranding latency
   937 // is longer.  Critically, we don't want to put excessive load in the
   938 // platform's timer subsystem.  We want to minimize both the timer injection
   939 // rate (timers created/sec) as well as the number of timers active at
   940 // any one time.  (more precisely, we want to minimize timer-seconds, which is
   941 // the integral of the # of active timers at any instant over time).
   942 // Both impinge on OS scalability.  Given that, at most one thread parked on
   943 // a monitor will use a timer.
   945 void ATTR ObjectMonitor::exit(bool not_suspended, TRAPS) {
   946    Thread * Self = THREAD ;
   947    if (THREAD != _owner) {
   948      if (THREAD->is_lock_owned((address) _owner)) {
   949        // Transmute _owner from a BasicLock pointer to a Thread address.
   950        // We don't need to hold _mutex for this transition.
   951        // Non-null to Non-null is safe as long as all readers can
   952        // tolerate either flavor.
   953        assert (_recursions == 0, "invariant") ;
   954        _owner = THREAD ;
   955        _recursions = 0 ;
   956        OwnerIsThread = 1 ;
   957      } else {
   958        // NOTE: we need to handle unbalanced monitor enter/exit
   959        // in native code by throwing an exception.
   960        // TODO: Throw an IllegalMonitorStateException ?
   961        TEVENT (Exit - Throw IMSX) ;
   962        assert(false, "Non-balanced monitor enter/exit!");
   963        if (false) {
   964           THROW(vmSymbols::java_lang_IllegalMonitorStateException());
   965        }
   966        return;
   967      }
   968    }
   970    if (_recursions != 0) {
   971      _recursions--;        // this is simple recursive enter
   972      TEVENT (Inflated exit - recursive) ;
   973      return ;
   974    }
   976    // Invariant: after setting Responsible=null an thread must execute
   977    // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
   978    if ((SyncFlags & 4) == 0) {
   979       _Responsible = NULL ;
   980    }
   982 #if INCLUDE_TRACE
   983    // get the owner's thread id for the MonitorEnter event
   984    // if it is enabled and the thread isn't suspended
   985    if (not_suspended && Tracing::is_event_enabled(TraceJavaMonitorEnterEvent)) {
   986      _previous_owner_tid = SharedRuntime::get_java_tid(Self);
   987    }
   988 #endif
   990    for (;;) {
   991       assert (THREAD == _owner, "invariant") ;
   994       if (Knob_ExitPolicy == 0) {
   995          // release semantics: prior loads and stores from within the critical section
   996          // must not float (reorder) past the following store that drops the lock.
   997          // On SPARC that requires MEMBAR #loadstore|#storestore.
   998          // But of course in TSO #loadstore|#storestore is not required.
   999          // I'd like to write one of the following:
  1000          // A.  OrderAccess::release() ; _owner = NULL
  1001          // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
  1002          // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
  1003          // store into a _dummy variable.  That store is not needed, but can result
  1004          // in massive wasteful coherency traffic on classic SMP systems.
  1005          // Instead, I use release_store(), which is implemented as just a simple
  1006          // ST on x64, x86 and SPARC.
  1007          OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
  1008          OrderAccess::storeload() ;                         // See if we need to wake a successor
  1009          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
  1010             TEVENT (Inflated exit - simple egress) ;
  1011             return ;
  1013          TEVENT (Inflated exit - complex egress) ;
  1015          // Normally the exiting thread is responsible for ensuring succession,
  1016          // but if other successors are ready or other entering threads are spinning
  1017          // then this thread can simply store NULL into _owner and exit without
  1018          // waking a successor.  The existence of spinners or ready successors
  1019          // guarantees proper succession (liveness).  Responsibility passes to the
  1020          // ready or running successors.  The exiting thread delegates the duty.
  1021          // More precisely, if a successor already exists this thread is absolved
  1022          // of the responsibility of waking (unparking) one.
  1023          //
  1024          // The _succ variable is critical to reducing futile wakeup frequency.
  1025          // _succ identifies the "heir presumptive" thread that has been made
  1026          // ready (unparked) but that has not yet run.  We need only one such
  1027          // successor thread to guarantee progress.
  1028          // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
  1029          // section 3.3 "Futile Wakeup Throttling" for details.
  1030          //
  1031          // Note that spinners in Enter() also set _succ non-null.
  1032          // In the current implementation spinners opportunistically set
  1033          // _succ so that exiting threads might avoid waking a successor.
  1034          // Another less appealing alternative would be for the exiting thread
  1035          // to drop the lock and then spin briefly to see if a spinner managed
  1036          // to acquire the lock.  If so, the exiting thread could exit
  1037          // immediately without waking a successor, otherwise the exiting
  1038          // thread would need to dequeue and wake a successor.
  1039          // (Note that we'd need to make the post-drop spin short, but no
  1040          // shorter than the worst-case round-trip cache-line migration time.
  1041          // The dropped lock needs to become visible to the spinner, and then
  1042          // the acquisition of the lock by the spinner must become visible to
  1043          // the exiting thread).
  1044          //
  1046          // It appears that an heir-presumptive (successor) must be made ready.
  1047          // Only the current lock owner can manipulate the EntryList or
  1048          // drain _cxq, so we need to reacquire the lock.  If we fail
  1049          // to reacquire the lock the responsibility for ensuring succession
  1050          // falls to the new owner.
  1051          //
  1052          if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
  1053             return ;
  1055          TEVENT (Exit - Reacquired) ;
  1056       } else {
  1057          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
  1058             OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
  1059             OrderAccess::storeload() ;
  1060             // Ratify the previously observed values.
  1061             if (_cxq == NULL || _succ != NULL) {
  1062                 TEVENT (Inflated exit - simple egress) ;
  1063                 return ;
  1066             // inopportune interleaving -- the exiting thread (this thread)
  1067             // in the fast-exit path raced an entering thread in the slow-enter
  1068             // path.
  1069             // We have two choices:
  1070             // A.  Try to reacquire the lock.
  1071             //     If the CAS() fails return immediately, otherwise
  1072             //     we either restart/rerun the exit operation, or simply
  1073             //     fall-through into the code below which wakes a successor.
  1074             // B.  If the elements forming the EntryList|cxq are TSM
  1075             //     we could simply unpark() the lead thread and return
  1076             //     without having set _succ.
  1077             if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
  1078                TEVENT (Inflated exit - reacquired succeeded) ;
  1079                return ;
  1081             TEVENT (Inflated exit - reacquired failed) ;
  1082          } else {
  1083             TEVENT (Inflated exit - complex egress) ;
  1087       guarantee (_owner == THREAD, "invariant") ;
  1089       ObjectWaiter * w = NULL ;
  1090       int QMode = Knob_QMode ;
  1092       if (QMode == 2 && _cxq != NULL) {
  1093           // QMode == 2 : cxq has precedence over EntryList.
  1094           // Try to directly wake a successor from the cxq.
  1095           // If successful, the successor will need to unlink itself from cxq.
  1096           w = _cxq ;
  1097           assert (w != NULL, "invariant") ;
  1098           assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1099           ExitEpilog (Self, w) ;
  1100           return ;
  1103       if (QMode == 3 && _cxq != NULL) {
  1104           // Aggressively drain cxq into EntryList at the first opportunity.
  1105           // This policy ensure that recently-run threads live at the head of EntryList.
  1106           // Drain _cxq into EntryList - bulk transfer.
  1107           // First, detach _cxq.
