src/share/vm/opto/mulnode.cpp

Fri, 01 Feb 2019 10:47:30 +0100

author
aph
date
Fri, 01 Feb 2019 10:47:30 +0100
changeset 9610
f43f77de876a
parent 6479
2113136690bc
child 9613
67aa2bb0d84e
permissions
-rw-r--r--

8145096: Undefined behaviour in HotSpot
Summary: Fix some integer overflows
Reviewed-by: jrose, kvn, kbarrett, adinn, iklam

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/addnode.hpp"
    28 #include "opto/connode.hpp"
    29 #include "opto/memnode.hpp"
    30 #include "opto/mulnode.hpp"
    31 #include "opto/phaseX.hpp"
    32 #include "opto/subnode.hpp"
    34 // Portions of code courtesy of Clifford Click
    37 //=============================================================================
    38 //------------------------------hash-------------------------------------------
    39 // Hash function over MulNodes.  Needs to be commutative; i.e., I swap
    40 // (commute) inputs to MulNodes willy-nilly so the hash function must return
    41 // the same value in the presence of edge swapping.
    42 uint MulNode::hash() const {
    43   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
    44 }
    46 //------------------------------Identity---------------------------------------
    47 // Multiplying a one preserves the other argument
    48 Node *MulNode::Identity( PhaseTransform *phase ) {
    49   register const Type *one = mul_id();  // The multiplicative identity
    50   if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
    51   if( phase->type( in(2) )->higher_equal( one ) ) return in(1);
    53   return this;
    54 }
    56 //------------------------------Ideal------------------------------------------
    57 // We also canonicalize the Node, moving constants to the right input,
    58 // and flatten expressions (so that 1+x+2 becomes x+3).
    59 Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
    60   const Type *t1 = phase->type( in(1) );
    61   const Type *t2 = phase->type( in(2) );
    62   Node *progress = NULL;        // Progress flag
    63   // We are OK if right is a constant, or right is a load and
    64   // left is a non-constant.
    65   if( !(t2->singleton() ||
    66         (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
    67     if( t1->singleton() ||       // Left input is a constant?
    68         // Otherwise, sort inputs (commutativity) to help value numbering.
    69         (in(1)->_idx > in(2)->_idx) ) {
    70       swap_edges(1, 2);
    71       const Type *t = t1;
    72       t1 = t2;
    73       t2 = t;
    74       progress = this;            // Made progress
    75     }
    76   }
    78   // If the right input is a constant, and the left input is a product of a
    79   // constant, flatten the expression tree.
    80   uint op = Opcode();
    81   if( t2->singleton() &&        // Right input is a constant?
    82       op != Op_MulF &&          // Float & double cannot reassociate
    83       op != Op_MulD ) {
    84     if( t2 == Type::TOP ) return NULL;
    85     Node *mul1 = in(1);
    86 #ifdef ASSERT
    87     // Check for dead loop
    88     int   op1 = mul1->Opcode();
    89     if( phase->eqv( mul1, this ) || phase->eqv( in(2), this ) ||
    90         ( op1 == mul_opcode() || op1 == add_opcode() ) &&
    91         ( phase->eqv( mul1->in(1), this ) || phase->eqv( mul1->in(2), this ) ||
    92           phase->eqv( mul1->in(1), mul1 ) || phase->eqv( mul1->in(2), mul1 ) ) )
    93       assert(false, "dead loop in MulNode::Ideal");
    94 #endif
    96     if( mul1->Opcode() == mul_opcode() ) {  // Left input is a multiply?
    97       // Mul of a constant?
    98       const Type *t12 = phase->type( mul1->in(2) );
    99       if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
   100         // Compute new constant; check for overflow
   101         const Type *tcon01 = ((MulNode*)mul1)->mul_ring(t2,t12);
   102         if( tcon01->singleton() ) {
   103           // The Mul of the flattened expression
   104           set_req(1, mul1->in(1));
   105           set_req(2, phase->makecon( tcon01 ));
   106           t2 = tcon01;
   107           progress = this;      // Made progress
   108         }
   109       }
   110     }
   111     // If the right input is a constant, and the left input is an add of a
   112     // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
   113     const Node *add1 = in(1);
   114     if( add1->Opcode() == add_opcode() ) {      // Left input is an add?
   115       // Add of a constant?
   116       const Type *t12 = phase->type( add1->in(2) );
   117       if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
   118         assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
   119         // Compute new constant; check for overflow
   120         const Type *tcon01 = mul_ring(t2,t12);
   121         if( tcon01->singleton() ) {
   123         // Convert (X+con1)*con0 into X*con0
   124           Node *mul = clone();    // mul = ()*con0
   125           mul->set_req(1,add1->in(1));  // mul = X*con0
   126           mul = phase->transform(mul);
   128           Node *add2 = add1->clone();
   129           add2->set_req(1, mul);        // X*con0 + con0*con1
   130           add2->set_req(2, phase->makecon(tcon01) );
   131           progress = add2;
   132         }
   133       }
   134     } // End of is left input an add
   135   } // End of is right input a Mul
   137   return progress;
   138 }
   140 //------------------------------Value-----------------------------------------
   141 const Type *MulNode::Value( PhaseTransform *phase ) const {
   142   const Type *t1 = phase->type( in(1) );
   143   const Type *t2 = phase->type( in(2) );
   144   // Either input is TOP ==> the result is TOP
   145   if( t1 == Type::TOP ) return Type::TOP;
   146   if( t2 == Type::TOP ) return Type::TOP;
   148   // Either input is ZERO ==> the result is ZERO.
   149   // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
   150   int op = Opcode();
   151   if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
   152     const Type *zero = add_id();        // The multiplicative zero
   153     if( t1->higher_equal( zero ) ) return zero;
   154     if( t2->higher_equal( zero ) ) return zero;
   155   }
   157   // Either input is BOTTOM ==> the result is the local BOTTOM
   158   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
   159     return bottom_type();
   161 #if defined(IA32)
   162   // Can't trust native compilers to properly fold strict double
   163   // multiplication with round-to-zero on this platform.
   164   if (op == Op_MulD && phase->C->method()->is_strict()) {
   165     return TypeD::DOUBLE;
   166   }
   167 #endif
   169   return mul_ring(t1,t2);            // Local flavor of type multiplication
   170 }
   173 //=============================================================================
   174 //------------------------------Ideal------------------------------------------
   175 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
   176 Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   177   // Swap constant to right
   178   jint con;
   179   if ((con = in(1)->find_int_con(0)) != 0) {
   180     swap_edges(1, 2);
   181     // Finish rest of method to use info in 'con'
   182   } else if ((con = in(2)->find_int_con(0)) == 0) {
   183     return MulNode::Ideal(phase, can_reshape);
   184   }
   186   // Now we have a constant Node on the right and the constant in con
   187   if( con == 0 ) return NULL;   // By zero is handled by Value call
   188   if( con == 1 ) return NULL;   // By one  is handled by Identity call
   190   // Check for negative constant; if so negate the final result
   191   bool sign_flip = false;
   192   if( con < 0 ) {
   193     con = -con;
   194     sign_flip = true;
   195   }
   197   // Get low bit; check for being the only bit
   198   Node *res = NULL;
   199   jint bit1 = con & -con;       // Extract low bit
   200   if( bit1 == con ) {           // Found a power of 2?
