src/cpu/x86/vm/interp_masm_x86_64.cpp

Wed, 07 May 2008 08:06:46 -0700

author
rasbold
date
Wed, 07 May 2008 08:06:46 -0700
changeset 580
f3de1255b035
parent 548
ba764ed4b6f2
child 613
6d172e3548cb
child 777
37f87013dfd8
permissions
-rw-r--r--

6603011: RFE: Optimize long division
Summary: Transform long division by constant into multiply
Reviewed-by: never, kvn

     1 /*
     2  * Copyright 2003-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_interp_masm_x86_64.cpp.incl"
    29 // Implementation of InterpreterMacroAssembler
    31 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
    32                                                   int number_of_arguments) {
    33   // interpreter specific
    34   //
    35   // Note: No need to save/restore bcp & locals (r13 & r14) pointer
    36   //       since these are callee saved registers and no blocking/
    37   //       GC can happen in leaf calls.
    38 #ifdef ASSERT
    39   save_bcp();
    40   {
    41     Label L;
    42     cmpq(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int)NULL_WORD);
    43     jcc(Assembler::equal, L);
    44     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
    45          " last_sp != NULL");
    46     bind(L);
    47   }
    48 #endif
    49   // super call
    50   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
    51   // interpreter specific
    52 #ifdef ASSERT
    53   {
    54     Label L;
    55     cmpq(r13, Address(rbp, frame::interpreter_frame_bcx_offset * wordSize));
    56     jcc(Assembler::equal, L);
    57     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
    58          " r13 not callee saved?");
    59     bind(L);
    60   }
    61   {
    62     Label L;
    63     cmpq(r14, Address(rbp, frame::interpreter_frame_locals_offset * wordSize));
    64     jcc(Assembler::equal, L);
    65     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
    66          " r14 not callee saved?");
    67     bind(L);
    68   }
    69 #endif
    70 }
    72 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
    73                                              Register java_thread,
    74                                              Register last_java_sp,
    75                                              address  entry_point,
    76                                              int      number_of_arguments,
    77                                              bool     check_exceptions) {
    78   // interpreter specific
    79   //
    80   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
    81   //       really make a difference for these runtime calls, since they are
    82   //       slow anyway. Btw., bcp must be saved/restored since it may change
    83   //       due to GC.
    84   // assert(java_thread == noreg , "not expecting a precomputed java thread");
    85   save_bcp();
    86 #ifdef ASSERT
    87   {
    88     Label L;
    89     cmpq(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int)NULL_WORD);
    90     jcc(Assembler::equal, L);
    91     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
    92          " last_sp != NULL");
    93     bind(L);
    94   }
    95 #endif /* ASSERT */
    96   // super call
    97   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
    98                                entry_point, number_of_arguments,
    99                                check_exceptions);
   100   // interpreter specific
   101   restore_bcp();
   102   restore_locals();
   103 }
   106 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
   107   if (JvmtiExport::can_pop_frame()) {
   108     Label L;
   109     // Initiate popframe handling only if it is not already being
   110     // processed.  If the flag has the popframe_processing bit set, it
   111     // means that this code is called *during* popframe handling - we
   112     // don't want to reenter.
   113     // This method is only called just after the call into the vm in
   114     // call_VM_base, so the arg registers are available.
   115     movl(c_rarg0, Address(r15_thread, JavaThread::popframe_condition_offset()));
   116     testl(c_rarg0, JavaThread::popframe_pending_bit);
   117     jcc(Assembler::zero, L);
   118     testl(c_rarg0, JavaThread::popframe_processing_bit);
   119     jcc(Assembler::notZero, L);
   120     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   121     // address of the same-named entrypoint in the generated interpreter code.
   122     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   123     jmp(rax);
   124     bind(L);
   125   }
   126 }
   129 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   130   movq(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
   131   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
   132   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
   133   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
   134   switch (state) {
   135     case atos: movq(rax, oop_addr);
   136                movptr(oop_addr, NULL_WORD);
   137                verify_oop(rax, state);              break;
   138     case ltos: movq(rax, val_addr);                 break;
   139     case btos:                                   // fall through
   140     case ctos:                                   // fall through
   141     case stos:                                   // fall through
   142     case itos: movl(rax, val_addr);                 break;
   143     case ftos: movflt(xmm0, val_addr);              break;
   144     case dtos: movdbl(xmm0, val_addr);              break;
   145     case vtos: /* nothing to do */                  break;
   146     default  : ShouldNotReachHere();
   147   }
   148   // Clean up tos value in the thread object
   149   movl(tos_addr,  (int) ilgl);
   150   movl(val_addr,  (int) NULL_WORD);
   151 }
   154 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
   155   if (JvmtiExport::can_force_early_return()) {
   156     Label L;
   157     movq(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
   158     testq(c_rarg0, c_rarg0);
   159     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
   161     // Initiate earlyret handling only if it is not already being processed.
   162     // If the flag has the earlyret_processing bit set, it means that this code
   163     // is called *during* earlyret handling - we don't want to reenter.
   164     movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_state_offset()));
   165     cmpl(c_rarg0, JvmtiThreadState::earlyret_pending);
   166     jcc(Assembler::notEqual, L);
   168     // Call Interpreter::remove_activation_early_entry() to get the address of the
   169     // same-named entrypoint in the generated interpreter code.
   170     movq(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
   171     movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_tos_offset()));
   172     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), c_rarg0);
   173     jmp(rax);
   174     bind(L);
   175   }
   176 }
   179 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
   180   Register reg,
   181   int bcp_offset) {
   182   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
   183   movl(reg, Address(r13, bcp_offset));
   184   bswapl(reg);
   185   shrl(reg, 16);
   186 }
   189 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
   190                                                            Register index,
   191                                                            int bcp_offset) {
   192   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   193   assert(cache != index, "must use different registers");
   194   load_unsigned_word(index, Address(r13, bcp_offset));
   195   movq(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   196   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
   197   // convert from field index to ConstantPoolCacheEntry index
   198   shll(index, 2);
   199 }
   202 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
   203                                                                Register tmp,
   204                                                                int bcp_offset) {
   205   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   206   assert(cache != tmp, "must use different register");
   207   load_unsigned_word(tmp, Address(r13, bcp_offset));
   208   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
   209   // convert from field index to ConstantPoolCacheEntry index
   210   // and from word offset to byte offset
   211   shll(tmp, 2 + LogBytesPerWord);
   212   movq(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   213   // skip past the header
   214   addq(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
   215   addq(cache, tmp);  // construct pointer to cache entry
   216 }
   219 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
   220 // subtype of super_klass.