  1108           // The following loop is tantamount to: w = swap (&cxq, NULL)
  1109           w = _cxq ;
  1110           for (;;) {
  1111              assert (w != NULL, "Invariant") ;
  1112              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  1113              if (u == w) break ;
  1114              w = u ;
  1116           assert (w != NULL              , "invariant") ;
  1118           ObjectWaiter * q = NULL ;
  1119           ObjectWaiter * p ;
  1120           for (p = w ; p != NULL ; p = p->_next) {
  1121               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1122               p->TState = ObjectWaiter::TS_ENTER ;
  1123               p->_prev = q ;
  1124               q = p ;
  1127           // Append the RATs to the EntryList
  1128           // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
  1129           ObjectWaiter * Tail ;
  1130           for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
  1131           if (Tail == NULL) {
  1132               _EntryList = w ;
  1133           } else {
  1134               Tail->_next = w ;
  1135               w->_prev = Tail ;
  1138           // Fall thru into code that tries to wake a successor from EntryList
  1141       if (QMode == 4 && _cxq != NULL) {
  1142           // Aggressively drain cxq into EntryList at the first opportunity.
  1143           // This policy ensure that recently-run threads live at the head of EntryList.
  1145           // Drain _cxq into EntryList - bulk transfer.
  1146           // First, detach _cxq.
  1147           // The following loop is tantamount to: w = swap (&cxq, NULL)
  1148           w = _cxq ;
  1149           for (;;) {
  1150              assert (w != NULL, "Invariant") ;
  1151              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  1152              if (u == w) break ;
  1153              w = u ;
  1155           assert (w != NULL              , "invariant") ;
  1157           ObjectWaiter * q = NULL ;
  1158           ObjectWaiter * p ;
  1159           for (p = w ; p != NULL ; p = p->_next) {
  1160               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1161               p->TState = ObjectWaiter::TS_ENTER ;
  1162               p->_prev = q ;
  1163               q = p ;
  1166           // Prepend the RATs to the EntryList
  1167           if (_EntryList != NULL) {
  1168               q->_next = _EntryList ;
  1169               _EntryList->_prev = q ;
  1171           _EntryList = w ;
  1173           // Fall thru into code that tries to wake a successor from EntryList
  1176       w = _EntryList  ;
  1177       if (w != NULL) {
  1178           // I'd like to write: guarantee (w->_thread != Self).
  1179           // But in practice an exiting thread may find itself on the EntryList.
  1180           // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
  1181           // then calls exit().  Exit release the lock by setting O._owner to NULL.
  1182           // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
  1183           // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
  1184           // release the lock "O".  T2 resumes immediately after the ST of null into
  1185           // _owner, above.  T2 notices that the EntryList is populated, so it
  1186           // reacquires the lock and then finds itself on the EntryList.
  1187           // Given all that, we have to tolerate the circumstance where "w" is
  1188           // associated with Self.
  1189           assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1190           ExitEpilog (Self, w) ;
  1191           return ;
  1194       // If we find that both _cxq and EntryList are null then just
  1195       // re-run the exit protocol from the top.
  1196       w = _cxq ;
  1197       if (w == NULL) continue ;
  1199       // Drain _cxq into EntryList - bulk transfer.
  1200       // First, detach _cxq.
  1201       // The following loop is tantamount to: w = swap (&cxq, NULL)
  1202       for (;;) {
  1203           assert (w != NULL, "Invariant") ;
  1204           ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  1205           if (u == w) break ;
  1206           w = u ;
  1208       TEVENT (Inflated exit - drain cxq into EntryList) ;
  1210       assert (w != NULL              , "invariant") ;
  1211       assert (_EntryList  == NULL    , "invariant") ;
  1213       // Convert the LIFO SLL anchored by _cxq into a DLL.
  1214       // The list reorganization step operates in O(LENGTH(w)) time.
  1215       // It's critical that this step operate quickly as
  1216       // "Self" still holds the outer-lock, restricting parallelism
  1217       // and effectively lengthening the critical section.
  1218       // Invariant: s chases t chases u.
  1219       // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
  1220       // we have faster access to the tail.
  1222       if (QMode == 1) {
  1223          // QMode == 1 : drain cxq to EntryList, reversing order
  1224          // We also reverse the order of the list.
  1225          ObjectWaiter * s = NULL ;
  1226          ObjectWaiter * t = w ;
  1227          ObjectWaiter * u = NULL ;
  1228          while (t != NULL) {
  1229              guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
  1230              t->TState = ObjectWaiter::TS_ENTER ;
  1231              u = t->_next ;
  1232              t->_prev = u ;
  1233              t->_next = s ;
  1234              s = t;
  1235              t = u ;
  1237          _EntryList  = s ;
  1238          assert (s != NULL, "invariant") ;
  1239       } else {
  1240          // QMode == 0 or QMode == 2
  1241          _EntryList = w ;
  1242          ObjectWaiter * q = NULL ;
  1243          ObjectWaiter * p ;
  1244          for (p = w ; p != NULL ; p = p->_next) {
  1245              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1246              p->TState = ObjectWaiter::TS_ENTER ;
  1247              p->_prev = q ;
  1248              q = p ;
  1252       // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
  1253       // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
  1255       // See if we can abdicate to a spinner instead of waking a thread.
  1256       // A primary goal of the implementation is to reduce the
  1257       // context-switch rate.
  1258       if (_succ != NULL) continue;
  1260       w = _EntryList  ;
  1261       if (w != NULL) {
  1262           guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1263           ExitEpilog (Self, w) ;
  1264           return ;
  1269 // ExitSuspendEquivalent:
  1270 // A faster alternate to handle_special_suspend_equivalent_condition()
  1271 //
  1272 // handle_special_suspend_equivalent_condition() unconditionally
  1273 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
  1274 // operations have high latency.  Note that in ::enter() we call HSSEC
  1275 // while holding the monitor, so we effectively lengthen the critical sections.
  1276 //
  1277 // There are a number of possible solutions:
  1278 //
  1279 // A.  To ameliorate the problem we might also defer state transitions
  1280 //     to as late as possible -- just prior to parking.
  1281 //     Given that, we'd call HSSEC after having returned from park(),
  1282 //     but before attempting to acquire the monitor.  This is only a
  1283 //     partial solution.  It avoids calling HSSEC while holding the
  1284 //     monitor (good), but it still increases successor reacquisition latency --
  1285 //     the interval between unparking a successor and the time the successor
  1286 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
  1287 //     If we use this technique we can also avoid EnterI()-exit() loop
  1288 //     in ::enter() where we iteratively drop the lock and then attempt
  1289 //     to reacquire it after suspending.
  1290 //
  1291 // B.  In the future we might fold all the suspend bits into a
  1292 //     composite per-thread suspend flag and then update it with CAS().
  1293 //     Alternately, a Dekker-like mechanism with multiple variables
  1294 //     would suffice:
  1295 //       ST Self->_suspend_equivalent = false
  1296 //       MEMBAR
  1297 //       LD Self_>_suspend_flags
  1298 //
  1301 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
  1302    int Mode = Knob_FastHSSEC ;
  1303    if (Mode && !jSelf->is_external_suspend()) {
  1304       assert (jSelf->is_suspend_equivalent(), "invariant") ;
  1305       jSelf->clear_suspend_equivalent() ;
  1306       if (2 == Mode) OrderAccess::storeload() ;
  1307       if (!jSelf->is_external_suspend()) return false ;
  1308       // We raced a suspension -- fall thru into the slow path
  1309       TEVENT (ExitSuspendEquivalent - raced) ;
  1310       jSelf->set_suspend_equivalent() ;
  1312    return jSelf->handle_special_suspend_equivalent_condition() ;
  1316 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
  1317    assert (_owner == Self, "invariant") ;
  1319    // Exit protocol:
  1320    // 1. ST _succ = wakee
  1321    // 2. membar #loadstore|#storestore;
  1322    // 2. ST _owner = NULL
  1323    // 3. unpark(wakee)
  1325    _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
  1326    ParkEvent * Trigger = Wakee->_event ;
  1328    // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
  1329    // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
  1330    // out-of-scope (non-extant).