   201     res = new (phase->C) LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) );
   202   } else {
   204     // Check for constant with 2 bits set
   205     jint bit2 = con-bit1;
   206     bit2 = bit2 & -bit2;          // Extract 2nd bit
   207     if( bit2 + bit1 == con ) {    // Found all bits in con?
   208       Node *n1 = phase->transform( new (phase->C) LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) ) );
   209       Node *n2 = phase->transform( new (phase->C) LShiftINode( in(1), phase->intcon(log2_intptr(bit2)) ) );
   210       res = new (phase->C) AddINode( n2, n1 );
   212     } else if (is_power_of_2(con+1)) {
   213       // Sleezy: power-of-2 -1.  Next time be generic.
   214       jint temp = (jint) (con + 1);
   215       Node *n1 = phase->transform( new (phase->C) LShiftINode( in(1), phase->intcon(log2_intptr(temp)) ) );
   216       res = new (phase->C) SubINode( n1, in(1) );
   217     } else {
   218       return MulNode::Ideal(phase, can_reshape);
   219     }
   220   }
   222   if( sign_flip ) {             // Need to negate result?
   223     res = phase->transform(res);// Transform, before making the zero con
   224     res = new (phase->C) SubINode(phase->intcon(0),res);
   225   }
   227   return res;                   // Return final result
   228 }
   230 //------------------------------mul_ring---------------------------------------
   231 // Compute the product type of two integer ranges into this node.
   232 const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const {
   233   const TypeInt *r0 = t0->is_int(); // Handy access
   234   const TypeInt *r1 = t1->is_int();
   236   // Fetch endpoints of all ranges
   237   int32 lo0 = r0->_lo;
   238   double a = (double)lo0;
   239   int32 hi0 = r0->_hi;
   240   double b = (double)hi0;
   241   int32 lo1 = r1->_lo;
   242   double c = (double)lo1;
   243   int32 hi1 = r1->_hi;
   244   double d = (double)hi1;
   246   // Compute all endpoints & check for overflow
   247   int32 A = java_multiply(lo0, lo1);
   248   if( (double)A != a*c ) return TypeInt::INT; // Overflow?
   249   int32 B = java_multiply(lo0, hi1);
   250   if( (double)B != a*d ) return TypeInt::INT; // Overflow?
   251   int32 C = java_multiply(hi0, lo1);
   252   if( (double)C != b*c ) return TypeInt::INT; // Overflow?
   253   int32 D = java_multiply(hi0, hi1);
   254   if( (double)D != b*d ) return TypeInt::INT; // Overflow?
   256   if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
   257   else { lo0 = B; hi0 = A; }
   258   if( C < D ) {
   259     if( C < lo0 ) lo0 = C;
   260     if( D > hi0 ) hi0 = D;
   261   } else {
   262     if( D < lo0 ) lo0 = D;
   263     if( C > hi0 ) hi0 = C;
   264   }
   265   return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
   266 }
   269 //=============================================================================
   270 //------------------------------Ideal------------------------------------------
   271 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
   272 Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   273   // Swap constant to right
   274   jlong con;
   275   if ((con = in(1)->find_long_con(0)) != 0) {
   276     swap_edges(1, 2);
   277     // Finish rest of method to use info in 'con'
   278   } else if ((con = in(2)->find_long_con(0)) == 0) {
   279     return MulNode::Ideal(phase, can_reshape);
   280   }
   282   // Now we have a constant Node on the right and the constant in con
   283   if( con == CONST64(0) ) return NULL;  // By zero is handled by Value call
   284   if( con == CONST64(1) ) return NULL;  // By one  is handled by Identity call
   286   // Check for negative constant; if so negate the final result
   287   bool sign_flip = false;
   288   if( con < 0 ) {
   289     con = -con;
   290     sign_flip = true;
   291   }
   293   // Get low bit; check for being the only bit
   294   Node *res = NULL;
   295   jlong bit1 = con & -con;      // Extract low bit
   296   if( bit1 == con ) {           // Found a power of 2?
   297     res = new (phase->C) LShiftLNode( in(1), phase->intcon(log2_long(bit1)) );
   298   } else {
   300     // Check for constant with 2 bits set
   301     jlong bit2 = con-bit1;
   302     bit2 = bit2 & -bit2;          // Extract 2nd bit
   303     if( bit2 + bit1 == con ) {    // Found all bits in con?
   304       Node *n1 = phase->transform( new (phase->C) LShiftLNode( in(1), phase->intcon(log2_long(bit1)) ) );
   305       Node *n2 = phase->transform( new (phase->C) LShiftLNode( in(1), phase->intcon(log2_long(bit2)) ) );
   306       res = new (phase->C) AddLNode( n2, n1 );
   308     } else if (is_power_of_2_long(con+1)) {
   309       // Sleezy: power-of-2 -1.  Next time be generic.
   310       jlong temp = (jlong) (con + 1);
   311       Node *n1 = phase->transform( new (phase->C) LShiftLNode( in(1), phase->intcon(log2_long(temp)) ) );
   312       res = new (phase->C) SubLNode( n1, in(1) );
   313     } else {
   314       return MulNode::Ideal(phase, can_reshape);
   315     }
   316   }
   318   if( sign_flip ) {             // Need to negate result?
   319     res = phase->transform(res);// Transform, before making the zero con
   320     res = new (phase->C) SubLNode(phase->longcon(0),res);
   321   }
   323   return res;                   // Return final result
   324 }
   326 //------------------------------mul_ring---------------------------------------
   327 // Compute the product type of two integer ranges into this node.
   328 const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const {
   329   const TypeLong *r0 = t0->is_long(); // Handy access
   330   const TypeLong *r1 = t1->is_long();
   332   // Fetch endpoints of all ranges
   333   jlong lo0 = r0->_lo;
   334   double a = (double)lo0;
   335   jlong hi0 = r0->_hi;
   336   double b = (double)hi0;
   337   jlong lo1 = r1->_lo;
   338   double c = (double)lo1;
   339   jlong hi1 = r1->_hi;
   340   double d = (double)hi1;
   342   // Compute all endpoints & check for overflow
   343   jlong A = java_multiply(lo0, lo1);
   344   if( (double)A != a*c ) return TypeLong::LONG; // Overflow?
   345   jlong B = java_multiply(lo0, hi1);
   346   if( (double)B != a*d ) return TypeLong::LONG; // Overflow?
   347   jlong C = java_multiply(hi0, lo1);
   348   if( (double)C != b*c ) return TypeLong::LONG; // Overflow?
   349   jlong D = java_multiply(hi0, hi1);
   350   if( (double)D != b*d ) return TypeLong::LONG; // Overflow?