   221 //
   222 // Args:
   223 //      rax: superklass
   224 //      Rsub_klass: subklass
   225 //
   226 // Kills:
   227 //      rcx, rdi
   228 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
   229                                                   Label& ok_is_subtype) {
   230   assert(Rsub_klass != rax, "rax holds superklass");
   231   assert(Rsub_klass != r14, "r14 holds locals");
   232   assert(Rsub_klass != r13, "r13 holds bcp");
   233   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
   234   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
   236   Label not_subtype, loop;
   238   // Profile the not-null value's klass.
   239   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, rdi
   241   // Load the super-klass's check offset into rcx
   242   movl(rcx, Address(rax, sizeof(oopDesc) +
   243                     Klass::super_check_offset_offset_in_bytes()));
   244   // Load from the sub-klass's super-class display list, or a 1-word
   245   // cache of the secondary superclass list, or a failing value with a
   246   // sentinel offset if the super-klass is an interface or
   247   // exceptionally deep in the Java hierarchy and we have to scan the
   248   // secondary superclass list the hard way.  See if we get an
   249   // immediate positive hit
   250   cmpq(rax, Address(Rsub_klass, rcx, Address::times_1));
   251   jcc(Assembler::equal,ok_is_subtype);
   253   // Check for immediate negative hit
   254   cmpl(rcx, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
   255   jcc( Assembler::notEqual, not_subtype );
   256   // Check for self
   257   cmpq(Rsub_klass, rax);
   258   jcc(Assembler::equal, ok_is_subtype);
   260   // Now do a linear scan of the secondary super-klass chain.
   261   movq(rdi, Address(Rsub_klass, sizeof(oopDesc) +
   262                     Klass::secondary_supers_offset_in_bytes()));
   263   // rdi holds the objArrayOop of secondary supers.
   264   // Load the array length
   265   movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
   266   // Skip to start of data; also clear Z flag incase rcx is zero
   267   addq(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   268   // Scan rcx words at [rdi] for occurance of rax
   269   // Set NZ/Z based on last compare
   271   // this part is kind tricky, as values in supers array could be 32 or 64 bit wide
   272   // and we store values in objArrays always encoded, thus we need to encode value
   273   // before repne
   274   if (UseCompressedOops) {
   275     encode_heap_oop(rax);
   276     repne_scanl();
   277     // Not equal?
   278     jcc(Assembler::notEqual, not_subtype);
   279     // decode heap oop here for movq
   280     decode_heap_oop(rax);
   281   } else {
   282     repne_scanq();
   283     jcc(Assembler::notEqual, not_subtype);
   284   }
   285   // Must be equal but missed in cache.  Update cache.
   286   movq(Address(Rsub_klass, sizeof(oopDesc) +
   287                Klass::secondary_super_cache_offset_in_bytes()), rax);
   288   jmp(ok_is_subtype);
   290   bind(not_subtype);
   291   // decode heap oop here for miss
   292   if (UseCompressedOops) decode_heap_oop(rax);
   293   profile_typecheck_failed(rcx); // blows rcx
   294 }
   297 // Java Expression Stack
   299 #ifdef ASSERT
   300 // Verifies that the stack tag matches.  Must be called before the stack
   301 // value is popped off the stack.
   302 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t) {
   303   if (TaggedStackInterpreter) {
   304     frame::Tag tag = t;
   305     if (t == frame::TagCategory2) {
   306       tag = frame::TagValue;
   307       Label hokay;
   308       cmpq(Address(rsp, 3*wordSize), (int)tag);
   309       jcc(Assembler::equal, hokay);
   310       stop("Java Expression stack tag high value is bad");
   311       bind(hokay);
   312     }
   313     Label okay;
   314     cmpq(Address(rsp, wordSize), (int)tag);
   315     jcc(Assembler::equal, okay);
   316     // Also compare if the stack value is zero, then the tag might
   317     // not have been set coming from deopt.
   318     cmpq(Address(rsp, 0), 0);
   319     jcc(Assembler::equal, okay);
   320     stop("Java Expression stack tag value is bad");
   321     bind(okay);
   322   }
   323 }
   324 #endif // ASSERT
   326 void InterpreterMacroAssembler::pop_ptr(Register r) {
   327   debug_only(verify_stack_tag(frame::TagReference));
   328   popq(r);
   329   if (TaggedStackInterpreter) addq(rsp, 1 * wordSize);
   330 }
   332 void InterpreterMacroAssembler::pop_ptr(Register r, Register tag) {
   333   popq(r);
   334   if (TaggedStackInterpreter) popq(tag);
   335 }
   337 void InterpreterMacroAssembler::pop_i(Register r) {
   338   // XXX can't use popq currently, upper half non clean
   339   debug_only(verify_stack_tag(frame::TagValue));
   340   movl(r, Address(rsp, 0));
   341   addq(rsp, wordSize);
   342   if (TaggedStackInterpreter) addq(rsp, 1 * wordSize);
   343 }
   345 void InterpreterMacroAssembler::pop_l(Register r) {
   346   debug_only(verify_stack_tag(frame::TagCategory2));
   347   movq(r, Address(rsp, 0));
   348   addq(rsp, 2 * Interpreter::stackElementSize());
   349 }
   351 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
   352   debug_only(verify_stack_tag(frame::TagValue));
   353   movflt(r, Address(rsp, 0));
   354   addq(rsp, wordSize);
   355   if (TaggedStackInterpreter) addq(rsp, 1 * wordSize);
   356 }
   358 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
   359   debug_only(verify_stack_tag(frame::TagCategory2));
   360   movdbl(r, Address(rsp, 0));
   361   addq(rsp, 2 * Interpreter::stackElementSize());
   362 }
   364 void InterpreterMacroAssembler::push_ptr(Register r) {
   365   if (TaggedStackInterpreter) pushq(frame::TagReference);
   366   pushq(r);
   367 }
   369 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
   370   if (TaggedStackInterpreter) pushq(tag);
   371   pushq(r);
   372 }
   374 void InterpreterMacroAssembler::push_i(Register r) {
   375   if (TaggedStackInterpreter) pushq(frame::TagValue);
   376   pushq(r);
   377 }
   379 void InterpreterMacroAssembler::push_l(Register r) {
