src/share/vm/opto/memnode.hpp

Wed, 07 May 2008 08:06:46 -0700

author
rasbold
date
Wed, 07 May 2008 08:06:46 -0700
changeset 580
f3de1255b035
parent 557
ec73d88d5b43
child 598
885ed790ecf0
permissions
-rw-r--r--

6603011: RFE: Optimize long division
Summary: Transform long division by constant into multiply
Reviewed-by: never, kvn

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 class MultiNode;
    28 class PhaseCCP;
    29 class PhaseTransform;
    31 //------------------------------MemNode----------------------------------------
    32 // Load or Store, possibly throwing a NULL pointer exception
    33 class MemNode : public Node {
    34 protected:
    35 #ifdef ASSERT
    36   const TypePtr* _adr_type;     // What kind of memory is being addressed?
    37 #endif
    38   virtual uint size_of() const; // Size is bigger (ASSERT only)
    39 public:
    40   enum { Control,               // When is it safe to do this load?
    41          Memory,                // Chunk of memory is being loaded from
    42          Address,               // Actually address, derived from base
    43          ValueIn,               // Value to store
    44          OopStore               // Preceeding oop store, only in StoreCM
    45   };
    46 protected:
    47   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
    48     : Node(c0,c1,c2   ) {
    49     init_class_id(Class_Mem);
    50     debug_only(_adr_type=at; adr_type();)
    51   }
    52   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
    53     : Node(c0,c1,c2,c3) {
    54     init_class_id(Class_Mem);
    55     debug_only(_adr_type=at; adr_type();)
    56   }
    57   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
    58     : Node(c0,c1,c2,c3,c4) {
    59     init_class_id(Class_Mem);
    60     debug_only(_adr_type=at; adr_type();)
    61   }
    63 public:
    64   // Helpers for the optimizer.  Documented in memnode.cpp.
    65   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
    66                                       Node* p2, AllocateNode* a2,
    67                                       PhaseTransform* phase);
    68   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
    70   static Node *optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase);
    71   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase);
    72   // This one should probably be a phase-specific function:
    73   static bool all_controls_dominate(Node* dom, Node* sub);
    75   // Is this Node a MemNode or some descendent?  Default is YES.
    76   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
    78   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
    80   // Shared code for Ideal methods:
    81   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
    83   // Helper function for adr_type() implementations.
    84   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
    86   // Raw access function, to allow copying of adr_type efficiently in
    87   // product builds and retain the debug info for debug builds.
    88   const TypePtr *raw_adr_type() const {
    89 #ifdef ASSERT
    90     return _adr_type;
    91 #else
    92     return 0;
    93 #endif
    94   }
    96   // Map a load or store opcode to its corresponding store opcode.
    97   // (Return -1 if unknown.)
    98   virtual int store_Opcode() const { return -1; }
   100   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
   101   virtual BasicType memory_type() const = 0;
   102   virtual int memory_size() const {
   103 #ifdef ASSERT
   104     return type2aelembytes(memory_type(), true);
   105 #else
   106     return type2aelembytes(memory_type());
   107 #endif
   108   }
   110   // Search through memory states which precede this node (load or store).
   111   // Look for an exact match for the address, with no intervening
   112   // aliased stores.
   113   Node* find_previous_store(PhaseTransform* phase);
   115   // Can this node (load or store) accurately see a stored value in
   116   // the given memory state?  (The state may or may not be in(Memory).)
   117   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
   119 #ifndef PRODUCT
   120   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
   121   virtual void dump_spec(outputStream *st) const;
   122 #endif
   123 };
   125 //------------------------------LoadNode---------------------------------------
   126 // Load value; requires Memory and Address
   127 class LoadNode : public MemNode {
   128 protected:
   129   virtual uint cmp( const Node &n ) const;
   130   virtual uint size_of() const; // Size is bigger
   131   const Type* const _type;      // What kind of value is loaded?
   132 public:
   134   LoadNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt )
   135     : MemNode(c,mem,adr,at), _type(rt) {
   136     init_class_id(Class_Load);
   137   }
   139   // Polymorphic factory method:
   140   static Node* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
   141                      const TypePtr* at, const Type *rt, BasicType bt );
   143   virtual uint hash()   const;  // Check the type
   145   // Handle algebraic identities here.  If we have an identity, return the Node
   146   // we are equivalent to.  We look for Load of a Store.
   147   virtual Node *Identity( PhaseTransform *phase );
   149   // If the load is from Field memory and the pointer is non-null, we can
   150   // zero out the control input.
   151   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   153   // Recover original value from boxed values
   154   Node *eliminate_autobox(PhaseGVN *phase);
   156   // Compute a new Type for this node.  Basically we just do the pre-check,
   157   // then call the virtual add() to set the type.
   158   virtual const Type *Value( PhaseTransform *phase ) const;
   160   virtual uint ideal_reg() const;
   161   virtual const Type *bottom_type() const;
   162   // Following method is copied from TypeNode:
   163   void set_type(const Type* t) {
   164     assert(t != NULL, "sanity");
   165     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
   166     *(const Type**)&_type = t;   // cast away const-ness
   167     // If this node is in the hash table, make sure it doesn't need a rehash.
