src/share/vm/opto/escape.cpp

Wed, 07 May 2008 08:06:46 -0700

author
rasbold
date
Wed, 07 May 2008 08:06:46 -0700
changeset 580
f3de1255b035
parent 559
b130b98db9cf
child 598
885ed790ecf0
permissions
-rw-r--r--

6603011: RFE: Optimize long division
Summary: Transform long division by constant into multiply
Reviewed-by: never, kvn

     1 /*
     2  * Copyright 2005-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_escape.cpp.incl"
    28 uint PointsToNode::edge_target(uint e) const {
    29   assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index");
    30   return (_edges->at(e) >> EdgeShift);
    31 }
    33 PointsToNode::EdgeType PointsToNode::edge_type(uint e) const {
    34   assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index");
    35   return (EdgeType) (_edges->at(e) & EdgeMask);
    36 }
    38 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
    39   uint v = (targIdx << EdgeShift) + ((uint) et);
    40   if (_edges == NULL) {
    41      Arena *a = Compile::current()->comp_arena();
    42     _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
    43   }
    44   _edges->append_if_missing(v);
    45 }
    47 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
    48   uint v = (targIdx << EdgeShift) + ((uint) et);
    50   _edges->remove(v);
    51 }
    53 #ifndef PRODUCT
    54 static const char *node_type_names[] = {
    55   "UnknownType",
    56   "JavaObject",
    57   "LocalVar",
    58   "Field"
    59 };
    61 static const char *esc_names[] = {
    62   "UnknownEscape",
    63   "NoEscape",
    64   "ArgEscape",
    65   "GlobalEscape"
    66 };
    68 static const char *edge_type_suffix[] = {
    69  "?", // UnknownEdge
    70  "P", // PointsToEdge
    71  "D", // DeferredEdge
    72  "F"  // FieldEdge
    73 };
    75 void PointsToNode::dump() const {
    76   NodeType nt = node_type();
    77   EscapeState es = escape_state();
    78   tty->print("%s %s %s [[", node_type_names[(int) nt], esc_names[(int) es], _scalar_replaceable ? "" : "NSR");
    79   for (uint i = 0; i < edge_count(); i++) {
    80     tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
    81   }
    82   tty->print("]]  ");
    83   if (_node == NULL)
    84     tty->print_cr("<null>");
    85   else
    86     _node->dump();
    87 }
    88 #endif
    90 ConnectionGraph::ConnectionGraph(Compile * C) : _processed(C->comp_arena()), _node_map(C->comp_arena()) {
    91   _collecting = true;
    92   this->_compile = C;
    93   const PointsToNode &dummy = PointsToNode();
    94   int sz = C->unique();
    95   _nodes = new(C->comp_arena()) GrowableArray<PointsToNode>(C->comp_arena(), sz, sz, dummy);
    96   _phantom_object = C->top()->_idx;
    97   PointsToNode *phn = ptnode_adr(_phantom_object);
    98   phn->_node = C->top();
    99   phn->set_node_type(PointsToNode::JavaObject);
   100   phn->set_escape_state(PointsToNode::GlobalEscape);
   101 }
   103 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
   104   PointsToNode *f = ptnode_adr(from_i);
   105   PointsToNode *t = ptnode_adr(to_i);
   107   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
   108   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
   109   assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
   110   f->add_edge(to_i, PointsToNode::PointsToEdge);
   111 }
   113 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
   114   PointsToNode *f = ptnode_adr(from_i);
   115   PointsToNode *t = ptnode_adr(to_i);
   117   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
   118   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
   119   assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
   120   // don't add a self-referential edge, this can occur during removal of
   121   // deferred edges
   122   if (from_i != to_i)
   123     f->add_edge(to_i, PointsToNode::DeferredEdge);
   124 }
   126 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
   127   const Type *adr_type = phase->type(adr);
   128   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
   129       adr->in(AddPNode::Address)->is_Proj() &&
   130       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
   131     // We are computing a raw address for a store captured by an Initialize
   132     // compute an appropriate address type. AddP cases #3 and #5 (see below).
   133     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   134     assert(offs != Type::OffsetBot ||
   135            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
   136            "offset must be a constant or it is initialization of array");
   137     return offs;
   138   }
   139   const TypePtr *t_ptr = adr_type->isa_ptr();
   140   assert(t_ptr != NULL, "must be a pointer type");
   141   return t_ptr->offset();
   142 }
   144 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
   145   PointsToNode *f = ptnode_adr(from_i);
   146   PointsToNode *t = ptnode_adr(to_i);
   148   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
   149   assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
   150   assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
   151   assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
   152   t->set_offset(offset);
   154   f->add_edge(to_i, PointsToNode::FieldEdge);
   155 }
   157 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
   158   PointsToNode *npt = ptnode_adr(ni);
   159   PointsToNode::EscapeState old_es = npt->escape_state();
   160   if (es > old_es)
   161     npt->set_escape_state(es);
   162 }
   164 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
   165                                PointsToNode::EscapeState es, bool done) {
   166   PointsToNode* ptadr = ptnode_adr(n->_idx);
   167   ptadr->_node = n;
   168   ptadr->set_node_type(nt);
   170   // inline set_escape_state(idx, es);
   171   PointsToNode::EscapeState old_es = ptadr->escape_state();
   172   if (es > old_es)
   173     ptadr->set_escape_state(es);
   175   if (done)
   176     _processed.set(n->_idx);
   177 }
   179 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
   180   uint idx = n->_idx;
   181   PointsToNode::EscapeState es;
   183   // If we are still collecting or there were no non-escaping allocations
   184   // we don't know the answer yet
   185   if (_collecting || !_has_allocations)
   186     return PointsToNode::UnknownEscape;
   188   // if the node was created after the escape computation, return
   189   // UnknownEscape
   190   if (idx >= (uint)_nodes->length())
   191     return PointsToNode::UnknownEscape;
   193   es = _nodes->at_grow(idx).escape_state();
   195   // if we have already computed a value, return it
   196   if (es != PointsToNode::UnknownEscape)
   197     return es;
   199   // compute max escape state of anything this node could point to
   200   VectorSet ptset(Thread::current()->resource_area());
   201   PointsTo(ptset, n, phase);
   202   for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
   203     uint pt = i.elem;
   204     PointsToNode::EscapeState pes = _nodes->adr_at(pt)->escape_state();
   205     if (pes > es)
   206       es = pes;
   207   }
   208   // cache the computed escape state
   209   assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
   210   _nodes->adr_at(idx)->set_escape_state(es);
   211   return es;
   212 }
   214 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
   215   VectorSet visited(Thread::current()->resource_area());
   216   GrowableArray<uint>  worklist;
   218 #ifdef ASSERT
   219   Node *orig_n = n;
   220 #endif
   222   n = n->uncast();
   223   PointsToNode  npt = _nodes->at_grow(n->_idx);
   225   // If we have a JavaObject, return just that object
   226   if (npt.node_type() == PointsToNode::JavaObject) {
   227     ptset.set(n->_idx);
   228     return;
   229   }
   230 #ifdef ASSERT
   231   if (npt._node == NULL) {
   232     if (orig_n != n)
   233       orig_n->dump();
   234     n->dump();
   235     assert(npt._node != NULL, "unregistered node");
   236   }
   237 #endif
   238   worklist.push(n->_idx);
   239   while(worklist.length() > 0) {
   240     int ni = worklist.pop();
   241     PointsToNode pn = _nodes->at_grow(ni);
   242     if (!visited.test_set(ni)) {
   243       // ensure that all inputs of a Phi have been processed
   244       assert(!_collecting || !pn._node->is_Phi() || _processed.test(ni),"");
   246       int edges_processed = 0;
   247       for (uint e = 0; e < pn.edge_count(); e++) {
   248         uint etgt = pn.edge_target(e);
   249         PointsToNode::EdgeType et = pn.edge_type(e);
   250         if (et == PointsToNode::PointsToEdge) {
   251           ptset.set(etgt);
   252           edges_processed++;
   253         } else if (et == PointsToNode::DeferredEdge) {
   254           worklist.push(etgt);
   255           edges_processed++;
   256         } else {
   257           assert(false,"neither PointsToEdge or DeferredEdge");
   258         }
   259       }
   260       if (edges_processed == 0) {
   261         // no deferred or pointsto edges found.  Assume the value was set
   262         // outside this method.  Add the phantom object to the pointsto set.
   263         ptset.set(_phantom_object);
   264       }
   265     }
   266   }
   267 }
   269 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
   270   // This method is most expensive during ConnectionGraph construction.
   271   // Reuse vectorSet and an additional growable array for deferred edges.
   272   deferred_edges->clear();
   273   visited->Clear();
   275   uint i = 0;
   276   PointsToNode *ptn = ptnode_adr(ni);
   278   // Mark current edges as visited and move deferred edges to separate array.
   279   while (i < ptn->edge_count()) {
   280     uint t = ptn->edge_target(i);
   281 #ifdef ASSERT
   282     assert(!visited->test_set(t), "expecting no duplications");
   283 #else
   284     visited->set(t);
   285 #endif
   286     if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
   287       ptn->remove_edge(t, PointsToNode::DeferredEdge);
   288       deferred_edges->append(t);
   289     } else {
   290       i++;
   291     }
   292   }
   293   for (int next = 0; next < deferred_edges->length(); ++next) {
   294     uint t = deferred_edges->at(next);
   295     PointsToNode *ptt = ptnode_adr(t);
   296     for (uint j = 0; j < ptt->edge_count(); j++) {
   297       uint n1 = ptt->edge_target(j);
   298       if (visited->test_set(n1))
   299         continue;
   300       switch(ptt->edge_type(j)) {
   301         case PointsToNode::PointsToEdge:
   302           add_pointsto_edge(ni, n1);
   303           if(n1 == _phantom_object) {
   304             // Special case - field set outside (globally escaping).