   380   if (TaggedStackInterpreter) {
   381     pushq(frame::TagValue);
   382     subq(rsp, 1 * wordSize);
   383     pushq(frame::TagValue);
   384     subq(rsp, 1 * wordSize);
   385   } else {
   386     subq(rsp, 2 * wordSize);
   387   }
   388   movq(Address(rsp, 0), r);
   389 }
   391 void InterpreterMacroAssembler::push_f(XMMRegister r) {
   392   if (TaggedStackInterpreter) pushq(frame::TagValue);
   393   subq(rsp, wordSize);
   394   movflt(Address(rsp, 0), r);
   395 }
   397 void InterpreterMacroAssembler::push_d(XMMRegister r) {
   398   if (TaggedStackInterpreter) {
   399     pushq(frame::TagValue);
   400     subq(rsp, 1 * wordSize);
   401     pushq(frame::TagValue);
   402     subq(rsp, 1 * wordSize);
   403   } else {
   404     subq(rsp, 2 * wordSize);
   405   }
   406   movdbl(Address(rsp, 0), r);
   407 }
   409 void InterpreterMacroAssembler::pop(TosState state) {
   410   switch (state) {
   411   case atos: pop_ptr();                 break;
   412   case btos:
   413   case ctos:
   414   case stos:
   415   case itos: pop_i();                   break;
   416   case ltos: pop_l();                   break;
   417   case ftos: pop_f();                   break;
   418   case dtos: pop_d();                   break;
   419   case vtos: /* nothing to do */        break;
   420   default:   ShouldNotReachHere();
   421   }
   422   verify_oop(rax, state);
   423 }
   425 void InterpreterMacroAssembler::push(TosState state) {
   426   verify_oop(rax, state);
   427   switch (state) {
   428   case atos: push_ptr();                break;
   429   case btos:
   430   case ctos:
   431   case stos:
   432   case itos: push_i();                  break;
   433   case ltos: push_l();                  break;
   434   case ftos: push_f();                  break;
   435   case dtos: push_d();                  break;
   436   case vtos: /* nothing to do */        break;
   437   default  : ShouldNotReachHere();
   438   }
   439 }
   442 // Tagged stack helpers for swap and dup
   443 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
   444                                                  Register tag) {
   445   movq(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
   446   if (TaggedStackInterpreter) {
   447     movq(tag, Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)));
   448   }
   449 }
   451 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
   452                                                   Register tag) {
   453   movq(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
   454   if (TaggedStackInterpreter) {
   455     movq(Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)), tag);
   456   }
   457 }
   460 // Tagged local support
   461 void InterpreterMacroAssembler::tag_local(frame::Tag tag, int n) {
   462   if (TaggedStackInterpreter) {
   463     if (tag == frame::TagCategory2) {
   464       mov64(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)),
   465            (intptr_t)frame::TagValue);
   466       mov64(Address(r14, Interpreter::local_tag_offset_in_bytes(n)),
   467            (intptr_t)frame::TagValue);
   468     } else {
   469       mov64(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (intptr_t)tag);
   470     }
   471   }
   472 }
   474 void InterpreterMacroAssembler::tag_local(frame::Tag tag, Register idx) {
   475   if (TaggedStackInterpreter) {
   476     if (tag == frame::TagCategory2) {
   477       mov64(Address(r14, idx, Address::times_8,
   478                   Interpreter::local_tag_offset_in_bytes(1)), (intptr_t)frame::TagValue);
   479       mov64(Address(r14, idx, Address::times_8,
   480                   Interpreter::local_tag_offset_in_bytes(0)), (intptr_t)frame::TagValue);
   481     } else {
   482       mov64(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)),
   483            (intptr_t)tag);
   484     }
   485   }
   486 }
   488 void InterpreterMacroAssembler::tag_local(Register tag, Register idx) {
   489   if (TaggedStackInterpreter) {
   490     // can only be TagValue or TagReference
   491     movq(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), tag);
   492   }
   493 }
   496 void InterpreterMacroAssembler::tag_local(Register tag, int n) {
   497   if (TaggedStackInterpreter) {
   498     // can only be TagValue or TagReference
   499     movq(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), tag);
   500   }
   501 }
   503 #ifdef ASSERT
   504 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, int n) {
   505   if (TaggedStackInterpreter) {
   506      frame::Tag t = tag;
   507     if (tag == frame::TagCategory2) {
   508       Label nbl;
   509       t = frame::TagValue;  // change to what is stored in locals
   510       cmpq(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)), (int)t);
   511       jcc(Assembler::equal, nbl);
   512       stop("Local tag is bad for long/double");
   513       bind(nbl);
   514     }
   515     Label notBad;
   516     cmpq(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (int)t);
   517     jcc(Assembler::equal, notBad);
   518     // Also compare if the local value is zero, then the tag might
   519     // not have been set coming from deopt.
   520     cmpq(Address(r14, Interpreter::local_offset_in_bytes(n)), 0);
   521     jcc(Assembler::equal, notBad);
   522     stop("Local tag is bad");
   523     bind(notBad);
   524   }
   525 }
   527 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, Register idx) {
   528   if (TaggedStackInterpreter) {
   529     frame::Tag t = tag;
   530     if (tag == frame::TagCategory2) {
   531       Label nbl;
   532       t = frame::TagValue;  // change to what is stored in locals
   533       cmpq(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(1)), (int)t);
   534       jcc(Assembler::equal, nbl);
   535       stop("Local tag is bad for long/double");
   536       bind(nbl);
   537     }
   538     Label notBad;
   539     cmpq(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), (int)t);
   540     jcc(Assembler::equal, notBad);
   541     // Also compare if the local value is zero, then the tag might
   542     // not have been set coming from deopt.