   168     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
   169   }
   170   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
   172   // Do not match memory edge
   173   virtual uint match_edge(uint idx) const;
   175   // Map a load opcode to its corresponding store opcode.
   176   virtual int store_Opcode() const = 0;
   178   // Check if the load's memory input is a Phi node with the same control.
   179   bool is_instance_field_load_with_local_phi(Node* ctrl);
   181 #ifndef PRODUCT
   182   virtual void dump_spec(outputStream *st) const;
   183 #endif
   184 protected:
   185   const Type* load_array_final_field(const TypeKlassPtr *tkls,
   186                                      ciKlass* klass) const;
   187 };
   189 //------------------------------LoadBNode--------------------------------------
   190 // Load a byte (8bits signed) from memory
   191 class LoadBNode : public LoadNode {
   192 public:
   193   LoadBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::BYTE )
   194     : LoadNode(c,mem,adr,at,ti) {}
   195   virtual int Opcode() const;
   196   virtual uint ideal_reg() const { return Op_RegI; }
   197   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   198   virtual int store_Opcode() const { return Op_StoreB; }
   199   virtual BasicType memory_type() const { return T_BYTE; }
   200 };
   202 //------------------------------LoadCNode--------------------------------------
   203 // Load a char (16bits unsigned) from memory
   204 class LoadCNode : public LoadNode {
   205 public:
   206   LoadCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR )
   207     : LoadNode(c,mem,adr,at,ti) {}
   208   virtual int Opcode() const;
   209   virtual uint ideal_reg() const { return Op_RegI; }
   210   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   211   virtual int store_Opcode() const { return Op_StoreC; }
   212   virtual BasicType memory_type() const { return T_CHAR; }
   213 };
   215 //------------------------------LoadINode--------------------------------------
   216 // Load an integer from memory
   217 class LoadINode : public LoadNode {
   218 public:
   219   LoadINode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::INT )
   220     : LoadNode(c,mem,adr,at,ti) {}
   221   virtual int Opcode() const;
   222   virtual uint ideal_reg() const { return Op_RegI; }
   223   virtual int store_Opcode() const { return Op_StoreI; }
   224   virtual BasicType memory_type() const { return T_INT; }
   225 };
   227 //------------------------------LoadRangeNode----------------------------------
   228 // Load an array length from the array
   229 class LoadRangeNode : public LoadINode {
   230 public:
   231   LoadRangeNode( Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS )
   232     : LoadINode(c,mem,adr,TypeAryPtr::RANGE,ti) {}
   233   virtual int Opcode() const;
   234   virtual const Type *Value( PhaseTransform *phase ) const;
   235   virtual Node *Identity( PhaseTransform *phase );
   236 };
   238 //------------------------------LoadLNode--------------------------------------
   239 // Load a long from memory
   240 class LoadLNode : public LoadNode {
   241   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
   242   virtual uint cmp( const Node &n ) const {
   243     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
   244       && LoadNode::cmp(n);
   245   }
   246   virtual uint size_of() const { return sizeof(*this); }
   247   const bool _require_atomic_access;  // is piecewise load forbidden?
   249 public:
   250   LoadLNode( Node *c, Node *mem, Node *adr, const TypePtr* at,
   251              const TypeLong *tl = TypeLong::LONG,
   252              bool require_atomic_access = false )
   253     : LoadNode(c,mem,adr,at,tl)
   254     , _require_atomic_access(require_atomic_access)
   255   {}
   256   virtual int Opcode() const;
   257   virtual uint ideal_reg() const { return Op_RegL; }
   258   virtual int store_Opcode() const { return Op_StoreL; }
   259   virtual BasicType memory_type() const { return T_LONG; }
   260   bool require_atomic_access() { return _require_atomic_access; }
   261   static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt);
   262 #ifndef PRODUCT
   263   virtual void dump_spec(outputStream *st) const {
   264     LoadNode::dump_spec(st);
   265     if (_require_atomic_access)  st->print(" Atomic!");
   266   }
   267 #endif
   268 };
   270 //------------------------------LoadL_unalignedNode----------------------------
   271 // Load a long from unaligned memory
   272 class LoadL_unalignedNode : public LoadLNode {
   273 public:
   274   LoadL_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
   275     : LoadLNode(c,mem,adr,at) {}
   276   virtual int Opcode() const;
   277 };
   279 //------------------------------LoadFNode--------------------------------------
   280 // Load a float (64 bits) from memory
   281 class LoadFNode : public LoadNode {
   282 public:
   283   LoadFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::FLOAT )
   284     : LoadNode(c,mem,adr,at,t) {}
   285   virtual int Opcode() const;
   286   virtual uint ideal_reg() const { return Op_RegF; }
   287   virtual int store_Opcode() const { return Op_StoreF; }
   288   virtual BasicType memory_type() const { return T_FLOAT; }
   289 };
   291 //------------------------------LoadDNode--------------------------------------
   292 // Load a double (64 bits) from memory
   293 class LoadDNode : public LoadNode {
   294 public:
   295   LoadDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::DOUBLE )
   296     : LoadNode(c,mem,adr,at,t) {}
   297   virtual int Opcode() const;