   352   if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
   353   else { lo0 = B; hi0 = A; }
   354   if( C < D ) {
   355     if( C < lo0 ) lo0 = C;
   356     if( D > hi0 ) hi0 = D;
   357   } else {
   358     if( D < lo0 ) lo0 = D;
   359     if( C > hi0 ) hi0 = C;
   360   }
   361   return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
   362 }
   364 //=============================================================================
   365 //------------------------------mul_ring---------------------------------------
   366 // Compute the product type of two double ranges into this node.
   367 const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
   368   if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
   369   return TypeF::make( t0->getf() * t1->getf() );
   370 }
   372 //=============================================================================
   373 //------------------------------mul_ring---------------------------------------
   374 // Compute the product type of two double ranges into this node.
   375 const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
   376   if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
   377   // We must be multiplying 2 double constants.
   378   return TypeD::make( t0->getd() * t1->getd() );
   379 }
   381 //=============================================================================
   382 //------------------------------Value------------------------------------------
   383 const Type *MulHiLNode::Value( PhaseTransform *phase ) const {
   384   // Either input is TOP ==> the result is TOP
   385   const Type *t1 = phase->type( in(1) );
   386   const Type *t2 = phase->type( in(2) );
   387   if( t1 == Type::TOP ) return Type::TOP;
   388   if( t2 == Type::TOP ) return Type::TOP;
   390   // Either input is BOTTOM ==> the result is the local BOTTOM
   391   const Type *bot = bottom_type();
   392   if( (t1 == bot) || (t2 == bot) ||
   393       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   394     return bot;
   396   // It is not worth trying to constant fold this stuff!
   397   return TypeLong::LONG;
   398 }
   400 //=============================================================================
   401 //------------------------------mul_ring---------------------------------------
   402 // Supplied function returns the product of the inputs IN THE CURRENT RING.
   403 // For the logical operations the ring's MUL is really a logical AND function.
   404 // This also type-checks the inputs for sanity.  Guaranteed never to
   405 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   406 const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
   407   const TypeInt *r0 = t0->is_int(); // Handy access
   408   const TypeInt *r1 = t1->is_int();
   409   int widen = MAX2(r0->_widen,r1->_widen);
   411   // If either input is a constant, might be able to trim cases
   412   if( !r0->is_con() && !r1->is_con() )
   413     return TypeInt::INT;        // No constants to be had
   415   // Both constants?  Return bits
   416   if( r0->is_con() && r1->is_con() )
   417     return TypeInt::make( r0->get_con() & r1->get_con() );
   419   if( r0->is_con() && r0->get_con() > 0 )
   420     return TypeInt::make(0, r0->get_con(), widen);
   422   if( r1->is_con() && r1->get_con() > 0 )
   423     return TypeInt::make(0, r1->get_con(), widen);
   425   if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) {
   426     return TypeInt::BOOL;
   427   }
   429   return TypeInt::INT;          // No constants to be had
   430 }
   432 //------------------------------Identity---------------------------------------
   433 // Masking off the high bits of an unsigned load is not required
   434 Node *AndINode::Identity( PhaseTransform *phase ) {
   436   // x & x => x
   437   if (phase->eqv(in(1), in(2))) return in(1);
   439   Node* in1 = in(1);
   440   uint op = in1->Opcode();
   441   const TypeInt* t2 = phase->type(in(2))->isa_int();
   442   if (t2 && t2->is_con()) {
   443     int con = t2->get_con();
   444     // Masking off high bits which are always zero is useless.
   445     const TypeInt* t1 = phase->type( in(1) )->isa_int();
   446     if (t1 != NULL && t1->_lo >= 0) {
   447       jint t1_support = right_n_bits(1 + log2_intptr(t1->_hi));
   448       if ((t1_support & con) == t1_support)
   449         return in1;
   450     }
   451     // Masking off the high bits of a unsigned-shift-right is not
   452     // needed either.
   453     if (op == Op_URShiftI) {
   454       const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
   455       if (t12 && t12->is_con()) {  // Shift is by a constant
   456         int shift = t12->get_con();
   457         shift &= BitsPerJavaInteger - 1;  // semantics of Java shifts
   458         int mask = max_juint >> shift;
   459         if ((mask & con) == mask)  // If AND is useless, skip it
   460           return in1;
   461       }
   462     }
   463   }
   464   return MulNode::Identity(phase);
   465 }
   467 //------------------------------Ideal------------------------------------------
   468 Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   469   // Special case constant AND mask
   470   const TypeInt *t2 = phase->type( in(2) )->isa_int();
   471   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
   472   const int mask = t2->get_con();
   473   Node *load = in(1);
   474   uint lop = load->Opcode();
   476   // Masking bits off of a Character?  Hi bits are already zero.
   477   if( lop == Op_LoadUS &&
   478       (mask & 0xFFFF0000) )     // Can we make a smaller mask?
   479     return new (phase->C) AndINode(load,phase->intcon(mask&0xFFFF));
   481   // Masking bits off of a Short?  Loading a Character does some masking
   482   if (can_reshape &&
   483       load->outcnt() == 1 && load->unique_out() == this) {
   484     if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) {
   485       Node *ldus = new (phase->C) LoadUSNode(load->in(MemNode::Control),
   486                                              load->in(MemNode::Memory),
   487                                              load->in(MemNode::Address),
   488                                              load->adr_type(),
   489                                              TypeInt::CHAR, MemNode::unordered);
   490       ldus = phase->transform(ldus);
   491       return new (phase->C) AndINode(ldus, phase->intcon(mask & 0xFFFF));
   492     }
   494     // Masking sign bits off of a Byte?  Do an unsigned byte load plus
   495     // an and.
   496     if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0) {
   497       Node* ldub = new (phase->C) LoadUBNode(load->in(MemNode::Control),
   498                                              load->in(MemNode::Memory),
   499                                              load->in(MemNode::Address),
   500                                              load->adr_type(),
   501                                              TypeInt::UBYTE, MemNode::unordered);
   502       ldub = phase->transform(ldub);
   503       return new (phase->C) AndINode(ldub, phase->intcon(mask));
   504     }
   505   }
   507   // Masking off sign bits?  Dont make them!
   508   if( lop == Op_RShiftI ) {
   509     const TypeInt *t12 = phase->type(load->in(2))->isa_int();
   510     if( t12 && t12->is_con() ) { // Shift is by a constant
   511       int shift = t12->get_con();
   512       shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
   513       const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
   514       // If the AND'ing of the 2 masks has no bits, then only original shifted
   515       // bits survive.  NO sign-extension bits survive the maskings.
   516       if( (sign_bits_mask & mask) == 0 ) {
   517         // Use zero-fill shift instead
   518         Node *zshift = phase->transform(new (phase->C) URShiftINode(load->in(1),load->in(2)));
   519         return new (phase->C) AndINode( zshift, in(2) );
   520       }
   521     }
   522   }
   524   // Check for 'negate/and-1', a pattern emitted when someone asks for
   525   // 'mod 2'.  Negate leaves the low order bit unchanged (think: complement
   526   // plus 1) and the mask is of the low order bit.  Skip the negate.