   543     cmpq(Address(r14, idx, Address::times_8, Interpreter::local_offset_in_bytes(0)), 0);
   544     jcc(Assembler::equal, notBad);
   545     stop("Local tag is bad");
   546     bind(notBad);
   547   }
   548 }
   549 #endif // ASSERT
   552 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) {
   553   MacroAssembler::call_VM_leaf_base(entry_point, 0);
   554 }
   557 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
   558                                                    Register arg_1) {
   559   if (c_rarg0 != arg_1) {
   560     movq(c_rarg0, arg_1);
   561   }
   562   MacroAssembler::call_VM_leaf_base(entry_point, 1);
   563 }
   566 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
   567                                                    Register arg_1,
   568                                                    Register arg_2) {
   569   assert(c_rarg0 != arg_2, "smashed argument");
   570   assert(c_rarg1 != arg_1, "smashed argument");
   571   if (c_rarg0 != arg_1) {
   572     movq(c_rarg0, arg_1);
   573   }
   574   if (c_rarg1 != arg_2) {
   575     movq(c_rarg1, arg_2);
   576   }
   577   MacroAssembler::call_VM_leaf_base(entry_point, 2);
   578 }
   580 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
   581                                                    Register arg_1,
   582                                                    Register arg_2,
   583                                                    Register arg_3) {
   584   assert(c_rarg0 != arg_2, "smashed argument");
   585   assert(c_rarg0 != arg_3, "smashed argument");
   586   assert(c_rarg1 != arg_1, "smashed argument");
   587   assert(c_rarg1 != arg_3, "smashed argument");
   588   assert(c_rarg2 != arg_1, "smashed argument");
   589   assert(c_rarg2 != arg_2, "smashed argument");
   590   if (c_rarg0 != arg_1) {
   591     movq(c_rarg0, arg_1);
   592   }
   593   if (c_rarg1 != arg_2) {
   594     movq(c_rarg1, arg_2);
   595   }
   596   if (c_rarg2 != arg_3) {
   597     movq(c_rarg2, arg_3);
   598   }
   599   MacroAssembler::call_VM_leaf_base(entry_point, 3);
   600 }
   602 // Jump to from_interpreted entry of a call unless single stepping is possible
   603 // in this thread in which case we must call the i2i entry
   604 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
   605   // set sender sp
   606   leaq(r13, Address(rsp, wordSize));
   607   // record last_sp
   608   movq(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), r13);
   610   if (JvmtiExport::can_post_interpreter_events()) {
   611     Label run_compiled_code;
   612     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   613     // compiled code in threads for which the event is enabled.  Check here for
   614     // interp_only_mode if these events CAN be enabled.
   615     get_thread(temp);
   616     // interp_only is an int, on little endian it is sufficient to test the byte only
   617     // Is a cmpl faster (ce
   618     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
   619     jcc(Assembler::zero, run_compiled_code);
   620     jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
   621     bind(run_compiled_code);
   622   }
   624   jmp(Address(method, methodOopDesc::from_interpreted_offset()));
   626 }
   629 // The following two routines provide a hook so that an implementation
   630 // can schedule the dispatch in two parts.  amd64 does not do this.
   631 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
   632   // Nothing amd64 specific to be done here
   633 }
   635 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
   636   dispatch_next(state, step);
   637 }
   639 void InterpreterMacroAssembler::dispatch_base(TosState state,
   640                                               address* table,
   641                                               bool verifyoop) {
   642   verify_FPU(1, state);
   643   if (VerifyActivationFrameSize) {
   644     Label L;
   645     movq(rcx, rbp);
   646     subq(rcx, rsp);
   647     int min_frame_size =
   648       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
   649       wordSize;
   650     cmpq(rcx, min_frame_size);
   651     jcc(Assembler::greaterEqual, L);
   652     stop("broken stack frame");
   653     bind(L);
   654   }
   655   if (verifyoop) {
   656     verify_oop(rax, state);
   657   }
   658   lea(rscratch1, ExternalAddress((address)table));
   659   jmp(Address(rscratch1, rbx, Address::times_8));
   660 }
   662 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   663   dispatch_base(state, Interpreter::dispatch_table(state));
   664 }
   666 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
   667   dispatch_base(state, Interpreter::normal_table(state));
   668 }
   670 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
   671   dispatch_base(state, Interpreter::normal_table(state), false);
   672 }
   675 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
   676   // load next bytecode (load before advancing r13 to prevent AGI)
   677   load_unsigned_byte(rbx, Address(r13, step));
   678   // advance r13
   679   incrementq(r13, step);
   680   dispatch_base(state, Interpreter::dispatch_table(state));
   681 }
   683 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   684   // load current bytecode
   685   load_unsigned_byte(rbx, Address(r13, 0));
   686   dispatch_base(state, table);
   687 }
   689 // remove activation
   690 //
   691 // Unlock the receiver if this is a synchronized method.
   692 // Unlock any Java monitors from syncronized blocks.
   693 // Remove the activation from the stack.
   694 //
   695 // If there are locked Java monitors
   696 //    If throw_monitor_exception
   697 //       throws IllegalMonitorStateException
   698 //    Else if install_monitor_exception
   699 //       installs IllegalMonitorStateException
   700 //    Else
   701 //       no error processing
   702 void InterpreterMacroAssembler::remove_activation(
   703         TosState state,
   704         Register ret_addr,
   705         bool throw_monitor_exception,
   706         bool install_monitor_exception,
   707         bool notify_jvmdi) {
   708   // Note: Registers rdx xmm0 may be in use for the
   709   // result check if synchronized method
   710   Label unlocked, unlock, no_unlock;
   712   // get the value of _do_not_unlock_if_synchronized into rdx
   713   const Address do_not_unlock_if_synchronized(r15_thread,
   714     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   715   movbool(rdx, do_not_unlock_if_synchronized);
   716   movbool(do_not_unlock_if_synchronized, false); // reset the flag
   718  // get method access flags
   719   movq(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
   720   movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
   721   testl(rcx, JVM_ACC_SYNCHRONIZED);
   722   jcc(Assembler::zero, unlocked);
   724   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
   725   // is set.
   726   testbool(rdx);
   727   jcc(Assembler::notZero, no_unlock);
   729   // unlock monitor
   730   push(state); // save result
   732   // BasicObjectLock will be first in list, since this is a
   733   // synchronized method. However, need to check that the object has
   734   // not been unlocked by an explicit monitorexit bytecode.
   735   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
   736                         wordSize - (int) sizeof(BasicObjectLock));
   737   // We use c_rarg1 so that if we go slow path it will be the correct
   738   // register for unlock_object to pass to VM directly
   739   leaq(c_rarg1, monitor); // address of first monitor
   741   movq(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
   742   testq(rax, rax);
   743   jcc(Assembler::notZero, unlock);
   745   pop(state);
   746   if (throw_monitor_exception) {
   747     // Entry already unlocked, need to throw exception
   748     call_VM(noreg, CAST_FROM_FN_PTR(address,
   749                    InterpreterRuntime::throw_illegal_monitor_state_exception));
   750     should_not_reach_here();
   751   } else {
   752     // Monitor already unlocked during a stack unroll. If requested,
   753     // install an illegal_monitor_state_exception.  Continue with
   754     // stack unrolling.
