src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Wed, 24 Sep 2014 12:19:07 -0700

author
simonis
date
Wed, 24 Sep 2014 12:19:07 -0700
changeset 7553
f43fad8786fc
parent 6723
0bf37f737702
child 6876
710a3c8b516e
child 8316
626f594dffa6
permissions
-rw-r--r--

8058345: Refactor native stack printing from vmError.cpp to debug.cpp to make it available in gdb as well
Summary: Also fix stack trace on x86 to enable walking of runtime stubs and native wrappers
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "c1/c1_Compilation.hpp"
    29 #include "c1/c1_LIRAssembler.hpp"
    30 #include "c1/c1_MacroAssembler.hpp"
    31 #include "c1/c1_Runtime1.hpp"
    32 #include "c1/c1_ValueStack.hpp"
    33 #include "ci/ciArrayKlass.hpp"
    34 #include "ci/ciInstance.hpp"
    35 #include "gc_interface/collectedHeap.hpp"
    36 #include "memory/barrierSet.hpp"
    37 #include "memory/cardTableModRefBS.hpp"
    38 #include "nativeInst_x86.hpp"
    39 #include "oops/objArrayKlass.hpp"
    40 #include "runtime/sharedRuntime.hpp"
    41 #include "vmreg_x86.inline.hpp"
    44 // These masks are used to provide 128-bit aligned bitmasks to the XMM
    45 // instructions, to allow sign-masking or sign-bit flipping.  They allow
    46 // fast versions of NegF/NegD and AbsF/AbsD.
    48 // Note: 'double' and 'long long' have 32-bits alignment on x86.
    49 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
    50   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
    51   // of 128-bits operands for SSE instructions.
    52   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
    53   // Store the value to a 128-bits operand.
    54   operand[0] = lo;
    55   operand[1] = hi;
    56   return operand;
    57 }
    59 // Buffer for 128-bits masks used by SSE instructions.
    60 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
    62 // Static initialization during VM startup.
    63 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
    64 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
    65 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
    66 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
    70 NEEDS_CLEANUP // remove this definitions ?
    71 const Register IC_Klass    = rax;   // where the IC klass is cached
    72 const Register SYNC_header = rax;   // synchronization header
    73 const Register SHIFT_count = rcx;   // where count for shift operations must be
    75 #define __ _masm->
    78 static void select_different_registers(Register preserve,
    79                                        Register extra,
    80                                        Register &tmp1,
    81                                        Register &tmp2) {
    82   if (tmp1 == preserve) {
    83     assert_different_registers(tmp1, tmp2, extra);
    84     tmp1 = extra;
    85   } else if (tmp2 == preserve) {
    86     assert_different_registers(tmp1, tmp2, extra);
    87     tmp2 = extra;
    88   }
    89   assert_different_registers(preserve, tmp1, tmp2);
    90 }
    94 static void select_different_registers(Register preserve,
    95                                        Register extra,
    96                                        Register &tmp1,
    97                                        Register &tmp2,
    98                                        Register &tmp3) {
    99   if (tmp1 == preserve) {
   100     assert_different_registers(tmp1, tmp2, tmp3, extra);
   101     tmp1 = extra;
   102   } else if (tmp2 == preserve) {
   103     assert_different_registers(tmp1, tmp2, tmp3, extra);
   104     tmp2 = extra;
   105   } else if (tmp3 == preserve) {
   106     assert_different_registers(tmp1, tmp2, tmp3, extra);
   107     tmp3 = extra;
   108   }
   109   assert_different_registers(preserve, tmp1, tmp2, tmp3);
   110 }
   114 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
   115   if (opr->is_constant()) {
   116     LIR_Const* constant = opr->as_constant_ptr();
   117     switch (constant->type()) {
   118       case T_INT: {
   119         return true;
   120       }
   122       default:
   123         return false;
   124     }
   125   }
   126   return false;
   127 }
   130 LIR_Opr LIR_Assembler::receiverOpr() {
   131   return FrameMap::receiver_opr;
   132 }
   134 LIR_Opr LIR_Assembler::osrBufferPointer() {
   135   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
   136 }
   138 //--------------fpu register translations-----------------------
   141 address LIR_Assembler::float_constant(float f) {
   142   address const_addr = __ float_constant(f);
   143   if (const_addr == NULL) {
   144     bailout("const section overflow");
   145     return __ code()->consts()->start();
   146   } else {
   147     return const_addr;
   148   }
   149 }
   152 address LIR_Assembler::double_constant(double d) {
   153   address const_addr = __ double_constant(d);
   154   if (const_addr == NULL) {
   155     bailout("const section overflow");
   156     return __ code()->consts()->start();
   157   } else {
   158     return const_addr;
   159   }
   160 }
   163 void LIR_Assembler::set_24bit_FPU() {
   164   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   165 }
   167 void LIR_Assembler::reset_FPU() {
   168   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   169 }
   171 void LIR_Assembler::fpop() {
   172   __ fpop();
   173 }
   175 void LIR_Assembler::fxch(int i) {
   176   __ fxch(i);
   177 }
   179 void LIR_Assembler::fld(int i) {
   180   __ fld_s(i);
   181 }
   183 void LIR_Assembler::ffree(int i) {
   184   __ ffree(i);
   185 }
   187 void LIR_Assembler::breakpoint() {
   188   __ int3();
   189 }
   191 void LIR_Assembler::push(LIR_Opr opr) {
   192   if (opr->is_single_cpu()) {
   193     __ push_reg(opr->as_register());
   194   } else if (opr->is_double_cpu()) {
   195     NOT_LP64(__ push_reg(opr->as_register_hi()));
   196     __ push_reg(opr->as_register_lo());
   197   } else if (opr->is_stack()) {
   198     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
   199   } else if (opr->is_constant()) {
   200     LIR_Const* const_opr = opr->as_constant_ptr();
   201     if (const_opr->type() == T_OBJECT) {
   202       __ push_oop(const_opr->as_jobject());
   203     } else if (const_opr->type() == T_INT) {
   204       __ push_jint(const_opr->as_jint());
   205     } else {
   206       ShouldNotReachHere();
   207     }
   209   } else {
   210     ShouldNotReachHere();
   211   }
   212 }
   214 void LIR_Assembler::pop(LIR_Opr opr) {
   215   if (opr->is_single_cpu()) {
   216     __ pop_reg(opr->as_register());
   217   } else {
   218     ShouldNotReachHere();
   219   }
   220 }
   222 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
   223   return addr->base()->is_illegal() && addr->index()->is_illegal();
   224 }
   226 //-------------------------------------------
   228 Address LIR_Assembler::as_Address(LIR_Address* addr) {
   229   return as_Address(addr, rscratch1);
   230 }
   232 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
   233   if (addr->base()->is_illegal()) {
   234     assert(addr->index()->is_illegal(), "must be illegal too");
   235     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
   236     if (! __ reachable(laddr)) {
   237       __ movptr(tmp, laddr.addr());
   238       Address res(tmp, 0);
   239       return res;
   240     } else {
   241       return __ as_Address(laddr);
   242     }
   243   }
   245   Register base = addr->base()->as_pointer_register();
   247   if (addr->index()->is_illegal()) {
   248     return Address( base, addr->disp());
   249   } else if (addr->index()->is_cpu_register()) {
   250     Register index = addr->index()->as_pointer_register();
   251     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
   252   } else if (addr->index()->is_constant()) {
   253     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
   254     assert(Assembler::is_simm32(addr_offset), "must be");
   256     return Address(base, addr_offset);
   257   } else {
   258     Unimplemented();
   259     return Address();
   260   }
   261 }
   264 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
   265   Address base = as_Address(addr);
   266   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
   267 }
   270 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
   271   return as_Address(addr);
   272 }
   275 void LIR_Assembler::osr_entry() {
   276   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   277   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   278   ValueStack* entry_state = osr_entry->state();
   279   int number_of_locks = entry_state->locks_size();
   281   // we jump here if osr happens with the interpreter
   282   // state set up to continue at the beginning of the
   283   // loop that triggered osr - in particular, we have
   284   // the following registers setup:
   285   //
   286   // rcx: osr buffer
   287   //
   289   // build frame
   290   ciMethod* m = compilation()->method();
   291   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
   293   // OSR buffer is
   294   //
   295   // locals[nlocals-1..0]
   296   // monitors[0..number_of_locks]
   297   //
   298   // locals is a direct copy of the interpreter frame so in the osr buffer
   299   // so first slot in the local array is the last local from the interpreter
   300   // and last slot is local[0] (receiver) from the interpreter
   301   //
   302   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   303   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   304   // in the interpreter frame (the method lock if a sync method)
   306   // Initialize monitors in the compiled activation.
   307   //   rcx: pointer to osr buffer
   308   //
   309   // All other registers are dead at this point and the locals will be
   310   // copied into place by code emitted in the IR.
   312   Register OSR_buf = osrBufferPointer()->as_pointer_register();
   313   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   314     int monitor_offset = BytesPerWord * method()->max_locals() +
   315       (2 * BytesPerWord) * (number_of_locks - 1);
   316     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   317     // the OSR buffer using 2 word entries: first the lock and then
   318     // the oop.
   319     for (int i = 0; i < number_of_locks; i++) {
   320       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   321 #ifdef ASSERT
   322       // verify the interpreter's monitor has a non-null object
   323       {
   324         Label L;
   325         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
   326         __ jcc(Assembler::notZero, L);
   327         __ stop("locked object is NULL");
   328         __ bind(L);
   329       }
   330 #endif
   331       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
   332       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
   333       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
   334       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
   335     }
   336   }
   337 }
   340 // inline cache check; done before the frame is built.
   341 int LIR_Assembler::check_icache() {
   342   Register receiver = FrameMap::receiver_opr->as_register();
   343   Register ic_klass = IC_Klass;
   344   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
   345   const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
   346   if (!do_post_padding) {
   347     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
   348     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
   349       __ nop();
   350     }
   351   }
   352   int offset = __ offset();
   353   __ inline_cache_check(receiver, IC_Klass);
   354   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
   355   if (do_post_padding) {
   356     // force alignment after the cache check.
   357     // It's been verified to be aligned if !VerifyOops
   358     __ align(CodeEntryAlignment);
   359   }
   360   return offset;
   361 }
   364 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
   365   jobject o = NULL;
   366   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
   367   __ movoop(reg, o);
   368   patching_epilog(patch, lir_patch_normal, reg, info);
   369 }
   371 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
   372   Metadata* o = NULL;
   373   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
   374   __ mov_metadata(reg, o);
   375   patching_epilog(patch, lir_patch_normal, reg, info);
   376 }
   378 // This specifies the rsp decrement needed to build the frame
   379 int LIR_Assembler::initial_frame_size_in_bytes() const {
   380   // if rounding, must let FrameMap know!
   382   // The frame_map records size in slots (32bit word)
   384   // subtract two words to account for return address and link
   385   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
   386 }
   389 int LIR_Assembler::emit_exception_handler() {
   390   // if the last instruction is a call (typically to do a throw which
   391   // is coming at the end after block reordering) the return address
   392   // must still point into the code area in order to avoid assertion
   393   // failures when searching for the corresponding bci => add a nop
   394   // (was bug 5/14/1999 - gri)
   395   __ nop();
   397   // generate code for exception handler
   398   address handler_base = __ start_a_stub(exception_handler_size);
   399   if (handler_base == NULL) {
   400     // not enough space left for the handler
   401     bailout("exception handler overflow");
   402     return -1;
   403   }
   405   int offset = code_offset();
   407   // the exception oop and pc are in rax, and rdx
   408   // no other registers need to be preserved, so invalidate them
   409   __ invalidate_registers(false, true, true, false, true, true);
   411   // check that there is really an exception
   412   __ verify_not_null_oop(rax);
   414   // search an exception handler (rax: exception oop, rdx: throwing pc)
   415   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
   416   __ should_not_reach_here();
   417   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
   418   __ end_a_stub();
   420   return offset;
   421 }
   424 // Emit the code to remove the frame from the stack in the exception
   425 // unwind path.
   426 int LIR_Assembler::emit_unwind_handler() {
   427 #ifndef PRODUCT
   428   if (CommentedAssembly) {
   429     _masm->block_comment("Unwind handler");
   430   }
   431 #endif
   433   int offset = code_offset();
   435   // Fetch the exception from TLS and clear out exception related thread state
   436   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
   437   NOT_LP64(__ get_thread(rsi));
   438   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
   439   __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
   440   __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
   442   __ bind(_unwind_handler_entry);
   443   __ verify_not_null_oop(rax);
   444   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   445     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
   446   }
   448   // Preform needed unlocking
   449   MonitorExitStub* stub = NULL;
   450   if (method()->is_synchronized()) {
   451     monitor_address(0, FrameMap::rax_opr);
   452     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
   453     __ unlock_object(rdi, rsi, rax, *stub->entry());
   454     __ bind(*stub->continuation());
   455   }
   457   if (compilation()->env()->dtrace_method_probes()) {
   458 #ifdef _LP64
   459     __ mov(rdi, r15_thread);
   460     __ mov_metadata(rsi, method()->constant_encoding());
   461 #else
   462     __ get_thread(rax);
   463     __ movptr(Address(rsp, 0), rax);
   464     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
   465 #endif
   466     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
   467   }
   469   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   470     __ mov(rax, rbx);  // Restore the exception
   471   }
   473   // remove the activation and dispatch to the unwind handler
   474   __ remove_frame(initial_frame_size_in_bytes());
   475   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
   477   // Emit the slow path assembly
   478   if (stub != NULL) {
   479     stub->emit_code(this);
   480   }
   482   return offset;
   483 }
   486 int LIR_Assembler::emit_deopt_handler() {
   487   // if the last instruction is a call (typically to do a throw which
   488   // is coming at the end after block reordering) the return address
   489   // must still point into the code area in order to avoid assertion
   490   // failures when searching for the corresponding bci => add a nop
   491   // (was bug 5/14/1999 - gri)
   492   __ nop();
   494   // generate code for exception handler
   495   address handler_base = __ start_a_stub(deopt_handler_size);
   496   if (handler_base == NULL) {
   497     // not enough space left for the handler
   498     bailout("deopt handler overflow");
   499     return -1;
   500   }
   502   int offset = code_offset();
   503   InternalAddress here(__ pc());
   505   __ pushptr(here.addr());
   506   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
   507   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
   508   __ end_a_stub();
   510   return offset;
   511 }
   514 // This is the fast version of java.lang.String.compare; it has not
   515 // OSR-entry and therefore, we generate a slow version for OSR's
   516 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
   517   __ movptr (rbx, rcx); // receiver is in rcx
   518   __ movptr (rax, arg1->as_register());
   520   // Get addresses of first characters from both Strings
   521   __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
   522   if (java_lang_String::has_offset_field()) {
   523     __ movptr     (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
   524     __ movl       (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
   525     __ lea        (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   526   } else {
   527     __ movl       (rax, Address(rsi, arrayOopDesc::length_offset_in_bytes()));
   528     __ lea        (rsi, Address(rsi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   529   }
   531   // rbx, may be NULL
   532   add_debug_info_for_null_check_here(info);
   533   __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
   534   if (java_lang_String::has_offset_field()) {
   535     __ movptr     (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
   536     __ movl       (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   537     __ lea        (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   538   } else {
   539     __ movl       (rbx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
   540     __ lea        (rdi, Address(rdi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   541   }
   543   // compute minimum length (in rax) and difference of lengths (on top of stack)
   544   __ mov   (rcx, rbx);
   545   __ subptr(rbx, rax); // subtract lengths
   546   __ push  (rbx);      // result
   547   __ cmov  (Assembler::lessEqual, rax, rcx);
   549   // is minimum length 0?