   527   if( lop == Op_SubI && mask == 1 && load->in(1) &&
   528       phase->type(load->in(1)) == TypeInt::ZERO )
   529     return new (phase->C) AndINode( load->in(2), in(2) );
   531   return MulNode::Ideal(phase, can_reshape);
   532 }
   534 //=============================================================================
   535 //------------------------------mul_ring---------------------------------------
   536 // Supplied function returns the product of the inputs IN THE CURRENT RING.
   537 // For the logical operations the ring's MUL is really a logical AND function.
   538 // This also type-checks the inputs for sanity.  Guaranteed never to
   539 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   540 const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
   541   const TypeLong *r0 = t0->is_long(); // Handy access
   542   const TypeLong *r1 = t1->is_long();
   543   int widen = MAX2(r0->_widen,r1->_widen);
   545   // If either input is a constant, might be able to trim cases
   546   if( !r0->is_con() && !r1->is_con() )
   547     return TypeLong::LONG;      // No constants to be had
   549   // Both constants?  Return bits
   550   if( r0->is_con() && r1->is_con() )
   551     return TypeLong::make( r0->get_con() & r1->get_con() );
   553   if( r0->is_con() && r0->get_con() > 0 )
   554     return TypeLong::make(CONST64(0), r0->get_con(), widen);
   556   if( r1->is_con() && r1->get_con() > 0 )
   557     return TypeLong::make(CONST64(0), r1->get_con(), widen);
   559   return TypeLong::LONG;        // No constants to be had
   560 }
   562 //------------------------------Identity---------------------------------------
   563 // Masking off the high bits of an unsigned load is not required
   564 Node *AndLNode::Identity( PhaseTransform *phase ) {
   566   // x & x => x
   567   if (phase->eqv(in(1), in(2))) return in(1);
   569   Node *usr = in(1);
   570   const TypeLong *t2 = phase->type( in(2) )->isa_long();
   571   if( t2 && t2->is_con() ) {
   572     jlong con = t2->get_con();
   573     // Masking off high bits which are always zero is useless.
   574     const TypeLong* t1 = phase->type( in(1) )->isa_long();
   575     if (t1 != NULL && t1->_lo >= 0) {
   576       int bit_count = log2_long(t1->_hi) + 1;
   577       jlong t1_support = jlong(max_julong >> (BitsPerJavaLong - bit_count));
   578       if ((t1_support & con) == t1_support)
   579         return usr;
   580     }
   581     uint lop = usr->Opcode();
   582     // Masking off the high bits of a unsigned-shift-right is not
   583     // needed either.
   584     if( lop == Op_URShiftL ) {
   585       const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
   586       if( t12 && t12->is_con() ) {  // Shift is by a constant
   587         int shift = t12->get_con();
   588         shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
   589         jlong mask = max_julong >> shift;
   590         if( (mask&con) == mask )  // If AND is useless, skip it
   591           return usr;
   592       }
   593     }
   594   }
   595   return MulNode::Identity(phase);
   596 }
   598 //------------------------------Ideal------------------------------------------
   599 Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   600   // Special case constant AND mask
   601   const TypeLong *t2 = phase->type( in(2) )->isa_long();
   602   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
   603   const jlong mask = t2->get_con();
   605   Node* in1 = in(1);
   606   uint op = in1->Opcode();
   608   // Are we masking a long that was converted from an int with a mask
   609   // that fits in 32-bits?  Commute them and use an AndINode.  Don't
   610   // convert masks which would cause a sign extension of the integer
   611   // value.  This check includes UI2L masks (0x00000000FFFFFFFF) which
   612   // would be optimized away later in Identity.
   613   if (op == Op_ConvI2L && (mask & CONST64(0xFFFFFFFF80000000)) == 0) {
   614     Node* andi = new (phase->C) AndINode(in1->in(1), phase->intcon(mask));
   615     andi = phase->transform(andi);
   616     return new (phase->C) ConvI2LNode(andi);
   617   }
   619   // Masking off sign bits?  Dont make them!
   620   if (op == Op_RShiftL) {
   621     const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
   622     if( t12 && t12->is_con() ) { // Shift is by a constant
   623       int shift = t12->get_con();
   624       shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
   625       const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - shift)) -1);
   626       // If the AND'ing of the 2 masks has no bits, then only original shifted
   627       // bits survive.  NO sign-extension bits survive the maskings.
   628       if( (sign_bits_mask & mask) == 0 ) {
   629         // Use zero-fill shift instead
   630         Node *zshift = phase->transform(new (phase->C) URShiftLNode(in1->in(1), in1->in(2)));
   631         return new (phase->C) AndLNode(zshift, in(2));
   632       }
   633     }
   634   }
   636   return MulNode::Ideal(phase, can_reshape);
   637 }
   639 //=============================================================================
   640 //------------------------------Identity---------------------------------------
   641 Node *LShiftINode::Identity( PhaseTransform *phase ) {
   642   const TypeInt *ti = phase->type( in(2) )->isa_int();  // shift count is an int
   643   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) ? in(1) : this;
   644 }
   646 //------------------------------Ideal------------------------------------------
   647 // If the right input is a constant, and the left input is an add of a
   648 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
   649 Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   650   const Type *t  = phase->type( in(2) );
   651   if( t == Type::TOP ) return NULL;       // Right input is dead
   652   const TypeInt *t2 = t->isa_int();
   653   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
   654   const int con = t2->get_con() & ( BitsPerInt - 1 );  // masked shift count
   656   if ( con == 0 )  return NULL; // let Identity() handle 0 shift count
   658   // Left input is an add of a constant?
   659   Node *add1 = in(1);
   660   int add1_op = add1->Opcode();
   661   if( add1_op == Op_AddI ) {    // Left input is an add?
   662     assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" );
   663     const TypeInt *t12 = phase->type(add1->in(2))->isa_int();
   664     if( t12 && t12->is_con() ){ // Left input is an add of a con?
   665       // Transform is legal, but check for profit.  Avoid breaking 'i2s'
   666       // and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
   667       if( con < 16 ) {
   668         // Compute X << con0
   669         Node *lsh = phase->transform( new (phase->C) LShiftINode( add1->in(1), in(2) ) );
   670         // Compute X<<con0 + (con1<<con0)
   671         return new (phase->C) AddINode( lsh, phase->intcon(t12->get_con() << con));
   672       }
   673     }
   674   }
   676   // Check for "(x>>c0)<<c0" which just masks off low bits
   677   if( (add1_op == Op_RShiftI || add1_op == Op_URShiftI ) &&
   678       add1->in(2) == in(2) )
   679     // Convert to "(x & -(1<<c0))"
   680     return new (phase->C) AndINode(add1->in(1),phase->intcon( -(1<<con)));
   682   // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
   683   if( add1_op == Op_AndI ) {
   684     Node *add2 = add1->in(1);
   685     int add2_op = add2->Opcode();
   686     if( (add2_op == Op_RShiftI || add2_op == Op_URShiftI ) &&
   687         add2->in(2) == in(2) ) {
   688       // Convert to "(x & (Y<<c0))"
   689       Node *y_sh = phase->transform( new (phase->C) LShiftINode( add1->in(2), in(2) ) );
   690       return new (phase->C) AndINode( add2->in(1), y_sh );
   691     }
   692   }
   694   // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
   695   // before shifting them away.
