src/cpu/x86/vm/templateInterpreter_x86_32.cpp

Wed, 24 Sep 2014 12:19:07 -0700

author
simonis
date
Wed, 24 Sep 2014 12:19:07 -0700
changeset 7553
f43fad8786fc
parent 6723
0bf37f737702
child 6876
710a3c8b516e
child 8368
32b682649973
permissions
-rw-r--r--

8058345: Refactor native stack printing from vmError.cpp to debug.cpp to make it available in gdb as well
Summary: Also fix stack trace on x86 to enable walking of runtime stubs and native wrappers
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "interpreter/interpreterGenerator.hpp"
    30 #include "interpreter/interpreterRuntime.hpp"
    31 #include "interpreter/templateTable.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodData.hpp"
    34 #include "oops/method.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "runtime/synchronizer.hpp"
    44 #include "runtime/timer.hpp"
    45 #include "runtime/vframeArray.hpp"
    46 #include "utilities/debug.hpp"
    47 #include "utilities/macros.hpp"
    49 #define __ _masm->
    52 #ifndef CC_INTERP
    53 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
    54 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
    55 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
    57 //------------------------------------------------------------------------------------------------------------------------
    59 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
    60   address entry = __ pc();
    62   // Note: There should be a minimal interpreter frame set up when stack
    63   // overflow occurs since we check explicitly for it now.
    64   //
    65 #ifdef ASSERT
    66   { Label L;
    67     __ lea(rax, Address(rbp,
    68                 frame::interpreter_frame_monitor_block_top_offset * wordSize));
    69     __ cmpptr(rax, rsp);  // rax, = maximal rsp for current rbp,
    70                         //  (stack grows negative)
    71     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
    72     __ stop ("interpreter frame not set up");
    73     __ bind(L);
    74   }
    75 #endif // ASSERT
    76   // Restore bcp under the assumption that the current frame is still
    77   // interpreted
    78   __ restore_bcp();
    80   // expression stack must be empty before entering the VM if an exception
    81   // happened
    82   __ empty_expression_stack();
    83   __ empty_FPU_stack();
    84   // throw exception
    85   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
    86   return entry;
    87 }
    89 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
    90   address entry = __ pc();
    91   // expression stack must be empty before entering the VM if an exception happened
    92   __ empty_expression_stack();
    93   __ empty_FPU_stack();
    94   // setup parameters
    95   // ??? convention: expect aberrant index in register rbx,
    96   __ lea(rax, ExternalAddress((address)name));
    97   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), rax, rbx);
    98   return entry;
    99 }
   101 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
   102   address entry = __ pc();
   103   // object is at TOS
   104   __ pop(rax);
   105   // expression stack must be empty before entering the VM if an exception
   106   // happened
   107   __ empty_expression_stack();
   108   __ empty_FPU_stack();
   109   __ call_VM(noreg,
   110              CAST_FROM_FN_PTR(address,
   111                               InterpreterRuntime::throw_ClassCastException),
   112              rax);
   113   return entry;
   114 }
   116 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
   117   assert(!pass_oop || message == NULL, "either oop or message but not both");
   118   address entry = __ pc();
   119   if (pass_oop) {
   120     // object is at TOS
   121     __ pop(rbx);
   122   }
   123   // expression stack must be empty before entering the VM if an exception happened
   124   __ empty_expression_stack();
   125   __ empty_FPU_stack();
   126   // setup parameters
   127   __ lea(rax, ExternalAddress((address)name));
   128   if (pass_oop) {
   129     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), rax, rbx);
   130   } else {
   131     if (message != NULL) {
   132       __ lea(rbx, ExternalAddress((address)message));
   133     } else {
   134       __ movptr(rbx, NULL_WORD);
   135     }
   136     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), rax, rbx);
   137   }
   138   // throw exception
   139   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   140   return entry;
   141 }
   144 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   145   address entry = __ pc();
   146   // NULL last_sp until next java call
   147   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   148   __ dispatch_next(state);
   149   return entry;
   150 }
   153 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
   154   address entry = __ pc();
   156 #ifdef COMPILER2
   157   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
   158   if ((state == ftos && UseSSE < 1) || (state == dtos && UseSSE < 2)) {
   159     for (int i = 1; i < 8; i++) {
   160         __ ffree(i);
   161     }
   162   } else if (UseSSE < 2) {
   163     __ empty_FPU_stack();
   164   }
   165 #endif
   166   if ((state == ftos && UseSSE < 1) || (state == dtos && UseSSE < 2)) {
   167     __ MacroAssembler::verify_FPU(1, "generate_return_entry_for compiled");
   168   } else {
   169     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
   170   }
   172   // In SSE mode, interpreter returns FP results in xmm0 but they need
   173   // to end up back on the FPU so it can operate on them.
   174   if (state == ftos && UseSSE >= 1) {
   175     __ subptr(rsp, wordSize);
   176     __ movflt(Address(rsp, 0), xmm0);
   177     __ fld_s(Address(rsp, 0));
   178     __ addptr(rsp, wordSize);
   179   } else if (state == dtos && UseSSE >= 2) {
   180     __ subptr(rsp, 2*wordSize);
   181     __ movdbl(Address(rsp, 0), xmm0);
   182     __ fld_d(Address(rsp, 0));
   183     __ addptr(rsp, 2*wordSize);
   184   }
   186   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_return_entry_for in interpreter");
   188   // Restore stack bottom in case i2c adjusted stack
   189   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
   190   // and NULL it as marker that rsp is now tos until next java call
   191   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   193   __ restore_bcp();
   194   __ restore_locals();
   196   if (state == atos) {
   197     Register mdp = rbx;
   198     Register tmp = rcx;
   199     __ profile_return_type(mdp, rax, tmp);
   200   }
   202   const Register cache = rbx;
   203   const Register index = rcx;
   204   __ get_cache_and_index_at_bcp(cache, index, 1, index_size);
   206   const Register flags = cache;
   207   __ movl(flags, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
   208   __ andl(flags, ConstantPoolCacheEntry::parameter_size_mask);
   209   __ lea(rsp, Address(rsp, flags, Interpreter::stackElementScale()));
   210   __ dispatch_next(state, step);
   212   return entry;
   213 }
   216 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
   217   address entry = __ pc();
   219   // In SSE mode, FP results are in xmm0
   220   if (state == ftos && UseSSE > 0) {
   221     __ subptr(rsp, wordSize);
   222     __ movflt(Address(rsp, 0), xmm0);
   223     __ fld_s(Address(rsp, 0));
   224     __ addptr(rsp, wordSize);
   225   } else if (state == dtos && UseSSE >= 2) {
   226     __ subptr(rsp, 2*wordSize);
   227     __ movdbl(Address(rsp, 0), xmm0);
   228     __ fld_d(Address(rsp, 0));
   229     __ addptr(rsp, 2*wordSize);
   230   }
   232   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_deopt_entry_for in interpreter");
   234   // The stack is not extended by deopt but we must NULL last_sp as this
   235   // entry is like a "return".
   236   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   237   __ restore_bcp();
   238   __ restore_locals();
   239   // handle exceptions
   240   { Label L;
   241     const Register thread = rcx;
   242     __ get_thread(thread);
   243     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   244     __ jcc(Assembler::zero, L);
   245     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
   246     __ should_not_reach_here();
   247     __ bind(L);
   248   }
   249   __ dispatch_next(state, step);
   250   return entry;
   251 }
   254 int AbstractInterpreter::BasicType_as_index(BasicType type) {
   255   int i = 0;
   256   switch (type) {
   257     case T_BOOLEAN: i = 0; break;
   258     case T_CHAR   : i = 1; break;
   259     case T_BYTE   : i = 2; break;
   260     case T_SHORT  : i = 3; break;
   261     case T_INT    : // fall through
   262     case T_LONG   : // fall through
   263     case T_VOID   : i = 4; break;
   264     case T_FLOAT  : i = 5; break;  // have to treat float and double separately for SSE
   265     case T_DOUBLE : i = 6; break;
   266     case T_OBJECT : // fall through
   267     case T_ARRAY  : i = 7; break;
   268     default       : ShouldNotReachHere();
   269   }
   270   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
   271   return i;
   272 }
   275 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
   276   address entry = __ pc();
   277   switch (type) {
   278     case T_BOOLEAN: __ c2bool(rax);            break;
   279     case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
   280     case T_BYTE   : __ sign_extend_byte (rax); break;
   281     case T_SHORT  : __ sign_extend_short(rax); break;
   282     case T_INT    : /* nothing to do */        break;
   283     case T_DOUBLE :
   284     case T_FLOAT  :
   285       { const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   286         __ pop(t);                            // remove return address first
   287         // Must return a result for interpreter or compiler. In SSE
   288         // mode, results are returned in xmm0 and the FPU stack must
   289         // be empty.