   298   virtual uint ideal_reg() const { return Op_RegD; }
   299   virtual int store_Opcode() const { return Op_StoreD; }
   300   virtual BasicType memory_type() const { return T_DOUBLE; }
   301 };
   303 //------------------------------LoadD_unalignedNode----------------------------
   304 // Load a double from unaligned memory
   305 class LoadD_unalignedNode : public LoadDNode {
   306 public:
   307   LoadD_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
   308     : LoadDNode(c,mem,adr,at) {}
   309   virtual int Opcode() const;
   310 };
   312 //------------------------------LoadPNode--------------------------------------
   313 // Load a pointer from memory (either object or array)
   314 class LoadPNode : public LoadNode {
   315 public:
   316   LoadPNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t )
   317     : LoadNode(c,mem,adr,at,t) {}
   318   virtual int Opcode() const;
   319   virtual uint ideal_reg() const { return Op_RegP; }
   320   virtual int store_Opcode() const { return Op_StoreP; }
   321   virtual BasicType memory_type() const { return T_ADDRESS; }
   322   // depends_only_on_test is almost always true, and needs to be almost always
   323   // true to enable key hoisting & commoning optimizations.  However, for the
   324   // special case of RawPtr loads from TLS top & end, the control edge carries
   325   // the dependence preventing hoisting past a Safepoint instead of the memory
   326   // edge.  (An unfortunate consequence of having Safepoints not set Raw
   327   // Memory; itself an unfortunate consequence of having Nodes which produce
   328   // results (new raw memory state) inside of loops preventing all manner of
   329   // other optimizations).  Basically, it's ugly but so is the alternative.
   330   // See comment in macro.cpp, around line 125 expand_allocate_common().
   331   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
   332 };
   335 //------------------------------LoadNNode--------------------------------------
   336 // Load a narrow oop from memory (either object or array)
   337 class LoadNNode : public LoadNode {
   338 public:
   339   LoadNNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t )
   340     : LoadNode(c,mem,adr,at,t) {}
   341   virtual int Opcode() const;
   342   virtual uint ideal_reg() const { return Op_RegN; }
   343   virtual int store_Opcode() const { return Op_StoreN; }
   344   virtual BasicType memory_type() const { return T_NARROWOOP; }
   345   // depends_only_on_test is almost always true, and needs to be almost always
   346   // true to enable key hoisting & commoning optimizations.  However, for the
   347   // special case of RawPtr loads from TLS top & end, the control edge carries
   348   // the dependence preventing hoisting past a Safepoint instead of the memory
   349   // edge.  (An unfortunate consequence of having Safepoints not set Raw
   350   // Memory; itself an unfortunate consequence of having Nodes which produce
   351   // results (new raw memory state) inside of loops preventing all manner of
   352   // other optimizations).  Basically, it's ugly but so is the alternative.
   353   // See comment in macro.cpp, around line 125 expand_allocate_common().
   354   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
   355 };
   357 //------------------------------LoadKlassNode----------------------------------
   358 // Load a Klass from an object
   359 class LoadKlassNode : public LoadPNode {
   360 public:
   361   LoadKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk = TypeKlassPtr::OBJECT )
   362     : LoadPNode(c,mem,adr,at,tk) {}
   363   virtual int Opcode() const;
   364   virtual const Type *Value( PhaseTransform *phase ) const;
   365   virtual Node *Identity( PhaseTransform *phase );
   366   virtual bool depends_only_on_test() const { return true; }
   367 };
   369 //------------------------------LoadSNode--------------------------------------
   370 // Load a short (16bits signed) from memory
   371 class LoadSNode : public LoadNode {
   372 public:
   373   LoadSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::SHORT )
   374     : LoadNode(c,mem,adr,at,ti) {}
   375   virtual int Opcode() const;
   376   virtual uint ideal_reg() const { return Op_RegI; }
   377   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   378   virtual int store_Opcode() const { return Op_StoreC; }
   379   virtual BasicType memory_type() const { return T_SHORT; }
   380 };
   382 //------------------------------StoreNode--------------------------------------
   383 // Store value; requires Store, Address and Value
   384 class StoreNode : public MemNode {
   385 protected:
   386   virtual uint cmp( const Node &n ) const;
   387   virtual bool depends_only_on_test() const { return false; }
   389   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
   390   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
   392 public:
   393   StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val )
   394     : MemNode(c,mem,adr,at,val) {
   395     init_class_id(Class_Store);
   396   }
   397   StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store )
   398     : MemNode(c,mem,adr,at,val,oop_store) {
   399     init_class_id(Class_Store);
   400   }
   402   // Polymorphic factory method:
   403   static StoreNode* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
   404                           const TypePtr* at, Node *val, BasicType bt );
   406   virtual uint hash() const;    // Check the type
   408   // If the store is to Field memory and the pointer is non-null, we can
   409   // zero out the control input.