   696   const jint bits_mask = right_n_bits(BitsPerJavaInteger-con);
   697   if( add1_op == Op_AndI &&
   698       phase->type(add1->in(2)) == TypeInt::make( bits_mask ) )
   699     return new (phase->C) LShiftINode( add1->in(1), in(2) );
   701   return NULL;
   702 }
   704 //------------------------------Value------------------------------------------
   705 // A LShiftINode shifts its input2 left by input1 amount.
   706 const Type *LShiftINode::Value( PhaseTransform *phase ) const {
   707   const Type *t1 = phase->type( in(1) );
   708   const Type *t2 = phase->type( in(2) );
   709   // Either input is TOP ==> the result is TOP
   710   if( t1 == Type::TOP ) return Type::TOP;
   711   if( t2 == Type::TOP ) return Type::TOP;
   713   // Left input is ZERO ==> the result is ZERO.
   714   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
   715   // Shift by zero does nothing
   716   if( t2 == TypeInt::ZERO ) return t1;
   718   // Either input is BOTTOM ==> the result is BOTTOM
   719   if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) ||
   720       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   721     return TypeInt::INT;
   723   const TypeInt *r1 = t1->is_int(); // Handy access
   724   const TypeInt *r2 = t2->is_int(); // Handy access
   726   if (!r2->is_con())
   727     return TypeInt::INT;
   729   uint shift = r2->get_con();
   730   shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
   731   // Shift by a multiple of 32 does nothing:
   732   if (shift == 0)  return t1;
   734   // If the shift is a constant, shift the bounds of the type,
   735   // unless this could lead to an overflow.
   736   if (!r1->is_con()) {
   737     jint lo = r1->_lo, hi = r1->_hi;
   738     if (((lo << shift) >> shift) == lo &&
   739         ((hi << shift) >> shift) == hi) {
   740       // No overflow.  The range shifts up cleanly.
   741       return TypeInt::make((jint)lo << (jint)shift,
   742                            (jint)hi << (jint)shift,
   743                            MAX2(r1->_widen,r2->_widen));
   744     }
   745     return TypeInt::INT;
   746   }
   748   return TypeInt::make( (jint)r1->get_con() << (jint)shift );
   749 }
   751 //=============================================================================
   752 //------------------------------Identity---------------------------------------
   753 Node *LShiftLNode::Identity( PhaseTransform *phase ) {
   754   const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
   755   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
   756 }
   758 //------------------------------Ideal------------------------------------------
   759 // If the right input is a constant, and the left input is an add of a
   760 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
   761 Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   762   const Type *t  = phase->type( in(2) );
   763   if( t == Type::TOP ) return NULL;       // Right input is dead
   764   const TypeInt *t2 = t->isa_int();
   765   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
   766   const int con = t2->get_con() & ( BitsPerLong - 1 );  // masked shift count
   768   if ( con == 0 ) return NULL;  // let Identity() handle 0 shift count
   770   // Left input is an add of a constant?
   771   Node *add1 = in(1);
   772   int add1_op = add1->Opcode();
   773   if( add1_op == Op_AddL ) {    // Left input is an add?
   774     // Avoid dead data cycles from dead loops
   775     assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" );
   776     const TypeLong *t12 = phase->type(add1->in(2))->isa_long();
   777     if( t12 && t12->is_con() ){ // Left input is an add of a con?
   778       // Compute X << con0
   779       Node *lsh = phase->transform( new (phase->C) LShiftLNode( add1->in(1), in(2) ) );
   780       // Compute X<<con0 + (con1<<con0)
   781       return new (phase->C) AddLNode( lsh, phase->longcon(t12->get_con() << con));
   782     }
   783   }
   785   // Check for "(x>>c0)<<c0" which just masks off low bits
   786   if( (add1_op == Op_RShiftL || add1_op == Op_URShiftL ) &&
   787       add1->in(2) == in(2) )
   788     // Convert to "(x & -(1<<c0))"
   789     return new (phase->C) AndLNode(add1->in(1),phase->longcon( -(CONST64(1)<<con)));
   791   // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
   792   if( add1_op == Op_AndL ) {
   793     Node *add2 = add1->in(1);
   794     int add2_op = add2->Opcode();
   795     if( (add2_op == Op_RShiftL || add2_op == Op_URShiftL ) &&
   796         add2->in(2) == in(2) ) {
   797       // Convert to "(x & (Y<<c0))"
   798       Node *y_sh = phase->transform( new (phase->C) LShiftLNode( add1->in(2), in(2) ) );
   799       return new (phase->C) AndLNode( add2->in(1), y_sh );
   800     }
   801   }
   803   // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
   804   // before shifting them away.
   805   const jlong bits_mask = jlong(max_julong >> con);
   806   if( add1_op == Op_AndL &&
   807       phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
   808     return new (phase->C) LShiftLNode( add1->in(1), in(2) );
   810   return NULL;
   811 }
   813 //------------------------------Value------------------------------------------
   814 // A LShiftLNode shifts its input2 left by input1 amount.
   815 const Type *LShiftLNode::Value( PhaseTransform *phase ) const {
   816   const Type *t1 = phase->type( in(1) );
   817   const Type *t2 = phase->type( in(2) );
   818   // Either input is TOP ==> the result is TOP
   819   if( t1 == Type::TOP ) return Type::TOP;
   820   if( t2 == Type::TOP ) return Type::TOP;
   822   // Left input is ZERO ==> the result is ZERO.
   823   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
   824   // Shift by zero does nothing
   825   if( t2 == TypeInt::ZERO ) return t1;
   827   // Either input is BOTTOM ==> the result is BOTTOM
   828   if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) ||
   829       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   830     return TypeLong::LONG;
   832   const TypeLong *r1 = t1->is_long(); // Handy access
   833   const TypeInt  *r2 = t2->is_int();  // Handy access
   835   if (!r2->is_con())
   836     return TypeLong::LONG;
   838   uint shift = r2->get_con();
   839   shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
   840   // Shift by a multiple of 64 does nothing:
   841   if (shift == 0)  return t1;
   843   // If the shift is a constant, shift the bounds of the type,
   844   // unless this could lead to an overflow.
   845   if (!r1->is_con()) {
   846     jlong lo = r1->_lo, hi = r1->_hi;
   847     if (((lo << shift) >> shift) == lo &&
   848         ((hi << shift) >> shift) == hi) {
   849       // No overflow.  The range shifts up cleanly.