   305             ptn->set_escape_state(PointsToNode::GlobalEscape);
   306           }
   307           break;
   308         case PointsToNode::DeferredEdge:
   309           deferred_edges->append(n1);
   310           break;
   311         case PointsToNode::FieldEdge:
   312           assert(false, "invalid connection graph");
   313           break;
   314       }
   315     }
   316   }
   317 }
   320 //  Add an edge to node given by "to_i" from any field of adr_i whose offset
   321 //  matches "offset"  A deferred edge is added if to_i is a LocalVar, and
   322 //  a pointsto edge is added if it is a JavaObject
   324 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
   325   PointsToNode an = _nodes->at_grow(adr_i);
   326   PointsToNode to = _nodes->at_grow(to_i);
   327   bool deferred = (to.node_type() == PointsToNode::LocalVar);
   329   for (uint fe = 0; fe < an.edge_count(); fe++) {
   330     assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
   331     int fi = an.edge_target(fe);
   332     PointsToNode pf = _nodes->at_grow(fi);
   333     int po = pf.offset();
   334     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
   335       if (deferred)
   336         add_deferred_edge(fi, to_i);
   337       else
   338         add_pointsto_edge(fi, to_i);
   339     }
   340   }
   341 }
   343 // Add a deferred  edge from node given by "from_i" to any field of adr_i
   344 // whose offset matches "offset".
   345 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
   346   PointsToNode an = _nodes->at_grow(adr_i);
   347   for (uint fe = 0; fe < an.edge_count(); fe++) {
   348     assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
   349     int fi = an.edge_target(fe);
   350     PointsToNode pf = _nodes->at_grow(fi);
   351     int po = pf.offset();
   352     if (pf.edge_count() == 0) {
   353       // we have not seen any stores to this field, assume it was set outside this method
   354       add_pointsto_edge(fi, _phantom_object);
   355     }
   356     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
   357       add_deferred_edge(from_i, fi);
   358     }
   359   }
   360 }
   362 // Helper functions
   364 static Node* get_addp_base(Node *addp) {
   365   assert(addp->is_AddP(), "must be AddP");
   366   //
   367   // AddP cases for Base and Address inputs:
   368   // case #1. Direct object's field reference:
   369   //     Allocate
   370   //       |
   371   //     Proj #5 ( oop result )
   372   //       |
   373   //     CheckCastPP (cast to instance type)
   374   //      | |
   375   //     AddP  ( base == address )
   376   //
   377   // case #2. Indirect object's field reference:
   378   //      Phi
   379   //       |
   380   //     CastPP (cast to instance type)
   381   //      | |
   382   //     AddP  ( base == address )
   383   //
   384   // case #3. Raw object's field reference for Initialize node:
   385   //      Allocate
   386   //        |
   387   //      Proj #5 ( oop result )
   388   //  top   |
   389   //     \  |
   390   //     AddP  ( base == top )
   391   //
   392   // case #4. Array's element reference:
   393   //   {CheckCastPP | CastPP}
   394   //     |  | |
   395   //     |  AddP ( array's element offset )
   396   //     |  |
   397   //     AddP ( array's offset )
   398   //
   399   // case #5. Raw object's field reference for arraycopy stub call:
   400   //          The inline_native_clone() case when the arraycopy stub is called
   401   //          after the allocation before Initialize and CheckCastPP nodes.
   402   //      Allocate
   403   //        |
   404   //      Proj #5 ( oop result )
   405   //       | |
   406   //       AddP  ( base == address )
   407   //
   408   // case #6. Constant Pool, ThreadLocal, CastX2P or
   409   //          Raw object's field reference:
   410   //      {ConP, ThreadLocal, CastX2P, raw Load}
   411   //  top   |
   412   //     \  |
   413   //     AddP  ( base == top )
   414   //
   415   // case #7. Klass's field reference.
   416   //      LoadKlass
   417   //       | |
   418   //       AddP  ( base == address )
   419   //
   420   Node *base = addp->in(AddPNode::Base)->uncast();
   421   if (base->is_top()) { // The AddP case #3 and #6.
   422     base = addp->in(AddPNode::Address)->uncast();
   423     assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
   424            base->Opcode() == Op_CastX2P ||
   425            (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
   426            (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
   427   }
   428   return base;
   429 }
   431 static Node* find_second_addp(Node* addp, Node* n) {
   432   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
   434   Node* addp2 = addp->raw_out(0);
   435   if (addp->outcnt() == 1 && addp2->is_AddP() &&
   436       addp2->in(AddPNode::Base) == n &&
   437       addp2->in(AddPNode::Address) == addp) {
   439     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
   440     //
   441     // Find array's offset to push it on worklist first and
   442     // as result process an array's element offset first (pushed second)
   443     // to avoid CastPP for the array's offset.
   444     // Otherwise the inserted CastPP (LocalVar) will point to what
   445     // the AddP (Field) points to. Which would be wrong since
   446     // the algorithm expects the CastPP has the same point as
   447     // as AddP's base CheckCastPP (LocalVar).
   448     //
   449     //    ArrayAllocation
   450     //     |
   451     //    CheckCastPP
   452     //     |
   453     //    memProj (from ArrayAllocation CheckCastPP)
   454     //     |  ||
   455     //     |  ||   Int (element index)
   456     //     |  ||    |   ConI (log(element size))
   457     //     |  ||    |   /
   458     //     |  ||   LShift
   459     //     |  ||  /
   460     //     |  AddP (array's element offset)
   461     //     |  |
   462     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
   463     //     | / /
   464     //     AddP (array's offset)
   465     //      |
   466     //     Load/Store (memory operation on array's element)
   467     //
   468     return addp2;
   469   }
   470   return NULL;
   471 }
   473 //
   474 // Adjust the type and inputs of an AddP which computes the
   475 // address of a field of an instance
   476 //
   477 void ConnectionGraph::split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn) {
   478   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
   479   assert(base_t != NULL && base_t->is_instance(), "expecting instance oopptr");
   480   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
   481   if (t == NULL) {
   482     // We are computing a raw address for a store captured by an Initialize
   483     // compute an appropriate address type.
   484     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
   485     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
   486     int offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
   487     assert(offs != Type::OffsetBot, "offset must be a constant");
   488     t = base_t->add_offset(offs)->is_oopptr();
   489   }
   490   uint inst_id =  base_t->instance_id();
   491   assert(!t->is_instance() || t->instance_id() == inst_id,
   492                              "old type must be non-instance or match new type");
   493   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
   494   // Do NOT remove the next call: ensure an new alias index is allocated
   495   // for the instance type
   496   int alias_idx = _compile->get_alias_index(tinst);
   497   igvn->set_type(addp, tinst);
   498   // record the allocation in the node map
   499   set_map(addp->_idx, get_map(base->_idx));
   500   // if the Address input is not the appropriate instance type
   501   // (due to intervening casts,) insert a cast
   502   Node *adr = addp->in(AddPNode::Address);
   503   const TypeOopPtr  *atype = igvn->type(adr)->isa_oopptr();
   504   if (atype != NULL && atype->instance_id() != inst_id) {
   505     assert(!atype->is_instance(), "no conflicting instances");
   506     const TypeOopPtr *new_atype = base_t->add_offset(atype->offset())->isa_oopptr();
   507     Node *acast = new (_compile, 2) CastPPNode(adr, new_atype);
   508     acast->set_req(0, adr->in(0));
   509     igvn->set_type(acast, new_atype);
   510     record_for_optimizer(acast);
   511     Node *bcast = acast;
   512     Node *abase = addp->in(AddPNode::Base);
   513     if (abase != adr) {
   514       bcast = new (_compile, 2) CastPPNode(abase, base_t);
   515       bcast->set_req(0, abase->in(0));
   516       igvn->set_type(bcast, base_t);
   517       record_for_optimizer(bcast);
   518     }
   519     igvn->hash_delete(addp);
   520     addp->set_req(AddPNode::Base, bcast);
   521     addp->set_req(AddPNode::Address, acast);
   522     igvn->hash_insert(addp);
   523   }
   524   // Put on IGVN worklist since at least addp's type was changed above.
   525   record_for_optimizer(addp);
   526 }
   528 //
   529 // Create a new version of orig_phi if necessary. Returns either the newly
   530 // created phi or an existing phi.  Sets create_new to indicate wheter  a new
   531 // phi was created.  Cache the last newly created phi in the node map.
   532 //
   533 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created) {
   534   Compile *C = _compile;
   535   new_created = false;
   536   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
   537   // nothing to do if orig_phi is bottom memory or matches alias_idx
   538   if (phi_alias_idx == alias_idx) {
   539     return orig_phi;
   540   }
   541   // have we already created a Phi for this alias index?
   542   PhiNode *result = get_map_phi(orig_phi->_idx);
   543   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
   544     return result;
   545   }
   546   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
   547     if (C->do_escape_analysis() == true && !C->failing()) {
   548       // Retry compilation without escape analysis.
   549       // If this is the first failure, the sentinel string will "stick"
   550       // to the Compile object, and the C2Compiler will see it and retry.
   551       C->record_failure(C2Compiler::retry_no_escape_analysis());
   552     }
   553     return NULL;
   554   }
   555   orig_phi_worklist.append_if_missing(orig_phi);
   556   const TypePtr *atype = C->get_adr_type(alias_idx);
   557   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
   558   set_map_phi(orig_phi->_idx, result);
   559   igvn->set_type(result, result->bottom_type());
   560   record_for_optimizer(result);
   561   new_created = true;
   562   return result;
   563 }
   565 //
   566 // Return a new version  of Memory Phi "orig_phi" with the inputs having the
   567 // specified alias index.