   290         if (type == T_FLOAT && UseSSE >= 1) {
   291           // Load ST0
   292           __ fld_d(Address(rsp, 0));
   293           // Store as float and empty fpu stack
   294           __ fstp_s(Address(rsp, 0));
   295           // and reload
   296           __ movflt(xmm0, Address(rsp, 0));
   297         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
   298           __ movdbl(xmm0, Address(rsp, 0));
   299         } else {
   300           // restore ST0
   301           __ fld_d(Address(rsp, 0));
   302         }
   303         // and pop the temp
   304         __ addptr(rsp, 2 * wordSize);
   305         __ push(t);                           // restore return address
   306       }
   307       break;
   308     case T_OBJECT :
   309       // retrieve result from frame
   310       __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
   311       // and verify it
   312       __ verify_oop(rax);
   313       break;
   314     default       : ShouldNotReachHere();
   315   }
   316   __ ret(0);                                   // return from result handler
   317   return entry;
   318 }
   320 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
   321   address entry = __ pc();
   322   __ push(state);
   323   __ call_VM(noreg, runtime_entry);
   324   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
   325   return entry;
   326 }
   329 // Helpers for commoning out cases in the various type of method entries.
   330 //
   332 // increment invocation count & check for overflow
   333 //
   334 // Note: checking for negative value instead of overflow
   335 //       so we have a 'sticky' overflow test
   336 //
   337 // rbx,: method
   338 // rcx: invocation counter
   339 //
   340 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   341   Label done;
   342   // Note: In tiered we increment either counters in MethodCounters* or in MDO
   343   // depending if we're profiling or not.
   344   if (TieredCompilation) {
   345     int increment = InvocationCounter::count_increment;
   346     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
   347     Label no_mdo;
   348     if (ProfileInterpreter) {
   349       // Are we profiling?
   350       __ movptr(rax, Address(rbx, Method::method_data_offset()));
   351       __ testptr(rax, rax);
   352       __ jccb(Assembler::zero, no_mdo);
   353       // Increment counter in the MDO
   354       const Address mdo_invocation_counter(rax, in_bytes(MethodData::invocation_counter_offset()) +
   355                                                 in_bytes(InvocationCounter::counter_offset()));
   356       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
   357       __ jmp(done);
   358     }
   359     __ bind(no_mdo);
   360     // Increment counter in MethodCounters
   361     const Address invocation_counter(rax,
   362                   MethodCounters::invocation_counter_offset() +
   363                   InvocationCounter::counter_offset());
   365     __ get_method_counters(rbx, rax, done);
   366     __ increment_mask_and_jump(invocation_counter, increment, mask,
   367                                rcx, false, Assembler::zero, overflow);
   368     __ bind(done);
   369   } else {
   370     const Address backedge_counter  (rax,
   371                   MethodCounters::backedge_counter_offset() +
   372                   InvocationCounter::counter_offset());
   373     const Address invocation_counter(rax,
   374                   MethodCounters::invocation_counter_offset() +
   375                   InvocationCounter::counter_offset());
   377     __ get_method_counters(rbx, rax, done);
   379     if (ProfileInterpreter) {
   380       __ incrementl(Address(rax,
   381               MethodCounters::interpreter_invocation_counter_offset()));
   382     }
   384     // Update standard invocation counters
   385     __ movl(rcx, invocation_counter);
   386     __ incrementl(rcx, InvocationCounter::count_increment);
   387     __ movl(invocation_counter, rcx);             // save invocation count
   389     __ movl(rax, backedge_counter);               // load backedge counter
   390     __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
   392     __ addl(rcx, rax);                            // add both counters
   394     // profile_method is non-null only for interpreted method so
   395     // profile_method != NULL == !native_call
   396     // BytecodeInterpreter only calls for native so code is elided.
   398     if (ProfileInterpreter && profile_method != NULL) {
   399       // Test to see if we should create a method data oop
   400       __ cmp32(rcx,
   401                ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
   402       __ jcc(Assembler::less, *profile_method_continue);
   404       // if no method data exists, go to profile_method
   405       __ test_method_data_pointer(rax, *profile_method);
   406     }
   408     __ cmp32(rcx,
   409              ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
   410     __ jcc(Assembler::aboveEqual, *overflow);
   411     __ bind(done);
   412   }
   413 }
   415 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   417   // Asm interpreter on entry
   418   // rdi - locals
   419   // rsi - bcp
   420   // rbx, - method
   421   // rdx - cpool
   422   // rbp, - interpreter frame
   424   // C++ interpreter on entry
   425   // rsi - new interpreter state pointer
   426   // rbp - interpreter frame pointer
   427   // rbx - method
   429   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
   430   // rbx, - method
   431   // rcx - rcvr (assuming there is one)
   432   // top of stack return address of interpreter caller
   433   // rsp - sender_sp
   435   // C++ interpreter only
   436   // rsi - previous interpreter state pointer
   438   // InterpreterRuntime::frequency_counter_overflow takes one argument
   439   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
   440   // The call returns the address of the verified entry point for the method or NULL
   441   // if the compilation did not complete (either went background or bailed out).
   442   __ movptr(rax, (intptr_t)false);
   443   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
   445   __ movptr(rbx, Address(rbp, method_offset));   // restore Method*
   447   // Preserve invariant that rsi/rdi contain bcp/locals of sender frame
   448   // and jump to the interpreted entry.
   449   __ jmp(*do_continue, relocInfo::none);
   451 }
   453 void InterpreterGenerator::generate_stack_overflow_check(void) {
   454   // see if we've got enough room on the stack for locals plus overhead.
   455   // the expression stack grows down incrementally, so the normal guard
   456   // page mechanism will work for that.
   457   //
   458   // Registers live on entry:
   459   //
   460   // Asm interpreter
   461   // rdx: number of additional locals this frame needs (what we must check)
   462   // rbx,: Method*
   464   // destroyed on exit
   465   // rax,
   467   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
   468   // generate_method_entry) so the guard should work for them too.
   469   //
   471   // monitor entry size: see picture of stack set (generate_method_entry) and frame_x86.hpp
   472   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
   474   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
   475   // be sure to change this if you add/subtract anything to/from the overhead area
   476   const int overhead_size = -(frame::interpreter_frame_initial_sp_offset*wordSize) + entry_size;
   478   const int page_size = os::vm_page_size();
   480   Label after_frame_check;
   482   // see if the frame is greater than one page in size. If so,
   483   // then we need to verify there is enough stack space remaining
   484   // for the additional locals.
   485   __ cmpl(rdx, (page_size - overhead_size)/Interpreter::stackElementSize);
   486   __ jcc(Assembler::belowEqual, after_frame_check);
   488   // compute rsp as if this were going to be the last frame on
   489   // the stack before the red zone
   491   Label after_frame_check_pop;
   493   __ push(rsi);
   495   const Register thread = rsi;
   497   __ get_thread(thread);
   499   const Address stack_base(thread, Thread::stack_base_offset());
   500   const Address stack_size(thread, Thread::stack_size_offset());
   502   // locals + overhead, in bytes
   503   __ lea(rax, Address(noreg, rdx, Interpreter::stackElementScale(), overhead_size));
   505 #ifdef ASSERT
   506   Label stack_base_okay, stack_size_okay;
   507   // verify that thread stack base is non-zero
   508   __ cmpptr(stack_base, (int32_t)NULL_WORD);
   509   __ jcc(Assembler::notEqual, stack_base_okay);
   510   __ stop("stack base is zero");
   511   __ bind(stack_base_okay);
   512   // verify that thread stack size is non-zero
   513   __ cmpptr(stack_size, 0);
   514   __ jcc(Assembler::notEqual, stack_size_okay);
   515   __ stop("stack size is zero");
   516   __ bind(stack_size_okay);
   517 #endif
   519   // Add stack base to locals and subtract stack size
   520   __ addptr(rax, stack_base);
   521   __ subptr(rax, stack_size);
   523   // Use the maximum number of pages we might bang.
   524   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
   525                                                                               (StackRedPages+StackYellowPages);
   526   __ addptr(rax, max_pages * page_size);
   528   // check against the current stack bottom
   529   __ cmpptr(rsp, rax);
   530   __ jcc(Assembler::above, after_frame_check_pop);
   532   __ pop(rsi);  // get saved bcp / (c++ prev state ).
   534   // Restore sender's sp as SP. This is necessary if the sender's
   535   // frame is an extended compiled frame (see gen_c2i_adapter())
   536   // and safer anyway in case of JSR292 adaptations.
   538   __ pop(rax); // return address must be moved if SP is changed
   539   __ mov(rsp, rsi);
   540   __ push(rax);
   542   // Note: the restored frame is not necessarily interpreted.