   550   Label noLoop, haveResult;
   551   __ testptr (rax, rax);
   552   __ jcc (Assembler::zero, noLoop);
   554   // compare first characters
   555   __ load_unsigned_short(rcx, Address(rdi, 0));
   556   __ load_unsigned_short(rbx, Address(rsi, 0));
   557   __ subl(rcx, rbx);
   558   __ jcc(Assembler::notZero, haveResult);
   559   // starting loop
   560   __ decrement(rax); // we already tested index: skip one
   561   __ jcc(Assembler::zero, noLoop);
   563   // set rsi.edi to the end of the arrays (arrays have same length)
   564   // negate the index
   566   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   567   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   568   __ negptr(rax);
   570   // compare the strings in a loop
   572   Label loop;
   573   __ align(wordSize);
   574   __ bind(loop);
   575   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
   576   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
   577   __ subl(rcx, rbx);
   578   __ jcc(Assembler::notZero, haveResult);
   579   __ increment(rax);
   580   __ jcc(Assembler::notZero, loop);
   582   // strings are equal up to min length
   584   __ bind(noLoop);
   585   __ pop(rax);
   586   return_op(LIR_OprFact::illegalOpr);
   588   __ bind(haveResult);
   589   // leave instruction is going to discard the TOS value
   590   __ mov (rax, rcx); // result of call is in rax,
   591 }
   594 void LIR_Assembler::return_op(LIR_Opr result) {
   595   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
   596   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
   597     assert(result->fpu() == 0, "result must already be on TOS");
   598   }
   600   // Pop the stack before the safepoint code
   601   __ remove_frame(initial_frame_size_in_bytes());
   603   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
   605   // Note: we do not need to round double result; float result has the right precision
   606   // the poll sets the condition code, but no data registers
   607   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   608                               relocInfo::poll_return_type);
   610   if (Assembler::is_polling_page_far()) {
   611     __ lea(rscratch1, polling_page);
   612     __ relocate(relocInfo::poll_return_type);
   613     __ testl(rax, Address(rscratch1, 0));
   614   } else {
   615     __ testl(rax, polling_page);
   616   }
   617   __ ret(0);
   618 }
   621 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
   622   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   623                               relocInfo::poll_type);
   624   guarantee(info != NULL, "Shouldn't be NULL");
   625   int offset = __ offset();
   626   if (Assembler::is_polling_page_far()) {
   627     __ lea(rscratch1, polling_page);
   628     offset = __ offset();
   629     add_debug_info_for_branch(info);
   630     __ testl(rax, Address(rscratch1, 0));
   631   } else {
   632     add_debug_info_for_branch(info);
   633     __ testl(rax, polling_page);
   634   }
   635   return offset;
   636 }
   639 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
   640   if (from_reg != to_reg) __ mov(to_reg, from_reg);
   641 }
   643 void LIR_Assembler::swap_reg(Register a, Register b) {
   644   __ xchgptr(a, b);
   645 }
   648 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
   649   assert(src->is_constant(), "should not call otherwise");
   650   assert(dest->is_register(), "should not call otherwise");
   651   LIR_Const* c = src->as_constant_ptr();
   653   switch (c->type()) {
   654     case T_INT: {
   655       assert(patch_code == lir_patch_none, "no patching handled here");
   656       __ movl(dest->as_register(), c->as_jint());
   657       break;
   658     }
   660     case T_ADDRESS: {
   661       assert(patch_code == lir_patch_none, "no patching handled here");
   662       __ movptr(dest->as_register(), c->as_jint());
   663       break;
   664     }
   666     case T_LONG: {
   667       assert(patch_code == lir_patch_none, "no patching handled here");
   668 #ifdef _LP64
   669       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
   670 #else
   671       __ movptr(dest->as_register_lo(), c->as_jint_lo());
   672       __ movptr(dest->as_register_hi(), c->as_jint_hi());
   673 #endif // _LP64
   674       break;
   675     }
   677     case T_OBJECT: {
   678       if (patch_code != lir_patch_none) {
   679         jobject2reg_with_patching(dest->as_register(), info);
   680       } else {
   681         __ movoop(dest->as_register(), c->as_jobject());
   682       }
   683       break;
   684     }
   686     case T_METADATA: {
   687       if (patch_code != lir_patch_none) {
   688         klass2reg_with_patching(dest->as_register(), info);
   689       } else {
   690         __ mov_metadata(dest->as_register(), c->as_metadata());
   691       }
   692       break;
   693     }
   695     case T_FLOAT: {
   696       if (dest->is_single_xmm()) {
   697         if (c->is_zero_float()) {
   698           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
   699         } else {
   700           __ movflt(dest->as_xmm_float_reg(),
   701                    InternalAddress(float_constant(c->as_jfloat())));
   702         }
   703       } else {
   704         assert(dest->is_single_fpu(), "must be");
   705         assert(dest->fpu_regnr() == 0, "dest must be TOS");
   706         if (c->is_zero_float()) {
   707           __ fldz();
   708         } else if (c->is_one_float()) {
   709           __ fld1();
   710         } else {
   711           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
   712         }
   713       }
   714       break;
   715     }
   717     case T_DOUBLE: {
   718       if (dest->is_double_xmm()) {
   719         if (c->is_zero_double()) {
   720           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
   721         } else {
   722           __ movdbl(dest->as_xmm_double_reg(),
   723                     InternalAddress(double_constant(c->as_jdouble())));
   724         }
   725       } else {
   726         assert(dest->is_double_fpu(), "must be");
   727         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
   728         if (c->is_zero_double()) {
   729           __ fldz();
   730         } else if (c->is_one_double()) {
   731           __ fld1();
   732         } else {
   733           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
   734         }
   735       }
   736       break;
   737     }
   739     default:
   740       ShouldNotReachHere();
   741   }
   742 }
   744 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
   745   assert(src->is_constant(), "should not call otherwise");
   746   assert(dest->is_stack(), "should not call otherwise");
   747   LIR_Const* c = src->as_constant_ptr();
   749   switch (c->type()) {
   750     case T_INT:  // fall through
   751     case T_FLOAT:
   752       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   753       break;
   755     case T_ADDRESS:
   756       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   757       break;
   759     case T_OBJECT:
   760       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
   761       break;
   763     case T_LONG:  // fall through
   764     case T_DOUBLE:
   765 #ifdef _LP64
   766       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   767                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
   768 #else
   769       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   770                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
   771       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   772                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
   773 #endif // _LP64
   774       break;
   776     default:
   777       ShouldNotReachHere();
   778   }
   779 }
   781 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
   782   assert(src->is_constant(), "should not call otherwise");
   783   assert(dest->is_address(), "should not call otherwise");
   784   LIR_Const* c = src->as_constant_ptr();
   785   LIR_Address* addr = dest->as_address_ptr();
   787   int null_check_here = code_offset();
   788   switch (type) {
   789     case T_INT:    // fall through
   790     case T_FLOAT:
   791       __ movl(as_Address(addr), c->as_jint_bits());
   792       break;
   794     case T_ADDRESS:
   795       __ movptr(as_Address(addr), c->as_jint_bits());
   796       break;
   798     case T_OBJECT:  // fall through
   799     case T_ARRAY:
   800       if (c->as_jobject() == NULL) {
   801         if (UseCompressedOops && !wide) {
   802           __ movl(as_Address(addr), (int32_t)NULL_WORD);
   803         } else {
   804 #ifdef _LP64
   805           __ xorptr(rscratch1, rscratch1);
   806           null_check_here = code_offset();
   807           __ movptr(as_Address(addr), rscratch1);
   808 #else
   809           __ movptr(as_Address(addr), NULL_WORD);
   810 #endif
   811         }
   812       } else {
   813         if (is_literal_address(addr)) {
   814           ShouldNotReachHere();
   815           __ movoop(as_Address(addr, noreg), c->as_jobject());
   816         } else {
   817 #ifdef _LP64
   818           __ movoop(rscratch1, c->as_jobject());
   819           if (UseCompressedOops && !wide) {
   820             __ encode_heap_oop(rscratch1);
   821             null_check_here = code_offset();
   822             __ movl(as_Address_lo(addr), rscratch1);
   823           } else {
   824             null_check_here = code_offset();
   825             __ movptr(as_Address_lo(addr), rscratch1);
   826           }
   827 #else
   828           __ movoop(as_Address(addr), c->as_jobject());
   829 #endif
   830         }
   831       }
   832       break;
   834     case T_LONG:    // fall through
   835     case T_DOUBLE:
   836 #ifdef _LP64
   837       if (is_literal_address(addr)) {
   838         ShouldNotReachHere();
   839         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
   840       } else {
   841         __ movptr(r10, (intptr_t)c->as_jlong_bits());
   842         null_check_here = code_offset();
   843         __ movptr(as_Address_lo(addr), r10);
   844       }
   845 #else
   846       // Always reachable in 32bit so this doesn't produce useless move literal
   847       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
   848       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
   849 #endif // _LP64
   850       break;
   852     case T_BOOLEAN: // fall through
   853     case T_BYTE:
   854       __ movb(as_Address(addr), c->as_jint() & 0xFF);
   855       break;
   857     case T_CHAR:    // fall through
   858     case T_SHORT:
   859       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
   860       break;
   862     default:
   863       ShouldNotReachHere();
   864   };
   866   if (info != NULL) {
   867     add_debug_info_for_null_check(null_check_here, info);
   868   }
   869 }
   872 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
   873   assert(src->is_register(), "should not call otherwise");
   874   assert(dest->is_register(), "should not call otherwise");
   876   // move between cpu-registers
   877   if (dest->is_single_cpu()) {
   878 #ifdef _LP64
   879     if (src->type() == T_LONG) {
   880       // Can do LONG -> OBJECT
   881       move_regs(src->as_register_lo(), dest->as_register());
   882       return;
   883     }
   884 #endif
   885     assert(src->is_single_cpu(), "must match");
   886     if (src->type() == T_OBJECT) {
   887       __ verify_oop(src->as_register());
   888     }
   889     move_regs(src->as_register(), dest->as_register());
   891   } else if (dest->is_double_cpu()) {
   892 #ifdef _LP64
   893     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
   894       // Surprising to me but we can see move of a long to t_object
   895       __ verify_oop(src->as_register());
   896       move_regs(src->as_register(), dest->as_register_lo());
   897       return;
   898     }
   899 #endif
   900     assert(src->is_double_cpu(), "must match");
   901     Register f_lo = src->as_register_lo();
   902     Register f_hi = src->as_register_hi();
   903     Register t_lo = dest->as_register_lo();
   904     Register t_hi = dest->as_register_hi();
   905 #ifdef _LP64
   906     assert(f_hi == f_lo, "must be same");
   907     assert(t_hi == t_lo, "must be same");
   908     move_regs(f_lo, t_lo);
   909 #else
   910     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
   913     if (f_lo == t_hi && f_hi == t_lo) {
   914       swap_reg(f_lo, f_hi);
   915     } else if (f_hi == t_lo) {
   916       assert(f_lo != t_hi, "overwriting register");
   917       move_regs(f_hi, t_hi);
   918       move_regs(f_lo, t_lo);
   919     } else {
   920       assert(f_hi != t_lo, "overwriting register");
   921       move_regs(f_lo, t_lo);
   922       move_regs(f_hi, t_hi);
   923     }
   924 #endif // LP64
   926     // special moves from fpu-register to xmm-register
   927     // necessary for method results
   928   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
   929     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
   930     __ fld_s(Address(rsp, 0));
   931   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
   932     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
   933     __ fld_d(Address(rsp, 0));
   934   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
   935     __ fstp_s(Address(rsp, 0));
   936     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
   937   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
   938     __ fstp_d(Address(rsp, 0));
   939     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
   941     // move between xmm-registers
   942   } else if (dest->is_single_xmm()) {
   943     assert(src->is_single_xmm(), "must match");
   944     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
   945   } else if (dest->is_double_xmm()) {
   946     assert(src->is_double_xmm(), "must match");
   947     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
   949     // move between fpu-registers (no instruction necessary because of fpu-stack)
   950   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
   951     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
   952     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
   953   } else {
   954     ShouldNotReachHere();
   955   }
   956 }
   958 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
   959   assert(src->is_register(), "should not call otherwise");
   960   assert(dest->is_stack(), "should not call otherwise");
   962   if (src->is_single_cpu()) {
   963     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
   964     if (type == T_OBJECT || type == T_ARRAY) {
   965       __ verify_oop(src->as_register());
   966       __ movptr (dst, src->as_register());
   967     } else if (type == T_METADATA) {
   968       __ movptr (dst, src->as_register());
   969     } else {
   970       __ movl (dst, src->as_register());
   971     }
   973   } else if (src->is_double_cpu()) {
   974     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
   975     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
   976     __ movptr (dstLO, src->as_register_lo());
   977     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
   979   } else if (src->is_single_xmm()) {
   980     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   981     __ movflt(dst_addr, src->as_xmm_float_reg());
   983   } else if (src->is_double_xmm()) {
   984     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   985     __ movdbl(dst_addr, src->as_xmm_double_reg());
   987   } else if (src->is_single_fpu()) {
   988     assert(src->fpu_regnr() == 0, "argument must be on TOS");
   989     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   990     if (pop_fpu_stack)     __ fstp_s (dst_addr);
   991     else                   __ fst_s  (dst_addr);
   993   } else if (src->is_double_fpu()) {
   994     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
   995     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   996     if (pop_fpu_stack)     __ fstp_d (dst_addr);
   997     else                   __ fst_d  (dst_addr);
   999   } else {
  1000     ShouldNotReachHere();
  1005 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
  1006   LIR_Address* to_addr = dest->as_address_ptr();
  1007   PatchingStub* patch = NULL;
  1008   Register compressed_src = rscratch1;
  1010   if (type == T_ARRAY || type == T_OBJECT) {
  1011     __ verify_oop(src->as_register());
  1012 #ifdef _LP64
  1013     if (UseCompressedOops && !wide) {
  1014       __ movptr(compressed_src, src->as_register());
  1015       __ encode_heap_oop(compressed_src);
  1016       if (patch_code != lir_patch_none) {
  1017         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
  1020 #endif
  1023   if (patch_code != lir_patch_none) {
  1024     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1025     Address toa = as_Address(to_addr);
  1026     assert(toa.disp() != 0, "must have");
  1029   int null_check_here = code_offset();
  1030   switch (type) {
  1031     case T_FLOAT: {
  1032       if (src->is_single_xmm()) {
  1033         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
  1034       } else {
  1035         assert(src->is_single_fpu(), "must be");
  1036         assert(src->fpu_regnr() == 0, "argument must be on TOS");
  1037         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
  1038         else                    __ fst_s (as_Address(to_addr));
  1040       break;
  1043     case T_DOUBLE: {
  1044       if (src->is_double_xmm()) {
  1045         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
  1046       } else {
  1047         assert(src->is_double_fpu(), "must be");
  1048         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
  1049         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
  1050         else                    __ fst_d (as_Address(to_addr));
  1052       break;
  1055     case T_ARRAY:   // fall through
  1056     case T_OBJECT:  // fall through
  1057       if (UseCompressedOops && !wide) {
  1058         __ movl(as_Address(to_addr), compressed_src);
  1059       } else {
  1060         __ movptr(as_Address(to_addr), src->as_register());
  1062       break;
  1063     case T_METADATA:
  1064       // We get here to store a method pointer to the stack to pass to
  1065       // a dtrace runtime call. This can't work on 64 bit with
  1066       // compressed klass ptrs: T_METADATA can be a compressed klass
  1067       // ptr or a 64 bit method pointer.