  1331    Wakee  = NULL ;
  1333    // Drop the lock
  1334    OrderAccess::release_store_ptr (&_owner, NULL) ;
  1335    OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
  1337    if (SafepointSynchronize::do_call_back()) {
  1338       TEVENT (unpark before SAFEPOINT) ;
  1341    DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
  1342    Trigger->unpark() ;
  1344    // Maintain stats and report events to JVMTI
  1345    if (ObjectMonitor::_sync_Parks != NULL) {
  1346       ObjectMonitor::_sync_Parks->inc() ;
  1351 // -----------------------------------------------------------------------------
  1352 // Class Loader deadlock handling.
  1353 //
  1354 // complete_exit exits a lock returning recursion count
  1355 // complete_exit/reenter operate as a wait without waiting
  1356 // complete_exit requires an inflated monitor
  1357 // The _owner field is not always the Thread addr even with an
  1358 // inflated monitor, e.g. the monitor can be inflated by a non-owning
  1359 // thread due to contention.
  1360 intptr_t ObjectMonitor::complete_exit(TRAPS) {
  1361    Thread * const Self = THREAD;
  1362    assert(Self->is_Java_thread(), "Must be Java thread!");
  1363    JavaThread *jt = (JavaThread *)THREAD;
  1365    DeferredInitialize();
  1367    if (THREAD != _owner) {
  1368     if (THREAD->is_lock_owned ((address)_owner)) {
  1369        assert(_recursions == 0, "internal state error");
  1370        _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
  1371        _recursions = 0 ;
  1372        OwnerIsThread = 1 ;
  1376    guarantee(Self == _owner, "complete_exit not owner");
  1377    intptr_t save = _recursions; // record the old recursion count
  1378    _recursions = 0;        // set the recursion level to be 0
  1379    exit (true, Self) ;           // exit the monitor
  1380    guarantee (_owner != Self, "invariant");
  1381    return save;
  1384 // reenter() enters a lock and sets recursion count
  1385 // complete_exit/reenter operate as a wait without waiting
  1386 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
  1387    Thread * const Self = THREAD;
  1388    assert(Self->is_Java_thread(), "Must be Java thread!");
  1389    JavaThread *jt = (JavaThread *)THREAD;
  1391    guarantee(_owner != Self, "reenter already owner");
  1392    enter (THREAD);       // enter the monitor
  1393    guarantee (_recursions == 0, "reenter recursion");
  1394    _recursions = recursions;
  1395    return;
  1399 // -----------------------------------------------------------------------------
  1400 // A macro is used below because there may already be a pending
  1401 // exception which should not abort the execution of the routines
  1402 // which use this (which is why we don't put this into check_slow and
  1403 // call it with a CHECK argument).
  1405 #define CHECK_OWNER()                                                             \
  1406   do {                                                                            \
  1407     if (THREAD != _owner) {                                                       \
  1408       if (THREAD->is_lock_owned((address) _owner)) {                              \
  1409         _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
  1410         _recursions = 0;                                                          \
  1411         OwnerIsThread = 1 ;                                                       \
  1412       } else {                                                                    \
  1413         TEVENT (Throw IMSX) ;                                                     \
  1414         THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
  1415       }                                                                           \
  1416     }                                                                             \
  1417   } while (false)
  1419 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
  1420 // TODO-FIXME: remove check_slow() -- it's likely dead.
  1422 void ObjectMonitor::check_slow(TRAPS) {
  1423   TEVENT (check_slow - throw IMSX) ;
  1424   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
  1425   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
  1428 static int Adjust (volatile int * adr, int dx) {
  1429   int v ;
  1430   for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
  1431   return v ;
  1434 // helper method for posting a monitor wait event
  1435 void ObjectMonitor::post_monitor_wait_event(EventJavaMonitorWait* event,
  1436                                                            jlong notifier_tid,
  1437                                                            jlong timeout,
  1438                                                            bool timedout) {
  1439   event->set_klass(((oop)this->object())->klass());
  1440   event->set_timeout((TYPE_ULONG)timeout);
  1441   event->set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
  1442   event->set_notifier((TYPE_OSTHREAD)notifier_tid);
  1443   event->set_timedOut((TYPE_BOOLEAN)timedout);
  1444   event->commit();
  1447 // -----------------------------------------------------------------------------
  1448 // Wait/Notify/NotifyAll
  1449 //
  1450 // Note: a subset of changes to ObjectMonitor::wait()
  1451 // will need to be replicated in complete_exit above
  1452 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
  1453    Thread * const Self = THREAD ;
  1454    assert(Self->is_Java_thread(), "Must be Java thread!");
  1455    JavaThread *jt = (JavaThread *)THREAD;
  1457    DeferredInitialize () ;
  1459    // Throw IMSX or IEX.
  1460    CHECK_OWNER();
  1462    EventJavaMonitorWait event;
  1464    // check for a pending interrupt
  1465    if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
  1466      // post monitor waited event.  Note that this is past-tense, we are done waiting.
  1467      if (JvmtiExport::should_post_monitor_waited()) {
  1468         // Note: 'false' parameter is passed here because the
  1469         // wait was not timed out due to thread interrupt.
  1470         JvmtiExport::post_monitor_waited(jt, this, false);
  1472         // In this short circuit of the monitor wait protocol, the
  1473         // current thread never drops ownership of the monitor and
  1474         // never gets added to the wait queue so the current thread
  1475         // cannot be made the successor. This means that the
  1476         // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
  1477         // consume an unpark() meant for the ParkEvent associated with
  1478         // this ObjectMonitor.
  1480      if (event.should_commit()) {
  1481        post_monitor_wait_event(&event, 0, millis, false);
  1483      TEVENT (Wait - Throw IEX) ;
  1484      THROW(vmSymbols::java_lang_InterruptedException());
  1485      return ;
  1488    TEVENT (Wait) ;
  1490    assert (Self->_Stalled == 0, "invariant") ;
  1491    Self->_Stalled = intptr_t(this) ;
  1492    jt->set_current_waiting_monitor(this);
  1494    // create a node to be put into the queue
  1495    // Critically, after we reset() the event but prior to park(), we must check
  1496    // for a pending interrupt.
  1497    ObjectWaiter node(Self);
  1498    node.TState = ObjectWaiter::TS_WAIT ;
  1499    Self->_ParkEvent->reset() ;
  1500    OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
  1502    // Enter the waiting queue, which is a circular doubly linked list in this case
  1503    // but it could be a priority queue or any data structure.
  1504    // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
  1505    // by the the owner of the monitor *except* in the case where park()
  1506    // returns because of a timeout of interrupt.  Contention is exceptionally rare
  1507    // so we use a simple spin-lock instead of a heavier-weight blocking lock.
  1509    Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
  1510    AddWaiter (&node) ;
  1511    Thread::SpinRelease (&_WaitSetLock) ;
  1513    if ((SyncFlags & 4) == 0) {
  1514       _Responsible = NULL ;
  1516    intptr_t save = _recursions; // record the old recursion count
  1517    _waiters++;                  // increment the number of waiters
  1518    _recursions = 0;             // set the recursion level to be 1
  1519    exit (true, Self) ;                    // exit the monitor
  1520    guarantee (_owner != Self, "invariant") ;
  1522    // The thread is on the WaitSet list - now park() it.
  1523    // On MP systems it's conceivable that a brief spin before we park
  1524    // could be profitable.
  1525    //
  1526    // TODO-FIXME: change the following logic to a loop of the form
  1527    //   while (!timeout && !interrupted && _notified == 0) park()
  1529    int ret = OS_OK ;
  1530    int WasNotified = 0 ;
  1531    { // State transition wrappers
  1532      OSThread* osthread = Self->osthread();
  1533      OSThreadWaitState osts(osthread, true);
  1535        ThreadBlockInVM tbivm(jt);
  1536        // Thread is in thread_blocked state and oop access is unsafe.