   410   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   412   // Compute a new Type for this node.  Basically we just do the pre-check,
   413   // then call the virtual add() to set the type.
   414   virtual const Type *Value( PhaseTransform *phase ) const;
   416   // Check for identity function on memory (Load then Store at same address)
   417   virtual Node *Identity( PhaseTransform *phase );
   419   // Do not match memory edge
   420   virtual uint match_edge(uint idx) const;
   422   virtual const Type *bottom_type() const;  // returns Type::MEMORY
   424   // Map a store opcode to its corresponding own opcode, trivially.
   425   virtual int store_Opcode() const { return Opcode(); }
   427   // have all possible loads of the value stored been optimized away?
   428   bool value_never_loaded(PhaseTransform *phase) const;
   429 };
   431 //------------------------------StoreBNode-------------------------------------
   432 // Store byte to memory
   433 class StoreBNode : public StoreNode {
   434 public:
   435   StoreBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   436   virtual int Opcode() const;
   437   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   438   virtual BasicType memory_type() const { return T_BYTE; }
   439 };
   441 //------------------------------StoreCNode-------------------------------------
   442 // Store char/short to memory
   443 class StoreCNode : public StoreNode {
   444 public:
   445   StoreCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   446   virtual int Opcode() const;
   447   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   448   virtual BasicType memory_type() const { return T_CHAR; }
   449 };
   451 //------------------------------StoreINode-------------------------------------
   452 // Store int to memory
   453 class StoreINode : public StoreNode {
   454 public:
   455   StoreINode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   456   virtual int Opcode() const;
   457   virtual BasicType memory_type() const { return T_INT; }
   458 };
   460 //------------------------------StoreLNode-------------------------------------
   461 // Store long to memory
   462 class StoreLNode : public StoreNode {
   463   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
   464   virtual uint cmp( const Node &n ) const {
   465     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
   466       && StoreNode::cmp(n);
   467   }
   468   virtual uint size_of() const { return sizeof(*this); }
   469   const bool _require_atomic_access;  // is piecewise store forbidden?
   471 public:
   472   StoreLNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
   473               bool require_atomic_access = false )
   474     : StoreNode(c,mem,adr,at,val)
   475     , _require_atomic_access(require_atomic_access)
   476   {}
   477   virtual int Opcode() const;
   478   virtual BasicType memory_type() const { return T_LONG; }
   479   bool require_atomic_access() { return _require_atomic_access; }
   480   static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val);
   481 #ifndef PRODUCT
   482   virtual void dump_spec(outputStream *st) const {
   483     StoreNode::dump_spec(st);
   484     if (_require_atomic_access)  st->print(" Atomic!");
   485   }
   486 #endif
   487 };
   489 //------------------------------StoreFNode-------------------------------------
   490 // Store float to memory
   491 class StoreFNode : public StoreNode {
   492 public:
   493   StoreFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   494   virtual int Opcode() const;
   495   virtual BasicType memory_type() const { return T_FLOAT; }
   496 };
   498 //------------------------------StoreDNode-------------------------------------
   499 // Store double to memory
   500 class StoreDNode : public StoreNode {
   501 public:
   502   StoreDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   503   virtual int Opcode() const;
   504   virtual BasicType memory_type() const { return T_DOUBLE; }
   505 };
   507 //------------------------------StorePNode-------------------------------------
   508 // Store pointer to memory
   509 class StorePNode : public StoreNode {
   510 public:
   511   StorePNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   512   virtual int Opcode() const;
   513   virtual BasicType memory_type() const { return T_ADDRESS; }
   514 };
   516 //------------------------------StoreNNode-------------------------------------
   517 // Store narrow oop to memory
   518 class StoreNNode : public StoreNode {
   519 public:
   520   StoreNNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   521   virtual int Opcode() const;
   522   virtual BasicType memory_type() const { return T_NARROWOOP; }
   523 };
   525 //------------------------------StoreCMNode-----------------------------------
   526 // Store card-mark byte to memory for CM
   527 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
   528 // Preceeding equivalent StoreCMs may be eliminated.
   529 class StoreCMNode : public StoreNode {
   530 public:
   531   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store ) : StoreNode(c,mem,adr,at,val,oop_store) {}
   532   virtual int Opcode() const;
   533   virtual Node *Identity( PhaseTransform *phase );
   534   virtual const Type *Value( PhaseTransform *phase ) const;
   535   virtual BasicType memory_type() const { return T_VOID; } // unspecific
   536 };
   538 //------------------------------LoadPLockedNode---------------------------------
   539 // Load-locked a pointer from memory (either object or array).
   540 // On Sparc & Intel this is implemented as a normal pointer load.
   541 // On PowerPC and friends it's a real load-locked.