   755     if (install_monitor_exception) {
   756       call_VM(noreg, CAST_FROM_FN_PTR(address,
   757                      InterpreterRuntime::new_illegal_monitor_state_exception));
   758     }
   759     jmp(unlocked);
   760   }
   762   bind(unlock);
   763   unlock_object(c_rarg1);
   764   pop(state);
   766   // Check that for block-structured locking (i.e., that all locked
   767   // objects has been unlocked)
   768   bind(unlocked);
   770   // rax: Might contain return value
   772   // Check that all monitors are unlocked
   773   {
   774     Label loop, exception, entry, restart;
   775     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   776     const Address monitor_block_top(
   777         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   778     const Address monitor_block_bot(
   779         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
   781     bind(restart);
   782     // We use c_rarg1 so that if we go slow path it will be the correct
   783     // register for unlock_object to pass to VM directly
   784     movq(c_rarg1, monitor_block_top); // points to current entry, starting
   785                                   // with top-most entry
   786     leaq(rbx, monitor_block_bot); // points to word before bottom of
   787                                   // monitor block
   788     jmp(entry);
   790     // Entry already locked, need to throw exception
   791     bind(exception);
   793     if (throw_monitor_exception) {
   794       // Throw exception
   795       MacroAssembler::call_VM(noreg,
   796                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
   797                                    throw_illegal_monitor_state_exception));
   798       should_not_reach_here();
   799     } else {
   800       // Stack unrolling. Unlock object and install illegal_monitor_exception.
   801       // Unlock does not block, so don't have to worry about the frame.
   802       // We don't have to preserve c_rarg1 since we are going to throw an exception.
   804       push(state);
   805       unlock_object(c_rarg1);
   806       pop(state);
   808       if (install_monitor_exception) {
   809         call_VM(noreg, CAST_FROM_FN_PTR(address,
   810                                         InterpreterRuntime::
   811                                         new_illegal_monitor_state_exception));
   812       }
   814       jmp(restart);
   815     }
   817     bind(loop);
   818     // check if current entry is used
   819     cmpq(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), (int) NULL);
   820     jcc(Assembler::notEqual, exception);
   822     addq(c_rarg1, entry_size); // otherwise advance to next entry
   823     bind(entry);
   824     cmpq(c_rarg1, rbx); // check if bottom reached
   825     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
   826   }
   828   bind(no_unlock);
   830   // jvmti support
   831   if (notify_jvmdi) {
   832     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
   833   } else {
   834     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
   835   }
   837   // remove activation
   838   // get sender sp
   839   movq(rbx,
   840        Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
   841   leave();                           // remove frame anchor
   842   popq(ret_addr);                    // get return address
   843   movq(rsp, rbx);                    // set sp to sender sp
   844 }
   846 // Lock object
   847 //
   848 // Args:
   849 //      c_rarg1: BasicObjectLock to be used for locking
   850 //
   851 // Kills:
   852 //      rax
   853 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
   854 //      rscratch1, rscratch2 (scratch regs)
   855 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
   856   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
   858   if (UseHeavyMonitors) {
   859     call_VM(noreg,
   860             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
   861             lock_reg);
   862   } else {
   863     Label done;
   865     const Register swap_reg = rax; // Must use rax for cmpxchg instruction
   866     const Register obj_reg = c_rarg3; // Will contain the oop
   868     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
   869     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
   870     const int mark_offset = lock_offset +
   871                             BasicLock::displaced_header_offset_in_bytes();
   873     Label slow_case;
   875     // Load object pointer into obj_reg %c_rarg3
   876     movq(obj_reg, Address(lock_reg, obj_offset));
   878     if (UseBiasedLocking) {
   879       biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case);
   880     }
   882     // Load immediate 1 into swap_reg %rax
   883     movl(swap_reg, 1);
   885     // Load (object->mark() | 1) into swap_reg %rax
   886     orq(swap_reg, Address(obj_reg, 0));
   888     // Save (object->mark() | 1) into BasicLock's displaced header
   889     movq(Address(lock_reg, mark_offset), swap_reg);
   891     assert(lock_offset == 0,
   892            "displached header must be first word in BasicObjectLock");
   894     if (os::is_MP()) lock();
   895     cmpxchgq(lock_reg, Address(obj_reg, 0));
   896     if (PrintBiasedLockingStatistics) {
   897       cond_inc32(Assembler::zero,
   898                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   899     }
   900     jcc(Assembler::zero, done);
   902     // Test if the oopMark is an obvious stack pointer, i.e.,
   903     //  1) (mark & 7) == 0, and
   904     //  2) rsp <= mark < mark + os::pagesize()
   905     //
   906     // These 3 tests can be done by evaluating the following
   907     // expression: ((mark - rsp) & (7 - os::vm_page_size())),
   908     // assuming both stack pointer and pagesize have their
   909     // least significant 3 bits clear.
   910     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
   911     subq(swap_reg, rsp);
   912     andq(swap_reg, 7 - os::vm_page_size());
   914     // Save the test result, for recursive case, the result is zero
   915     movq(Address(lock_reg, mark_offset), swap_reg);
   917     if (PrintBiasedLockingStatistics) {
   918       cond_inc32(Assembler::zero,
   919                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   920     }
   921     jcc(Assembler::zero, done);
   923     bind(slow_case);
   925     // Call the runtime routine for slow case
   926     call_VM(noreg,
   927             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
   928             lock_reg);
   930     bind(done);
   931   }
   932 }
   935 // Unlocks an object. Used in monitorexit bytecode and
   936 // remove_activation.  Throws an IllegalMonitorException if object is
   937 // not locked by current thread.
   938 //
   939 // Args:
   940 //      c_rarg1: BasicObjectLock for lock
   941 //
   942 // Kills:
   943 //      rax
   944 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
   945 //      rscratch1, rscratch2 (scratch regs)
   946 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
   947   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
   949   if (UseHeavyMonitors) {
   950     call_VM(noreg,
   951             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
   952             lock_reg);
   953   } else {
   954     Label done;
   956     const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
   957     const Register header_reg = c_rarg2;  // Will contain the old oopMark
   958     const Register obj_reg    = c_rarg3;  // Will contain the oop
   960     save_bcp(); // Save in case of exception
   962     // Convert from BasicObjectLock structure to object and BasicLock
   963     // structure Store the BasicLock address into %rax
   964     leaq(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
   966     // Load oop into obj_reg(%c_rarg3)
   967     movq(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
   969     // Free entry
   970     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
   972     if (UseBiasedLocking) {
   973       biased_locking_exit(obj_reg, header_reg, done);
   974     }
   976     // Load the old header from BasicLock structure
   977     movq(header_reg, Address(swap_reg,
   978                              BasicLock::displaced_header_offset_in_bytes()));
   980     // Test for recursion
   981     testq(header_reg, header_reg);
   983     // zero for recursive case
   984     jcc(Assembler::zero, done);
   986     // Atomic swap back the old header
   987     if (os::is_MP()) lock();
   988     cmpxchgq(header_reg, Address(obj_reg, 0));
   990     // zero for recursive case
   991     jcc(Assembler::zero, done);
   993     // Call the runtime routine for slow case.