   568 //
   569 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn) {
   571   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
   572   Compile *C = _compile;
   573   bool new_phi_created;
   574   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
   575   if (!new_phi_created) {
   576     return result;
   577   }
   579   GrowableArray<PhiNode *>  phi_list;
   580   GrowableArray<uint>  cur_input;
   582   PhiNode *phi = orig_phi;
   583   uint idx = 1;
   584   bool finished = false;
   585   while(!finished) {
   586     while (idx < phi->req()) {
   587       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
   588       if (mem != NULL && mem->is_Phi()) {
   589         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
   590         if (new_phi_created) {
   591           // found an phi for which we created a new split, push current one on worklist and begin
   592           // processing new one
   593           phi_list.push(phi);
   594           cur_input.push(idx);
   595           phi = mem->as_Phi();
   596           result = newphi;
   597           idx = 1;
   598           continue;
   599         } else {
   600           mem = newphi;
   601         }
   602       }
   603       if (C->failing()) {
   604         return NULL;
   605       }
   606       result->set_req(idx++, mem);
   607     }
   608 #ifdef ASSERT
   609     // verify that the new Phi has an input for each input of the original
   610     assert( phi->req() == result->req(), "must have same number of inputs.");
   611     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
   612 #endif
   613     // Check if all new phi's inputs have specified alias index.
   614     // Otherwise use old phi.
   615     for (uint i = 1; i < phi->req(); i++) {
   616       Node* in = result->in(i);
   617       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
   618     }
   619     // we have finished processing a Phi, see if there are any more to do
   620     finished = (phi_list.length() == 0 );
   621     if (!finished) {
   622       phi = phi_list.pop();
   623       idx = cur_input.pop();
   624       PhiNode *prev_result = get_map_phi(phi->_idx);
   625       prev_result->set_req(idx++, result);
   626       result = prev_result;
   627     }
   628   }
   629   return result;
   630 }
   633 //
   634 // The next methods are derived from methods in MemNode.
   635 //
   636 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
   637   Node *mem = mmem;
   638   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
   639   // means an array I have not precisely typed yet.  Do not do any
   640   // alias stuff with it any time soon.
   641   if( tinst->base() != Type::AnyPtr &&
   642       !(tinst->klass()->is_java_lang_Object() &&
   643         tinst->offset() == Type::OffsetBot) ) {
   644     mem = mmem->memory_at(alias_idx);
   645     // Update input if it is progress over what we have now
   646   }
   647   return mem;
   648 }
   650 //
   651 // Search memory chain of "mem" to find a MemNode whose address
   652 // is the specified alias index.
   653 //
   654 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *phase) {
   655   if (orig_mem == NULL)
   656     return orig_mem;
   657   Compile* C = phase->C;
   658   const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
   659   bool is_instance = (tinst != NULL) && tinst->is_instance();
   660   Node *prev = NULL;
   661   Node *result = orig_mem;
   662   while (prev != result) {
   663     prev = result;
   664     if (result->is_Mem()) {
   665       MemNode *mem = result->as_Mem();
   666       const Type *at = phase->type(mem->in(MemNode::Address));
   667       if (at != Type::TOP) {
   668         assert (at->isa_ptr() != NULL, "pointer type required.");
   669         int idx = C->get_alias_index(at->is_ptr());
   670         if (idx == alias_idx)
   671           break;
   672       }
   673       result = mem->in(MemNode::Memory);
   674     }
   675     if (!is_instance)
   676       continue;  // don't search further for non-instance types
   677     // skip over a call which does not affect this memory slice
   678     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   679       Node *proj_in = result->in(0);
   680       if (proj_in->is_Call()) {
   681         CallNode *call = proj_in->as_Call();
   682         if (!call->may_modify(tinst, phase)) {
   683           result = call->in(TypeFunc::Memory);
   684         }
   685       } else if (proj_in->is_Initialize()) {
   686         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   687         // Stop if this is the initialization for the object instance which
   688         // which contains this memory slice, otherwise skip over it.
   689         if (alloc == NULL || alloc->_idx != tinst->instance_id()) {
   690           result = proj_in->in(TypeFunc::Memory);
   691         }
   692       } else if (proj_in->is_MemBar()) {
   693         result = proj_in->in(TypeFunc::Memory);
   694       }
   695     } else if (result->is_MergeMem()) {
   696       MergeMemNode *mmem = result->as_MergeMem();
   697       result = step_through_mergemem(mmem, alias_idx, tinst);
   698       if (result == mmem->base_memory()) {
   699         // Didn't find instance memory, search through general slice recursively.
   700         result = mmem->memory_at(C->get_general_index(alias_idx));
   701         result = find_inst_mem(result, alias_idx, orig_phis, phase);
   702         if (C->failing()) {
   703           return NULL;
   704         }
   705         mmem->set_memory_at(alias_idx, result);
   706       }
   707     } else if (result->is_Phi() &&
   708                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
   709       Node *un = result->as_Phi()->unique_input(phase);
   710       if (un != NULL) {
   711         result = un;
   712       } else {
   713         break;
   714       }
   715     }
   716   }
   717   if (is_instance && result->is_Phi()) {
   718     PhiNode *mphi = result->as_Phi();
   719     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   720     const TypePtr *t = mphi->adr_type();
   721     if (C->get_alias_index(t) != alias_idx) {
   722       result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
   723     }
   724   }
   725   // the result is either MemNode, PhiNode, InitializeNode.
   726   return result;
   727 }
   730 //
   731 //  Convert the types of unescaped object to instance types where possible,
   732 //  propagate the new type information through the graph, and update memory
   733 //  edges and MergeMem inputs to reflect the new type.
   734 //
   735 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
   736 //  The processing is done in 4 phases:
   737 //
   738 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
   739 //            types for the CheckCastPP for allocations where possible.
   740 //            Propagate the the new types through users as follows:
   741 //               casts and Phi:  push users on alloc_worklist
   742 //               AddP:  cast Base and Address inputs to the instance type
   743 //                      push any AddP users on alloc_worklist and push any memnode
   744 //                      users onto memnode_worklist.
   745 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
   746 //            search the Memory chain for a store with the appropriate type
   747 //            address type.  If a Phi is found, create a new version with
   748 //            the approriate memory slices from each of the Phi inputs.
   749 //            For stores, process the users as follows:
   750 //               MemNode:  push on memnode_worklist
   751 //               MergeMem: push on mergemem_worklist
   752 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
   753 //            moving the first node encountered of each  instance type to the
   754 //            the input corresponding to its alias index.
   755 //            appropriate memory slice.
   756 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
   757 //
   758 // In the following example, the CheckCastPP nodes are the cast of allocation
   759 // results and the allocation of node 29 is unescaped and eligible to be an
   760 // instance type.
   761 //
   762 // We start with:
   763 //
   764 //     7 Parm #memory
   765 //    10  ConI  "12"
   766 //    19  CheckCastPP   "Foo"
   767 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
   768 //    29  CheckCastPP   "Foo"
   769 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
   770 //
   771 //    40  StoreP  25   7  20   ... alias_index=4
   772 //    50  StoreP  35  40  30   ... alias_index=4
   773 //    60  StoreP  45  50  20   ... alias_index=4
   774 //    70  LoadP    _  60  30   ... alias_index=4
   775 //    80  Phi     75  50  60   Memory alias_index=4
   776 //    90  LoadP    _  80  30   ... alias_index=4
   777 //   100  LoadP    _  80  20   ... alias_index=4
   778 //
   779 //
   780 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
   781 // and creating a new alias index for node 30.  This gives:
   782 //
   783 //     7 Parm #memory
   784 //    10  ConI  "12"
   785 //    19  CheckCastPP   "Foo"
   786 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
   787 //    29  CheckCastPP   "Foo"  iid=24
   788 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
   789 //
   790 //    40  StoreP  25   7  20   ... alias_index=4
   791 //    50  StoreP  35  40  30   ... alias_index=6
   792 //    60  StoreP  45  50  20   ... alias_index=4
   793 //    70  LoadP    _  60  30   ... alias_index=6
   794 //    80  Phi     75  50  60   Memory alias_index=4
   795 //    90  LoadP    _  80  30   ... alias_index=6
   796 //   100  LoadP    _  80  20   ... alias_index=4
   797 //
   798 // In phase 2, new memory inputs are computed for the loads and stores,
   799 // And a new version of the phi is created.  In phase 4, the inputs to
   800 // node 80 are updated and then the memory nodes are updated with the
   801 // values computed in phase 2.  This results in:
   802 //
   803 //     7 Parm #memory
   804 //    10  ConI  "12"
   805 //    19  CheckCastPP   "Foo"
   806 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
   807 //    29  CheckCastPP   "Foo"  iid=24
   808 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
   809 //
   810 //    40  StoreP  25  7   20   ... alias_index=4
   811 //    50  StoreP  35  7   30   ... alias_index=6
   812 //    60  StoreP  45  40  20   ... alias_index=4
   813 //    70  LoadP    _  50  30   ... alias_index=6
   814 //    80  Phi     75  40  60   Memory alias_index=4
   815 //   120  Phi     75  50  50   Memory alias_index=6
   816 //    90  LoadP    _ 120  30   ... alias_index=6
   817 //   100  LoadP    _  80  20   ... alias_index=4
   818 //
   819 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
   820   GrowableArray<Node *>  memnode_worklist;
   821   GrowableArray<Node *>  mergemem_worklist;
   822   GrowableArray<PhiNode *>  orig_phis;
   823   PhaseGVN  *igvn = _compile->initial_gvn();
   824   uint new_index_start = (uint) _compile->num_alias_types();
   825   VectorSet visited(Thread::current()->resource_area());
   826   VectorSet ptset(Thread::current()->resource_area());
   829   //  Phase 1:  Process possible allocations from alloc_worklist.