   543   // Use the shared runtime version of the StackOverflowError.
   544   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
   545   __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry()));
   546   // all done with frame size check
   547   __ bind(after_frame_check_pop);
   548   __ pop(rsi);
   550   __ bind(after_frame_check);
   551 }
   553 // Allocate monitor and lock method (asm interpreter)
   554 // rbx, - Method*
   555 //
   556 void InterpreterGenerator::lock_method(void) {
   557   // synchronize method
   558   const Address access_flags      (rbx, Method::access_flags_offset());
   559   const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   560   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   562   #ifdef ASSERT
   563     { Label L;
   564       __ movl(rax, access_flags);
   565       __ testl(rax, JVM_ACC_SYNCHRONIZED);
   566       __ jcc(Assembler::notZero, L);
   567       __ stop("method doesn't need synchronization");
   568       __ bind(L);
   569     }
   570   #endif // ASSERT
   571   // get synchronization object
   572   { Label done;
   573     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   574     __ movl(rax, access_flags);
   575     __ testl(rax, JVM_ACC_STATIC);
   576     __ movptr(rax, Address(rdi, Interpreter::local_offset_in_bytes(0)));  // get receiver (assume this is frequent case)
   577     __ jcc(Assembler::zero, done);
   578     __ movptr(rax, Address(rbx, Method::const_offset()));
   579     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
   580     __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
   581     __ movptr(rax, Address(rax, mirror_offset));
   582     __ bind(done);
   583   }
   584   // add space for monitor & lock
   585   __ subptr(rsp, entry_size);                                           // add space for a monitor entry
   586   __ movptr(monitor_block_top, rsp);                                    // set new monitor block top
   587   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
   588   __ mov(rdx, rsp);                                                    // object address
   589   __ lock_object(rdx);
   590 }
   592 //
   593 // Generate a fixed interpreter frame. This is identical setup for interpreted methods
   594 // and for native methods hence the shared code.
   596 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   597   // initialize fixed part of activation frame
   598   __ push(rax);                                       // save return address
   599   __ enter();                                         // save old & set new rbp,
   602   __ push(rsi);                                       // set sender sp
   603   __ push((int32_t)NULL_WORD);                        // leave last_sp as null
   604   __ movptr(rsi, Address(rbx,Method::const_offset())); // get ConstMethod*
   605   __ lea(rsi, Address(rsi,ConstMethod::codes_offset())); // get codebase
   606   __ push(rbx);                                      // save Method*
   607   if (ProfileInterpreter) {
   608     Label method_data_continue;
   609     __ movptr(rdx, Address(rbx, in_bytes(Method::method_data_offset())));
   610     __ testptr(rdx, rdx);
   611     __ jcc(Assembler::zero, method_data_continue);
   612     __ addptr(rdx, in_bytes(MethodData::data_offset()));
   613     __ bind(method_data_continue);
   614     __ push(rdx);                                       // set the mdp (method data pointer)
   615   } else {
   616     __ push(0);
   617   }
   619   __ movptr(rdx, Address(rbx, Method::const_offset()));
   620   __ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
   621   __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
   622   __ push(rdx);                                       // set constant pool cache
   623   __ push(rdi);                                       // set locals pointer
   624   if (native_call) {
   625     __ push(0);                                       // no bcp
   626   } else {
   627     __ push(rsi);                                     // set bcp
   628     }
   629   __ push(0);                                         // reserve word for pointer to expression stack bottom
   630   __ movptr(Address(rsp, 0), rsp);                    // set expression stack bottom
   631 }
   633 // End of helpers
   635 //
   636 // Various method entries
   637 //------------------------------------------------------------------------------------------------------------------------
   638 //
   639 //
   641 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
   643 address InterpreterGenerator::generate_accessor_entry(void) {
   645   // rbx,: Method*
   646   // rcx: receiver (preserve for slow entry into asm interpreter)
   648   // rsi: senderSP must preserved for slow path, set SP to it on fast path
   650   address entry_point = __ pc();
   651   Label xreturn_path;
   653   // do fastpath for resolved accessor methods
   654   if (UseFastAccessorMethods) {
   655     Label slow_path;
   656     // If we need a safepoint check, generate full interpreter entry.
   657     ExternalAddress state(SafepointSynchronize::address_of_state());
   658     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   659              SafepointSynchronize::_not_synchronized);
   661     __ jcc(Assembler::notEqual, slow_path);
   662     // ASM/C++ Interpreter
   663     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
   664     // Note: We can only use this code if the getfield has been resolved
   665     //       and if we don't have a null-pointer exception => check for
   666     //       these conditions first and use slow path if necessary.
   667     // rbx,: method
   668     // rcx: receiver
   669     __ movptr(rax, Address(rsp, wordSize));
   671     // check if local 0 != NULL and read field
   672     __ testptr(rax, rax);
   673     __ jcc(Assembler::zero, slow_path);
   675     // read first instruction word and extract bytecode @ 1 and index @ 2
   676     __ movptr(rdx, Address(rbx, Method::const_offset()));
   677     __ movptr(rdi, Address(rdx, ConstMethod::constants_offset()));
   678     __ movl(rdx, Address(rdx, ConstMethod::codes_offset()));
   679     // Shift codes right to get the index on the right.
   680     // The bytecode fetched looks like <index><0xb4><0x2a>
   681     __ shrl(rdx, 2*BitsPerByte);
   682     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   683     __ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes()));
   685     // rax,: local 0
   686     // rbx,: method
   687     // rcx: receiver - do not destroy since it is needed for slow path!
   688     // rcx: scratch
   689     // rdx: constant pool cache index
   690     // rdi: constant pool cache
   691     // rsi: sender sp
   693     // check if getfield has been resolved and read constant pool cache entry
   694     // check the validity of the cache entry by testing whether _indices field
   695     // contains Bytecode::_getfield in b1 byte.
   696     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
   697     __ movl(rcx,
   698             Address(rdi,
   699                     rdx,
   700                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
   701     __ shrl(rcx, 2*BitsPerByte);
   702     __ andl(rcx, 0xFF);
   703     __ cmpl(rcx, Bytecodes::_getfield);
   704     __ jcc(Assembler::notEqual, slow_path);
   706     // Note: constant pool entry is not valid before bytecode is resolved
   707     __ movptr(rcx,
   708               Address(rdi,
   709                       rdx,
   710                       Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
   711     __ movl(rdx,
   712             Address(rdi,
   713                     rdx,
   714                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
   716     Label notByte, notShort, notChar;
   717     const Address field_address (rax, rcx, Address::times_1);
   719     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   720     // because they are different sizes.
   721     // Use the type from the constant pool cache
   722     __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
   723     // Make sure we don't need to mask rdx after the above shift
   724     ConstantPoolCacheEntry::verify_tos_state_shift();
   725     __ cmpl(rdx, btos);
   726     __ jcc(Assembler::notEqual, notByte);
   727     __ load_signed_byte(rax, field_address);
   728     __ jmp(xreturn_path);
   730     __ bind(notByte);
   731     __ cmpl(rdx, stos);
   732     __ jcc(Assembler::notEqual, notShort);
   733     __ load_signed_short(rax, field_address);
   734     __ jmp(xreturn_path);
   736     __ bind(notShort);
   737     __ cmpl(rdx, ctos);
   738     __ jcc(Assembler::notEqual, notChar);
   739     __ load_unsigned_short(rax, field_address);
   740     __ jmp(xreturn_path);
   742     __ bind(notChar);
   743 #ifdef ASSERT
   744     Label okay;
   745     __ cmpl(rdx, atos);
   746     __ jcc(Assembler::equal, okay);
   747     __ cmpl(rdx, itos);
   748     __ jcc(Assembler::equal, okay);
   749     __ stop("what type is this?");
   750     __ bind(okay);
   751 #endif // ASSERT
   752     // All the rest are a 32 bit wordsize
   753     // This is ok for now. Since fast accessors should be going away
   754     __ movptr(rax, field_address);
   756     __ bind(xreturn_path);
   758     // _ireturn/_areturn
   759     __ pop(rdi);                               // get return address
   760     __ mov(rsp, rsi);                          // set sp to sender sp
   761     __ jmp(rdi);
   763     // generate a vanilla interpreter entry as the slow path
   764     __ bind(slow_path);
   766     (void) generate_normal_entry(false);
   767     return entry_point;
   768   }
   769   return NULL;
   771 }
   773 // Method entry for java.lang.ref.Reference.get.
   774 address InterpreterGenerator::generate_Reference_get_entry(void) {
   775 #if INCLUDE_ALL_GCS
   776   // Code: _aload_0, _getfield, _areturn
   777   // parameter size = 1
   778   //
   779   // The code that gets generated by this routine is split into 2 parts:
   780   //    1. The "intrinsified" code for G1 (or any SATB based GC),
   781   //    2. The slow path - which is an expansion of the regular method entry.