   542 class LoadPLockedNode : public LoadPNode {
   543 public:
   544   LoadPLockedNode( Node *c, Node *mem, Node *adr )
   545     : LoadPNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM) {}
   546   virtual int Opcode() const;
   547   virtual int store_Opcode() const { return Op_StorePConditional; }
   548   virtual bool depends_only_on_test() const { return true; }
   549 };
   551 //------------------------------LoadLLockedNode---------------------------------
   552 // Load-locked a pointer from memory (either object or array).
   553 // On Sparc & Intel this is implemented as a normal long load.
   554 class LoadLLockedNode : public LoadLNode {
   555 public:
   556   LoadLLockedNode( Node *c, Node *mem, Node *adr )
   557     : LoadLNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeLong::LONG) {}
   558   virtual int Opcode() const;
   559   virtual int store_Opcode() const { return Op_StoreLConditional; }
   560 };
   562 //------------------------------SCMemProjNode---------------------------------------
   563 // This class defines a projection of the memory  state of a store conditional node.
   564 // These nodes return a value, but also update memory.
   565 class SCMemProjNode : public ProjNode {
   566 public:
   567   enum {SCMEMPROJCON = (uint)-2};
   568   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
   569   virtual int Opcode() const;
   570   virtual bool      is_CFG() const  { return false; }
   571   virtual const Type *bottom_type() const {return Type::MEMORY;}
   572   virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
   573   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
   574   virtual const Type *Value( PhaseTransform *phase ) const;
   575 #ifndef PRODUCT
   576   virtual void dump_spec(outputStream *st) const {};
   577 #endif
   578 };
   580 //------------------------------LoadStoreNode---------------------------
   581 class LoadStoreNode : public Node {
   582 public:
   583   enum {
   584     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
   585   };
   586   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex);
   587   virtual bool depends_only_on_test() const { return false; }
   588   virtual const Type *bottom_type() const { return TypeInt::BOOL; }
   589   virtual uint ideal_reg() const { return Op_RegI; }
   590   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
   591 };
   593 //------------------------------StorePConditionalNode---------------------------
   594 // Conditionally store pointer to memory, if no change since prior
   595 // load-locked.  Sets flags for success or failure of the store.
   596 class StorePConditionalNode : public LoadStoreNode {
   597 public:
   598   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
   599   virtual int Opcode() const;
   600   // Produces flags
   601   virtual uint ideal_reg() const { return Op_RegFlags; }
   602 };
   604 //------------------------------StoreLConditionalNode---------------------------
   605 // Conditionally store long to memory, if no change since prior
   606 // load-locked.  Sets flags for success or failure of the store.
   607 class StoreLConditionalNode : public LoadStoreNode {
   608 public:
   609   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
   610   virtual int Opcode() const;
   611 };
   614 //------------------------------CompareAndSwapLNode---------------------------
   615 class CompareAndSwapLNode : public LoadStoreNode {
   616 public:
   617   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
   618   virtual int Opcode() const;
   619 };
   622 //------------------------------CompareAndSwapINode---------------------------
   623 class CompareAndSwapINode : public LoadStoreNode {
   624 public:
   625   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
   626   virtual int Opcode() const;
   627 };
   630 //------------------------------CompareAndSwapPNode---------------------------
   631 class CompareAndSwapPNode : public LoadStoreNode {
   632 public:
   633   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
   634   virtual int Opcode() const;
   635 };
   637 //------------------------------CompareAndSwapNNode---------------------------
   638 class CompareAndSwapNNode : public LoadStoreNode {
   639 public:
   640   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
   641   virtual int Opcode() const;
   642 };
   644 //------------------------------ClearArray-------------------------------------
   645 class ClearArrayNode: public Node {
   646 public:
   647   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base ) : Node(ctrl,arymem,word_cnt,base) {}
   648   virtual int         Opcode() const;
   649   virtual const Type *bottom_type() const { return Type::MEMORY; }
   650   // ClearArray modifies array elements, and so affects only the
   651   // array memory addressed by the bottom_type of its base address.
   652   virtual const class TypePtr *adr_type() const;
   653   virtual Node *Identity( PhaseTransform *phase );
   654   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   655   virtual uint match_edge(uint idx) const;
   657   // Clear the given area of an object or array.
   658   // The start offset must always be aligned mod BytesPerInt.
   659   // The end offset must always be aligned mod BytesPerLong.
   660   // Return the new memory.