   994     movq(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
   995          obj_reg); // restore obj
   996     call_VM(noreg,
   997             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
   998             lock_reg);
  1000     bind(done);
  1002     restore_bcp();
  1007 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
  1008                                                          Label& zero_continue) {
  1009   assert(ProfileInterpreter, "must be profiling interpreter");
  1010   movq(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
  1011   testq(mdp, mdp);
  1012   jcc(Assembler::zero, zero_continue);
  1016 // Set the method data pointer for the current bcp.
  1017 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
  1018   assert(ProfileInterpreter, "must be profiling interpreter");
  1019   Label zero_continue;
  1020   pushq(rax);
  1021   pushq(rbx);
  1023   get_method(rbx);
  1024   // Test MDO to avoid the call if it is NULL.
  1025   movq(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
  1026   testq(rax, rax);
  1027   jcc(Assembler::zero, zero_continue);
  1029   // rbx: method
  1030   // r13: bcp
  1031   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, r13);
  1032   // rax: mdi
  1034   movq(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
  1035   testq(rbx, rbx);
  1036   jcc(Assembler::zero, zero_continue);
  1037   addq(rbx, in_bytes(methodDataOopDesc::data_offset()));
  1038   addq(rbx, rax);
  1039   movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rbx);
  1041   bind(zero_continue);
  1042   popq(rbx);
  1043   popq(rax);
  1046 void InterpreterMacroAssembler::verify_method_data_pointer() {
  1047   assert(ProfileInterpreter, "must be profiling interpreter");
  1048 #ifdef ASSERT
  1049   Label verify_continue;
  1050   pushq(rax);
  1051   pushq(rbx);
  1052   pushq(c_rarg3);
  1053   pushq(c_rarg2);
  1054   test_method_data_pointer(c_rarg3, verify_continue); // If mdp is zero, continue
  1055   get_method(rbx);
  1057   // If the mdp is valid, it will point to a DataLayout header which is
  1058   // consistent with the bcp.  The converse is highly probable also.
  1059   load_unsigned_word(c_rarg2,
  1060                      Address(c_rarg3, in_bytes(DataLayout::bci_offset())));
  1061   addq(c_rarg2, Address(rbx, methodOopDesc::const_offset()));
  1062   leaq(c_rarg2, Address(c_rarg2, constMethodOopDesc::codes_offset()));
  1063   cmpq(c_rarg2, r13);
  1064   jcc(Assembler::equal, verify_continue);
  1065   // rbx: method
  1066   // r13: bcp
  1067   // c_rarg3: mdp
  1068   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
  1069                rbx, r13, c_rarg3);
  1070   bind(verify_continue);
  1071   popq(c_rarg2);
  1072   popq(c_rarg3);
  1073   popq(rbx);
  1074   popq(rax);
  1075 #endif // ASSERT
  1079 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
  1080                                                 int constant,
  1081                                                 Register value) {
  1082   assert(ProfileInterpreter, "must be profiling interpreter");
  1083   Address data(mdp_in, constant);
  1084   movq(data, value);
  1088 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
  1089                                                       int constant,
  1090                                                       bool decrement) {
  1091   // Counter address
  1092   Address data(mdp_in, constant);
  1094   increment_mdp_data_at(data, decrement);
  1097 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
  1098                                                       bool decrement) {
  1099   assert(ProfileInterpreter, "must be profiling interpreter");
  1101   if (decrement) {
  1102     // Decrement the register.  Set condition codes.
  1103     addq(data, -DataLayout::counter_increment);
  1104     // If the decrement causes the counter to overflow, stay negative
  1105     Label L;
  1106     jcc(Assembler::negative, L);
  1107     addq(data, DataLayout::counter_increment);
  1108     bind(L);
  1109   } else {
  1110     assert(DataLayout::counter_increment == 1,
  1111            "flow-free idiom only works with 1");
  1112     // Increment the register.  Set carry flag.
  1113     addq(data, DataLayout::counter_increment);
  1114     // If the increment causes the counter to overflow, pull back by 1.
  1115     sbbq(data, 0);
  1120 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
  1121                                                       Register reg,
  1122                                                       int constant,
  1123                                                       bool decrement) {
  1124   Address data(mdp_in, reg, Address::times_1, constant);
  1126   increment_mdp_data_at(data, decrement);
  1129 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
  1130                                                 int flag_byte_constant) {
  1131   assert(ProfileInterpreter, "must be profiling interpreter");
  1132   int header_offset = in_bytes(DataLayout::header_offset());
  1133   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
  1134   // Set the flag
  1135   orl(Address(mdp_in, header_offset), header_bits);
  1140 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
  1141                                                  int offset,
  1142                                                  Register value,
  1143                                                  Register test_value_out,
  1144                                                  Label& not_equal_continue) {
  1145   assert(ProfileInterpreter, "must be profiling interpreter");
  1146   if (test_value_out == noreg) {
  1147     cmpq(value, Address(mdp_in, offset));
  1148   } else {
  1149     // Put the test value into a register, so caller can use it:
  1150     movq(test_value_out, Address(mdp_in, offset));
  1151     cmpq(test_value_out, value);
  1153   jcc(Assembler::notEqual, not_equal_continue);
  1157 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
  1158                                                      int offset_of_disp) {
  1159   assert(ProfileInterpreter, "must be profiling interpreter");
  1160   Address disp_address(mdp_in, offset_of_disp);
  1161   addq(mdp_in, disp_address);
  1162   movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1166 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
  1167                                                      Register reg,
  1168                                                      int offset_of_disp) {
  1169   assert(ProfileInterpreter, "must be profiling interpreter");
  1170   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
  1171   addq(mdp_in, disp_address);
  1172   movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1176 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
  1177                                                        int constant) {
  1178   assert(ProfileInterpreter, "must be profiling interpreter");
  1179   addq(mdp_in, constant);
  1180   movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1184 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
  1185   assert(ProfileInterpreter, "must be profiling interpreter");
  1186   pushq(return_bci); // save/restore across call_VM
  1187   call_VM(noreg,
  1188           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
  1189           return_bci);
  1190   popq(return_bci);
  1194 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
  1195                                                      Register bumped_count) {
  1196   if (ProfileInterpreter) {
  1197     Label profile_continue;
  1199     // If no method data exists, go to profile_continue.