   782   //
   783   // Notes:-
   784   // * In the G1 code we do not check whether we need to block for
   785   //   a safepoint. If G1 is enabled then we must execute the specialized
   786   //   code for Reference.get (except when the Reference object is null)
   787   //   so that we can log the value in the referent field with an SATB
   788   //   update buffer.
   789   //   If the code for the getfield template is modified so that the
   790   //   G1 pre-barrier code is executed when the current method is
   791   //   Reference.get() then going through the normal method entry
   792   //   will be fine.
   793   // * The G1 code below can, however, check the receiver object (the instance
   794   //   of java.lang.Reference) and jump to the slow path if null. If the
   795   //   Reference object is null then we obviously cannot fetch the referent
   796   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
   797   //   regular method entry code to generate the NPE.
   798   //
   799   // This code is based on generate_accessor_enty.
   801   // rbx,: Method*
   802   // rcx: receiver (preserve for slow entry into asm interpreter)
   804   // rsi: senderSP must preserved for slow path, set SP to it on fast path
   806   address entry = __ pc();
   808   const int referent_offset = java_lang_ref_Reference::referent_offset;
   809   guarantee(referent_offset > 0, "referent offset not initialized");
   811   if (UseG1GC) {
   812     Label slow_path;
   814     // Check if local 0 != NULL
   815     // If the receiver is null then it is OK to jump to the slow path.
   816     __ movptr(rax, Address(rsp, wordSize));
   817     __ testptr(rax, rax);
   818     __ jcc(Assembler::zero, slow_path);
   820     // rax: local 0 (must be preserved across the G1 barrier call)
   821     //
   822     // rbx: method (at this point it's scratch)
   823     // rcx: receiver (at this point it's scratch)
   824     // rdx: scratch
   825     // rdi: scratch
   826     //
   827     // rsi: sender sp
   829     // Preserve the sender sp in case the pre-barrier
   830     // calls the runtime
   831     __ push(rsi);
   833     // Load the value of the referent field.
   834     const Address field_address(rax, referent_offset);
   835     __ movptr(rax, field_address);
   837     // Generate the G1 pre-barrier code to log the value of
   838     // the referent field in an SATB buffer.
   839     __ get_thread(rcx);
   840     __ g1_write_barrier_pre(noreg /* obj */,
   841                             rax /* pre_val */,
   842                             rcx /* thread */,
   843                             rbx /* tmp */,
   844                             true /* tosca_save */,
   845                             true /* expand_call */);
   847     // _areturn
   848     __ pop(rsi);                // get sender sp
   849     __ pop(rdi);                // get return address
   850     __ mov(rsp, rsi);           // set sp to sender sp
   851     __ jmp(rdi);
   853     __ bind(slow_path);
   854     (void) generate_normal_entry(false);
   856     return entry;
   857   }
   858 #endif // INCLUDE_ALL_GCS
   860   // If G1 is not enabled then attempt to go through the accessor entry point
   861   // Reference.get is an accessor
   862   return generate_accessor_entry();
   863 }
   865 /**
   866  * Method entry for static native methods:
   867  *   int java.util.zip.CRC32.update(int crc, int b)
   868  */
   869 address InterpreterGenerator::generate_CRC32_update_entry() {
   870   if (UseCRC32Intrinsics) {
   871     address entry = __ pc();
   873     // rbx,: Method*
   874     // rsi: senderSP must preserved for slow path, set SP to it on fast path
   875     // rdx: scratch
   876     // rdi: scratch
   878     Label slow_path;
   879     // If we need a safepoint check, generate full interpreter entry.
   880     ExternalAddress state(SafepointSynchronize::address_of_state());
   881     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   882              SafepointSynchronize::_not_synchronized);
   883     __ jcc(Assembler::notEqual, slow_path);
   885     // We don't generate local frame and don't align stack because
   886     // we call stub code and there is no safepoint on this path.
   888     // Load parameters
   889     const Register crc = rax;  // crc
   890     const Register val = rdx;  // source java byte value
   891     const Register tbl = rdi;  // scratch
   893     // Arguments are reversed on java expression stack
   894     __ movl(val, Address(rsp,   wordSize)); // byte value
   895     __ movl(crc, Address(rsp, 2*wordSize)); // Initial CRC
   897     __ lea(tbl, ExternalAddress(StubRoutines::crc_table_addr()));
   898     __ notl(crc); // ~crc
   899     __ update_byte_crc32(crc, val, tbl);
   900     __ notl(crc); // ~crc
   901     // result in rax
   903     // _areturn
   904     __ pop(rdi);                // get return address
   905     __ mov(rsp, rsi);           // set sp to sender sp
   906     __ jmp(rdi);
   908     // generate a vanilla native entry as the slow path
   909     __ bind(slow_path);
   911     (void) generate_native_entry(false);
   913     return entry;
   914   }
   915   return generate_native_entry(false);
   916 }
   918 /**
   919  * Method entry for static native methods:
   920  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
   921  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
   922  */
   923 address InterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
   924   if (UseCRC32Intrinsics) {
   925     address entry = __ pc();
   927     // rbx,: Method*
   928     // rsi: senderSP must preserved for slow path, set SP to it on fast path
   929     // rdx: scratch
   930     // rdi: scratch
   932     Label slow_path;
   933     // If we need a safepoint check, generate full interpreter entry.
   934     ExternalAddress state(SafepointSynchronize::address_of_state());
   935     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   936              SafepointSynchronize::_not_synchronized);
   937     __ jcc(Assembler::notEqual, slow_path);
   939     // We don't generate local frame and don't align stack because
   940     // we call stub code and there is no safepoint on this path.
   942     // Load parameters
   943     const Register crc = rax;  // crc
   944     const Register buf = rdx;  // source java byte array address
   945     const Register len = rdi;  // length
   947     // Arguments are reversed on java expression stack
   948     __ movl(len,   Address(rsp,   wordSize)); // Length
   949     // Calculate address of start element
   950     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
   951       __ movptr(buf, Address(rsp, 3*wordSize)); // long buf
   952       __ addptr(buf, Address(rsp, 2*wordSize)); // + offset
   953       __ movl(crc,   Address(rsp, 5*wordSize)); // Initial CRC
   954     } else {
   955       __ movptr(buf, Address(rsp, 3*wordSize)); // byte[] array
   956       __ addptr(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
   957       __ addptr(buf, Address(rsp, 2*wordSize)); // + offset
   958       __ movl(crc,   Address(rsp, 4*wordSize)); // Initial CRC
   959     }
   961     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()), crc, buf, len);
   962     // result in rax
   964     // _areturn
   965     __ pop(rdi);                // get return address
   966     __ mov(rsp, rsi);           // set sp to sender sp
   967     __ jmp(rdi);
   969     // generate a vanilla native entry as the slow path
   970     __ bind(slow_path);
   972     (void) generate_native_entry(false);
   974     return entry;
   975   }
   976   return generate_native_entry(false);
   977 }
   979 //
   980 // Interpreter stub for calling a native method. (asm interpreter)
   981 // This sets up a somewhat different looking stack for calling the native method
   982 // than the typical interpreter frame setup.
   983 //
   985 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   986   // determine code generation flags
   987   bool inc_counter  = UseCompiler || CountCompiledCalls;
   989   // rbx,: Method*
   990   // rsi: sender sp
   991   // rsi: previous interpreter state (C++ interpreter) must preserve
   992   address entry_point = __ pc();
   994   const Address constMethod       (rbx, Method::const_offset());
   995   const Address access_flags      (rbx, Method::access_flags_offset());
   996   const Address size_of_parameters(rcx, ConstMethod::size_of_parameters_offset());
   998   // get parameter size (always needed)
   999   __ movptr(rcx, constMethod);
  1000   __ load_unsigned_short(rcx, size_of_parameters);
  1002   // native calls don't need the stack size check since they have no expression stack
  1003   // and the arguments are already on the stack and we only add a handful of words
  1004   // to the stack
  1006   // rbx,: Method*
  1007   // rcx: size of parameters
  1008   // rsi: sender sp
  1010   __ pop(rax);                                       // get return address
  1011   // for natives the size of locals is zero
  1013   // compute beginning of parameters (rdi)
  1014   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
  1017   // add 2 zero-initialized slots for native calls
  1018   // NULL result handler
  1019   __ push((int32_t)NULL_WORD);
  1020   // NULL oop temp (mirror or jni oop result)
  1021   __ push((int32_t)NULL_WORD);
  1023   // initialize fixed part of activation frame
  1024   generate_fixed_frame(true);
  1026   // make sure method is native & not abstract
  1027 #ifdef ASSERT
  1028   __ movl(rax, access_flags);
  1030     Label L;
  1031     __ testl(rax, JVM_ACC_NATIVE);
  1032     __ jcc(Assembler::notZero, L);
  1033     __ stop("tried to execute non-native method as native");
  1034     __ bind(L);
  1036   { Label L;
  1037     __ testl(rax, JVM_ACC_ABSTRACT);
  1038     __ jcc(Assembler::zero, L);
  1039     __ stop("tried to execute abstract method in interpreter");
  1040     __ bind(L);
  1042 #endif
  1044   // Since at this point in the method invocation the exception handler
  1045   // would try to exit the monitor of synchronized methods which hasn't
  1046   // been entered yet, we set the thread local variable
  1047   // _do_not_unlock_if_synchronized to true. The remove_activation will
  1048   // check this flag.