  1537        jt->set_suspend_equivalent();
  1539        if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
  1540            // Intentionally empty
  1541        } else
  1542        if (node._notified == 0) {
  1543          if (millis <= 0) {
  1544             Self->_ParkEvent->park () ;
  1545          } else {
  1546             ret = Self->_ParkEvent->park (millis) ;
  1550        // were we externally suspended while we were waiting?
  1551        if (ExitSuspendEquivalent (jt)) {
  1552           // TODO-FIXME: add -- if succ == Self then succ = null.
  1553           jt->java_suspend_self();
  1556      } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
  1559      // Node may be on the WaitSet, the EntryList (or cxq), or in transition
  1560      // from the WaitSet to the EntryList.
  1561      // See if we need to remove Node from the WaitSet.
  1562      // We use double-checked locking to avoid grabbing _WaitSetLock
  1563      // if the thread is not on the wait queue.
  1564      //
  1565      // Note that we don't need a fence before the fetch of TState.
  1566      // In the worst case we'll fetch a old-stale value of TS_WAIT previously
  1567      // written by the is thread. (perhaps the fetch might even be satisfied
  1568      // by a look-aside into the processor's own store buffer, although given
  1569      // the length of the code path between the prior ST and this load that's
  1570      // highly unlikely).  If the following LD fetches a stale TS_WAIT value
  1571      // then we'll acquire the lock and then re-fetch a fresh TState value.
  1572      // That is, we fail toward safety.
  1574      if (node.TState == ObjectWaiter::TS_WAIT) {
  1575          Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
  1576          if (node.TState == ObjectWaiter::TS_WAIT) {
  1577             DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
  1578             assert(node._notified == 0, "invariant");
  1579             node.TState = ObjectWaiter::TS_RUN ;
  1581          Thread::SpinRelease (&_WaitSetLock) ;
  1584      // The thread is now either on off-list (TS_RUN),
  1585      // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
  1586      // The Node's TState variable is stable from the perspective of this thread.
  1587      // No other threads will asynchronously modify TState.
  1588      guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
  1589      OrderAccess::loadload() ;
  1590      if (_succ == Self) _succ = NULL ;
  1591      WasNotified = node._notified ;
  1593      // Reentry phase -- reacquire the monitor.
  1594      // re-enter contended monitor after object.wait().
  1595      // retain OBJECT_WAIT state until re-enter successfully completes
  1596      // Thread state is thread_in_vm and oop access is again safe,
  1597      // although the raw address of the object may have changed.
  1598      // (Don't cache naked oops over safepoints, of course).
  1600      // post monitor waited event. Note that this is past-tense, we are done waiting.
  1601      if (JvmtiExport::should_post_monitor_waited()) {
  1602        JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
  1604        if (node._notified != 0 && _succ == Self) {
  1605          // In this part of the monitor wait-notify-reenter protocol it
  1606          // is possible (and normal) for another thread to do a fastpath
  1607          // monitor enter-exit while this thread is still trying to get
  1608          // to the reenter portion of the protocol.
  1609          //
  1610          // The ObjectMonitor was notified and the current thread is
  1611          // the successor which also means that an unpark() has already
  1612          // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
  1613          // consume the unpark() that was done when the successor was
  1614          // set because the same ParkEvent is shared between Java
  1615          // monitors and JVM/TI RawMonitors (for now).
  1616          //
  1617          // We redo the unpark() to ensure forward progress, i.e., we
  1618          // don't want all pending threads hanging (parked) with none
  1619          // entering the unlocked monitor.
  1620          node._event->unpark();
  1624      if (event.should_commit()) {
  1625        post_monitor_wait_event(&event, node._notifier_tid, millis, ret == OS_TIMEOUT);
  1628      OrderAccess::fence() ;
  1630      assert (Self->_Stalled != 0, "invariant") ;
  1631      Self->_Stalled = 0 ;
  1633      assert (_owner != Self, "invariant") ;
  1634      ObjectWaiter::TStates v = node.TState ;
  1635      if (v == ObjectWaiter::TS_RUN) {
  1636          enter (Self) ;
  1637      } else {
  1638          guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
  1639          ReenterI (Self, &node) ;
  1640          node.wait_reenter_end(this);
  1643      // Self has reacquired the lock.
  1644      // Lifecycle - the node representing Self must not appear on any queues.
  1645      // Node is about to go out-of-scope, but even if it were immortal we wouldn't
  1646      // want residual elements associated with this thread left on any lists.
  1647      guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
  1648      assert    (_owner == Self, "invariant") ;
  1649      assert    (_succ != Self , "invariant") ;
  1650    } // OSThreadWaitState()
  1652    jt->set_current_waiting_monitor(NULL);
  1654    guarantee (_recursions == 0, "invariant") ;
  1655    _recursions = save;     // restore the old recursion count
  1656    _waiters--;             // decrement the number of waiters
  1658    // Verify a few postconditions
  1659    assert (_owner == Self       , "invariant") ;
  1660    assert (_succ  != Self       , "invariant") ;
  1661    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
  1663    if (SyncFlags & 32) {
  1664       OrderAccess::fence() ;
  1667    // check if the notification happened
  1668    if (!WasNotified) {
  1669      // no, it could be timeout or Thread.interrupt() or both
  1670      // check for interrupt event, otherwise it is timeout
  1671      if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
  1672        TEVENT (Wait - throw IEX from epilog) ;
  1673        THROW(vmSymbols::java_lang_InterruptedException());
  1677    // NOTE: Spurious wake up will be consider as timeout.
  1678    // Monitor notify has precedence over thread interrupt.
  1682 // Consider:
  1683 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
  1684 // then instead of transferring a thread from the WaitSet to the EntryList
  1685 // we might just dequeue a thread from the WaitSet and directly unpark() it.
  1687 void ObjectMonitor::notify(TRAPS) {
  1688   CHECK_OWNER();
  1689   if (_WaitSet == NULL) {
  1690      TEVENT (Empty-Notify) ;
  1691      return ;
  1693   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
  1695   int Policy = Knob_MoveNotifyee ;
  1697   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
  1698   ObjectWaiter * iterator = DequeueWaiter() ;
  1699   if (iterator != NULL) {
  1700      TEVENT (Notify1 - Transfer) ;
  1701      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
  1702      guarantee (iterator->_notified == 0, "invariant") ;
  1703      if (Policy != 4) {
  1704         iterator->TState = ObjectWaiter::TS_ENTER ;
  1706      iterator->_notified = 1 ;
  1707      Thread * Self = THREAD;
  1708      iterator->_notifier_tid = Self->osthread()->thread_id();
  1710      ObjectWaiter * List = _EntryList ;
  1711      if (List != NULL) {
  1712         assert (List->_prev == NULL, "invariant") ;
  1713         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1714         assert (List != iterator, "invariant") ;
  1717      if (Policy == 0) {       // prepend to EntryList
  1718          if (List == NULL) {
  1719              iterator->_next = iterator->_prev = NULL ;
  1720              _EntryList = iterator ;
  1721          } else {
  1722              List->_prev = iterator ;
  1723              iterator->_next = List ;
  1724              iterator->_prev = NULL ;
  1725              _EntryList = iterator ;
  1727      } else
  1728      if (Policy == 1) {      // append to EntryList
  1729          if (List == NULL) {
  1730              iterator->_next = iterator->_prev = NULL ;
  1731              _EntryList = iterator ;
  1732          } else {
  1733             // CONSIDER:  finding the tail currently requires a linear-time walk of
  1734             // the EntryList.  We can make tail access constant-time by converting to
  1735             // a CDLL instead of using our current DLL.