  1200     // Otherwise, assign to mdp
  1201     test_method_data_pointer(mdp, profile_continue);
  1203     // We are taking a branch.  Increment the taken count.
  1204     // We inline increment_mdp_data_at to return bumped_count in a register
  1205     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
  1206     Address data(mdp, in_bytes(JumpData::taken_offset()));
  1207     movq(bumped_count, data);
  1208     assert(DataLayout::counter_increment == 1,
  1209             "flow-free idiom only works with 1");
  1210     addq(bumped_count, DataLayout::counter_increment);
  1211     sbbq(bumped_count, 0);
  1212     movq(data, bumped_count); // Store back out
  1214     // The method data pointer needs to be updated to reflect the new target.
  1215     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
  1216     bind(profile_continue);
  1221 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
  1222   if (ProfileInterpreter) {
  1223     Label profile_continue;
  1225     // If no method data exists, go to profile_continue.
  1226     test_method_data_pointer(mdp, profile_continue);
  1228     // We are taking a branch.  Increment the not taken count.
  1229     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
  1231     // The method data pointer needs to be updated to correspond to
  1232     // the next bytecode
  1233     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
  1234     bind(profile_continue);
  1239 void InterpreterMacroAssembler::profile_call(Register mdp) {
  1240   if (ProfileInterpreter) {
  1241     Label profile_continue;
  1243     // If no method data exists, go to profile_continue.
  1244     test_method_data_pointer(mdp, profile_continue);
  1246     // We are making a call.  Increment the count.
  1247     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1249     // The method data pointer needs to be updated to reflect the new target.
  1250     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
  1251     bind(profile_continue);
  1256 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
  1257   if (ProfileInterpreter) {
  1258     Label profile_continue;
  1260     // If no method data exists, go to profile_continue.
  1261     test_method_data_pointer(mdp, profile_continue);
  1263     // We are making a call.  Increment the count.
  1264     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1266     // The method data pointer needs to be updated to reflect the new target.
  1267     update_mdp_by_constant(mdp,
  1268                            in_bytes(VirtualCallData::
  1269                                     virtual_call_data_size()));
  1270     bind(profile_continue);
  1275 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
  1276                                                      Register mdp,
  1277                                                      Register reg2) {
  1278   if (ProfileInterpreter) {
  1279     Label profile_continue;
  1281     // If no method data exists, go to profile_continue.
  1282     test_method_data_pointer(mdp, profile_continue);
  1284     // We are making a call.  Increment the count.
  1285     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1287     // Record the receiver type.
  1288     record_klass_in_profile(receiver, mdp, reg2);
  1290     // The method data pointer needs to be updated to reflect the new target.
  1291     update_mdp_by_constant(mdp,
  1292                            in_bytes(VirtualCallData::
  1293                                     virtual_call_data_size()));
  1294     bind(profile_continue);
  1298 // This routine creates a state machine for updating the multi-row
  1299 // type profile at a virtual call site (or other type-sensitive bytecode).
  1300 // The machine visits each row (of receiver/count) until the receiver type
  1301 // is found, or until it runs out of rows.  At the same time, it remembers
  1302 // the location of the first empty row.  (An empty row records null for its
  1303 // receiver, and can be allocated for a newly-observed receiver type.)
  1304 // Because there are two degrees of freedom in the state, a simple linear
  1305 // search will not work; it must be a decision tree.  Hence this helper
  1306 // function is recursive, to generate the required tree structured code.
  1307 // It's the interpreter, so we are trading off code space for speed.
  1308 // See below for example code.
  1309 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1310                                         Register receiver, Register mdp,
  1311                                         Register reg2,
  1312                                         int start_row, Label& done) {
  1313   int last_row = VirtualCallData::row_limit() - 1;
  1314   assert(start_row <= last_row, "must be work left to do");
  1315   // Test this row for both the receiver and for null.
  1316   // Take any of three different outcomes:
  1317   //   1. found receiver => increment count and goto done
  1318   //   2. found null => keep looking for case 1, maybe allocate this cell
  1319   //   3. found something else => keep looking for cases 1 and 2
  1320   // Case 3 is handled by a recursive call.
  1321   for (int row = start_row; row <= last_row; row++) {
  1322     Label next_test;
  1323     bool test_for_null_also = (row == start_row);
  1325     // See if the receiver is receiver[n].
  1326     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1327     test_mdp_data_at(mdp, recvr_offset, receiver,
  1328                      (test_for_null_also ? reg2 : noreg),
  1329                      next_test);
  1330     // (Reg2 now contains the receiver from the CallData.)
  1332     // The receiver is receiver[n].  Increment count[n].
  1333     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1334     increment_mdp_data_at(mdp, count_offset);
  1335     jmp(done);
  1336     bind(next_test);
  1338     if (test_for_null_also) {
  1339       // Failed the equality check on receiver[n]...  Test for null.
  1340       testq(reg2, reg2);
  1341       if (start_row == last_row) {
  1342         // The only thing left to do is handle the null case.
  1343         jcc(Assembler::notZero, done);
  1344         break;
  1346       // Since null is rare, make it be the branch-taken case.
  1347       Label found_null;
  1348       jcc(Assembler::zero, found_null);
  1350       // Put all the "Case 3" tests here.
  1351       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done);
  1353       // Found a null.  Keep searching for a matching receiver,
  1354       // but remember that this is an empty (unused) slot.
  1355       bind(found_null);
  1359   // In the fall-through case, we found no matching receiver, but we
  1360   // observed the receiver[start_row] is NULL.
  1362   // Fill in the receiver field and increment the count.
  1363   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1364   set_mdp_data_at(mdp, recvr_offset, receiver);
  1365   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1366   movl(reg2, DataLayout::counter_increment);
  1367   set_mdp_data_at(mdp, count_offset, reg2);
  1368   jmp(done);
  1371 // Example state machine code for three profile rows:
  1372 //   // main copy of decision tree, rooted at row[1]
  1373 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
  1374 //   if (row[0].rec != NULL) {
  1375 //     // inner copy of decision tree, rooted at row[1]
  1376 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
  1377 //     if (row[1].rec != NULL) {
  1378 //       // degenerate decision tree, rooted at row[2]
  1379 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
  1380 //       if (row[2].rec != NULL) { goto done; } // overflow
  1381 //       row[2].init(rec); goto done;
  1382 //     } else {
  1383 //       // remember row[1] is empty
  1384 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
  1385 //       row[1].init(rec); goto done;
  1386 //     }
  1387 //   } else {
  1388 //     // remember row[0] is empty
  1389 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
  1390 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
  1391 //     row[0].init(rec); goto done;
  1392 //   }
  1394 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1395                                                         Register mdp,
  1396                                                         Register reg2) {
  1397   assert(ProfileInterpreter, "must be profiling");
  1398   Label done;
  1400   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
  1402   bind (done);
  1405 void InterpreterMacroAssembler::profile_ret(Register return_bci,
  1406                                             Register mdp) {
  1407   if (ProfileInterpreter) {
  1408     Label profile_continue;
  1409     uint row;
  1411     // If no method data exists, go to profile_continue.