  1050   __ get_thread(rax);
  1051   const Address do_not_unlock_if_synchronized(rax,
  1052         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1053   __ movbool(do_not_unlock_if_synchronized, true);
  1055   // increment invocation count & check for overflow
  1056   Label invocation_counter_overflow;
  1057   if (inc_counter) {
  1058     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
  1061   Label continue_after_compile;
  1062   __ bind(continue_after_compile);
  1064   bang_stack_shadow_pages(true);
  1066   // reset the _do_not_unlock_if_synchronized flag
  1067   __ get_thread(rax);
  1068   __ movbool(do_not_unlock_if_synchronized, false);
  1070   // check for synchronized methods
  1071   // Must happen AFTER invocation_counter check and stack overflow check,
  1072   // so method is not locked if overflows.
  1073   //
  1074   if (synchronized) {
  1075     lock_method();
  1076   } else {
  1077     // no synchronization necessary
  1078 #ifdef ASSERT
  1079       { Label L;
  1080         __ movl(rax, access_flags);
  1081         __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1082         __ jcc(Assembler::zero, L);
  1083         __ stop("method needs synchronization");
  1084         __ bind(L);
  1086 #endif
  1089   // start execution
  1090 #ifdef ASSERT
  1091   { Label L;
  1092     const Address monitor_block_top (rbp,
  1093                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1094     __ movptr(rax, monitor_block_top);
  1095     __ cmpptr(rax, rsp);
  1096     __ jcc(Assembler::equal, L);
  1097     __ stop("broken stack frame setup in interpreter");
  1098     __ bind(L);
  1100 #endif
  1102   // jvmti/dtrace support
  1103   __ notify_method_entry();
  1105   // work registers
  1106   const Register method = rbx;
  1107   const Register thread = rdi;
  1108   const Register t      = rcx;
  1110   // allocate space for parameters
  1111   __ get_method(method);
  1112   __ movptr(t, Address(method, Method::const_offset()));
  1113   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
  1115   __ shlptr(t, Interpreter::logStackElementSize);
  1116   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
  1117   __ subptr(rsp, t);
  1118   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
  1120   // get signature handler
  1121   { Label L;
  1122     __ movptr(t, Address(method, Method::signature_handler_offset()));
  1123     __ testptr(t, t);
  1124     __ jcc(Assembler::notZero, L);
  1125     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
  1126     __ get_method(method);
  1127     __ movptr(t, Address(method, Method::signature_handler_offset()));
  1128     __ bind(L);
  1131   // call signature handler
  1132   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rdi, "adjust this code");
  1133   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
  1134   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == t  , "adjust this code");
  1135   // The generated handlers do not touch RBX (the method oop).
  1136   // However, large signatures cannot be cached and are generated
  1137   // each time here.  The slow-path generator will blow RBX
  1138   // sometime, so we must reload it after the call.
  1139   __ call(t);
  1140   __ get_method(method);        // slow path call blows RBX on DevStudio 5.0
  1142   // result handler is in rax,
  1143   // set result handler
  1144   __ movptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize), rax);
  1146   // pass mirror handle if static call
  1147   { Label L;
  1148     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  1149     __ movl(t, Address(method, Method::access_flags_offset()));
  1150     __ testl(t, JVM_ACC_STATIC);
  1151     __ jcc(Assembler::zero, L);
  1152     // get mirror
  1153     __ movptr(t, Address(method, Method:: const_offset()));
  1154     __ movptr(t, Address(t, ConstMethod::constants_offset()));
  1155     __ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
  1156     __ movptr(t, Address(t, mirror_offset));
  1157     // copy mirror into activation frame
  1158     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize), t);
  1159     // pass handle to mirror
  1160     __ lea(t, Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
  1161     __ movptr(Address(rsp, wordSize), t);
  1162     __ bind(L);
  1165   // get native function entry point
  1166   { Label L;
  1167     __ movptr(rax, Address(method, Method::native_function_offset()));
  1168     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
  1169     __ cmpptr(rax, unsatisfied.addr());
  1170     __ jcc(Assembler::notEqual, L);
  1171     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
  1172     __ get_method(method);
  1173     __ movptr(rax, Address(method, Method::native_function_offset()));
  1174     __ bind(L);
  1177   // pass JNIEnv
  1178   __ get_thread(thread);
  1179   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
  1180   __ movptr(Address(rsp, 0), t);
  1182   // set_last_Java_frame_before_call
  1183   // It is enough that the pc()
  1184   // points into the right code segment. It does not have to be the correct return pc.
  1185   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
  1187   // change thread state
  1188 #ifdef ASSERT
  1189   { Label L;
  1190     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
  1191     __ cmpl(t, _thread_in_Java);
  1192     __ jcc(Assembler::equal, L);
  1193     __ stop("Wrong thread state in native stub");
  1194     __ bind(L);
  1196 #endif
  1198   // Change state to native
  1199   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
  1200   __ call(rax);
  1202   // result potentially in rdx:rax or ST0
  1204   // Verify or restore cpu control state after JNI call
  1205   __ restore_cpu_control_state_after_jni();
  1207   // save potential result in ST(0) & rdx:rax
  1208   // (if result handler is the T_FLOAT or T_DOUBLE handler, result must be in ST0 -
  1209   // the check is necessary to avoid potential Intel FPU overflow problems by saving/restoring 'empty' FPU registers)
  1210   // It is safe to do this push because state is _thread_in_native and return address will be found
  1211   // via _last_native_pc and not via _last_jave_sp
  1213   // NOTE: the order of theses push(es) is known to frame::interpreter_frame_result.
  1214   // If the order changes or anything else is added to the stack the code in
  1215   // interpreter_frame_result will have to be changed.
  1217   { Label L;
  1218     Label push_double;
  1219     ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
  1220     ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
  1221     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
  1222               float_handler.addr());
  1223     __ jcc(Assembler::equal, push_double);
  1224     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
  1225               double_handler.addr());
  1226     __ jcc(Assembler::notEqual, L);
  1227     __ bind(push_double);
  1228     __ push(dtos);
  1229     __ bind(L);
  1231   __ push(ltos);
  1233   // change thread state
  1234   __ get_thread(thread);
  1235   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1236   if(os::is_MP()) {
  1237     if (UseMembar) {
  1238       // Force this write out before the read below
  1239       __ membar(Assembler::Membar_mask_bits(
  1240            Assembler::LoadLoad | Assembler::LoadStore |
  1241            Assembler::StoreLoad | Assembler::StoreStore));
  1242     } else {
  1243       // Write serialization page so VM thread can do a pseudo remote membar.
  1244       // We use the current thread pointer to calculate a thread specific
  1245       // offset to write to within the page. This minimizes bus traffic
  1246       // due to cache line collision.
  1247       __ serialize_memory(thread, rcx);
  1251   if (AlwaysRestoreFPU) {
  1252     //  Make sure the control word is correct.
  1253     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1256   // check for safepoint operation in progress and/or pending suspend requests
  1257   { Label Continue;
  1259     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
  1260              SafepointSynchronize::_not_synchronized);
  1262     Label L;
  1263     __ jcc(Assembler::notEqual, L);
  1264     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  1265     __ jcc(Assembler::equal, Continue);
  1266     __ bind(L);
  1268     // Don't use call_VM as it will see a possible pending exception and forward it
  1269     // and never return here preventing us from clearing _last_native_pc down below.
  1270     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1271     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  1272     // by hand.