   661   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   662                             intptr_t start_offset,
   663                             intptr_t end_offset,
   664                             PhaseGVN* phase);
   665   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   666                             intptr_t start_offset,
   667                             Node* end_offset,
   668                             PhaseGVN* phase);
   669   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   670                             Node* start_offset,
   671                             Node* end_offset,
   672                             PhaseGVN* phase);
   673 };
   675 //------------------------------StrComp-------------------------------------
   676 class StrCompNode: public Node {
   677 public:
   678   StrCompNode(Node *control,
   679               Node* char_array_mem,
   680               Node* value_mem,
   681               Node* count_mem,
   682               Node* offset_mem,
   683               Node* s1, Node* s2): Node(control,
   684                                         char_array_mem,
   685                                         value_mem,
   686                                         count_mem,
   687                                         offset_mem,
   688                                         s1, s2) {};
   689   virtual int Opcode() const;
   690   virtual bool depends_only_on_test() const { return false; }
   691   virtual const Type* bottom_type() const { return TypeInt::INT; }
   692   // a StrCompNode (conservatively) aliases with everything:
   693   virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
   694   virtual uint match_edge(uint idx) const;
   695   virtual uint ideal_reg() const { return Op_RegI; }
   696   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   697 };
   699 //------------------------------MemBar-----------------------------------------
   700 // There are different flavors of Memory Barriers to match the Java Memory
   701 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
   702 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
   703 // volatile-load.  Monitor-exit and volatile-store act as Release: no
   704 // preceeding ref can be moved to after them.  We insert a MemBar-Release
   705 // before a FastUnlock or volatile-store.  All volatiles need to be
   706 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
   707 // seperate it from any following volatile-load.
   708 class MemBarNode: public MultiNode {
   709   virtual uint hash() const ;                  // { return NO_HASH; }
   710   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
   712   virtual uint size_of() const { return sizeof(*this); }
   713   // Memory type this node is serializing.  Usually either rawptr or bottom.
   714   const TypePtr* _adr_type;
   716 public:
   717   enum {
   718     Precedent = TypeFunc::Parms  // optional edge to force precedence
   719   };
   720   MemBarNode(Compile* C, int alias_idx, Node* precedent);
   721   virtual int Opcode() const = 0;
   722   virtual const class TypePtr *adr_type() const { return _adr_type; }
   723   virtual const Type *Value( PhaseTransform *phase ) const;
   724   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   725   virtual uint match_edge(uint idx) const { return 0; }
   726   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
   727   virtual Node *match( const ProjNode *proj, const Matcher *m );
   728   // Factory method.  Builds a wide or narrow membar.
   729   // Optional 'precedent' becomes an extra edge if not null.
   730   static MemBarNode* make(Compile* C, int opcode,
   731                           int alias_idx = Compile::AliasIdxBot,
   732                           Node* precedent = NULL);
   733 };
   735 // "Acquire" - no following ref can move before (but earlier refs can
   736 // follow, like an early Load stalled in cache).  Requires multi-cpu
   737 // visibility.  Inserted after a volatile load or FastLock.
   738 class MemBarAcquireNode: public MemBarNode {
   739 public:
   740   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
   741     : MemBarNode(C, alias_idx, precedent) {}
   742   virtual int Opcode() const;
   743 };
   745 // "Release" - no earlier ref can move after (but later refs can move
   746 // up, like a speculative pipelined cache-hitting Load).  Requires
   747 // multi-cpu visibility.  Inserted before a volatile store or FastUnLock.
   748 class MemBarReleaseNode: public MemBarNode {
   749 public:
   750   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
   751     : MemBarNode(C, alias_idx, precedent) {}
   752   virtual int Opcode() const;
   753 };
   755 // Ordering between a volatile store and a following volatile load.
   756 // Requires multi-CPU visibility?
   757 class MemBarVolatileNode: public MemBarNode {
   758 public:
   759   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
   760     : MemBarNode(C, alias_idx, precedent) {}
   761   virtual int Opcode() const;
   762 };
   764 // Ordering within the same CPU.  Used to order unsafe memory references
   765 // inside the compiler when we lack alias info.  Not needed "outside" the
   766 // compiler because the CPU does all the ordering for us.
   767 class MemBarCPUOrderNode: public MemBarNode {
   768 public:
   769   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
   770     : MemBarNode(C, alias_idx, precedent) {}
   771   virtual int Opcode() const;
   772   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
   773 };
   775 // Isolation of object setup after an AllocateNode and before next safepoint.
   776 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
   777 class InitializeNode: public MemBarNode {
   778   friend class AllocateNode;
   780   bool _is_complete;
   782 public:
   783   enum {
   784     Control    = TypeFunc::Control,
   785     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
   786     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
   787     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
   788   };
   790   InitializeNode(Compile* C, int adr_type, Node* rawoop);
   791   virtual int Opcode() const;
   792   virtual uint size_of() const { return sizeof(*this); }
   793   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
   794   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
   796   // Manage incoming memory edges via a MergeMem on in(Memory):
   797   Node* memory(uint alias_idx);
   799   // The raw memory edge coming directly from the Allocation.
   800   // The contents of this memory are *always* all-zero-bits.
   801   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
   803   // Return the corresponding allocation for this initialization (or null if none).
   804   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
   805   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
   806   AllocateNode* allocation();
   808   // Anything other than zeroing in this init?
   809   bool is_non_zero();
   811   // An InitializeNode must completed before macro expansion is done.
   812   // Completion requires that the AllocateNode must be followed by
   813   // initialization of the new memory to zero, then to any initializers.
   814   bool is_complete() { return _is_complete; }
   816   // Mark complete.  (Must not yet be complete.)