   850       return TypeLong::make((jlong)lo << (jint)shift,
   851                             (jlong)hi << (jint)shift,
   852                             MAX2(r1->_widen,r2->_widen));
   853     }
   854     return TypeLong::LONG;
   855   }
   857   return TypeLong::make( (jlong)r1->get_con() << (jint)shift );
   858 }
   860 //=============================================================================
   861 //------------------------------Identity---------------------------------------
   862 Node *RShiftINode::Identity( PhaseTransform *phase ) {
   863   const TypeInt *t2 = phase->type(in(2))->isa_int();
   864   if( !t2 ) return this;
   865   if ( t2->is_con() && ( t2->get_con() & ( BitsPerInt - 1 ) ) == 0 )
   866     return in(1);
   868   // Check for useless sign-masking
   869   if( in(1)->Opcode() == Op_LShiftI &&
   870       in(1)->req() == 3 &&
   871       in(1)->in(2) == in(2) &&
   872       t2->is_con() ) {
   873     uint shift = t2->get_con();
   874     shift &= BitsPerJavaInteger-1; // semantics of Java shifts
   875     // Compute masks for which this shifting doesn't change
   876     int lo = (-1 << (BitsPerJavaInteger - shift-1)); // FFFF8000
   877     int hi = ~lo;               // 00007FFF
   878     const TypeInt *t11 = phase->type(in(1)->in(1))->isa_int();
   879     if( !t11 ) return this;
   880     // Does actual value fit inside of mask?
   881     if( lo <= t11->_lo && t11->_hi <= hi )
   882       return in(1)->in(1);      // Then shifting is a nop
   883   }
   885   return this;
   886 }
   888 //------------------------------Ideal------------------------------------------
   889 Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   890   // Inputs may be TOP if they are dead.
   891   const TypeInt *t1 = phase->type( in(1) )->isa_int();
   892   if( !t1 ) return NULL;        // Left input is an integer
   893   const TypeInt *t2 = phase->type( in(2) )->isa_int();
   894   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
   895   const TypeInt *t3;  // type of in(1).in(2)
   896   int shift = t2->get_con();
   897   shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
   899   if ( shift == 0 ) return NULL;  // let Identity() handle 0 shift count
   901   // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
   902   // Such expressions arise normally from shift chains like (byte)(x >> 24).
   903   const Node *mask = in(1);
   904   if( mask->Opcode() == Op_AndI &&
   905       (t3 = phase->type(mask->in(2))->isa_int()) &&
   906       t3->is_con() ) {
   907     Node *x = mask->in(1);
   908     jint maskbits = t3->get_con();
   909     // Convert to "(x >> shift) & (mask >> shift)"
   910     Node *shr_nomask = phase->transform( new (phase->C) RShiftINode(mask->in(1), in(2)) );
   911     return new (phase->C) AndINode(shr_nomask, phase->intcon( maskbits >> shift));
   912   }
   914   // Check for "(short[i] <<16)>>16" which simply sign-extends
   915   const Node *shl = in(1);
   916   if( shl->Opcode() != Op_LShiftI ) return NULL;
   918   if( shift == 16 &&
   919       (t3 = phase->type(shl->in(2))->isa_int()) &&
   920       t3->is_con(16) ) {
   921     Node *ld = shl->in(1);
   922     if( ld->Opcode() == Op_LoadS ) {
   923       // Sign extension is just useless here.  Return a RShiftI of zero instead
   924       // returning 'ld' directly.  We cannot return an old Node directly as
   925       // that is the job of 'Identity' calls and Identity calls only work on
   926       // direct inputs ('ld' is an extra Node removed from 'this').  The
   927       // combined optimization requires Identity only return direct inputs.
   928       set_req(1, ld);
   929       set_req(2, phase->intcon(0));
   930       return this;
   931     }
   932     else if( can_reshape &&
   933              ld->Opcode() == Op_LoadUS &&
   934              ld->outcnt() == 1 && ld->unique_out() == shl)
   935       // Replace zero-extension-load with sign-extension-load
   936       return new (phase->C) LoadSNode( ld->in(MemNode::Control),
   937                                        ld->in(MemNode::Memory),
   938                                        ld->in(MemNode::Address),
   939                                        ld->adr_type(), TypeInt::SHORT,
   940                                        MemNode::unordered);
   941   }
   943   // Check for "(byte[i] <<24)>>24" which simply sign-extends
   944   if( shift == 24 &&
   945       (t3 = phase->type(shl->in(2))->isa_int()) &&
   946       t3->is_con(24) ) {
   947     Node *ld = shl->in(1);
   948     if( ld->Opcode() == Op_LoadB ) {
   949       // Sign extension is just useless here
   950       set_req(1, ld);
   951       set_req(2, phase->intcon(0));
   952       return this;
   953     }
   954   }
   956   return NULL;
   957 }
   959 //------------------------------Value------------------------------------------
   960 // A RShiftINode shifts its input2 right by input1 amount.
   961 const Type *RShiftINode::Value( PhaseTransform *phase ) const {
   962   const Type *t1 = phase->type( in(1) );
   963   const Type *t2 = phase->type( in(2) );
   964   // Either input is TOP ==> the result is TOP
   965   if( t1 == Type::TOP ) return Type::TOP;
   966   if( t2 == Type::TOP ) return Type::TOP;
   968   // Left input is ZERO ==> the result is ZERO.
   969   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
   970   // Shift by zero does nothing
   971   if( t2 == TypeInt::ZERO ) return t1;
   973   // Either input is BOTTOM ==> the result is BOTTOM
   974   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
   975     return TypeInt::INT;
   977   if (t2 == TypeInt::INT)
   978     return TypeInt::INT;
   980   const TypeInt *r1 = t1->is_int(); // Handy access
   981   const TypeInt *r2 = t2->is_int(); // Handy access
   983   // If the shift is a constant, just shift the bounds of the type.
   984   // For example, if the shift is 31, we just propagate sign bits.
   985   if (r2->is_con()) {
   986     uint shift = r2->get_con();
   987     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
   988     // Shift by a multiple of 32 does nothing:
   989     if (shift == 0)  return t1;
   990     // Calculate reasonably aggressive bounds for the result.
   991     // This is necessary if we are to correctly type things
   992     // like (x<<24>>24) == ((byte)x).
   993     jint lo = (jint)r1->_lo >> (jint)shift;
   994     jint hi = (jint)r1->_hi >> (jint)shift;
   995     assert(lo <= hi, "must have valid bounds");
   996     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
   997 #ifdef ASSERT
   998     // Make sure we get the sign-capture idiom correct.
   999     if (shift == BitsPerJavaInteger-1) {
  1000       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO,    ">>31 of + is  0");
  1001       if (r1->_hi <  0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1");
  1003 #endif
  1004     return ti;
  1007   if( !r1->is_con() || !r2->is_con() )
  1008     return TypeInt::INT;
  1010   // Signed shift right
  1011   return TypeInt::make( r1->get_con() >> (r2->get_con()&31) );
  1014 //=============================================================================
  1015 //------------------------------Identity---------------------------------------
  1016 Node *RShiftLNode::Identity( PhaseTransform *phase ) {
  1017   const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
  1018   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
  1021 //------------------------------Value------------------------------------------
  1022 // A RShiftLNode shifts its input2 right by input1 amount.