  1273     //
  1274     __ push(thread);
  1275     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  1276                                             JavaThread::check_special_condition_for_native_trans)));
  1277     __ increment(rsp, wordSize);
  1278     __ get_thread(thread);
  1280     __ bind(Continue);
  1283   // change thread state
  1284   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1286   __ reset_last_Java_frame(thread, true, true);
  1288   // reset handle block
  1289   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
  1290   __ movl(Address(t, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
  1292   // If result was an oop then unbox and save it in the frame
  1293   { Label L;
  1294     Label no_oop, store_result;
  1295     ExternalAddress handler(AbstractInterpreter::result_handler(T_OBJECT));
  1296     __ cmpptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize),
  1297               handler.addr());
  1298     __ jcc(Assembler::notEqual, no_oop);
  1299     __ cmpptr(Address(rsp, 0), (int32_t)NULL_WORD);
  1300     __ pop(ltos);
  1301     __ testptr(rax, rax);
  1302     __ jcc(Assembler::zero, store_result);
  1303     // unbox
  1304     __ movptr(rax, Address(rax, 0));
  1305     __ bind(store_result);
  1306     __ movptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset)*wordSize), rax);
  1307     // keep stack depth as expected by pushing oop which will eventually be discarded
  1308     __ push(ltos);
  1309     __ bind(no_oop);
  1313      Label no_reguard;
  1314      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1315      __ jcc(Assembler::notEqual, no_reguard);
  1317      __ pusha();
  1318      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1319      __ popa();
  1321      __ bind(no_reguard);
  1324   // restore rsi to have legal interpreter frame,
  1325   // i.e., bci == 0 <=> rsi == code_base()
  1326   // Can't call_VM until bcp is within reasonable.
  1327   __ get_method(method);      // method is junk from thread_in_native to now.
  1328   __ movptr(rsi, Address(method,Method::const_offset()));   // get ConstMethod*
  1329   __ lea(rsi, Address(rsi,ConstMethod::codes_offset()));    // get codebase
  1331   // handle exceptions (exception handling will handle unlocking!)
  1332   { Label L;
  1333     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1334     __ jcc(Assembler::zero, L);
  1335     // Note: At some point we may want to unify this with the code used in call_VM_base();
  1336     //       i.e., we should use the StubRoutines::forward_exception code. For now this
  1337     //       doesn't work here because the rsp is not correctly set at this point.
  1338     __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
  1339     __ should_not_reach_here();
  1340     __ bind(L);
  1343   // do unlocking if necessary
  1344   { Label L;
  1345     __ movl(t, Address(method, Method::access_flags_offset()));
  1346     __ testl(t, JVM_ACC_SYNCHRONIZED);
  1347     __ jcc(Assembler::zero, L);
  1348     // the code below should be shared with interpreter macro assembler implementation
  1349     { Label unlock;
  1350       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
  1351       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
  1352       const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
  1354       __ lea(rdx, monitor);                   // address of first monitor
  1356       __ movptr(t, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
  1357       __ testptr(t, t);
  1358       __ jcc(Assembler::notZero, unlock);
  1360       // Entry already unlocked, need to throw exception
  1361       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1362       __ should_not_reach_here();
  1364       __ bind(unlock);
  1365       __ unlock_object(rdx);
  1367     __ bind(L);
  1370   // jvmti/dtrace support
  1371   // Note: This must happen _after_ handling/throwing any exceptions since
  1372   //       the exception handler code notifies the runtime of method exits
  1373   //       too. If this happens before, method entry/exit notifications are
  1374   //       not properly paired (was bug - gri 11/22/99).
  1375   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
  1377   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
  1378   __ pop(ltos);
  1379   __ movptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
  1380   __ call(t);
  1382   // remove activation
  1383   __ movptr(t, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1384   __ leave();                                // remove frame anchor
  1385   __ pop(rdi);                               // get return address
  1386   __ mov(rsp, t);                            // set sp to sender sp
  1387   __ jmp(rdi);
  1389   if (inc_counter) {
  1390     // Handle overflow of counter and compile method
  1391     __ bind(invocation_counter_overflow);
  1392     generate_counter_overflow(&continue_after_compile);
  1395   return entry_point;
  1398 //
  1399 // Generic interpreted method entry to (asm) interpreter
  1400 //
  1401 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1402   // determine code generation flags
  1403   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1405   // rbx,: Method*
  1406   // rsi: sender sp
  1407   address entry_point = __ pc();
  1409   const Address constMethod       (rbx, Method::const_offset());
  1410   const Address access_flags      (rbx, Method::access_flags_offset());
  1411   const Address size_of_parameters(rdx, ConstMethod::size_of_parameters_offset());
  1412   const Address size_of_locals    (rdx, ConstMethod::size_of_locals_offset());
  1414   // get parameter size (always needed)
  1415   __ movptr(rdx, constMethod);
  1416   __ load_unsigned_short(rcx, size_of_parameters);
  1418   // rbx,: Method*
  1419   // rcx: size of parameters
  1421   // rsi: sender_sp (could differ from sp+wordSize if we were called via c2i )
  1423   __ load_unsigned_short(rdx, size_of_locals);       // get size of locals in words
  1424   __ subl(rdx, rcx);                                // rdx = no. of additional locals
  1426   // see if we've got enough room on the stack for locals plus overhead.
  1427   generate_stack_overflow_check();
  1429   // get return address
  1430   __ pop(rax);
  1432   // compute beginning of parameters (rdi)
  1433   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
  1435   // rdx - # of additional locals
  1436   // allocate space for locals
  1437   // explicitly initialize locals
  1439     Label exit, loop;
  1440     __ testl(rdx, rdx);
  1441     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
  1442     __ bind(loop);
  1443     __ push((int32_t)NULL_WORD);                      // initialize local variables
  1444     __ decrement(rdx);                                // until everything initialized
  1445     __ jcc(Assembler::greater, loop);
  1446     __ bind(exit);
  1449   // initialize fixed part of activation frame
  1450   generate_fixed_frame(false);
  1452   // make sure method is not native & not abstract
  1453 #ifdef ASSERT
  1454   __ movl(rax, access_flags);
  1456     Label L;
  1457     __ testl(rax, JVM_ACC_NATIVE);
  1458     __ jcc(Assembler::zero, L);
  1459     __ stop("tried to execute native method as non-native");
  1460     __ bind(L);
  1462   { Label L;
  1463     __ testl(rax, JVM_ACC_ABSTRACT);
  1464     __ jcc(Assembler::zero, L);
  1465     __ stop("tried to execute abstract method in interpreter");
  1466     __ bind(L);
  1468 #endif
  1470   // Since at this point in the method invocation the exception handler
  1471   // would try to exit the monitor of synchronized methods which hasn't
  1472   // been entered yet, we set the thread local variable
  1473   // _do_not_unlock_if_synchronized to true. The remove_activation will
  1474   // check this flag.
  1476   __ get_thread(rax);
  1477   const Address do_not_unlock_if_synchronized(rax,
  1478         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1479   __ movbool(do_not_unlock_if_synchronized, true);
  1481   __ profile_parameters_type(rax, rcx, rdx);
  1482   // increment invocation count & check for overflow
  1483   Label invocation_counter_overflow;
  1484   Label profile_method;
  1485   Label profile_method_continue;
  1486   if (inc_counter) {
  1487     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
  1488     if (ProfileInterpreter) {
  1489       __ bind(profile_method_continue);
  1492   Label continue_after_compile;
  1493   __ bind(continue_after_compile);
  1495   bang_stack_shadow_pages(false);
  1497   // reset the _do_not_unlock_if_synchronized flag
  1498   __ get_thread(rax);
  1499   __ movbool(do_not_unlock_if_synchronized, false);
  1501   // check for synchronized methods
  1502   // Must happen AFTER invocation_counter check and stack overflow check,
  1503   // so method is not locked if overflows.
  1504   //
  1505   if (synchronized) {
  1506     // Allocate monitor and lock method
  1507     lock_method();
  1508   } else {
  1509     // no synchronization necessary
  1510 #ifdef ASSERT
  1511       { Label L;
  1512         __ movl(rax, access_flags);
  1513         __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1514         __ jcc(Assembler::zero, L);
  1515         __ stop("method needs synchronization");
  1516         __ bind(L);
  1518 #endif
  1521   // start execution
  1522 #ifdef ASSERT
  1523   { Label L;
  1524      const Address monitor_block_top (rbp,
  1525                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1526     __ movptr(rax, monitor_block_top);
  1527     __ cmpptr(rax, rsp);
  1528     __ jcc(Assembler::equal, L);
  1529     __ stop("broken stack frame setup in interpreter");
  1530     __ bind(L);
  1532 #endif
  1534   // jvmti support
  1535   __ notify_method_entry();
  1537   __ dispatch_next(vtos);
  1539   // invocation counter overflow
  1540   if (inc_counter) {
  1541     if (ProfileInterpreter) {
  1542       // We have decided to profile this method in the interpreter
  1543       __ bind(profile_method);
  1544       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1545       __ set_method_data_pointer_for_bcp();
  1546       __ get_method(rbx);
  1547       __ jmp(profile_method_continue);
  1549     // Handle overflow of counter and compile method
  1550     __ bind(invocation_counter_overflow);
  1551     generate_counter_overflow(&continue_after_compile);
  1554   return entry_point;
  1557 //------------------------------------------------------------------------------------------------------------------------
  1558 // Entry points
  1559 //
  1560 // Here we generate the various kind of entries into the interpreter.