  1068       LP64_ONLY(ShouldNotReachHere());
  1069       __ movptr(as_Address(to_addr), src->as_register());
  1070       break;
  1071     case T_ADDRESS:
  1072       __ movptr(as_Address(to_addr), src->as_register());
  1073       break;
  1074     case T_INT:
  1075       __ movl(as_Address(to_addr), src->as_register());
  1076       break;
  1078     case T_LONG: {
  1079       Register from_lo = src->as_register_lo();
  1080       Register from_hi = src->as_register_hi();
  1081 #ifdef _LP64
  1082       __ movptr(as_Address_lo(to_addr), from_lo);
  1083 #else
  1084       Register base = to_addr->base()->as_register();
  1085       Register index = noreg;
  1086       if (to_addr->index()->is_register()) {
  1087         index = to_addr->index()->as_register();
  1089       if (base == from_lo || index == from_lo) {
  1090         assert(base != from_hi, "can't be");
  1091         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
  1092         __ movl(as_Address_hi(to_addr), from_hi);
  1093         if (patch != NULL) {
  1094           patching_epilog(patch, lir_patch_high, base, info);
  1095           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1096           patch_code = lir_patch_low;
  1098         __ movl(as_Address_lo(to_addr), from_lo);
  1099       } else {
  1100         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
  1101         __ movl(as_Address_lo(to_addr), from_lo);
  1102         if (patch != NULL) {
  1103           patching_epilog(patch, lir_patch_low, base, info);
  1104           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1105           patch_code = lir_patch_high;
  1107         __ movl(as_Address_hi(to_addr), from_hi);
  1109 #endif // _LP64
  1110       break;
  1113     case T_BYTE:    // fall through
  1114     case T_BOOLEAN: {
  1115       Register src_reg = src->as_register();
  1116       Address dst_addr = as_Address(to_addr);
  1117       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
  1118       __ movb(dst_addr, src_reg);
  1119       break;
  1122     case T_CHAR:    // fall through
  1123     case T_SHORT:
  1124       __ movw(as_Address(to_addr), src->as_register());
  1125       break;
  1127     default:
  1128       ShouldNotReachHere();
  1130   if (info != NULL) {
  1131     add_debug_info_for_null_check(null_check_here, info);
  1134   if (patch_code != lir_patch_none) {
  1135     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
  1140 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1141   assert(src->is_stack(), "should not call otherwise");
  1142   assert(dest->is_register(), "should not call otherwise");
  1144   if (dest->is_single_cpu()) {
  1145     if (type == T_ARRAY || type == T_OBJECT) {
  1146       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1147       __ verify_oop(dest->as_register());
  1148     } else if (type == T_METADATA) {
  1149       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1150     } else {
  1151       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1154   } else if (dest->is_double_cpu()) {
  1155     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
  1156     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
  1157     __ movptr(dest->as_register_lo(), src_addr_LO);
  1158     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
  1160   } else if (dest->is_single_xmm()) {
  1161     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1162     __ movflt(dest->as_xmm_float_reg(), src_addr);
  1164   } else if (dest->is_double_xmm()) {
  1165     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1166     __ movdbl(dest->as_xmm_double_reg(), src_addr);
  1168   } else if (dest->is_single_fpu()) {
  1169     assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1170     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1171     __ fld_s(src_addr);
  1173   } else if (dest->is_double_fpu()) {
  1174     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1175     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1176     __ fld_d(src_addr);
  1178   } else {
  1179     ShouldNotReachHere();
  1184 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1185   if (src->is_single_stack()) {
  1186     if (type == T_OBJECT || type == T_ARRAY) {
  1187       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
  1188       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
  1189     } else {
  1190 #ifndef _LP64
  1191       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
  1192       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
  1193 #else
  1194       //no pushl on 64bits
  1195       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
  1196       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
  1197 #endif
  1200   } else if (src->is_double_stack()) {
  1201 #ifdef _LP64
  1202     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
  1203     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
  1204 #else
  1205     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
  1206     // push and pop the part at src + wordSize, adding wordSize for the previous push
  1207     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
  1208     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
  1209     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
  1210 #endif // _LP64
  1212   } else {
  1213     ShouldNotReachHere();
  1218 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
  1219   assert(src->is_address(), "should not call otherwise");
  1220   assert(dest->is_register(), "should not call otherwise");
  1222   LIR_Address* addr = src->as_address_ptr();
  1223   Address from_addr = as_Address(addr);
  1225   if (addr->base()->type() == T_OBJECT) {
  1226     __ verify_oop(addr->base()->as_pointer_register());
  1229   switch (type) {
  1230     case T_BOOLEAN: // fall through
  1231     case T_BYTE:    // fall through
  1232     case T_CHAR:    // fall through
  1233     case T_SHORT:
  1234       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
  1235         // on pre P6 processors we may get partial register stalls
  1236         // so blow away the value of to_rinfo before loading a
  1237         // partial word into it.  Do it here so that it precedes
  1238         // the potential patch point below.
  1239         __ xorptr(dest->as_register(), dest->as_register());
  1241       break;
  1244   PatchingStub* patch = NULL;
  1245   if (patch_code != lir_patch_none) {
  1246     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1247     assert(from_addr.disp() != 0, "must have");
  1249   if (info != NULL) {
  1250     add_debug_info_for_null_check_here(info);
  1253   switch (type) {
  1254     case T_FLOAT: {
  1255       if (dest->is_single_xmm()) {
  1256         __ movflt(dest->as_xmm_float_reg(), from_addr);
  1257       } else {
  1258         assert(dest->is_single_fpu(), "must be");
  1259         assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1260         __ fld_s(from_addr);
  1262       break;
  1265     case T_DOUBLE: {
  1266       if (dest->is_double_xmm()) {
  1267         __ movdbl(dest->as_xmm_double_reg(), from_addr);
  1268       } else {
  1269         assert(dest->is_double_fpu(), "must be");
  1270         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1271         __ fld_d(from_addr);
  1273       break;
  1276     case T_OBJECT:  // fall through
  1277     case T_ARRAY:   // fall through
  1278       if (UseCompressedOops && !wide) {
  1279         __ movl(dest->as_register(), from_addr);
  1280       } else {
  1281         __ movptr(dest->as_register(), from_addr);
  1283       break;
  1285     case T_ADDRESS:
  1286       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
  1287         __ movl(dest->as_register(), from_addr);
  1288       } else {
  1289         __ movptr(dest->as_register(), from_addr);
  1291       break;
  1292     case T_INT:
  1293       __ movl(dest->as_register(), from_addr);
  1294       break;
  1296     case T_LONG: {
  1297       Register to_lo = dest->as_register_lo();
  1298       Register to_hi = dest->as_register_hi();
  1299 #ifdef _LP64
  1300       __ movptr(to_lo, as_Address_lo(addr));
  1301 #else
  1302       Register base = addr->base()->as_register();
  1303       Register index = noreg;
  1304       if (addr->index()->is_register()) {
  1305         index = addr->index()->as_register();
  1307       if ((base == to_lo && index == to_hi) ||
  1308           (base == to_hi && index == to_lo)) {
  1309         // addresses with 2 registers are only formed as a result of
  1310         // array access so this code will never have to deal with
  1311         // patches or null checks.
  1312         assert(info == NULL && patch == NULL, "must be");
  1313         __ lea(to_hi, as_Address(addr));
  1314         __ movl(to_lo, Address(to_hi, 0));
  1315         __ movl(to_hi, Address(to_hi, BytesPerWord));
  1316       } else if (base == to_lo || index == to_lo) {
  1317         assert(base != to_hi, "can't be");
  1318         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
  1319         __ movl(to_hi, as_Address_hi(addr));
  1320         if (patch != NULL) {
  1321           patching_epilog(patch, lir_patch_high, base, info);
  1322           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1323           patch_code = lir_patch_low;
  1325         __ movl(to_lo, as_Address_lo(addr));
  1326       } else {
  1327         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
  1328         __ movl(to_lo, as_Address_lo(addr));
  1329         if (patch != NULL) {
  1330           patching_epilog(patch, lir_patch_low, base, info);
  1331           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1332           patch_code = lir_patch_high;
  1334         __ movl(to_hi, as_Address_hi(addr));
  1336 #endif // _LP64
  1337       break;
  1340     case T_BOOLEAN: // fall through
  1341     case T_BYTE: {
  1342       Register dest_reg = dest->as_register();
  1343       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1344       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1345         __ movsbl(dest_reg, from_addr);
  1346       } else {
  1347         __ movb(dest_reg, from_addr);
  1348         __ shll(dest_reg, 24);
  1349         __ sarl(dest_reg, 24);
  1351       break;
  1354     case T_CHAR: {
  1355       Register dest_reg = dest->as_register();
  1356       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1357       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1358         __ movzwl(dest_reg, from_addr);
  1359       } else {
  1360         __ movw(dest_reg, from_addr);
  1362       break;
  1365     case T_SHORT: {
  1366       Register dest_reg = dest->as_register();
  1367       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1368         __ movswl(dest_reg, from_addr);
  1369       } else {
  1370         __ movw(dest_reg, from_addr);
  1371         __ shll(dest_reg, 16);
  1372         __ sarl(dest_reg, 16);
  1374       break;
  1377     default:
  1378       ShouldNotReachHere();
  1381   if (patch != NULL) {
  1382     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
  1385   if (type == T_ARRAY || type == T_OBJECT) {
  1386 #ifdef _LP64
  1387     if (UseCompressedOops && !wide) {
  1388       __ decode_heap_oop(dest->as_register());
  1390 #endif
  1391     __ verify_oop(dest->as_register());
  1392   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
  1393 #ifdef _LP64
  1394     if (UseCompressedClassPointers) {
  1395       __ decode_klass_not_null(dest->as_register());
  1397 #endif
  1402 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1403   LIR_Address* addr = src->as_address_ptr();
  1404   Address from_addr = as_Address(addr);
  1406   if (VM_Version::supports_sse()) {
  1407     switch (ReadPrefetchInstr) {
  1408       case 0:
  1409         __ prefetchnta(from_addr); break;
  1410       case 1:
  1411         __ prefetcht0(from_addr); break;
  1412       case 2:
  1413         __ prefetcht2(from_addr); break;
  1414       default:
  1415         ShouldNotReachHere(); break;
  1417   } else if (VM_Version::supports_3dnow_prefetch()) {
  1418     __ prefetchr(from_addr);
  1423 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1424   LIR_Address* addr = src->as_address_ptr();
  1425   Address from_addr = as_Address(addr);
  1427   if (VM_Version::supports_sse()) {
  1428     switch (AllocatePrefetchInstr) {
  1429       case 0:
  1430         __ prefetchnta(from_addr); break;
  1431       case 1:
  1432         __ prefetcht0(from_addr); break;
  1433       case 2:
  1434         __ prefetcht2(from_addr); break;
  1435       case 3:
  1436         __ prefetchw(from_addr); break;
  1437       default:
  1438         ShouldNotReachHere(); break;
  1440   } else if (VM_Version::supports_3dnow_prefetch()) {
  1441     __ prefetchw(from_addr);
  1446 NEEDS_CLEANUP; // This could be static?
  1447 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
  1448   int elem_size = type2aelembytes(type);
  1449   switch (elem_size) {
  1450     case 1: return Address::times_1;
  1451     case 2: return Address::times_2;
  1452     case 4: return Address::times_4;
  1453     case 8: return Address::times_8;
  1455   ShouldNotReachHere();
  1456   return Address::no_scale;
  1460 void LIR_Assembler::emit_op3(LIR_Op3* op) {
  1461   switch (op->code()) {
  1462     case lir_idiv:
  1463     case lir_irem:
  1464       arithmetic_idiv(op->code(),
  1465                       op->in_opr1(),
  1466                       op->in_opr2(),
  1467                       op->in_opr3(),
  1468                       op->result_opr(),
  1469                       op->info());
  1470       break;
  1471     default:      ShouldNotReachHere(); break;
  1475 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
  1476 #ifdef ASSERT
  1477   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
  1478   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
  1479   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
  1480 #endif
  1482   if (op->cond() == lir_cond_always) {
  1483     if (op->info() != NULL) add_debug_info_for_branch(op->info());
  1484     __ jmp (*(op->label()));
  1485   } else {
  1486     Assembler::Condition acond = Assembler::zero;
  1487     if (op->code() == lir_cond_float_branch) {
  1488       assert(op->ublock() != NULL, "must have unordered successor");
  1489       __ jcc(Assembler::parity, *(op->ublock()->label()));
  1490       switch(op->cond()) {
  1491         case lir_cond_equal:        acond = Assembler::equal;      break;
  1492         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
  1493         case lir_cond_less:         acond = Assembler::below;      break;
  1494         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
  1495         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
  1496         case lir_cond_greater:      acond = Assembler::above;      break;
  1497         default:                         ShouldNotReachHere();
  1499     } else {
  1500       switch (op->cond()) {
  1501         case lir_cond_equal:        acond = Assembler::equal;       break;
  1502         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
  1503         case lir_cond_less:         acond = Assembler::less;        break;
  1504         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
  1505         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
  1506         case lir_cond_greater:      acond = Assembler::greater;     break;
  1507         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
  1508         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
  1509         default:                         ShouldNotReachHere();
  1512     __ jcc(acond,*(op->label()));
  1516 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
  1517   LIR_Opr src  = op->in_opr();
  1518   LIR_Opr dest = op->result_opr();
  1520   switch (op->bytecode()) {
  1521     case Bytecodes::_i2l:
  1522 #ifdef _LP64
  1523       __ movl2ptr(dest->as_register_lo(), src->as_register());
  1524 #else
  1525       move_regs(src->as_register(), dest->as_register_lo());
  1526       move_regs(src->as_register(), dest->as_register_hi());
  1527       __ sarl(dest->as_register_hi(), 31);
  1528 #endif // LP64
  1529       break;
  1531     case Bytecodes::_l2i:
  1532 #ifdef _LP64
  1533       __ movl(dest->as_register(), src->as_register_lo());
  1534 #else
  1535       move_regs(src->as_register_lo(), dest->as_register());
  1536 #endif
  1537       break;
  1539     case Bytecodes::_i2b:
  1540       move_regs(src->as_register(), dest->as_register());
  1541       __ sign_extend_byte(dest->as_register());
  1542       break;
  1544     case Bytecodes::_i2c:
  1545       move_regs(src->as_register(), dest->as_register());
  1546       __ andl(dest->as_register(), 0xFFFF);
  1547       break;
  1549     case Bytecodes::_i2s:
  1550       move_regs(src->as_register(), dest->as_register());
  1551       __ sign_extend_short(dest->as_register());
  1552       break;
  1555     case Bytecodes::_f2d:
  1556     case Bytecodes::_d2f:
  1557       if (dest->is_single_xmm()) {
  1558         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
  1559       } else if (dest->is_double_xmm()) {
  1560         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
  1561       } else {
  1562         assert(src->fpu() == dest->fpu(), "register must be equal");
  1563         // do nothing (float result is rounded later through spilling)
  1565       break;
  1567     case Bytecodes::_i2f:
  1568     case Bytecodes::_i2d:
  1569       if (dest->is_single_xmm()) {
  1570         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
  1571       } else if (dest->is_double_xmm()) {
  1572         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
  1573       } else {
  1574         assert(dest->fpu() == 0, "result must be on TOS");
  1575         __ movl(Address(rsp, 0), src->as_register());
  1576         __ fild_s(Address(rsp, 0));
  1578       break;
  1580     case Bytecodes::_f2i:
  1581     case Bytecodes::_d2i:
  1582       if (src->is_single_xmm()) {
  1583         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
  1584       } else if (src->is_double_xmm()) {
  1585         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
  1586       } else {
  1587         assert(src->fpu() == 0, "input must be on TOS");
  1588         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
  1589         __ fist_s(Address(rsp, 0));
  1590         __ movl(dest->as_register(), Address(rsp, 0));
  1591         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1594       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
  1595       assert(op->stub() != NULL, "stub required");
  1596       __ cmpl(dest->as_register(), 0x80000000);
  1597       __ jcc(Assembler::equal, *op->stub()->entry());
  1598       __ bind(*op->stub()->continuation());
  1599       break;
  1601     case Bytecodes::_l2f:
  1602     case Bytecodes::_l2d:
  1603       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
  1604       assert(dest->fpu() == 0, "result must be on TOS");
  1606       __ movptr(Address(rsp, 0),            src->as_register_lo());
  1607       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
  1608       __ fild_d(Address(rsp, 0));
  1609       // float result is rounded later through spilling
  1610       break;
  1612     case Bytecodes::_f2l:
  1613     case Bytecodes::_d2l:
  1614       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
  1615       assert(src->fpu() == 0, "input must be on TOS");
  1616       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
  1618       // instruction sequence too long to inline it here
  1620         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
  1622       break;
  1624     default: ShouldNotReachHere();
  1628 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  1629   if (op->init_check()) {
  1630     __ cmpb(Address(op->klass()->as_register(),
  1631                     InstanceKlass::init_state_offset()),
  1632                     InstanceKlass::fully_initialized);
  1633     add_debug_info_for_null_check_here(op->stub()->info());
  1634     __ jcc(Assembler::notEqual, *op->stub()->entry());
  1636   __ allocate_object(op->obj()->as_register(),
  1637                      op->tmp1()->as_register(),
  1638                      op->tmp2()->as_register(),
  1639                      op->header_size(),
  1640                      op->object_size(),
  1641                      op->klass()->as_register(),
  1642                      *op->stub()->entry());
  1643   __ bind(*op->stub()->continuation());
  1646 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  1647   Register len =  op->len()->as_register();
  1648   LP64_ONLY( __ movslq(len, len); )
  1650   if (UseSlowPath ||
  1651       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  1652       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  1653     __ jmp(*op->stub()->entry());
  1654   } else {
  1655     Register tmp1 = op->tmp1()->as_register();
  1656     Register tmp2 = op->tmp2()->as_register();
  1657     Register tmp3 = op->tmp3()->as_register();
  1658     if (len == tmp1) {
  1659       tmp1 = tmp3;
  1660     } else if (len == tmp2) {
  1661       tmp2 = tmp3;
  1662     } else if (len == tmp3) {
  1663       // everything is ok
  1664     } else {
  1665       __ mov(tmp3, len);
  1667     __ allocate_array(op->obj()->as_register(),
  1668                       len,
  1669                       tmp1,
  1670                       tmp2,
  1671                       arrayOopDesc::header_size(op->type()),
  1672                       array_element_size(op->type()),
  1673                       op->klass()->as_register(),
  1674                       *op->stub()->entry());
  1676   __ bind(*op->stub()->continuation());
  1679 void LIR_Assembler::type_profile_helper(Register mdo,
  1680                                         ciMethodData *md, ciProfileData *data,
  1681                                         Register recv, Label* update_done) {
  1682   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1683     Label next_test;
  1684     // See if the receiver is receiver[n].