  1023 const Type *RShiftLNode::Value( PhaseTransform *phase ) const {
  1024   const Type *t1 = phase->type( in(1) );
  1025   const Type *t2 = phase->type( in(2) );
  1026   // Either input is TOP ==> the result is TOP
  1027   if( t1 == Type::TOP ) return Type::TOP;
  1028   if( t2 == Type::TOP ) return Type::TOP;
  1030   // Left input is ZERO ==> the result is ZERO.
  1031   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
  1032   // Shift by zero does nothing
  1033   if( t2 == TypeInt::ZERO ) return t1;
  1035   // Either input is BOTTOM ==> the result is BOTTOM
  1036   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
  1037     return TypeLong::LONG;
  1039   if (t2 == TypeInt::INT)
  1040     return TypeLong::LONG;
  1042   const TypeLong *r1 = t1->is_long(); // Handy access
  1043   const TypeInt  *r2 = t2->is_int (); // Handy access
  1045   // If the shift is a constant, just shift the bounds of the type.
  1046   // For example, if the shift is 63, we just propagate sign bits.
  1047   if (r2->is_con()) {
  1048     uint shift = r2->get_con();
  1049     shift &= (2*BitsPerJavaInteger)-1;  // semantics of Java shifts
  1050     // Shift by a multiple of 64 does nothing:
  1051     if (shift == 0)  return t1;
  1052     // Calculate reasonably aggressive bounds for the result.
  1053     // This is necessary if we are to correctly type things
  1054     // like (x<<24>>24) == ((byte)x).
  1055     jlong lo = (jlong)r1->_lo >> (jlong)shift;
  1056     jlong hi = (jlong)r1->_hi >> (jlong)shift;
  1057     assert(lo <= hi, "must have valid bounds");
  1058     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
  1059     #ifdef ASSERT
  1060     // Make sure we get the sign-capture idiom correct.
  1061     if (shift == (2*BitsPerJavaInteger)-1) {
  1062       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO,    ">>63 of + is 0");
  1063       if (r1->_hi < 0)  assert(tl == TypeLong::MINUS_1, ">>63 of - is -1");
  1065     #endif
  1066     return tl;
  1069   return TypeLong::LONG;                // Give up
  1072 //=============================================================================
  1073 //------------------------------Identity---------------------------------------
  1074 Node *URShiftINode::Identity( PhaseTransform *phase ) {
  1075   const TypeInt *ti = phase->type( in(2) )->isa_int();
  1076   if ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) return in(1);
  1078   // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
  1079   // Happens during new-array length computation.
  1080   // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
  1081   Node *add = in(1);
  1082   if( add->Opcode() == Op_AddI ) {
  1083     const TypeInt *t2  = phase->type(add->in(2))->isa_int();
  1084     if( t2 && t2->is_con(wordSize - 1) &&
  1085         add->in(1)->Opcode() == Op_LShiftI ) {
  1086       // Check that shift_counts are LogBytesPerWord
  1087       Node          *lshift_count   = add->in(1)->in(2);
  1088       const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
  1089       if( t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
  1090           t_lshift_count == phase->type(in(2)) ) {
  1091         Node          *x   = add->in(1)->in(1);
  1092         const TypeInt *t_x = phase->type(x)->isa_int();
  1093         if( t_x != NULL && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord) ) {
  1094           return x;
  1100   return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
  1103 //------------------------------Ideal------------------------------------------
  1104 Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1105   const TypeInt *t2 = phase->type( in(2) )->isa_int();
  1106   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
  1107   const int con = t2->get_con() & 31; // Shift count is always masked
  1108   if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
  1109   // We'll be wanting the right-shift amount as a mask of that many bits
  1110   const int mask = right_n_bits(BitsPerJavaInteger - con);
  1112   int in1_op = in(1)->Opcode();
  1114   // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
  1115   if( in1_op == Op_URShiftI ) {
  1116     const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
  1117     if( t12 && t12->is_con() ) { // Right input is a constant
  1118       assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
  1119       const int con2 = t12->get_con() & 31; // Shift count is always masked
  1120       const int con3 = con+con2;
  1121       if( con3 < 32 )           // Only merge shifts if total is < 32
  1122         return new (phase->C) URShiftINode( in(1)->in(1), phase->intcon(con3) );
  1126   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
  1127   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
  1128   // If Q is "X << z" the rounding is useless.  Look for patterns like
  1129   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
  1130   Node *add = in(1);
  1131   if( in1_op == Op_AddI ) {
  1132     Node *lshl = add->in(1);
  1133     if( lshl->Opcode() == Op_LShiftI &&
  1134         phase->type(lshl->in(2)) == t2 ) {
  1135       Node *y_z = phase->transform( new (phase->C) URShiftINode(add->in(2),in(2)) );
  1136       Node *sum = phase->transform( new (phase->C) AddINode( lshl->in(1), y_z ) );
  1137       return new (phase->C) AndINode( sum, phase->intcon(mask) );
  1141   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
  1142   // This shortens the mask.  Also, if we are extracting a high byte and
  1143   // storing it to a buffer, the mask will be removed completely.
  1144   Node *andi = in(1);
  1145   if( in1_op == Op_AndI ) {
  1146     const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
  1147     if( t3 && t3->is_con() ) { // Right input is a constant
  1148       jint mask2 = t3->get_con();
  1149       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
  1150       Node *newshr = phase->transform( new (phase->C) URShiftINode(andi->in(1), in(2)) );
  1151       return new (phase->C) AndINode(newshr, phase->intcon(mask2));
  1152       // The negative values are easier to materialize than positive ones.
  1153       // A typical case from address arithmetic is ((x & ~15) >> 4).
  1154       // It's better to change that to ((x >> 4) & ~0) versus
  1155       // ((x >> 4) & 0x0FFFFFFF).  The difference is greatest in LP64.
  1159   // Check for "(X << z ) >>> z" which simply zero-extends
  1160   Node *shl = in(1);
  1161   if( in1_op == Op_LShiftI &&
  1162       phase->type(shl->in(2)) == t2 )
  1163     return new (phase->C) AndINode( shl->in(1), phase->intcon(mask) );
  1165   return NULL;
  1168 //------------------------------Value------------------------------------------
  1169 // A URShiftINode shifts its input2 right by input1 amount.
  1170 const Type *URShiftINode::Value( PhaseTransform *phase ) const {
  1171   // (This is a near clone of RShiftINode::Value.)
  1172   const Type *t1 = phase->type( in(1) );
  1173   const Type *t2 = phase->type( in(2) );
  1174   // Either input is TOP ==> the result is TOP
  1175   if( t1 == Type::TOP ) return Type::TOP;
  1176   if( t2 == Type::TOP ) return Type::TOP;
  1178   // Left input is ZERO ==> the result is ZERO.
  1179   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
  1180   // Shift by zero does nothing
  1181   if( t2 == TypeInt::ZERO ) return t1;
  1183   // Either input is BOTTOM ==> the result is BOTTOM
  1184   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
  1185     return TypeInt::INT;
  1187   if (t2 == TypeInt::INT)
  1188     return TypeInt::INT;
  1190   const TypeInt *r1 = t1->is_int();     // Handy access
  1191   const TypeInt *r2 = t2->is_int();     // Handy access
  1193   if (r2->is_con()) {
  1194     uint shift = r2->get_con();
  1195     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
  1196     // Shift by a multiple of 32 does nothing:
  1197     if (shift == 0)  return t1;
  1198     // Calculate reasonably aggressive bounds for the result.