  1561 // The two main entry type are generic bytecode methods and native call method.
  1562 // These both come in synchronized and non-synchronized versions but the
  1563 // frame layout they create is very similar. The other method entry
  1564 // types are really just special purpose entries that are really entry
  1565 // and interpretation all in one. These are for trivial methods like
  1566 // accessor, empty, or special math methods.
  1567 //
  1568 // When control flow reaches any of the entry types for the interpreter
  1569 // the following holds ->
  1570 //
  1571 // Arguments:
  1572 //
  1573 // rbx,: Method*
  1574 // rcx: receiver
  1575 //
  1576 //
  1577 // Stack layout immediately at entry
  1578 //
  1579 // [ return address     ] <--- rsp
  1580 // [ parameter n        ]
  1581 //   ...
  1582 // [ parameter 1        ]
  1583 // [ expression stack   ] (caller's java expression stack)
  1585 // Assuming that we don't go to one of the trivial specialized
  1586 // entries the stack will look like below when we are ready to execute
  1587 // the first bytecode (or call the native routine). The register usage
  1588 // will be as the template based interpreter expects (see interpreter_x86.hpp).
  1589 //
  1590 // local variables follow incoming parameters immediately; i.e.
  1591 // the return address is moved to the end of the locals).
  1592 //
  1593 // [ monitor entry      ] <--- rsp
  1594 //   ...
  1595 // [ monitor entry      ]
  1596 // [ expr. stack bottom ]
  1597 // [ saved rsi          ]
  1598 // [ current rdi        ]
  1599 // [ Method*            ]
  1600 // [ saved rbp,          ] <--- rbp,
  1601 // [ return address     ]
  1602 // [ local variable m   ]
  1603 //   ...
  1604 // [ local variable 1   ]
  1605 // [ parameter n        ]
  1606 //   ...
  1607 // [ parameter 1        ] <--- rdi
  1609 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
  1610   // determine code generation flags
  1611   bool synchronized = false;
  1612   address entry_point = NULL;
  1613   InterpreterGenerator* ig_this = (InterpreterGenerator*)this;
  1615   switch (kind) {
  1616     case Interpreter::zerolocals             :                                                       break;
  1617     case Interpreter::zerolocals_synchronized: synchronized = true;                                  break;
  1618     case Interpreter::native                 : entry_point = ig_this->generate_native_entry(false);  break;
  1619     case Interpreter::native_synchronized    : entry_point = ig_this->generate_native_entry(true);   break;
  1620     case Interpreter::empty                  : entry_point = ig_this->generate_empty_entry();        break;
  1621     case Interpreter::accessor               : entry_point = ig_this->generate_accessor_entry();     break;
  1622     case Interpreter::abstract               : entry_point = ig_this->generate_abstract_entry();     break;
  1624     case Interpreter::java_lang_math_sin     : // fall thru
  1625     case Interpreter::java_lang_math_cos     : // fall thru
  1626     case Interpreter::java_lang_math_tan     : // fall thru
  1627     case Interpreter::java_lang_math_abs     : // fall thru
  1628     case Interpreter::java_lang_math_log     : // fall thru
  1629     case Interpreter::java_lang_math_log10   : // fall thru
  1630     case Interpreter::java_lang_math_sqrt    : // fall thru
  1631     case Interpreter::java_lang_math_pow     : // fall thru
  1632     case Interpreter::java_lang_math_exp     : entry_point = ig_this->generate_math_entry(kind);      break;
  1633     case Interpreter::java_lang_ref_reference_get
  1634                                              : entry_point = ig_this->generate_Reference_get_entry(); break;
  1635     case Interpreter::java_util_zip_CRC32_update
  1636                                              : entry_point = ig_this->generate_CRC32_update_entry();  break;
  1637     case Interpreter::java_util_zip_CRC32_updateBytes
  1638                                              : // fall thru
  1639     case Interpreter::java_util_zip_CRC32_updateByteBuffer
  1640                                              : entry_point = ig_this->generate_CRC32_updateBytes_entry(kind); break;
  1641     default:
  1642       fatal(err_msg("unexpected method kind: %d", kind));
  1643       break;
  1646   if (entry_point) return entry_point;
  1648   return ig_this->generate_normal_entry(synchronized);
  1652 // These should never be compiled since the interpreter will prefer
  1653 // the compiled version to the intrinsic version.
  1654 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  1655   switch (method_kind(m)) {
  1656     case Interpreter::java_lang_math_sin     : // fall thru
  1657     case Interpreter::java_lang_math_cos     : // fall thru
  1658     case Interpreter::java_lang_math_tan     : // fall thru
  1659     case Interpreter::java_lang_math_abs     : // fall thru
  1660     case Interpreter::java_lang_math_log     : // fall thru
  1661     case Interpreter::java_lang_math_log10   : // fall thru
  1662     case Interpreter::java_lang_math_sqrt    : // fall thru
  1663     case Interpreter::java_lang_math_pow     : // fall thru
  1664     case Interpreter::java_lang_math_exp     :
  1665       return false;
  1666     default:
  1667       return true;
  1671 // How much stack a method activation needs in words.
  1672 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
  1674   const int stub_code = 4;  // see generate_call_stub
  1675   // Save space for one monitor to get into the interpreted method in case
  1676   // the method is synchronized
  1677   int monitor_size    = method->is_synchronized() ?
  1678                                 1*frame::interpreter_frame_monitor_size() : 0;
  1680   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
  1681   // be sure to change this if you add/subtract anything to/from the overhead area
  1682   const int overhead_size = -frame::interpreter_frame_initial_sp_offset;
  1684   const int method_stack = (method->max_locals() + method->max_stack()) *
  1685                            Interpreter::stackElementWords;
  1686   return overhead_size + method_stack + stub_code;
  1689 //------------------------------------------------------------------------------------------------------------------------
  1690 // Exceptions
  1692 void TemplateInterpreterGenerator::generate_throw_exception() {
  1693   // Entry point in previous activation (i.e., if the caller was interpreted)
  1694   Interpreter::_rethrow_exception_entry = __ pc();
  1695   const Register thread = rcx;
  1697   // Restore sp to interpreter_frame_last_sp even though we are going
  1698   // to empty the expression stack for the exception processing.
  1699   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  1700   // rax,: exception
  1701   // rdx: return address/pc that threw exception
  1702   __ restore_bcp();                              // rsi points to call/send
  1703   __ restore_locals();
  1705   // Entry point for exceptions thrown within interpreter code
  1706   Interpreter::_throw_exception_entry = __ pc();
  1707   // expression stack is undefined here
  1708   // rax,: exception
  1709   // rsi: exception bcp
  1710   __ verify_oop(rax);
  1712   // expression stack must be empty before entering the VM in case of an exception
  1713   __ empty_expression_stack();
  1714   __ empty_FPU_stack();
  1715   // find exception handler address and preserve exception oop
  1716   __ call_VM(rdx, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), rax);
  1717   // rax,: exception handler entry point
  1718   // rdx: preserved exception oop
  1719   // rsi: bcp for exception handler
  1720   __ push_ptr(rdx);                              // push exception which is now the only value on the stack
  1721   __ jmp(rax);                                   // jump to exception handler (may be _remove_activation_entry!)
  1723   // If the exception is not handled in the current frame the frame is removed and
  1724   // the exception is rethrown (i.e. exception continuation is _rethrow_exception).
  1725   //
  1726   // Note: At this point the bci is still the bxi for the instruction which caused
  1727   //       the exception and the expression stack is empty. Thus, for any VM calls
  1728   //       at this point, GC will find a legal oop map (with empty expression stack).
  1730   // In current activation
  1731   // tos: exception
  1732   // rsi: exception bcp
  1734   //
  1735   // JVMTI PopFrame support
  1736   //
  1738    Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1739   __ empty_expression_stack();
  1740   __ empty_FPU_stack();
  1741   // Set the popframe_processing bit in pending_popframe_condition indicating that we are
  1742   // currently handling popframe, so that call_VMs that may happen later do not trigger new
  1743   // popframe handling cycles.
  1744   __ get_thread(thread);
  1745   __ movl(rdx, Address(thread, JavaThread::popframe_condition_offset()));
  1746   __ orl(rdx, JavaThread::popframe_processing_bit);
  1747   __ movl(Address(thread, JavaThread::popframe_condition_offset()), rdx);
  1750     // Check to see whether we are returning to a deoptimized frame.
  1751     // (The PopFrame call ensures that the caller of the popped frame is
  1752     // either interpreted or compiled and deoptimizes it if compiled.)
  1753     // In this case, we can't call dispatch_next() after the frame is
  1754     // popped, but instead must save the incoming arguments and restore
  1755     // them after deoptimization has occurred.