   830   //  Create instance types for the CheckCastPP for allocations where possible.
   831   while (alloc_worklist.length() != 0) {
   832     Node *n = alloc_worklist.pop();
   833     uint ni = n->_idx;
   834     const TypeOopPtr* tinst = NULL;
   835     if (n->is_Call()) {
   836       CallNode *alloc = n->as_Call();
   837       // copy escape information to call node
   838       PointsToNode* ptn = _nodes->adr_at(alloc->_idx);
   839       PointsToNode::EscapeState es = escape_state(alloc, igvn);
   840       // We have an allocation or call which returns a Java object,
   841       // see if it is unescaped.
   842       if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
   843         continue;
   844       if (alloc->is_Allocate()) {
   845         // Set the scalar_replaceable flag before the next check.
   846         alloc->as_Allocate()->_is_scalar_replaceable = true;
   847       }
   848       // find CheckCastPP of call return value
   849       n = alloc->result_cast();
   850       if (n == NULL ||          // No uses accept Initialize or
   851           !n->is_CheckCastPP()) // not unique CheckCastPP.
   852         continue;
   853       // The inline code for Object.clone() casts the allocation result to
   854       // java.lang.Object and then to the the actual type of the allocated
   855       // object. Detect this case and use the second cast.
   856       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
   857           && igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT) {
   858         Node *cast2 = NULL;
   859         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   860           Node *use = n->fast_out(i);
   861           if (use->is_CheckCastPP()) {
   862             cast2 = use;
   863             break;
   864           }
   865         }
   866         if (cast2 != NULL) {
   867           n = cast2;
   868         } else {
   869           continue;
   870         }
   871       }
   872       set_escape_state(n->_idx, es);
   873       // in order for an object to be stackallocatable, it must be:
   874       //   - a direct allocation (not a call returning an object)
   875       //   - non-escaping
   876       //   - eligible to be a unique type
   877       //   - not determined to be ineligible by escape analysis
   878       set_map(alloc->_idx, n);
   879       set_map(n->_idx, alloc);
   880       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
   881       if (t == NULL)
   882         continue;  // not a TypeInstPtr
   883       tinst = t->cast_to_instance(ni);
   884       igvn->hash_delete(n);
   885       igvn->set_type(n,  tinst);
   886       n->raise_bottom_type(tinst);
   887       igvn->hash_insert(n);
   888       record_for_optimizer(n);
   889       if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
   890           (t->isa_instptr() || t->isa_aryptr())) {
   891         // An allocation may have an Initialize which has raw stores. Scan
   892         // the users of the raw allocation result and push AddP users
   893         // on alloc_worklist.
   894         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
   895         assert (raw_result != NULL, "must have an allocation result");
   896         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
   897           Node *use = raw_result->fast_out(i);
   898           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
   899             Node* addp2 = find_second_addp(use, raw_result);
   900             if (addp2 != NULL) {
   901               assert(alloc->is_AllocateArray(),"array allocation was expected");
   902               alloc_worklist.append_if_missing(addp2);
   903             }
   904             alloc_worklist.append_if_missing(use);
   905           } else if (use->is_Initialize()) {
   906             memnode_worklist.append_if_missing(use);
   907           }
   908         }
   909       }
   910     } else if (n->is_AddP()) {
   911       ptset.Clear();
   912       PointsTo(ptset, get_addp_base(n), igvn);
   913       assert(ptset.Size() == 1, "AddP address is unique");
   914       uint elem = ptset.getelem(); // Allocation node's index
   915       if (elem == _phantom_object)
   916         continue; // Assume the value was set outside this method.
   917       Node *base = get_map(elem);  // CheckCastPP node
   918       split_AddP(n, base, igvn);
   919       tinst = igvn->type(base)->isa_oopptr();
   920     } else if (n->is_Phi() ||
   921                n->is_CheckCastPP() ||
   922                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
   923       if (visited.test_set(n->_idx)) {
   924         assert(n->is_Phi(), "loops only through Phi's");
   925         continue;  // already processed
   926       }
   927       ptset.Clear();
   928       PointsTo(ptset, n, igvn);
   929       if (ptset.Size() == 1) {
   930         uint elem = ptset.getelem(); // Allocation node's index
   931         if (elem == _phantom_object)
   932           continue; // Assume the value was set outside this method.
   933         Node *val = get_map(elem);   // CheckCastPP node
   934         TypeNode *tn = n->as_Type();
   935         tinst = igvn->type(val)->isa_oopptr();
   936         assert(tinst != NULL && tinst->is_instance() &&
   937                tinst->instance_id() == elem , "instance type expected.");
   938         const TypeOopPtr *tn_t = igvn->type(tn)->isa_oopptr();
   940         if (tn_t != NULL &&
   941  tinst->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE)->higher_equal(tn_t)) {
   942           igvn->hash_delete(tn);
   943           igvn->set_type(tn, tinst);
   944           tn->set_type(tinst);
   945           igvn->hash_insert(tn);
   946           record_for_optimizer(n);
   947         }
   948       }
   949     } else {
   950       continue;
   951     }
   952     // push users on appropriate worklist
   953     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   954       Node *use = n->fast_out(i);
   955       if(use->is_Mem() && use->in(MemNode::Address) == n) {
   956         memnode_worklist.append_if_missing(use);
   957       } else if (use->is_Initialize()) {
   958         memnode_worklist.append_if_missing(use);
   959       } else if (use->is_MergeMem()) {
   960         mergemem_worklist.append_if_missing(use);
   961       } else if (use->is_Call() && tinst != NULL) {
   962         // Look for MergeMem nodes for calls which reference unique allocation
   963         // (through CheckCastPP nodes) even for debug info.
   964         Node* m = use->in(TypeFunc::Memory);
   965         uint iid = tinst->instance_id();
   966         while (m->is_Proj() && m->in(0)->is_Call() &&
   967                m->in(0) != use && !m->in(0)->_idx != iid) {
   968           m = m->in(0)->in(TypeFunc::Memory);
   969         }
   970         if (m->is_MergeMem()) {
   971           mergemem_worklist.append_if_missing(m);
   972         }
   973       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
   974         Node* addp2 = find_second_addp(use, n);
   975         if (addp2 != NULL) {
   976           alloc_worklist.append_if_missing(addp2);
   977         }
   978         alloc_worklist.append_if_missing(use);
   979       } else if (use->is_Phi() ||
   980                  use->is_CheckCastPP() ||
   981                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
   982         alloc_worklist.append_if_missing(use);
   983       }
   984     }
   986   }
   987   // New alias types were created in split_AddP().
   988   uint new_index_end = (uint) _compile->num_alias_types();
   990   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
   991   //            compute new values for Memory inputs  (the Memory inputs are not
   992   //            actually updated until phase 4.)
   993   if (memnode_worklist.length() == 0)
   994     return;  // nothing to do
   996   while (memnode_worklist.length() != 0) {
   997     Node *n = memnode_worklist.pop();
   998     if (visited.test_set(n->_idx))
   999       continue;
  1000     if (n->is_Phi()) {
  1001       assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
  1002       // we don't need to do anything, but the users must be pushed if we haven't processed
  1003       // this Phi before
  1004     } else if (n->is_Initialize()) {
  1005       // we don't need to do anything, but the users of the memory projection must be pushed
  1006       n = n->as_Initialize()->proj_out(TypeFunc::Memory);
  1007       if (n == NULL)
  1008         continue;
  1009     } else {
  1010       assert(n->is_Mem(), "memory node required.");
  1011       Node *addr = n->in(MemNode::Address);
  1012       assert(addr->is_AddP(), "AddP required");
  1013       const Type *addr_t = igvn->type(addr);
  1014       if (addr_t == Type::TOP)
  1015         continue;
  1016       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
  1017       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
  1018       assert ((uint)alias_idx < new_index_end, "wrong alias index");
  1019       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
  1020       if (_compile->failing()) {
  1021         return;
  1023       if (mem != n->in(MemNode::Memory)) {
  1024         set_map(n->_idx, mem);
  1025         _nodes->adr_at(n->_idx)->_node = n;
  1027       if (n->is_Load()) {
  1028         continue;  // don't push users
  1029       } else if (n->is_LoadStore()) {
  1030         // get the memory projection
  1031         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1032           Node *use = n->fast_out(i);
  1033           if (use->Opcode() == Op_SCMemProj) {
  1034             n = use;
  1035             break;
  1038         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  1041     // push user on appropriate worklist
  1042     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1043       Node *use = n->fast_out(i);
  1044       if (use->is_Phi()) {
  1045         memnode_worklist.append_if_missing(use);
  1046       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
  1047         memnode_worklist.append_if_missing(use);
  1048       } else if (use->is_Initialize()) {
  1049         memnode_worklist.append_if_missing(use);
  1050       } else if (use->is_MergeMem()) {
  1051         mergemem_worklist.append_if_missing(use);
  1056   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
  1057   //            Walk each memory moving the first node encountered of each
  1058   //            instance type to the the input corresponding to its alias index.
  1059   while (mergemem_worklist.length() != 0) {
  1060     Node *n = mergemem_worklist.pop();
  1061     assert(n->is_MergeMem(), "MergeMem node required.");
  1062     if (visited.test_set(n->_idx))
  1063       continue;
  1064     MergeMemNode *nmm = n->as_MergeMem();
  1065     // Note: we don't want to use MergeMemStream here because we only want to
  1066     //  scan inputs which exist at the start, not ones we add during processing.