  1685     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
  1686     __ jccb(Assembler::notEqual, next_test);
  1687     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
  1688     __ addptr(data_addr, DataLayout::counter_increment);
  1689     __ jmp(*update_done);
  1690     __ bind(next_test);
  1693   // Didn't find receiver; find next empty slot and fill it in
  1694   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1695     Label next_test;
  1696     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
  1697     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
  1698     __ jccb(Assembler::notEqual, next_test);
  1699     __ movptr(recv_addr, recv);
  1700     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
  1701     __ jmp(*update_done);
  1702     __ bind(next_test);
  1706 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  1707   // we always need a stub for the failure case.
  1708   CodeStub* stub = op->stub();
  1709   Register obj = op->object()->as_register();
  1710   Register k_RInfo = op->tmp1()->as_register();
  1711   Register klass_RInfo = op->tmp2()->as_register();
  1712   Register dst = op->result_opr()->as_register();
  1713   ciKlass* k = op->klass();
  1714   Register Rtmp1 = noreg;
  1716   // check if it needs to be profiled
  1717   ciMethodData* md;
  1718   ciProfileData* data;
  1720   if (op->should_profile()) {
  1721     ciMethod* method = op->profiled_method();
  1722     assert(method != NULL, "Should have method");
  1723     int bci = op->profiled_bci();
  1724     md = method->method_data_or_null();
  1725     assert(md != NULL, "Sanity");
  1726     data = md->bci_to_data(bci);
  1727     assert(data != NULL,                "need data for type check");
  1728     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1730   Label profile_cast_success, profile_cast_failure;
  1731   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  1732   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  1734   if (obj == k_RInfo) {
  1735     k_RInfo = dst;
  1736   } else if (obj == klass_RInfo) {
  1737     klass_RInfo = dst;
  1739   if (k->is_loaded() && !UseCompressedClassPointers) {
  1740     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
  1741   } else {
  1742     Rtmp1 = op->tmp3()->as_register();
  1743     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
  1746   assert_different_registers(obj, k_RInfo, klass_RInfo);
  1748   __ cmpptr(obj, (int32_t)NULL_WORD);
  1749   if (op->should_profile()) {
  1750     Label not_null;
  1751     __ jccb(Assembler::notEqual, not_null);
  1752     // Object is null; update MDO and exit
  1753     Register mdo  = klass_RInfo;
  1754     __ mov_metadata(mdo, md->constant_encoding());
  1755     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1756     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1757     __ orl(data_addr, header_bits);
  1758     __ jmp(*obj_is_null);
  1759     __ bind(not_null);
  1760   } else {
  1761     __ jcc(Assembler::equal, *obj_is_null);
  1764   if (!k->is_loaded()) {
  1765     klass2reg_with_patching(k_RInfo, op->info_for_patch());
  1766   } else {
  1767 #ifdef _LP64
  1768     __ mov_metadata(k_RInfo, k->constant_encoding());
  1769 #endif // _LP64
  1771   __ verify_oop(obj);
  1773   if (op->fast_check()) {
  1774     // get object class
  1775     // not a safepoint as obj null check happens earlier
  1776 #ifdef _LP64
  1777     if (UseCompressedClassPointers) {
  1778       __ load_klass(Rtmp1, obj);
  1779       __ cmpptr(k_RInfo, Rtmp1);
  1780     } else {
  1781       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1783 #else
  1784     if (k->is_loaded()) {
  1785       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
  1786     } else {
  1787       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1789 #endif
  1790     __ jcc(Assembler::notEqual, *failure_target);
  1791     // successful cast, fall through to profile or jump
  1792   } else {
  1793     // get object class
  1794     // not a safepoint as obj null check happens earlier
  1795     __ load_klass(klass_RInfo, obj);
  1796     if (k->is_loaded()) {
  1797       // See if we get an immediate positive hit
  1798 #ifdef _LP64
  1799       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
  1800 #else
  1801       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
  1802 #endif // _LP64
  1803       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
  1804         __ jcc(Assembler::notEqual, *failure_target);
  1805         // successful cast, fall through to profile or jump
  1806       } else {
  1807         // See if we get an immediate positive hit
  1808         __ jcc(Assembler::equal, *success_target);
  1809         // check for self
  1810 #ifdef _LP64
  1811         __ cmpptr(klass_RInfo, k_RInfo);
  1812 #else
  1813         __ cmpklass(klass_RInfo, k->constant_encoding());
  1814 #endif // _LP64
  1815         __ jcc(Assembler::equal, *success_target);
  1817         __ push(klass_RInfo);
  1818 #ifdef _LP64
  1819         __ push(k_RInfo);
  1820 #else
  1821         __ pushklass(k->constant_encoding());
  1822 #endif // _LP64
  1823         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1824         __ pop(klass_RInfo);
  1825         __ pop(klass_RInfo);
  1826         // result is a boolean
  1827         __ cmpl(klass_RInfo, 0);
  1828         __ jcc(Assembler::equal, *failure_target);
  1829         // successful cast, fall through to profile or jump
  1831     } else {
  1832       // perform the fast part of the checking logic
  1833       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1834       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1835       __ push(klass_RInfo);
  1836       __ push(k_RInfo);
  1837       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1838       __ pop(klass_RInfo);
  1839       __ pop(k_RInfo);
  1840       // result is a boolean
  1841       __ cmpl(k_RInfo, 0);
  1842       __ jcc(Assembler::equal, *failure_target);
  1843       // successful cast, fall through to profile or jump
  1846   if (op->should_profile()) {
  1847     Register mdo  = klass_RInfo, recv = k_RInfo;
  1848     __ bind(profile_cast_success);
  1849     __ mov_metadata(mdo, md->constant_encoding());
  1850     __ load_klass(recv, obj);
  1851     Label update_done;
  1852     type_profile_helper(mdo, md, data, recv, success);
  1853     __ jmp(*success);
  1855     __ bind(profile_cast_failure);
  1856     __ mov_metadata(mdo, md->constant_encoding());
  1857     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1858     __ subptr(counter_addr, DataLayout::counter_increment);
  1859     __ jmp(*failure);
  1861   __ jmp(*success);
  1865 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  1866   LIR_Code code = op->code();
  1867   if (code == lir_store_check) {
  1868     Register value = op->object()->as_register();
  1869     Register array = op->array()->as_register();
  1870     Register k_RInfo = op->tmp1()->as_register();
  1871     Register klass_RInfo = op->tmp2()->as_register();
  1872     Register Rtmp1 = op->tmp3()->as_register();
  1874     CodeStub* stub = op->stub();
  1876     // check if it needs to be profiled
  1877     ciMethodData* md;
  1878     ciProfileData* data;
  1880     if (op->should_profile()) {
  1881       ciMethod* method = op->profiled_method();
  1882       assert(method != NULL, "Should have method");
  1883       int bci = op->profiled_bci();
  1884       md = method->method_data_or_null();
  1885       assert(md != NULL, "Sanity");
  1886       data = md->bci_to_data(bci);
  1887       assert(data != NULL,                "need data for type check");
  1888       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1890     Label profile_cast_success, profile_cast_failure, done;
  1891     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  1892     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  1894     __ cmpptr(value, (int32_t)NULL_WORD);
  1895     if (op->should_profile()) {
  1896       Label not_null;
  1897       __ jccb(Assembler::notEqual, not_null);
  1898       // Object is null; update MDO and exit
  1899       Register mdo  = klass_RInfo;
  1900       __ mov_metadata(mdo, md->constant_encoding());
  1901       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1902       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1903       __ orl(data_addr, header_bits);
  1904       __ jmp(done);
  1905       __ bind(not_null);
  1906     } else {
  1907       __ jcc(Assembler::equal, done);
  1910     add_debug_info_for_null_check_here(op->info_for_exception());
  1911     __ load_klass(k_RInfo, array);
  1912     __ load_klass(klass_RInfo, value);
  1914     // get instance klass (it's already uncompressed)
  1915     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
  1916     // perform the fast part of the checking logic
  1917     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1918     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1919     __ push(klass_RInfo);
  1920     __ push(k_RInfo);
  1921     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1922     __ pop(klass_RInfo);
  1923     __ pop(k_RInfo);
  1924     // result is a boolean
  1925     __ cmpl(k_RInfo, 0);
  1926     __ jcc(Assembler::equal, *failure_target);
  1927     // fall through to the success case
  1929     if (op->should_profile()) {
  1930       Register mdo  = klass_RInfo, recv = k_RInfo;
  1931       __ bind(profile_cast_success);
  1932       __ mov_metadata(mdo, md->constant_encoding());
  1933       __ load_klass(recv, value);
  1934       Label update_done;
  1935       type_profile_helper(mdo, md, data, recv, &done);
  1936       __ jmpb(done);
  1938       __ bind(profile_cast_failure);
  1939       __ mov_metadata(mdo, md->constant_encoding());
  1940       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1941       __ subptr(counter_addr, DataLayout::counter_increment);
  1942       __ jmp(*stub->entry());
  1945     __ bind(done);
  1946   } else
  1947     if (code == lir_checkcast) {
  1948       Register obj = op->object()->as_register();
  1949       Register dst = op->result_opr()->as_register();
  1950       Label success;
  1951       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  1952       __ bind(success);
  1953       if (dst != obj) {
  1954         __ mov(dst, obj);
  1956     } else
  1957       if (code == lir_instanceof) {
  1958         Register obj = op->object()->as_register();
  1959         Register dst = op->result_opr()->as_register();
  1960         Label success, failure, done;
  1961         emit_typecheck_helper(op, &success, &failure, &failure);
  1962         __ bind(failure);
  1963         __ xorptr(dst, dst);
  1964         __ jmpb(done);
  1965         __ bind(success);
  1966         __ movptr(dst, 1);
  1967         __ bind(done);
  1968       } else {
  1969         ShouldNotReachHere();
  1975 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  1976   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
  1977     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
  1978     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
  1979     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
  1980     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
  1981     Register addr = op->addr()->as_register();
  1982     if (os::is_MP()) {
  1983       __ lock();
  1985     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
  1987   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
  1988     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
  1989     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1990     Register newval = op->new_value()->as_register();
  1991     Register cmpval = op->cmp_value()->as_register();
  1992     assert(cmpval == rax, "wrong register");
  1993     assert(newval != NULL, "new val must be register");
  1994     assert(cmpval != newval, "cmp and new values must be in different registers");
  1995     assert(cmpval != addr, "cmp and addr must be in different registers");
  1996     assert(newval != addr, "new value and addr must be in different registers");
  1998     if ( op->code() == lir_cas_obj) {
  1999 #ifdef _LP64
  2000       if (UseCompressedOops) {
  2001         __ encode_heap_oop(cmpval);
  2002         __ mov(rscratch1, newval);
  2003         __ encode_heap_oop(rscratch1);
  2004         if (os::is_MP()) {
  2005           __ lock();
  2007         // cmpval (rax) is implicitly used by this instruction
  2008         __ cmpxchgl(rscratch1, Address(addr, 0));
  2009       } else
  2010 #endif
  2012         if (os::is_MP()) {
  2013           __ lock();
  2015         __ cmpxchgptr(newval, Address(addr, 0));
  2017     } else {
  2018       assert(op->code() == lir_cas_int, "lir_cas_int expected");
  2019       if (os::is_MP()) {
  2020         __ lock();
  2022       __ cmpxchgl(newval, Address(addr, 0));
  2024 #ifdef _LP64
  2025   } else if (op->code() == lir_cas_long) {
  2026     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  2027     Register newval = op->new_value()->as_register_lo();
  2028     Register cmpval = op->cmp_value()->as_register_lo();
  2029     assert(cmpval == rax, "wrong register");
  2030     assert(newval != NULL, "new val must be register");
  2031     assert(cmpval != newval, "cmp and new values must be in different registers");
  2032     assert(cmpval != addr, "cmp and addr must be in different registers");
  2033     assert(newval != addr, "new value and addr must be in different registers");
  2034     if (os::is_MP()) {
  2035       __ lock();
  2037     __ cmpxchgq(newval, Address(addr, 0));
  2038 #endif // _LP64
  2039   } else {
  2040     Unimplemented();
  2044 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
  2045   Assembler::Condition acond, ncond;
  2046   switch (condition) {
  2047     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
  2048     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
  2049     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
  2050     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
  2051     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
  2052     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
  2053     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
  2054     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
  2055     default:                    ShouldNotReachHere();
  2058   if (opr1->is_cpu_register()) {
  2059     reg2reg(opr1, result);
  2060   } else if (opr1->is_stack()) {
  2061     stack2reg(opr1, result, result->type());
  2062   } else if (opr1->is_constant()) {
  2063     const2reg(opr1, result, lir_patch_none, NULL);
  2064   } else {
  2065     ShouldNotReachHere();
  2068   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
  2069     // optimized version that does not require a branch
  2070     if (opr2->is_single_cpu()) {
  2071       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
  2072       __ cmov(ncond, result->as_register(), opr2->as_register());
  2073     } else if (opr2->is_double_cpu()) {
  2074       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  2075       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  2076       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
  2077       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
  2078     } else if (opr2->is_single_stack()) {
  2079       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
  2080     } else if (opr2->is_double_stack()) {
  2081       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
  2082       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
  2083     } else {
  2084       ShouldNotReachHere();
  2087   } else {
  2088     Label skip;
  2089     __ jcc (acond, skip);
  2090     if (opr2->is_cpu_register()) {
  2091       reg2reg(opr2, result);
  2092     } else if (opr2->is_stack()) {