  1736             ObjectWaiter * Tail ;
  1737             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
  1738             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
  1739             Tail->_next = iterator ;
  1740             iterator->_prev = Tail ;
  1741             iterator->_next = NULL ;
  1743      } else
  1744      if (Policy == 2) {      // prepend to cxq
  1745          // prepend to cxq
  1746          if (List == NULL) {
  1747              iterator->_next = iterator->_prev = NULL ;
  1748              _EntryList = iterator ;
  1749          } else {
  1750             iterator->TState = ObjectWaiter::TS_CXQ ;
  1751             for (;;) {
  1752                 ObjectWaiter * Front = _cxq ;
  1753                 iterator->_next = Front ;
  1754                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
  1755                     break ;
  1759      } else
  1760      if (Policy == 3) {      // append to cxq
  1761         iterator->TState = ObjectWaiter::TS_CXQ ;
  1762         for (;;) {
  1763             ObjectWaiter * Tail ;
  1764             Tail = _cxq ;
  1765             if (Tail == NULL) {
  1766                 iterator->_next = NULL ;
  1767                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
  1768                    break ;
  1770             } else {
  1771                 while (Tail->_next != NULL) Tail = Tail->_next ;
  1772                 Tail->_next = iterator ;
  1773                 iterator->_prev = Tail ;
  1774                 iterator->_next = NULL ;
  1775                 break ;
  1778      } else {
  1779         ParkEvent * ev = iterator->_event ;
  1780         iterator->TState = ObjectWaiter::TS_RUN ;
  1781         OrderAccess::fence() ;
  1782         ev->unpark() ;
  1785      if (Policy < 4) {
  1786        iterator->wait_reenter_begin(this);
  1789      // _WaitSetLock protects the wait queue, not the EntryList.  We could
  1790      // move the add-to-EntryList operation, above, outside the critical section
  1791      // protected by _WaitSetLock.  In practice that's not useful.  With the
  1792      // exception of  wait() timeouts and interrupts the monitor owner
  1793      // is the only thread that grabs _WaitSetLock.  There's almost no contention
  1794      // on _WaitSetLock so it's not profitable to reduce the length of the
  1795      // critical section.
  1798   Thread::SpinRelease (&_WaitSetLock) ;
  1800   if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
  1801      ObjectMonitor::_sync_Notifications->inc() ;
  1806 void ObjectMonitor::notifyAll(TRAPS) {
  1807   CHECK_OWNER();
  1808   ObjectWaiter* iterator;
  1809   if (_WaitSet == NULL) {
  1810       TEVENT (Empty-NotifyAll) ;
  1811       return ;
  1813   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
  1815   int Policy = Knob_MoveNotifyee ;
  1816   int Tally = 0 ;
  1817   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
  1819   for (;;) {
  1820      iterator = DequeueWaiter () ;
  1821      if (iterator == NULL) break ;
  1822      TEVENT (NotifyAll - Transfer1) ;
  1823      ++Tally ;
  1825      // Disposition - what might we do with iterator ?
  1826      // a.  add it directly to the EntryList - either tail or head.
  1827      // b.  push it onto the front of the _cxq.
  1828      // For now we use (a).
  1830      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
  1831      guarantee (iterator->_notified == 0, "invariant") ;
  1832      iterator->_notified = 1 ;
  1833      Thread * Self = THREAD;
  1834      iterator->_notifier_tid = Self->osthread()->thread_id();
  1835      if (Policy != 4) {
  1836         iterator->TState = ObjectWaiter::TS_ENTER ;
  1839      ObjectWaiter * List = _EntryList ;
  1840      if (List != NULL) {
  1841         assert (List->_prev == NULL, "invariant") ;
  1842         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1843         assert (List != iterator, "invariant") ;
  1846      if (Policy == 0) {       // prepend to EntryList
  1847          if (List == NULL) {
  1848              iterator->_next = iterator->_prev = NULL ;
  1849              _EntryList = iterator ;
  1850          } else {
  1851              List->_prev = iterator ;
  1852              iterator->_next = List ;
  1853              iterator->_prev = NULL ;
  1854              _EntryList = iterator ;
  1856      } else
  1857      if (Policy == 1) {      // append to EntryList
  1858          if (List == NULL) {
  1859              iterator->_next = iterator->_prev = NULL ;
  1860              _EntryList = iterator ;
  1861          } else {
  1862             // CONSIDER:  finding the tail currently requires a linear-time walk of
  1863             // the EntryList.  We can make tail access constant-time by converting to
  1864             // a CDLL instead of using our current DLL.
  1865             ObjectWaiter * Tail ;
  1866             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
  1867             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
  1868             Tail->_next = iterator ;
  1869             iterator->_prev = Tail ;
  1870             iterator->_next = NULL ;
  1872      } else
  1873      if (Policy == 2) {      // prepend to cxq
  1874          // prepend to cxq
  1875          iterator->TState = ObjectWaiter::TS_CXQ ;
  1876          for (;;) {
  1877              ObjectWaiter * Front = _cxq ;
  1878              iterator->_next = Front ;
  1879              if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
  1880                  break ;
  1883      } else
  1884      if (Policy == 3) {      // append to cxq
  1885         iterator->TState = ObjectWaiter::TS_CXQ ;
  1886         for (;;) {
  1887             ObjectWaiter * Tail ;
  1888             Tail = _cxq ;
  1889             if (Tail == NULL) {
  1890                 iterator->_next = NULL ;
  1891                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
  1892                    break ;
  1894             } else {
  1895                 while (Tail->_next != NULL) Tail = Tail->_next ;
  1896                 Tail->_next = iterator ;
  1897                 iterator->_prev = Tail ;
  1898                 iterator->_next = NULL ;
  1899                 break ;
  1902      } else {
  1903         ParkEvent * ev = iterator->_event ;
  1904         iterator->TState = ObjectWaiter::TS_RUN ;
  1905         OrderAccess::fence() ;
  1906         ev->unpark() ;
  1909      if (Policy < 4) {
  1910        iterator->wait_reenter_begin(this);
  1913      // _WaitSetLock protects the wait queue, not the EntryList.  We could
  1914      // move the add-to-EntryList operation, above, outside the critical section
  1915      // protected by _WaitSetLock.  In practice that's not useful.  With the
  1916      // exception of  wait() timeouts and interrupts the monitor owner
  1917      // is the only thread that grabs _WaitSetLock.  There's almost no contention
  1918      // on _WaitSetLock so it's not profitable to reduce the length of the
  1919      // critical section.
  1922   Thread::SpinRelease (&_WaitSetLock) ;
  1924   if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
  1925      ObjectMonitor::_sync_Notifications->inc(Tally) ;
  1929 // -----------------------------------------------------------------------------
  1930 // Adaptive Spinning Support
  1931 //
  1932 // Adaptive spin-then-block - rational spinning
  1933 //
  1934 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
  1935 // algorithm.  On high order SMP systems it would be better to start with
  1936 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
  1937 // a contending thread could enqueue itself on the cxq and then spin locally
  1938 // on a thread-specific variable such as its ParkEvent._Event flag.
  1939 // That's left as an exercise for the reader.  Note that global spinning is
  1940 // not problematic on Niagara, as the L2$ serves the interconnect and has both
  1941 // low latency and massive bandwidth.
  1942 //
  1943 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
  1944 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
  1945 // (duration) or we can fix the count at approximately the duration of
  1946 // a context switch and vary the frequency.   Of course we could also
  1947 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
  1948 // See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
  1949 //
  1950 // This implementation varies the duration "D", where D varies with
  1951 // the success rate of recent spin attempts. (D is capped at approximately
  1952 // length of a round-trip context switch).  The success rate for recent
  1953 // spin attempts is a good predictor of the success rate of future spin
  1954 // attempts.  The mechanism adapts automatically to varying critical
  1955 // section length (lock modality), system load and degree of parallelism.