  1067     uint nslices = nmm->req();
  1068     igvn->hash_delete(nmm);
  1069     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
  1070       Node* mem = nmm->in(i);
  1071       Node* cur = NULL;
  1072       if (mem == NULL || mem->is_top())
  1073         continue;
  1074       while (mem->is_Mem()) {
  1075         const Type *at = igvn->type(mem->in(MemNode::Address));
  1076         if (at != Type::TOP) {
  1077           assert (at->isa_ptr() != NULL, "pointer type required.");
  1078           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
  1079           if (idx == i) {
  1080             if (cur == NULL)
  1081               cur = mem;
  1082           } else {
  1083             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
  1084               nmm->set_memory_at(idx, mem);
  1088         mem = mem->in(MemNode::Memory);
  1090       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
  1091       // Find any instance of the current type if we haven't encountered
  1092       // a value of the instance along the chain.
  1093       for (uint ni = new_index_start; ni < new_index_end; ni++) {
  1094         if((uint)_compile->get_general_index(ni) == i) {
  1095           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
  1096           if (nmm->is_empty_memory(m)) {
  1097             Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
  1098             if (_compile->failing()) {
  1099               return;
  1101             nmm->set_memory_at(ni, result);
  1106     // Find the rest of instances values
  1107     for (uint ni = new_index_start; ni < new_index_end; ni++) {
  1108       const TypeOopPtr *tinst = igvn->C->get_adr_type(ni)->isa_oopptr();
  1109       Node* result = step_through_mergemem(nmm, ni, tinst);
  1110       if (result == nmm->base_memory()) {
  1111         // Didn't find instance memory, search through general slice recursively.
  1112         result = nmm->memory_at(igvn->C->get_general_index(ni));
  1113         result = find_inst_mem(result, ni, orig_phis, igvn);
  1114         if (_compile->failing()) {
  1115           return;
  1117         nmm->set_memory_at(ni, result);
  1120     igvn->hash_insert(nmm);
  1121     record_for_optimizer(nmm);
  1123     // Propagate new memory slices to following MergeMem nodes.
  1124     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1125       Node *use = n->fast_out(i);
  1126       if (use->is_Call()) {
  1127         CallNode* in = use->as_Call();
  1128         if (in->proj_out(TypeFunc::Memory) != NULL) {
  1129           Node* m = in->proj_out(TypeFunc::Memory);
  1130           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  1131             Node* mm = m->fast_out(j);
  1132             if (mm->is_MergeMem()) {
  1133               mergemem_worklist.append_if_missing(mm);
  1137         if (use->is_Allocate()) {
  1138           use = use->as_Allocate()->initialization();
  1139           if (use == NULL) {
  1140             continue;
  1144       if (use->is_Initialize()) {
  1145         InitializeNode* in = use->as_Initialize();
  1146         if (in->proj_out(TypeFunc::Memory) != NULL) {
  1147           Node* m = in->proj_out(TypeFunc::Memory);
  1148           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  1149             Node* mm = m->fast_out(j);
  1150             if (mm->is_MergeMem()) {
  1151               mergemem_worklist.append_if_missing(mm);
  1159   //  Phase 4:  Update the inputs of non-instance memory Phis and
  1160   //            the Memory input of memnodes
  1161   // First update the inputs of any non-instance Phi's from
  1162   // which we split out an instance Phi.  Note we don't have
  1163   // to recursively process Phi's encounted on the input memory
  1164   // chains as is done in split_memory_phi() since they  will
  1165   // also be processed here.
  1166   while (orig_phis.length() != 0) {
  1167     PhiNode *phi = orig_phis.pop();
  1168     int alias_idx = _compile->get_alias_index(phi->adr_type());
  1169     igvn->hash_delete(phi);
  1170     for (uint i = 1; i < phi->req(); i++) {
  1171       Node *mem = phi->in(i);
  1172       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
  1173       if (_compile->failing()) {
  1174         return;
  1176       if (mem != new_mem) {
  1177         phi->set_req(i, new_mem);
  1180     igvn->hash_insert(phi);
  1181     record_for_optimizer(phi);
  1184   // Update the memory inputs of MemNodes with the value we computed
  1185   // in Phase 2.
  1186   for (int i = 0; i < _nodes->length(); i++) {
  1187     Node *nmem = get_map(i);
  1188     if (nmem != NULL) {
  1189       Node *n = _nodes->adr_at(i)->_node;
  1190       if (n != NULL && n->is_Mem()) {
  1191         igvn->hash_delete(n);
  1192         n->set_req(MemNode::Memory, nmem);
  1193         igvn->hash_insert(n);
  1194         record_for_optimizer(n);
  1200 void ConnectionGraph::compute_escape() {
  1202   // 1. Populate Connection Graph with Ideal nodes.
  1204   Unique_Node_List worklist_init;
  1205   worklist_init.map(_compile->unique(), NULL);  // preallocate space
  1207   // Initialize worklist
  1208   if (_compile->root() != NULL) {
  1209     worklist_init.push(_compile->root());
  1212   GrowableArray<int> cg_worklist;
  1213   PhaseGVN* igvn = _compile->initial_gvn();
  1214   bool has_allocations = false;
  1216   // Push all useful nodes onto CG list and set their type.
  1217   for( uint next = 0; next < worklist_init.size(); ++next ) {
  1218     Node* n = worklist_init.at(next);
  1219     record_for_escape_analysis(n, igvn);
  1220     if (n->is_Call() &&
  1221         _nodes->adr_at(n->_idx)->node_type() == PointsToNode::JavaObject) {
  1222       has_allocations = true;
  1224     if(n->is_AddP())
  1225       cg_worklist.append(n->_idx);
  1226     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1227       Node* m = n->fast_out(i);   // Get user
  1228       worklist_init.push(m);
  1232   if (has_allocations) {
  1233     _has_allocations = true;
  1234   } else {
  1235     _has_allocations = false;
  1236     _collecting = false;
  1237     return; // Nothing to do.
  1240   // 2. First pass to create simple CG edges (doesn't require to walk CG).
  1241   for( uint next = 0; next < _delayed_worklist.size(); ++next ) {
  1242     Node* n = _delayed_worklist.at(next);
  1243     build_connection_graph(n, igvn);
  1246   // 3. Pass to create fields edges (Allocate -F-> AddP).
  1247   for( int next = 0; next < cg_worklist.length(); ++next ) {
  1248     int ni = cg_worklist.at(next);
  1249     build_connection_graph(_nodes->adr_at(ni)->_node, igvn);
  1252   cg_worklist.clear();
  1253   cg_worklist.append(_phantom_object);
  1255   // 4. Build Connection Graph which need
  1256   //    to walk the connection graph.
  1257   for (uint ni = 0; ni < (uint)_nodes->length(); ni++) {
  1258     PointsToNode* ptn = _nodes->adr_at(ni);
  1259     Node *n = ptn->_node;
  1260     if (n != NULL) { // Call, AddP, LoadP, StoreP
  1261       build_connection_graph(n, igvn);
  1262       if (ptn->node_type() != PointsToNode::UnknownType)
  1263         cg_worklist.append(n->_idx); // Collect CG nodes
  1267   VectorSet ptset(Thread::current()->resource_area());
  1268   GrowableArray<Node*> alloc_worklist;
  1269   GrowableArray<int>   worklist;
  1270   GrowableArray<uint>  deferred_edges;
  1271   VectorSet visited(Thread::current()->resource_area());
  1273   // remove deferred edges from the graph and collect
  1274   // information we will need for type splitting
  1275   for( int next = 0; next < cg_worklist.length(); ++next ) {
  1276     int ni = cg_worklist.at(next);
  1277     PointsToNode* ptn = _nodes->adr_at(ni);
  1278     PointsToNode::NodeType nt = ptn->node_type();
  1279     Node *n = ptn->_node;
  1280     if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
  1281       remove_deferred(ni, &deferred_edges, &visited);
  1282       if (n->is_AddP()) {
  1283         // If this AddP computes an address which may point to more that one
  1284         // object, nothing the address points to can be scalar replaceable.
  1285         Node *base = get_addp_base(n);
  1286         ptset.Clear();
  1287         PointsTo(ptset, base, igvn);
  1288         if (ptset.Size() > 1) {
  1289           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1290             uint pt = j.elem;
  1291             ptnode_adr(pt)->_scalar_replaceable = false;
  1295     } else if (nt == PointsToNode::JavaObject && n->is_Call()) {
  1296       // Push call on alloc_worlist (alocations are calls)
  1297       // for processing by split_unique_types().