  2093       stack2reg(opr2, result, result->type());
  2094     } else if (opr2->is_constant()) {
  2095       const2reg(opr2, result, lir_patch_none, NULL);
  2096     } else {
  2097       ShouldNotReachHere();
  2099     __ bind(skip);
  2104 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  2105   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
  2107   if (left->is_single_cpu()) {
  2108     assert(left == dest, "left and dest must be equal");
  2109     Register lreg = left->as_register();
  2111     if (right->is_single_cpu()) {
  2112       // cpu register - cpu register
  2113       Register rreg = right->as_register();
  2114       switch (code) {
  2115         case lir_add: __ addl (lreg, rreg); break;
  2116         case lir_sub: __ subl (lreg, rreg); break;
  2117         case lir_mul: __ imull(lreg, rreg); break;
  2118         default:      ShouldNotReachHere();
  2121     } else if (right->is_stack()) {
  2122       // cpu register - stack
  2123       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2124       switch (code) {
  2125         case lir_add: __ addl(lreg, raddr); break;
  2126         case lir_sub: __ subl(lreg, raddr); break;
  2127         default:      ShouldNotReachHere();
  2130     } else if (right->is_constant()) {
  2131       // cpu register - constant
  2132       jint c = right->as_constant_ptr()->as_jint();
  2133       switch (code) {
  2134         case lir_add: {
  2135           __ incrementl(lreg, c);
  2136           break;
  2138         case lir_sub: {
  2139           __ decrementl(lreg, c);
  2140           break;
  2142         default: ShouldNotReachHere();
  2145     } else {
  2146       ShouldNotReachHere();
  2149   } else if (left->is_double_cpu()) {
  2150     assert(left == dest, "left and dest must be equal");
  2151     Register lreg_lo = left->as_register_lo();
  2152     Register lreg_hi = left->as_register_hi();
  2154     if (right->is_double_cpu()) {
  2155       // cpu register - cpu register
  2156       Register rreg_lo = right->as_register_lo();
  2157       Register rreg_hi = right->as_register_hi();
  2158       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
  2159       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
  2160       switch (code) {
  2161         case lir_add:
  2162           __ addptr(lreg_lo, rreg_lo);
  2163           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
  2164           break;
  2165         case lir_sub:
  2166           __ subptr(lreg_lo, rreg_lo);
  2167           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
  2168           break;
  2169         case lir_mul:
  2170 #ifdef _LP64
  2171           __ imulq(lreg_lo, rreg_lo);
  2172 #else
  2173           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
  2174           __ imull(lreg_hi, rreg_lo);
  2175           __ imull(rreg_hi, lreg_lo);
  2176           __ addl (rreg_hi, lreg_hi);
  2177           __ mull (rreg_lo);
  2178           __ addl (lreg_hi, rreg_hi);
  2179 #endif // _LP64
  2180           break;
  2181         default:
  2182           ShouldNotReachHere();
  2185     } else if (right->is_constant()) {
  2186       // cpu register - constant
  2187 #ifdef _LP64
  2188       jlong c = right->as_constant_ptr()->as_jlong_bits();
  2189       __ movptr(r10, (intptr_t) c);
  2190       switch (code) {
  2191         case lir_add:
  2192           __ addptr(lreg_lo, r10);
  2193           break;
  2194         case lir_sub:
  2195           __ subptr(lreg_lo, r10);
  2196           break;
  2197         default:
  2198           ShouldNotReachHere();
  2200 #else
  2201       jint c_lo = right->as_constant_ptr()->as_jint_lo();
  2202       jint c_hi = right->as_constant_ptr()->as_jint_hi();
  2203       switch (code) {
  2204         case lir_add:
  2205           __ addptr(lreg_lo, c_lo);
  2206           __ adcl(lreg_hi, c_hi);
  2207           break;
  2208         case lir_sub:
  2209           __ subptr(lreg_lo, c_lo);
  2210           __ sbbl(lreg_hi, c_hi);
  2211           break;
  2212         default:
  2213           ShouldNotReachHere();
  2215 #endif // _LP64
  2217     } else {
  2218       ShouldNotReachHere();
  2221   } else if (left->is_single_xmm()) {
  2222     assert(left == dest, "left and dest must be equal");
  2223     XMMRegister lreg = left->as_xmm_float_reg();
  2225     if (right->is_single_xmm()) {
  2226       XMMRegister rreg = right->as_xmm_float_reg();
  2227       switch (code) {
  2228         case lir_add: __ addss(lreg, rreg);  break;
  2229         case lir_sub: __ subss(lreg, rreg);  break;
  2230         case lir_mul_strictfp: // fall through
  2231         case lir_mul: __ mulss(lreg, rreg);  break;
  2232         case lir_div_strictfp: // fall through
  2233         case lir_div: __ divss(lreg, rreg);  break;
  2234         default: ShouldNotReachHere();
  2236     } else {
  2237       Address raddr;
  2238       if (right->is_single_stack()) {
  2239         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2240       } else if (right->is_constant()) {
  2241         // hack for now
  2242         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
  2243       } else {
  2244         ShouldNotReachHere();
  2246       switch (code) {
  2247         case lir_add: __ addss(lreg, raddr);  break;
  2248         case lir_sub: __ subss(lreg, raddr);  break;
  2249         case lir_mul_strictfp: // fall through
  2250         case lir_mul: __ mulss(lreg, raddr);  break;
  2251         case lir_div_strictfp: // fall through
  2252         case lir_div: __ divss(lreg, raddr);  break;
  2253         default: ShouldNotReachHere();
  2257   } else if (left->is_double_xmm()) {
  2258     assert(left == dest, "left and dest must be equal");
  2260     XMMRegister lreg = left->as_xmm_double_reg();
  2261     if (right->is_double_xmm()) {
  2262       XMMRegister rreg = right->as_xmm_double_reg();
  2263       switch (code) {
  2264         case lir_add: __ addsd(lreg, rreg);  break;
  2265         case lir_sub: __ subsd(lreg, rreg);  break;
  2266         case lir_mul_strictfp: // fall through
  2267         case lir_mul: __ mulsd(lreg, rreg);  break;
  2268         case lir_div_strictfp: // fall through
  2269         case lir_div: __ divsd(lreg, rreg);  break;
  2270         default: ShouldNotReachHere();
  2272     } else {
  2273       Address raddr;
  2274       if (right->is_double_stack()) {
  2275         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2276       } else if (right->is_constant()) {
  2277         // hack for now
  2278         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2279       } else {
  2280         ShouldNotReachHere();
  2282       switch (code) {
  2283         case lir_add: __ addsd(lreg, raddr);  break;
  2284         case lir_sub: __ subsd(lreg, raddr);  break;
  2285         case lir_mul_strictfp: // fall through
  2286         case lir_mul: __ mulsd(lreg, raddr);  break;
  2287         case lir_div_strictfp: // fall through
  2288         case lir_div: __ divsd(lreg, raddr);  break;
  2289         default: ShouldNotReachHere();
  2293   } else if (left->is_single_fpu()) {
  2294     assert(dest->is_single_fpu(),  "fpu stack allocation required");
  2296     if (right->is_single_fpu()) {
  2297       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
  2299     } else {
  2300       assert(left->fpu_regnr() == 0, "left must be on TOS");
  2301       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
  2303       Address raddr;
  2304       if (right->is_single_stack()) {
  2305         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2306       } else if (right->is_constant()) {
  2307         address const_addr = float_constant(right->as_jfloat());
  2308         assert(const_addr != NULL, "incorrect float/double constant maintainance");
  2309         // hack for now
  2310         raddr = __ as_Address(InternalAddress(const_addr));
  2311       } else {
  2312         ShouldNotReachHere();
  2315       switch (code) {
  2316         case lir_add: __ fadd_s(raddr); break;
  2317         case lir_sub: __ fsub_s(raddr); break;
  2318         case lir_mul_strictfp: // fall through
  2319         case lir_mul: __ fmul_s(raddr); break;
  2320         case lir_div_strictfp: // fall through
  2321         case lir_div: __ fdiv_s(raddr); break;
  2322         default:      ShouldNotReachHere();
  2326   } else if (left->is_double_fpu()) {
  2327     assert(dest->is_double_fpu(),  "fpu stack allocation required");
  2329     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2330       // Double values require special handling for strictfp mul/div on x86
  2331       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  2332       __ fmulp(left->fpu_regnrLo() + 1);
  2335     if (right->is_double_fpu()) {
  2336       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
  2338     } else {
  2339       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
  2340       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
  2342       Address raddr;
  2343       if (right->is_double_stack()) {
  2344         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2345       } else if (right->is_constant()) {
  2346         // hack for now
  2347         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2348       } else {
  2349         ShouldNotReachHere();
  2352       switch (code) {
  2353         case lir_add: __ fadd_d(raddr); break;
  2354         case lir_sub: __ fsub_d(raddr); break;
  2355         case lir_mul_strictfp: // fall through
  2356         case lir_mul: __ fmul_d(raddr); break;
  2357         case lir_div_strictfp: // fall through
  2358         case lir_div: __ fdiv_d(raddr); break;
  2359         default: ShouldNotReachHere();
  2363     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2364       // Double values require special handling for strictfp mul/div on x86
  2365       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  2366       __ fmulp(dest->fpu_regnrLo() + 1);
  2369   } else if (left->is_single_stack() || left->is_address()) {
  2370     assert(left == dest, "left and dest must be equal");
  2372     Address laddr;
  2373     if (left->is_single_stack()) {
  2374       laddr = frame_map()->address_for_slot(left->single_stack_ix());
  2375     } else if (left->is_address()) {
  2376       laddr = as_Address(left->as_address_ptr());
  2377     } else {
  2378       ShouldNotReachHere();
  2381     if (right->is_single_cpu()) {
  2382       Register rreg = right->as_register();
  2383       switch (code) {
  2384         case lir_add: __ addl(laddr, rreg); break;
  2385         case lir_sub: __ subl(laddr, rreg); break;
  2386         default:      ShouldNotReachHere();
  2388     } else if (right->is_constant()) {
  2389       jint c = right->as_constant_ptr()->as_jint();
  2390       switch (code) {
  2391         case lir_add: {
  2392           __ incrementl(laddr, c);
  2393           break;
  2395         case lir_sub: {
  2396           __ decrementl(laddr, c);
  2397           break;
  2399         default: ShouldNotReachHere();
  2401     } else {
  2402       ShouldNotReachHere();
  2405   } else {
  2406     ShouldNotReachHere();
  2410 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
  2411   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
  2412   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
  2413   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
  2415   bool left_is_tos = (left_index == 0);
  2416   bool dest_is_tos = (dest_index == 0);
  2417   int non_tos_index = (left_is_tos ? right_index : left_index);
  2419   switch (code) {
  2420     case lir_add:
  2421       if (pop_fpu_stack)       __ faddp(non_tos_index);
  2422       else if (dest_is_tos)    __ fadd (non_tos_index);
  2423       else                     __ fadda(non_tos_index);
  2424       break;
  2426     case lir_sub:
  2427       if (left_is_tos) {
  2428         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
  2429         else if (dest_is_tos)  __ fsub  (non_tos_index);
  2430         else                   __ fsubra(non_tos_index);
  2431       } else {
  2432         if (pop_fpu_stack)     __ fsubp (non_tos_index);
  2433         else if (dest_is_tos)  __ fsubr (non_tos_index);
  2434         else                   __ fsuba (non_tos_index);
  2436       break;
  2438     case lir_mul_strictfp: // fall through
  2439     case lir_mul:
  2440       if (pop_fpu_stack)       __ fmulp(non_tos_index);
  2441       else if (dest_is_tos)    __ fmul (non_tos_index);
  2442       else                     __ fmula(non_tos_index);
  2443       break;
  2445     case lir_div_strictfp: // fall through
  2446     case lir_div:
  2447       if (left_is_tos) {
  2448         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
  2449         else if (dest_is_tos)  __ fdiv  (non_tos_index);
  2450         else                   __ fdivra(non_tos_index);
  2451       } else {
  2452         if (pop_fpu_stack)     __ fdivp (non_tos_index);
  2453         else if (dest_is_tos)  __ fdivr (non_tos_index);
  2454         else                   __ fdiva (non_tos_index);
  2456       break;
  2458     case lir_rem:
  2459       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
  2460       __ fremr(noreg);
  2461       break;
  2463     default:
  2464       ShouldNotReachHere();
  2469 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
  2470   if (value->is_double_xmm()) {
  2471     switch(code) {
  2472       case lir_abs :
  2474           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
  2475             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
  2477           __ andpd(dest->as_xmm_double_reg(),
  2478                     ExternalAddress((address)double_signmask_pool));
  2480         break;
  2482       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
  2483       // all other intrinsics are not available in the SSE instruction set, so FPU is used
  2484       default      : ShouldNotReachHere();
  2487   } else if (value->is_double_fpu()) {
  2488     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
  2489     switch(code) {
  2490       case lir_log   : __ flog() ; break;
  2491       case lir_log10 : __ flog10() ; break;
  2492       case lir_abs   : __ fabs() ; break;
  2493       case lir_sqrt  : __ fsqrt(); break;
  2494       case lir_sin   :
  2495         // Should consider not saving rbx, if not necessary
  2496         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
  2497         break;
  2498       case lir_cos :
  2499         // Should consider not saving rbx, if not necessary
  2500         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
  2501         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
  2502         break;
  2503       case lir_tan :
  2504         // Should consider not saving rbx, if not necessary
  2505         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
  2506         break;
  2507       case lir_exp :
  2508         __ exp_with_fallback(op->as_Op2()->fpu_stack_size());
  2509         break;
  2510       case lir_pow :
  2511         __ pow_with_fallback(op->as_Op2()->fpu_stack_size());
  2512         break;
  2513       default      : ShouldNotReachHere();
  2515   } else {
  2516     Unimplemented();
  2520 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  2521   // assert(left->destroys_register(), "check");
  2522   if (left->is_single_cpu()) {
  2523     Register reg = left->as_register();
  2524     if (right->is_constant()) {
  2525       int val = right->as_constant_ptr()->as_jint();
  2526       switch (code) {
  2527         case lir_logic_and: __ andl (reg, val); break;
  2528         case lir_logic_or:  __ orl  (reg, val); break;
  2529         case lir_logic_xor: __ xorl (reg, val); break;
  2530         default: ShouldNotReachHere();
  2532     } else if (right->is_stack()) {
  2533       // added support for stack operands