  1956 // D is maintained per-monitor in _SpinDuration and is initialized
  1957 // optimistically.  Spin frequency is fixed at 100%.
  1958 //
  1959 // Note that _SpinDuration is volatile, but we update it without locks
  1960 // or atomics.  The code is designed so that _SpinDuration stays within
  1961 // a reasonable range even in the presence of races.  The arithmetic
  1962 // operations on _SpinDuration are closed over the domain of legal values,
  1963 // so at worst a race will install and older but still legal value.
  1964 // At the very worst this introduces some apparent non-determinism.
  1965 // We might spin when we shouldn't or vice-versa, but since the spin
  1966 // count are relatively short, even in the worst case, the effect is harmless.
  1967 //
  1968 // Care must be taken that a low "D" value does not become an
  1969 // an absorbing state.  Transient spinning failures -- when spinning
  1970 // is overall profitable -- should not cause the system to converge
  1971 // on low "D" values.  We want spinning to be stable and predictable
  1972 // and fairly responsive to change and at the same time we don't want
  1973 // it to oscillate, become metastable, be "too" non-deterministic,
  1974 // or converge on or enter undesirable stable absorbing states.
  1975 //
  1976 // We implement a feedback-based control system -- using past behavior
  1977 // to predict future behavior.  We face two issues: (a) if the
  1978 // input signal is random then the spin predictor won't provide optimal
  1979 // results, and (b) if the signal frequency is too high then the control
  1980 // system, which has some natural response lag, will "chase" the signal.
  1981 // (b) can arise from multimodal lock hold times.  Transient preemption
  1982 // can also result in apparent bimodal lock hold times.
  1983 // Although sub-optimal, neither condition is particularly harmful, as
  1984 // in the worst-case we'll spin when we shouldn't or vice-versa.
  1985 // The maximum spin duration is rather short so the failure modes aren't bad.
  1986 // To be conservative, I've tuned the gain in system to bias toward
  1987 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
  1988 // "rings" or oscillates between spinning and not spinning.  This happens
  1989 // when spinning is just on the cusp of profitability, however, so the
  1990 // situation is not dire.  The state is benign -- there's no need to add
  1991 // hysteresis control to damp the transition rate between spinning and
  1992 // not spinning.
  1993 //
  1995 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
  1996 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
  1998 // Spinning: Fixed frequency (100%), vary duration
  2001 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
  2003     // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
  2004     int ctr = Knob_FixedSpin ;
  2005     if (ctr != 0) {
  2006         while (--ctr >= 0) {
  2007             if (TryLock (Self) > 0) return 1 ;
  2008             SpinPause () ;
  2010         return 0 ;
  2013     for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
  2014       if (TryLock(Self) > 0) {
  2015         // Increase _SpinDuration ...
  2016         // Note that we don't clamp SpinDuration precisely at SpinLimit.
  2017         // Raising _SpurDuration to the poverty line is key.
  2018         int x = _SpinDuration ;
  2019         if (x < Knob_SpinLimit) {
  2020            if (x < Knob_Poverty) x = Knob_Poverty ;
  2021            _SpinDuration = x + Knob_BonusB ;
  2023         return 1 ;
  2025       SpinPause () ;
  2028     // Admission control - verify preconditions for spinning
  2029     //
  2030     // We always spin a little bit, just to prevent _SpinDuration == 0 from
  2031     // becoming an absorbing state.  Put another way, we spin briefly to
  2032     // sample, just in case the system load, parallelism, contention, or lock
  2033     // modality changed.
  2034     //
  2035     // Consider the following alternative:
  2036     // Periodically set _SpinDuration = _SpinLimit and try a long/full
  2037     // spin attempt.  "Periodically" might mean after a tally of
  2038     // the # of failed spin attempts (or iterations) reaches some threshold.
  2039     // This takes us into the realm of 1-out-of-N spinning, where we
  2040     // hold the duration constant but vary the frequency.
  2042     ctr = _SpinDuration  ;
  2043     if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
  2044     if (ctr <= 0) return 0 ;
  2046     if (Knob_SuccRestrict && _succ != NULL) return 0 ;
  2047     if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
  2048        TEVENT (Spin abort - notrunnable [TOP]);
  2049        return 0 ;
  2052     int MaxSpin = Knob_MaxSpinners ;
  2053     if (MaxSpin >= 0) {
  2054        if (_Spinner > MaxSpin) {
  2055           TEVENT (Spin abort -- too many spinners) ;
  2056           return 0 ;
  2058        // Slighty racy, but benign ...
  2059        Adjust (&_Spinner, 1) ;
  2062     // We're good to spin ... spin ingress.
  2063     // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
  2064     // when preparing to LD...CAS _owner, etc and the CAS is likely
  2065     // to succeed.
  2066     int hits    = 0 ;
  2067     int msk     = 0 ;
  2068     int caspty  = Knob_CASPenalty ;
  2069     int oxpty   = Knob_OXPenalty ;
  2070     int sss     = Knob_SpinSetSucc ;
  2071     if (sss && _succ == NULL ) _succ = Self ;
  2072     Thread * prv = NULL ;
  2074     // There are three ways to exit the following loop:
  2075     // 1.  A successful spin where this thread has acquired the lock.
  2076     // 2.  Spin failure with prejudice
  2077     // 3.  Spin failure without prejudice
  2079     while (--ctr >= 0) {
  2081       // Periodic polling -- Check for pending GC
  2082       // Threads may spin while they're unsafe.
  2083       // We don't want spinning threads to delay the JVM from reaching
  2084       // a stop-the-world safepoint or to steal cycles from GC.
  2085       // If we detect a pending safepoint we abort in order that
  2086       // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
  2087       // this thread, if safe, doesn't steal cycles from GC.
  2088       // This is in keeping with the "no loitering in runtime" rule.
  2089       // We periodically check to see if there's a safepoint pending.
  2090       if ((ctr & 0xFF) == 0) {
  2091          if (SafepointSynchronize::do_call_back()) {
  2092             TEVENT (Spin: safepoint) ;
  2093             goto Abort ;           // abrupt spin egress
  2095          if (Knob_UsePause & 1) SpinPause () ;
  2097          int (*scb)(intptr_t,int) = SpinCallbackFunction ;
  2098          if (hits > 50 && scb != NULL) {
  2099             int abend = (*scb)(SpinCallbackArgument, 0) ;
  2103       if (Knob_UsePause & 2) SpinPause() ;
  2105       // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
  2106       // This is useful on classic SMP systems, but is of less utility on
  2107       // N1-style CMT platforms.
  2108       //
  2109       // Trade-off: lock acquisition latency vs coherency bandwidth.
  2110       // Lock hold times are typically short.  A histogram
  2111       // of successful spin attempts shows that we usually acquire
  2112       // the lock early in the spin.  That suggests we want to
  2113       // sample _owner frequently in the early phase of the spin,
  2114       // but then back-off and sample less frequently as the spin
  2115       // progresses.  The back-off makes a good citizen on SMP big
  2116       // SMP systems.  Oversampling _owner can consume excessive
  2117       // coherency bandwidth.  Relatedly, if we _oversample _owner we
  2118       // can inadvertently interfere with the the ST m->owner=null.
  2119       // executed by the lock owner.
  2120       if (ctr & msk) continue ;
  2121       ++hits ;
  2122       if ((hits & 0xF) == 0) {
  2123         // The 0xF, above, corresponds to the exponent.
  2124         // Consider: (msk+1)|msk
  2125         msk = ((msk << 2)|3) & BackOffMask ;
  2128       // Probe _owner with TATAS
  2129       // If this thread observes the monitor transition or flicker
  2130       // from locked to unlocked to locked, then the odds that this
  2131       // thread will acquire the lock in this spin attempt go down
  2132       // considerably.  The same argument applies if the CAS fails
  2133       // or if we observe _owner change from one non-null value to
  2134       // another non-null value.   In such cases we might abort
  2135       // the spin without prejudice or apply a "penalty" to the
  2136       // spin count-down variable "ctr", reducing it by 100, say.