  1298       alloc_worklist.append(n);
  1302   // push all GlobalEscape nodes on the worklist
  1303   for( int next = 0; next < cg_worklist.length(); ++next ) {
  1304     int nk = cg_worklist.at(next);
  1305     if (_nodes->adr_at(nk)->escape_state() == PointsToNode::GlobalEscape)
  1306       worklist.append(nk);
  1308   // mark all node reachable from GlobalEscape nodes
  1309   while(worklist.length() > 0) {
  1310     PointsToNode n = _nodes->at(worklist.pop());
  1311     for (uint ei = 0; ei < n.edge_count(); ei++) {
  1312       uint npi = n.edge_target(ei);
  1313       PointsToNode *np = ptnode_adr(npi);
  1314       if (np->escape_state() < PointsToNode::GlobalEscape) {
  1315         np->set_escape_state(PointsToNode::GlobalEscape);
  1316         worklist.append_if_missing(npi);
  1321   // push all ArgEscape nodes on the worklist
  1322   for( int next = 0; next < cg_worklist.length(); ++next ) {
  1323     int nk = cg_worklist.at(next);
  1324     if (_nodes->adr_at(nk)->escape_state() == PointsToNode::ArgEscape)
  1325       worklist.push(nk);
  1327   // mark all node reachable from ArgEscape nodes
  1328   while(worklist.length() > 0) {
  1329     PointsToNode n = _nodes->at(worklist.pop());
  1330     for (uint ei = 0; ei < n.edge_count(); ei++) {
  1331       uint npi = n.edge_target(ei);
  1332       PointsToNode *np = ptnode_adr(npi);
  1333       if (np->escape_state() < PointsToNode::ArgEscape) {
  1334         np->set_escape_state(PointsToNode::ArgEscape);
  1335         worklist.append_if_missing(npi);
  1340   // push all NoEscape nodes on the worklist
  1341   for( int next = 0; next < cg_worklist.length(); ++next ) {
  1342     int nk = cg_worklist.at(next);
  1343     if (_nodes->adr_at(nk)->escape_state() == PointsToNode::NoEscape)
  1344       worklist.push(nk);
  1346   // mark all node reachable from NoEscape nodes
  1347   while(worklist.length() > 0) {
  1348     PointsToNode n = _nodes->at(worklist.pop());
  1349     for (uint ei = 0; ei < n.edge_count(); ei++) {
  1350       uint npi = n.edge_target(ei);
  1351       PointsToNode *np = ptnode_adr(npi);
  1352       if (np->escape_state() < PointsToNode::NoEscape) {
  1353         np->set_escape_state(PointsToNode::NoEscape);
  1354         worklist.append_if_missing(npi);
  1359   _collecting = false;
  1361   has_allocations = false; // Are there scalar replaceable allocations?
  1363   for( int next = 0; next < alloc_worklist.length(); ++next ) {
  1364     Node* n = alloc_worklist.at(next);
  1365     uint ni = n->_idx;
  1366     PointsToNode* ptn = _nodes->adr_at(ni);
  1367     PointsToNode::EscapeState es = ptn->escape_state();
  1368     if (ptn->escape_state() == PointsToNode::NoEscape &&
  1369         ptn->_scalar_replaceable) {
  1370       has_allocations = true;
  1371       break;
  1374   if (!has_allocations) {
  1375     return; // Nothing to do.
  1378   if(_compile->AliasLevel() >= 3 && EliminateAllocations) {
  1379     // Now use the escape information to create unique types for
  1380     // unescaped objects
  1381     split_unique_types(alloc_worklist);
  1382     if (_compile->failing())  return;
  1384     // Clean up after split unique types.
  1385     ResourceMark rm;
  1386     PhaseRemoveUseless pru(_compile->initial_gvn(), _compile->for_igvn());
  1388 #ifdef ASSERT
  1389   } else if (PrintEscapeAnalysis || PrintEliminateAllocations) {
  1390     tty->print("=== No allocations eliminated for ");
  1391     C()->method()->print_short_name();
  1392     if(!EliminateAllocations) {
  1393       tty->print(" since EliminateAllocations is off ===");
  1394     } else if(_compile->AliasLevel() < 3) {
  1395       tty->print(" since AliasLevel < 3 ===");
  1397     tty->cr();
  1398 #endif
  1402 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
  1404     switch (call->Opcode()) {
  1405 #ifdef ASSERT
  1406     case Op_Allocate:
  1407     case Op_AllocateArray:
  1408     case Op_Lock:
  1409     case Op_Unlock:
  1410       assert(false, "should be done already");
  1411       break;
  1412 #endif
  1413     case Op_CallLeafNoFP:
  1415       // Stub calls, objects do not escape but they are not scale replaceable.
  1416       // Adjust escape state for outgoing arguments.
  1417       const TypeTuple * d = call->tf()->domain();
  1418       VectorSet ptset(Thread::current()->resource_area());
  1419       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1420         const Type* at = d->field_at(i);
  1421         Node *arg = call->in(i)->uncast();
  1422         const Type *aat = phase->type(arg);
  1423         if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr()) {
  1424           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
  1425                  aat->isa_ptr() != NULL, "expecting an Ptr");
  1426           set_escape_state(arg->_idx, PointsToNode::ArgEscape);
  1427           if (arg->is_AddP()) {
  1428             //
  1429             // The inline_native_clone() case when the arraycopy stub is called
  1430             // after the allocation before Initialize and CheckCastPP nodes.
  1431             //
  1432             // Set AddP's base (Allocate) as not scalar replaceable since
  1433             // pointer to the base (with offset) is passed as argument.
  1434             //
  1435             arg = get_addp_base(arg);
  1437           ptset.Clear();
  1438           PointsTo(ptset, arg, phase);
  1439           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1440             uint pt = j.elem;
  1441             set_escape_state(pt, PointsToNode::ArgEscape);
  1445       break;
  1448     case Op_CallStaticJava:
  1449     // For a static call, we know exactly what method is being called.
  1450     // Use bytecode estimator to record the call's escape affects
  1452       ciMethod *meth = call->as_CallJava()->method();
  1453       BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
  1454       // fall-through if not a Java method or no analyzer information
  1455       if (call_analyzer != NULL) {
  1456         const TypeTuple * d = call->tf()->domain();
  1457         VectorSet ptset(Thread::current()->resource_area());
  1458         bool copy_dependencies = false;
  1459         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1460           const Type* at = d->field_at(i);
  1461           int k = i - TypeFunc::Parms;
  1463           if (at->isa_oopptr() != NULL) {
  1464             Node *arg = call->in(i)->uncast();
  1466             bool global_escapes = false;
  1467             bool fields_escapes = false;
  1468             if (!call_analyzer->is_arg_stack(k)) {
  1469               // The argument global escapes, mark everything it could point to
  1470               set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
  1471               global_escapes = true;
  1472             } else {
  1473               if (!call_analyzer->is_arg_local(k)) {
  1474                 // The argument itself doesn't escape, but any fields might
  1475                 fields_escapes = true;
  1477               set_escape_state(arg->_idx, PointsToNode::ArgEscape);
  1478               copy_dependencies = true;
  1481             ptset.Clear();
  1482             PointsTo(ptset, arg, phase);
  1483             for( VectorSetI j(&ptset); j.test(); ++j ) {
  1484               uint pt = j.elem;
  1485               if (global_escapes) {
  1486                 //The argument global escapes, mark everything it could point to
  1487                 set_escape_state(pt, PointsToNode::GlobalEscape);
  1488               } else {
  1489                 if (fields_escapes) {
  1490                   // The argument itself doesn't escape, but any fields might
  1491                   add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
  1493                 set_escape_state(pt, PointsToNode::ArgEscape);
  1498         if (copy_dependencies)
  1499           call_analyzer->copy_dependencies(C()->dependencies());
  1500         break;
  1504     default:
  1505     // Fall-through here if not a Java method or no analyzer information
  1506     // or some other type of call, assume the worst case: all arguments
  1507     // globally escape.
  1509       // adjust escape state for  outgoing arguments
  1510       const TypeTuple * d = call->tf()->domain();
  1511       VectorSet ptset(Thread::current()->resource_area());
  1512       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1513         const Type* at = d->field_at(i);
  1514         if (at->isa_oopptr() != NULL) {
  1515           Node *arg = call->in(i)->uncast();
  1516           set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
  1517           ptset.Clear();
  1518           PointsTo(ptset, arg, phase);
  1519           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1520             uint pt = j.elem;
  1521             set_escape_state(pt, PointsToNode::GlobalEscape);
  1522             PointsToNode *ptadr = ptnode_adr(pt);
  1529 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
  1530   PointsToNode *ptadr = ptnode_adr(resproj->_idx);
  1532   CallNode *call = resproj->in(0)->as_Call();
  1533   switch (call->Opcode()) {
  1534     case Op_Allocate:
  1536       Node *k = call->in(AllocateNode::KlassNode);
  1537       const TypeKlassPtr *kt;
  1538       if (k->Opcode() == Op_LoadKlass) {
  1539         kt = k->as_Load()->type()->isa_klassptr();
  1540       } else {
  1541         kt = k->as_Type()->type()->isa_klassptr();
  1543       assert(kt != NULL, "TypeKlassPtr  required.");
  1544       ciKlass* cik = kt->klass();
  1545       ciInstanceKlass* ciik = cik->as_instance_klass();
  1547       PointsToNode *ptadr = ptnode_adr(call->_idx);
  1548       PointsToNode::EscapeState es;
  1549       uint edge_to;
  1550       if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
  1551         es = PointsToNode::GlobalEscape;
  1552         edge_to = _phantom_object; // Could not be worse
  1553       } else {
  1554         es = PointsToNode::NoEscape;
  1555         edge_to = call->_idx;
  1557       set_escape_state(call->_idx, es);
  1558       add_pointsto_edge(resproj->_idx, edge_to);
  1559       _processed.set(resproj->_idx);
  1560       break;
  1563     case Op_AllocateArray:
  1565       PointsToNode *ptadr = ptnode_adr(call->_idx);
  1566       int length = call->in(AllocateNode::ALength)->find_int_con(-1);
  1567       if (length < 0 || length > EliminateAllocationArraySizeLimit) {
  1568         // Not scalar replaceable if the length is not constant or too big.
  1569         ptadr->_scalar_replaceable = false;
  1571       set_escape_state(call->_idx, PointsToNode::NoEscape);
  1572       add_pointsto_edge(resproj->_idx, call->_idx);
  1573       _processed.set(resproj->_idx);
  1574       break;
  1577     case Op_CallStaticJava:
  1578     // For a static call, we know exactly what method is being called.