  2534       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2535       switch (code) {
  2536         case lir_logic_and: __ andl (reg, raddr); break;
  2537         case lir_logic_or:  __ orl  (reg, raddr); break;
  2538         case lir_logic_xor: __ xorl (reg, raddr); break;
  2539         default: ShouldNotReachHere();
  2541     } else {
  2542       Register rright = right->as_register();
  2543       switch (code) {
  2544         case lir_logic_and: __ andptr (reg, rright); break;
  2545         case lir_logic_or : __ orptr  (reg, rright); break;
  2546         case lir_logic_xor: __ xorptr (reg, rright); break;
  2547         default: ShouldNotReachHere();
  2550     move_regs(reg, dst->as_register());
  2551   } else {
  2552     Register l_lo = left->as_register_lo();
  2553     Register l_hi = left->as_register_hi();
  2554     if (right->is_constant()) {
  2555 #ifdef _LP64
  2556       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
  2557       switch (code) {
  2558         case lir_logic_and:
  2559           __ andq(l_lo, rscratch1);
  2560           break;
  2561         case lir_logic_or:
  2562           __ orq(l_lo, rscratch1);
  2563           break;
  2564         case lir_logic_xor:
  2565           __ xorq(l_lo, rscratch1);
  2566           break;
  2567         default: ShouldNotReachHere();
  2569 #else
  2570       int r_lo = right->as_constant_ptr()->as_jint_lo();
  2571       int r_hi = right->as_constant_ptr()->as_jint_hi();
  2572       switch (code) {
  2573         case lir_logic_and:
  2574           __ andl(l_lo, r_lo);
  2575           __ andl(l_hi, r_hi);
  2576           break;
  2577         case lir_logic_or:
  2578           __ orl(l_lo, r_lo);
  2579           __ orl(l_hi, r_hi);
  2580           break;
  2581         case lir_logic_xor:
  2582           __ xorl(l_lo, r_lo);
  2583           __ xorl(l_hi, r_hi);
  2584           break;
  2585         default: ShouldNotReachHere();
  2587 #endif // _LP64
  2588     } else {
  2589 #ifdef _LP64
  2590       Register r_lo;
  2591       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
  2592         r_lo = right->as_register();
  2593       } else {
  2594         r_lo = right->as_register_lo();
  2596 #else
  2597       Register r_lo = right->as_register_lo();
  2598       Register r_hi = right->as_register_hi();
  2599       assert(l_lo != r_hi, "overwriting registers");
  2600 #endif
  2601       switch (code) {
  2602         case lir_logic_and:
  2603           __ andptr(l_lo, r_lo);
  2604           NOT_LP64(__ andptr(l_hi, r_hi);)
  2605           break;
  2606         case lir_logic_or:
  2607           __ orptr(l_lo, r_lo);
  2608           NOT_LP64(__ orptr(l_hi, r_hi);)
  2609           break;
  2610         case lir_logic_xor:
  2611           __ xorptr(l_lo, r_lo);
  2612           NOT_LP64(__ xorptr(l_hi, r_hi);)
  2613           break;
  2614         default: ShouldNotReachHere();
  2618     Register dst_lo = dst->as_register_lo();
  2619     Register dst_hi = dst->as_register_hi();
  2621 #ifdef _LP64
  2622     move_regs(l_lo, dst_lo);
  2623 #else
  2624     if (dst_lo == l_hi) {
  2625       assert(dst_hi != l_lo, "overwriting registers");
  2626       move_regs(l_hi, dst_hi);
  2627       move_regs(l_lo, dst_lo);
  2628     } else {
  2629       assert(dst_lo != l_hi, "overwriting registers");
  2630       move_regs(l_lo, dst_lo);
  2631       move_regs(l_hi, dst_hi);
  2633 #endif // _LP64
  2638 // we assume that rax, and rdx can be overwritten
  2639 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
  2641   assert(left->is_single_cpu(),   "left must be register");
  2642   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
  2643   assert(result->is_single_cpu(), "result must be register");
  2645   //  assert(left->destroys_register(), "check");
  2646   //  assert(right->destroys_register(), "check");
  2648   Register lreg = left->as_register();
  2649   Register dreg = result->as_register();
  2651   if (right->is_constant()) {
  2652     int divisor = right->as_constant_ptr()->as_jint();
  2653     assert(divisor > 0 && is_power_of_2(divisor), "must be");
  2654     if (code == lir_idiv) {
  2655       assert(lreg == rax, "must be rax,");
  2656       assert(temp->as_register() == rdx, "tmp register must be rdx");
  2657       __ cdql(); // sign extend into rdx:rax
  2658       if (divisor == 2) {
  2659         __ subl(lreg, rdx);
  2660       } else {
  2661         __ andl(rdx, divisor - 1);
  2662         __ addl(lreg, rdx);
  2664       __ sarl(lreg, log2_intptr(divisor));
  2665       move_regs(lreg, dreg);
  2666     } else if (code == lir_irem) {
  2667       Label done;
  2668       __ mov(dreg, lreg);
  2669       __ andl(dreg, 0x80000000 | (divisor - 1));
  2670       __ jcc(Assembler::positive, done);
  2671       __ decrement(dreg);
  2672       __ orl(dreg, ~(divisor - 1));
  2673       __ increment(dreg);
  2674       __ bind(done);
  2675     } else {
  2676       ShouldNotReachHere();
  2678   } else {
  2679     Register rreg = right->as_register();
  2680     assert(lreg == rax, "left register must be rax,");
  2681     assert(rreg != rdx, "right register must not be rdx");
  2682     assert(temp->as_register() == rdx, "tmp register must be rdx");
  2684     move_regs(lreg, rax);
  2686     int idivl_offset = __ corrected_idivl(rreg);
  2687     add_debug_info_for_div0(idivl_offset, info);
  2688     if (code == lir_irem) {
  2689       move_regs(rdx, dreg); // result is in rdx
  2690     } else {
  2691       move_regs(rax, dreg);
  2697 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  2698   if (opr1->is_single_cpu()) {
  2699     Register reg1 = opr1->as_register();
  2700     if (opr2->is_single_cpu()) {
  2701       // cpu register - cpu register
  2702       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2703         __ cmpptr(reg1, opr2->as_register());
  2704       } else {
  2705         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
  2706         __ cmpl(reg1, opr2->as_register());
  2708     } else if (opr2->is_stack()) {
  2709       // cpu register - stack
  2710       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2711         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2712       } else {
  2713         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2715     } else if (opr2->is_constant()) {
  2716       // cpu register - constant
  2717       LIR_Const* c = opr2->as_constant_ptr();
  2718       if (c->type() == T_INT) {
  2719         __ cmpl(reg1, c->as_jint());
  2720       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2721         // In 64bit oops are single register
  2722         jobject o = c->as_jobject();
  2723         if (o == NULL) {
  2724           __ cmpptr(reg1, (int32_t)NULL_WORD);
  2725         } else {
  2726 #ifdef _LP64
  2727           __ movoop(rscratch1, o);
  2728           __ cmpptr(reg1, rscratch1);
  2729 #else
  2730           __ cmpoop(reg1, c->as_jobject());
  2731 #endif // _LP64
  2733       } else {
  2734         fatal(err_msg("unexpected type: %s", basictype_to_str(c->type())));
  2736       // cpu register - address
  2737     } else if (opr2->is_address()) {
  2738       if (op->info() != NULL) {
  2739         add_debug_info_for_null_check_here(op->info());
  2741       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
  2742     } else {
  2743       ShouldNotReachHere();
  2746   } else if(opr1->is_double_cpu()) {
  2747     Register xlo = opr1->as_register_lo();
  2748     Register xhi = opr1->as_register_hi();
  2749     if (opr2->is_double_cpu()) {
  2750 #ifdef _LP64
  2751       __ cmpptr(xlo, opr2->as_register_lo());
  2752 #else
  2753       // cpu register - cpu register
  2754       Register ylo = opr2->as_register_lo();
  2755       Register yhi = opr2->as_register_hi();
  2756       __ subl(xlo, ylo);
  2757       __ sbbl(xhi, yhi);
  2758       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  2759         __ orl(xhi, xlo);
  2761 #endif // _LP64
  2762     } else if (opr2->is_constant()) {
  2763       // cpu register - constant 0
  2764       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
  2765 #ifdef _LP64
  2766       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
  2767 #else
  2768       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
  2769       __ orl(xhi, xlo);
  2770 #endif // _LP64
  2771     } else {
  2772       ShouldNotReachHere();
  2775   } else if (opr1->is_single_xmm()) {
  2776     XMMRegister reg1 = opr1->as_xmm_float_reg();
  2777     if (opr2->is_single_xmm()) {
  2778       // xmm register - xmm register
  2779       __ ucomiss(reg1, opr2->as_xmm_float_reg());
  2780     } else if (opr2->is_stack()) {
  2781       // xmm register - stack
  2782       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2783     } else if (opr2->is_constant()) {
  2784       // xmm register - constant
  2785       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
  2786     } else if (opr2->is_address()) {
  2787       // xmm register - address
  2788       if (op->info() != NULL) {
  2789         add_debug_info_for_null_check_here(op->info());
  2791       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
  2792     } else {
  2793       ShouldNotReachHere();
  2796   } else if (opr1->is_double_xmm()) {
  2797     XMMRegister reg1 = opr1->as_xmm_double_reg();
  2798     if (opr2->is_double_xmm()) {
  2799       // xmm register - xmm register
  2800       __ ucomisd(reg1, opr2->as_xmm_double_reg());
  2801     } else if (opr2->is_stack()) {
  2802       // xmm register - stack
  2803       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
  2804     } else if (opr2->is_constant()) {
  2805       // xmm register - constant
  2806       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
  2807     } else if (opr2->is_address()) {
  2808       // xmm register - address
  2809       if (op->info() != NULL) {
  2810         add_debug_info_for_null_check_here(op->info());
  2812       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
  2813     } else {
  2814       ShouldNotReachHere();
  2817   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
  2818     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
  2819     assert(opr2->is_fpu_register(), "both must be registers");
  2820     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2822   } else if (opr1->is_address() && opr2->is_constant()) {
  2823     LIR_Const* c = opr2->as_constant_ptr();
  2824 #ifdef _LP64
  2825     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2826       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
  2827       __ movoop(rscratch1, c->as_jobject());
  2829 #endif // LP64
  2830     if (op->info() != NULL) {
  2831       add_debug_info_for_null_check_here(op->info());
  2833     // special case: address - constant
  2834     LIR_Address* addr = opr1->as_address_ptr();
  2835     if (c->type() == T_INT) {
  2836       __ cmpl(as_Address(addr), c->as_jint());
  2837     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2838 #ifdef _LP64
  2839       // %%% Make this explode if addr isn't reachable until we figure out a
  2840       // better strategy by giving noreg as the temp for as_Address
  2841       __ cmpptr(rscratch1, as_Address(addr, noreg));
  2842 #else
  2843       __ cmpoop(as_Address(addr), c->as_jobject());
  2844 #endif // _LP64
  2845     } else {
  2846       ShouldNotReachHere();
  2849   } else {
  2850     ShouldNotReachHere();
  2854 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
  2855   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  2856     if (left->is_single_xmm()) {
  2857       assert(right->is_single_xmm(), "must match");
  2858       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2859     } else if (left->is_double_xmm()) {
  2860       assert(right->is_double_xmm(), "must match");
  2861       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2863     } else {
  2864       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
  2865       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
  2867       assert(left->fpu() == 0, "left must be on TOS");
  2868       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
  2869                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2871   } else {
  2872     assert(code == lir_cmp_l2i, "check");
  2873 #ifdef _LP64
  2874     Label done;
  2875     Register dest = dst->as_register();
  2876     __ cmpptr(left->as_register_lo(), right->as_register_lo());
  2877     __ movl(dest, -1);
  2878     __ jccb(Assembler::less, done);
  2879     __ set_byte_if_not_zero(dest);
  2880     __ movzbl(dest, dest);
  2881     __ bind(done);
  2882 #else
  2883     __ lcmp2int(left->as_register_hi(),
  2884                 left->as_register_lo(),
  2885                 right->as_register_hi(),
  2886                 right->as_register_lo());
  2887     move_regs(left->as_register_hi(), dst->as_register());
  2888 #endif // _LP64
  2893 void LIR_Assembler::align_call(LIR_Code code) {
  2894   if (os::is_MP()) {
  2895     // make sure that the displacement word of the call ends up word aligned
  2896     int offset = __ offset();
  2897     switch (code) {
  2898       case lir_static_call:
  2899       case lir_optvirtual_call:
  2900       case lir_dynamic_call:
  2901         offset += NativeCall::displacement_offset;
  2902         break;
  2903       case lir_icvirtual_call:
  2904         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
  2905       break;
  2906       case lir_virtual_call:  // currently, sparc-specific for niagara
  2907       default: ShouldNotReachHere();
  2909     while (offset++ % BytesPerWord != 0) {
  2910       __ nop();
  2916 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
  2917   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2918          "must be aligned");
  2919   __ call(AddressLiteral(op->addr(), rtype));
  2920   add_call_info(code_offset(), op->info());
  2924 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
  2925   __ ic_call(op->addr());
  2926   add_call_info(code_offset(), op->info());
  2927   assert(!os::is_MP() ||
  2928          (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
  2929          "must be aligned");
  2933 /* Currently, vtable-dispatch is only enabled for sparc platforms */
  2934 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
  2935   ShouldNotReachHere();
  2939 void LIR_Assembler::emit_static_call_stub() {
  2940   address call_pc = __ pc();
  2941   address stub = __ start_a_stub(call_stub_size);
  2942   if (stub == NULL) {
  2943     bailout("static call stub overflow");
  2944     return;
  2947   int start = __ offset();
  2948   if (os::is_MP()) {
  2949     // make sure that the displacement word of the call ends up word aligned
  2950     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
  2951     while (offset++ % BytesPerWord != 0) {
  2952       __ nop();
  2955   __ relocate(static_stub_Relocation::spec(call_pc));
  2956   __ mov_metadata(rbx, (Metadata*)NULL);
  2957   // must be set to -1 at code generation time
  2958   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
  2959   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
  2960   __ jump(RuntimeAddress(__ pc()));
  2962   assert(__ offset() - start <= call_stub_size, "stub too big");
  2963   __ end_a_stub();
  2967 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2968   assert(exceptionOop->as_register() == rax, "must match");
  2969   assert(exceptionPC->as_register() == rdx, "must match");
  2971   // exception object is not added to oop map by LinearScan
  2972   // (LinearScan assumes that no oops are in fixed registers)
  2973   info->add_register_oop(exceptionOop);
  2974   Runtime1::StubID unwind_id;
  2976   // get current pc information
  2977   // pc is only needed if the method has an exception handler, the unwind code does not need it.