  1199     jint lo = (juint)r1->_lo >> (juint)shift;
  1200     jint hi = (juint)r1->_hi >> (juint)shift;
  1201     if (r1->_hi >= 0 && r1->_lo < 0) {
  1202       // If the type has both negative and positive values,
  1203       // there are two separate sub-domains to worry about:
  1204       // The positive half and the negative half.
  1205       jint neg_lo = lo;
  1206       jint neg_hi = (juint)-1 >> (juint)shift;
  1207       jint pos_lo = (juint) 0 >> (juint)shift;
  1208       jint pos_hi = hi;
  1209       lo = MIN2(neg_lo, pos_lo);  // == 0
  1210       hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
  1212     assert(lo <= hi, "must have valid bounds");
  1213     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
  1214     #ifdef ASSERT
  1215     // Make sure we get the sign-capture idiom correct.
  1216     if (shift == BitsPerJavaInteger-1) {
  1217       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
  1218       if (r1->_hi < 0)  assert(ti == TypeInt::ONE,  ">>>31 of - is +1");
  1220     #endif
  1221     return ti;
  1224   //
  1225   // Do not support shifted oops in info for GC
  1226   //
  1227   // else if( t1->base() == Type::InstPtr ) {
  1228   //
  1229   //   const TypeInstPtr *o = t1->is_instptr();
  1230   //   if( t1->singleton() )
  1231   //     return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift );
  1232   // }
  1233   // else if( t1->base() == Type::KlassPtr ) {
  1234   //   const TypeKlassPtr *o = t1->is_klassptr();
  1235   //   if( t1->singleton() )
  1236   //     return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift );
  1237   // }
  1239   return TypeInt::INT;
  1242 //=============================================================================
  1243 //------------------------------Identity---------------------------------------
  1244 Node *URShiftLNode::Identity( PhaseTransform *phase ) {
  1245   const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
  1246   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
  1249 //------------------------------Ideal------------------------------------------
  1250 Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1251   const TypeInt *t2 = phase->type( in(2) )->isa_int();
  1252   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
  1253   const int con = t2->get_con() & ( BitsPerLong - 1 ); // Shift count is always masked
  1254   if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
  1255                               // note: mask computation below does not work for 0 shift count
  1256   // We'll be wanting the right-shift amount as a mask of that many bits
  1257   const jlong mask = jlong(max_julong >> con);
  1259   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
  1260   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
  1261   // If Q is "X << z" the rounding is useless.  Look for patterns like
  1262   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
  1263   Node *add = in(1);
  1264   if( add->Opcode() == Op_AddL ) {
  1265     Node *lshl = add->in(1);
  1266     if( lshl->Opcode() == Op_LShiftL &&
  1267         phase->type(lshl->in(2)) == t2 ) {
  1268       Node *y_z = phase->transform( new (phase->C) URShiftLNode(add->in(2),in(2)) );
  1269       Node *sum = phase->transform( new (phase->C) AddLNode( lshl->in(1), y_z ) );
  1270       return new (phase->C) AndLNode( sum, phase->longcon(mask) );
  1274   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
  1275   // This shortens the mask.  Also, if we are extracting a high byte and
  1276   // storing it to a buffer, the mask will be removed completely.
  1277   Node *andi = in(1);
  1278   if( andi->Opcode() == Op_AndL ) {
  1279     const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
  1280     if( t3 && t3->is_con() ) { // Right input is a constant
  1281       jlong mask2 = t3->get_con();
  1282       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
  1283       Node *newshr = phase->transform( new (phase->C) URShiftLNode(andi->in(1), in(2)) );
  1284       return new (phase->C) AndLNode(newshr, phase->longcon(mask2));
  1288   // Check for "(X << z ) >>> z" which simply zero-extends
  1289   Node *shl = in(1);
  1290   if( shl->Opcode() == Op_LShiftL &&
  1291       phase->type(shl->in(2)) == t2 )
  1292     return new (phase->C) AndLNode( shl->in(1), phase->longcon(mask) );
  1294   return NULL;
  1297 //------------------------------Value------------------------------------------
  1298 // A URShiftINode shifts its input2 right by input1 amount.
  1299 const Type *URShiftLNode::Value( PhaseTransform *phase ) const {
  1300   // (This is a near clone of RShiftLNode::Value.)
  1301   const Type *t1 = phase->type( in(1) );
  1302   const Type *t2 = phase->type( in(2) );
  1303   // Either input is TOP ==> the result is TOP
  1304   if( t1 == Type::TOP ) return Type::TOP;
  1305   if( t2 == Type::TOP ) return Type::TOP;
  1307   // Left input is ZERO ==> the result is ZERO.
  1308   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
  1309   // Shift by zero does nothing
  1310   if( t2 == TypeInt::ZERO ) return t1;
  1312   // Either input is BOTTOM ==> the result is BOTTOM
  1313   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
  1314     return TypeLong::LONG;
  1316   if (t2 == TypeInt::INT)
  1317     return TypeLong::LONG;
  1319   const TypeLong *r1 = t1->is_long(); // Handy access
  1320   const TypeInt  *r2 = t2->is_int (); // Handy access
  1322   if (r2->is_con()) {
  1323     uint shift = r2->get_con();
  1324     shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
  1325     // Shift by a multiple of 64 does nothing:
  1326     if (shift == 0)  return t1;
  1327     // Calculate reasonably aggressive bounds for the result.
  1328     jlong lo = (julong)r1->_lo >> (juint)shift;
  1329     jlong hi = (julong)r1->_hi >> (juint)shift;
  1330     if (r1->_hi >= 0 && r1->_lo < 0) {
  1331       // If the type has both negative and positive values,
  1332       // there are two separate sub-domains to worry about:
  1333       // The positive half and the negative half.
  1334       jlong neg_lo = lo;
  1335       jlong neg_hi = (julong)-1 >> (juint)shift;
  1336       jlong pos_lo = (julong) 0 >> (juint)shift;
  1337       jlong pos_hi = hi;
  1338       //lo = MIN2(neg_lo, pos_lo);  // == 0
  1339       lo = neg_lo < pos_lo ? neg_lo : pos_lo;
  1340       //hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
  1341       hi = neg_hi > pos_hi ? neg_hi : pos_hi;
  1343     assert(lo <= hi, "must have valid bounds");
  1344     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
  1345     #ifdef ASSERT
  1346     // Make sure we get the sign-capture idiom correct.
  1347     if (shift == BitsPerJavaLong - 1) {
  1348       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
  1349       if (r1->_hi < 0)  assert(tl == TypeLong::ONE,  ">>>63 of - is +1");
  1351     #endif
  1352     return tl;
  1355   return TypeLong::LONG;                // Give up

mercurial