  1412     test_method_data_pointer(mdp, profile_continue);
  1414     // Update the total ret count.
  1415     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1417     for (row = 0; row < RetData::row_limit(); row++) {
  1418       Label next_test;
  1420       // See if return_bci is equal to bci[n]:
  1421       test_mdp_data_at(mdp,
  1422                        in_bytes(RetData::bci_offset(row)),
  1423                        return_bci, noreg,
  1424                        next_test);
  1426       // return_bci is equal to bci[n].  Increment the count.
  1427       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
  1429       // The method data pointer needs to be updated to reflect the new target.
  1430       update_mdp_by_offset(mdp,
  1431                            in_bytes(RetData::bci_displacement_offset(row)));
  1432       jmp(profile_continue);
  1433       bind(next_test);
  1436     update_mdp_for_ret(return_bci);
  1438     bind(profile_continue);
  1443 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
  1444   if (ProfileInterpreter) {
  1445     Label profile_continue;
  1447     // If no method data exists, go to profile_continue.
  1448     test_method_data_pointer(mdp, profile_continue);
  1450     // The method data pointer needs to be updated.
  1451     int mdp_delta = in_bytes(BitData::bit_data_size());
  1452     if (TypeProfileCasts) {
  1453       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1455     update_mdp_by_constant(mdp, mdp_delta);
  1457     bind(profile_continue);
  1462 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
  1463   if (ProfileInterpreter && TypeProfileCasts) {
  1464     Label profile_continue;
  1466     // If no method data exists, go to profile_continue.
  1467     test_method_data_pointer(mdp, profile_continue);
  1469     int count_offset = in_bytes(CounterData::count_offset());
  1470     // Back up the address, since we have already bumped the mdp.
  1471     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1473     // *Decrement* the counter.  We expect to see zero or small negatives.
  1474     increment_mdp_data_at(mdp, count_offset, true);
  1476     bind (profile_continue);
  1481 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
  1482   if (ProfileInterpreter) {
  1483     Label profile_continue;
  1485     // If no method data exists, go to profile_continue.
  1486     test_method_data_pointer(mdp, profile_continue);
  1488     // The method data pointer needs to be updated.
  1489     int mdp_delta = in_bytes(BitData::bit_data_size());
  1490     if (TypeProfileCasts) {
  1491       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1493       // Record the object type.
  1494       record_klass_in_profile(klass, mdp, reg2);
  1496     update_mdp_by_constant(mdp, mdp_delta);
  1498     bind(profile_continue);
  1503 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
  1504   if (ProfileInterpreter) {
  1505     Label profile_continue;
  1507     // If no method data exists, go to profile_continue.
  1508     test_method_data_pointer(mdp, profile_continue);
  1510     // Update the default case count
  1511     increment_mdp_data_at(mdp,
  1512                           in_bytes(MultiBranchData::default_count_offset()));
  1514     // The method data pointer needs to be updated.
  1515     update_mdp_by_offset(mdp,
  1516                          in_bytes(MultiBranchData::
  1517                                   default_displacement_offset()));
  1519     bind(profile_continue);
  1524 void InterpreterMacroAssembler::profile_switch_case(Register index,
  1525                                                     Register mdp,
  1526                                                     Register reg2) {
  1527   if (ProfileInterpreter) {
  1528     Label profile_continue;
  1530     // If no method data exists, go to profile_continue.
  1531     test_method_data_pointer(mdp, profile_continue);
  1533     // Build the base (index * per_case_size_in_bytes()) +
  1534     // case_array_offset_in_bytes()
  1535     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
  1536     imulq(index, reg2); // XXX l ?
  1537     addq(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
  1539     // Update the case count
  1540     increment_mdp_data_at(mdp,
  1541                           index,
  1542                           in_bytes(MultiBranchData::relative_count_offset()));
  1544     // The method data pointer needs to be updated.
  1545     update_mdp_by_offset(mdp,
  1546                          index,
  1547                          in_bytes(MultiBranchData::
  1548                                   relative_displacement_offset()));
  1550     bind(profile_continue);
  1555 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
  1556   if (state == atos) {
  1557     MacroAssembler::verify_oop(reg);
  1561 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  1565 void InterpreterMacroAssembler::notify_method_entry() {
  1566   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1567   // track stack depth.  If it is possible to enter interp_only_mode we add
  1568   // the code to check if the event should be sent.
  1569   if (JvmtiExport::can_post_interpreter_events()) {
  1570     Label L;
  1571     movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
  1572     testl(rdx, rdx);
  1573     jcc(Assembler::zero, L);
  1574     call_VM(noreg, CAST_FROM_FN_PTR(address,
  1575                                     InterpreterRuntime::post_method_entry));
  1576     bind(L);
  1580     SkipIfEqual skip(this, &DTraceMethodProbes, false);
  1581     get_method(c_rarg1);
  1582     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  1583                  r15_thread, c_rarg1);
  1588 void InterpreterMacroAssembler::notify_method_exit(
  1589     TosState state, NotifyMethodExitMode mode) {
  1590   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1591   // track stack depth.  If it is possible to enter interp_only_mode we add
  1592   // the code to check if the event should be sent.
  1593   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  1594     Label L;
  1595     // Note: frame::interpreter_frame_result has a dependency on how the
  1596     // method result is saved across the call to post_method_exit. If this
  1597     // is changed then the interpreter_frame_result implementation will
  1598     // need to be updated too.
  1599     push(state);
  1600     movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
  1601     testl(rdx, rdx);
  1602     jcc(Assembler::zero, L);
  1603     call_VM(noreg,
  1604             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  1605     bind(L);
  1606     pop(state);
  1610     SkipIfEqual skip(this, &DTraceMethodProbes, false);
  1611     push(state);
  1612     get_method(c_rarg1);
  1613     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1614                  r15_thread, c_rarg1);
  1615     pop(state);

mercurial