  2978   int pc_for_athrow_offset = __ offset();
  2979   InternalAddress pc_for_athrow(__ pc());
  2980   __ lea(exceptionPC->as_register(), pc_for_athrow);
  2981   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2983   __ verify_not_null_oop(rax);
  2984   // search an exception handler (rax: exception oop, rdx: throwing pc)
  2985   if (compilation()->has_fpu_code()) {
  2986     unwind_id = Runtime1::handle_exception_id;
  2987   } else {
  2988     unwind_id = Runtime1::handle_exception_nofpu_id;
  2990   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
  2992   // enough room for two byte trap
  2993   __ nop();
  2997 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2998   assert(exceptionOop->as_register() == rax, "must match");
  3000   __ jmp(_unwind_handler_entry);
  3004 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  3006   // optimized version for linear scan:
  3007   // * count must be already in ECX (guaranteed by LinearScan)
  3008   // * left and dest must be equal
  3009   // * tmp must be unused
  3010   assert(count->as_register() == SHIFT_count, "count must be in ECX");
  3011   assert(left == dest, "left and dest must be equal");
  3012   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
  3014   if (left->is_single_cpu()) {
  3015     Register value = left->as_register();
  3016     assert(value != SHIFT_count, "left cannot be ECX");
  3018     switch (code) {
  3019       case lir_shl:  __ shll(value); break;
  3020       case lir_shr:  __ sarl(value); break;
  3021       case lir_ushr: __ shrl(value); break;
  3022       default: ShouldNotReachHere();
  3024   } else if (left->is_double_cpu()) {
  3025     Register lo = left->as_register_lo();
  3026     Register hi = left->as_register_hi();
  3027     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
  3028 #ifdef _LP64
  3029     switch (code) {
  3030       case lir_shl:  __ shlptr(lo);        break;
  3031       case lir_shr:  __ sarptr(lo);        break;
  3032       case lir_ushr: __ shrptr(lo);        break;
  3033       default: ShouldNotReachHere();
  3035 #else
  3037     switch (code) {
  3038       case lir_shl:  __ lshl(hi, lo);        break;
  3039       case lir_shr:  __ lshr(hi, lo, true);  break;
  3040       case lir_ushr: __ lshr(hi, lo, false); break;
  3041       default: ShouldNotReachHere();
  3043 #endif // LP64
  3044   } else {
  3045     ShouldNotReachHere();
  3050 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  3051   if (dest->is_single_cpu()) {
  3052     // first move left into dest so that left is not destroyed by the shift
  3053     Register value = dest->as_register();
  3054     count = count & 0x1F; // Java spec
  3056     move_regs(left->as_register(), value);
  3057     switch (code) {
  3058       case lir_shl:  __ shll(value, count); break;
  3059       case lir_shr:  __ sarl(value, count); break;
  3060       case lir_ushr: __ shrl(value, count); break;
  3061       default: ShouldNotReachHere();
  3063   } else if (dest->is_double_cpu()) {
  3064 #ifndef _LP64
  3065     Unimplemented();
  3066 #else
  3067     // first move left into dest so that left is not destroyed by the shift
  3068     Register value = dest->as_register_lo();
  3069     count = count & 0x1F; // Java spec
  3071     move_regs(left->as_register_lo(), value);
  3072     switch (code) {
  3073       case lir_shl:  __ shlptr(value, count); break;
  3074       case lir_shr:  __ sarptr(value, count); break;
  3075       case lir_ushr: __ shrptr(value, count); break;
  3076       default: ShouldNotReachHere();
  3078 #endif // _LP64
  3079   } else {
  3080     ShouldNotReachHere();
  3085 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
  3086   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3087   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3088   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3089   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
  3093 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
  3094   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3095   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3096   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3097   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
  3101 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
  3102   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3103   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3104   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3105   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
  3109 // This code replaces a call to arraycopy; no exception may
  3110 // be thrown in this code, they must be thrown in the System.arraycopy
  3111 // activation frame; we could save some checks if this would not be the case
  3112 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  3113   ciArrayKlass* default_type = op->expected_type();
  3114   Register src = op->src()->as_register();
  3115   Register dst = op->dst()->as_register();
  3116   Register src_pos = op->src_pos()->as_register();
  3117   Register dst_pos = op->dst_pos()->as_register();
  3118   Register length  = op->length()->as_register();
  3119   Register tmp = op->tmp()->as_register();
  3121   CodeStub* stub = op->stub();
  3122   int flags = op->flags();
  3123   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  3124   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  3126   // if we don't know anything, just go through the generic arraycopy
  3127   if (default_type == NULL) {
  3128     Label done;
  3129     // save outgoing arguments on stack in case call to System.arraycopy is needed
  3130     // HACK ALERT. This code used to push the parameters in a hardwired fashion
  3131     // for interpreter calling conventions. Now we have to do it in new style conventions.
  3132     // For the moment until C1 gets the new register allocator I just force all the
  3133     // args to the right place (except the register args) and then on the back side
  3134     // reload the register args properly if we go slow path. Yuck
  3136     // These are proper for the calling convention
  3137     store_parameter(length, 2);
  3138     store_parameter(dst_pos, 1);
  3139     store_parameter(dst, 0);
  3141     // these are just temporary placements until we need to reload
  3142     store_parameter(src_pos, 3);
  3143     store_parameter(src, 4);
  3144     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
  3146     address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
  3148     address copyfunc_addr = StubRoutines::generic_arraycopy();
  3150     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
  3151 #ifdef _LP64
  3152     // The arguments are in java calling convention so we can trivially shift them to C
  3153     // convention
  3154     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3155     __ mov(c_rarg0, j_rarg0);
  3156     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3157     __ mov(c_rarg1, j_rarg1);
  3158     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
  3159     __ mov(c_rarg2, j_rarg2);
  3160     assert_different_registers(c_rarg3, j_rarg4);
  3161     __ mov(c_rarg3, j_rarg3);
  3162 #ifdef _WIN64
  3163     // Allocate abi space for args but be sure to keep stack aligned
  3164     __ subptr(rsp, 6*wordSize);
  3165     store_parameter(j_rarg4, 4);
  3166     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3167       __ call(RuntimeAddress(C_entry));
  3168     } else {
  3169 #ifndef PRODUCT
  3170       if (PrintC1Statistics) {
  3171         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3173 #endif
  3174       __ call(RuntimeAddress(copyfunc_addr));
  3176     __ addptr(rsp, 6*wordSize);
  3177 #else
  3178     __ mov(c_rarg4, j_rarg4);
  3179     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3180       __ call(RuntimeAddress(C_entry));
  3181     } else {
  3182 #ifndef PRODUCT
  3183       if (PrintC1Statistics) {
  3184         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3186 #endif
  3187       __ call(RuntimeAddress(copyfunc_addr));
  3189 #endif // _WIN64
  3190 #else
  3191     __ push(length);
  3192     __ push(dst_pos);
  3193     __ push(dst);
  3194     __ push(src_pos);
  3195     __ push(src);
  3197     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3198       __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
  3199     } else {
  3200 #ifndef PRODUCT
  3201       if (PrintC1Statistics) {
  3202         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3204 #endif
  3205       __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
  3208 #endif // _LP64
  3210     __ cmpl(rax, 0);
  3211     __ jcc(Assembler::equal, *stub->continuation());
  3213     if (copyfunc_addr != NULL) {
  3214       __ mov(tmp, rax);
  3215       __ xorl(tmp, -1);
  3218     // Reload values from the stack so they are where the stub
  3219     // expects them.
  3220     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3221     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3222     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3223     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3224     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3226     if (copyfunc_addr != NULL) {
  3227       __ subl(length, tmp);
  3228       __ addl(src_pos, tmp);
  3229       __ addl(dst_pos, tmp);
  3231     __ jmp(*stub->entry());
  3233     __ bind(*stub->continuation());
  3234     return;
  3237   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
  3239   int elem_size = type2aelembytes(basic_type);
  3240   int shift_amount;
  3241   Address::ScaleFactor scale;
  3243   switch (elem_size) {
  3244     case 1 :
  3245       shift_amount = 0;
  3246       scale = Address::times_1;
  3247       break;
  3248     case 2 :
  3249       shift_amount = 1;
  3250       scale = Address::times_2;
  3251       break;
  3252     case 4 :
  3253       shift_amount = 2;
  3254       scale = Address::times_4;
  3255       break;
  3256     case 8 :
  3257       shift_amount = 3;
  3258       scale = Address::times_8;
  3259       break;
  3260     default:
  3261       ShouldNotReachHere();
  3264   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
  3265   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
  3266   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
  3267   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
  3269   // length and pos's are all sign extended at this point on 64bit
  3271   // test for NULL
  3272   if (flags & LIR_OpArrayCopy::src_null_check) {
  3273     __ testptr(src, src);
  3274     __ jcc(Assembler::zero, *stub->entry());
  3276   if (flags & LIR_OpArrayCopy::dst_null_check) {
  3277     __ testptr(dst, dst);
  3278     __ jcc(Assembler::zero, *stub->entry());
  3281   // check if negative
  3282   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  3283     __ testl(src_pos, src_pos);
  3284     __ jcc(Assembler::less, *stub->entry());
  3286   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  3287     __ testl(dst_pos, dst_pos);
  3288     __ jcc(Assembler::less, *stub->entry());
  3291   if (flags & LIR_OpArrayCopy::src_range_check) {
  3292     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
  3293     __ cmpl(tmp, src_length_addr);
  3294     __ jcc(Assembler::above, *stub->entry());
  3296   if (flags & LIR_OpArrayCopy::dst_range_check) {
  3297     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
  3298     __ cmpl(tmp, dst_length_addr);
  3299     __ jcc(Assembler::above, *stub->entry());
  3302   if (flags & LIR_OpArrayCopy::length_positive_check) {
  3303     __ testl(length, length);
  3304     __ jcc(Assembler::less, *stub->entry());
  3305     __ jcc(Assembler::zero, *stub->continuation());
  3308 #ifdef _LP64
  3309   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
  3310   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
  3311 #endif
  3313   if (flags & LIR_OpArrayCopy::type_check) {
  3314     // We don't know the array types are compatible
  3315     if (basic_type != T_OBJECT) {
  3316       // Simple test for basic type arrays
  3317       if (UseCompressedClassPointers) {
  3318         __ movl(tmp, src_klass_addr);
  3319         __ cmpl(tmp, dst_klass_addr);
  3320       } else {
  3321         __ movptr(tmp, src_klass_addr);
  3322         __ cmpptr(tmp, dst_klass_addr);
  3324       __ jcc(Assembler::notEqual, *stub->entry());
  3325     } else {
  3326       // For object arrays, if src is a sub class of dst then we can
  3327       // safely do the copy.
  3328       Label cont, slow;
  3330       __ push(src);
  3331       __ push(dst);
  3333       __ load_klass(src, src);
  3334       __ load_klass(dst, dst);
  3336       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
  3338       __ push(src);
  3339       __ push(dst);
  3340       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  3341       __ pop(dst);
  3342       __ pop(src);
  3344       __ cmpl(src, 0);
  3345       __ jcc(Assembler::notEqual, cont);
  3347       __ bind(slow);
  3348       __ pop(dst);
  3349       __ pop(src);
  3351       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  3352       if (copyfunc_addr != NULL) { // use stub if available
  3353         // src is not a sub class of dst so we have to do a
  3354         // per-element check.
  3356         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
  3357         if ((flags & mask) != mask) {
  3358           // Check that at least both of them object arrays.
  3359           assert(flags & mask, "one of the two should be known to be an object array");
  3361           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
  3362             __ load_klass(tmp, src);
  3363           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
  3364             __ load_klass(tmp, dst);
  3366           int lh_offset = in_bytes(Klass::layout_helper_offset());
  3367           Address klass_lh_addr(tmp, lh_offset);
  3368           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  3369           __ cmpl(klass_lh_addr, objArray_lh);
  3370           __ jcc(Assembler::notEqual, *stub->entry());
  3373        // Spill because stubs can use any register they like and it's
  3374        // easier to restore just those that we care about.
  3375        store_parameter(dst, 0);
  3376        store_parameter(dst_pos, 1);
  3377        store_parameter(length, 2);
  3378        store_parameter(src_pos, 3);
  3379        store_parameter(src, 4);
  3381 #ifndef _LP64
  3382         __ movptr(tmp, dst_klass_addr);
  3383         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
  3384         __ push(tmp);
  3385         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
  3386         __ push(tmp);
  3387         __ push(length);
  3388         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3389         __ push(tmp);
  3390         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3391         __ push(tmp);
  3393         __ call_VM_leaf(copyfunc_addr, 5);
  3394 #else
  3395         __ movl2ptr(length, length); //higher 32bits must be null
  3397         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3398         assert_different_registers(c_rarg0, dst, dst_pos, length);
  3399         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3400         assert_different_registers(c_rarg1, dst, length);
  3402         __ mov(c_rarg2, length);
  3403         assert_different_registers(c_rarg2, dst);
  3405 #ifdef _WIN64
  3406         // Allocate abi space for args but be sure to keep stack aligned
  3407         __ subptr(rsp, 6*wordSize);
  3408         __ load_klass(c_rarg3, dst);
  3409         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
  3410         store_parameter(c_rarg3, 4);
  3411         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
  3412         __ call(RuntimeAddress(copyfunc_addr));
  3413         __ addptr(rsp, 6*wordSize);
  3414 #else
  3415         __ load_klass(c_rarg4, dst);
  3416         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
  3417         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
  3418         __ call(RuntimeAddress(copyfunc_addr));
  3419 #endif
  3421 #endif
  3423 #ifndef PRODUCT
  3424         if (PrintC1Statistics) {
  3425           Label failed;
  3426           __ testl(rax, rax);
  3427           __ jcc(Assembler::notZero, failed);
  3428           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
  3429           __ bind(failed);
  3431 #endif
  3433         __ testl(rax, rax);
  3434         __ jcc(Assembler::zero, *stub->continuation());
  3436 #ifndef PRODUCT
  3437         if (PrintC1Statistics) {
  3438           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
  3440 #endif
  3442         __ mov(tmp, rax);
  3444         __ xorl(tmp, -1);
  3446         // Restore previously spilled arguments
  3447         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3448         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3449         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3450         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3451         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3454         __ subl(length, tmp);
  3455         __ addl(src_pos, tmp);
  3456         __ addl(dst_pos, tmp);
  3459       __ jmp(*stub->entry());
  3461       __ bind(cont);
  3462       __ pop(dst);
  3463       __ pop(src);
  3467 #ifdef ASSERT
  3468   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  3469     // Sanity check the known type with the incoming class.  For the
  3470     // primitive case the types must match exactly with src.klass and
  3471     // dst.klass each exactly matching the default type.  For the
  3472     // object array case, if no type check is needed then either the
  3473     // dst type is exactly the expected type and the src type is a
  3474     // subtype which we can't check or src is the same array as dst
  3475     // but not necessarily exactly of type default_type.
  3476     Label known_ok, halt;
  3477     __ mov_metadata(tmp, default_type->constant_encoding());
  3478 #ifdef _LP64
  3479     if (UseCompressedClassPointers) {
  3480       __ encode_klass_not_null(tmp);
  3482 #endif
  3484     if (basic_type != T_OBJECT) {
  3486       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
  3487       else                   __ cmpptr(tmp, dst_klass_addr);
  3488       __ jcc(Assembler::notEqual, halt);
  3489       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
  3490       else                   __ cmpptr(tmp, src_klass_addr);
  3491       __ jcc(Assembler::equal, known_ok);
  3492     } else {
  3493       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
  3494       else                   __ cmpptr(tmp, dst_klass_addr);
  3495       __ jcc(Assembler::equal, known_ok);
  3496       __ cmpptr(src, dst);
  3497       __ jcc(Assembler::equal, known_ok);
  3499     __ bind(halt);
  3500     __ stop("incorrect type information in arraycopy");
  3501     __ bind(known_ok);
  3503 #endif
  3505 #ifndef PRODUCT
  3506   if (PrintC1Statistics) {
  3507     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
  3509 #endif
  3511 #ifdef _LP64
  3512   assert_different_registers(c_rarg0, dst, dst_pos, length);
  3513   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3514   assert_different_registers(c_rarg1, length);
  3515   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3516   __ mov(c_rarg2, length);
  3518 #else
  3519   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3520   store_parameter(tmp, 0);
  3521   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3522   store_parameter(tmp, 1);
  3523   store_parameter(length, 2);
  3524 #endif // _LP64
  3526   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
  3527   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
  3528   const char *name;
  3529   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
  3530   __ call_VM_leaf(entry, 0);
  3532   __ bind(*stub->continuation());
  3535 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
  3536   assert(op->crc()->is_single_cpu(),  "crc must be register");
  3537   assert(op->val()->is_single_cpu(),  "byte value must be register");
  3538   assert(op->result_opr()->is_single_cpu(), "result must be register");
  3539   Register crc = op->crc()->as_register();
  3540   Register val = op->val()->as_register();
  3541   Register res = op->result_opr()->as_register();
  3543   assert_different_registers(val, crc, res);
  3545   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
  3546   __ notl(crc); // ~crc
  3547   __ update_byte_crc32(crc, val, res);
  3548   __ notl(crc); // ~crc
  3549   __ mov(res, crc);
  3552 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  3553   Register obj = op->obj_opr()->as_register();  // may not be an oop
  3554   Register hdr = op->hdr_opr()->as_register();
  3555   Register lock = op->lock_opr()->as_register();
  3556   if (!UseFastLocking) {
  3557     __ jmp(*op->stub()->entry());
  3558   } else if (op->code() == lir_lock) {
  3559     Register scratch = noreg;
  3560     if (UseBiasedLocking) {
  3561       scratch = op->scratch_opr()->as_register();
  3563     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3564     // add debug info for NullPointerException only if one is possible
  3565     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
  3566     if (op->info() != NULL) {
  3567       add_debug_info_for_null_check(null_check_offset, op->info());
  3569     // done
  3570   } else if (op->code() == lir_unlock) {
  3571     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3572     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  3573   } else {
  3574     Unimplemented();
  3576   __ bind(*op->stub()->continuation());
  3580 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  3581   ciMethod* method = op->profiled_method();
  3582   int bci          = op->profiled_bci();
  3583   ciMethod* callee = op->profiled_callee();
  3585   // Update counter for all call types
  3586   ciMethodData* md = method->method_data_or_null();
  3587   assert(md != NULL, "Sanity");
  3588   ciProfileData* data = md->bci_to_data(bci);
  3589   assert(data->is_CounterData(), "need CounterData for calls");
  3590   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3591   Register mdo  = op->mdo()->as_register();
  3592   __ mov_metadata(mdo, md->constant_encoding());
  3593   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  3594   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3595   const bool callee_is_static = callee->is_loaded() && callee->is_static();
  3596   // Perform additional virtual call profiling for invokevirtual and
  3597   // invokeinterface bytecodes
  3598   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3599       !callee_is_static &&  // required for optimized MH invokes
  3600       C1ProfileVirtualCalls) {
  3601     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3602     Register recv = op->recv()->as_register();
  3603     assert_different_registers(mdo, recv);
  3604     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3605     ciKlass* known_klass = op->known_holder();
  3606     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3607       // We know the type that will be seen at this call site; we can
  3608       // statically update the MethodData* rather than needing to do
  3609       // dynamic tests on the receiver type
  3611       // NOTE: we should probably put a lock around this search to
  3612       // avoid collisions by concurrent compilations
  3613       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3614       uint i;
  3615       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3616         ciKlass* receiver = vc_data->receiver(i);
  3617         if (known_klass->equals(receiver)) {
  3618           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3619           __ addptr(data_addr, DataLayout::counter_increment);
  3620           return;
  3624       // Receiver type not found in profile data; select an empty slot
  3626       // Note that this is less efficient than it should be because it
  3627       // always does a write to the receiver part of the
  3628       // VirtualCallData rather than just the first time
  3629       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3630         ciKlass* receiver = vc_data->receiver(i);
  3631         if (receiver == NULL) {
  3632           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3633           __ mov_metadata(recv_addr, known_klass->constant_encoding());
  3634           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3635           __ addptr(data_addr, DataLayout::counter_increment);
  3636           return;
  3639     } else {
  3640       __ load_klass(recv, recv);
  3641       Label update_done;
  3642       type_profile_helper(mdo, md, data, recv, &update_done);
  3643       // Receiver did not match any saved receiver and there is no empty row for it.