  2138       Thread * ox = (Thread *) _owner ;
  2139       if (ox == NULL) {
  2140          ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
  2141          if (ox == NULL) {
  2142             // The CAS succeeded -- this thread acquired ownership
  2143             // Take care of some bookkeeping to exit spin state.
  2144             if (sss && _succ == Self) {
  2145                _succ = NULL ;
  2147             if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
  2149             // Increase _SpinDuration :
  2150             // The spin was successful (profitable) so we tend toward
  2151             // longer spin attempts in the future.
  2152             // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
  2153             // If we acquired the lock early in the spin cycle it
  2154             // makes sense to increase _SpinDuration proportionally.
  2155             // Note that we don't clamp SpinDuration precisely at SpinLimit.
  2156             int x = _SpinDuration ;
  2157             if (x < Knob_SpinLimit) {
  2158                 if (x < Knob_Poverty) x = Knob_Poverty ;
  2159                 _SpinDuration = x + Knob_Bonus ;
  2161             return 1 ;
  2164          // The CAS failed ... we can take any of the following actions:
  2165          // * penalize: ctr -= Knob_CASPenalty
  2166          // * exit spin with prejudice -- goto Abort;
  2167          // * exit spin without prejudice.
  2168          // * Since CAS is high-latency, retry again immediately.
  2169          prv = ox ;
  2170          TEVENT (Spin: cas failed) ;
  2171          if (caspty == -2) break ;
  2172          if (caspty == -1) goto Abort ;
  2173          ctr -= caspty ;
  2174          continue ;
  2177       // Did lock ownership change hands ?
  2178       if (ox != prv && prv != NULL ) {
  2179           TEVENT (spin: Owner changed)
  2180           if (oxpty == -2) break ;
  2181           if (oxpty == -1) goto Abort ;
  2182           ctr -= oxpty ;
  2184       prv = ox ;
  2186       // Abort the spin if the owner is not executing.
  2187       // The owner must be executing in order to drop the lock.
  2188       // Spinning while the owner is OFFPROC is idiocy.
  2189       // Consider: ctr -= RunnablePenalty ;
  2190       if (Knob_OState && NotRunnable (Self, ox)) {
  2191          TEVENT (Spin abort - notrunnable);
  2192          goto Abort ;
  2194       if (sss && _succ == NULL ) _succ = Self ;
  2197    // Spin failed with prejudice -- reduce _SpinDuration.
  2198    // TODO: Use an AIMD-like policy to adjust _SpinDuration.
  2199    // AIMD is globally stable.
  2200    TEVENT (Spin failure) ;
  2202      int x = _SpinDuration ;
  2203      if (x > 0) {
  2204         // Consider an AIMD scheme like: x -= (x >> 3) + 100
  2205         // This is globally sample and tends to damp the response.
  2206         x -= Knob_Penalty ;
  2207         if (x < 0) x = 0 ;
  2208         _SpinDuration = x ;
  2212  Abort:
  2213    if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
  2214    if (sss && _succ == Self) {
  2215       _succ = NULL ;
  2216       // Invariant: after setting succ=null a contending thread
  2217       // must recheck-retry _owner before parking.  This usually happens
  2218       // in the normal usage of TrySpin(), but it's safest
  2219       // to make TrySpin() as foolproof as possible.
  2220       OrderAccess::fence() ;
  2221       if (TryLock(Self) > 0) return 1 ;
  2223    return 0 ;
  2226 // NotRunnable() -- informed spinning
  2227 //
  2228 // Don't bother spinning if the owner is not eligible to drop the lock.
  2229 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
  2230 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
  2231 // The thread must be runnable in order to drop the lock in timely fashion.
  2232 // If the _owner is not runnable then spinning will not likely be
  2233 // successful (profitable).
  2234 //
  2235 // Beware -- the thread referenced by _owner could have died
  2236 // so a simply fetch from _owner->_thread_state might trap.
  2237 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
  2238 // Because of the lifecycle issues the schedctl and _thread_state values
  2239 // observed by NotRunnable() might be garbage.  NotRunnable must
  2240 // tolerate this and consider the observed _thread_state value
  2241 // as advisory.
  2242 //
  2243 // Beware too, that _owner is sometimes a BasicLock address and sometimes
  2244 // a thread pointer.  We differentiate the two cases with OwnerIsThread.
  2245 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
  2246 // with the LSB of _owner.  Another option would be to probablistically probe
  2247 // the putative _owner->TypeTag value.
  2248 //
  2249 // Checking _thread_state isn't perfect.  Even if the thread is
  2250 // in_java it might be blocked on a page-fault or have been preempted
  2251 // and sitting on a ready/dispatch queue.  _thread state in conjunction
  2252 // with schedctl.sc_state gives us a good picture of what the
  2253 // thread is doing, however.
  2254 //
  2255 // TODO: check schedctl.sc_state.
  2256 // We'll need to use SafeFetch32() to read from the schedctl block.
  2257 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
  2258 //
  2259 // The return value from NotRunnable() is *advisory* -- the
  2260 // result is based on sampling and is not necessarily coherent.
  2261 // The caller must tolerate false-negative and false-positive errors.
  2262 // Spinning, in general, is probabilistic anyway.
  2265 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
  2266     // Check either OwnerIsThread or ox->TypeTag == 2BAD.
  2267     if (!OwnerIsThread) return 0 ;
  2269     if (ox == NULL) return 0 ;
  2271     // Avoid transitive spinning ...
  2272     // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
  2273     // Immediately after T1 acquires L it's possible that T2, also
  2274     // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
  2275     // This occurs transiently after T1 acquired L but before
  2276     // T1 managed to clear T1.Stalled.  T2 does not need to abort
  2277     // its spin in this circumstance.
  2278     intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
  2280     if (BlockedOn == 1) return 1 ;
  2281     if (BlockedOn != 0) {
  2282       return BlockedOn != intptr_t(this) && _owner == ox ;
  2285     assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
  2286     int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
  2287     // consider also: jst != _thread_in_Java -- but that's overspecific.
  2288     return jst == _thread_blocked || jst == _thread_in_native ;
  2292 // -----------------------------------------------------------------------------
  2293 // WaitSet management ...