  1579     // Use bytecode estimator to record whether the call's return value escapes
  1581       bool done = true;
  1582       const TypeTuple *r = call->tf()->range();
  1583       const Type* ret_type = NULL;
  1585       if (r->cnt() > TypeFunc::Parms)
  1586         ret_type = r->field_at(TypeFunc::Parms);
  1588       // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
  1589       //        _multianewarray functions return a TypeRawPtr.
  1590       if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
  1591         _processed.set(resproj->_idx);
  1592         break;  // doesn't return a pointer type
  1594       ciMethod *meth = call->as_CallJava()->method();
  1595       const TypeTuple * d = call->tf()->domain();
  1596       if (meth == NULL) {
  1597         // not a Java method, assume global escape
  1598         set_escape_state(call->_idx, PointsToNode::GlobalEscape);
  1599         if (resproj != NULL)
  1600           add_pointsto_edge(resproj->_idx, _phantom_object);
  1601       } else {
  1602         BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
  1603         VectorSet ptset(Thread::current()->resource_area());
  1604         bool copy_dependencies = false;
  1606         if (call_analyzer->is_return_allocated()) {
  1607           // Returns a newly allocated unescaped object, simply
  1608           // update dependency information.
  1609           // Mark it as NoEscape so that objects referenced by
  1610           // it's fields will be marked as NoEscape at least.
  1611           set_escape_state(call->_idx, PointsToNode::NoEscape);
  1612           if (resproj != NULL)
  1613             add_pointsto_edge(resproj->_idx, call->_idx);
  1614           copy_dependencies = true;
  1615         } else if (call_analyzer->is_return_local() && resproj != NULL) {
  1616           // determine whether any arguments are returned
  1617           set_escape_state(call->_idx, PointsToNode::NoEscape);
  1618           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1619             const Type* at = d->field_at(i);
  1621             if (at->isa_oopptr() != NULL) {
  1622               Node *arg = call->in(i)->uncast();
  1624               if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
  1625                 PointsToNode *arg_esp = _nodes->adr_at(arg->_idx);
  1626                 if (arg_esp->node_type() == PointsToNode::UnknownType)
  1627                   done = false;
  1628                 else if (arg_esp->node_type() == PointsToNode::JavaObject)
  1629                   add_pointsto_edge(resproj->_idx, arg->_idx);
  1630                 else
  1631                   add_deferred_edge(resproj->_idx, arg->_idx);
  1632                 arg_esp->_hidden_alias = true;
  1636           copy_dependencies = true;
  1637         } else {
  1638           set_escape_state(call->_idx, PointsToNode::GlobalEscape);
  1639           if (resproj != NULL)
  1640             add_pointsto_edge(resproj->_idx, _phantom_object);
  1641           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1642             const Type* at = d->field_at(i);
  1643             if (at->isa_oopptr() != NULL) {
  1644               Node *arg = call->in(i)->uncast();
  1645               PointsToNode *arg_esp = _nodes->adr_at(arg->_idx);
  1646               arg_esp->_hidden_alias = true;
  1650         if (copy_dependencies)
  1651           call_analyzer->copy_dependencies(C()->dependencies());
  1653       if (done)
  1654         _processed.set(resproj->_idx);
  1655       break;
  1658     default:
  1659     // Some other type of call, assume the worst case that the
  1660     // returned value, if any, globally escapes.
  1662       const TypeTuple *r = call->tf()->range();
  1663       if (r->cnt() > TypeFunc::Parms) {
  1664         const Type* ret_type = r->field_at(TypeFunc::Parms);
  1666         // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
  1667         //        _multianewarray functions return a TypeRawPtr.
  1668         if (ret_type->isa_ptr() != NULL) {
  1669           PointsToNode *ptadr = ptnode_adr(call->_idx);
  1670           set_escape_state(call->_idx, PointsToNode::GlobalEscape);
  1671           if (resproj != NULL)
  1672             add_pointsto_edge(resproj->_idx, _phantom_object);
  1675       _processed.set(resproj->_idx);
  1680 // Populate Connection Graph with Ideal nodes and create simple
  1681 // connection graph edges (do not need to check the node_type of inputs
  1682 // or to call PointsTo() to walk the connection graph).
  1683 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
  1684   if (_processed.test(n->_idx))
  1685     return; // No need to redefine node's state.
  1687   if (n->is_Call()) {
  1688     // Arguments to allocation and locking don't escape.
  1689     if (n->is_Allocate()) {
  1690       add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
  1691       record_for_optimizer(n);
  1692     } else if (n->is_Lock() || n->is_Unlock()) {
  1693       // Put Lock and Unlock nodes on IGVN worklist to process them during
  1694       // the first IGVN optimization when escape information is still available.
  1695       record_for_optimizer(n);
  1696       _processed.set(n->_idx);
  1697     } else {
  1698       // Have to process call's arguments first.
  1699       PointsToNode::NodeType nt = PointsToNode::UnknownType;
  1701       // Check if a call returns an object.
  1702       const TypeTuple *r = n->as_Call()->tf()->range();
  1703       if (r->cnt() > TypeFunc::Parms &&
  1704           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
  1705         // Note:  use isa_ptr() instead of isa_oopptr() here because
  1706         //        the _multianewarray functions return a TypeRawPtr.
  1707         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
  1708           nt = PointsToNode::JavaObject;
  1711       add_node(n, nt, PointsToNode::UnknownEscape, false);
  1713     return;
  1716   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
  1717   // ThreadLocal has RawPrt type.
  1718   switch (n->Opcode()) {
  1719     case Op_AddP:
  1721       add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
  1722       break;
  1724     case Op_CastX2P:
  1725     { // "Unsafe" memory access.
  1726       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
  1727       break;
  1729     case Op_CastPP:
  1730     case Op_CheckCastPP:
  1731     case Op_EncodeP:
  1732     case Op_DecodeN:
  1734       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  1735       int ti = n->in(1)->_idx;
  1736       PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
  1737       if (nt == PointsToNode::UnknownType) {
  1738         _delayed_worklist.push(n); // Process it later.
  1739         break;
  1740       } else if (nt == PointsToNode::JavaObject) {
  1741         add_pointsto_edge(n->_idx, ti);
  1742       } else {
  1743         add_deferred_edge(n->_idx, ti);
  1745       _processed.set(n->_idx);
  1746       break;
  1748     case Op_ConP:
  1750       // assume all pointer constants globally escape except for null
  1751       PointsToNode::EscapeState es;
  1752       if (phase->type(n) == TypePtr::NULL_PTR)
  1753         es = PointsToNode::NoEscape;
  1754       else
  1755         es = PointsToNode::GlobalEscape;
  1757       add_node(n, PointsToNode::JavaObject, es, true);
  1758       break;
  1760     case Op_ConN:
  1762       // assume all narrow oop constants globally escape except for null
  1763       PointsToNode::EscapeState es;
  1764       if (phase->type(n) == TypeNarrowOop::NULL_PTR)
  1765         es = PointsToNode::NoEscape;
  1766       else
  1767         es = PointsToNode::GlobalEscape;
  1769       add_node(n, PointsToNode::JavaObject, es, true);
  1770       break;
  1772     case Op_CreateEx:
  1774       // assume that all exception objects globally escape
  1775       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
  1776       break;
  1778     case Op_LoadKlass:
  1780       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
  1781       break;
  1783     case Op_LoadP:
  1784     case Op_LoadN:
  1786       const Type *t = phase->type(n);
  1787       if (!t->isa_narrowoop() && t->isa_ptr() == NULL) {
  1788         _processed.set(n->_idx);
  1789         return;
  1791       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  1792       break;
  1794     case Op_Parm:
  1796       _processed.set(n->_idx); // No need to redefine it state.
  1797       uint con = n->as_Proj()->_con;
  1798       if (con < TypeFunc::Parms)
  1799         return;
  1800       const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
  1801       if (t->isa_ptr() == NULL)
  1802         return;
  1803       // We have to assume all input parameters globally escape
  1804       // (Note: passing 'false' since _processed is already set).
  1805       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
  1806       break;
  1808     case Op_Phi:
  1810       if (n->as_Phi()->type()->isa_ptr() == NULL) {
  1811         // nothing to do if not an oop
  1812         _processed.set(n->_idx);
  1813         return;
  1815       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  1816       uint i;
  1817       for (i = 1; i < n->req() ; i++) {
  1818         Node* in = n->in(i);
  1819         if (in == NULL)
  1820           continue;  // ignore NULL
  1821         in = in->uncast();
  1822         if (in->is_top() || in == n)
  1823           continue;  // ignore top or inputs which go back this node
  1824         int ti = in->_idx;
  1825         PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
  1826         if (nt == PointsToNode::UnknownType) {
  1827           break;
  1828         } else if (nt == PointsToNode::JavaObject) {
  1829           add_pointsto_edge(n->_idx, ti);
  1830         } else {
  1831           add_deferred_edge(n->_idx, ti);
  1834       if (i >= n->req())
  1835         _processed.set(n->_idx);
  1836       else
  1837         _delayed_worklist.push(n);
  1838       break;
  1840     case Op_Proj:
  1842       // we are only interested in the result projection from a call
  1843       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
  1844         add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  1845         process_call_result(n->as_Proj(), phase);
  1846         if (!_processed.test(n->_idx)) {
  1847           // The call's result may need to be processed later if the call
  1848           // returns it's argument and the argument is not processed yet.
  1849           _delayed_worklist.push(n);
  1851       } else {
  1852         _processed.set(n->_idx);
  1854       break;
  1856     case Op_Return:
  1858       if( n->req() > TypeFunc::Parms &&
  1859           phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
  1860         // Treat Return value as LocalVar with GlobalEscape escape state.