  3644       // Increment total counter to indicate polymorphic case.
  3645       __ addptr(counter_addr, DataLayout::counter_increment);
  3647       __ bind(update_done);
  3649   } else {
  3650     // Static call
  3651     __ addptr(counter_addr, DataLayout::counter_increment);
  3655 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
  3656   Register obj = op->obj()->as_register();
  3657   Register tmp = op->tmp()->as_pointer_register();
  3658   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
  3659   ciKlass* exact_klass = op->exact_klass();
  3660   intptr_t current_klass = op->current_klass();
  3661   bool not_null = op->not_null();
  3662   bool no_conflict = op->no_conflict();
  3664   Label update, next, none;
  3666   bool do_null = !not_null;
  3667   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
  3668   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
  3670   assert(do_null || do_update, "why are we here?");
  3671   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
  3673   __ verify_oop(obj);
  3675   if (tmp != obj) {
  3676     __ mov(tmp, obj);
  3678   if (do_null) {
  3679     __ testptr(tmp, tmp);
  3680     __ jccb(Assembler::notZero, update);
  3681     if (!TypeEntries::was_null_seen(current_klass)) {
  3682       __ orptr(mdo_addr, TypeEntries::null_seen);
  3684     if (do_update) {
  3685 #ifndef ASSERT
  3686       __ jmpb(next);
  3688 #else
  3689       __ jmp(next);
  3691   } else {
  3692     __ testptr(tmp, tmp);
  3693     __ jccb(Assembler::notZero, update);
  3694     __ stop("unexpect null obj");
  3695 #endif
  3698   __ bind(update);
  3700   if (do_update) {
  3701 #ifdef ASSERT
  3702     if (exact_klass != NULL) {
  3703       Label ok;
  3704       __ load_klass(tmp, tmp);
  3705       __ push(tmp);
  3706       __ mov_metadata(tmp, exact_klass->constant_encoding());
  3707       __ cmpptr(tmp, Address(rsp, 0));
  3708       __ jccb(Assembler::equal, ok);
  3709       __ stop("exact klass and actual klass differ");
  3710       __ bind(ok);
  3711       __ pop(tmp);
  3713 #endif
  3714     if (!no_conflict) {
  3715       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
  3716         if (exact_klass != NULL) {
  3717           __ mov_metadata(tmp, exact_klass->constant_encoding());
  3718         } else {
  3719           __ load_klass(tmp, tmp);
  3722         __ xorptr(tmp, mdo_addr);
  3723         __ testptr(tmp, TypeEntries::type_klass_mask);
  3724         // klass seen before, nothing to do. The unknown bit may have been
  3725         // set already but no need to check.
  3726         __ jccb(Assembler::zero, next);
  3728         __ testptr(tmp, TypeEntries::type_unknown);
  3729         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
  3731         if (TypeEntries::is_type_none(current_klass)) {
  3732           __ cmpptr(mdo_addr, 0);
  3733           __ jccb(Assembler::equal, none);
  3734           __ cmpptr(mdo_addr, TypeEntries::null_seen);
  3735           __ jccb(Assembler::equal, none);
  3736           // There is a chance that the checks above (re-reading profiling
  3737           // data from memory) fail if another thread has just set the
  3738           // profiling to this obj's klass
  3739           __ xorptr(tmp, mdo_addr);
  3740           __ testptr(tmp, TypeEntries::type_klass_mask);
  3741           __ jccb(Assembler::zero, next);
  3743       } else {
  3744         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
  3745                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
  3747         __ movptr(tmp, mdo_addr);
  3748         __ testptr(tmp, TypeEntries::type_unknown);
  3749         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
  3752       // different than before. Cannot keep accurate profile.
  3753       __ orptr(mdo_addr, TypeEntries::type_unknown);
  3755       if (TypeEntries::is_type_none(current_klass)) {
  3756         __ jmpb(next);
  3758         __ bind(none);
  3759         // first time here. Set profile type.
  3760         __ movptr(mdo_addr, tmp);
  3762     } else {
  3763       // There's a single possible klass at this profile point
  3764       assert(exact_klass != NULL, "should be");
  3765       if (TypeEntries::is_type_none(current_klass)) {
  3766         __ mov_metadata(tmp, exact_klass->constant_encoding());
  3767         __ xorptr(tmp, mdo_addr);
  3768         __ testptr(tmp, TypeEntries::type_klass_mask);
  3769 #ifdef ASSERT
  3770         __ jcc(Assembler::zero, next);
  3773           Label ok;
  3774           __ push(tmp);
  3775           __ cmpptr(mdo_addr, 0);
  3776           __ jcc(Assembler::equal, ok);
  3777           __ cmpptr(mdo_addr, TypeEntries::null_seen);
  3778           __ jcc(Assembler::equal, ok);
  3779           // may have been set by another thread
  3780           __ mov_metadata(tmp, exact_klass->constant_encoding());
  3781           __ xorptr(tmp, mdo_addr);
  3782           __ testptr(tmp, TypeEntries::type_mask);
  3783           __ jcc(Assembler::zero, ok);
  3785           __ stop("unexpected profiling mismatch");
  3786           __ bind(ok);
  3787           __ pop(tmp);
  3789 #else
  3790         __ jccb(Assembler::zero, next);
  3791 #endif
  3792         // first time here. Set profile type.
  3793         __ movptr(mdo_addr, tmp);
  3794       } else {
  3795         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
  3796                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
  3798         __ movptr(tmp, mdo_addr);
  3799         __ testptr(tmp, TypeEntries::type_unknown);
  3800         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
  3802         __ orptr(mdo_addr, TypeEntries::type_unknown);
  3806     __ bind(next);
  3810 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
  3811   Unimplemented();
  3815 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
  3816   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
  3820 void LIR_Assembler::align_backward_branch_target() {
  3821   __ align(BytesPerWord);
  3825 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3826   if (left->is_single_cpu()) {
  3827     __ negl(left->as_register());
  3828     move_regs(left->as_register(), dest->as_register());
  3830   } else if (left->is_double_cpu()) {
  3831     Register lo = left->as_register_lo();
  3832 #ifdef _LP64
  3833     Register dst = dest->as_register_lo();
  3834     __ movptr(dst, lo);
  3835     __ negptr(dst);
  3836 #else
  3837     Register hi = left->as_register_hi();
  3838     __ lneg(hi, lo);
  3839     if (dest->as_register_lo() == hi) {
  3840       assert(dest->as_register_hi() != lo, "destroying register");
  3841       move_regs(hi, dest->as_register_hi());
  3842       move_regs(lo, dest->as_register_lo());
  3843     } else {
  3844       move_regs(lo, dest->as_register_lo());
  3845       move_regs(hi, dest->as_register_hi());
  3847 #endif // _LP64
  3849   } else if (dest->is_single_xmm()) {
  3850     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
  3851       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
  3853     __ xorps(dest->as_xmm_float_reg(),
  3854              ExternalAddress((address)float_signflip_pool));
  3856   } else if (dest->is_double_xmm()) {
  3857     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
  3858       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
  3860     __ xorpd(dest->as_xmm_double_reg(),
  3861              ExternalAddress((address)double_signflip_pool));
  3863   } else if (left->is_single_fpu() || left->is_double_fpu()) {
  3864     assert(left->fpu() == 0, "arg must be on TOS");
  3865     assert(dest->fpu() == 0, "dest must be TOS");
  3866     __ fchs();
  3868   } else {
  3869     ShouldNotReachHere();
  3874 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
  3875   assert(addr->is_address() && dest->is_register(), "check");
  3876   Register reg;
  3877   reg = dest->as_pointer_register();
  3878   __ lea(reg, as_Address(addr->as_address_ptr()));
  3883 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3884   assert(!tmp->is_valid(), "don't need temporary");
  3885   __ call(RuntimeAddress(dest));
  3886   if (info != NULL) {
  3887     add_call_info_here(info);
  3892 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3893   assert(type == T_LONG, "only for volatile long fields");
  3895   if (info != NULL) {
  3896     add_debug_info_for_null_check_here(info);
  3899   if (src->is_double_xmm()) {
  3900     if (dest->is_double_cpu()) {
  3901 #ifdef _LP64
  3902       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
  3903 #else
  3904       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
  3905       __ psrlq(src->as_xmm_double_reg(), 32);
  3906       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
  3907 #endif // _LP64
  3908     } else if (dest->is_double_stack()) {
  3909       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
  3910     } else if (dest->is_address()) {
  3911       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
  3912     } else {
  3913       ShouldNotReachHere();
  3916   } else if (dest->is_double_xmm()) {
  3917     if (src->is_double_stack()) {
  3918       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
  3919     } else if (src->is_address()) {
  3920       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
  3921     } else {
  3922       ShouldNotReachHere();
  3925   } else if (src->is_double_fpu()) {
  3926     assert(src->fpu_regnrLo() == 0, "must be TOS");
  3927     if (dest->is_double_stack()) {
  3928       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
  3929     } else if (dest->is_address()) {
  3930       __ fistp_d(as_Address(dest->as_address_ptr()));
  3931     } else {
  3932       ShouldNotReachHere();
  3935   } else if (dest->is_double_fpu()) {
  3936     assert(dest->fpu_regnrLo() == 0, "must be TOS");
  3937     if (src->is_double_stack()) {
  3938       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
  3939     } else if (src->is_address()) {
  3940       __ fild_d(as_Address(src->as_address_ptr()));
  3941     } else {
  3942       ShouldNotReachHere();
  3944   } else {
  3945     ShouldNotReachHere();
  3949 #ifdef ASSERT
  3950 // emit run-time assertion
  3951 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
  3952   assert(op->code() == lir_assert, "must be");
  3954   if (op->in_opr1()->is_valid()) {
  3955     assert(op->in_opr2()->is_valid(), "both operands must be valid");
  3956     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
  3957   } else {
  3958     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
  3959     assert(op->condition() == lir_cond_always, "no other conditions allowed");
  3962   Label ok;
  3963   if (op->condition() != lir_cond_always) {
  3964     Assembler::Condition acond = Assembler::zero;
  3965     switch (op->condition()) {
  3966       case lir_cond_equal:        acond = Assembler::equal;       break;
  3967       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
  3968       case lir_cond_less:         acond = Assembler::less;        break;
  3969       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
  3970       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
  3971       case lir_cond_greater:      acond = Assembler::greater;     break;
  3972       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
  3973       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
  3974       default:                    ShouldNotReachHere();
  3976     __ jcc(acond, ok);
  3978   if (op->halt()) {
  3979     const char* str = __ code_string(op->msg());
  3980     __ stop(str);
  3981   } else {
  3982     breakpoint();
  3984   __ bind(ok);
  3986 #endif
  3988 void LIR_Assembler::membar() {
  3989   // QQQ sparc TSO uses this,
  3990   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3993 void LIR_Assembler::membar_acquire() {
  3994   // No x86 machines currently require load fences
  3995   // __ load_fence();
  3998 void LIR_Assembler::membar_release() {
  3999   // No x86 machines currently require store fences
  4000   // __ store_fence();
  4003 void LIR_Assembler::membar_loadload() {
  4004   // no-op
  4005   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
  4008 void LIR_Assembler::membar_storestore() {
  4009   // no-op
  4010   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
  4013 void LIR_Assembler::membar_loadstore() {
  4014   // no-op
  4015   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
  4018 void LIR_Assembler::membar_storeload() {
  4019   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  4022 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  4023   assert(result_reg->is_register(), "check");
  4024 #ifdef _LP64
  4025   // __ get_thread(result_reg->as_register_lo());
  4026   __ mov(result_reg->as_register(), r15_thread);
  4027 #else
  4028   __ get_thread(result_reg->as_register());
  4029 #endif // _LP64
  4033 void LIR_Assembler::peephole(LIR_List*) {
  4034   // do nothing for now
  4037 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
  4038   assert(data == dest, "xchg/xadd uses only 2 operands");
  4040   if (data->type() == T_INT) {
  4041     if (code == lir_xadd) {
  4042       if (os::is_MP()) {
  4043         __ lock();
  4045       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
  4046     } else {
  4047       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
  4049   } else if (data->is_oop()) {
  4050     assert (code == lir_xchg, "xadd for oops");
  4051     Register obj = data->as_register();
  4052 #ifdef _LP64
  4053     if (UseCompressedOops) {
  4054       __ encode_heap_oop(obj);
  4055       __ xchgl(obj, as_Address(src->as_address_ptr()));
  4056       __ decode_heap_oop(obj);
  4057     } else {
  4058       __ xchgptr(obj, as_Address(src->as_address_ptr()));
  4060 #else
  4061     __ xchgl(obj, as_Address(src->as_address_ptr()));
  4062 #endif
  4063   } else if (data->type() == T_LONG) {
  4064 #ifdef _LP64
  4065     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
  4066     if (code == lir_xadd) {
  4067       if (os::is_MP()) {
  4068         __ lock();
  4070       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
  4071     } else {
  4072       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
  4074 #else
  4075     ShouldNotReachHere();
  4076 #endif
  4077   } else {
  4078     ShouldNotReachHere();
  4082 #undef __

mercurial