  2295 ObjectWaiter::ObjectWaiter(Thread* thread) {
  2296   _next     = NULL;
  2297   _prev     = NULL;
  2298   _notified = 0;
  2299   TState    = TS_RUN ;
  2300   _thread   = thread;
  2301   _event    = thread->_ParkEvent ;
  2302   _active   = false;
  2303   assert (_event != NULL, "invariant") ;
  2306 void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
  2307   JavaThread *jt = (JavaThread *)this->_thread;
  2308   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
  2311 void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
  2312   JavaThread *jt = (JavaThread *)this->_thread;
  2313   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
  2316 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
  2317   assert(node != NULL, "should not dequeue NULL node");
  2318   assert(node->_prev == NULL, "node already in list");
  2319   assert(node->_next == NULL, "node already in list");
  2320   // put node at end of queue (circular doubly linked list)
  2321   if (_WaitSet == NULL) {
  2322     _WaitSet = node;
  2323     node->_prev = node;
  2324     node->_next = node;
  2325   } else {
  2326     ObjectWaiter* head = _WaitSet ;
  2327     ObjectWaiter* tail = head->_prev;
  2328     assert(tail->_next == head, "invariant check");
  2329     tail->_next = node;
  2330     head->_prev = node;
  2331     node->_next = head;
  2332     node->_prev = tail;
  2336 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
  2337   // dequeue the very first waiter
  2338   ObjectWaiter* waiter = _WaitSet;
  2339   if (waiter) {
  2340     DequeueSpecificWaiter(waiter);
  2342   return waiter;
  2345 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
  2346   assert(node != NULL, "should not dequeue NULL node");
  2347   assert(node->_prev != NULL, "node already removed from list");
  2348   assert(node->_next != NULL, "node already removed from list");
  2349   // when the waiter has woken up because of interrupt,
  2350   // timeout or other spurious wake-up, dequeue the
  2351   // waiter from waiting list
  2352   ObjectWaiter* next = node->_next;
  2353   if (next == node) {
  2354     assert(node->_prev == node, "invariant check");
  2355     _WaitSet = NULL;
  2356   } else {
  2357     ObjectWaiter* prev = node->_prev;
  2358     assert(prev->_next == node, "invariant check");
  2359     assert(next->_prev == node, "invariant check");
  2360     next->_prev = prev;
  2361     prev->_next = next;
  2362     if (_WaitSet == node) {
  2363       _WaitSet = next;
  2366   node->_next = NULL;
  2367   node->_prev = NULL;
  2370 // -----------------------------------------------------------------------------
  2371 // PerfData support
  2372 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
  2373 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
  2374 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
  2375 PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
  2376 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
  2377 PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
  2378 PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
  2379 PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
  2380 PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
  2381 PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
  2382 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
  2383 PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
  2384 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
  2385 PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
  2386 PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
  2387 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
  2388 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
  2389 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;
  2391 // One-shot global initialization for the sync subsystem.
  2392 // We could also defer initialization and initialize on-demand
  2393 // the first time we call inflate().  Initialization would
  2394 // be protected - like so many things - by the MonitorCache_lock.
  2396 void ObjectMonitor::Initialize () {
  2397   static int InitializationCompleted = 0 ;
  2398   assert (InitializationCompleted == 0, "invariant") ;
  2399   InitializationCompleted = 1 ;
  2400   if (UsePerfData) {
  2401       EXCEPTION_MARK ;
  2402       #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
  2403       #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
  2404       NEWPERFCOUNTER(_sync_Inflations) ;
  2405       NEWPERFCOUNTER(_sync_Deflations) ;
  2406       NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
  2407       NEWPERFCOUNTER(_sync_FutileWakeups) ;
  2408       NEWPERFCOUNTER(_sync_Parks) ;
  2409       NEWPERFCOUNTER(_sync_EmptyNotifications) ;
  2410       NEWPERFCOUNTER(_sync_Notifications) ;
  2411       NEWPERFCOUNTER(_sync_SlowEnter) ;
  2412       NEWPERFCOUNTER(_sync_SlowExit) ;
  2413       NEWPERFCOUNTER(_sync_SlowNotify) ;
  2414       NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
  2415       NEWPERFCOUNTER(_sync_FailedSpins) ;
  2416       NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
  2417       NEWPERFCOUNTER(_sync_PrivateA) ;
  2418       NEWPERFCOUNTER(_sync_PrivateB) ;
  2419       NEWPERFCOUNTER(_sync_MonInCirculation) ;
  2420       NEWPERFCOUNTER(_sync_MonScavenged) ;
  2421       NEWPERFVARIABLE(_sync_MonExtant) ;
  2422       #undef NEWPERFCOUNTER
  2427 // Compile-time asserts
  2428 // When possible, it's better to catch errors deterministically at
  2429 // compile-time than at runtime.  The down-side to using compile-time
  2430 // asserts is that error message -- often something about negative array
  2431 // indices -- is opaque.
  2433 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
  2435 void ObjectMonitor::ctAsserts() {
  2436   CTASSERT(offset_of (ObjectMonitor, _header) == 0);
  2440 static char * kvGet (char * kvList, const char * Key) {
  2441     if (kvList == NULL) return NULL ;
  2442     size_t n = strlen (Key) ;
  2443     char * Search ;
  2444     for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
  2445         if (strncmp (Search, Key, n) == 0) {
  2446             if (Search[n] == '=') return Search + n + 1 ;
  2447             if (Search[n] == 0)   return (char *) "1" ;
  2450     return NULL ;
  2453 static int kvGetInt (char * kvList, const char * Key, int Default) {
  2454     char * v = kvGet (kvList, Key) ;
  2455     int rslt = v ? ::strtol (v, NULL, 0) : Default ;
  2456     if (Knob_ReportSettings && v != NULL) {
  2457         ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
  2458         ::fflush (stdout) ;
  2460     return rslt ;
  2463 void ObjectMonitor::DeferredInitialize () {
  2464   if (InitDone > 0) return ;
  2465   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
  2466       while (InitDone != 1) ;
  2467       return ;
  2470   // One-shot global initialization ...
  2471   // The initialization is idempotent, so we don't need locks.
  2472   // In the future consider doing this via os::init_2().
  2473   // SyncKnobs consist of <Key>=<Value> pairs in the style
  2474   // of environment variables.  Start by converting ':' to NUL.
  2476   if (SyncKnobs == NULL) SyncKnobs = "" ;
  2478   size_t sz = strlen (SyncKnobs) ;
  2479   char * knobs = (char *) malloc (sz + 2) ;
  2480   if (knobs == NULL) {
  2481      vm_exit_out_of_memory (sz + 2, OOM_MALLOC_ERROR, "Parse SyncKnobs") ;
  2482      guarantee (0, "invariant") ;
  2484   strcpy (knobs, SyncKnobs) ;
  2485   knobs[sz+1] = 0 ;
  2486   for (char * p = knobs ; *p ; p++) {
  2487      if (*p == ':') *p = 0 ;
  2490   #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
  2491   SETKNOB(ReportSettings) ;
  2492   SETKNOB(Verbose) ;
  2493   SETKNOB(FixedSpin) ;
  2494   SETKNOB(SpinLimit) ;
  2495   SETKNOB(SpinBase) ;
  2496   SETKNOB(SpinBackOff);
  2497   SETKNOB(CASPenalty) ;
  2498   SETKNOB(OXPenalty) ;
  2499   SETKNOB(LogSpins) ;
  2500   SETKNOB(SpinSetSucc) ;
  2501   SETKNOB(SuccEnabled) ;
  2502   SETKNOB(SuccRestrict) ;
  2503   SETKNOB(Penalty) ;
  2504   SETKNOB(Bonus) ;
  2505   SETKNOB(BonusB) ;
  2506   SETKNOB(Poverty) ;
  2507   SETKNOB(SpinAfterFutile) ;
  2508   SETKNOB(UsePause) ;
  2509   SETKNOB(SpinEarly) ;
  2510   SETKNOB(OState) ;
  2511   SETKNOB(MaxSpinners) ;
  2512   SETKNOB(PreSpin) ;
  2513   SETKNOB(ExitPolicy) ;
  2514   SETKNOB(QMode);
  2515   SETKNOB(ResetEvent) ;
  2516   SETKNOB(MoveNotifyee) ;
  2517   SETKNOB(FastHSSEC) ;
  2518   #undef SETKNOB
  2520   if (os::is_MP()) {
  2521      BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
  2522      if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
  2523      // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
  2524   } else {
  2525      Knob_SpinLimit = 0 ;
  2526      Knob_SpinBase  = 0 ;
  2527      Knob_PreSpin   = 0 ;
  2528      Knob_FixedSpin = -1 ;
  2531   if (Knob_LogSpins == 0) {
  2532      ObjectMonitor::_sync_FailedSpins = NULL ;
  2535   free (knobs) ;
  2536   OrderAccess::fence() ;
  2537   InitDone = 1 ;
  2540 #ifndef PRODUCT
  2541 void ObjectMonitor::verify() {
  2544 void ObjectMonitor::print() {
  2546 #endif

mercurial