  1756     //
  1757     // Note that we don't compare the return PC against the
  1758     // deoptimization blob's unpack entry because of the presence of
  1759     // adapter frames in C2.
  1760     Label caller_not_deoptimized;
  1761     __ movptr(rdx, Address(rbp, frame::return_addr_offset * wordSize));
  1762     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), rdx);
  1763     __ testl(rax, rax);
  1764     __ jcc(Assembler::notZero, caller_not_deoptimized);
  1766     // Compute size of arguments for saving when returning to deoptimized caller
  1767     __ get_method(rax);
  1768     __ movptr(rax, Address(rax, Method::const_offset()));
  1769     __ load_unsigned_short(rax, Address(rax, ConstMethod::size_of_parameters_offset()));
  1770     __ shlptr(rax, Interpreter::logStackElementSize);
  1771     __ restore_locals();
  1772     __ subptr(rdi, rax);
  1773     __ addptr(rdi, wordSize);
  1774     // Save these arguments
  1775     __ get_thread(thread);
  1776     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), thread, rax, rdi);
  1778     __ remove_activation(vtos, rdx,
  1779                          /* throw_monitor_exception */ false,
  1780                          /* install_monitor_exception */ false,
  1781                          /* notify_jvmdi */ false);
  1783     // Inform deoptimization that it is responsible for restoring these arguments
  1784     __ get_thread(thread);
  1785     __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_force_deopt_reexecution_bit);
  1787     // Continue in deoptimization handler
  1788     __ jmp(rdx);
  1790     __ bind(caller_not_deoptimized);
  1793   __ remove_activation(vtos, rdx,
  1794                        /* throw_monitor_exception */ false,
  1795                        /* install_monitor_exception */ false,
  1796                        /* notify_jvmdi */ false);
  1798   // Finish with popframe handling
  1799   // A previous I2C followed by a deoptimization might have moved the
  1800   // outgoing arguments further up the stack. PopFrame expects the
  1801   // mutations to those outgoing arguments to be preserved and other
  1802   // constraints basically require this frame to look exactly as
  1803   // though it had previously invoked an interpreted activation with
  1804   // no space between the top of the expression stack (current
  1805   // last_sp) and the top of stack. Rather than force deopt to
  1806   // maintain this kind of invariant all the time we call a small
  1807   // fixup routine to move the mutated arguments onto the top of our
  1808   // expression stack if necessary.
  1809   __ mov(rax, rsp);
  1810   __ movptr(rbx, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1811   __ get_thread(thread);
  1812   // PC must point into interpreter here
  1813   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
  1814   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), thread, rax, rbx);
  1815   __ get_thread(thread);
  1816   __ reset_last_Java_frame(thread, true, true);
  1817   // Restore the last_sp and null it out
  1818   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1819   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  1821   __ restore_bcp();
  1822   __ restore_locals();
  1823   // The method data pointer was incremented already during
  1824   // call profiling. We have to restore the mdp for the current bcp.
  1825   if (ProfileInterpreter) {
  1826     __ set_method_data_pointer_for_bcp();
  1829   // Clear the popframe condition flag
  1830   __ get_thread(thread);
  1831   __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_inactive);
  1833 #if INCLUDE_JVMTI
  1834   if (EnableInvokeDynamic) {
  1835     Label L_done;
  1836     const Register local0 = rdi;
  1838     __ cmpb(Address(rsi, 0), Bytecodes::_invokestatic);
  1839     __ jcc(Assembler::notEqual, L_done);
  1841     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
  1842     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
  1844     __ get_method(rdx);
  1845     __ movptr(rax, Address(local0, 0));
  1846     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), rax, rdx, rsi);
  1848     __ testptr(rax, rax);
  1849     __ jcc(Assembler::zero, L_done);
  1851     __ movptr(Address(rbx, 0), rax);
  1852     __ bind(L_done);
  1854 #endif // INCLUDE_JVMTI
  1856   __ dispatch_next(vtos);
  1857   // end of PopFrame support
  1859   Interpreter::_remove_activation_entry = __ pc();
  1861   // preserve exception over this code sequence
  1862   __ pop_ptr(rax);
  1863   __ get_thread(thread);
  1864   __ movptr(Address(thread, JavaThread::vm_result_offset()), rax);
  1865   // remove the activation (without doing throws on illegalMonitorExceptions)
  1866   __ remove_activation(vtos, rdx, false, true, false);
  1867   // restore exception
  1868   __ get_thread(thread);
  1869   __ get_vm_result(rax, thread);
  1871   // Inbetween activations - previous activation type unknown yet
  1872   // compute continuation point - the continuation point expects
  1873   // the following registers set up:
  1874   //
  1875   // rax: exception
  1876   // rdx: return address/pc that threw exception
  1877   // rsp: expression stack of caller
  1878   // rbp: rbp, of caller
  1879   __ push(rax);                                  // save exception
  1880   __ push(rdx);                                  // save return address
  1881   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, rdx);
  1882   __ mov(rbx, rax);                              // save exception handler
  1883   __ pop(rdx);                                   // restore return address
  1884   __ pop(rax);                                   // restore exception
  1885   // Note that an "issuing PC" is actually the next PC after the call
  1886   __ jmp(rbx);                                   // jump to exception handler of caller
  1890 //
  1891 // JVMTI ForceEarlyReturn support
  1892 //
  1893 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1894   address entry = __ pc();
  1895   const Register thread = rcx;
  1897   __ restore_bcp();
  1898   __ restore_locals();
  1899   __ empty_expression_stack();
  1900   __ empty_FPU_stack();
  1901   __ load_earlyret_value(state);
  1903   __ get_thread(thread);
  1904   __ movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
  1905   const Address cond_addr(rcx, JvmtiThreadState::earlyret_state_offset());
  1907   // Clear the earlyret state
  1908   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
  1910   __ remove_activation(state, rsi,
  1911                        false, /* throw_monitor_exception */
  1912                        false, /* install_monitor_exception */
  1913                        true); /* notify_jvmdi */
  1914   __ jmp(rsi);
  1915   return entry;
  1916 } // end of ForceEarlyReturn support
  1919 //------------------------------------------------------------------------------------------------------------------------
  1920 // Helper for vtos entry point generation
  1922 void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
  1923   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  1924   Label L;
  1925   fep = __ pc(); __ push(ftos); __ jmp(L);
  1926   dep = __ pc(); __ push(dtos); __ jmp(L);
  1927   lep = __ pc(); __ push(ltos); __ jmp(L);
  1928   aep = __ pc(); __ push(atos); __ jmp(L);
  1929   bep = cep = sep =             // fall through
  1930   iep = __ pc(); __ push(itos); // fall through
  1931   vep = __ pc(); __ bind(L);    // fall through
  1932   generate_and_dispatch(t);
  1935 //------------------------------------------------------------------------------------------------------------------------
  1936 // Generation of individual instructions
  1938 // helpers for generate_and_dispatch
  1942 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  1943  : TemplateInterpreterGenerator(code) {
  1944    generate_all(); // down here so it can be "virtual"
  1947 //------------------------------------------------------------------------------------------------------------------------
  1949 // Non-product code
  1950 #ifndef PRODUCT
  1951 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  1952   address entry = __ pc();
  1954   // prepare expression stack
  1955   __ pop(rcx);          // pop return address so expression stack is 'pure'
  1956   __ push(state);       // save tosca
  1958   // pass tosca registers as arguments & call tracer
  1959   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), rcx, rax, rdx);
  1960   __ mov(rcx, rax);     // make sure return address is not destroyed by pop(state)
  1961   __ pop(state);        // restore tosca
  1963   // return
  1964   __ jmp(rcx);
  1966   return entry;
  1970 void TemplateInterpreterGenerator::count_bytecode() {
  1971   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
  1975 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  1976   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
  1980 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  1981   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
  1982   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
  1983   __ orl(rbx, ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
  1984   ExternalAddress table((address) BytecodePairHistogram::_counters);
  1985   Address index(noreg, rbx, Address::times_4);
  1986   __ incrementl(ArrayAddress(table, index));
  1990 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  1991   // Call a little run-time stub to avoid blow-up for each bytecode.
  1992   // The run-time runtime saves the right registers, depending on
  1993   // the tosca in-state for the given template.
  1994   assert(Interpreter::trace_code(t->tos_in()) != NULL,
  1995          "entry must have been generated");
  1996   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
  2000 void TemplateInterpreterGenerator::stop_interpreter_at() {
  2001   Label L;
  2002   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
  2003            StopInterpreterAt);
  2004   __ jcc(Assembler::notEqual, L);
  2005   __ int3();
  2006   __ bind(L);
  2008 #endif // !PRODUCT
  2009 #endif // CC_INTERP

mercurial