   817   void set_complete(PhaseGVN* phase);
   819 #ifdef ASSERT
   820   // ensure all non-degenerate stores are ordered and non-overlapping
   821   bool stores_are_sane(PhaseTransform* phase);
   822 #endif //ASSERT
   824   // See if this store can be captured; return offset where it initializes.
   825   // Return 0 if the store cannot be moved (any sort of problem).
   826   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase);
   828   // Capture another store; reformat it to write my internal raw memory.
   829   // Return the captured copy, else NULL if there is some sort of problem.
   830   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase);
   832   // Find captured store which corresponds to the range [start..start+size).
   833   // Return my own memory projection (meaning the initial zero bits)
   834   // if there is no such store.  Return NULL if there is a problem.
   835   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
   837   // Called when the associated AllocateNode is expanded into CFG.
   838   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
   839                         intptr_t header_size, Node* size_in_bytes,
   840                         PhaseGVN* phase);
   842  private:
   843   void remove_extra_zeroes();
   845   // Find out where a captured store should be placed (or already is placed).
   846   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
   847                                      PhaseTransform* phase);
   849   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
   851   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
   853   bool detect_init_independence(Node* n, bool st_is_pinned, int& count);
   855   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
   856                                PhaseGVN* phase);
   858   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
   859 };
   861 //------------------------------MergeMem---------------------------------------
   862 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
   863 class MergeMemNode: public Node {
   864   virtual uint hash() const ;                  // { return NO_HASH; }
   865   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
   866   friend class MergeMemStream;
   867   MergeMemNode(Node* def);  // clients use MergeMemNode::make
   869 public:
   870   // If the input is a whole memory state, clone it with all its slices intact.
   871   // Otherwise, make a new memory state with just that base memory input.
   872   // In either case, the result is a newly created MergeMem.
   873   static MergeMemNode* make(Compile* C, Node* base_memory);
   875   virtual int Opcode() const;
   876   virtual Node *Identity( PhaseTransform *phase );
   877   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   878   virtual uint ideal_reg() const { return NotAMachineReg; }
   879   virtual uint match_edge(uint idx) const { return 0; }
   880   virtual const RegMask &out_RegMask() const;
   881   virtual const Type *bottom_type() const { return Type::MEMORY; }
   882   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
   883   // sparse accessors
   884   // Fetch the previously stored "set_memory_at", or else the base memory.
   885   // (Caller should clone it if it is a phi-nest.)
   886   Node* memory_at(uint alias_idx) const;
   887   // set the memory, regardless of its previous value
   888   void set_memory_at(uint alias_idx, Node* n);
   889   // the "base" is the memory that provides the non-finite support
   890   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
   891   // warning: setting the base can implicitly set any of the other slices too
   892   void set_base_memory(Node* def);
   893   // sentinel value which denotes a copy of the base memory:
   894   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
   895   static Node* make_empty_memory(); // where the sentinel comes from
   896   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
   897   // hook for the iterator, to perform any necessary setup
   898   void iteration_setup(const MergeMemNode* other = NULL);
   899   // push sentinels until I am at least as long as the other (semantic no-op)
   900   void grow_to_match(const MergeMemNode* other);
   901   bool verify_sparse() const PRODUCT_RETURN0;
   902 #ifndef PRODUCT
   903   virtual void dump_spec(outputStream *st) const;
   904 #endif
   905 };
   907 class MergeMemStream : public StackObj {
   908  private:
   909   MergeMemNode*       _mm;
   910   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
   911   Node*               _mm_base;  // loop-invariant base memory of _mm
   912   int                 _idx;
   913   int                 _cnt;
   914   Node*               _mem;
   915   Node*               _mem2;
   916   int                 _cnt2;
   918   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
   919     // subsume_node will break sparseness at times, whenever a memory slice
   920     // folds down to a copy of the base ("fat") memory.  In such a case,
   921     // the raw edge will update to base, although it should be top.
   922     // This iterator will recognize either top or base_memory as an
   923     // "empty" slice.  See is_empty, is_empty2, and next below.
   924     //
   925     // The sparseness property is repaired in MergeMemNode::Ideal.
   926     // As long as access to a MergeMem goes through this iterator
   927     // or the memory_at accessor, flaws in the sparseness will
   928     // never be observed.
   929     //
   930     // Also, iteration_setup repairs sparseness.