  1861         add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
  1862         int ti = n->in(TypeFunc::Parms)->_idx;
  1863         PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
  1864         if (nt == PointsToNode::UnknownType) {
  1865           _delayed_worklist.push(n); // Process it later.
  1866           break;
  1867         } else if (nt == PointsToNode::JavaObject) {
  1868           add_pointsto_edge(n->_idx, ti);
  1869         } else {
  1870           add_deferred_edge(n->_idx, ti);
  1873       _processed.set(n->_idx);
  1874       break;
  1876     case Op_StoreP:
  1877     case Op_StoreN:
  1879       const Type *adr_type = phase->type(n->in(MemNode::Address));
  1880       if (adr_type->isa_narrowoop()) {
  1881         adr_type = adr_type->is_narrowoop()->make_oopptr();
  1883       if (adr_type->isa_oopptr()) {
  1884         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
  1885       } else {
  1886         Node* adr = n->in(MemNode::Address);
  1887         if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
  1888             adr->in(AddPNode::Address)->is_Proj() &&
  1889             adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
  1890           add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
  1891           // We are computing a raw address for a store captured
  1892           // by an Initialize compute an appropriate address type.
  1893           int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
  1894           assert(offs != Type::OffsetBot, "offset must be a constant");
  1895         } else {
  1896           _processed.set(n->_idx);
  1897           return;
  1900       break;
  1902     case Op_StorePConditional:
  1903     case Op_CompareAndSwapP:
  1904     case Op_CompareAndSwapN:
  1906       const Type *adr_type = phase->type(n->in(MemNode::Address));
  1907       if (adr_type->isa_narrowoop()) {
  1908         adr_type = adr_type->is_narrowoop()->make_oopptr();
  1910       if (adr_type->isa_oopptr()) {
  1911         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
  1912       } else {
  1913         _processed.set(n->_idx);
  1914         return;
  1916       break;
  1918     case Op_ThreadLocal:
  1920       add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
  1921       break;
  1923     default:
  1925       // nothing to do
  1927   return;
  1930 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
  1931   // Don't set processed bit for AddP, LoadP, StoreP since
  1932   // they may need more then one pass to process.
  1933   if (_processed.test(n->_idx))
  1934     return; // No need to redefine node's state.
  1936   PointsToNode *ptadr = ptnode_adr(n->_idx);
  1938   if (n->is_Call()) {
  1939     CallNode *call = n->as_Call();
  1940     process_call_arguments(call, phase);
  1941     _processed.set(n->_idx);
  1942     return;
  1945   switch (n->Opcode()) {
  1946     case Op_AddP:
  1948       Node *base = get_addp_base(n);
  1949       // Create a field edge to this node from everything base could point to.
  1950       VectorSet ptset(Thread::current()->resource_area());
  1951       PointsTo(ptset, base, phase);
  1952       for( VectorSetI i(&ptset); i.test(); ++i ) {
  1953         uint pt = i.elem;
  1954         add_field_edge(pt, n->_idx, address_offset(n, phase));
  1956       break;
  1958     case Op_CastX2P:
  1960       assert(false, "Op_CastX2P");
  1961       break;
  1963     case Op_CastPP:
  1964     case Op_CheckCastPP:
  1965     case Op_EncodeP:
  1966     case Op_DecodeN:
  1968       int ti = n->in(1)->_idx;
  1969       if (_nodes->adr_at(ti)->node_type() == PointsToNode::JavaObject) {
  1970         add_pointsto_edge(n->_idx, ti);
  1971       } else {
  1972         add_deferred_edge(n->_idx, ti);
  1974       _processed.set(n->_idx);
  1975       break;
  1977     case Op_ConP:
  1979       assert(false, "Op_ConP");
  1980       break;
  1982     case Op_CreateEx:
  1984       assert(false, "Op_CreateEx");
  1985       break;
  1987     case Op_LoadKlass:
  1989       assert(false, "Op_LoadKlass");
  1990       break;
  1992     case Op_LoadP:
  1993     case Op_LoadN:
  1995       const Type *t = phase->type(n);
  1996 #ifdef ASSERT
  1997       if (!t->isa_narrowoop() && t->isa_ptr() == NULL)
  1998         assert(false, "Op_LoadP");
  1999 #endif
  2001       Node* adr = n->in(MemNode::Address)->uncast();
  2002       const Type *adr_type = phase->type(adr);
  2003       Node* adr_base;
  2004       if (adr->is_AddP()) {
  2005         adr_base = get_addp_base(adr);
  2006       } else {
  2007         adr_base = adr;
  2010       // For everything "adr_base" could point to, create a deferred edge from
  2011       // this node to each field with the same offset.
  2012       VectorSet ptset(Thread::current()->resource_area());
  2013       PointsTo(ptset, adr_base, phase);
  2014       int offset = address_offset(adr, phase);
  2015       for( VectorSetI i(&ptset); i.test(); ++i ) {
  2016         uint pt = i.elem;
  2017         add_deferred_edge_to_fields(n->_idx, pt, offset);
  2019       break;
  2021     case Op_Parm:
  2023       assert(false, "Op_Parm");
  2024       break;
  2026     case Op_Phi:
  2028 #ifdef ASSERT
  2029       if (n->as_Phi()->type()->isa_ptr() == NULL)
  2030         assert(false, "Op_Phi");
  2031 #endif
  2032       for (uint i = 1; i < n->req() ; i++) {
  2033         Node* in = n->in(i);
  2034         if (in == NULL)
  2035           continue;  // ignore NULL
  2036         in = in->uncast();
  2037         if (in->is_top() || in == n)
  2038           continue;  // ignore top or inputs which go back this node
  2039         int ti = in->_idx;
  2040         if (_nodes->adr_at(in->_idx)->node_type() == PointsToNode::JavaObject) {
  2041           add_pointsto_edge(n->_idx, ti);
  2042         } else {
  2043           add_deferred_edge(n->_idx, ti);
  2046       _processed.set(n->_idx);
  2047       break;
  2049     case Op_Proj:
  2051       // we are only interested in the result projection from a call
  2052       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
  2053         process_call_result(n->as_Proj(), phase);
  2054         assert(_processed.test(n->_idx), "all call results should be processed");
  2055       } else {
  2056         assert(false, "Op_Proj");
  2058       break;
  2060     case Op_Return:
  2062 #ifdef ASSERT
  2063       if( n->req() <= TypeFunc::Parms ||
  2064           !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
  2065         assert(false, "Op_Return");
  2067 #endif
  2068       int ti = n->in(TypeFunc::Parms)->_idx;
  2069       if (_nodes->adr_at(ti)->node_type() == PointsToNode::JavaObject) {
  2070         add_pointsto_edge(n->_idx, ti);
  2071       } else {
  2072         add_deferred_edge(n->_idx, ti);
  2074       _processed.set(n->_idx);
  2075       break;
  2077     case Op_StoreP:
  2078     case Op_StoreN:
  2079     case Op_StorePConditional:
  2080     case Op_CompareAndSwapP:
  2081     case Op_CompareAndSwapN:
  2083       Node *adr = n->in(MemNode::Address);
  2084       const Type *adr_type = phase->type(adr);
  2085       if (adr_type->isa_narrowoop()) {
  2086         adr_type = adr_type->is_narrowoop()->make_oopptr();
  2088 #ifdef ASSERT
  2089       if (!adr_type->isa_oopptr())
  2090         assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
  2091 #endif
  2093       assert(adr->is_AddP(), "expecting an AddP");
  2094       Node *adr_base = get_addp_base(adr);
  2095       Node *val = n->in(MemNode::ValueIn)->uncast();
  2096       // For everything "adr_base" could point to, create a deferred edge
  2097       // to "val" from each field with the same offset.
  2098       VectorSet ptset(Thread::current()->resource_area());
  2099       PointsTo(ptset, adr_base, phase);
  2100       for( VectorSetI i(&ptset); i.test(); ++i ) {
  2101         uint pt = i.elem;
  2102         add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
  2104       break;
  2106     case Op_ThreadLocal:
  2108       assert(false, "Op_ThreadLocal");
  2109       break;
  2111     default:
  2113       // nothing to do
  2117 #ifndef PRODUCT
  2118 void ConnectionGraph::dump() {
  2119   PhaseGVN  *igvn = _compile->initial_gvn();
  2120   bool first = true;
  2122   uint size = (uint)_nodes->length();
  2123   for (uint ni = 0; ni < size; ni++) {
  2124     PointsToNode *ptn = _nodes->adr_at(ni);
  2125     PointsToNode::NodeType ptn_type = ptn->node_type();
  2127     if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
  2128       continue;
  2129     PointsToNode::EscapeState es = escape_state(ptn->_node, igvn);
  2130     if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
  2131       if (first) {
  2132         tty->cr();
  2133         tty->print("======== Connection graph for ");
  2134         C()->method()->print_short_name();
  2135         tty->cr();
  2136         first = false;
  2138       tty->print("%6d ", ni);
  2139       ptn->dump();
  2140       // Print all locals which reference this allocation
  2141       for (uint li = ni; li < size; li++) {
  2142         PointsToNode *ptn_loc = _nodes->adr_at(li);
  2143         PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
  2144         if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
  2145              ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
  2146           tty->print("%6d  LocalVar [[%d]]", li, ni);
  2147           _nodes->adr_at(li)->_node->dump();
  2150       if (Verbose) {
  2151         // Print all fields which reference this allocation
  2152         for (uint i = 0; i < ptn->edge_count(); i++) {
  2153           uint ei = ptn->edge_target(i);
  2154           tty->print("%6d  Field [[%d]]", ei, ni);
  2155           _nodes->adr_at(ei)->_node->dump();
  2158       tty->cr();
  2162 #endif

mercurial