   931     assert(mm->verify_sparse(), "please, no dups of base");
   932     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
   934     _mm  = mm;
   935     _mm_base = mm->base_memory();
   936     _mm2 = mm2;
   937     _cnt = mm->req();
   938     _idx = Compile::AliasIdxBot-1; // start at the base memory
   939     _mem = NULL;
   940     _mem2 = NULL;
   941   }
   943 #ifdef ASSERT
   944   Node* check_memory() const {
   945     if (at_base_memory())
   946       return _mm->base_memory();
   947     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
   948       return _mm->memory_at(_idx);
   949     else
   950       return _mm_base;
   951   }
   952   Node* check_memory2() const {
   953     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
   954   }
   955 #endif
   957   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
   958   void assert_synch() const {
   959     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
   960            "no side-effects except through the stream");
   961   }
   963  public:
   965   // expected usages:
   966   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
   967   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
   969   // iterate over one merge
   970   MergeMemStream(MergeMemNode* mm) {
   971     mm->iteration_setup();
   972     init(mm);
   973     debug_only(_cnt2 = 999);
   974   }
   975   // iterate in parallel over two merges
   976   // only iterates through non-empty elements of mm2
   977   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
   978     assert(mm2, "second argument must be a MergeMem also");
   979     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
   980     mm->iteration_setup(mm2);
   981     init(mm, mm2);
   982     _cnt2 = mm2->req();
   983   }
   984 #ifdef ASSERT
   985   ~MergeMemStream() {
   986     assert_synch();
   987   }
   988 #endif
   990   MergeMemNode* all_memory() const {
   991     return _mm;
   992   }
   993   Node* base_memory() const {
   994     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
   995     return _mm_base;
   996   }
   997   const MergeMemNode* all_memory2() const {
   998     assert(_mm2 != NULL, "");
   999     return _mm2;
  1001   bool at_base_memory() const {
  1002     return _idx == Compile::AliasIdxBot;
  1004   int alias_idx() const {
  1005     assert(_mem, "must call next 1st");
  1006     return _idx;
  1009   const TypePtr* adr_type() const {
  1010     return Compile::current()->get_adr_type(alias_idx());
  1013   const TypePtr* adr_type(Compile* C) const {
  1014     return C->get_adr_type(alias_idx());
  1016   bool is_empty() const {
  1017     assert(_mem, "must call next 1st");
  1018     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
  1019     return _mem->is_top();
  1021   bool is_empty2() const {
  1022     assert(_mem2, "must call next 1st");
  1023     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
  1024     return _mem2->is_top();
  1026   Node* memory() const {
  1027     assert(!is_empty(), "must not be empty");
  1028     assert_synch();
  1029     return _mem;
  1031   // get the current memory, regardless of empty or non-empty status
  1032   Node* force_memory() const {
  1033     assert(!is_empty() || !at_base_memory(), "");
  1034     // Use _mm_base to defend against updates to _mem->base_memory().
  1035     Node *mem = _mem->is_top() ? _mm_base : _mem;
  1036     assert(mem == check_memory(), "");
  1037     return mem;
  1039   Node* memory2() const {
  1040     assert(_mem2 == check_memory2(), "");
  1041     return _mem2;
  1043   void set_memory(Node* mem) {
  1044     if (at_base_memory()) {
  1045       // Note that this does not change the invariant _mm_base.
  1046       _mm->set_base_memory(mem);
  1047     } else {
  1048       _mm->set_memory_at(_idx, mem);
  1050     _mem = mem;
  1051     assert_synch();
  1054   // Recover from a side effect to the MergeMemNode.
  1055   void set_memory() {
  1056     _mem = _mm->in(_idx);
  1059   bool next()  { return next(false); }
  1060   bool next2() { return next(true); }
  1062   bool next_non_empty()  { return next_non_empty(false); }
  1063   bool next_non_empty2() { return next_non_empty(true); }
  1064   // next_non_empty2 can yield states where is_empty() is true
  1066  private:
  1067   // find the next item, which might be empty
  1068   bool next(bool have_mm2) {
  1069     assert((_mm2 != NULL) == have_mm2, "use other next");
  1070     assert_synch();
  1071     if (++_idx < _cnt) {
  1072       // Note:  This iterator allows _mm to be non-sparse.
  1073       // It behaves the same whether _mem is top or base_memory.
  1074       _mem = _mm->in(_idx);
  1075       if (have_mm2)
  1076         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
  1077       return true;
  1079     return false;
  1082   // find the next non-empty item
  1083   bool next_non_empty(bool have_mm2) {
  1084     while (next(have_mm2)) {
  1085       if (!is_empty()) {
  1086         // make sure _mem2 is filled in sensibly
  1087         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
  1088         return true;
  1089       } else if (have_mm2 && !is_empty2()) {
  1090         return true;   // is_empty() == true
  1093     return false;
  1095 };
  1097 //------------------------------Prefetch---------------------------------------
  1099 // Non-faulting prefetch load.  Prefetch for many reads.
  1100 class PrefetchReadNode : public Node {
  1101 public:
  1102   PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  1103   virtual int Opcode() const;
  1104   virtual uint ideal_reg() const { return NotAMachineReg; }
  1105   virtual uint match_edge(uint idx) const { return idx==2; }
  1106   virtual const Type *bottom_type() const { return Type::ABIO; }
  1107 };
  1109 // Non-faulting prefetch load.  Prefetch for many reads & many writes.
  1110 class PrefetchWriteNode : public Node {
  1111 public:
  1112   PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  1113   virtual int Opcode() const;
  1114   virtual uint ideal_reg() const { return NotAMachineReg; }
  1115   virtual uint match_edge(uint idx) const { return idx==2; }
  1116   virtual const Type *bottom_type() const { return Type::ABIO; }
  1117 };

mercurial